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Introduction	
	
	 Lung	transplantation	remains	the	only	curative	hope	for	many	with	end	stage	

pulmonary	disease	yet	outcomes	remain	poor.	As	of	2013,	nearly	11,000	lung	transplant	

recipients	were	living	in	the	United	States[1].	Success	of	lung	transplantation	is	significantly	

limited	by	ischemia-reperfusion	(IR)	injury	following	graft	implantation,	predisposing	

patients	to	primary	graft	dysfunction	(failure	of	allograft	within	72	hours	of	

transplantation)	and	chronic	graft	rejection	(bronchiolitis	obliterans)	following	

transplantation[2].		In	addition	to	poor	graft	outcomes	following	transplantation,	the	

inherent	threat	of	IR	injury	has	also	resulted	in	a	significant	donor	organ	shortage,	with	

limited	acceptance	of	marginal	heart-beating	donor	and	non-heart–beating	donor	lungs	for	

attempted	transplantation.	Strategies	for	rehabilitation	and	assessment	of	donor	lungs	are	

limited	and	the	potential	for	immunologic	manipulation	has	yet	to	be	explored.	

Advancements	over	the	past	decade	have	established	cellular	mediators	(e.g.	

activation	of	iNKT	cells,	neutrophils,	endothelial	cells)	and	cytokine	signaling	pathways	

involved	in	the	pathophysiology	of	allograft	IR	injury[3-6].	These	discoveries	have	inspired	

further	research	into	the	interplay	between	innate	and	adaptive	immune	responses	to	IR	

injury	and	graft	acceptance,	specifically	inspiring	the	study	of	more	proximal	mediators	of	

IR	injury	to	allow	efficient	and	effective	strategies	for	targeted	pharmacologic	therapies.	

Thus,	the	focus	of	study	was	to	identify	proximal	mediators	of	lung	IR	injury	with	targeted	

analysis	of	macrophage	and	dendritic	cell	populations	within	the	lung,	as	these	cell	types	

are	implicated	in	the	early	pathogenesis	of	IR	injury	in	other	organ	systems	and	contribute	

to	both	the	innate	and	adaptive	immune	responses	within	the	lung[6-14].		

In	addition	to	defining	immunologic	mediators	of	IR	injury,	a	need	for	novel	

strategies	of	donor	lung	rehabilitation	and	assessment	has	emerged	to	improve	graft	

function	and	enable	expansion	of	a	limited	donor	organ	pool	for	many	awaiting	lung	
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transplantation.	Thus,	targeted	immunologic	therapies	are	explored	as	a	rehabilitative	

treatment	for	donor	lungs	following	cardiac	death	utilizing	ex	vivo	lung	perfusion	(EVLP).	

Such	study	provided	a	translational	aim	for	immunotherapy	in	donor	lung	allograft	

treatment	and	assessment	prior	to	transplantation.			

Scope	of	the	Problem	

Ischemia-Reperfusion	Injury	

	 Significant	scientific	and	surgical	advancements	have	supported	improved	survival	

and	quality	of	life	for	lung	transplant	recipients	and	have	led	to	a	30-fold	increase	in	the	

number	of	lung	transplant	recipients	worldwide	since	its	inception	following	the	first	

human	lung	transplant	in	1963[15,	16].	Lung	transplant	continues	to	have	the	poorest	

outcomes	of	all	solid	organ	transplants	with	a	demonstrated	54%	5-year	and	7.9	year	

median	survival	(Figure	1)[17].	

	

Figure	1.	Adult	lung	transplant	recipient	Kaplan-Meier	survival	by	transplant	type	(1990-
2013)[17].	
	
Current	data	demonstrate	that	IR	injury	and	the	resultant	acute	primary	graft	dysfunction	

(graft	dysfunction	within	30	days	of	transplantation)	occur	in	24%	of	patients[17].	Despite	

technical	and	research	advancements	over	the	past	decade,	primary	graft	dysfunction	
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associated	with	allograft	IR	injury	remains	a	significant	threat	to	survival	and	long-term	

successful	graft	function	(Figure	2)[17].		

	

Figure	2.	Number	and	percentage	of	adult	primary	lung	transplants	with	early	graft	failure	
(EGF)	by	EGF	type	and	by	year	(2005-2015).	EGF	defined	as	death	or	re-transplant	
associated	with	graft	failure	within	30	days	after	transplant[17].	
	
Such	early	graft	failure	carried	a	93%	risk	of	mortality	and	necessitated	re-transplantation	

in	7%	of	patients	in	a	worldwide	analysis.	Additionally,	bronchiolitis	obliterans	is	estimated	

to	develop	in	50%	of	primary	adult	lung	transplant	recipients	within	5	years	and	in	76%	of	

patients	10	years	post-transplant,	with	both	primary	and	late	graft	failure	significantly	

increasing	risk	of	mortality[17].		Collectively,	these	international	data	demonstrate	that	

lung	transplant	outcomes	remain	poor	and	that	IR	injury	is	a	primary	threat	to	the	success	

of	this	treatment	strategy	for	end-stage	pulmonary	disease.	In	an	era	of	rapidly	evolving	

technologic	innovation	and	pharmacologic	targeting,	a	disparate	level	of	advancement	has	

occurred	in	lung	transplantation.	Thus,	the	focus	of	study	was	to	develop	reliable	and	

reproducible	models	for	lung	IR	injury	and	to	advance	the	study	of	novel	pharmacologic	

targets	and	organ	perfusion	techniques	for	improved	allograft	function	and	assessment	

prior	to	recipient	implantation	with	the	hope	of	improving	recipient	survival	and	quality	of	

life	post-transplantation.	
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Limited	Donor	Organ	Availability	

There	are	currently	1,521	waiting	list	candidates	for	lung	transplantation,	with	each	

facing	an	18.8%	(n=303/1,616)	waiting	list	mortality	secondary	to	decreased	donor	organ	

availability	(Figure	3).	Despite	scientific	and	clinical	advancements,	donor	lung	

rehabilitation	and	pre-transplantation	allograft	evaluation	techniques	remain	limited	with	

over	80%	of	potential	donor	lungs	being	injured	and	therefore	considered	not	suitable	for	

transplantation[18].		

	

Figure	3.	Lung	transplant	waiting	list	activity	among	candidates	aged	12	years	or	
older[19].	

	

Recent	reports	from	the	International	Society	for	Heart	and	Lung	Transplantation	

(ISHLT)	have	demonstrated	promise	in	the	utilization	of	lungs	following	donation	after	

circulatory	death	(DCD)[20].	This	promising	strategy	represents	a	divergence	from	

traditional	donation	after	brain	death	(DBD)	and	has	inspired	the	development	of	novel	

perfusion	and	preservation	techniques,	most	notably	ex	vivo	lung	perfusion	(EVLP)	for	

donor	lung	rehabilitation	and	assessment.	Such	techniques	offer	the	potential	recovery	and	

utilization	of	lungs	that	would	have	been	rejected	by	traditional	measures	of	allograft	

usability,	while	also	offering	a	technique	for	donor	lung	treatment	and	assessment	prior	to	

recipient	implantation.		EVLP,	as	initially	described	by	Cypel	et	al.,	provides	physiologic	
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normothermic	acellular	perfusion	and	rehabilitative	ventilation	to	donor	lungs	during	the	

preservation	period[21].		This	technique	has	demonstrated	non-inferiority	in	the	

rehabilitation	of	previously	rejected	high-risk	donor	lungs	for	transplantation	when	

compared	to	conventionally	assessed	donor	lungs	in	a	prospective	randomized	clinical	trial	

and	has	increasing	acceptance	in	the	field	of	lung	transplantation	(Figure	4)[21].	Despite	

promising	advancements	in	this	technology	for	donor	lung	preservation,	utilization	of	EVLP	

as	a	platform	for	pharmacologic	agent	delivery	to	rehabilitate	lungs	with	extended	warm	

ischemic	times	remains	understudied	and	undefined.	Thus,	the	purpose	of	study	was	to	

further	evaluate	the	potential	of	EVLP	as	a	strategy	for	donor	lung	rehabilitation	utilizing	

established	pharmacologic	agents	targeting	the	adenosine	2A	receptor	in	a	novel	murine	

non-heart-beating	donation	and	EVLP	model	and	a	pre-clinical	porcine	model	of	lung	

transplantation.	Following	this	progression	of	study,	application	to	human	lung	

transplantation	is	explored	as	a	translational	objective	for	donor	pool	expansion	and	donor	

lung	assessment	in	clinical	transplantation.	

	

	
Figure	4.	Ex	vivo	lung	perfusion	(EVLP)	setup	demonstrating	perfusion	and	
ventilator	connectivity	and	strategy	for	normothermic	allograft	preservation	and	
rehabilitation.	Adapted	from	Cypel	et	al.	N	Engl	J	Med	2011;364:1431-40[21].	
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Thesis	Objective	and	Thought	Progression	

	 The	first	of	the	two-part	focus	of	study	was	to	evaluate	early	cellular	mediators	

implicated	in	the	pathogenesis	of	lung	IR	injury.	Specifically,	we	sought	to	evaluate	the	

contributions	of	pulmonary	dendritic	cells	and	macrophages	utilizing	a	novel	in	vivo	

targeted	depletion	model	to	determine	the	contributions	of	each	in	IR	injury	pathogenesis.	

This	cell-based	study	was	further	expanded	to	determine	the	signaling	mechanisms	

involved	for	these	cell	types	in	the	initiation	of	pro-inflammatory	pathways	of	lung	injury	

and	end	effector	cell	activation.	This	study	provided	the	framework	for	pharmacologic	study	

with	the	adoption	of	sphingosine	receptor	targeted	therapies,	as	modulation	of	sphingosine-

1-phosphate	signaling	is	an	established	strategy	for	dendritic	cell	and	macrophage	signaling	

modulation[22].	Within	this	study	we	utilized	a	novel	S1P	pharmacologic	agent,	VPC-01091,	

and	an	established	S1P	agonist,	FTY-720	to	perform	receptor-specific	study	of	S1P	analogs	

and	the	effect	of	each	on	IR	injury	pathogenesis.		Additionally,	we	sought	to	determine	

whether	the	observed	effects	were	the	result	of	attenuated	signaling	or	recruitment	of	iNKT	

cell	end-effector	cells.		Cell-specific	and	pharmacologic	studies	were	performed	in	an	

established	in	vivo	murine	model	of	lung	IR	injury.		

