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Abstract

Covariate-adaptive designs are often implemented to balance important covariates in

clinical trials. However, the theoretical properties of conventional statistical meth-

ods are usually unknown under covariate-adaptive randomized clinical trials. In

literature, most studies are based on simulations. In this dissertation, we provide

theoretical foundation of statistical inference under covariate-adaptive designs based

on linear models and generalized linear models.

In Chapter 2, we derive asymptotic distributions of the test statistics of testing

both treatment effects and significance of covariates under null and alternative hy-

potheses in the linear model framework. Under a large class of covariate-adaptive

designs, we find that: (i) the hypothesis testing to compare treatment effects is

usually conservative in terms of small Type I error; (ii) the hypothesis testing to

compare treatment effects is usually more powerful than complete randomization;

and (iii) the hypothesis testing for significance of covariates is still valid. The class

includes most of the covariate-adaptive designs in literature, for example, Pocock

and Simon’s marginal procedure (Pocock and Simon, 1975), stratified permuted

block design, etc. Numerical studies are also conducted to assess their correspond-

ing finite sample properties.

In Chapter 3, theoretical properties of hypothesis testing under linear models

are studied based on more general assumptions. In particular, the assumption used

in Chapter 2 that all covariates are independent of each other is relaxed in this

chapter by taking into consideration of the correlation between covariates. Under

such general assumptions, we prove that the hypothesis testing to compare treatment

effects is still conservative, while the estimators of covariate coefficients are biased

under covariate-adaptive designs.
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Covariate-adaptive designs are often used in clinical trials where outcome is not

continuous. In these scenarios, generalize linear models can be used to perform

statistical inference. For example, logistic regression is used when outcome is a

binary variable. In Chapter 4, we concentrate on hypothesis testing for treatment

effects based on logistic regression under covariate-adaptive designs. We propose a

framework to derive theoretical properties of test statistic for stratified covariate-

adaptive designs and conclude that the Type I error is also conservative. Numerical

studies are also carried out to study power for several tests.
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Chapter 1

Introduction

1.1 Overview of covariate-adaptive randomized clin-

ical trials

1.1.1 Randomization

In medical research and drug development studies, clinical trials are implemented

to evaluate safety and efficacy of an intervention treatment, such as a medication,

diagnostic test or medical device, and to compare the new treatment with an es-

tablished treatment or placebo. It is generally agreed that an ideal clinical trial

should be randomized. There are several advantages of randomization. For exam-

ple, randomization can eliminate selection bias during assignment of patients to each

treatment groups. Different randomization procedures are used in clinical trails. In

general, we have three types of randomization, complete randomization, restricted

randomization and adaptive randomization.

Complete randomization is a randomization method that assigns patients to each

treatment group with equal probability. Suppose a clinical trial is studied with two



2

treatments 1 and 2. Let N be the total number of patients involved and a binary

variable Ii indicting the treatment of the ith subject, where Ii = 1 for treatment 1

and Ii = 0 for treatment 2. Under these notations, the assignment Iis of complete

randomization are independent with Pr(Ii = 1) = 1/2 for i = 1, 2, ..., N . Complete

randomization is easy to implement, however, it is likely to lead to severe imbalance

between different treatment groups, which limits its application in real clinical trials.

In clinical trials, balanced allocation is often desired so that any difference ob-

served between two groups of patients can be attributed to treatment effect. If no

covariates or prognostic factors are taken into consideration, balanced allocation

can be achieved by restricted randomization. Restricted randomization imposes

constraints on treatment assignments to obtain approximately equal number of pa-

tients in different treatment groups. Two popular restricted randomization methods

are permuted block design and biased coin design proposed by Efron (1971). For

permuted block design, with two treatments 1 and 2, the assignments of patients are

conducted within a sequence of blocks with block size equal to 2m (m ∈ Z+). Every

block consists of 2m patients and the assignments are determined by a permutation

of m A’s and m B’s. The perfect balance is achieved within each full block and

imbalance may only happen if the last block in a clinical trial is not filled. Biased

coin design was also proposed to achieve balance between the number of patients

in two treatment. Let Di is the difference between the number of patients assigned

to treatment 1 and the number of patients assigned to treatment 2 after i subjects

have been enrolled in a clinical trial, then the probability of the (i + 1)th subject
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assigned to treatment 1 is,

Pr(I(i+1) = 1) =


p, if Di < 0

1− p, if Di > 0

1/2, if Di = 0

where 1/2 < p < 1 is the biased coin probability.

Besides complete randomization and restricted randomization, a broad family of

randomization methods, adaptive randomization, are widely used in clinical trials.

Since a clinical trial is a sequential process, one can take use of information from all

previous patients already enrolled in the study when a new patient enters the trial.

Because of the efficiency and flexibility of adaptive designs, they have gained more

and more popularity both in literature and in practice in last few decades. An brief

introduction to adaptive designs will be given in Section 1.1.2.

1.1.2 Adaptive design

According to Gallo, et al. (2006), an adaptive design is referred to “a clinical study

design that uses accumulating data to decide how to modify aspects of the study as it

continues, without undermining the validity and integrity of the trial”. Furthermore,

they pointed out that “the goal of adaptive designs is to learn from the accumulating

data and to apply what is learned as quickly as possible”. Based on the kinds of

data and adaption used, there are various adaptive designs. One type of adaptive

design sequentially changes assignment probabilities of subjects in order to achieve

balance with respect to treatments and covariates and/or to increase efficiency and

ethics. We mainly focus on this type of adaptive designs in this section. Other

adaptive designs include adaptive dose finding, sample size re-estimation, seamless
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Phase II/III designs and so on (Gallo, et al., 2006).

Adaptive designs can employ accumulating information to adaptively change

consequent treatment assignments. Several kinds of historical information can be

obtained throughout the process of a clinical trial, including previous assignments

of patients, previous responses of patients, and covariate information of previous

patients and the current patient. Depending on the kinds of history information used

for adaption, there are at least three types of adaptive designs, which are response-

adaptive design, covariate-adaptive design and covariate-adjusted response-adaptive

design (CARA) (Hu and Rosenberger, 2006).

Response-adaptive designs utilize response information from previous patients in

the study to modify the allocation probabilities of consequent patients. The objec-

tives of response-adaptive designs include enhancing ethics by assigning more pa-

tients to the superior treatment arm shown by all information so far for the ongoing

trial, maximizing power to detect treatment difference, and achieving multiple op-

timal criteria simultaneously (Hu and Rosenberger, 2003). In particular, two types

of response-response adaptive designs are popular in literature, urn model based

design and doubly-adaptive biased coin design (DBCD). Urn models are extensively

used in response-adaptive designs, which are originally developed from an ethical

point of view, i.e., to assign more patients to the better treatment. Two typical urn-

model-based methods are “randomized play-the-winner” model (Wei and Durham,

1978) and “drop-the-loser” model (Ivanova, 2003). For DBCD, the allocation prob-

ability of the next patient is determined by an allocation function with arguments of

the current allocation proportion and the estimate of target allocation proportion.

By doing this, the current allocation is forced to go towards the estimated target

proportion that is usually derived based on a certain optimality criterion. DBCD

was firstly proposed by Eisele (1994) and Eisele and Woodroofe (1995). Hu and
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Zhang (2004) proposed a general family of allocation functions and established the

asymptotic properties of DBCD based on widely satisfied conditions. More discus-

sion about DBCD and optimal allocation proportion can be found in Melfi and Page

(2000), Melfi, Page and Geraldes (2001), Hu and Rosenberger (2006), Tymofyeyev,

Rosenberger and Hu (2007) and references therein.

Covariate-adaptive designs are randomization procedures that incorporate co-

variates of patients to balance treatment allocation over covariates. In clinical trials,

covariates are referred as factors associated with outcomes of patients. Some typical

covariates include gender, age, clinical center, blood pressure, stage of disease at

the baseline and even gene expressions in some biomarker studies. During the pro-

cess of a covariate-adaptive design, the assignment of the current patient depends

on covariate information of all previous patients and the current patient’s covari-

ate information as well as the history of previous treatment assignments. Several

covariate-adaptive designs are introduced in Section 1.1.3 in detail.

Covariate-adjusted response-adaptive design is proposed by Zhang, et al. (2007)

and is a relatively new topic in literature. Instead of assuming homogeneity for

patients in a treatment, CARA allows heterogeneity of patients based on their char-

acteristics even though they belong to the same treatment group. Taking both

covariate and response information into consideration, patients can be assigned to

better treatment based on their own covariate profiles.

1.1.3 Covariate-adaptive design

In clinical trials, it is usually important to balance treatment arms with respect

to key covariates. There are several advantages to apply covariate-adaptive ran-

domization to clinical trials. As pointed out by Kundt (2009), a balanced trial can
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give more efficient comparison of treatment effects from statistical point of view and

deliver more convincing results to a general audience. In addition, achieving bal-

ance is also desirable in other situations, including trials with interim analysis, trials

that terminate early and trials where the subgroup analysis is considered important

(McEntegart, 2003; Toorawa et al., 2009).

A natural idea to achieve balance over covariates is stratification. Strata are

defined as different combinations of covariates’ levels. To get balanced trail, we

could apply separate restricted randomization within each stratum to obtain good

balance within each stratum and further to obtain overall balance. Depending what

restricted randomization is used, we have stratified permuted block design using

permuted block design within strata and covariate-adaptive biased coin design using

Efron’s biased coin design within strata. Stratified permuted block design is the most

popular method to balance covariates and is used in most of clinical trials, such as

Iacono et al. (2006), Jakob et al. (2012) and so on. However, it only works well for

a trial with a few strata and large number of patients, otherwise a large portion of

incomplete strata would cause imbalance on stratum level and further on the overall

level (Pocock, 1982).

To deal with many covariates, several marginal methods (also referred as min-

imization, dynamic allocation in literature) were proposed. Taves (1974) proposed

a minimization method to deal with large number of covariates, but his method

didn’t involve randomness. Pocock and Simon (1975) generalized Taves’ method

by incorporating randomness, which has been more popular thereafter. Instead of

attempting to eliminate imbalance within each stratum, their method achieves bal-

ance by reducing weighted sum of marginal imbalances. A simper version of Pocock

and Simon’s marginal procedure with two treatments can be described as follows.

Suppose Nijk(n) is the number of patients on treatment k in level j of covariate
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Zi, i = 1, ..., I, j = 1, ...,mi, k = 1, 2, after n patients are enrolled in the study.

Let (z1, ..., zI) be the covariate information for the next patient. Then the marginal

imbalance with respect to covariate i is defined as Di(n) = Nizi1(n) − Nizi2(n).

The next assignment is based on the weighted average of all marginal imbalances

D(n) =
∑I

i=1wiDi(n) by using the biased coin allocation,

Pr(In+1 = 1) =


p, if D(n) < 0

1− p, if D(n) > 0

1/2, if D(n) = 0

where 1/2 < p < 1 is the biased coin probability.

The usage of Pocock and Simon’s marginal procedure had increased in last

decades. According to Taves (2010), Pocock and Simon’s marginal procedure was

implemented in over 400 clinical trials from 1989 to 2008. Some recent examples in-

clude Anderson et al. (2000), Gridelli et al. (2003), Krueger et al. (2007), Molander

et al. (2007), Ohtori et al. (2012) and so on. However, despite its broad applica-

tions, the theoretical properties of Pocock and Simon’s marginal procedure remain

unknown ever since it was proposed. Recently, Hu and Zhang (2013) theoretically

proved that, under Pocock and Simon’ marginal procedure, the marginal and overall

imbalances are bounded in probability, while the within-stratum imbalance increase

with the rate of
√
n as the sample size increases. These conclusions provide founda-

tion for us to further study theoretical properties of statistical inference under these

randomization methods.

Recently, Hu and Hu (2012) proposed a new family of covariate-adaptive proce-

dures which simultaneously eliminate imbalances at three different levels, including

overall imbalance, marginal imbalance and within-stratum imbalance. When a new
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patient enters the trial and is read for randomization, the assignment will be based

on the weighted average of the above three imbalances, D(n) = w1Dstrtum(n) +

w2Dmarginal(n) + w3Doverall(n), where Dmarginal(n) is defined as in Pocock and Si-

mon’s marginal procedure, Dstrtum(n) and Doverall(n) are within-stratum imbalance

and overall imbalance, respectively. Theoretically, they proved that overall imbal-

ance, marginal imbalance and within-stratum imbalance are all bounded in proba-

bility under the new covariate-adaptive designs.

1.2 Statistical inference for covariate-adaptive de-

signs

Even though many covariate-adaptive designs have been proposed and implemented

in clinical trials, the discussion of statistical inference associated with those methods

is limited. In practice, conventional tests are often employed without consideration

of covariate-adaptive randomization scheme. It remains a concern if conventional

tests are still valid under covariate-adaptive designs. It is now generally accepted

that covariates used in trial design should also be incorporated in inference proce-

dures. Forsythe (1987) suggested all covariates used in minimization method should

be included into analysis to achieve a valid test through simulation studies. Shao,

Yu and Zhong (2010) theoretically pointed out that “one way to obtain a valid test

procedure is to use a correct model between outcomes and covariates, including

those used in randomization”.

However, in practice, not all covariate information used in randomization can be

fully utilized in inference procedures. In a clinical trial described in Anderson et al.

(2000), Pocock and Simon’s marginal procedure is implemented to balance alloca-
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tion over three covariates including clinical centers, performance status and disease

extent. A continuous primary endpoint is compared between two treatment groups

using the two sample t-test, without adjusting covariate effects at all. In practice,

some randomization covariates are omitted in final analysis due to: (i) it is diffi-

cult to incorporate some covariates in the analysis model, for example, investigation

sites, etc.; (ii) adjusting too many covariates usually means more complicated mod-

eling techniques; and (iii) it requires correct model specification, which is usually

unknown in practice.

There have been doubts about validity of statistical inference for covariate-

adaptive designs, especially when covariates are fully or partially omitted in inference

procedures. Birkett (1985) and Forsythe (1987) had raised concerns about validity

of unadjusted analysis under covariate-adaptive designs. They found that the two

sample t-test is conservative in terms of small type I error if Taves’ minimization

is used to allocate patients to treatments through simulation studies. They also

found that the two sample t-test is less powerful for minimization than complete

randomization for small treatment difference, but more powerful if larger treatment

difference exists. In Shao, Yu and Zhong (2010) some theoretical work are done to

study conservativeness of the two sample t-test. The following linear model with

outcomes Yij for patient i under treatment j, j = 0, 1, is assumed for covariate-

adaptive biased coin design,

Yij = µj + bZi + εij

where Zi is a univariate covariate, Zis are independent and identically distributed,

µj and b are unknown parameters and εijs are independent and identically dis-

tributed random errors and independent of Zis. They theoretically proved that the
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two sample t-test is conservative by assuming responses follow the above simple

homogeneous linear model. Moveover, a bootstrap test is proposed to adjust Type

I error under covariate-adaptive biased coin design.

Most work mentioned above is in the linear model framework where outcomes

of clinical trials are continuous. When responses are binary, Feinstein and Landis

(1976) and Green and Byar (1978) studied statistical problems comparing success-

ful rate between two treatment groups on a special case where there are two strata

and two treatment considered. Under this restricted assumption, they showed that

Type I error is smaller than the nominal level under stratified randomization. Gail,

Wieand and Piantadosi (1984) studied estimates of treatment effect in randomized

experiments with nonlinear regression and omitted covariates. Gail (1988) studied

properties of the score test for perfectly balanced studies across strata (not random-

ization) on a large family of generalized linear models. The following underlying

model between response and treatment is assumed,

E(Y |T,X = i) = h(αT + βi),

where Y is the response variable, α is the treatment effect, and βi is the stratum

parameter for X = i. This covers a large range of generalized linear model. For

example, h(η) = exp(η)/[1 + exp(η)] in logistic regression. The properties of the

score test is studied under perfectly balanced studies with no covariates included in

analysis, so the working model is

E(Y |T,X = i) = h(µ+ αT ).

The properties of Type I error for several kinds of generalized linear models are
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given under the studies that are perfectly balanced. For example, Type I error

is shown to be conservative for logistic regression. However, the properties of the

score test and other tests, such as the Wald test and the likelihood ratio test, are

unknown for general covariate-adaptive designs. More discussions about inference

for covariate-adaptive designs can be found in Simon (1979), Tu, Shalay and Pater

(2000), Aickin (2009) and so forth.

1.3 Motivation and organization of the disserta-

tion

In literature, the results of statistical inference for covariate-adaptive designs are

restricted in several aspects. (1) Conclusions are mainly drawn by simulations, the-

oretical work is very limited. Shao, Yu and Zhong (2010) proved the property of

the two sample t-test based on covariate-adaptive biased coin design, which is a

stratified design and less commonly used in practice. (2) When outcomes of clinical

trials are continuous, only the two sample t-test is discussed, where no covariate

information is incorporated in final analysis. In practice, it is often that a sub-

set of randomization covariates are used in final statistical inference procedures.

The corresponding theoretical properties remain unknown. (3) All studies focus on

hypothesis testing for comparing treatment effects. There is very little, if any, dis-

cussion about inference of covariates under covariate-adaptive designs in literature.

In view of the importance of inference of covariates in clinical and medical studies,

for example, in some personalized medicine and biomarker finding studies, we also

want to study inference properties for covariates under covariate-adaptive clinical

trials. (4) The discussion of statistical inference under generalized linear models
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with balanced covariates are very limited. The results are either based on a very

restricted setting (Green and Byar, 1978) or only focused on some special types of

studies, for example, studies that are not even randomized (Gail, 1988). Since lo-

gistic regression and other generalized linear models are commonly used to analyze

clinical trial data when outcomes are not continuous, it is of importance to study

the inference properties of more advanced models under covariate-adaptive designs.

Over the past several decades, scientists have identified more and more biomark-

ers (Ashley, et al., 2010; Li, et al., 2010; Lipkin, et al., 2010; etc.) that may link

with certain diseases in the fields of translational research (genomics, proteomics,

and metabolomics). Based on these biomarkers, we would like to develop per-

sonalized medicine that helps patients to receive better treatment regimens based

on their individual characteristics (which could be biomarkers or other covariates).

