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Abstract - The goal of this work is to investigate novel
proximity detection techniques by researching and testing
various sensor technologies and investigate their feasibility
in an athletic context. COVID-19 has challenged sports
teams to come up with reasonable and easy-to-implement
solutions to provide a safe training environment for their
players and staff. For this reason, proximity data is more
important than ever, as many teams are in need of a way to
measure social distancing and maintain contact tracing of
their athletes. Bluetooth has been widely used to detect
colocation and monitor social distancing. However, there
are many other sensing technologies that may prove to be
more accurate, robust, and secure. Therefore, the focus of
this work is to investigate how Bluetooth compares with
ultra-wideband and ultrasound technologies when
monitoring the distance between users. We have
implemented and compared the three modalities in a
controlled experiment to investigate their accuracy at
detecting distance between users at various levels. Our
results indicate that the UWB signals are the most
accurate at monitoring co-location. 
This is in-line with previous research suggesting that
Bluetooth cannot accurately measure the distance between
fast moving objects and needs about 20 seconds to stabilize
distance measurements; therefore, it is not feasible to use
for sports. In addition, we  recorded that UWB models
yielded an accuracy of over 95%, while ultrasound
correctly classified the observations over 80% of the time,
and Bluetooth had an accuracy of less than 50% when
predicting if a given signal is within 6 feet or not.
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INTRODUCTION

Due to the continuous advancements in smart phones and
smart watches, biometric sensors and monitors have been
incorporated into wearable technologies, allowing them to
revolutionize the ways in which performance and training
data can be evaluated [1]. Coupled with low prices and an
increased social media presence, wearable devices have
become popular tools for people to analyze their physical
activities across the world. Wearable sensors have allowed
athletics teams to constantly monitor the status of players’
health and provide accurate data to assist in maximizing
athletic performance and enhancing recovery [1]. The
technological capabilities of personal fitness devices have
advanced significantly in recent years which has led
researchers to question if those health tracking
measurements can be leveraged as tools to help combat
COVID-19. Several companies have developed devices that
monitor social distancing and contract tracing of
individuals; however, how the distance tracking
technologies compare with each other is still
under-investigated.

In this work, we identify three sensor technologies within
wearable devices that could be used to track distances
including  Bluetooth, ultrasound and ultrawide-band
(UWB) and we evaluate their performance at monitoring
colocation. The first sensor, Bluetooth, estimates distance
between athletes through the received signal strength
indicator (RSSI) between two devices [2]. Bluetooth
combines sought after attributes such as widespread use,
easy implementation, and energy efficiency. However, it
tends to perform less accurately than other potential
solutions. Ultrasound waves can similarly be analyzed to
measure co-location. In an ultrasound sensor, distance is
measured using the received signal from a reflected wave.
While ultrasound sensors are cost effective and reliable,
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they can be disrupted by excess noise or impenetrable
objects [3]. Recently, UWB technology has been the
frontrunner of proximity detection.  Sensors with UWB
technology follow a similar process of measurement to that
of Bluetooth, but differ in their communication via
electrical pulses [4]. UWB is considered to be highly
accurate and reliable, but more difficult to implement.
Through this paper, these three technologies will be
implemented and analyzed to determine the best
combination of accuracy and effectiveness in the
measurement of proximity between athletes.

RELATED WORKS

Many professional and college sports teams use wearable
devices and sensors to track the performance and health of
their athletes. For instance, a study conducted in 2016
leveraged smartwatch Bluetooth technology at a
rehabilitation facility to monitor the location, posture, and
movement of patients [5].

The smart device we used for this project is the Huawei
Watch 2 smartwatch which contains an accelerometer, a
heart rate sensor, geomagnetic sensor, Bluetooth, ultrasound
capabilities, GPS, and Wi-Fi connectivity [6]. Bluetooth
devices use RSSI values to estimate the distance between
the beacon and the receiver. RSSI measures the power of
the beacon’s signal as seen by the smart device.