	 The	second	focus	of	study	was	to	evaluate	the	potential	of	EVLP	in	donor	lung	

rehabilitation	following	cardiac	death.	We	first	developed	a	novel	murine	model	of	EVLP	as	

a	method	for	isolated	perfusion	and	applied	an	established	adenosine	2A	receptor	agonist,	

ATL-1223,	as	a	strategy	for	donor	lung	treatment.	This	study	provided	a	reproducible	

platform	for	the	evaluation	of	EVLP-based	therapies	while	also	establishing	rehabilitative	

potential	for	this	pharmacologic	perfusion	strategy.	The	findings	of	this	study	provided	a	

foundation	for	the	preclinical	translation	of	adenosine	2A	receptor	agonist-based	EVLP	

perfusion	strategies	within	a	porcine	model	of	lung	transplantation.	Within	this	model	we	

evaluated	both	the	optimal	timing	and	efficacy	of	EVLP	following	cardiac	death.	These	
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studies	provided	a	strategy	for	further	translation	into	human	clinical	lung	transplantation	

and	herein	we	describe	our	initial	experiences	in	human	donor	lung	allograft	rehabilitation.	

The	collaborative	findings	of	the	presented	studies	provide	a	platform	for	further	discussion	

and	evaluation	of	implicated	cell	types	in	lung	IR	injury	prevention	and	the	responsible	

adoption	of	EVLP	as	a	strategy	for	donor	lung	pharmacologic	treatment	and	rehabilitation.	
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Immunologic	Mechanisms	of	Lung	Ischemia-Reperfusion	(IR)	Injury	

	
Cellular	mechanisms	of	lung	IR	injury	signaling	are	explored	with	specific	attention	to	

pulmonary	dendritic	cells	and	macrophages	and	the	IL-12/IL-23	signaling	pathways	for	T	
cell	activation.	

	 	



	 12	

	
	
	
	
	
	
	
CD11c+	Dendritic	Cells	and	Macrophages	Mediate	Lung	Ischemia-Reperfusion	Injury	

through	IL-23/IL-12	Dependent	Mechanisms	
	

Matthew	L.	Stone,	MD1,	Ashish	K.	Sharma,	MBBS	PhD1,	Lucas	Fernandez,	MD	MSc,	Li	Li,	MD	
PhD2,	Taeg	S.	Kim,	PhD,	Yunge	Zhao,	MD	PhD3,	Irving	L.	Kron,	MD1,	Victor	E.	Laubach,	PhD1		

	
Departments	of	Surgery1,	Medicine2,	and	Immunology3,		
University	of	Virginia,	Charlottesville,	Virginia,	USA	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	 	



	 13	

Abstract	
	
Objective:		Activated	CD11c+	dendritic	cells	and	macrophages	participate	in	innate	
immunity	and	are	established	cell-mediators	of	the	IL-23	and	IL-12	pro-inflammatory	
cytokine	axis.		The	purpose	of	this	study	was	to	test	the	hypothesis	that	CD11c+	cells,	via	
induction	of	the	IL-23/IL-12	axis,	are	an	important	component	of	the	innate	immune	
responses	to	lung	IR	injury.	
	
Methods:		A	murine	left	hilar	ligation	model	of	lung	IR	injury	was	utilized	that	entailed	1	
hour	of	ischemia	and	2	hours	of	reperfusion.	Bone	marrow	transplants	(BMT)	from	CD11c-	
and	CD11b-diphtheria	toxin	receptor	(DTR)	mice	to	C57BL/6	wild-type	(WT)	recipient	mice	
enabled	the	selective	in	vivo	depletion	of	CD11c+	and	CD11b+	cells	by	diphtheria	toxin	
administration,	respectively.		Additionally,	cytokine	knockout	mice	(IL-23p19-/-,	IL-12p40-
/-,	and	IL-12p35-/-	were	similarly	compared.	Pro-inflammatory	cytokine	expression	was	
evaluated	by	ELISA	of	bronchoalveolar	lavage	fluid	and	gene	expression	in	tissue	via	real-
time	PCR	(RT-PCR).	Neutrophil	recruitment	and	activation	were	evaluated	by	
immunohistologic	staining	and	myeloperoxidase	assessment.				
	
Results:			Compared	to	WT	BMT	mice,	both	CD11c-DTR	and	CD11b-DTR	BMT	groups	
exhibited	significantly	less	pulmonary	dysfunction	after	IR	compared	to	the	WT	BMT	IR	
injury	control.	In	addition,	CD11c-DTR	BMT	mice	exhibited	decreased	inflammatory	
cytokine	expression	and	neutrophil	infiltration	following	lung	IR	in	comparison	to	the	WT	
BMT	control.		CD11c-DTR	BMT	mice	also	demonstrated	decreased	IL-23p19	gene	
expression	following	lung	IR	in	comparison	to	the	WT	BMT	IR	control.	IL-23p19-/-	mice	
demonstrated	significantly	reduced	functional	IR	injury	compared	to	both	WT	controls.	This	
protection	was	not	afforded	by	knockout	of	either	IL-12p40	or	IL-12p35.	
	
Conclusions:		CD11c-DTR	and	CD11b-DTR	mice	allow	selective	depletion	of	dendritic	cell	
and	macrophage	subsets	within	the	lung.	CD11c-DTR	mice	exhibit	decreased	lung	IR	injury	
compared	to	control,	supporting	a	role	for	macrophage	activation	independent	of	dendritic	
cells	in	IR	injury	pathogenesis.	Together,	these	data	demonstrate	that	IL-23p19	production	
from	macrophage	and	dendritic	cell	populations	may	provide	a	promising	target	for	
potential	IR	injury	prevention.	
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Introduction	

	 Lung	transplantation	provides	a	life-sustaining	hope	for	patients	with	end-stage	

pulmonary	disease.		Patient	survival	and	graft	function	following	lung	transplantation,	

while	improved,	remain	poor	despite	significant	clinical	and	research	advancements[23].		

The	primary	etiology	for	both	primary	graft	failure	and	late-term	broncholitis	obliterans	

following	lung	transplantation	is	lung	IR	injury[24].		Lung	IR	injury	is	estimated	to	occur	in	

22-37%	of	lung	transplantation	recipients[24-26].		Patients	with	primary	graft	dysfunction	

associated	with	IR	injury	demonstrate	a	36%	increased	risk	of	mortality	within	30	days	

following	lung	transplantation	as	well	as	an	increased	risk	of	late-term	bronchiolitis	

obliterans[2,	24].		Thus,	a	commitment	to	understanding	immunologic	mechanisms	

inherent	to	lung	IR	injury	is	needed,	and	such	studies	will	support	the	development	of	

directed	therapies	in	lung	transplantation	to	sustain	the	promise	of	improved	outcomes.		

While	the	identification	of	effector	cells	within	lung	IR	injury	marks	an	accomplishment	of	

the	past	decade,	proximal	mediators	of	innate	immunity	after	IR	remain	ill-defined.	

	 Effector	cell	mechanisms	of	lung	IR	injury	most	notably	involve	monocytes,	CD4(+)	

T	cells,	neutrophils,	and	alveolar	macrophages[3,	6,	27-29].			Dendritic	cells	and	

macrophages	are	principal	cell	types	involved	in	both	innate	and	adaptive	immunity	and	

characteristically	comprise	the	CD11c+	population	of	cells	within	the	lung[30,	31].		A	recent	

study	has	established	that	CD11c+	dendritic	cells	and	macrophages	exhibit	chemokine-

mediated	and	directed	recruitment	to	the	lung	in	response	to	non-infectious	airway	

inflammation[12].	Neutrophil-dendritic	cell	interactions	have	also	recently	been	implicated	

in	lung	transplantation	graft	acceptance,	with	the	demonstration	that	granulocyte-colony	

stimulating	factor	activates	donor	lung	dendritic	cells	both	in	the	stimulation	of	natural	

killer	T	cells	and	effector	T	cells	in	lung	transplantation[32].		Additionally,	host	T	cells	have	

been	found	to	cluster	predominantly	around	lung-resident	and	donor-derived	CD11c+	
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dendritic	cells	outside	of	secondary	lymphoid	organs	following	transplantation,	identifying	

the	dendritic	cell	as	a	link	between	the	innate	and	adaptive	responses	to	lung	

transplantation[33].		These	findings	support	a	principal	role	for	both	dendritic	cells	and	

macrophages	in	innate	immunity,	providing	the	foundation	for	further	research	to	better	

define	the	contribution	of	each	in	the	pathogenesis	of	early	lung	IR	injury.		The	purpose	of	

this	study	was	to	evaluate	the	contribution	of	CD11c+	dendritic	cells	and	macrophages	in	

the	early	innate	immune	response	to	lung	IR	injury	and	to	analyze	the	potential	

contribution	of	the	IL-23/IL-12	axis	in	effector	cell	activation	and	injury	pathogenesis.	

	 IL-12	and	IL-23	are	products	of	activated	dendritic	cells	and	macrophages	and	

belong	to	the	same	cytokine	family,	sharing	the	p40	subunit	yet	demonstrating	distinct	

biologic	activities[34].		IL-12	is	considered	a	principal	activator	of	cell-mediated	immunity	

with	biologic	activity	only	as	a	composite	factor	of	p35	and	p40	subunits,	while	the	related	

IL-23	cytokine	is	distinguished	by	p19	and	p40	subunit	expression[34].		IL-12	and	IL-23	

provide	a	principal	link	between	innate	and	adaptive	immunity,	determining	Th1	and	Th17	

cell-directed	responses[35].		The	IL-12/IFN-γ	and	IL-23/IL-17	pathways	have	been	found	to	

drive	neutrophil	migration	and	tissue	injury	in	renal	IR	pathology[36].		These	foundational	

principles	both	inspired	and	supported	our	independent	and	paired	comparison	of	

dendritic	cells	and	macrophages	and	their	contributions	to	the	IL-23/IL-12	axis	in	lung	IR	

injury.		

Methods	

Study	Design	and	Animals	

Bone	marrow	transplants	(BMT)	for	each	experimental	group	were	necessitated	

due	to	neurologic	complications	associated	with	serial	Isoflurane	anesthesia	doses,	likely	

secondary	to	depletion	of	CD11c+	neuronal	cells	following	toxin	administration[37].		To	

limit	any	potential	effect	of	BMT	on	outcomes	following	IR	injury,	all	experimental	groups	
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underwent	BMT.		Three	groups	of	wild-type	(WT)	C57BL/6	(Jackson	Laboratory,	Bar	

Harbor,	ME)	bone	marrow	chimera	mice	created	from	WT,	CD11c-DTR	(Jackson	Laboratory,	

Bar	Harbor,	ME)	and	CD11b-DTR	(Jackson	Laboratory,	Bar	Harbor,	ME)	donors	as	

previously	described[5].			