Balancing treatment allocation for influential covariates has become more and more

important in today’s clinical trials (Hu, 2012). Therefore it is essential to study the

theoretical behavior of testing hypotheses of both treatment effects and covariates

under covariate-adaptive randomized clinical trials.

In view of importance to study statistical inference for covariate-adaptive ran-

domized clinical trials and limitations of relevant discussions in literature, my disser-

tation endeavors to establish a theoretical foundation of statistical inference under

both linear models and generalized linear models. For a general family of covariate-

adaptive designs, the large sample theory of testing treatment effects and significance

of covariates are derived. Our work provides a general framework to further study

inference properties for covariate-adaptive designs and to address the concerns of

how to conduct valid statistical inference when covariates are balanced.

In Chapter 2, we first study the testing hypotheses based on linear models for

covariate-adaptive designs. Two types of hypothesis testing, comparing treatment
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effects and testing significance of covariates, are examined under general condi-

tions of covariate-adaptive designs. In particular, theoretical properties of these

testing hypotheses are given for the scenario covariate information is fully or par-

tially omitted from analysis procedures. We show (i) the hypothesis testing to

compare treatment effects is usually conservative in terms of small Type I error; (ii)

the hypothesis testing to compare treatment effects is usually more powerful (than

complete randomization); and (iii) the hypothesis testing for significance of covari-

ates is still valid. Extensive simulations are conducted to illustrate Type I error

and power. Other topics, such as adjusting methods, model selection and model

mis-specifications, are also discussed.

In Chapter 3, statistical inference is also studied under linear model framework

but with more general assumptions. The results in Chapter 2 are based on the

assumption all covariates are independent of each other, which does not necessar-

ily hold in practice despite its importance in theory. By incorporating correlation

structure between covariates, similar inference problems as Chapter 2 are studied.

We show that the hypothesis testing to compare treatment effects is also conser-

vative in terms of small Type I error. In fact, the conclusion of testing treatment

effects in Chapter 2 can be considered as a special case of this chapter. However, the

estimators of covariate effects are biased and the hypothesis testing for significance

of covariates is not valid anymore.

In Chapter 4, hypothesis testing is studied for logistic regression with omitted

covariates under covariate-adaptive designs. We mainly focus on the properties of

the Wald test to compare treatment effect. The asymptotic distribution of the test

statistic under the null hypothesis is given for the covariate-adaptive designs with

within-stratum imbalances bounded in probability, such as stratified permuted block

design. Both Type I error and power are also illustrated via simulations.
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Chapter 2

Statistical Inference for Linear

Models with Independent

Covariates

2.1 Introduction

Statistical inference of covariate-adaptive randomized clinical trials is discussed for

linear models in this chapter. For a large family of covariate-adaptive designs,

we derive asymptotic distributions of test statistics for testing treatment effects and

significance of covariates under null and alternative hypotheses. We find that: (i) the

hypothesis testing to compare treatment effects is usually conservative in terms of

small Type I error; (ii) the hypothesis testing to compare treatment effects is usually

more powerful (than complete randomization); and (iii) the hypothesis testing for

significance of covariates is still valid.

This chapter is organized as following. In Section 2.2, the general framework

based on linear models is given to study hypothesis testing properties for a large
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class of covariate-adaptive designs. In particular, both an underlying model and

a working model are proposed to represent the situation that covariates used in

randomization are fully or partially omitted in statistical inference. Two types of

hypothesis testing are studied, comparing treatment effects between two random-

ization groups and testing covariate effects. How to handel continuous covariates

and definition of imbalances of different levels are also discussed. Furthermore, in

Section 2.3, theoretical results are presented for the two types of hypothesis testing.

We show that comparing treatment effects is conservative under covariate-adaptive

designs, while covariate effects remain valid. Extensive simulations are carried out

in Section 2.4 to study Type I error and power. Other practical issues, such as model

selection and model mis-specification, are also covered and discussed. In Section 2.6,

conclusions are given and some possible future work is mentioned.

2.2 Framework

In this section, we study hypothesis testing based on a linear model framework for

covariate-adaptive designs. Suppose two treatments 1 and 2 are studied under a

covariate-adaptive randomized clinical trial, µ1 and µ2 are parameters measuring

the main effects of treatment 1 and 2, respectively. Let N be the total number

of patients enrolled in the study. Let Ii be the assignment of the ith patient, i.e.,

Ii = 1 for treatment 1 and Ii = 0 for treatment 2, i = 1, 2, ..., N . The following

linear model is assumed for the response of the ith patient Yi,

Yi = µ1Ii + µ2(1− Ii) + β1Xi,1 + ...+ βpXi,p + γ1Zi,1 + ...+ γqZi,q + εi, (2.1)

where
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- Xi,ks and Zi,js are discrete or continuous covariates which are independent and

identically distributed as Xk and Zj, k = 1, ..., p and j = 1, ..., q;

- both Xi,ks and Zi,js are used in the randomization procedure, but only Xi,ks

are used in final statistical inference, k = 1, ..., p and j = 1, ..., q;

- all covariates are independent of each other, and EXk = 0 and EZj = 0 for all

k and j, k = 1, ..., p and j = 1, ..., q;

- εis are independent and identically distributed random errors with mean zero

and variance σ2
ε and independent of Xk and Zj,k = 1, ..., p and j = 1, ..., q.

Notice bothXi,k and Zi,j are assumed to be scalers in model (2.1). IfXi,k (or Zi,j) is a

discrete covariate, Xi,k (or Zi,j) is a scaler that can take several values corresponding

to different categories. In practice, a vector is usually used to represent a discrete

covariate with multiple categories. For example, a covariate that has 3 categories

can be coded as a two-dimensional vector with values of (0, 0), (0, 1) and (0, 1). In

this chapter, Xi,k (or Zi,j) is assumed to be a scaler for simplicity, but all the results

can be extended to the situation where discrete covariates with multiple categories

are represented by vectors.

We define vectors Y = (Y1, Y2, ..., YN)>, ε = (ε1, ε2, ..., εN)>, β = (µ1, µ2, β1, ..., βp)
>,

γ = (γ1, ..., γq)
>, and matrices

X =



I1 1− I1 X1,1 · · · X1,p

I2 1− I2 X2,1 · · · X2,p

...
...

...
. . .

...

IN 1− IN XN,1 · · · XN,p


and Z =


Z1,1 · · · Z1,q

...
. . .

...

ZN,1 · · · ZN,q

 .
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With the matrix representation, the underlying model (2.1) can be written as

Y = Xβ + Zγ + ε.

In this chapter, we study statistical inference for covariate-adaptive designs if only

partial randomization covariates are implemented into the analysis step. The fol-

lowing working model is used to do statistical inference,

E[Yi] = µ1Ii + µ2(1− Ii) + β1Xi,1 + ...+ βpXi,p. (2.2)

or in the matrix form,

E[Y] = Xβ.

Under the working model (2.2), the ordinary least squares (OLS) method is used to

obtain the estimator of β, which has the explicit form,

β̂ = (X>X)−1X>Y = (X>X)−1X>(Xβ + Zγ + ε).

When model (2.2) is constructed to study patients’ data from a covariate-adaptive

randomized clinical trial, the primary interest is usually to compare treatment ef-

fects between different groups. The following hypothesis testing is used to compare

treatment effects of µ1 and µ2.

H0 : µ1 − µ2 = 0 versus HA : µ1 − µ2 6= 0. (2.3)
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The test statistic for the above hypothesis testing (2.3) is

T =
Lβ̂

(σ̂2L(X>X)−1L>)1/2
, (2.4)

where L = (1,−1, 0, ..., 0) and σ̂2 = (Y − Xβ̂)>(Y − Xβ̂)/(N − p − 2). If |T | >

Z1−α/2, where Z1−α/2 is (1− α/2) quantile of a standard normal distribution, we

will reject the null hypothesis, otherwise accept the null hypothesis.

On the other hand, we consider general forms of hypothesis testing for signifi-

cance of covariates. Let C be an m× (p+ 2) matrix of rank m with m ≤ p, where

entries of the first two columns of C are all zeros so that Cβ doesn’t include any

treatment effects. Then the hypothesis testing of interest is,

H0 : Cβ = ξ0 versus HA : Cβ = ξ1 6= ξ0. (2.5)

The test statistic for hypothesis testing (2.5) is,

T ∗ =
m−1(Cβ − ξ0)>[C(X>X)−1C>]−1(Cβ − ξ0)

σ̂2
. (2.6)

If T ∗ > χ2
m,(1−α)/m, where χ2

m,(1−α) is (1− α) quantile of a χ2 distribution with

degree of freedom m, we will reject the null hypothesis, otherwise accept the null

hypothesis.

A special case of testing (2.5) is evaluating significance of a single covariate

(biomarker). This is usually important in personalized medicine (Hu, 2012). With-

out loss of generality, we consider the hypothesis testing for β1, the coefficient of

X1. To test the significance of β1, the hypothesis is

H0 : β1 = 0 versus HA : β1 6= 0. (2.7)
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The test statistic for hypothesis testing (2.7) can be reduced to,

T1 =
`β̂

(σ̂2`(X>X)−1`>)1/2
, (2.8)

where ` = (0, 0, 1, 0, ..., 0). If |T1| > Z1−α/2, where Z1−α/2 is (1− α/2) quantile of

a standard normal distribution, we will reject the null hypothesis, otherwise accept

the null hypothesis.

In clinical trials, covariate-adaptive designs are usually based on discrete co-

variates (Taves, 2010). If a continuous covariate is to be used in randomization,

a continuous-discrete conversion need be performed to breakdown the continu-

ous covariate into a discrete variable with several subcategories. Let C = {j |

Zj is continuous, j = 1, ..., q} and C∗ = {k | Xk is continuous, k = 1, ..., p}. If

k ∈ C∗ or j ∈ C, the covariate-adaptive design is applied with respect to discrete

variables, d∗k(Xk) or dj(Zj), where d∗k, dj are discrete functions. In such case, define

δ∗i,k = Xi,k − E[Xi,k|d∗k(Xi,k)] and δi,j = Zi,j − E[Zi,j|dj(Zi,j)]. Let

X̃k =

 Xk, if k /∈ C∗

d∗k(Xk), if k ∈ C∗

and

Z̃j =

 Zj, if j /∈ C

dj(Zj), if j ∈ C
.

Here, X̃i,k and Z̃i,j are ith observations of covariates X̃k and Z̃j, k = 1, ..., p and

j = 1, ..., q. X̃i,k and Z̃i,j are used in the covariate-adaptive randomization process.

We further define three levels of imbalance between patients in two treatments.
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Consider X̃k have s∗k levels and Z̃j have sj levels, resulting in
∏p

k=1 s
∗
k

∏q
j=1 sj strata

in total. Let Wi = (X̃i,1, ..., X̃i,p, Z̃i,1, ..., Z̃i,q) represents the covariate profile of the

ith patient used in randomization, i.e., Wi = (xt11 , x
t2
2 , ..., x

tp
p , z

r1
1 , z

r2
2 , ..., z

rq
q ) if X̃i,k is

at level xtkk and Z̃i,j is at level z
rj
j . For convenience, we use (t1, t2, ..., tp, r1, r2, ..., rq)

to denote the stratum formed by patients who have the same covariate profile

(xt11 , x
t2
2 , ..., x

tp
p , z

r1
1 , z

r2
2 , ..., z

rq
q ), and use (k; tk) to denote the margin formed by pa-

tients with X̃k = xtkk , and similarly (j, rj) to denote the margin formed by patients

with Z̃j = z
rj
j . Then let

- DN be the difference between the numbers of patients in treatment group 1 and

2 as total, i.e., the number in group 1 minus the number in group 2;

- DN(k; tk) and DN(j; rj) be the differences between the numbers of patients in the

two treatment groups on the margin (k; tk) and (j, rj), respectively;

- DN(t1, t2, ..., tp, r1, r2, ..., rq) be the difference between the numbers of patients in

the two treatment groups within the stratum (t1, t2, ..., tp, r1, r2, ..., rq).

These differences play important roles in properties of statistical inference for covariate-

adaptive designs (see Section 2.3 for details).

2.3 Theoretical properties

Two types of hypothesis testing will be considered in this section, one is comparing

main treatment effects between two groups and the other is testing significance of

covariates. The testing hypotheses are conducted based on working model (2.2)

when data are generated from the true model (2.1). Properties of those hypothesis

testing are studied under both null hypothesis and alternative hypothesis. A test is
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said to be (asymptotically) conservative, if its true Type I error is smaller than the

significance level under the null hypothesis.

First, we consider the hypothesis tests for comparing treatment effects. We have

the following main theorem.

Theorem 2.3.1. Suppose that a covariate-adaptive design satisfies following two

conditions:

(A) the overall imbalance is bounded, that is, DN = Op(1);

(B) the marginal imbalances for all covariates are bounded in probability, that is,

DN(k; tk) = Op(1) and DN(j; rj) = Op(1), k = 1, 2, ..., p, j = 1, 2, ..., q.

Then

(i) under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2), τ 2 =

σ2
ε +

∑
j∈C

γ2jσ
2
δ,j

σ2
ε +

q∑
j=1

γ2jVar(Zj)

=
σ2
δ

σ2
z

. (2.9)

where σ2
z = σ2

ε+
q∑
j=1

γ2jVar(Zj), σ2
δ = σ2

ε+
∑
j∈C

γ2jσ
2
δ,j and σ2

δ,j = E[Var(δi,j|dj(Zi,j))].

Hence,

(1) If γj = 0, j = 1, 2, ..., q, then τ = 1. Thus, when all covariates Zs are not

related to Y , the hypothesis testing (3) can achieve correct Type I error.

(2) If at least one γj 6= 0, j = 1, 2, ..., q, then τ < 1. In this case, the

hypothesis testing (3) is conservative.

(ii) under HA : µ1−µ2 6= 0, consider a sequence of local alternatives, i.e., µ1−µ2 =

δ/
√
N for a fixed δ 6= 0, then
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T
D−→ N(∆, τ 2), ∆ =

δ

2σz
. (2.10)

Hence, the power increases as more covariates are incorporated into model.

In Theorem 2.3.1, theoretical properties of hypothesis testing for treatment ef-

fects are obtained under covariate-adaptive designs. In a covariate-adaptive ran-

domized clinical trial, covariate information is incorporated in the design process to

reduce imbalance of different levels (within-stratum, within-covariate-margin, and

overall). Two mild conditions of covariate-adaptive designs are assumed to derive the

asymptotic distribution of the test statistic for comparing treatment effects. Condi-

tion (A) states that the overall imbalance is bounded in probability and condition

(B) requires that all marginal imbalances are all bounded in probability. These

conditions are satisfied by various covariate-adaptive designs (see Corollary 2.3.2 for

examples). Under these conditions, it can be shown in the proof that numerator

of the test statistic, Lβ̂(= µ̂1 − µ̂2), has a smaller variance than the model-based

variance estimator in the denominator if important covariates are omitted from the

working model. Based on the asymptotic distributions of the test statistic under

both the null hypothesis and the alternative hypothesis, Type I error is smaller than

the nominal level if at least one γj 6= 0, and power performance can be discussed as

well.

Now consider the power of the hypothesis testing (2.2), under the alternative

hypothesis, the power is

Pr(|T | > Z1−α/2) = Φ(
δ

2σδ
−
σzZ1−α/2

σδ
) + Φ(− δ

2σδ
−
σzZ1−α/2

σδ
) + o(1).
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The power of test (2.2) under complete randomization (based on the same setting

as described in Section 2.2) is

Pr(|T | > Z1−α/2) = Φ(
δ

2σz
− Z1−α/2) + Φ(− δ

2σz
− Z1−α/2) + o(1).

From the power expressions for both covariate-adaptive designs and complete ran-

domization above, we can conclude that the limiting power under covariate-adaptive

designs is smaller than that under complete randomization when δ is relatively small,

and it is larger than complete randomization when δ is large. This conclusion agrees

with some simulation studies about two sample t-test in literature (Forsythe, 1987;

Shao, Yu and Zhong, 2010) for certain covariate-adaptive designs. Our conclusion

is more general, which can be applied to linear models under a large family of

covariate-adaptive designs.

The following theorem shows that hypothesis tests regarding significance of co-

variates can still catch correct Type I error in covariate-adaptive designs, even

though the power would be affected if not all covariates are incorporated in the

analysis model.

Theorem 2.3.2. Under the same conditions as in Theorem 2.3.1,

(i) under H0 : Cβ = ξ0,

T ∗
D−→ χ2

(m)/m. (2.11)

Hence, the hypothesis testing (2.5) can achieve correct Type I error.

(ii) under HA : Cβ = ξ1, consider a sequence of local alternatives, i.e., (ξ1−ξ0) =
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η/
√
N for a fixed η 6= 0, then

T ∗
D−→ χ2

(m)(λ)/m, λ = η>[CM−1C>]−1η/σ2
z , (2.12)

where M = diag(1/2, 1/2,Var(X1), ...,Var(Xp)) and λ is the noncentral pa-

rameter. Therefore, the power increases as more covariates are incorporated

into model.

Theorem 2.3.1 and Theorem 2.3.2 imply that the overall difference and marginal

imbalances play important roles in statistical inference for covariate-adaptive de-

signs. For stratified permuted block design, the difference between the number of

patients in two treatments within any stratum is the half of block size at maximum.

Since the number of strata is finite for any covariate-adaptive design, the overall

and marginal imbalance are less than a constant, thus the conditions (A) and (B)

are satisfied. The theoretical properties for Pocock and Simon’s marginal procedure

remains unknown for decades and recently are derived by Hu and Zhang (2013). In

their paper, the authors demonstrate the marginal imbalances and overall imbal-

ance are bounded in probability for Pocock and Simon’s marginal procedure, thus

the conditions (A) and (B) are also satisfied. Furthermore, Hu and Hu (2012) pro-

posed a large class of covariate-adaptive designs, which satisfy the conditions (A)

and (B). Here we summarize these results in the following corollary.