Ultrasound waves are sound waves with frequencies
greater than approximately 20 kHz, higher than the limit of
human perception [7]. It has proved to be a very versatile
solution to many technological applications in chemistry,
food technology, materials science, and medicine [8, 9].
For example, a study from 2009 described a measurement
system that used an ultrasonic transmitter, receiver, and
microcontroller to be implemented in a robotic sewer
inspection system [10].  This paper identified ultrasound
technology as a low-cost, effective solution to the sewer
system use-case.  The technology performed quickly in both
water and air. In this application, however, only small
distances were necessary to be measured (5-20 cm). This
paper intends to apply ultrasound at distances up to 6 feet
and more, with social distancing protocols in mind.

UWB technology is similar to Bluetooth and Wi-Fi in that it
is used for wireless communication; however, instead of using
RSSI values to estimate distances, UWB devices emit several
short electrical pulses that allow for wideband transmission
bandwidths [4]. These devices can estimate the distance
between two devices by measuring how long it takes for a
pulse to move between the devices. Shortly after COVID-19
hit in the United States, the National Football League (NFL)
and National Basketball Association (NBA) began monitoring
social distancing and contract tracing of players by using
Kinexon Safezone tags which employ UWB technology [11].
The NCAA employed the same devices to athletes
participating in the 2021 NCAA tournament as they attempted
to maintain a COVID-19-free “bubble” in Indianapolis [12].
Although the Safezone tags do not collect biometric data from
individuals who wear the devices, other Kinexon products that

incorporate UWB technology do have that capability and have
helped revolutionize the way in which athlete performance can
be maximized and injuries can be reduced.

METHODOLOGY

This study analyzes three technologies’ distance
measurement accuracy: Bluetooth, Ultrasound, and UWB.
The models for each technology will be compared using
statistics such as accuracy, F1 score, and root mean square
error (RMSE) to investigate which performed the best at
certain distances.  A “best” model would be created that
selects the model with the lowest error at any given distance
in order to provide the most accurate prediction [13].

I. BLUETOOTH

The Bluetooth data was collected through a set of Huawei 2
smartwatches connected to an Android phone. These
smartwatches collected RSSI values and their corresponding
timestamps through an app called ‘SixFeet’. The app is
specially designed by a team at UVA to communicate between
smartwatches in order to record ultrasound audio files and
Bluetooth RSSI measurements. The app was built on top of
SWear, a crowdsensing platform developed by the same team
and available on the Google Play store for use by any android
based smartwatch with the correct sensor capabilities [14, 15].
Figure 1 shows the graphical user interface of the app,
including the Home page for activation of the sensor
technology and the Status page indicating both the number of
files available and the Amazon Simple Storage service (S3)
bucket connection.

Fig. 1. User Interface of SixFeet App Used to Collect Data

After the data was collected, it had to be retrieved from the
AWS server for further analysis. Figure 2 shows how the
Bluetooth and ultrasound data is uploaded to an AWS S3
bucket connected to the watches through the app and
downloaded via AWS Command Line Interface with a
specified set of access keys. The data was then uploaded to a
Box folder for shared access between team members for
analysis. A python script was run to clean the raw encrypted
and compressed files and output them as a CSV.



Fig. 2. Collection of Bluetooth Data

A preliminary experiment was run with the Huawei 2
smartwatches in which 2 smartwatches were held constant for
50 seconds at various distances: from 1 to 6 feet with
increments of 1 foot, from 6 to 15 feet with increments of 3
feet, and from 15 to 90 feet with increments of 15 feet. Since
Bluetooth data needs about 20 seconds to stabilize [16], we
discarded the first 20 seconds and averaged the remaining
RSSI values for each distance measurement. The average
RSSI values for each watch and each distance measurement
were then inserted into a power regression model as predictors
[17]. The average RSSI values at each distance were then
divided by the reference RSSI at 1 meter to obtain a ratio to
insert into the predicted distance equation. The independent
and dependent regression variables were set as the ratio values
and the distances in meters, respectively. The variable values
were then pasted into a power regression calculator that output
values for the A and B constants [17].
Predicted distance values were then calculated using Equation
1:

(1)𝑦 =  𝐴 *  (𝑟/𝑡)𝐵

where represents predicted distances, and are constants,𝑦 𝐴 𝐵 𝑟
is the RSSI value and is the reference RSSI value at 1 meter,𝑡
which is -59 for both watches. We chose to  optimize distance
measurements to 6 feet, due to the minimum social distancing
requirements, and the constant was calculated by subtracting𝐶
the predicted distance from the actual distance at the 6 foot
measurement. The addition of the constant is necessary𝐶
because an assumption for power regression is that the
intercept value is 0 [17]. Updated distance predictions were
then calculated using Equation 2:

(2)𝑦 =  𝐴 *  (𝑟/𝑡)𝐵 +  𝐶

Figure 3 shows a plot of the actual and the predicted distances
obtained from the calibration model.

Fig. 3. Actual vs. Predicted Distances for Calibration Model

Additional experiments were then run with the Huawei
smartwatches that included one person holding a watch and
walking away from the other watch at various speeds (slow,
medium, and fast) to a distance of 30 feet. The other
experiment involved two people walking 20 feet in the same
direction with the watches being held at various distances
apart: 3, 6, 9, and 12 feet. For the experiment involving
walking at different speeds, average RSSI values were
calculated for the slow, medium, and fast paces and for the
experiment involving the watches moving in the same
direction, average RSSI values were calculated for 3, 6, 9, and
12 feet. These average RSSI values were then inputted into the
distance equation from the calibrated regression model. To
assess prediction errors for the predictor models, the RMSE
was calculated for each distance.

II. ULTRASOUND

DATA COLLECTION

Ultrasound data was also collected by the Huawei
smartwatches in the same preliminary experiments discussed
above. The data was again uploaded to AWS via the SixFeet
app and then extracted to the shared Dropbox. Each file was
saved in one-minute segments in the .m4a format, with the
UTC timestamp in the file name. These timestamps were then
compared to the recorded times of the experiments to match
the audio data to specific experimental times.

DATA MANIPULATION

The .wav file associated with the experiment was then
imported into Python with the Librosa package [18]. The
audio loads as an array of floats with a sampling rate of 44,100
Hz. Using the experiment's timestamps, this array was then
divided into segments associated with the controlled distances.
Then, rolling time windows were created for each of these
distances with a frame length of 500 ms and 50% overlap.
These were then transformed into a DataFrame in preparation
for feature extraction and analysis.

FEATURE EXTRACTION

In order to create a meaningful model that predicts
distance using ultrasound, sound features were extracted from
the audio frames.  It was determined that the
Fast-Fourier-Transformation (FFT) and Mel-frequency



cepstral coefficients (MFCCs) were the most applicable to this
application [19, 20].  The Fast-Fourier-Transformation is a
commonly used algorithm to convert sound data in the time
domain to the frequency domain [19].  This means the
transformation outputs an array of amplitudes corresponding
to a certain frequency.  The FFT feature of audio is important
for this paper’s scenario. Each smartwatch emits a unique
frequency (above 19,000 Hz).  In theory, the amplitude of this
frequency would be directly related to the watches’ distance
from one another.  In order to account for error, however, only
frequencies from 18,000 - 22,050 Hz were considered as
features for the machine learning models. Figure 4 below
shows the FFT of the audio data collected at different
distances from preliminary experiments.

Fig. 4. FFT Plot of Watches at Different Distances

Due to the large amplitude spike present at lower distances,
there appears to be strong potential in using ultrasound as a
proximity sensor.  This frequency spike was much more
confounded by noise at larger distances, which was kept in
consideration moving forward.

The Mel-Frequency Cepstrum represents the linear cosine
transformation of a short-term, log power spectrum, based on
a non-linear Mel scale of frequency [20].  MFCCs collectively
make up this cepstrum and are often used for speech
recognition. Through cross-validation techniques, it was
determined practical to use 20 coefficients in the feature space
and effectively represent the time windows.

Therefore, FFT amplitudes associated with 18,000 – 22,050
Hz and 20 MFCC coefficients were extracted for each time
window and formatted in a data frame.  The corresponding
distance between the watches at the time was then added to
each window feature DataFrame as a final column.