CD11c	and	CD11b	transgenic	(Tg)	mice	express	a	nonhuman	primate	diphtheria	

toxin	receptor	(DTR)	under	the	control	of	a	mouse	CD11c	or	CD11b	promoter	(B6.FVB-

Tg(Itgax-DTR/EGFP)57Lan/J;	FVB-Tg(ITGAM-DTR/EGFR)34Lan/J).		Diphtheria	toxin	

administration	allowed	conditional	depletion	of	CD11c+	(4ng/kg	body	weight	

intraperitoneally	12-24	hours	prior	to	experimental	IR	injury)	or	CD11b+	cells	in	each	

mouse	construct	(25ng/kg)[7,	38,	39].		

Donor	marrow	was	harvested	under	sterile	conditions	following	euthanasia	of	each	

donor	(male,	24-26g,	age:	8-10	weeks),	yielding	approximately	50	million	nucleated	bone	

marrow	cells	per	mouse.		Recipient	mice	(male,	22-26g,	age	6	weeks)	were	irradiated	with	2	

sequential	doses	of	6	Gy,	each	separated	by	4	hours.		Following	the	second	irradiation,	mice	

were	anesthetized	and	injected	with	2-4	x	106	BM	cells	via	retro-orbital	injection.		A	control	

mouse	was	assigned	to	each	recipient	group,	with	resultant	mortality	confirming	efficacy	of	

BM	depletion	by	irradiation.		Transplanted	mice	were	housed	for	a	6	week	minimum	period	

for	donor	marrow	reconstitution	prior	to	experimentation.		The	completed	chimera	groups	

included:	WT	to	WT,	CD11c-DTR	to	WT,	and	CD11b-DTR	to	WT.		Batf3-/-	mice	were	also	

utilized	for	the	study	of	CD103+	dendritic	cell	absence	and	the	effect	on	lung	injury[40,	41].	

This	study	conformed	to	the	Guide	for	the	Care	and	Use	of	Laboratory	Animals	published	by	

the	National	Institute	of	Health	and	was	conducted	under	protocols	approved	by	the	

University	of	Virginia’s	Institutional	Animal	Care	and	Use	Committee.	

Cytokine	knockout	comparison	groups	included	IL-23p19-/-,	IL12p40-/-	and	

IL12p35-/-	mice	(n=5-8/group)(Jackson	Laboratory,	Bar	Harbor,	ME).	Each	of	these	
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knockout	groups	were	on	a	C57BL6	background	and	thus	were	compared	to	a	C57BL6	WT	

non-bone	marrow	transplanted	control	group.		

In	vivo	Model	of	Lung	IR	Injury	

An	established	in	vivo	model	of	IR	was	performed	in	each	experimental	group[4].		

Briefly,	mice	were	anesthetized	with	isoflurane	inhalation,	intubated,	and	ventilated	at	120	

strokes/min.	with	room	air.		Heparin	was	injected	via	the	right	external	jugular	vein	(20	

U/kg).		A	left	anterolateral	thoracotomy	was	performed	at	approximately	the	third	

intercostal	space	to	allow	access	to	the	left	pulmonary	hilum.		A	6-0	Prolene	was	passed	

around	the	hilum	and	the	two	ends	of	the	suture	were	passed	through	PE-60	tubing.		

Surgical	clip	application	secured	the	tubing	in	place,	effectively	occluding	the	pulmonary	

hilum	during	the	ischemic	period.		Mice	were	recovered	following	analgesic	administration	

(buprenorphine,	0.2mg/kg)	and	subjected	to	one-hour	of	ischemia	prior	to	repeat	

anesthesia,	intubation,	and	removal	of	the	left	lung	hilum	occlusion.		Mice	were	then	

recovered	from	anesthesia	and	subjected	to	a	two-hour	reperfusion	period.		Sham	groups	

underwent	the	same	surgery	without	hilar	occlusion.					

Measurements	of	Lung	Function	

Pulmonary	function	analyses	were	conducted	at	the	conclusion	of	the	reperfusion	

period	for	each	mouse	on	an	isolated,	buffer-perfusion	apparatus	(Hugo	Sachs	Elektronik,	

March-Huggstetten,	Germany)[6].		Briefly,	mice	were	anesthetized	and	maintained	on	intra-

tracheal	ventilation	(rate:	100	strokes/min.,	tidal	volume:	7µL/g	body	weight,	positive	end-

expiratory	pressure:	2	cmH20).		Mice	were	exsanguinated	by	inferior	caval	transection,	the	

pulmonary	artery	was	cannulated	through	the	right	ventricle,	and	the	left	ventricle	was	

tube	vented	through	a	small	incision	at	the	apex	of	the	heart.		The	lungs	were	perfused	at	a	

constant	flow	of	60µL/g	body	weight/minute	with	Krebs-Henseleit	buffer.		Following	five	
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minutes	of	equilibration,	functional	data	were	recorded	for	an	additional	ten	minutes	using	

PULMODYN	data	acquisition	(Hugo	Sachs	Elektronik).				

Bronchoalveolar	Lavage	

Following	the	completion	of	reperfusion	or	sham	thoracotomy,	the	thoracic	cavity	

was	entered	through	a	median	sternotomy.		The	right	lung	hilum	was	occluded	with	a	

microclamp	to	allow	isolated	assessment	of	the	left	lung.		The	left	lung	was	lavaged	with	two	

consecutive	aspirates	of	the	same	sample	through	an	anterior	tracheotomy	(0.4mL).		An	

average	of	0.3mL	was	retrieved	by	lavage	and	samples	were	immediately	centrifuged	at	4°C	

(1500rpm	for	8	min.)	and	the	supernatant	was	stored	at	-80°C.	

Cytokine	and	Myeloperoxidase	Measurements	

The	levels	of	pro-inflammatory	cytokines	in	bronchoalveolar	lavage	samples	were	

quantified	using	a	Bio-Plex	multiplex	cytokine	panel	(Bio-Rad	Laboratories,	Hercules,	CA).		

Myeloperoxidase	(MPO)	levels	were	measured	within	bronchoalveolar	lavage	samples	

using	a	murine	MPO	ELISA	kit	(Cell	Sciences,	Canton,	MA).	

Immunohistochemistry	and	Neutrophil	Counting	

Lungs	were	inflation-fixed	under	20cm	H20	pressure	with	4%	paraformaldehyde	at	

4°C	for	15	hours	and	then	placed	in	70%	EtOH	for	paraffin	embedding.	One	lung	tissue	slide	

from	each	experimental	mouse	(n=5/group)	was	generated	for	neutrophil	staining	as	

previously	described[42].		Rat	anti-mouse	neutrophil	(GR1.1,	Santa	Cruz,	Biotechnology)	

primary	antibody	immunostaining	was	performed	using	Vectastain	ABC	kit	(Vector	

Laboratories,	Burlingame,	CA)	and	alkaline	phosphatase-conjugated	anti-rat	IgG	provided	

the	secondary	antibody.		The	signals	were	detected	using	Fast-Red	(Sigma	Aldrich,	St.	Louis,	

MO).		Purified	normal	rat	immunoglobulin	G	(eBiosceince	Inc.,	San	Diego,	CA)	was	used	as	

the	negative	control.		Each	section	was	then	counterstained	with	hematoxylin.		Each	lung	

section	(1	slide/mouse)	was	used	for	semi-quantitative	cell	counting	by	a	blinded	
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investigator.		Neutrophils	were	counted	from	three	semi-standardized	quadrants	at	400x	

magnification	and	averaged	for	statistical	analysis.		All	photos	were	generated	under	an	

Olympus	BX51	microscope	equipped	with	an	Olympus	DP70	digital	camera	(Minneapolis,	

MN).	

Real-time	PCR	(RT-PCR)	

Real-time	PCR	was	performed	as	described	by	our	institutional	collaborators	on	

whole	lung	tissue	[36].		Primer	sequences	for	the	p19	subunit	were	as	follows:	

CAACTTCACACCTCCCTAC	(forward),	CCACTGCTGACTAGAACT	(reverse).		RT-PCR	was	

performed	on	cDNA	using	iScript	1-step	RT-PCR	kit	with	SYBR	Green	(Bio-Rad)	and	samples	

normalized	to	GAPDH.		Denaturation,	annealing,	elongation,	incubation,	and	holding	steps	

were	conducted	as	previously	described[43].					

Flow	Cytometry	of	Dendritic	Cell	and	Macrophage	Populations	

Lungs	were	harvested	and	subjected	to	collagenase	digestion	followed	by	passage	

through	a	40-µm	cell	strainer	(BD	Falcon)	and	centrifuged	at	1500rpm	for	8	minutes	

followed	by	washing	with	0.5%	BSA	in	PBS.		Harvest	for	both	CD11c-DTR	and	CD11b-DTR	

groups	was	performed	at	12-24	hours	following	diphtheria	toxin	injection,	corresponding	

to	the	timing	for	experimental	IR	injury	experimentation	as	described.	Samples	were	then	

washed	in	two	cycles	with	T-cell	buffer	and	RBC	lysis	was	performed	sequentially	(RBC	lysis	

buffer,	eBioscence).	Following	resuspension	into	FACS	buffer	(eBioscience),	Samples	were	

subsequently	blocked	with	anti-mouse	CD16/CD32	(1µg/mL;	eBioscience	per	106	cells	for	

15	minutes	at	4°C)	prior	to	surface	labeling	with	V450	live-dead	staining	(Invitrogen).		Cell	

suspensions	were	fixed	with	Cytofix/Cytoperm	solution	(BD	Bioscience)	for	20	minutes	at	

4°C.		Cell	suspensions	were	resuspended	in	Perm/Wash	buffer	(BD	Bioscience)	and	labeled	

with	the	following	fluorochromes:	CD45+	(APC-Cy7),	CD11c+	(APC),	MHC-II+	(FITC),	B220	

(PerCP	Cy5),	CD11b	(PE	Cy7),	CD103	(PE),	and	Siglec	F	(PE).		Dendritic	cells	were	defined	
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by	CD45,	CD11c,	and	MHC-II	positivity	with	negative	selection	for	B220	and	sub-classified	

as	CD11b+	or	CD103+.	Similarly,	macrophages	were	defined	by	CD45,	CD11c,	and	MHC-II	

positivity	with	negative	selection	for	B220	and	differentiated	by	Siglec-F	positivity.		These	

classification	systems	and	flurochrome	staining	analyses	were	derived	from	previously	

performed	studies	of	dendritic	cell	and	macrophage	subsets	within	the	lung[44].	Isotype	

and	single-color	controls	were	sequentially	performed.		Flow	cytometry	analyses	were	

performed	as	previously	described	and	FACS	data	analyzed	using	Flowjo	software	8.8[3].			