Corollary 2.3.1. Both Theorem 2.3.1 and Theorem 2.3.2 hold under the following

covariate-adaptive designs:

(i) Pocock and Simon’s marginal procedures (Pocock and Simon, 1975);

(ii) stratified permuted block designs; and

(iii) the class of covariate-adaptive designs proposed by Hu and Hu (2012).
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Remark 2.3.1. If we consider complete randomization as a special case of covariate-

adaptive design, it does not satisfy the conditions in Theorem 2.3.1, because the

marginal imbalance DN(j; rj) = Op(N
1/2) for complete randomization. The numer-

ical study in the next section shows that the test of treatment effect under complete

randomization is not conservative.

Based on Theorem 2.3.2, we can see that hypothesis testing of covariates is

still valid in the sense of Type I error under covariate-adaptive designs. A linear

regression model can be directly used to test significance of prognostic factors with

a working model only containing partial covariate information. One the other hand,

however, the power may be harmed by omitting important covariates in the working

model. Consider the non-central parameter in (2.12), it increases with σ2
z reduced,

so the power increases with fewer important covariates omitted from the model.

Therefore, it is helpful of incorporating more important covariates, if possible, to

obtain a more powerful test.

Corollary 2.3.2 gives an important special case of testing covariates, where only

a single coefficient is considered.

Corollary 2.3.2. Under the same conditions as in Theorem 2.3.1,

(i) under H0 : β1 = 0,

T1
D−→ N(0, 1). (2.13)

Hence, the hypothesis testing (2.7) can achieve correct Type I error.

(ii) under HA : β1 6= 0, consider a sequence of local alternatives, i.e., β1 = δβ1/
√
N
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for a fixed δβ1, then

T1
D−→ N(∆β1 , 1), ∆β1 =

δβ1σ1
σz

,

where σ2
1 = Var(X1). Hence, the power increases as more covariates are in-

corporated into model.

According to Theorem 2.3.1 and Theorem 2.3.2, a model with only influential

covariates can achieve valid tests. It is known that too many unnecessary variables in

the model will increase variations of estimators and affect statistical results. Hence,

if only influential variables are incorporated in the model, it will not only reduce

unnecessary variations, but also give valid inference. Some numerical studies are

performed in Section 2.4 about model selections.

To prove Theorem 2.3.1, the asymptotic properties of both the numerator and

the denominator of test statistic T are studied. In the Appendix, we show that,

under the conditions in Theorem 2.3.1,

√
N [L(β̂ − β)] =

√
N [(µ̂1 − µ̂2)− (µ1 − µ2)]

D−→ N(0, 4(
∑
j∈C

γ2jσ
2
δ,j + σ2

ε)), (2.14)

where σ2
δ,j = E[Var(δi,j|dj(Zi,j))], j ∈ C.

On the other hand, for the denominator part of T ,

σ̂2L(X>X)−1L> =
4

N
(σ2

ε +

q∑
j=1

γ2jVar(Zj)) + op(
1

N
). (2.15)

Combining the results of (2.14) and (2.15), the asymptotic distributions (2.9) and

(2.10) can be obtained. Further notice γ2jVar(Zj) > γ2jE[Var(δi,j|dj(Zi,j))] if γj 6= 0
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and j ∈ C, we have

Pr(|T | > Z1−α/2)→ 2Φ(−
σzZ1−α/2

σδ
) < α (2.16)

where Φ is the cumulative distribution function of a standard normal distribu-

tion,which proves the conservativeness of the test if not all γjs are zeros. Detailed

proofs of Theorem 2.3.1 and Theorem 2.3.2 are in the Appendix.

2.4 Simulation study

Case 1: Testing Treatment Effects. First, we consider simulations to study Type I

error of the hypothesis testing for comparing treatment effects under three designs:

Pocock and Simon’s marginal procedure, stratified permuted block design and com-

plete randomization. For each type of design, both continuous case and discrete

case are considered. The following linear model including two covariates Z1 and Z2

is assumed for responses Yi,

Yi = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2 + εi,

where εi is distributed as N(0, 1), β1 = β2 = 1. No difference in treatment effects

is assumed to study Type I error, i.e., µ1 = µ2. For the discrete case, Z1 follows

Bernoulli(p1) and Z2 follows Bernoulli(p2); for the continuous case, both Z1 and Z2

follow normal distributions N(0, 1). If covariates Z1 and Z2 are continuous, they

are discretized into bernoulli variables Z ′1 and Z ′2 with the probabilities p1 and p2 in

order to be used in randomization. More specifically, if Z1 < Z(p1), where Z(p1) is p1

quantile of a standard normal distribution, then Z ′1 = 0, otherwise Z ′1 = 1. Original

variables (without discretization) are used in statistical inference procedures.
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To carry out simulations, the biased coin probability 0.75 and equal weights are

used for Pocock and Simon’s marginal procedure, and the block size 4 is used for

stratified permuted block design. The significance level is α = 0.05 and sample

size N is 100, 200 or 500. The hypothesis tests include the two sample t-test (t-

test), the linear model with a single covariate Z1 (lm(Z1)), the linear model with

a single covariate Z2 (lm(Z2)) and the linear model with both covariate Z1 and Z2

(lm(Z1, Z2)). By choosing (p1, p2) = (0.5, 0.5), the simulation results for Pocock

and Simon’s marginal procedure, stratified permuted block design and complete

randomization are demonstrated in Table 2.1.

In each simulation, Type I error of covariate-adaptive randomization meth-

ods is also examined with the bootstrap t-test described in Shao, Yu and Zhong

(2010). To do the test, B bootstrap samples (Y ∗b1 , Z∗b1,1, Z
∗b
1,2), ...,(Y ∗bN , Z∗bN,1, Z

∗b
N,2),

b = 1, 2, ..., B, are generated independently as simple random samples with re-

placement from (Y1, Z1,1, Z1,2), ..., (YN , ZN,1, ZN,2). The covariate-adaptive proce-

dure on the original data is applied on the covariates of each bootstrap sample

(Z∗b1,1, Z
∗b
1,2), ..., (Z∗bN,1, Z

∗b
N,2), from which the bootstrap analogues of treatment as-

signments, I∗b1 ,...,I∗bN , can be obtained. Define

Ȳ1 − Ȳ2 =
1

n1

N∑
i=1

IiYi −
1

n2

N∑
i=1

(1− Ii)Yi, n1 =
N∑
i=1

Ii, n2 =
N∑
i=1

(1− Ii),

and

θ̂∗(b) =
1

n∗b1

N∑
i=1

I∗bi Y
∗b
i −

1

n∗b2

N∑
i=1

(1− I∗bi )Y ∗bi , n∗b1 =
N∑
i=1

I∗bi , n
∗b
2 =

N∑
i=1

(1− I∗bi ).

The bootstrap estimator of the variance of Ȳ1 − Ȳ2 is then the sample variance of

θ̂∗(b), b = 1, 2, ..., B, represented by vB. Then the bootstrap t-test has the form of
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Table 2.1: Simulated Type I error for Pocock and Simon’s marginal procedure (PS),
stratified permuted block design (SPB) and complete randomization (CR) in %.
Simulations based on 10000 runs.

Z Method N t-test lm(Z1) lm(Z2) lm(Z1, Z2) BS-t

Discrete PS 100 1.75 3.05 3.09 5.21 5.18
200 1.62 2.78 2.86 4.99 4.88
500 1.66 2.81 2.77 4.87 4.90

SPB 100 1.85 2.86 3.05 5.29 5.67
200 1.54 2.69 2.73 4.84 4.95
500 1.55 2.77 2.65 4.84 5.60

CR 100 5.04 5.27 5.11 5.31 -
200 5.00 4.95 5.12 5.21 -
500 4.73 4.83 4.68 4.77 -

Continuous PS 100 1.43 2.15 2.02 4.98 5.16
200 1.07 1.74 1.80 4.53 5.62
500 0.91 1.72 1.73 4.72 4.79

SPB 100 1.22 1.83 2.05 5.01 5.68
200 0.98 1.86 1.77 5.08 5.19
500 1.15 1.98 1.84 5.48 5.61

CR 100 5.20 5.31 4.82 4.92 -
200 5.06 5.14 4.85 5.46 -
500 4.87 5.05 4.71 4.77 -

TB = (Ȳ1 − Ȳ2)/v̂1/2B . In Shao, Yu and Zhong (2010), it is shown that the bootstrap t-

test can maintain nominal Type I error under covariate-adaptive biased coin design.

B = 500 is used in all following simulations.

Several conclusions can be drawn from Table 2.1. First, the Type I error is

close to 5% under the full model lm(Z1, Z2) for covariate-adaptive designs. This

is consistent with the theoretical results in Section 2.3, when no randomization

covariate is omitted to construct the final analysis model. Secondly, under both

Pocock and Simon’s marginal procedure and stratified permuted block design, the

two sample t-test, lm(Z1) and lm(Z2) are all conservative. Among these three

tests, the two sample t-test is the most conservative one with the least Type I error.
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Figure 2.1: Simulated power for Pocock and Simon’s marginal procedure (PS) and
complete randomization (CR) under discrete and continuous cases. Simulation
based on 10000 runs and number of patients N = 100.
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Thirdly, the Type I error of the bootstrap t-test (BS-t) is close to the nominal level

5% under both Pocock and Simon’s marginal procedure and stratified permuted

block design. Furthermore, under complete randomization, the Type I error is close

to 5% for all four tests. We also tried different (p1, p2), similar results are obtained

and are not shown here.

Case 2: Power Comparison. Now we compare power for different hypothesis

testing methods under Pocock and Simon’s marginal procedure and complete ran-

domization. The same model as in Case 1 is used, except that difference exists
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between treatment effects µ1 and µ2, i.e., µ1 − µ2 6= 0. Sample size N = 100 and

(p1, p2) = (0.5, 0.5) are used in simulations. Several hypothesis testing methods

for treatment effects are compared under covariate-adaptive randomization. All

the results of power are given in Figure 2.1, from which several conclusions can be

made. The two sample t-test is less powerful than (lm(Z1)) and (lm(Z2)), and all

those three methods are less powerful than (lm(Z1, Z2)) under Pocock and Simon’s

marginal procedure. The bootstrap t-test has similar power performance to the full

model (lm(Z1, Z2)) with correct model specification when covariates are discrete.

However, the bootstrap t-test is less powerful than (lm(Z1, Z2)) if covariates are

continuous. Furthermore, the power of each test can also be compared between

covariate-adaptive randomization and complete randomization. For example, the

two sample t-test has smaller power under Pocock and Simon’s marginal procedure

than that under complete randomization when |µ1 − µ2| is relatively small due to

conservativeness, but has larger power when |µ1 − µ2| becomes larger. We also

tried stratified permuted block randomization (not reported here), all tests consid-

ered have similar power performance as Pocock and Simon’s marginal procedure.

Based on Table 2.1 and Figure 2.1, we can see that the theoretical properties in

Theorem 2.3.1 hold for sample size around 100.

We further consider the power comparison for small sample sizes 32 and 64. The

simulated power is reported in Table 2.2 under the same model as in Case 1. In

Pocock and Simon’s marginal procedure, the probability of biased coin assignment

is 0.8 and equal weights are assigned on two covariates. The hypothesis testing is

based on the model (lm(Z1, Z2)) with both covariates Z1 and Z2. Table 2.2 indicates

the advantages of covariate-adaptive designs over complete randomization for small

sample size.

Case 3: Significance of Covariates. Type I error of testing (2.7) for significance
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Table 2.2: Power Comparison for Pocock and Simon’s marginal procedure and Com-
plete Randomization. Simulation based on 10000 runs and sample size N = 32, 64.

N = 32 N = 64
µ1 − µ0 CR PS CR PS

0.0 4.96 5.03 5.17 5.08
0.1 5.86 6.35 6.50 6.48
0.2 7.81 8.51 12.12 12.68
0.3 12.34 13.26 22.06 22.21
0.4 18.15 19.44 34.46 34.76
0.5 25.28 26.54 47.99 49.35
0.6 33.96 36.98 63.04 65.53
0.7 44.16 47.83 76.72 78.13
0.8 53.74 57.28 86.97 87.95
0.9 64.30 68.70 93.14 94.24
1.0 73.63 77.10 97.02 97.51

of covariates is studied under Pocock and Simon’s marginal procedure and complete

randomization. As the same model in Case 1, we set β1 = 0, β2 = 1 and µ1 = µ2.

To run simulations, the biased coin probability 0.75 and equal weights are used for

Pocock and Simon’s marginal procedure. The significance level is α = 0.05 and

sample size N is 100, 200 or 500. Hypothesis testing of the significance of β1 are

conducted based on the two models with or without Z2, i.e., lm(Z1, Z2) and lm(Z1).

The results of Type I error are given in Table 2.3, from which it can be seen that the

tests of β1 are valid in terms of Type I error for both Pocock and Simon’s marginal

procedure and complete randomization. Figure 2.2 reports the power of testing β1

under two randomization methods, which indicates that the model lm(Z1, Z2) with

Z2 in the analysis is more powerful than lm(Z1). This agrees with Theorem 2.3.2.

Case 4: Model Selection. So far, all simulation results are based on linear models

with up to two covariates. Now we consider a linear model with more than two

covariates. In this situation, variable selection techniques can be applied to select

a subset of influential covariates on outcomes to be used in inference procedures.
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Table 2.3: Simulated Type I error for H0 : β1 = 0 versus HA : β1 6= 0 for Pocock
and Simon’s marginal procedure (PS) and complete randomization (CR) in %. Sim-
ulations based on 10000 runs.

lm(Z1) lm(Z1, Z2)
Z N PS CR PS CR

Discrete 100 4.96 4.98 4.93 4.88
200 5.35 5.28 4.76 4.82
500 5.55 5.55 5.22 5.20

Continuous 100 4.98 4.90 5.10 4.98
200 5.14 5.14 5.05 5.18
500 5.11 5.15 5.28 5.29

Suppose outcomes Yi follows the following model with five covariates,

Yi = µ1Ii + µ2(1− Ii) +Xi,1β1 +Xi,2β
>
2 +Xi,3β3 + Zi,1γ

>
1 + Zi,2γ2 + εi, (2.17)

where X1 is a binary covariate with the probability of 0.5 to take 0 or 1, X2 is a

discrete variable with four possible values (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0,

1) for equal probabilities 0.25, Z1 is a discrete covariate with three possible values

(0, 0), (0, 1) and (1, 0) for equal probabilities 1/3, X3 and Z2 are standard normal

distributed variables, which are discretized to bernoulli variables with the probability

0.5 for randomization process. Also, it is assumed β1 = 3, β2 = (2, 3, 4), β3 = 2,

β4 = (0, 0), β5 = 0, so that only X1, X2 and X3 have effects on the outcome Y . εi

is normally distributed with a mean of 0 and a standard deviation of 2. Here only

Pocock and Simon’s marginal procedure is considered, since there are too many

strata if stratified permuted block design is implemented.

To adjust conservative Type I error, one way is incorporating all randomization

covariates into the analysis model (lm5), where there is no loss of information used

in hypothesis testing compared to randomization. A more efficient approach ac-
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Figure 2.2: Simulated power for H0 : β1 = 0 versus HA : β1 6= 0 for Pocock and
Simon’s marginal procedure (PS) and complete randomization (CR) in %. Simula-
tions based on 10000 runs and number of patients N = 100.
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cording to Theorem 2.3.1 is only incorporating the covariates those are influential

on outcomes, i.e., constructing the model with X1, X2 and X3 (lm3). In Table 2.4,

the model selection with BIC by stepwise algorithm is used to select the analysis

model to do statistical inference. The algorithm is realized with “stepAIC” function

in R by specifying k = log(N). Stepwise selection can be implemented backward,

forward or with both directions. Here we only report the results for the backward

selection (backward). Similar results are obtained from the other two stepwise se-

lection methods (not shown). These methods are able to automatically achieve a
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Table 2.4: Simulated Type I error under model (2.17) with backward model se-
lection techniques for Pocock and Simon’s marginal procedure (PS) and complete
randomization (CR). The number in parenthesis is the percentage of correct selec-
tion. Simulation based on 5000 runs.

N t-test lm3 lm5 backward BS-t

PS 50 1.12 4.64 4.74 4.88(84.34%) 5.44
100 0.74 4.98 5.06 5.02(94.30%) 5.08
200 0.40 4.96 4.96 4.94(96.70%) 4.70
500 0.38 5.24 5.18 5.26(98.84%) 5.06

CR 50 5.32 4.94 4.94 5.66(83.60%) -
100 5.54 5.26 5.44 5.36(94.40%) -
200 5.06 4.98 4.82 5.02(97.12%) -
500 4.80 4.92 4.94 4.92(98.76%) -

final model from a bunch of candidate models with different combinations of mul-

tiple covariates, based on which treatment effects can be compared. The results of

Type I error of lm3, lm5 and backward are given in Table 2.4. The results of the

two sample t-test (t-test) and the bootstrap t-test (BS-t)are also included. Power

comparison results are shown in Figure 2.3. From the results of Table 2.4 and

Figure 2.3, hypothesis testing for treatment effects based on conventional stepwise

model selection techniques has valid Type I error and has similar power performance

compared to the hypothesis testing with all randomization covariates used in the

analysis, as long as the model selection techniques are able to identify the subset of

all influential covariates.

Case 5: Model Mis-specification. In Section 2.2, the underlying response model

(2.1) is assumed to have a form of linearly additive covariate effects in addition to

treatment effects. Based on the model, theoretical properties of hypothesis testing

are studied under covariate-adaptive designs. It is shown in Theorem 2.3.1 that

valid Type I error can be obtained by utilizing a linear model incorporating all

randomization covariates (the full model). This is within expectation since the full
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Figure 2.3: Simulated power under model (2.17) with backward model selection
techniques for Pocock and Simon’s marginal procedure (PS) and complete random-
ization (CR). Simulation based on 5000 runs and number of patients N = 100.
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model has the correct model specification that coincides with the assumed model.

However, the underlying response model is usually unknown in practice and it is

possible that covariate effects are not linearly additive on responses. For example, a

covariate may have a non-linear form or have interaction effect with other covariates.

Under these scenarios, the full model with all randomization covariates in a linearly

additive pattern no longer has the correct model specification. In this section, a

nonlinear response model with covariate effects in an exponential function is assumed

to investigate properties of hypothesis testing for comparing treatment effects. Other
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Table 2.5: Simulated Type I error under model (2.18) for Pocock and Simon’s
marginal procedure (PS), stratified permuted block design (SPB) and complete ran-
domization (CR). Simulation based on 10000 runs.