PREDICTING DISTANCE FROM ULTRASOUND SIGNALS

Two different prediction models were created: a regression
model predicting distance and a classification model
predicting whether or not two users were within 6 feet of one
another.  Several model types were considered, but it was
determined that random forest was the most applicable due to
the dataset’s vast size, the algorithm’s insensitivity to outliers,

and ease of interpretation [21].  The algorithm is particularly
powerful for classification, and a primary interest of this study
is to determine whether or not an interaction within 6 feet
occurred.

Next, dimension techniques were considered due to the
dataset containing 2045 features.  It was determined that
principal component analysis (PCA) may be effective, and the
number of components used in the model would depend on
their explained variance.

III. ULTRA-WIDEBAND

HARDWARE SETUP

To be able to measure co-location distance with UWB
sensor technology, we implemented a custom setup using a set
of  UWB sensors manufactured by Decawave (DWM1001)
[22]. To set up the devices, each had to be configured as either
a gateway, a tag, or an anchor for the system. In a typical
network of DWM1001 sensors, anchors are stationary nodes
with a known location and tags are mobile nodes of which
distances between tags and anchors are calculated periodically.
A gateway node can be used within the network in order to
view the location of the nodes using an included online web
application, but is not necessary and was not used in this
study. An overview of the system is in Figure 5 below [22].

Fig. 5. Typical DWM1001 System Architecture

For the purposes of this study, two DWM1001 sensors were
configured such that one was a tag and one was an anchor.
This was done in order to achieve ranging between the two
devices, as shown in Figure 6 below. Additionally, the
sampling rate was set on each device to be 10 Hz.

Fig. 6. The 1 Anchor, 1 Tag DWM1001 System Architecture Used

As this study, we measured the distance between two
DWM1001 sensors with one in a stationary node, the most
straightforward configuration of a DWM1001 for this purpose
was chosen. As each node can be accessed through a universal



asynchronous receiver-transmitter (UART) shell, the tag node
was configured through a Python script to output calculated
distances at the 10 Hz refresh rate. As this can be only done
with a DWM1001 sensor configured as a tag, the other anchor
node was used as the mobile node in this experiment design.

DATA COLLECTION

After configuring all the necessary DWM1001 UWB
sensors, we had to be able to access the data that was being
generated. To do this effectively, a Python script was created
that would configure the devices upon set up, establish a
connection with the UART shell, and then output distance
calculations based on an x, y, and z position. To go along with
the outputted distance, there was an attached timestamp. The
data was outputted to the terminal of a team member and then
compiled into a spreadsheet for further analytics as explained
below.

EVALUATION

I. STUDY DESIGN

Fig. 7. Design of Final Trial Experiment

After analyzing the results and building models from the
preliminary experiments, a final experiment was run for each
of the sensor types: Bluetooth, Ultrasound, and UWB. The
experiment setup, shown in Figure 7 below, involved the
measurement of stationary distances at 1-10 feet with
increments of 1 foot and 12-21 feet with increments of 3 feet.
All of the sensors were measured with attempts to control for
sound in order to minimize potentially disruptive conditions.

II. COMPARATIVE ANALYSIS OF RESULTS

Regression statistics were used to compare the performance
of each technology at predicting distance.  Similarly, binary
classification was used to determine the accuracy of all three
sensors by calculating the F1 score (precision), the accuracy,
and the sensitivity. A positive result is defined as the real or
measured value having a distance of less than or equal to 6
feet. A negative result is defined as the real or measured value
having a distance greater than 6 feet.

TABLE IV. OVERALL RESULTS FOR EACH SENSOR TYPE

Sensor RMSE RMSE (6ft) Accuracy F1 Score

Bluetooth 10.2347 7.5434 0.4803 0.3854

Ultrasound 2.9252 2.3137 0.8109 0.7438

UWB 0.44198 0.04573 0.9595 0.9542

The results in Table IV above show that UWB performed
the best across all metrics, while Bluetooth performed the
worst in the overall and 6 feet models. RMSE, a standard
regression metric used to evaluate performance of multiple
models, was compared, and the results show that UWB has the
lowest RMSE at 0.44198 whereas Bluetooth has the highest
RMSE at 10.2347. The UWB model’s RMSE within 6 feet
was calculated to be 0.04573, significantly lower than any
other mode.  This proves that UWB is very effective at
predicting distance, especially when in closer proximity. As
shown by the lower RMSE value for the 6 foot model, the
RMSE has a positive relationship with distance, meaning that
the models yield higher error at increasing distances.