Statistical	Analysis	

	 Experimental	methodology	and	design	were	conducted	to	evaluate	the	null	

hypothesis	that	no	significant	differences	exist	between	cell	population	depletion	or	

cytokine	knockout	groups.	Pairwise	comparisons	were	performed	for	each	parameter	of	

lung	injury	utilizing	an	unpaired	Student’s	t	test	or	Mann-Whitney	U	test	as	appropriate	

with	significance	defined	as	a	p	value	<	0.05.	

Results	
	
Macrophage	and	Dendritic	Cell	Subpopulations	are	Differentially	Depleted	in	CD11c-DTR	and	
CD11b-DTR	Mice	following	Diphtheria	Toxin	Administration	
	
	 Lungs	of	wild-type	BMT	mice	contained	both	CD11b-	and	CD103-positive	dendritic	

cell	subsets	following	diphtheria	toxin	administration	in	addition	to	macrophages,	as	

identified	by	Siglec-F	positivity	(Figure	1A).	Diphtheria	toxin	administration	to	CD11c-DTR	

BMT	mice	resulted	in	the	conditional	depletion	of	CD103+	dendritic	cells	and	macrophages	

with	a	persistence	of	CD11bhi	dendritic	cells	(Figure	1B).		Conversely,	CD11b-DTR	BMT	

mice	were	depleted	of	CD11bhi	dendritic	cells	with	a	persistence	of	macrophages	and	

CD103+	dendritic	cells	(Figure	1C).	BatF3-/-	mice	were	depleted	of	solely	CD103+	

dendritic	cells	as	previously	shown	(Figure	not	shown).	
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Figure	1.	Flow	cytometry	depletion	images	from	respective	mouse	lungs	demonstrating	
selective	macrophage	and	dendritic	cell	depletion	within	each	bone	marrow	transplant	
construct.	A.	Wild	Type,	C57Bl6;	B.	CD11c-DTR;	C.	CD11b-DTR.	
	

Lung	Function	Following	IR	is	Significantly	Improved	in	CD11c-DTR	and	CD11b-DTR	
mice	but	not	BatF3-/-	Mice	
	

Lung	function	was	significantly	worse	in	WT	BMT	mice	after	IR	compared	to	sham	

(Figure	2A-B).		CD11c-DTR	and	CD11b-DTR	mice	had	significantly	decreased	levels	of	

functional	injury	with	increased	pulmonary	compliance	and	decreased	pulmonary	artery	

pressures	compared	to	WT	BMT	controls.	This	attenuated	injury	was	not	observed	in	

BatF3-/-	mice	as	BatF3-/-	mice	demonstrated	significantly	increased	airway	resistance,	

decreased	pulmonary	compliance	and	increased	pulmonary	artery	pressures	compared	to	

WT	IR	control	(Figure	2C).	
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Figure	2.	Functional	protection	from	lung	IR	injury	is	achieved	in	CD11c-DTR	(A)	
and	CD11b-DTR	(B)	mice.	BatF3-/-	mice	(C)	are	not	functionally	protected	from	lung	
IR	injury.	Functional	protection	from	lung	IR	injury	is	demonstrated	as	decreased	
airway	resistance,	increased	pulmonary	compliance	and	decreased	pulmonary	artery	
pressure.	*p<0.05	vs.	WT	Sham,	**p<0.05	vs.	WT	IR. 
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Pro-inflammatory	Cytokine	Production	is	Significantly	Increased	Following	Lung	IR	Injury	and	
Decreased	in	CD11c-DTR	Mice	
	

Bronchoalveolar	lavage	samples	(n=4-8/group)	were	collected	from	two	

independent	groups	of	mice	and	cytokine	analyses	reported	represent	corroborating	data.		

In	comparison	to	WT	BMT	IR	control	mice,	the	CD11c-DTR	BMT	and	BatF3-/-	mice	

demonstrated	a	significant	decrease	in	IL-12/IL-23p40	(Figure	3).	IL-17	levels	were	not	

significantly	increased	in	WT	mice	following	IR,	limiting	protective	comparisons	between	

groups.	CD11b-DTR	mice	have	significantly	increased	production	of	IL-17	following	IR	

compared	to	WT	IR	control.		

	

Figure	3.	Pro-inflammatory	cytokine	production	is	reduced	in	CD11c-DTR	mice	
following	lung	IR	injury.	IL-6	and	IL-12/IL-23p40	pro-inflammatory	cytokine	levels	are	
significantly	decreased	in	CD11c-DTR	mice	yet	not	in	CD11b-DTR	mice	following	lung	IR	
Injury.	*p<0.05	vs.	WT	IR	control.	
	

Neutrophil	Activation	and	Infiltration	are	Significantly	Decreased	in	CD11c-DTR	Mice	
Following	Lung	IR	
	

Myeloperoxidase	(MPO)	concentration	in	bronchoalveolar	lavage	fluid	was	

measured	as	an	indicator	of	neutrophil	infiltration.		As	expected,	MPO	was	significantly	

elevated	in	WT	BMT	mice	after	IR	but	attenuated	activation	was	demonstrated	in	both	

CD11c-DTR	and	CD11b-DTR	mice	(Figure	4).		CD11c-DTR	mice	also	demonstrated	

decreased	neutrophil	infiltration	compared	to	WT	BMT	IR	controls	upon	histologic	

evaluation.		
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Figure	4.	Neutrophil	activation	and	infiltration	are	decreased	in	CD11c-DTR	mice	
following	lung	IR	injury.	A.	Neutrophil	activation	as	demonstrated	by	myeloperoxidase	
concentrations	within	bronchoalveolar	lavage	fluid	is	decreased	in	CD11c-DTR	mice	
following	lung	IR	injury.	B-C.	Neutrophil	infiltration	following	lung	IR	injury	is	significantly	
increased	in	wild-type	mice	yet	decreased	in	CD11c-DTR	mice	as	evidenced	by	anti-
neutrophil	histologic	staining.	*p<0.05	vs.	WT	Sham	control.	
	
IL-23p19	Gene	Expression	is	Attenuated	in	CD11c-DTR	Mice	Following	IR		

RT-PCR	analysis	of	gene	expression	profiles	demonstrated	a	significant	decrease	in	

IL-23p19	mRNA	levels	in	the	CD11c-DTR	IR	group	in	comparison	to	the	WT	BMT	IR	control	

(Ct	levels:	0.4±0.04	vs.	4.0±1.9,	respectively,	p=0.02)(Figure	5).			

	

Figure	5.	IL-23p19	mRNA	expression	is	increased	in	WT	mice	and	abrogated	in	
CD11c-DTR	mice	following	lung	IR	injury.	Transcriptional	analysis	demonstrates	
increased	gene	transcription	of	IL-23p19	following	IR	injury	in	WT	yet	not	CD11c-DTR	mice	
following	lung	IR	injury.	*p<0.05	vs.	WT	IR.	
	
	

W
T 

IR
 

C
D

11
c 

IR
 

MPO

pg
/m

L

Sham WT IRCD11c IRCD11b IRBatF3-/- IR

0

20

40

60

B6 BMT ShamCD11c-DTR BMT ShamB6 BMT IRCD11c-DTR BMT IR

0

10

20

30

40

cm
 H

20

Myeloperoxidase 
Concentration!

Neutrophil Count!

* * 
* 

Sham! CD11c 
IR!

CD11b!
IR!

WT IR! BatF3-/-!

IR!
WT 

Sham!
CD11c!
Sham!

WT IR! CD11c!
IR!

A. B. C. 

B6 B
MT S

ham

CD11
c-

DTR B
MT S

ham

B6 B
MT IR

CD11
c-

DTR B
MT IR

-5

0

5

10

15

CD11c: IL-23p19 mRNA Expression

IL
-2

3:
18

S

* 

IL-23p19 mRNA Expression!

WT 
Sham!

CD11c 
Sham!

WT IR! CD11c 
IR!



	 25	

IL-23p19-/-	and	IL-12p35-/-	Mice	Have	Decreased	Lung	Injury	Following	IR	

Functional	evaluation	of	cytokine	knockout	mice	demonstrated	decreased	lung	

injury	most	prominent	in	the	IL-23p19-/-	mice	(Figure	6).		IL-23p19-/-	mice	had	decreased	

airway	resistance,	increased	pulmonary	compliance,	and	decreased	pulmonary	artery	

pressures	compared	to	WT	IR	controls.	Additionally,	IL-23p19-/-	mice	had	increased	

pulmonary	compliance	and	decreased	pulmonary	artery	pressure	compared	to	IL-12p40-/-	

and	IL-12p35-/-	mice.		IL-12p35-/-	mice	had	decreased	airway	resistance	and	pulmonary	

artery	pressures	in	comparison	to	WT	IR	control.	Similarly,	IL-12p40-/-	mice	had	decreased	

pulmonary	artery	pressures	compared	to	WT	IR	control.		

	
Figure	6.	IL-23p19-/-	mice	have	decreased	functional	lung	injury	when	compared	to	WT,	
IL-12p40-/-,	and	IL-12p35-/-	groups.	IL-23p19-/-	mice	have	decreased	airway	resistance,	
increased	pulmonary	compliance,	and	decreased	pulmonary	artery	pressures	following	
lung	IR	injury	when	compared	to	control	mice	in	addition	to	IL-12p40-/-	and	IL-35-/-	mice.	
*p<0.05	vs.	WT	IR,	∧p<0.05	vs.	IL-12p35-/-,	+p<0.05	vs.	IL-12p40-/-.	
	

Discussion	

	 The	present	study	identified	CD11c+	pulmonary	macrophages	as	principal	

mediators	of	lung	IR	injury	independent	of	pulmonary	dendritic	cells.		Flow	cytometry	

studies	demonstrated	that	CD11b-DTR	and	CD11c-DTR	transgenic	mice	are	differentially	

depleted	of	distinct	dendritic	cell	and	macrophage	populations[39].		Cytokine	analysis	links	

CD11c+	cells	to	the	production	of	related	pro-inflammatory	cytokines	IL-12	and	IL-23	

within	the	Th17	axis.		Further,	genetic	knockout	of	each	cytokine	subunit	demonstrates	
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decreased	functional	injury	across	groups	which	was	most	significant	within	the	IL-23p19-

/-	mice.	Together	these	findings	both	directly	and	indirectly	implicated	macrophage-

mediated	IL-23p19	as	an	important	mediator	of	lung	IR	injury,	while	also	supporting	a	role	

for	dendritic	cells	in	IR	injury	pathogenesis.	