N t-test lm(Z1, Z2) BS-t

PS 100 1.70 3.87 3.90
200 2.28 4.01 4.70
500 2.32 4.11 4.25

SPB 100 1.59 3.66 4.96
200 1.70 3.27 4.46
500 1.98 3.55 4.70

CR 100 3.33 3.90 -
200 4.01 4.03 -
500 4.47 4.11 -

situations of model mis-specification can be studied similarly and will be left for

future research projects. The following model is assumed for the responses Y . Two

covariates Z1 and Z2 have a non-linear effect on the response Y in addition to

treatment effects.

Yi = µ1Ii + µ2(1− Ii) + exp{Zi,1 + Zi,2}+ εi, (2.18)

where εi is distributed as N(0, 4). Z1 and Z2 are distributed as normal distributions

N(0, 1), which are discretized into bernoulli variables with the probability 0.5 in

order to be used in randomization procedures. Three randomization methods are

investigated, including Pocock and Simon’s marginal procedure, stratified permuted

block design and complete randomization. The two sample t-test (t-test), the linear

model incorporating both covariates (lm(Z1, Z2)) and the bootstrap t-test (BS-t)

are used to compare treatment effects. The results of Type I error and power are

given in Table 2.5 and 2.6, respectively.

From Table 2.5, the two sample t-test is conservative under covariate-adaptive
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Table 2.6: Simulated power under model (2.18) for Pocock and Simon’s marginal
procedure (PS), stratified permuted block design (SPB) and complete randomization
(CR). Simulation based on 10000 runs and number of patients N = 100.

PS SPB CR
µ1 − µ0 t-test lm(Z1, Z2) BS-t t-test lm(Z1, Z2) BS-t t-test lm(Z1, Z2)

0.0 1.87 3.67 4.14 1.40 3.13 4.92 3.60 4.37
0.4 4.21 8.31 7.71 3.01 6.35 7.57 5.69 7.73
0.8 10.71 19.56 16.85 9.26 17.63 17.14 12.66 18.39
1.2 21.91 35.81 29.90 19.79 34.39 30.61 21.85 33.71
1.6 35.79 53.98 44.25 34.73 52.37 46.14 35.60 51.25
2.0 50.37 66.52 57.94 49.97 66.99 60.75 48.32 64.83
2.4 62.81 77.09 69.23 62.34 76.80 70.67 60.48 75.32
2.8 71.56 83.22 76.54 71.30 83.59 77.96 69.56 82.37
3.2 79.88 87.99 83.16 79.09 88.32 83.93 76.86 87.27
3.6 84.69 91.36 87.39 84.22 91.25 87.85 82.97 91.06
4.0 88.47 93.30 90.37 87.87 93.25 90.43 86.97 92.48

designs. Due to model mis-specification, the Type I error of the linear model

(lm(Z1, Z2)) is deviated from the nominal level 5% , which is particularly obvi-

ous under stratified permuted block design. However, the bootstrap t-test tend

to be robust under covariate-adaptive designs with the Type I error closer to 5%.

Under complete randomization, the Type I error should be close to 5% as sample

size increase based on the central limit theorem. Regarding the power comparison

in Table 2.6, the model (lm(Z1, Z2)) has better performance than the two sample

t-test by utilizing more covariate information under all these three design methods.

In addition, the power of the model (lm(Z1, Z2)) is slightly larger than the bootstrap

t-test under covariate-adaptive designs.
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2.5 Conclusion

Covariate-adaptive designs have shown several advantages in applications to clinical

trials, but the randomization scheme that is different from complete randomization

may have influences on corresponding statistical inference results. In particular, the

treatment comparison test based on linear models is shown to be conservative for

a large class of covariate-adaptive designs, including Pocock and Simon’s marginal

procedure and stratified permuted block design, if an influential randomization co-

variate is not incorporated in the final analysis. The results in this chapter provide a

way to better understand statistical inference for covariate-adaptive designs in the-

ory and allow us to implement covariate-adaptive designs appropriately to achieve

valid statistical conclusions in practice.

The theoretical results in this chapter are based on several assumptions, among

which all covariates are assumed to be independent of each other. However, there is

no good way to guarantee that all covariates used in randomization are not correlated

in practice. In view of that, similar problems will be studied with the independence

assumption relaxed in Chapter 3. Moreover, generalized linear models are also

used for covariate-adaptive designs when outcomes are not continues. For example,

logistic regression is used if responses are binary variables. These topics will be

covered in Chapter 4.

2.6 Appendix: proof of theorems

To prove Theorem 2.3.1 and Theorem 2.3.2, we first prove the following two lemmas.

Lemma 2.6.1. Under the assumptions of Theorem 2.3.1, then

1.
∑
Ii/N

P−→ 1/2,
∑

(1− Ii)/N
P−→ 1/2;
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2.
∑
IiXi,k/N

P−→ EXk/2,
∑

(1− Ii)Xi,k/N
P−→ EXk/2,

∑
IiZi,j/N

P−→ EZj/2,

and
∑

(1− Ii)Zi,j/N
P−→ EZj/2.

Proof. To prove part 1, it is easily seen that

1

N

∑
Ii =

1

2
+

∑
(2Ii − 1)

2N
=

1

2
+

1

2

DN

N

P−→ 1

2
.

Now, we prove part 2. We first discuss the case when Xk is a discrete variable. Then

1

N

∑
IiXi,k =

1

2
[

1

N

∑
Xi,k +

1

N

∑
(2Ii − 1)Xi,k].

Notice that

1

N

∑
(2Ii − 1)Xi,k =

1

N

s∗k∑
tk=1

D(k; tk)x
tk
k .

The marginal imbalances D(k; tk) = Op(1) and xtkk s are discrete values, which to-

gether with the weak law of large numbers implies that

1

N

∑
IiXi,k

P−→ 1

2
EXk.

If Xk is a continuous variable, then δ∗i,k = Xi,k − E[Xi,k|d∗k(Xi,k)], thus

1

N

∑
IiXi,k =

1

N

∑
Iiδ
∗
i,k +

1

N

∑
IiE[Xi,k|d∗k(Xi,k)].

Since E(Xi,k|d∗k(Xi,k)) is discrete, according to the proof of discrete case above,

1

N

∑
IiE(Xi,k|d∗k(Xi,k))

P−→ 1

2
EXk.
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To prove
∑
IiXi,k/N

P−→ 1
2
EXk for a continuous covariate, we also need show

1

N

∑
Iiδ
∗
i,k

P−→ 0.

Define

X̃ = {X̃i,k, i = 1, 2, ..., N, k = 1, 2, ..., p}.

Notice δ∗i,k and Ii are independent given X̃,

E(Iiδ
∗
i,k|X̃) = E(Ii|X̃)E(δ∗i,k|X̃) = E(Ii|X̃)E[δ∗i,k|d∗k(Xi,k)] = 0.

By the law of large numbers, for any η,

lim
N→∞

Pr[| 1
N

∑
Iiδ
∗
i,k − 0| > η|X̃] = 0

almost surely. By the dominated convergence theorem,

1

N

∑
Iiδ
∗
i,k

P−→ 0,

which finishes the proof of
∑
IiXi,k/N

P−→ EXk/2. By symmetry,
∑

(1−Ii)Xi,k
P−→

1
2
EXk/2. The proofs on Zj are similar.

Lemma 2.6.2. Under the assumptions of Theorem 2.3.1, β̂ is a consistent estimator

of β.

Proof. By the definition of β̂,

β̂ = β + (
X>X

N
)−1

X>Zγ

N
+ (

X>X

N
)−1

X>ε

N
.
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Notice EXk = EZj = 0 for all k and j, by the weak law of large numbers and

independence of covariates,

1

N
X>X

P−→ diag(
1

2
,
1

2
,Var(X1), · · · ,Var(Xp))

and

1

N
X>Z =

1

N



∑
IiZi,1 · · ·

∑
IiZi,q∑

(1− Ii)Zi,1 · · ·
∑

(1− Ii)Zi,q∑
Xi,1Zi,1 · · ·

∑
Xi,1Zi,q

...
. . .

...∑
Xi,pZi,1 · · ·

∑
Xi,pZi,q


P−→



1
2
EZ1 · · · 1

2
EZq

1
2
EZ1 · · · 1

2
EZq

EX1EZ1 · · · EX1EZq
...

. . .
...

EXpEZ1 · · · EXpEZq


.

Further, by the independence of Ii and εi, for i = 1, ...N ,

1

N
X>ε =

1

N



∑
Iiεi∑

(1− Ii)εi∑
Xi,1εi
...∑
Xi,pεi


P−→ 0.

Hence,

(
X>X

N
)−1

X>Zγ

N
+ (

X>X

N
)−1

X>ε

N

P−→ 0.

Then it follows that,

β̂ − β P−→ 0.
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Proof of Theorem 2.3.1. The following test statistic is used for hypothesis testing

(2.3),

Lβ̂

(σ̂2L(X>X)−1L>)1/2
,

where L = (1,−1, 0, ..., 0) and σ̂2 = (Y−Xβ̂)>(Y−Xβ̂)/(N −p−2), p is the total

number of independent variables in the model (2.2) besides µ1 and µ2.

The numerator is equal to

Lβ̂ = µ̂1 − µ̂2 = µ1 − µ2 +L(
X>X

N
)−1

X>Zγ

N
+L(

X>X

N
)−1

X>ε

N
.

We have shown that in the proof of Lemma 2.6.2,

1

N
X>X

P−→ diag(
1

2
,
1

2
,Var(X1), · · · ,Var(Xp))

.
= M .

Let

A = LM−1[
X>Zγ

N
+

X>ε

N
]

and

B = L[(
X>X

N
)−1 −M−1][

X>Zγ

N
+

X>ε

N
].
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By some matrix calculations,

A =
2

N
(
∑
j

∑
i

(2Ii − 1)γjZi,j +
∑
i

(2Ii − 1)εi) =
2

N
(
∑
j∈C

∑
i

(2Ii − 1)γjδi,j

+
∑
j∈C

∑
i

(2Ii − 1)γjE[Zi,j|dj(Zi,j)] +
∑
j /∈C

∑
i

(2Ii − 1)γjZi,j +
∑
i

(2Ii − 1)εi).

Apply condition (B) to all margins with respect to each covariate Zj, j = 1, 2, ..., q,

we have

∑
i

(2Ii − 1)γjZi,j =

sj∑
rj=1

D(j; rj)γjz
rj
j = Op(1), j /∈ C,

and

∑
i

(2Ii − 1)γjE(Zi,j|dj(Zi,j)) =

sj∑
rj=1

D(j; rj)γjE[Zj|dj(Zj) = z
rj
j ] = Op(1), j ∈ C.

It follows that

∑
j∈C

∑
i

(2Ii − 1)γjE[Zi,j|dj(Zi,j)] +
∑
j /∈C

∑
i

(2Ii − 1)γjZi,j = Op(1).

Then

2

N
(
∑
j∈C

∑
i

(2Ii − 1)γjE[Zi,j|dj(Zi,j)] +
∑
j /∈C

∑
i

(2Ii − 1)γjZi,j) = op(N
−1/2).

Define Z̃ = {Z̃i,j, i = 1, 2, ...N, j = 1, 2, ..., q} and Ĩ = {Ii, i = 1, ..., N}, then

(δi,j, εi) are conditionally independent of Ĩ given Z̃. Notice E(εi|Z̃) = E(εi) = 0,
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and E(δi,j|Z̃) = E[δi,j|dj(Zi,j)] = 0 by the definition of δi,j, then

2

N
E(
∑
j∈C

∑
i

(2Ii − 1)γjδi,j +
∑
i

(2Ii − 1)εi|Z̃) = 0.

Further, by the conditional independence of (δi,j, εi) and Ĩ given Z̃,

Cov(
2

N

∑
j∈C

∑
i

(2Ii − 1)γjδi,j,
2

N

∑
i

(2Ii − 1)εi|Z̃) = 0

and notice (2Ii − 1)2 = 1,

Var(
2

N

∑
i

(2Ii − 1)εi|Z̃) = E(
4

N2

∑
(2Ii − 1)2ε2i |Z̃) =

4σ2
ε

N

and

Var(
2

N

∑
j∈C

∑
i

(2Ii − 1)γjδi,j|Z̃) =
4

N2
E(
∑
j∈C

∑
i

(2Ii − 1)2γ2j δ
2
i,j|Z̃) =

4

N

∑
j∈C

γ2jVδ,j,

where Vδ,j = N−1
∑

Var[δi,j|dj(Zi,j)]. Therefore,

Var[
2

N
(
∑
j∈C

∑
i

(2Ii − 1)γjδi,j +
∑
i

(2Ii − 1)εi|Z̃)] =

4(
∑
j∈C

γ2jVδ,j + σ2
ε)

N
.

By the central limit theorem, given (Ĩ , Z̃),

2√
N
{
∑
j∈C

∑
i

(2Ii − 1)γjδi,j +
∑
i

(2Ii − 1)εi}

is asymptotically normal with mean zero and variance 4(
∑
j∈C

γ2jVδ,j + σ2
ε), which

converges to 4(
∑
j∈C

γ2jσ
2
δ,j + σ2

ε), where σ2
δ,j = E[Var(δi,j|dj(Zi,j))]. Since the limit-
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ing distribution is independent of (Ĩ , Z̃), the convergence in distribution also holds

unconditionally. Hence, by Slutsky’s theorem,

√
NA

D−→ N(0, 4(
∑
j∈C

γ2jσ
2
δ,j + σ2

ε)).

For part B, we will show
√
NB

P−→ 0. To prove this, it suffices to show

X>Zγ√
N

+
X>ε√
N

= Op(1),

since we have already known

(
X>X

N
)−1 −M−1 P−→ 0.

Notice that

X>Zγ√
N

+
X>ε√
N

=
1√
N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
j

∑
i

Xi,1Zi,jγj +
∑
i

Xi,1εi

...∑
j

∑
i

Xi,pZi,jγj +
∑
i

Xi,pεi


.

By the central limit theorem, for any k, k = 1, 2, ..., p

1√
N

(
∑
j

∑
i

Xi,kZi,jγj +
∑
i

Xi,kεi) = Op(1).
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Also,

1√
N

(
∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi) =
1

2
[

1√
N

∑
j

∑
i

Zi,jγj +
1√
N

∑
i

εi

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jγj +
1√
N

∑
i

(2Ii − 1)εi].

Again by the central limit theorem,

1√
N

∑
j

∑
i

Zi,jγj +
1√
N

∑
i

εi = Op(1).

Notice that

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jγj +
1√
N

∑
i

(2Ii − 1)εi =

√
N

2
A.

It follows from
√
NA converges to a normal distribution that,

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jγj +
1√
N

∑
i

(2Ii − 1)εi = Op(1).

Hence,

1√
N

(
∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi) = Op(1).

By symmetry,

1√
N

(
∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi) = Op(1).
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It follows that

X>Zγ√
N

+
X>ε√
N

= Op(1).

Hence, we can conclude
√
NB

P−→ 0, which together with Slutsky’s theorem implies

that,

√
N [(µ̂1 − µ̂2)− (µ1 − µ2)]

D−→ N(0, 4(
∑
j∈C

γ2jσ
2
δ,j + σ2

ε)),

On the other side, we show σ̂2L(X>X)−1L> is an inflated estimator of the variance

of Lβ̂, which means it is larger than 4(
∑
j∈C

γ2jσ
2
δ,j + σ2

ε). Notice that

L(X>X)−1L> =
1

N
L(

X>X

N
)−1L> =

4

N
+ op(

1

N
)

and

σ̂2 =
1

N − p− 2
(Y −Xβ̂)>(Y −Xβ̂) =

1

N
(Y −Xβ)>(Y −Xβ)

+
1

N
(β̂ − β)>X>X(β̂ − β) +

2

N
(β̂ − β)X>(Y −Xβ) + op(1).

By consistency of β̂ proved in Lemma 2.6.2,

1

N
(β̂ − β)>X>X(β̂ − β)

P−→ 0

and

2

N
(β̂ − β)X>(Y −Xβ) = 2(β̂ − β)

X>Zγ

N
+ 2(β̂ − β)

X>ε

N

P−→ 0.
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It follows from the law of large numbers and independence of Z and ε that,

1

N
(Y −Xβ)>(Y −Xβ) =

1

N
(Zγ + ε)>(Zγ + ε)

P−→ σ2
ε +

q∑
j=1

γ2jVar(Zj).

Hence,

σ̂2 P−→ σ2
ε +

q∑
j=1

γ2jVar(Zj)

and thus,

σ̂2L(X>X)−1L> =
4

N
(σ2

ε +

q∑
j=1

γ2jVar(Zj)) + op(
1

N
).

Then under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2), τ 2 =

σ2
ε +

∑
j∈C

γ2jσ
2
δ,j

σ2
ε +

q∑
j=1

γ2jVar(Zj)

=
σ2
δ

σ2
z

.

where σ2
z = σ2

ε +
q∑
j=1

γ2jVar(Zj) and σ2
δ = σ2

ε +
∑
j∈C

γ2jσ
2
δ,j.

Notice, for γj 6= 0 and j ∈ C,

γ2jVar(Zj) > γ2jE[Var(δi,j|dj(Zi,j))] = γ2jσ
2
δ,j,

it follows, when N →∞,

Pr(|T | > Z1−α/2)→ 2Φ(−
σzZ1−α/2

σδ
) < α,

where Φ is the cumulative distribution function of standard normal distribution.
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Similarly, under HA : µ1−µ2 6= 0 with a sequence of local alternatives, i.e., µ1−µ2 =

δ/
√
N for a fixed δ 6= 0,

T
D−→ N(∆, τ 2), ∆ =

δ

2σz
.

which completes the proof of Theorem 2.3.1.

Proof of Theorem 2.3.2. The test statistic can be written as

T ∗ =
m−1
√
N(Cβ − ξ0)>[C(X>X/N)−1C>]−1

√
N(Cβ − ξ0)

σ̂2
.