UWB performed the best with regards to accuracy in the
classification models. The UWB model yielded an accuracy of
over 95%, while ultrasound correctly classified the
observations over 80% of the time, and Bluetooth had an
accuracy of less than 50%.  An accuracy of 95% is strong, but
could be improved further when classifying an “interaction” in
context of 6 feet social distancing and contact tracing.

The F1 score is another performance metric of classification
models. It takes into account the number of true positive, false
positive, and false negative realizations to output a score on a
scale of 0 to 1 to measure precision. A value closer to 1
indicates high precision while those closer to 0 show
irregularities and lack of fit [23]. Adhering to the results of the
rest of the evaluation metrics, UWB outperforms both
ultrasound and Bluetooth by a significant margin. With an
accuracy and F1 score of 0.48 and 0.39 respectively, Bluetooth
continued to prove its ineffectiveness as a proximity sensor.

The residuals of the three regression models were analyzed
to see how the errors of each technology compared as distance
increased.  Figure 8 shows the results of this analysis.

Fig. 8. Model Errors across Distances

Ultimately, UWB configuration outperformed the other two
modes of technology in predicting distance. UWB had the
lowest prediction error at essentially all distances, making it
the best model, and it only strayed from the best model at 10
feet, where ultrasound was slightly more accurate. The UWB
model’s performance was particularly impressive at large
distances, with its average error barely increasing with
distance, even up to 21 feet. The ultrasound model’s errors
seemed to be random at distances up to 10 feet, but then
steadily increasing at distances past 10 feet.  Bluetooth had
very high error at low distances but became constant as



distance increased. We hypothesize that this is due to the fact
that we recorded significantly less Bluetooth observations
during longer distance because the watches couldn’t sense
Bluetooth signals when originating from farther sources.

DISCUSSION AND CONCLUSION

Limitations of this project included external noise, differing
transmission abilities, and physical barriers. External noise can
skew data by disrupting the signals that are measured via
Bluetooth and ultrasound waves. Due to the COVID-19
pandemic, we were limited to where these experiments could
be run and the only option we had was to run them on an
outdoor field that was open for public use. We attempted to
control for external noise as much as possible by being silent
while conducting measurements; however, noises from other
people using the field or from the nearby road could have
caused some disturbances in the data.

Overall, UWB significantly outperformed ultrasound and
Bluetooth in all metrics at almost every measured distance;
therefore, UWB would be the optimal solution for measuring
co-location proximity between college athletes during the
COVID-19 pandemic. The technology combines high
accuracy under 6 feet with the ability to predict distance in
real time. Although UWB sensors are not integrated into most
wearables and smartphones, they could be adapted to be used
as wearable technology in the athletics field.

However, it’s worth noting that UWB and Bluetooth
signals have the ability to transmit through walls and other
physical barriers while ultrasound devices do not [23]. This
means that UWB and Bluetooth devices could potentially
record false positives if another device is identified behind a
barrier even if it is not a direct interaction. This can also
indicate that ultrasound methods are less prone to security and
privacy concerns, given that ultrasonic signals are confined by
the physical space that the user is embedded in.

Future studies using the three technologies could be
designed to consider a greater set of participants and account
for various external conditions and scenarios. These scenarios
could be designed to emulate sports environments, with one or
more devices in motion to imitate real interactions between
athletes. This would help test the accuracy in a realistic setting
and ensure that the technologies will perform at a high level
with fewer variables controlled. Similarly, running several
trials with the three technologies at the same time and under
the same conditions would help provide a stronger comparison
of the accuracy and performance of the three modes. Future
work with UWB technology could include the development of
a system that does not use any anchors. Finally, all three of
these sensors could be implemented in one wearable
technology, where data from each could be analyzed together
in a singular prediction model. This would likely improve
performance greatly across all evaluation statistics and
eliminate some of the variance in prediction error.
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