Foundational	to	the	inherent	complexity	of	dendritic	cell	and	macrophage	

identification	in	the	lung	is	the	shared	positivity	for	CD11c	within	both	dendritic	cell	and	

macrophage	populations[31].		Established	gating	strategies	within	both	CD11c-DTR	and	

CD11b-DTR	constructs	allowed	the	conditional	depletion	of	CD103+	and	CD11bhi	dendritic	

cells	and	CD11c+	macrophages[45].	These	findings	along	with	the	established	BatF3-/-	

model	for	CD103+	dendritic	cell	depletion	uniquely	supported	the	paired	and	independent	

study	of	these	cell	populations	within	lung	IR	injury.	We	uniquely	demonstrate	that	

macrophages	and	CD103+	dendritic	cells	are	depleted	in	CD11c-DTR	mice	and	that	CD11b-

DTR	mice	are	depleted	solely	of	CD11bhi	dendritic	cells.		Prior	study	has	demonstrated	a	

role	for	CD103+	dendritic	cells	in	the	activation	of	invariant	natural	killer	T	cell	(iNKT)	cells	

following	antigenic	stimulation	in	infectious	models[7].		Our	prior	study	established	the	

iNKT	cell	as	a	principal	mediator	of	lung	IR	injury,	supporting	our	study	of	dendritic	cells	

and	macrophages	to	establish	efficient	pharmacologic	targets	for	IR	injury	modulation[3].	

While	macrophages	have	been	previously	implicated	in	IR	injury	pathogenesis,	the	present	

study	identifies	cellular	markers	for	alveolar	macrophages	within	a	genetic	knockout	model	

both	independent	of	and	in	concert	with	pulmonary	dendritic	cells	which	has	yet	to	be	

described[6].	Infectious	models	of	respiratory	intranasal	antigen	administration	have	

implicated	dendritic	cells	independent	of	macrophages	in	iNKT	cell	activation,	while	the	

present	study	in	IR	injury	implicates	macrophages	independent	of	dendritic	cells	in	the	

mediation	of	pro-inflammatory	pathways	involving	iNKT	cells[11].	Together	these	findings	
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suggest	a	distinction	between	antigen-dependent	and	antigen-independent	responses	

within	lung	injury	and	subsequent	iNKT	cell	activation.	

	 The	study	of	acute	lung	allograft	rejection	has	identified	the	clustering	of	recipient	T	

cells	and	lung-resident	and	donor-derived	CD11c+	cells	after	engraftment[31].		This	novel	

finding	in	the	study	of	adaptive	immunity	importantly	establishes	the	presence	of	CD11c+	

and	T	cell	interactions	within	the	lung	independent	of	secondary	lymphoid	organs.		

Additional	study	of	innate	immunity	in	lung	transplantation	has	identified	bone-marrow	

derived	dendritic	cell	interactions	with	neutrophils	as	a	contact-dependent	mechanism	for	

IL-12	production[32].		While	suggesting	a	role	for	CD11c+	cells	in	T	cell	activation,	

neutrophil	infiltration,	and	pro-inflammatory	cytokine	production,	these	prior	studies	

provided	indirect	linkage	of	each	yet	form	supporting	evidence	for	the	findings	presented	

herein[8].		The	present	study	demonstrates	that	macrophages	independent	of	dendritic	

cells	are	principal	downstream	mediators	of	both	T	cell	activation	and	neutrophil	

infiltration	within	innate	immunity,	elucidating	cell-signaling	mechanisms	inherent	to	prior	

models	of	lung	injury.		

IL-23	and	IL-12	were	evaluated	within	the	presented	model	as	each	has	been	

implicated	as	principal	mediators	of	CD11c+	derived	pro-inflammatory	cell	signaling[46].	

IL-23	and	IL-12	are	members	of	the	same	cytokine	family	and	share	expression	of	the	p40	

subunit.	These	related	cytokines	are,	therefore,	distinguished	by	the	differential	expression	

of	p19	(IL-23)	and	p35	(IL-12)	subunits,	respectively[47].		

The	IL-23	and	IL-12	axes	are	proposed	regulators	of	both	renal	and	hepatic	IR	

injury,	with	CD11c+	cells	serving	as	a	principal	mediator	of	IL-23	production	in	a	model	of	

renal	IR	injury[10,	33].		Additionally,	prior	study	has	demonstrated	that	hypoxia-induced	

adenosine	metabolism	upregulates	IL-23	receptor	mRNA	production	in	CD4(+)	T	cells	in	

response	to	dendritic	cell	signaling	initiated	at	the	adenosine	A2B	receptor[48].		Paired	with	
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this	finding,	we	have	previously	demonstrated	a	role	for	adenosine	A2B	receptor	in	lung	IR	

injury	and	herein	provide	a	mechanistic	consideration	for	A2B	receptor	knockout	mediated	

protection	through	IL-23p19	cytokine	signaling[49].	Further,	models	in	infectious	disease	

have	demonstrated	that	an	interruption	in	dendritic	cell	IL-23	production	is	possible	

through	the	modulation	of	toll-like	receptor	2	and	Nod2	signaling	pathways,	providing	

signaling	targets	for	therapeutic	modulation	of	IL-23	pro-inflammatory	responses[50].		

These	prior	studies	support	our	findings	that	IL-23	is	the	principal	mediator	of	acute	lung	IR	

injury	and	further	provide	a	link	to	established	findings	that	invariant	natural	killer	T-cells	

are	principal	end-effector	cells	of	acute	IR	injury[51].	

Two	recent	studies	have	established	the	iNKT	cell	as	a	key	end-mediator	of	lung	and	

kidney	IR	injury	through	IL-17	and	IFN-γ	dependent	mechanisms,	respectively[3,	47].	

Further,	lung	IR	injury	has	been	found	to	predispose	to	anti-col(V)-mediated	pathology,	

implicating	the	reactive	expression	of	IL-17	and	IL-23	in	col(V)-reactive	lymphocytes	as	

integral	events	in	lung	rejection	pathology[13].		Clinical	study	has	offered	a	linkage	between	

acute	lung	injury	and	chronic	rejection	(bronchiolitis	obliterans)[24].		Thus,	while	the	

present	study	within	a	model	of	acute	lung	injury	offers	insight	to	early	therapeutic	targets	

for	IR	injury	prevention,	such	targets	provide	promising	avenues	for	further	study	as	

mediators	of	short-	and	long-term	rejection	pathology	within	lung	transplantation.	

While	the	present	study	offers	novel	insights	into	lung	IR	injury	pathogenesis,	

inherent	and	recognized	limitations	exist.		As	previously	acknowledged,	mouse	DTR	

depletion	models	targeting	CD11c	and	CD11b	cell	populations	introduce	the	potential	for	

depletion	of	unrecognized	subpopulations	within	both	macrophage	and	dendritic	cell	

populations	in	the	lung.	The	presented	flow	cytometry	analysis	sought	to	provide	clarity	to	

cell	populations	affected	by	each	model	utilizing	established	gating	strategies	for	each	

closely	related	cell	population.		Preliminary	data	established	the	CD11c+	cell	population	as	
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having	increased	IL-23	and	IL-12	production	(data	not	shown)	yet	did	not	provide	the	

differentiation	between	macrophage	and	dendritic	cell	populations	as	is	afforded	by	the	

presented	model.	While	this	approach	provides	cell-specific	study,	the	present	models	limit	

study	of	cross-talk	mechanisms	between	each	in	the	modulation	of	both	pro-	and	anti-

inflammatory	signaling.	This	limitation	provides	a	potential	explanation	to	the	variable	

cytokine	profiles	within	each	knockout	group	as	prior	study	has	demonstrated	that	vaccines	

targeting	the	p19	subunit	result	in	increased	IL-10	anti-inflammatory	effects	without	any	

effects	on	IL-17	pro-inflammatory	production[52].	This	finding	provides	a	potential	

explanation	for	the	decreased	lung	IR	injury	within	the	CD11b-DTR	group	while	having	

increased	pro-inflammatory	cytokine	production,	with	the	hypothesis	that	while	early	

injury	is	reduced	by	targeted	CD11b+	cell	depletion,	a	longer	temporal	period	of	evaluation	

may	elucidate	less	protection	as	evidenced	by	the	cytokine	profiles.		Secondly,	each	model	is	

dependent	on	reproducibility	of	toxin	administration	and	inherent	variability	does	exist	in	

both	systemic	absorption	and	dose	effect.	This	confounding	effect	was	minimized	by	

administration	of	toxin	to	WT	mice	and	standardization	of	both	dosing	method	and	timing	

prior	to	IR	injury.	Differential	depletion;	however,	is	a	potential	explanation	for	variability	

demonstrated	within	experimental	groups	as	each	mouse	studied	is	represented.	

Additionally,	while	IL-23p19	levels	were	noted	to	increase	in	WT	mice	following	IR,	a	longer	

period	of	reperfusion	may	demonstrate	higher	levels	of	production	as	has	been	shown	in	

hepatic	IR	injury	following	120	minutes	of	reperfusion[10].		A	parallel	study	in	renal	IR	

injury	has	demonstrated	increasing	p19	and	p40	transcripts	out	to	6	hours	following	renal	

IR[36].		The	present	study	utilized	a	well-established	time	course	model	for	lung	IR	injury	

and	such	extrapolations	extend	beyond	the	focus	of	the	present	study[3,	4].	Further,	

histologic	and	gene	expression	analyses	focused	on	CD11c-DTR	mice	as	these	mice	

demonstrated	protection	by	both	functional	and	pro-inflammatory	cytokine	production	
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parameters.	Evaluation	of	other	experimental	groups	at	this	level	was	not	pursued	as	

neutrophil	and	transcriptional	data	are	of	limited	importance	in	the	absence	of	functional	

and	pro-inflammatory	cytokine	mediated	protection	from	lung	IR	injury.	Such	study	in	the	

future	may;	however,	aid	in	the	identification	of	cross-talk	mechanisms	between	these	cell	

populations	and	the	effect	of	each	on	both	cell	signaling	and	neutrophil	activation.	

Conclusion	

	 CD11c-DTR	and	CD11b-DTR	mice	afford	selective	conditional	depletion	of	dendritic	

cell	and	macrophage	populations	within	the	lung.		Selective	depletion	of	CD11c+	

macrophages	within	CD11c-DTR	mice	affords	functional,	histologic,	and	cytokine-mediated	

protection	from	lung	IR	injury	independent	of	related	dendritic	cell	populations.		