Under H0 : Cβ = ξ0, it holds

√
N(Cβ̂ − ξ0) =

√
NC(β̂ − β),

and HA : Cβ = ξ1, it holds

√
N(Cβ̂ − ξ0) =

√
N(Cβ̂ −Cβ + ξ1 − ξ0) =

√
NC(β̂ − β) +

√
N(ξ1 − ξ0).

Notice

1

N
X>X

P−→M = diag(
1

2
,
1

2
,Var(X1), ...,Var(Xp)),
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we have

√
NC(β̂ − β) =

√
NC[(

X>X

N
)−1

X>Zγ

N
+ (

X>X

N
)−1

X>ε

N
]

=
√
NCM−1[

X>Zγ

N
+

X>ε

N
] + op(1)

= CM−1 1√
N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
j

∑
i

Xi,1Zi,jγj +
∑
i

Xi,1εi

...∑
j

∑
i

Xi,pZi,jγj +
∑
i

Xi,pεi


+ op(1).

Let C = [0m×2, C̃], where 0m×2 is an (m × 2) matrix with all entries zero, and

M = diag(1/2, 1/2,M̃), then

√
NC(β̂ − β) = C̃M̃−1 1√

N


∑
j

∑
i

Xi,1Zi,jγj +
∑
i

Xi,1εi

...∑
j

∑
i

Xi,pZi,jγj +
∑
i

Xi,pεi

+ op(1).

By the central limit theorem, together with fact CM−1C> = C̃M̃−1C̃>,

√
NC(β̂ − β)

D−→ N(0, σ2
zCM

−1C>).

Moreover, it can shown that,

[C(X>X/N)−1C>]−1

σ̂2

P−→ [σ2
zCM

−1C>]−1.
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Hence, under H0 : Cβ = ξ0,

T ∗
D−→ χ2

m/m,

and underHA : Cβ = ξ1 with a sequence of local alternatives, i.e., (ξ1−ξ0) = η/
√
N

for a fixed η 6= 0,

T ∗
D−→ χ2

(m)(λ)/m, λ = η>[CM−1C>]−1η/σ2
z ,

which finishes the proof of Theorem 2.3.2.
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Chapter 3

Statistical Inference for Linear

Models with Correlated Covariates

3.1 Introduction

In Chapter 2, the properties of statistical inference are studied for linear models

under a large family of covariate-adaptive designs. Among several assumptions in

the framework to derive theoretical results, it is assumed that all the covariates used

in randomization are independent of each other. Based on this critical assumption

of independence and other assumptions, we proved that the hypothesis testing to

compare treatment effects between two groups is conservative and that the hypoth-

esis testing for a linear combination of covariates remains valid. However, despite

its importance in theory, the assumption that all covariates are independent is very

strong and may be not satisfied in practice. Therefore, there are concerns that

the properties of statistical inference may be different from the independence case

and whether the conclusions established in the last chapter still hold if covariates

are correlated. The objective of this chapter is to address these concerns regarding



54

statistical inference for linear models with correlated covariates.

Under complete randomization, patients are allocated to each treatment group

of a clinical trial with equal probability. It can be shown that, if covariates are corre-

lated under complete randomization, the hypothesis testing for comparing treatment

effects remains valid, however, the estimators for coefficients of covariates are biased

if important covariates are omitted and are not included in the analysis model.

The corresponding properties of statistical inference under covariate-adaptive de-

signs will be studied in this chapter. In particular, biasedness and consistency will

be given with regards to the estimators of treatment effects and covariate effects

(Theorem 3.3.1). Moreover, the properties of hypothesis testing of treatment effects

will also be established (Theorem 3.3.2).

In Section 3.2, the framework to study statistical inference for linear models with

correlated covariates is described in details. In Section 3.3, theoretical properties

of estimators and testing hypotheses are given and discussed for covariate-adaptive

designs. Type I error and power are evaluated and are compared with complete

randomization via simulations in Section 3.4. Conclusions and remarks are given in

Section 3.5, and technical proofs of theorems are attached in the end of this chapter.

3.2 Framework

In this section, the general framework is proposed to study inference properties of

linear models with correlated covariates for covariate-adaptive randomized clinical

trials. By incorporating a covariance matrix into the underlying model, the as-

sumption of independent covariates is relaxed and the covariates are allowed to be

correlated with each other in the new framework, which enables us to study infer-

ence properties under a more general setting. Analogous to the independence case,
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an underlying model and a working model are given to represent the situation that

only partial covariate information used in randomization is employed to construct

the final analysis. The main difference from Chapter 2 is that the covariance matrix

of covariates can be any symmetric positive semi-definite matrix, instead of being

restricted to a diagonal matrix.

Similar to Chapter 2, it is supposed that there are two treatment groups in a

covariate-adaptive randomized clinical trial, which are treatment 1 and treatment

2. The main treatment effects are measured by µ1 and µ2 for treatment 1 and 2,

respectively. Let N be the total number of subjects enrolled in the study, Ii be the

assignment of the ith subject, where Ii = 1 for treatment 1 and Ii = 0 for treatment

2, i = 1, 2, ..., N . The following linear model is assumed to be the underlying model,

Yi = µ1Ii + µ2(1− Ii) + β1Xi,1 + ...+ βpXi,p + γ1Zi,1 + ...+ γqZi,q + εi, (3.1)

where

- Xi,ks and Zi,js are discrete or continuous covariates which are independent and

identically distributed as Xk and Zj, k = 1, ..., p and j = 1, ..., q;

- both Xi,ks and Zi,js are used in the randomization procedure, but only Xi,ks

are used in final statistical inference, k = 1, ..., p and j = 1, ..., q;

- all covariates have means equal to zero, i.e., EXk = 0 and EZj = 0 for all k

and j, k = 1, ..., p and j = 1, ..., q;

- εis are independent and identically distributed random errors with mean zero

and variance σ2
ε and independent of Xk and Zj, k = 1, ..., p and j = 1, ..., q.

- let X = (X1, ..., Xp)
> and Z = (Z1, ..., Zq)

>, then the covariance matrix of the
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covariate vector (X>,Z>)> = (X1, ..., Xp, Z1, ..., Zq)
> is

Σ =



Cov(X1, X1) · · · Cov(X1, Xp) Cov(X1, Z1) · · · Cov(X1, Zq)

...
. . .

...
...

. . .
...

Cov(Xp, X1) · · · Cov(Xp, Xp) Cov(Xp, Z1) · · · Cov(Xp, Zq)

Cov(Z1, X1) · · · Cov(Z1, Xp) Cov(Z1, Z1) · · · Cov(Z1, Zq)

...
. . .

...
...

. . .
...

Cov(Zq, X1) · · · Cov(Zq, Xp) Cov(Zq, Z1) · · · Cov(Zq, Zq)


=

 Σx,x Σx,z

Σz,x Σz,z

 , (3.2)

where Σx,x = Var(X ), Σz,z = Var(Z), Σx,z = Cov(X ,Z) and Σz,x = Σ>x,z.

Remark 3.2.1. The assumptions of the underlying model (3.1) are similar to those

of the independence case in Chapter 2, except that a dependence structure of covari-

ates is defined in (3.2), which allows us to study inference properties of covariate-

adaptive designs for a more general covariate profile. This assumption is much

closer to the situation in practice where covariates considered in a clinical trial are

not necessarily independent. In addition, similar to Chapter 2, all covariates are

assumed to be a scaler, however, our results can be easily extended to the case where

discrete covariates are represented by vectors.

Further, define Y = (Y1, Y2, ..., YN)>, ε = (ε1, ε2, ..., εN)>, β = (µ1, µ2, β1, ..., βp)
>,

γ = (γ1, ..., γq)
>, I = (I1, ..., IN)>, and 1 = (1, ..., 1)> with all of N entries equal to
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1. In addition, define matrices

Z =



Z1,1 · · · Z1,q

Z2,1 · · · Z2,q

...
. . .

...

ZN,1 · · · ZN,q


and

X =



I1 1− I1 X1,1 · · · X1,p

I2 1− I2 X2,1 · · · X2,p

...
...

...
. . .

...

IN 1− IN XN,1 · · · XN,p


=

[
I (1− I) X

]
,

where

X =



X1,1 · · · X1,p

X2,1 · · · X2,p

...
. . .

...

XN,1 · · · XN,p


.

Therefore, the matrix Z includes the covariate information which is used in

randomization but is not used in analysis. The matrix X are the data used to

construct the analysis model, including treatment assignments of all patients I and

covariate information X that is employed both in randomization and inference.

Under these notations, it is straightforward to rewrite the underlying true model
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with the matrix representation, which is equivalent to model (3.1),

Y = Xβ + Zγ + ε,

Our interest is to study the properties of statistical inference for a covariate-adaptive

design if all or partial randomization covariates are omitted from the linear model

for final analysis. For this purpose, a working model (analysis model) with partial

covariate information is defined to do statistical inference based on the data obtained

from a clinical trial. The working model to do analysis is assumed to be,

E[Yi] = µ1Ii + µ2(1− Ii) + β1Xi,1 + ...+ βpXi,p, (3.3)

or with the matrix representation,

E[Y] = Xβ.

In the working model (3.3), there are in total (p + 2) unknown parameters to esti-

mate, including the treatment effects µ1 and µ2, as well as p coefficients of covariates

β1,...,βp. The ordinary least squares (OLS) method can be used to obtain the esti-

mate of β, which has the closed expression, β̂ = (X>X)−1X>Y, in matrix form.

When we studied statistical inference for linear models with independent covari-

ates under covariate-adaptive designs in Chapter 2, two types of hypothesis testing

are considered. One is comparing treatment effects, which is usually the primary goal

of a clinical study, the other one is to test if a covariate is influential on outcomes

of patients in the study. Both testing hypotheses are studied based on the facts

that the corresponding estimators, the treatment difference and covariate effects,

are unbiased if covariates are independent to each other. Under the assumption of
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correlated covariates in this chapter, however, we will show in the next section that,

even though the treatment difference is still unbiased, the covariate effects are not

unbiased anymore. Therefore, we only consider the hypothesis testing to compare

treatment effects between µ1 and µ2, which is described below.

H0 : µ1 − µ2 = 0 versus HA : µ1 − µ2 6= 0. (3.4)

The corresponding test statistic for (3.4) is

T =
Lβ̂

(σ̂2L(X>X)−1L>)1/2
, (3.5)

where L = (1,−1, 0, ..., 0) and σ̂2 = (Y − Xβ̂)>(Y − Xβ̂)/(N − p − 2). If |T | >

Z1−α/2, where Z1−α/2 is (1− α/2) quantile of a standard normal distribution, we

will reject the null hypothesis, otherwise accept the null hypothesis.

The imbalances of different levels (within-stratum imbalance, marginal imbal-

ance, overall imbalance) are defined exactly the same as in Chapter 2. Let C =

{j | Zj is continuous, j = 1, ..., q} and C∗ = {k | Xk is continuous, k = 1, ..., p}. If

k ∈ C∗ or j ∈ C, the covariate-adaptive design is applied with respect to discrete

variables, d∗k(Xk) or dj(Zj), where d∗k, dj are discrete functions. In such case, define

δ∗i,k = Xi,k − E[Xi,k|d∗k(Xi,k)] and δi,j = Zi,j − E[Zi,j|dj(Zi,j)]. Let

X̃k =

 Xk, if k /∈ C∗

d∗k(Xk), if k ∈ C∗
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and

Z̃j =

 Zj, if j /∈ C

dj(Zj), if j ∈ C
.

Here, X̃i,k and Z̃i,j are ith observations of covariates X̃k and Z̃j, k = 1, ..., p and

j = 1, ..., q. X̃i,k and Z̃i,j are used in the covariate-adaptive randomization process.

We further define three levels of imbalance between patients in two treatments.

Consider X̃k have s∗k levels and Z̃j have sj levels, resulting in
∏p

k=1 s
∗
k

∏q
j=1 sj strata

in total. Let Wi = (X̃i,1, ..., X̃i,p, Z̃i,1, ..., Z̃i,q) represents the covariate profile of the

ith patient used in randomization, i.e., Wi = (xt11 , x
t2
2 , ..., x

tp
p , z

r1
1 , z

r2
2 , ..., z

rq
q ) if X̃i,k is

at level xtkk and Z̃i,j is at level z
rj
j . For convenience, we use (t1, t2, ..., tp, r1, r2, ..., rq)

to denote the stratum formed by patients who have the same covariate profile

(xt11 , x
t2
2 , ..., x

tp
p , z

r1
1 , z

r2
2 , ..., z

rq
q ), and use (k; tk) to denote the margin formed by pa-

tients with X̃k = xtkk , and similarly (j, rj) to denote the margin formed by patients

with Z̃j = z
rj
j . Then let

- DN be the difference between the numbers of patients in treatment group 1 and

2 as total, i.e., the number in group 1 minus the number in group 2;

- DN(k; tk) and DN(j; rj) be the differences between the numbers of patients in the

two treatment groups on the margin (k; tk) and (j, rj), respectively;

- DN(t1, t2, ..., tp, r1, r2, ..., rq) be the difference between the numbers of patients in

the two treatment groups within the stratum (t1, t2, ..., tp, r1, r2, ..., rq).
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3.3 Theoretical properties

In this section, the theoretical properties of statistical inference are given under the

framework described in Section 3.2 where covariates are assumed to be correlated. In

particular, point estimators and hypothesis testing are studied based on the working

model (3.3) where outcomes of patients follow the underlying true model (3.1) under

covariate-adaptive designs. The inference of both treatment effects and covariate

effects are of interest. The following theorem concerns about point estimators.

Theorem 3.3.1. Suppose that a covariate-adaptive design satisfies following two

conditions:

(A) the overall imbalance is bounded, that is, DN = Op(1);

(B) the marginal imbalances for all covariates are bounded in probability, that is,

DN(k; tk) = Op(1) and DN(j; rj) = Op(1), k = 1, 2, ..., p, j = 1, 2, ..., q.

Then

(i) µ̂1 − µ̂2 is a consistent estimator of µ1 − µ2, i.e.,

µ̂1 − µ̂2
P−→ µ1 − µ2.

(ii) (β̂1, ..., β̂p)
> is a biased estimator of (β1, ...βp)

> with bias Σ−1x,xΣx,zγ, i.e.,

(β̂1, ..., β̂p)
> − (β1, ...βp)

> P−→ Σ−1x,xΣx,zγ.

Remark 3.3.1. Theorem 3.3.1 implies that the estimator of the difference between

treatment effects is unbiased no matter covariates are correlated or not. In this
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sense, we can always achieve consistent estimator of treatment effects despite the

fact that we may not fully understand the correlation structure between covariates

and just omit several important covariates in analysis.

Remark 3.3.2. On the other hand, the estimators of covariates’ coefficients are

biased if only partial covariate information is used under covariate-adaptive designs

by Theorem 3.3.1. For some studies where the interest is to identify influential co-

variates on outcomes, such as biomarker finding studies, we need hesitate to make

conclusions about estimates of covariate effects due to bias. Notice that the esti-

mators are also biased under complete randomization if the omitted covariates are

correlated with the covariates in the analysis model. In other word, the estimators

of covariates have similar behaviors under covariate-adaptive designs and complete

randomization.

Theorem 3.3.2. Suppose that a covariate-adaptive design satisfies following two

conditions:

(A) the overall imbalance is bounded, that is, DN = Op(1);

(B) the marginal imbalances for all covariates are bounded in probability, that is,

DN(k; tk) = Op(1) and DN(j; rj) = Op(1), k = 1, 2, ..., p, j = 1, 2, ..., q.

Then

(i) under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2), τ 2 =

σ2
ε + E[Var((Z> −X>Σ−1x,xΣx,z)γ|D̃)]

σ2
ε + Var[(Z> −X>Σ−1x,xΣx,z)γ]

=
σ2
1

σ2
2

, (3.6)

where σ2
1 = σ2

ε + E[Var((Z> − X>Σ−1x,xΣx,z)γ|D̃)], σ2
2 = σ2

ε + Var[(Z> −

X>Σ−1x,xΣx,z)γ] and D̃ = {X̃k, Z̃j, k = 1, 2, ..., p, j = 1, 2, ..., q}.



63

(ii) under HA : µ1−µ2 6= 0, consider a sequence of local alternatives, i.e., µ1−µ2 =

δ/
√
N for a fixed δ 6= 0, then

T
D−→ N(∆, τ 2), ∆ =

δ

2σ2
. (3.7)

Remark 3.3.3. Notice that σ2
1 < σ2

2 in general, the test statistic under the null

hypothesis has an asymptotic normal distribution with a mean zero and a standard

deviation smaller than 1. Hence, the hypothesis testing to compare treatment effects

is conservative in terms of a smaller Type I error than the nominal level, which

means it is more difficult to reject the null hypothesis under the null hypothesis.

This conclusion is consistent with the result of Theorem 2.3.1.

Remark 3.3.4. Theorem 3.3.2 includes Theorem 2.3.1 as a special case. If the

covariance matrix Σ is a diagonal matrix, then the results of Theorem 3.3.2 is

equivalent to Theorem 2.3.1 where all covariates are independent. In fact, it can be

shown that the asymptotic distributions of testing statistics derived in this chapter

are identical to the distributions in Theorem 2.3.1 either under the null hypothesis

or the alternative hypothesis.

Based on the asymptotic distribution under the alternative hypothesis, the power

of hypothesis testing (3.4) can be studied and compared to the power under complete

randomization. Similar to the power comparison discussed in Section 2.3, the power

of hypothesis testing (3.4) under covariate-adaptive designs is,

Pr(|T | > Z1−α/2) = Φ(
δ

2σ1
−
σ2Z1−α/2

σ1
) + Φ(− δ

2σ1
−
σ2Z1−α/2

σ1
) + o(1),

and the power of hypothesis testing (3.4) under complete randomization (with the
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same setting as described in Section 3.2) is,

Pr(|T | > Z1−α/2) = Φ(
δ

2σ2
− Z1−α/2) + Φ(− δ

2σ2
− Z1−α/2) + o(1).

These power expressions are similar to those in Chapter 2, despite the definitions of

σ1 and σ2 are somehow different. Therefore, it can be concluded that the power of

hypothesis testing (3.4) under covariate-adaptive designs is smaller than that under

complete randomization when the difference of treatment effects is relatively small,

which becomes larger than complete randomization when the difference of treatment

effects is relatively large. Simulation studies are carried out in the next section to

illustrate these conclusions numerically.