Additionally,	IL-23p19	expression	is	increased	following	lung	IR	injury	in	WT	mice	yet	not	

CD11c-DTR	mice,	providing	a	link	between	macrophage	mediated	IL-23p19	production	and	

lung	IR	injury	pathogenesis.		Further,	IL-23p19	genetic	knockout	provides	significant	

functional	protection	from	lung	IR	injury	when	compared	to	WT	mice	and	knockout	of	

related	cytokine	subunits	IL-12/IL-23p40	and	IL-12p35.	Together	these	findings	support	a	

role	for	macrophage	and	IL-23p19-targeted	therapies	for	the	prevention	of	lung	IR	injury.		
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Pharmacologic	Targets	for	Lung	IR	Injury	Prevention	

	
A	novel	sphingosine	agonist,	VPC-01091,	is	evaluated	as	a	potential	pharmacologic	
approach	to	lung	IR	injury	prevention.	Signaling	mechanisms	are	explored	at	the	

sphingosine	receptor	subtype	level	to	define	implicated	receptor	subtypes	and	the	effect	on	
iNKT	cell	recruitment	and	activation.		
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Abstract	

Outcomes	for	lung	transplantation	are	the	worst	of	any	solid	organ,	and	ischemia-

reperfusion	(IR)	injury	limits	both	short-	and	long-term	outcomes.	Currently	no	therapeutic	

agents	are	available	to	prevent	IR	injury.	Sphingosine	1-phosphate	(S1P)	modulates	

immune	function	through	binding	to	a	set	of	G	protein-coupled	receptors	(S1PR1-5).	

Although	S1P	has	been	shown	to	attenuate	lung	IR	injury,	the	S1P	receptor(s)	responsible	

for	protection	have	not	been	defined.	The	current	study	tests	the	hypothesis	that	protection	

from	lung	IR	injury	is	primarily	mediated	through	S1PR1	activation.	Mice	were	treated	with	

either	vehicle,	FTY720	(a	non-selective	S1P	receptor	agonist)	or	VPC01091	(a	selective	

S1PR1	agonist	and	S1PR3	antagonist)	prior	to	left	lung	IR.	Function,	vascular	permeability,	

cytokine	expression,	neutrophil	infiltration	and	myeloperoxidase	levels	were	measured	in	

lungs.	After	IR,	both	FTY720	and	VPC01091	significantly	improved	lung	function	(reduced	

pulmonary	artery	pressure	and	increased	pulmonary	compliance)	versus	vehicle	control.	In	

addition,	FTY720	and	VPC01091	significantly	reduced	vascular	permeability,	expression	of	

pro-inflammatory	cytokines	(IL-6,	IL-17,	IL-12/IL-23	p40,	CCL2,	TNF-α),	myeloperoxidase	

levels	and	neutrophil	infiltration	compared	to	control.	No	significant	differences	were	

observed	between	VPC01091	and	FTY720	treatment	groups.	VPC01091	did	not	

significantly	affect	elevated	iNKT	cell	infiltration	after	IR,	and	administration	of	an	S1PR1	

antagonist	reversed	VPC01091-mediated	protection	after	IR.	In	conclusion,	VPC01091	and	

FTY720	provide	comparable	protection	from	lung	injury	and	dysfunction	after	IR.	These	

findings	suggest	that	S1P-mediated	protection	from	IR	injury	is	mediated	by	S1PR1	

activation,	independent	of	S1PR3	and	that	selective	S1PR1	agonists	may	provide	a	novel	

therapeutic	strategy	to	prevent	lung	IR	injury.	
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Introduction	

	 Outcomes	for	lung	transplantation	are	the	worst	of	any	solid	organ[15,	53].	Despite	

significant	advancements	over	the	past	decade	in	lung	transplantation,	outcomes	remain	

poor,	and	both	short-	and	long-term	graft	survival	is	limited	by	the	inherent	threat	of	

ischemia-reperfusion	(IR)	injury.	Mechanisms	involved	in	lung	IR	injury	include	oxidative	

stress,	epithelial	cell	apoptosis,	alveolar	macrophage	activation,	T	cell	activation	and	

neutrophil	infiltration[3,	5,	6,	54-56].	Currently	no	therapeutic	agents	are	available	to	

prevent	lung	IR	injury,	and	treatment	strategies	are	limited	to	maintaining	pulmonary	

mechanics	and	oxygenation	capacity.	

Sphingolipids	are	ubiquitous	components	of	cell	membranes,	and	their	metabolites	

(e.g.	ceramide,	sphingosine	and	sphingosine	1-phosphate)	are	established	regulators	of	a	

vast	number	of	cellular	processes[57].	Sphingosine	kinase	1	and	2	phosphorylate	

sphingosine	to	generate	sphingosine	1-phosphate	(S1P),	a	biologically	active	lipid	growth	

factor	that	binds	to	a	family	of	five	G-protein-coupled	receptors	(S1PR1-5)	to	regulate	a	

spectrum	of	biologic	functions	including	proliferation,	cell	survival,	angiogenesis,	

extracellular	matrix	assembly,	endothelial	cell	barrier	integrity,	and	immune	cell	trafficking	

and	function[58-61].	Okazaki	et	al.	have	demonstrated	that	S1P	increases	oxygenation	

capacity	following	experimental	lung	transplantation	while	decreasing	pro-inflammatory	

cytokine	production,	endothelial	cell	apoptosis,	and	neutrophil	numbers[62].	Other	studies	

have	shown	that	S1P	or	FTY720,	a	non-specific	agonist	for	S1PR1	and	S1PR3-5[63,	64],	

provides	significant	protection	in	various	models	of	acute	lung	injury[65-67].	While	these	

studies	serve	as	a	foundation	for	potential	S1P	receptor-targeted	therapies	in	lung	injury	

and	transplantation,	pharmacologic	S1P	analogs	with	differential	receptor	subtype	affinities	

have	yet	to	be	examined	in	the	setting	of	lung	IR	injury	or	transplantation.	Thus,	the	

purpose	of	this	study	was	to	evaluate	the	potential	protective	advantages	afforded	by	
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VPC01091,	a	novel	sphingosine	analog	that	is	a	selective	S1PR1	agonist	and	S1PR3	

antagonist	[68],	on	lung	IR	injury.	In	addition,	we	sought	to	concurrently	evaluate	FTY720	

to	determine	the	differential	effects	of	S1PR3	targeting	on	lung	IR	injury.	We	approached	

this	study	with	the	hypothesis	that	selective	S1PR1	agonism	will	attenuate	lung	IR	injury	

and	that	S1PR3	antagonism	would	provide	an	additional	protective	advantage,	as	S1PR3	

has	been	implicated	as	a	biomarker	of	acute	lung	injury	[69].	

Materials	and	Methods	

Study	design	and	animals.		Wild-type	mice	(C57BL/6,	8-12	weeks,	The	Jackson	

Laboratory,	Bar	Harbor,	ME)	were	randomly	assigned	to	six	groups.	All	animals	were	

treated	with	either	vehicle	or	test	compound	via	intraperitoneal	injection	30	minutes	prior	

to	surgery.	Two	groups	(sham	and	IR)	were	treated	with	0.2	mL	vehicle	(3%	fatty	acid-free	

bovine	serum	albumin/PBS	solution,	Sigma,	St.	Louis,	MO).	Two	groups	(sham	and	IR)	were	

treated	with	FTY720	(2-amino-2-(4-octylphenethyl)propane-1,3-diol,	0.3	mg/kg,	Novartis,	

Basel,	Switzerland),	and	two	groups	(sham	and	IR)	were	treated	with	VPC01091	(((1R,3S)-

1-amino-3-(4-octylphenyl)cyclopentyl)methanol,	1.5	mg/kg,	gift	from	Abbott	Laboratories	

in	Worcester,	MA).	A	separate	IR	group	entailed	the	co-administration	of	VPC01091	with	

VPC44116	((R)-(3-amino-4-((3-octylphenyl)amino)-4-oxobutyl)phosphonic	acid,	10	mg/kg,	

gift	from	Dr.	Frank	Foss	at	the	University	of	Texas	Arlington),	a	selective	S1PR1	antagonist	

[70].	Mice	then	underwent	sham	surgery	or	lung	IR	30	minutes	after	intraperitoneal	

treatment,	as	this	time	frame	has	been	established	to	achieve	maximal	drug	effectiveness	

[71].	A	prior	time-course	study	has	also	demonstrated	that	FTY720-mediated	barrier	

enhancement	is	maximized	at	30-60	minutes	following	administration	[72].	The	present	

study	conformed	to	the	Guide	for	the	Care	and	Use	of	Laboratory	Animals	published	by	the	

National	Institute	of	Health	and	was	approved	by	the	University	of	Virginia	Institutional	

Animal	Care	and	Use	Committee.	
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Murine	lung	IR	injury.		An	established	murine	model	of	lung	IR	injury	was	utilized	

as	previously	described	by	our	laboratory	[3,	5].	Inhalational	isoflurane	anesthesia	and	

orotracheal	intubation	permitted	mechanical	ventilation	at	120	strokes/min	with	room	air.	

Heparin	was	administered	via	the	right	external	jugular	vein	(20	U/kg),	and	the	left	

pulmonary	hilum	was	exposed	through	an	anterolateral	thoracotomy	at	the	third	

intercostal	space.	A	6-0	Prolene	suture	was	passed	around	the	left	pulmonary	hilum,	and	

the	two	suture	ends	were	passed	through	PE-60	tubing	to	permit	hilar	occlusion	via	

tightening	of	suture	and	surgical	clip	application.	Analgesia	was	administered	

(buprenorphine,	0.2	mg/kg)	by	intraperitoneal	injection,	and	animals	were	returned	to	

their	cage	during	the	1	hour	of	left-lung	ischemia.	Mice	then	underwent	repeat	anesthesia	

and	intubation,	and	the	hilar	occlusion	was	released	to	begin	reperfusion.	Animals	were	

then	returned	to	their	cages	whereupon	reperfusion	was	continued	for	2	hours	prior	to	

functional	evaluation,	bronchoalveolar	lavage	and	histologic	analysis.	Sham	groups	were	

identical	to	IR	groups	except	that	the	left	hilum	was	not	occluded.	