Theorem 3.3.1 and Theorem 3.3.2 hold under the same conditions stated in The-

orem 2.3.1: condition (A) the overall imbalance is bounded in probability; condition

(B) all marginal imbalances are all bounded in probability. Then we have the fol-

lowing corollary similar to Corollary 2.3.1.

Corollary 3.3.1. Both Theorem 3.3.1 and Theorem 3.3.2 holds under the following

covariate-adaptive designs:

(i) Pocock and Simon’s marginal procedures (Pocock and Simon, 1975);

(ii) stratified permuted block designs; and

(iii) the class of covariate-adaptive designs proposed by Hu and Hu (2012).

The proofs of Theorem 3.3.1 and Theorem 3.3.2 are similar to Theorem 2.3.1 and

its corresponding lemmas, but need consider the correlation structure in covariates.

See the Appendix for the detailed proofs.
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3.4 Simulation study

Case 1: Testing Treatment Effects. In this case, Type I error of hypothesis testing

(3.4) for comparing treatment effects is studied under three randomization design

methods: Pocock and Simon’s marginal procedure, stratified permuted block design

and complete randomization. Both continuous case and discrete case are considered

under each design. The following linear model with two covariates Z1 and Z2 is

assumed to be the underlying model,

Yi = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2 + εi,

where εi is distributed as N(0, 1), β1 = β2 = 1. No difference in treatment effects

is assumed here to study Type I error, i.e., µ1 = µ2. For the discrete case, Z1

and Z2 follow Bernoulli(0.5) with the correlation between Z1 and Z2 equal to ρ;

for the continuous case, Z1 and Z2 follow a standard normal distribution N(0, 1)

with the correlation between Z1 and Z2 equal to ρ. When covariates Z1 and Z2 are

continuous, they are discretized to bernoulli variables Z ′1 and Z ′2 with the probability

0.5 to be used in randomization. Specifically, if Z1 < Z(0.5), where Z(0.5) is the 0.5

quantile of a standard normal distribution, then Z ′1 = 0, otherwise Z ′1 = 1. Similar

process applies on Z2 to obtain the discrete variable Z ′2, then Z ′1 and Z ′2 are used in

the corresponding covariate-adaptive design. Original variables Z1 and Z2 (without

discretization) are used in statistical inference procedures.

To carry out simulations, the same setting of parameters is used as in Chapter

2. In Pocock and Simon’s marginal procedures, equal weights are assigned to two

covariates and the biased coin probability is equal to 0.75. The block size 4 is used

for stratified permuted block design. The significance level is α = 0.05 and sample
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Table 3.1: Simulated Type I error for Pocock and Simon’s marginal procedure (PS),
stratified permuted block design (SPB) and complete randomization (CR) in % with
ρ = 0.5. Simulations based on 10000 runs.

Z Method N t-test lm(Z1) lm(Z2) lm(Z1, Z2) BS-t

Discrete PS 100 1.07 3.34 3.40 4.90 5.24
200 0.82 3.27 3.23 4.98 5.17
500 0.82 3.12 3.27 4.88 4.89

SPB 100 1.10 3.42 3.63 5.15 5.92
200 1.07 3.36 3.37 5.11 5.57
500 0.86 3.38 3.40 5.13 5.69

CR 100 5.05 4.97 4.99 5.08 -
200 5.27 5.10 5.44 5.36 -
500 4.90 4.98 4.89 4.67 -

Continuous PS 100 0.50 2.80 2.85 5.08 5.60
200 0.48 2.63 2.71 4.69 5.24
500 0.44 2.81 2.61 5.24 5.09

SPB 100 0.44 2.69 2.73 4.85 5.35
200 0.41 2.58 2.61 5.23 5.84
500 0.48 2.71 2.65 5.35 5.27

CR 100 5.12 5.24 4.88 4.92 -
200 4.69 5.14 5.07 5.46 -
500 4.73 4.95 4.78 4.77 -

size N is 100, 200 or 500. The hypothesis tests are based on the two sample t-

test (t-test), the linear model with a single covariate Z1 (lm(Z1)), the linear model

with a single covariate Z2 (lm(Z2)), the linear model with both covariate Z1 and Z2

(lm(Z1, Z2)) and the Bootstrap t-test (BS-t) with B = 500. The simulation results

of ρ = 0.5 are presented in Table 3.1 for Pocock and Simon’s marginal procedure,

stratified permuted block design and complete randomization.

Several conclusions can be drawn from Table 3.1. (1) The Type I error is close

to 5% under the full model lm(Z1, Z2) for all three randomization. Such result is

expected because lm(Z1, Z2) captures the underlying true model. (2) Under the

two types of covariate-adaptive designs considered, the two sample t-test, lm(Z1)



67

Table 3.2: Simulated Type I error for Pocock and Simon’s marginal procedure (PS)
and complete randomization (CR) in % with different values of ρ. Simulations based
on 10000 runs and sample size N = 100.

Z Method ρ t-test lm(Z1) lm(Z2) lm(Z1, Z2) BS-t

Discrete PS 0.8 0.71 4.25 4.22 4.98 5.23
0.5 1.12 3.72 3.51 5.00 5.40
0.2 1.46 3.05 2.93 4.78 5.16
0 1.98 2.95 3.13 5.11 5.39

-0.2 2.37 3.04 3.23 5.21 5.41
-0.5 3.32 3.65 3.63 5.24 5.57
-0.8 4.19 4.22 4.19 4.83 5.21

CR 0.8 5.21 4.99 5.02 4.90 -
0.5 4.94 4.87 4.86 4.67 -
0.2 4.90 4.60 5.20 4.98 -
0 4.93 4.77 4.97 4.76 -

-0.2 4.60 4.80 4.84 5.02 -
-0.5 5.03 5.06 5.04 5.24 -
-0.8 4.82 4.84 4.94 5.02 -

Continuous PS 0.8 0.34 4.22 4.23 5.01 5.38
0.5 0.53 2.43 2.86 4.90 5.15
0.2 0.78 2.28 2.07 4.71 5.05
0 0.12 1.98 2.00 5.21 5.17

-0.2 1.66 2.00 1.96 4.75 5.27
-0.5 2.83 2.88 2.89 5.19 5.44
-0.8 4.13 4.08 4.05 4.78 5.45

CR 0.8 4.83 4.70 4.95 4.79 -
0.5 5.06 5.02 5.35 5.04 -
0.2 5.25 5.04 5.06 4.99 -
0 4.66 4.76 4.89 4.69 -

-0.2 4.87 4.72 5.11 4.94 -
-0.5 4.99 4.95 5.15 5.36 -
-0.8 4.92 4.84 4.79 4.85 -
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and lm(Z2) are all conservative with Type I error less than 5%. These findings

are consistent to Theorem 3.3.2 with regards to hypothesis testing for linear models

with omitted covariates. (3) Under covariate-adaptive designs, the two sample t-test

is the most conservative one with the least Type I error. However, the bootstrap

t-test has a Type I error close to the nominal level 5%, which provides a way to

capture the true Type I error when the covariates are correlated. (4) Under complete

randomization, the Type I error is close to 5% for all four tests.

Type I error for more values of ρ (0, ±0.2, ±0.5, ±0.8) are examined in Table 3.2,

in which all the results are similar to Table 3.1 and are consistent with Theorem 3.3.2.

The results of stratified permuted block design are similar to Pocock and Simon’s

marginal procedure and are not reported here. In Case 2 with regards to power

comparison, only ρ = 0.5 is used to study power of hypothesis testing based on

linear models with correlated covariates under covariate-adaptive designs.

Case 2: Power Comparison. Now we compare power for different hypothesis

testing methods under Pocock and Simon’s marginal procedure and complete ran-

domization. The same model is used as in Case 1, but difference exists between

treatment effects µ1 and µ2, i.e., µ1 − µ2 6= 0. Sample size N = 100 and ρ = 0.5

are used in simulations. The results of power comparison are given in Figure 3.1,

and the conclusions are summarized below. (1) Under Pocock and Simon’s marginal

procedure, the two sample t-test is less powerful than (lm(Z1)) or (lm(Z2)), and

all those three methods are less powerful than (lm(Z1, Z2)). Therefore, including

more covariates into analysis leads to larger power and allows us to detect differ-

ence between treatment effects more efficiently. (2) The bootstrap t-test has similar

power performance as the full model when covariates are discrete, since they are

using the same amount information of covariates. However, the bootstrap t-test is

less powerful than (lm(Z1, Z2)) if covariates are continuous because there is loss of



69

Figure 3.1: Simulated power for Pocock and Simon’s marginal procedure (PS) and
complete randomization (CR) under discrete case and continuous case with ρ = 0.5.
Simulation based on 10000 runs and number of patients N = 100.
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information due to discretization. (3) Compared to complete randomization, the

two sample t-test under Pocock and Simon’s marginal procedure has smaller power

when the treatment difference is relatively small, and has larger power when the

treatment difference becomes larger. We also tried stratified permuted block ran-

domization (not reported here), all tests considered have similar power performance

as Pocock and Simon’s marginal procedure. Combined the results in Figure 3.1

and Table 3.1, 3.2, the theoretical properties in Theorem3.3.2 hold for sample size

around 100.
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3.5 Conclusion

In this chapter we proposed theoretical properties of statistical inference for linear

models with correlated covariates. Under the assumption that the covariates are

correlated instead of independent of each other, the asymptotic distributions of

testing statistics are derived under both the null hypothesis and the alternative

hypothesis. Based on the asymptotic distributions, we show that the hypothesis

testing for comparing treatment effects is conservative with smaller Type I error than

the nominal level if partial covariate information is not incorporated in analysis. This

conclusion is similar to the results of independent case in Chapter 2. Theorem 3.3.2,

together with Theorem 2.3.1 provides theoretical basis to understand the hypothesis

testing for treatment effects under covariate-adaptive designs.

The properties of covariate effects are affected by whether covariates are inde-

pendent or not. If covariates used in randomization are correlated and important

covariates are omitted from analysis, the estimators of covariates’ coefficients are bi-

ased, which cause the hypothesis testing not valid anymore. Therefore, we should be

careful when we conduct statistical inference for covariates under covariate-adaptive

designs because we may not be aware of whether covariates are independent or not

in practice.

In this chapter, the same conditions are used as in Chapter 2 to discuss sta-

tistical inference for covariate-adaptive designs, which are (A) overall imbalance is

bounded in probability; (B) marginal imbalances are bounded in probability. These

conditions are relatively mild and satisfied by a broad family of covariate-adaptive

designs, including commonly used designs such as stratified permuted block design

and Pocock and Simon’s marginal procedure. Our work in Chapter 2 and 3 provides

guidance on applications of linear models under covariate-adaptive designs.
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3.6 Appendix: proof of theorems

Lemma 3.6.1. Under the assumptions of Theorem 3.3.1, then

1.
∑
Ii/N

P−→ 1/2,
∑

(1− Ii)/N
P−→ 1/2;

2.
∑
IiXi,k/N

P−→ EXk/2,
∑

(1− Ii)Xi,k/N
P−→ EXk/2,

∑
IiZi,j/N

P−→ EZj/2,

and
∑

(1− Ii)Zi,j/N
P−→ EZj/2.

Proof. The proof is the same as for the proof of Lemma 2.6.1 in Chapter 2.

Proof of Theorem 3.3.1. By the definition of the OLS estimator,

β̂ = β + (
X>X

N
)−1

X>Zγ

N
+ (

X>X

N
)−1

X>ε

N
.

Notice EXk = EZj = 0 for all k and j, by the weak law of large numbers and

Lemma 3.6.1,

1

N
X>X =

1

N



∑
Ii 0

∑
IiXi,1 · · ·

∑
IiXi,p

0
∑

(1− Ii)
∑

(1− Ii)Xi,1 · · ·
∑

(1− Ii)Xi,p∑
Xi,1Ii

∑
Xi,1(1− Ii)

∑
Xi,1Xi,1 · · ·

∑
Xi,1Xi,p

...
...

...
. . .

...∑
Xi,pIi

∑
Xi,p(1− Ii)

∑
Xi,pXi,1 · · ·

∑
Xi,pXi,p


P−→ diag(

1

2
,
1

2
,Σx,x)
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and

1

N
X>Z =

1

N



∑
IiZi,1 · · ·

∑
IiZi,q∑

(1− Ii)Zi,1 · · ·
∑

(1− Ii)Zi,q∑
Xi,1Zi,1 · · ·

∑
Xi,1Zi,q

...
. . .

...∑
Xi,pZi,1 · · ·

∑
Xi,pZi,q


P−→


0

0

Σx,z

 .

Further, by the independence of Ii and εi, for i = 1, ...N ,

1

N
X>ε =

1

N



∑
Iiεi∑

(1− Ii)εi∑
Xi,1εi
...∑
Xi,pεi


P−→ 0.

Hence,

(
X>X

N
)−1

X>Zγ

N
+ (

X>X

N
)−1

X>ε

N

P−→


0

0

Σ−1x,xΣx,zγ

 ,

that is

β̂ − β P−→


0

0

Σ−1x,xΣx,zγ

 .



73

It follows that,

µ̂1 − µ̂2
P−→ µ1 − µ2

and

(β̂1, ..., β̂p)
> − (β1, ...βp)

> P−→ Σ−1x,xΣx,zγ,

then the proof is complete.

Lemma 3.6.2. Suppose a = (a1, ..., aq)
> is a constant vector consisting of q el-

ements, b = (b1, ..., bp)
> is a constant vector consisting of p elements, and c is a

constant number, then

1√
N

(2I− 1)>(Za+ Xb+ cε)
D−→ N(0,E[Var(Z>a+ X>b|D̃)] + c2σ2

ε),

Proof.

(2I− 1)(Za+ Xb+ cε) =
∑
j∈C

∑
i

(2Ii − 1)ajδi,j +
∑
j∈C

∑
i

(2Ii − 1)ajE[Zi,j|dj(Zi,j)]

+
∑
j /∈C

∑
i

(2Ii − 1)ajZi,j +
∑
k∈C∗

∑
i

(2Ii − 1)bkδ
∗
i,k +

∑
k∈C∗

∑
i

(2Ii − 1)bkE[Xi,k|d∗k(Xi,k)]

+
∑
k/∈C∗

∑
k

(2Ii − 1)bkXi,k +
∑
i

(2Ii − 1)cεi

Apply condition (B) to all margins with respect to each covariate Zj, j = 1, 2, ..., q,

we have

∑
i

(2Ii − 1)ajZi,j =

sj∑
rj=1

D(j; rj)ajz
rj
j = Op(1), j /∈ C,
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and

∑
i

(2Ii − 1)ajE[Zi,j|dj(Zi,j)] =

sj∑
rj=1

D(j; rj)ajE[Zj|dj(Zj) = z
rj
j ] = Op(1), j ∈ C.

It follows that

∑
j∈C

∑
i

(2Ii − 1)ajE[Zi,j|dj(Zi,j)] +
∑
j /∈C

∑
i

(2Ii − 1)ajZi,j = Op(1).

Similarly,

∑
k∈C∗

∑
i

(2Ii − 1)bkE[Xi,k|d∗j(Xi,k)] +
∑
k/∈C∗

∑
i

(2Ii − 1)bkXi,k = Op(1).

Define D̃N = {X̃i,k, Z̃i,j, i = 1, 2, ...N, j = 1, 2, ..., q, k = 1, 2, ..., p} and Ĩ = {Ii, i =

1, ..., N}, then (δi,j, δ
∗
i,k, εi) are conditionally independent of Ĩ given D̃N . In addition,

E(εi|D̃N) = E(εi) = 0, E(δi,j|D̃N) = E[δi,j|dj(Zi,j)] = 0 by the definition of δi,j, and

similarly E(δ∗i,k|D̃N) = 0. Then

1√
N
E(
∑
j∈C

∑
i

(2Ii − 1)ajδi,j +
∑
k∈C∗

∑
i

(2Ii − 1)bkδ
∗
i,k +

∑
i

(2Ii − 1)cεi|D̃N) = 0.

Further, notice the fact that (δi,j, δ
∗
i,k, εi) and Ĩ are independent of each other given

D̃N and (2Ii − 1)2 = 1,

Cov(
1√
N

(
∑
j∈C

∑
i

(2Ii − 1)ajδi,j +
∑
k∈C∗

∑
i

(2Ii − 1)bkδ
∗
i,k),

1√
N

∑
i

(2Ii − 1)cεi|D̃N) = 0
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and

Var(
1√
N

∑
i

(2Ii − 1)cεi|D̃N) = E(
1

N

∑
(2Ii − 1)2c2ε2i |D̃N) = c2σ2

ε

and

Var(
1√
N

(
∑
j∈C

∑
i

(2Ii − 1)ajδi,j +
∑
k∈C∗

∑
i

(2Ii − 1)bkδ
∗
i,k)|D̃N)

=
1

N
E(
∑
j∈C

∑
j′∈C

∑
i

(2Ii − 1)2aja
′

jδi,jδi,j′ +
∑
k∈C∗

∑
k′∈C∗

∑
i

(2Ii − 1)2bkb
′

kδ
∗
i,kδ
∗
i,k′

+
∑
j∈C

∑
k∈C∗

∑
i

(2Ii − 1)2ajbkδi,jδ
∗
i,k|D̃N) = V,

where V = N−1
∑
i

Var(
∑
j

δi,jaj +
∑
k

δ∗i,kbk|D̃N). Therefore,

Var(
1√
N

(
∑
j∈C

∑
i

(2Ii − 1)γjδi,j +
∑
k∈C∗

∑
i

(2Ii − 1)bkδ
∗
i,k +

∑
i

(2Ii − 1)cεi)|D̃N) = c2σ2
ε + V

By the central limit theorem, given (Ĩ , D̃N),

1

N1/2
{
∑
j∈C

∑
i

(2Ii − 1)ajδi,j +
∑
k∈C∗

∑
i

(2Ii − 1)bkδ
∗
i,k +

∑
i

(2Ii − 1)cεi}

is asymptotically normal with mean zero and variance (c2σ2
ε + V ), which converges

to (c2σ2
ε +E[Var(Z>a+X>b|D̃)]), where D̃ = {X̃k, Z̃j, j = 1, 2, ..., q, k = 1, 2, ..., p}.

Since the limiting distribution is independent of (Ĩ , D̃N), the convergence in distri-

bution also holds unconditionally. Hence, by Slutsky’s Theorem,

1√
N

(2I− 1)>(Za+ Xb+ cε)
D−→ N(0,E[Var(Z>a+ X>b|D̃)] + c2σ2

ε),

which completes the proof of Lemma 3.6.2.
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Proof of Theorem 3.3.2. The following test statistic is used for hypothesis testing

(3.4),

Lβ̂

(σ̂2L(X>X)−1L>)1/2
,

where L = (1,−1, 0, ..., 0) and σ̂2 = (Y−Xβ̂)>(Y−Xβ̂)/(N −p−2), p is the total

number of independent variables in the model (3.3) besides µ1 and µ2.

The numerator is equal to

Lβ̂ = µ̂1 − µ̂2 = µ1 − µ2 +L(
X>X

N
)−1

X>Zγ

N
+L(

X>X

N
)−1

X>ε

N
.

We have shown that in the proof of Theorem 3.3.2,

1

N
X>X

P−→ diag(
1

2
,
1

2
,Σx,x)

.
= M .

Let

S1 = LM−1[
X>Zγ

N
+

X>ε

N
]

and

S2 = L[(
X>X

N
)−1 −M−1][

X>Zγ

N
+

X>ε

N
].

By some matrix calculations,

S1 =
2

N
(
∑
j

∑
i

(2Ii − 1)γjZi,j +
∑
i

(2Ii − 1)εi).
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For S2, notice that

X>Zγ

N
+

X>ε

N
=

1

N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
j

∑
i

Xi,1Zi,jγj +
∑
i

Xi,1εi

...∑
j

∑
i

Xi,pZi,jγj +
∑
i

Xi,pεi


,

then S2 can be written as,

S2 = L[(
X>X

N
)−1 −M−1]


0

0

XZγ/N



+ L[(
X>X

N
)−1 −M−1]

1

N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
i

Xi,1εi

...∑
i

Xi,pεi


= S2,1 + S2,2.

where

S2,1 = L[(
X>X

N
)−1 −M−1]


0

0

XZγ/N
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and

S2,2 = L[(
X>X

N
)−1 −M−1]

1

N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
i

Xi,1εi

...∑
i

Xi,pεi


.

For part S2,1, to get the inverse of X>X/N in S2,1, let

1

N
X>X =

1

N



∑
Ii 0

∑
IiXi,1 · · ·

∑
IiXi,p

0
∑

(1− Ii)
∑

(1− Ii)Xi,1 · · ·
∑

(1− Ii)Xi,p∑
Xi,1Ii

∑
Xi,1(1− Ii)

∑
Xi,1Xi,1 · · ·

∑
Xi,1Xi,p

...
...

...
. . .

...∑
Xi,pIi

∑
Xi,p(1− Ii)

∑
Xi,pXi,1 · · ·

∑
Xi,pXi,p


=

 A B

C D

 ,
where

A =

 ∑ Ii/N 0

0
∑

(1− Ii)/N



B = C> =

 ∑
IiXi,1/N · · ·

∑
IiXi,p/N∑

(1− Ii)Xi,1/N · · ·
∑

(1− Ii)Xi,p/N
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and

D =
X>X

N
.

By matrix blockwise inverse,

 A B

C D


−1

=

 (A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1 +D−1C(A− BD−1C)−1BD−1


Therefore, by matrix calculations,

S2,1 = L[(
X>X

N
)−1 −M−1]


0

0

XZγ/N

 = (1,−1)[−(A− BD−1C)−1BD−1]XZγ

N

It is easy to show

A− BD−1C P−→

 1/2 0

0 1/2

− 0Σ−1x,x0 =

 1/2 0

0 1/2

 .
In addition, notice that

∑
Xi,k√
N

= Op(1)

by the central limit theorem and

∑
(2Ii − 1)Xi,k√

N
= Op(1)

according to Lemma 3.6.2 by letting a = 0, c = 0 and b is a vector with the kth
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element equal to 1 and all other elements equal to 0, then

√
NB = Op(1).

It follows that

−(A− BD−1C)−1BD−1 =

 , 1/2 0

0 1/2


−1

BΣ−1x,x + op(N
−1/2)

and further,

S2,1 =
2

N
(
∑
i

(2Ii − 1)Xi,1, ...,
∑
i

(2Ii − 1)Xi,k)Σ
−1
x,xΣx,zγ + op(N

−1/2).

For part S2,2, we will show S2,2 = op(N
−1/2). To prove this, it suffices to show

1√
N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
i

Xi,1εi

...∑
i

Xi,pεi


= Op(1),

since we have already known

(
X>X

N
)−1 −M−1 P−→ 0.
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By the central limit theorem, for any k, k = 1, 2, ..., p

1√
N

∑
i

Xi,kεi = Op(1).

Also, we can show

1√
N

(
∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi) =
1

2
[

1√
N

∑
j

∑
i

Zi,jγj +
1√
N

∑
i

εi

+
1√
N

∑
j

∑
i

(2Ii − 1)Zi,jγj +
1√
N

∑
i

(2Ii − 1)εi].

Again by the central limit theorem,

1√
N

∑
j

∑
i

Zi,jγj +
1√
N

∑
i

εi = Op(1).

Apply Lemma 3.6.2 by letting a = (1, 1, ..., 1), b = 0 and c = 1,

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jγj +
1√
N

∑
i

(2Ii − 1)εi = Op(1).

Hence,

1√
N

(
∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi) = Op(1).

By symmetry,

1√
N

(
∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi) = Op(1).
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It follows that

1√
N



∑
j

∑
i

IiZi,jγj +
∑
i

Iiεi∑
j

∑
i

(1− Ii)Zi,jγj +
∑
i

(1− Ii)εi∑
i

Xi,1εi

...∑
i

Xi,pεi


= Op(1),

hence,

S2,2 = op(N
−1/2).

Therefore,

L(β̂− β) =
2

N
(2I− 1)>(Zγ −XΣ−1x,xΣx,zγ + ε) + op(N

−1/2).

By Lemma 3.6.2,

√
NL(β̂− β)

D−→ N(0, 4{E[Var((Z> −X>Σ−1x,xΣx,z)γ|D̃)] + σ2
ε}),

On the other hand, we show σ̂2L(X>X)−1L> is an inflated estimator of the variance

of Lβ̂, which is larger 4{E[Var((Z−XΣ−1x,xΣx,z)γ|D̃)] + σ2
ε}. Notice that

L(X>X)−1L> =
1

N
L(

X>X

N
)−1L> =

4

N
+ op(

1

N
)
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and

σ̂2 =
1

N − p− 2
(Y −Xβ̂)>(Y −Xβ̂) =

1

N
(Y −Xβ)>(Y −Xβ)

+
1

N
(β̂ − β)>X>X(β̂ − β)− 2

N
(β̂ − β)>X>(Y −Xβ) + op(1).

By Theorem 3.3.2,

1

N
(β̂ − β)>X>X(β̂ − β)

P−→ (0, 0,γ>Σ>x,zΣ
−1
x,x)diag(

1

2
,
1

2
,Σx,x)


0

0

Σ−1x,xΣx,zγ


= γ>Σ>x,zΣ

−1
x,xΣx,zγ,

and similarly,

2

N
(β̂ − β)>X>(Y −Xβ) = 2(β̂ − β)>

X>Zγ

N
+ 2(β̂ − β)>

X>ε

N

P−→ 2γ>Σ>x,zΣ
−1
x,xΣx,zγ.

It follows from the law of large numbers and independence of Z and ε that,

1

N
(Y −Xβ)>(Y −Xβ) =

1

N
(Zγ + ε)>(Zγ + ε)

P−→ σ2
ε + γ>Σz,zγ.

Therefore,

σ̂2 P−→ σ2
ε + γ>(Σz,z −Σ>x,zΣ

−1
x,xΣx,z)γ = σ2

ε + Var[(Z> −X>Σ−1x,xΣx,z)γ]

and

σ̂2L(X>X)−1L> =
4

N
(σ2

ε + Var[(Z> −X>Σ−1x,xΣx,z)γ]) + op(
1

N
).
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Then under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2), τ 2 =

σ2
ε + E[Var((Z> −X>Σ−1x,xΣx,z)γ|D̃)]

σ2
ε + Var[(Z> −X>Σ−1x,xΣx,z)γ]

=
σ2
1

σ2
2

,

where σ2
1 = σ2

ε+E[Var((Z>−X>Σ−1x,xΣx,z)γ|D̃)] and σ2
2 = σ2

ε+Var[(Z>−X>Σ−1x,xΣx,z)γ].

Notice that

Var[(Z> −X>Σ−1x,xΣx,z)γ] > E[Var((Z> −X>Σ−1x,xΣx,z)γ|D̃)],

which leads to, when N →∞,

Pr(|T | > Z1−α/2)→ 2Φ(−
σ2Z1−α/2

σ1
) < α,

where Φ is the cumulative distribution function of standard normal distribution.

Similarly, under HA : µ1−µ2 6= 0 with a sequence of local alternatives, i.e., µ1−µ2 =

δ/
√
N for a fixed δ 6= 0,

T
D−→ N(∆, τ 2), ∆ =

δ

2σ2
.

which completes proof of Theorem 3.3.2.
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Chapter 4

Statistical Inference for Logistic

Regression

4.1 Introduction

In Chapter 2 and 3, statistical inference for linear models are studied under covariate-

adaptive designs. The discussion concentrates on the scenario of continuous re-

sponses on which linear models can be applied. However, the response variable of

interest is not limited to continuous variable in clinical trials. For example, the

outcome of a clinical trial can be a binary variable indicating whether a patient is

a responder or non-responder to a newly developed therapy. In this case, a logis-

tic regression can be utilized to model the relationship between patients’ responses

and treatment assignments adjusted by covariates, if any. Other types of responses

in clinical trials include count data or time-to-event data where Poisson model or

survival model should be appropriately applied. Considering wide applications of

clinical trials with response variables that are not continues, it is necessary to study

the inference properties of generalized linear models and even more advanced models
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under covariate-adaptive randomized clinical trials.

In this chapter our discussion focuses on statistical inference for logistic regres-

sion, which is one of the most important and commonly used analysis model in

the family of generalized linear models. When responses are binary in a covariate-

adaptive randomized clinical trial, logistic regression can be utilized to test the sig-

nificance of treatment effects or covariates. Thus a natural question arises whether

the conclusions regarding treatment effects in Chapter 2 and 3 still hold for logistic

regression. Corresponding theoretical properties are explored in this chapter.

In Section 4.2, a general framework is proposed to study properties of the Wald

test if logistic regression is used for analysis with all randomization covariates omit-

ted in the working model. In Section 4.3, theoretical properties of hypothesis testing

for comparing treatment effects are proposed. Simulations are carried out in Section

4.4 to investigate Type I error and power. In Section 4.5, conclusion remarks are

given and possible future directions are also discussed.

4.2 Framework

In this section, we study the properties of the Wald test on treatment effect for

logistic regression under covariate-adaptive randomized clinical trials. Response

Y is a binary variable with possible values 1 (success) and 0 (failure). Suppose

there are two treatments, treatment 1 and treatment 2, and in total N patients

are enrolled in the study. Covariate profile of patients is denoted by X, which

can be either univariate or multivariate. The covariate-adaptive randomization is

implemented directly on X if X is discrete, or on D(X) if X is continuous, where

D(·) is a discrete function. The treatment assignment I can take values of 1 and 0,

corresponding to treatments 1 and 2, respectively. The following model is assumed
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to be the underlying true model,

p = h(µ+ αI + βX) = h(η), (4.1)

where p is the success probability given treatment assignment and covariate informa-

tion, which is equal to E(Y |I,X) since Y is a bernoulli variable. h(·) is the function

h(η) = exp(η)/[1 + exp(η)]. The treatment effect is represented by α, which is equal

to the log odds ratio of success for a patient assigned to treatment 1 compared to

treatment 2. The underlying model (4.1) is equivalent to,

logit(p) = log(
p

1− p
) = µ+ αI + βX.

In this chapter, the discussion is focused on testing treatment effect for logistic

regression under covariate-adaptive designs. Covariate effects are not our main

interest, and we only consider the scenario where all covariate information of X is

omitted in analysis. Then the following model is assumed to be the working model

for statistical analysis,

p = h(µ+ αI). (4.2)

Based on the working model (4.2), there are several ways to test if the treatment

effect is significant, including the Wald test, the score test and the likelihood ratio

test. Among these three tests, the Wald test is most wildly used and is available in

most statistical package, so we only consider the Wald test in this chapter. Under

the working model, the Wald test has the following form to test the treatment effect.

H0 : α = 0 versus HA : α 6= 0. (4.3)
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The test statistic for (4.3) is

T =
α̂

ŝe(α)
, (4.4)

where ŝe(α) is the estimated standard deviation of α derived from the inverse of the

estimated information matrix. If |T | > Z1−α/2, where Z1−α/2 is (1− α/2) quantile of

a standard normal distribution, we will reject the null hypothesis, otherwise accept

the null hypothesis.

4.3 Theoretical properties

The hypothesis testing for treatment effect is discussed based on the linear model

framework in Chapter 2 and 3 (Theorem 2.3.1, Theorem 3.3.2). In this section, the

similar problem is studied for logistic regression under covariate-adaptive designs. In

particular, the Type I error of hypothesis testing (4.3) based on the working model

(4.2) is evaluated if the underlying model (4.1) holds. Compared to the conditions

(A) and (B) in Theorem 2.3.1 (Theorem 3.3.2), a relatively strong condition is

assumed to derive asymptotic properties. The main results are given below.

Theorem 4.3.1. Suppose that a covariate-adaptive design satisfies the condition

that all within-stratum imbalances are Op(1), then under H0 : α = 0,

T
D−→ N(0,

E[Var(Y |D(X))]

Var(Y )
). (4.5)

Hence, the hypothesis testing (4.3) is conservative.

Remark 4.3.1. Since E[Var(Y |D(X))] is generally smaller than Var(Y ), the asymp-

totic distribution of test statistic T under the null hypothesis is not a standard normal
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distribution as under complete randomization. Instead, it is a normal distribution

with a mean zero and a standard deviation smaller than 1. Based on the decision

rule of hypothesis testing (4.3), the Type I error is smaller than the nominal level.

In the other word, the hypothesis testing for treatment effect is conservative, causing

more difficult to reject the null hypothesis even though the null hypothesis is true.

Remark 4.3.2. The condition regarding within-stratum imbalances in Theorem 4.3.1

is satisfied by several covariate-adaptive randomization methods. A few typical ex-

amples include covariate-adaptive designs balancing covariates by stratification, such

as stratified permuted block design and covariate-adaptive biased coin design. In ad-

dition, by choosing appropriate weights in the new designs developed by Hu and Hu

(2012), the condition in Theorem 4.3.1 can also be satisfied. Moreover, this condition

is stronger than the conditions in Theorem 2.3.1 or Theorem 3.3.2. A covariate-

adaptive design with all within-stratum imbalances Op(1) will automatically have

marginal imbalances Op(1) and overall imbalance Op(1).

Remark 4.3.3. Pocock and Simon’s marginal procedure doesn’t satisfy the condi-

tion in Theorem 4.3.1. Hu and Zhang (2013) proved that, even though marginal

imbalances and overall imbalance are Op(1) for Pocock and Simon’s marginal pro-

cedure, within-stratum imbalances increases with the order of Op(N
1/2). However,

all within-stratum imbalances are Op(1) is only a sufficient condition, but not nec-

essary, to derive the conservativeness of hypothesis testing (4.3). Even though The-

orem 4.3.1 cannot be applied, we will further look at the properties for Pocock and

Simon’s marginal procedure by conducting simulations in Section 4.4.

In Theorem 4.3.1, we only consider a special scenario that all randomization

covariates are omitted in the working model. Theoretical properties remain unknown

if only partial covariate information is excluded from analysis based on the logistic
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regression, even though simulations show that the hypothesis testing for treatment

effect is also conservative. Moreover, the asymptotic distribution of test statistic

(4.3) under the alternative hypothesis is not given due to technical difficulties and

will be left as a future research topic. However, the power of logistic regression

under covariate-adaptive designs are studied via simulations in the next section.

To prove Theorem 4.3.1, the asymptotic behaviors of the numerator α̂ and the

denominator ŝe(α) in test statistic (4.4) are studied. Refer to the Appendix in

Section 4.6 for detailed proofs.

4.4 Simulation study

Case 1: Type I error. Simulations are carried out to study Type I error of the

hypothesis testing of treatment effect when a logistic regression model is used. Two

types of covariate-adaptive designs, including stratified permuted block design and

Pocock and Simon’s marginal procedure, are considered in this case. Results for

complete randomization are also attached for comparison. For each type of design,

both continuous and discrete cases are studied. The following model including two

covariates Z1 and Z2 is assumed to be the underlying true model,

logit(pi) = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2,

where β1 = β2 = 1. To evaluate Type I error, treatment effects are assumed to be

identical between two groups, i.e., µ1 = µ2 = 0. For the discrete case, Z1 and Z2

are independent and follow Bernoulli(0.5); for the continuous case, Z1 and Z2 are

independent and follow a standard normal distributions N(0, 1). If covariates Z1

and Z2 are continuous, they are discretized to bernoulli variables Z ′1 and Z ′2 with
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the probability 0.5 to be used in randomization. More specifically, if Z1 < Z(p1),

where Z(p1) is p1 quantile of a standard normal distribution, then Z ′1 = 0, otherwise

Z ′1 = 1. Original covariates without discretization are used to do analysis.

In stratified permuted blocked designs, the block size 4 is used. In Pocock and

Simon’s marginal procedure, the probability of biased coin assignment is 0.75 and

equal weights are assigned on two covariates. Other parameters in simulations are:

the significance level is α = 0.05 and sample size N is 100, 200 or 500. The analysis

models studied here include a logistic model with no covariate (glm0), a logistic

model with a single covariate Z1 (glm(Z1)), a logistic model with a single covariate

Z2 (glm(Z2)) and a logistic model with both covariate Z1 and Z2 (glm(Z1, Z2)).