Pulmonary	function.		Pulmonary	function	at	the	end	of	reperfusion	was	measured	

using	an	isolated,	buffer-perfused	lung	apparatus	(Hugo	Sachs	Elektronik,	March-

Huggstetten,	Germany)	as	previously	described	[4].	Mice	were	anesthetized	and	maintained	

on	intra-tracheal	ventilation	(tidal	volume	=	7	µL/g	body	weight,	rate	=	100	strokes/min,	

positive	end-expiratory	pressure	=	2	cmH2O)	prior	to	exsanguination	by	inferior	vena	caval	

transection.	The	pulmonary	artery	was	cannulated	and	a	left	ventriculotomy	permitted	

perfusate	drainage.	Lungs	were	perfused	at	a	flow	rate	of	60	µL/g	body	weight/min	with	

Krebs-Henseleit	buffer.	Following	a	5-minute	period	of	equilibration,	functional	data	

(pulmonary	artery	pressure	and	pulmonary	compliance)	were	recorded	using	PULMODYN	

data	acquisition	software	(Hugo	Sachs	Elektronik)	over	an	additional	5	minutes.	
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Bronchoalveolar	lavage	(BAL).		Following	measurement	of	lung	function,	the	left	

lung	was	isolated	via	ligation	of	the	right	pulmonary	hilum	with	a	surgical	clip.	An	anterior	

tracheotomy	was	then	performed	and	permitted	intra-tracheal	placement	of	a	20-Gauge	

angiocatheter.	A	circumferential	suture	was	secured	around	the	trachea	to	limit	

pericatheter	drainage.	Two	consecutive	aspirates	of	0.4	mL	of	0.9%	sodium	chloride	were	

then	performed	through	the	intra-tracheal	cannula.	Left	lung	BAL	fluid	was	immediately	

centrifuged	at	4°C	(1,500	rpm	for	6	min),	and	supernatant	was	stored	at	-80°C.		

Cytokine	and	myeloperoxidase	(MPO)	measurements.		As	previously	described	

[73],	cytokines	were	quantified	in	BAL	fluid	using	a	multiplex	ELISA	cytokine	panel	(Bio-

Rad	Laboratories,	Hercules,	CA),	and	MPO	concentration	in	BAL	fluid	was	measured	by	

ELISA	(Hycult	Biotech,	Uden,	Netherlands).		

Immunohistochemistry	and	neutrophil	counting.		Using	separate	groups	of	

animals,	lungs	were	inflation-fixed	at	10	cmH2O	with	formalin	at	4°C	for	24	hours	prior	to	

placement	in	70%	ethanol	for	paraffin	embedding.	Lung	sections	were	immunostained	for	

neutrophils	using	the	Vectastain	ABC	kit	(Vector	Laboratories,	Burlingame,	CA)	as	

previously	described	[4].	Rat	anti-mouse	neutrophil	antibody	(AbD	Serotec,	Raleigh,	NC)	

and	alkaline	phosphatase-conjugated	anti-rat	IgG	(Sigma,	St.	Louis,	MO)	secondary	antibody	

were	utilized.	The	signals	were	detected	using	Fast-Red	(Sigma,	St.	Louis,	MO).	The	negative	

control	utilized	purified	normal	rat	IgG	(eBioscience	Inc.,	San	Diego,	CA).	Neutrophil	

counting	was	performed	by	a	blinded	investigator.	Three	semi-standardized	fields	per	lung	

were	counted	at	20x	magnification,	and	the	mean	of	these	three	values	established	the	final	

neutrophil	count	per	high-powered	field	for	each	mouse.		

Pulmonary	vascular	permeability.		Vascular	permeability	in	lungs	was	estimated	

using	the	Evans	blue	dye	extravasation	technique,	which	is	an	index	of	change	in	protein	

permeability,	as	previously	described	[74].	Using	separate	groups	of	animals	(n=5/group),	
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Evans	blue	(20	mg/kg,	Sigma,	St.	Louis,	MO)	was	injected	intravenously	via	the	tail	vein	30	

min	before	euthanasia.	The	pulmonary	vasculature	was	then	perfused	for	10	min	with	PBS	

to	remove	intravascular	dye.	Lungs	were	then	homogenized	in	PBS	to	extract	the	Evans	blue	

and	centrifuged.	The	absorption	of	Evans	blue	was	measured	in	the	supernatant	at	620	nm	

and	corrected	for	the	presence	of	heme	pigments:	A620corrected	=	A620	-	(1.426	x	A740	+	

0.030).	The	concentration	of	Evans	blue	was	determined	according	to	a	standard	curve	and	

expressed	as	micrograms/gram	(µg/g)	wet	lung	weight.	

Flow	cytometry.	Quantification	of	invariant	natural	killer	T	(iNKT)	cells	via	flow	

cytometry	was	performed	as	previously	described	[3].	Left	lungs	from	mice	were	minced	

and	incubated	for	15	min	at	37°C	with	collagenase	type	1A	(Sigma-Aldrich,	St.	Louis,	MO)	in	

Dulbecco’s	PBS	with	0.5%	BSA	and	2mM	EDTA.	The	lung	tissue	suspension	was	then	passed	

through	a	40-µm	cell	strainer	(BD	Falcon)	and	centrifuged	at	1000	rpm	for	10	min.	After	

treatment	with	RBC	lysis	buffer,	the	cell	pellet	was	washed	and	resuspended	in	FACS	buffer	

(0.1%	BSA,	0.01%	sodium	azide	in	PBS).	Cells	were	stained	with	7-aminoactinomycin	(7-

AAD;	Invitrogen,	Frederick,	MD),	PerCP-Cy5.5-labelled	CD45	(eBioscience,	San	Diego,	CA),	

PE-labelled	CD1d	tetramer	loaded	with	PBS57	(1:500),	an	analog	of	α-galactosylceramide	(

αGalCer)	(NIH	Tetramer	Facility,	Emory	University,	Atlanta,	GA)	and	FITC-labelled	CD4	

(eBioscience).	For	cell	counting,	100	µl	of	cell	suspension	was	mixed	thoroughly	with	100	µl	

of	Caltag	Counting	Beads	(Life	Technologies,	Frederick,	MD)	before	acquisition	by	FACS.	At	

least	1000	bead	events	were	acquired	to	ensure	the	accuracy	of	the	assay.	The	absolute	

number	of	any	gated	cell	population	was	calculated	as	follows:	CD45+	cell	absolute	count	

(per	lung)	=	(events	of	CD45+	cells	counted/total	number	of	beads	counted	(A+B)	X	input	

bead	number)/lung.	The	total	number	of	iNKT	cells	(per	lung)	was	calculated	by	

multiplying	the	CD45+	cell	number	and	the	percentage	of	the	CD4+CD1d	tetramer+	subset.	
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For	example,	the	CD4+CD1d	tetramer+	cell	number	(per	lung)	=	(total	CD45+	cell	number)	

X	(percent	of	CD4+CD1d	tetramer+	cells	gated	on	the	CD45+	cell	population).	

Statistics.		Statistical	analyses	were	performed	using	a	one-way	analysis	of	variance	

(ANOVA)	with	a	post-hoc	Tukey’s	multiple	comparisons	correction.	A	p	value	of	less	than	

0.05	represented	statistical	significance.	Results	are	presented	as	the	mean	±	SEM.		

Results	

Pulmonary	function	after	IR	is	improved	by	VPC01091	and	FTY720	treatment.		

To	determine	if	S1PR1	agonism	improves	lung	function	after	IR,	mice	were	treated	with	

VPC01091	or	FTY720	prior	to	ischemia	or	sham	surgery.	Vehicle-treated	mice	

demonstrated	significant	lung	dysfunction	following	IR	as	shown	by	increased	pulmonary	

artery	pressure	and	decreased	pulmonary	compliance	(Figure	7).	Compared	to	vehicle,	

both	FTY720	and	VPC01091	significantly	decreased	pulmonary	artery	pressure	and	

increased	pulmonary	compliance	after	IR.	No	significant	differences	were	observed	

between	sham	groups	treated	with	vehicle,	VPC01091	or	FTY720	(Figure	7).	These	results	

demonstrate	that	selective	agonism	of	S1PR1	by	VPC01091	improves	lung	function	after	IR	

to	the	same	level	as	FTY720.	
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Figure	7. VPC01091	and	FTY720	treatment	improves	lung	function	after	ischemia-
reperfusion	(IR).	Mice	were	pre-treated	with	vehicle	(Veh),	VPC01091	(VPC)	or	FTY720	
(FTY)	30	minutes	prior	to	sham	surgery	or	ischemia.	Pulmonary	artery	pressure	and	
pulmonary	compliance	were	measured	after	two	hours	of	reperfusion.	Results	are	
presented	as	mean	±	SEM.	*p<0.05	vs.	vehicle	sham,	#p<0.05	vs.	vehicle	IR,	n=5-7/group.	
	

VPC01091	and	FTY720	reduces	pulmonary	vascular	permeability	after	IR.		To	

investigate	the	extent	to	which	VPC01091	or	FTY720	affect	vascular	permeability	after	IR,	

pulmonary	vascular	leak	was	assessed	using	the	Evan	blue	dye	extravasation	technique.	IR	

significantly	increased	vascular	permeability,	which	was	significantly	attenuated	by	

VPC01091	or	FTY720	(Figure	8).	These	results	demonstrate	that	FTY720-mediated	

attenuation	of	vascular	permeability	after	IR	can	be	reproduced	by	selective	S1PR1	agonism	

by	VPC01091.	
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Figure	8.	VPC01091	and	FTY720	treatment	attenuates	pulmonary	vascular	permeability	
after	ischemia-reperfusion	(IR).	Mice	were	pre-treated	with	vehicle	(Veh),	VPC01091	(VPC)	
or	FTY720	(FTY)	30	minutes	prior	to	sham	surgery	or	ischemia.	Vascular	permeability	was	
assessed	after	two	hours	of	reperfusion	by	measuring	Evans	blue	dye	content	in	the	lung	
(mg/g	lung	tissue)	as	described	in	the	methods.	Results	are	presented	as	mean	±	SEM.	
*p<0.05	vs.	vehicle	sham,	#p<0.05	vs.	vehicle	IR,	n=5/group.	
	

	

VPC01091	and	FTY720	attenuates	pro-inflammatory	cytokine	production	

following	IR.		Pulmonary	inflammation	after	IR	was	assessed	by	measuring	levels	of	pro-

inflammatory	cytokines	in	BAL	fluid.	IR	significantly	increased	expression	of	IL-6,	IL-17,	IL-

12	p70,	IL-12/IL-23	p40,	CCL2	and	TNF-α	in	vehicle	treated	animals.	VPC01091	treatment	

resulted	in	significantly	decreased	levels	of	IL-6,	IL-17,	IL-12p70,	IL-12/IL-23p40,	CCL2	and	

TNF-α	following	IR	versus	vehicle-treatment.	Similarly,	FTY	treatment	significantly	

decreased	levels	of	IL-6,	IL-17,	IL-12p70,	IL-12/IL-23p40,	CCL2	and	TNF-α.	Cytokine	levels	

were	similar	among	sham	animals	treated	with	vehicle,	FTY720	or	VPC01091	(Figure	9).	

These	results	demonstrate	that	FTY720	and	VPC01091	have	similar	inhibitory	affects	on	

pro-inflammatory	cytokine	expression	after	IR.	
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Figure	9.	VPC01091	(VPC)	and	FTY720	(FTY)	treatment	prior	to	ischemia-reperfusion	(IR)	
results	in	a	significant	decrease	in	pro-inflammatory	cytokines	versus	vehicle	(Veh)-treated	
IR	control.	Results	are	presented	as	mean	±	SEM.	*p<0.05	vs.	vehicle	sham,	#p<0.05	vs.	
vehicle	IR,	ND=not	detectable,	n=5-8/group. 
	