The simulation results for stratified permuted block design, Pocock and Simon’s

marginal procedure and complete randomization are given in Table 4.1.

Several conclusions can be obtained from Table 4.1. (1) The logistic regression

with no covariates included (glm0) under stratified permuted block design has Type

I error less than 5%. This is consistent to the conclusion of Theorem 4.3.1 that the

hypothesis testing for treatment effect is conservative if within-stratum imbalances

are bounded in probability. (2) Under stratified permuted block design, the results

of Type I error of glm(Z1) and glm(Z2) are also conservative, where only partial

covariate information is implemented into analysis. (3) The Type I error of the full

model (glm(Z1, Z2)) is close to 5% under all three randomization methods, which

makes sense since the full model is the underlying true model. (4) In Table 4.1,

glm0, glm(Z1) and glm(Z2) all have Type I error smaller than the nominal level

5% under Pocock and Simon’s marginal procedure. Notice that within-stratum im-

balances of Pocock and Simon’s marginal procedure are Op(N
1/2) and thus don’t

satisfy the condition in Theorem 4.3.1. It is still not clear about theoretical prop-

erties of testing hypothesis for Pocock and Simon’s marginal procedure and further
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Table 4.1: Simulated Type I error for stratified permuted block design (SPB), Pocock
and Simon’s marginal procedure (PS) and complete randomization (CR) in %. Sim-
ulations based on 10000 runs.

Z Method N glm0 glm(Z1) glm(Z2) glm(Z1, Z2)

Discrete SPB 100 3.73 4.43 4.51 5.18
200 4.05 4.46 4.38 5.01
500 3.90 4.36 4.31 4.85

PS 100 3.80 4.53 4.48 4.97
200 4.08 4.58 4.44 5.00
500 4.04 4.55 4.56 5.09

CR 100 4.51 4.55 4.62 4.73
200 5.08 5.00 5.14 5.19
500 4.92 4.80 4.75 4.74

Continuous SPB 100 3.28 3.59 3.63 4.67
200 3.57 3.89 3.91 5.16
500 3.14 3.44 3.41 4.55

PS 100 3.65 4.24 3.90 5.11
200 3.78 4.06 4.09 5.23
500 3.27 3.93 3.72 5.08

CR 100 5.21 5.83 4.73 5.04
200 5.15 4.67 5.16 4.93
500 5.22 4.99 5.64 5.47

theoretical results are desired. (5) The Type I error of all hypothesis testing are

around 5% and valid under complete randomization.

Case 2: Power Comparison. In this case, power are compared for different

hypothesis testing methods under stratified permuted block design and complete

randomization. The same model as in Case 1 is used, however, it is assumed that

difference exists between treatment effects µ1 and µ2, i.e., µ1−µ2 6= 0. The following

model including two covariates Z1 and Z2 is used as the underlying model,

logit(pi) = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2,

where β1 = β2 = 2 and µ2 = −3. Treatment effects are assumed to be different to
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Figure 4.1: Simulated power for stratified permuted block design (SPB) and com-
plete randomization (CR) under discrete and continuous cases. Simulation based
on 10000 runs and number of patients N = 100.
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study power, i.e. µ1 6= µ2. Other parameter settings are the same as Case 1. The

power results are presented in Figure 4.1.

Figure 4.1 implies a few conclusions which are summarized below. (1) Among

all hypothesis testing methods considered, glm(Z1, Z2) is the most powerful one

under either stratified permuted block design or complete randomization. glm0 and

glm(Z1) are less powerful than glm(Z1, Z2), and glm0 is the least powerful one.

These conclusions are not surprising since more covariates in the analysis model

allow us to better detect difference between treatment effects. (2) The power of
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the full model glm(Z1, Z2) under stratified permuted block design is slightly larger

than that under complete randomization. (3) The power of glm0 under stratified

permuted block design is smaller than that under complete randomization when

treatment effect is relatively small. However, the power of stratified permuted block

design becomes larger than that of complete randomization when treatment effect is

getting larger. The power of glm(Z1) has similar pattern under stratified permuted

block design and complete randomization.

4.5 Conclusion

In this chapter, we studied the properties of statistical inference for logistic regres-

sion under covariate-adaptive designs. We showed that the hypothesis testing of

treatment effect is conservative when covariates are fully omitted from inference pro-

cedures. The asymptotic distribution of test statistic is given for stratified permuted

block design and other covariate-adaptive designs with within-stratum imbalances

bounded in probability. However, the theoretical properties remain unknown for

covariate-adaptive designs which don’t satisfy the conditions in Theorem 4.3.1. In

view of that, simulations are carried out to study Type I error under Pocock and

Simon’s marginal procedure. The results imply that the test of treatment effect

is also conservative for Pocock and Simon’s marginal procedure if covariates used

in covariate-adaptive design are omitted from the analysis model. Corresponding

theoretical work is a promising future research topic.

The discussion in this chapter focuses on statistical inference solely for one type

of generalized linear model, logistic regression whose outcome is a binary variable.

Other kinds of outcomes often occur in clinical trials as well. For example, Poisson

model and Cox model also have broad applications in practice. Gail (1988) examined
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the properties of the score test for a large family of generalized linear models based on

perfectly balanced studies, but the conclusion cannot be applied to most of covariate-

adaptive randomized clinical trials. The theoretical properties of statistical inference

(such as the Wald test and the likelihood ratio test) for generalized linear models

are mostly unexplored under covariate-adaptive designs. Our work in this chapter

provides a framework for further research in this area.

4.6 Appendix: proof of theorems

In this section, Theorem 4.3.1 will be proved based on the following three lemmas.

Lemma 4.6.1. Under the assumptions of Theorem 4.3.1, then

1

N

∑
Ii

P−→ 1

2
. (4.6)

Proof. Let the overall imbalance, denoted by DN , be the difference between the

numbers of patients in treatment group 1 and 2 as total, then DN =
∑

(2Ii − 1).

Since the overall imbalance DN is the sum of all within-stratum imbalance, then

the overall imbalance is also bounded in probability, i.e., DN = Op(1), if all within-

stratum imbalances are all bounded in probability. It follows that,

1

N

∑
Ii =

1

2
+

∑
(2Ii − 1)

2N
=

1

2
+

1

2

DN

N

P−→ 1

2
.

The proof of Lemma 4.6.1 is completed.

Lemma 4.6.2. Under the assumptions of Theorem 4.3.1, if the null hypothesis
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H0 : α = 0 is true, then

1√
N

∑
(2Ii − 1)Yi

D−→ N(0,E[h(µ+ βX)(1− h(µ+ βX))]). (4.7)

Proof. Define D = {D(Xi), i = 1, 2..., N} and I = {Ii, i = 1, 2, ..., N}. Then

∑
(2Ii − 1)Yi =

∑
(2Ii − 1)[Yi − E(Yi|D)] +

∑
(2Ii − 1)E(Yi|D)

Since E(Yi|D) = E(Yi|D(Xi)) can only take a finite number of values corresponding

to each strata and within-stratum imbalances are all bounded in probability, then

∑
(2Ii − 1)E(Yi|D) = op(N

1/2).

Further, notice that Ii and (Yi − E(Yi|D)) are independent given D under the null

hypothesis, then

E[
1

N

∑
(2Ii − 1)(Yi − E(Yi|D))|D] =

1

N

∑
E[(2Ii − 1)|D]E[Yi − E(Yi|D)|D] = 0,

and using the fact (2Ii − 1)2 = 1,

Var[
1

N

∑
(2Ii − 1)(Yi − E(Yi|D))|D] =

∑
E[(2Ii − 1)2(Yi − E(Yi|D))2|D]

N2
=

∑
Var[Yi|D]

N2
.

By the central limit theorem, the conditional distribution of

1√
N

∑
(2Ii − 1)(Yi − E(Yi|D))

given (D, I), is asymptotically normal with mean zero and variance
∑

Var[Yi|D]/N ,

which converges to E[Var[Y |D(X)]] by the law of large numbers. Thus, it also holds
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unconditionally that

1√
N

∑
(2Ii − 1)(Yi − E(Yi|D))

D−→ N(0,E[Var[Y |D(X)]]).

Using the fact E[Var[Y |D(X)]] = E[h(µ+βX)(1−h(µ+βX))] and Slutsky’s theorem,

1√
N

∑
(2Ii − 1)Yi

D−→ N(0,E[h(µ+ βX)(1− h(µ+ βX))]),

which completes the proof.

Lemma 4.6.3. Under the assumptions of Theorem 4.3.1, if the null hypothesis

H0 : α = 0 is true, then

1

N

∑
IiYi

P−→ 1

2
EY. (4.8)

Proof. It is easy to show

1

N

∑
IiYi =

∑
Yi

2N
+

∑
(2Ii − 1)Yi

2N
.

It follows from the law of large numbers that

∑
Yi

2N

P−→ 1

2
EY.

Further, by Lemma 4.6.2,
∑

(2Ii−1)Yi/
√
N is bounded in probability since it follows

a normal distribution asymptotically, then

∑
(2Ii − 1)Yi

2N
=

1

2
√
N

∑
(2Ii − 1)Yi√

N

P−→ 0.

By Slutsky’s theorem, the proof of Lemma 4.6.3 is completed.
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Proof of Theorem 4.3.1. Under the working model (4.2), the log-likelihood for Y ,

conditional on η, is given as

l =
n∑
i=1

[Yiηi − log(1 + exp(ηi))].

Thus the derivative of the log-likelihood l with respect to µ and α are,

∂l

∂µ
=
∑

Yi −
∑

h(µ+ αIi)

and

∂l

∂α
=
∑

IiYi −
∑

Iih(µ+ αIi).

Then the MLE estimators of µ and α can be obtained by letting ∂l/∂µ = ∂l/∂α = 0.

Define n1 =
∑
Ii and n2 =

∑
(1− Ii) = N − n1, then

µ̂ = h−1(

∑
(1− Ii)Yi
n2

)

and

α̂ = h−1(

∑
IiYi
n1

)− h−1(
∑

(1− Ii)Yi
n2

).

Using Taylor expansions,

h−1(

∑
IiYi
n1

) = h−1(EY ) + h−1(1)(EY )(

∑
IiYi
n1

− EY ) +
1

2
h−1(2)(ξ)(

∑
IiYi
n1

− EY )2,

where h−1(n) denotes the nth derivative of h, n = 1, 2, and ξ is between
∑
IiYi/n1

and EY .
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Notice that

∑
IiYi
n1

− EY =
2

N

∑
IiYi − EY +

∑
IiYi(

1∑
Ii
− 2

N
)

and

∑
IiYi(

1∑
Ii
− 2

N
) =

∑
IiYi
N

(n1 − n2)/N∑
Ii/N

= op(N
−1/2),

since
∑
Ii/N

P−→ 1/2,
∑
IiYi/N

P−→ EY/2 by Lemma 4.6.1 and Lemma 4.6.3, and

the overall imbalance n1 − n2 = DN is Op(1), bounded in probability.

It follows from the law of large numbers and
∑

(2Ii−1)Yi/
√
N = Op(1) by Lemma 4.6.2

that

∑
IiYi
n1

− EY =

∑
Yi
N
− EY +

∑
(2Ii − 1)Yi

N
+ op(N

−1/2) = Op(1).

Also, by the central limit theorem and Lemma 4.6.2,

√
N(

∑
IiYi
n1

− EY ) =

∑
Yi −NEY√

N
+

∑
(2Ii − 1)Yi√

N
+ op(1) = Op(1).

Thus,

h−1(

∑
IiYi
n1

) = h−1(EY ) + h−1(1)(EY )(
2

N

∑
IiYi − EY ) + op(N

−1/2)

Similarly,

h−1(

∑
(1− Ii)Yi
n1

) = h−1(EY ) + h−1(1)(EY )(
2

N

∑
(1− Ii)Yi − EY ) + op(N

−1/2)
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Thus,

α̂ = h−1(1)(EY )
2
∑

(2Ii − 1)Yi
N

+ op(N
−1/2).

Notice that h−1(1)(EY ) = 1/[EY (1− EY )] = 1/Var(Y ), together with Lemma 4.6.2,

N1/2α̂
D−→ N(0,

4E[Var(Y |D(X))]

Var(Y )2
)

Next, we consider the asymptotic property of ŝe(α̂), which is obtained from inverse

of the estimated information matrix Î(µ, α). Notice that

∂2l

∂µ2
= −

∑
h′(µ+ αIi),

∂2l

∂α2
= −

∑
h′(µ+ αIi)I

2
i ,

and

∂2l

∂µ∂α
= −

∑
h′(µ+ αIi)Ii.

Substituting µ and α by their MLE estimators µ̂ and α̂, we can show that

∑
h′(µ̂+ α̂Ii) = n1h

′(µ̂+ α̂) + n2h
′(µ̂)

= n1(

∑
IiYi
n1

)(1−
∑
IiYi
n1

) + n2(

∑
(1− Ii)Yi
n1

)(1−
∑

(1− Ii)Yi
n1

)

P−→ N

2
EY (1− EY ) +

N

2
EY (1− EY ) = NVar(Y ).
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Similarly,

∑
h′(µ̂+ α̂Ii)I

2
i =

∑
h′(µ̂+ α̂Ii)Ii =

N

2
Var(Y ).

Then we have

Î(µ, α)
P−→ NVar(Y )

 1 1/2

1/2 1/2

 ,
which implies that

Î−1(µ, α)
P−→ Var(Y )−1

N

 2 −2

−2 4

 .
It follows that

ŝe(α̂) =
2√
N
Var(Y )−1/2.

Finally, by Slutsky’s theorem,

T =
α̂

ŝe(α)

D−→ N(0,
E[Var(Y |D(X))]

Var(Y )
),

which completes the proof of Theorem 4.3.1.
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Chapter 5

Conclusions

In this dissertation, we studied theoretical properties of statistical inference under

general covariate-adaptive designs based on linear models and logistic regression.

In Chapter 2 and 3, we derived the corresponding asymptotic distributions of sev-

eral test statistics under both null and alternative hypotheses. Instead of focusing

on a specific covariate-adaptive design, we studied the problem from the angle of

imbalance measure of different levels (overall, marginal, within-stratum). So the

conclusions can be applied to a broad range of covariate-adaptive designs, including

stratified permuted block design and Pocock and Simon’s marginal procedure. For

example, to apply Theorems 2.3.1 and 2.3.2 to a specific covariate-adaptive random-

ized clinical trial, one just need to check the conditions (A) and (B) to see if they are

satisfied. Furthermore, Chapter 3 allows us to study inference properties based on

more general assumptions that covariates used in randomization are correlated with

each other. The results in this dissertation provide new insights about balance and

efficiency of clinical trials, and the framework can be used to study other statistical

methods under covariate-adaptive designs.

Based on Theorems 2.3.1 and 2.3.2, incorporating all randomization covariates
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in the final analysis model can achieve valid hypothesis testing for treatment effects

and covariates. In practice, model selection techniques can also be used as in Case

4 of Section 2.4 to target the subset of all influential covariates, based on which

valid tests can be obtained. However, sometimes not all important randomization

covariates are used in the inference step for a covariate-adaptive design. Then the

actual Type I error may be not equal to the nominal level when comparing treatment

effects and adjustment is necessary to achieve a valid test in this situation. If no

covariate is incorporated in the final analysis model, a bootstrap t-test as described

in Shao, Yu and Zhong (2010) can be implemented to restore Type I error, and

this method is shown to be more powerful than the conventional two sample t-test

under covariate-adaptive designs. Similar bootstrap adjustment methods can be

considered to correct the variance estimation and to make τ = 1 in Theorems 2.3.1

and 3.3.2. We leave this as a future research project.

The linear regression model is used to study hypothesis testing in Chapter 2 and

3, where response of patients is a continuous variable. In reality, the endpoints of

clinical trials may be other types of variables. For instance, a clinical trial can be

designed to compare success rates between a new medication and a standard treat-

ment, where the response is a binary variable. In literature, Feinstein and Landis

(1976) and Green and Byar (1978) studied the properties of unadjusted tests under

stratified randomization for binary response based on a very special setting, and

concluded that Type I error would decrease when stratified randomization is used

rather than unstratified randomization. In Chapter 4, we extended their results to

logistic regression under the assumption within-stratum imbalances are bounded in

probability for covariate-adaptive designs. It is shown that the hypothesis testing

for comparing treatment effect is conservative when all covariates are omitted from

the analysis procedure. However, inference properties are not fully clear in the-
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ory for the case only partial covariate information is used in analysis even though

simulations show that Type I error is also conservative. The theoretical results for

other types of covariate-adaptive designs, including Pocock and Simon’s marginal

procedure, remains unknown. As future research projects, we will study behaviors

of conventional statistical inference for different kinds of responses based on gen-

eralized linear models, survival models and so on. There are some other kinds of

covariate-adaptive randomization procedures in literature, including Zelen (1974),

Wei (1978), Begg and Iglewicz (1980), and Atkinson (1982). Theorems developed

in this dissertation may not apply to these designs, because it is unknown whether

the conditions in this dissertation (Theorem 2.3.1, Theorem 3.3.1, Theorem 4.3.1)

remain true for these designs.

The proposed properties of hypothesis testing for covariate-adaptive designs can

be generalized in several ways. (1) All covariate-adaptive designs considered in this

dissertation are based on discrete covariates. We may consider covariate-adaptive

designs (Lin and Su, 2012; Ma and Hu, 2013; etc.) that directly utilize continuous

covariates without discretization. However, related theoretical work is limited in

literature. (2) The covariate effects are assumed to be additive in true models to

derive theoretical results. We may apply the similar idea to more complicated cases,

such as interaction terms, higher order terms. (3) We studied hypothesis testing

for logistic regression by assuming conditions on within-stratum imbalances. More

general properties may be studied under conditions on marginal imbalances similar

to the linear model framework. Moreover, properties of other generalized linear

model are also desired. (4) The proposed properties are based on clinical trials

with two treatments, which can be generalized to multiple treatments (Tymofyeyev,

Rosenberger and Hu, 2007). Those topics are left for future research.
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