Neutrophil	activation	and	infiltration	after	IR	is	decreased	by	VPC01091	and	FTY720	

treatment.		Neutrophil	infiltration	is	a	hallmark	of	lung	inflammation	after	IR,	and	thus	

neutrophil	numbers	and	activation	status	were	assessed	in	lungs.	Immunostaining	of	lung	

sections	demonstrated	that	elevated	neutrophil	infiltration	after	IR	was	significantly	

attenuated	by	both	VPC01091	and	FTY720	treatments	(Figure	10A-B).	There	were	no	

significant	differences	in	neutrophil	numbers	between	vehicle,	VPC01091	and	FTY720	sham	
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treatment	groups	(data	not	shown).	The	concentration	of	MPO,	a	peroxidase	enzyme	

abundantly	present	in	neutrophil	granulocytes	and	released	upon	activation,	in	BAL	fluid	

was	significantly	increased	after	IR	versus	sham	in	vehicle-treated	animals	(Figure	10C).	

Both	VPC01091	and	FTY720	treatments	resulted	in	significantly	decreased	MPO	

concentration	versus	vehicle-treated	IR.	There	were	no	significant	differences	in	neutrophil	

counts	or	MPO	levels	between	sham	animals	treated	with	vehicle,	VPC01091	or	FTY720	

(data	not	shown).	These	data	suggest	that	FTY720-mediated	affects	on	neutrophil	

infiltration	and	activation	after	IR	are	reproduced	by	selective	S1PR1	agonism	by	

VPC01091.	 	
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Figure	10.	Neutrophil	infiltration	and	activation	after	ischemia-reperfusion	(IR)	is	
significantly	decreased	by	VPC01091	(VPC)	or	FTY720	(FTY)	treatment	compared	to	
vehicle	(Veh)-treated	mice.	A)	Representative	immunostaining	of	neutrophils	(pink	
staining)	within	indicated	groups.	40x	magnification.	B)	Quantification	of	neutrophils	per	
high-powered	field	(HPF)	for	each	group.	C)	Myeloperoxidase	(MPO)	levels	in	
bronchoalveolar	lavage	fluid	after	IR	were	significantly	reduced	by	VPC	and	FTY	treatment	
versus	vehicle	treatment.	No	significant	differences	in	neutrophil	counts	or	MPO	levels	
between	vehicle-,	VPC01091-	and	FTY720-treatment	of	sham	animals	were	observed	(data	
not	shown).	Results	are	presented	as	mean	±	SEM.	*p<0.05	vs.	vehicle	sham;	#p<0.05	vs.	
vehicle	IR,	n=3-6/group.	
	

S1PR1	agonism	is	essential	for	VPC01091-mediated	attenuation	of	lung	IR	

injury.		To	determine	if	the	S1PR3	antagonist	functionality	of	VPC01091	potentially	

contributes	to	VPC01091-mediated	protection	after	IR,	an	S1PR1	antagonist,	VPC44116,	

was	co-administered	with	VPC01091.	Co-administration	of	VPC01091	and	VPC44116	

resulted	in	a	reversal	of	protection	from	lung	dysfunction	after	IR	(Figure	11).	

VPC01091/VPC44116	combined	treatment	significantly	reversed	the	VPC01091-mediated	

decrease	in	pulmonary	artery	pressure	after	IR.	Similarly,	VPC01091/VPC44116	combined	
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treatment	also	reversed	VPC01091-mediated	improvement	in	pulmonary	compliance,	

although	this	did	not	reach	significance.	These	results	confirm	S1PR1	as	the	principal	

protective	mediator	of	lung	IR	injury	by	S1P	analogs	such	as	VPC01091.	

	

Figure	11.	VPC01091	(VPC)-mediated	functional	protection	after	IR	is	reversed	with	co-
administration	of	an	S1PR1	antagonist	(VPC44116).	The	VPC	+	antagonist	group	is	shown	
compared	to	relevant	groups	shown	in	Figure	1.	Results	are	presented	as	mean	±	SEM.	
*p<0.05	vs.	vehicle	sham;	#p<0.05	vs.	vehicle	IR,	§p<0.05	vs.	VPC	IR,	n=5-7/group.	
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VPC01091	does	not	affect	infiltration	of	iNKT	cells	after	lung	IR.	To	identify	iNKT	

cells,	a	PE-labeled	CD1d	tetramer	loaded	with	an	analog	of	αGalCer	was	utilized	as	

previously	described	[3].	The	total	number	of	iNKT	cells	(CD4+	CD1d	tetramer+)	was	

increased	over	4-fold	in	the	left	lung	after	IR	(16,977	±	3,357	iNKT	cells)	compared	to	sham	

(71,706	±	8,086	iNKT	cells)	in	vehicle-treated	mice	(Figure	12).	Treatment	with	VPC01091	

did	not	significantly	affect	iNKT	cell	numbers	after	IR	(90,357	±	10,429	iNKT	cells)	versus	

vehicle	(Figure	12).	

	

Figure	12.	VPC01091	does	not	affect	iNKT	cell	infiltration	after	ischemia-reperfusion	(IR).	
Total	iNKT	cell	numbers	(CD4+	CD1d	tetramer+	cells)	were	counted	in	left	lungs	by	flow	
cytometry	as	described	in	the	methods.	Mice	pre-treated	with	vehicle	(Veh)	or	VPC01091	
(VPC)	demonstrated	similar	and	significant	elevations	in	iNKT	cell	numbers	after	IR	versus	
sham.	Results	are	presented	as	mean	±	SEM.	*p<0.05	vs.	vehicle	sham,	n=4-5/group.	
	
Discussion	

Use	of	pharmacologic	S1P	receptor-targeted	drugs	have	demonstrated	promise	in	

the	regulation	of	immune-mediated	disease	through	the	inhibition	of	lymphocyte	egress	

from	lymphoid	organs	[75].	This	strategy	has	been	adopted	to	attenuate	acute	injury	and	

graft	rejection	in	kidney	and	liver	transplantation	with	a	proposed	protective	mechanism	

through	S1PR1	binding	[71,	76,	77].		Several	studies	have	supported	the	application	of	S1P	

and	FTY720	in	the	reduction	of	injury	in	experimental	lung	transplantation	models[62,	78].	

While	these	studies	support	a	protective	role	for	S1P	and	S1P	analogues	in	IR	injury,	further	

understanding	of	the	role	of	specific	S1P	receptor	subtypes	in	lung	IR	injury	is	needed.	

Veh 
Sham 

Veh 
IR 

VPC 
IR 

C
D

4+
 C

D
1d

 te
tra

m
er

+ 
ce

lls
 

0

50,000

100,000

150,000

*
*



	 47	

S1PR3	has	been	linked	to	decreased	epithelial	integrity	within	the	lung	in	addition	to	

promoting	airway	hyper-reactivity,	systemic	hypertension,	coronary	artery	

vasoconstriction,	and	pro-fibrotic	responses	within	the	lung[79-84].	Additionally,	the	

nitrated	form	of	S1PR3	is	increased	in	the	plasma	of	mice	and	humans	with	sepsis-induced	

acute	lung	injury,	and	reduced	S1PR3	expression	is	associated	with	an	attenuation	of	

increased	vascular	permeability	during	acute	lung	injury[69].	Thus,	the	design	of	agents	

with	differential	activities	at	S1P	receptor	subtypes	may	help	provide	optimal	protection	

from	lung	IR	injury	with	reduced	negative	side	effects.	

With	this	understanding,	the	present	study	evaluated	the	efficacy	of	a	novel	

sphingosine	analogue,	VPC01091,	that	serves	as	a	selective	S1PR1	agonist	and	S1PR3	

antagonist[68].	Comparison	of	VPC01091	to	the	non-selective	FTY720	agonist	

demonstrated	an	equivalent	level	of	protection,	suggesting	that	that	S1P-	and	FTY720-

mediated	protection	is	achieved	primarily	through	S1PR1	activation.	While	FTY720	also	

acts	on	S1P4	and	S1P5	receptors,	S1P5	is	exclusively	expressed	in	the	brain	and	skin[85].	

The	biologic	activities	of	S1P4	are	not	well	established;	however,	a	recent	study	has	

demonstrated	that	S1P4	deficiency	results	in	impaired	dendritic	cell	migration,	cytokine	

secretion	and	Th-17	cell	differentiation[86].	This	supports	a	potential	mechanistic	role	for	

S1P4	in	IR	injury	pathogenesis[32,	61].	The	present	data	demonstrates	that	antagonism	at	

S1PR3	does	not	result	in	altered	therapeutic	efficacy	of	VPC01091.	While	superiority	of	

VPC01091	over	FTY720	in	protection	was	not	demonstrated	in	the	present	study,	the	use	of	

VPC01091	may	be	advantageous	to	avoid	potential	long-term	effects	of	S1PR3	receptor	

agonism	by	S1P,	FTY720	or	similar	non-specific	agonists.	

Important	to	the	advancement	of	pharmacologic	S1P	receptor	agonist	therapy	is	the	

timing	of	delivery,	as	S1P	receptor	expression	at	the	cell	membrane	can	vary	according	to	

the	cell	activation	state[87].	Graeler	et	al.	demonstrated	that	activation	of	CD4+	T	cells	
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results	in	decreased	S1P	receptor	expression,	suppressing	the	potentially	beneficial	effects	

of	S1P	administration	after	onset	of	injury[88].	However,	pretreatment	prior	to	T	cell	

activation	results	in	a	significant	inhibition	of	chemokine-directed	migration.	These	prior	

findings	provided	rationale	for	the	use	a	pre-treatment	strategy	in	the	present	study	and	

support	the	translation	of	this	therapy	to	the	treatment	of	the	donor	lung	or	transplant	

recipient	prior	to	transplantation.	

	 Debate	persists	regarding	the	mechanisms	of	protection	afforded	by	S1P	or	FTY720	

administration,	supporting	our	application	of	VPC01091	as	a	novel	agent	for	prevention	of	

lung	IR	injury.	FTY720	has	been	demonstrated	to	have	more	potent	effects	than	S1P	on	

immune	cell	trafficking	and	recruitment	to	secondary	lymphoid	organs,	as	it	is	not	

metabolized	as	efficiently	as	the	natural	ligand[60].	These	findings	introduce	potential	

limitations	to	S1P	delivery	for	prevention	of	IR	injury,	supporting	the	design	and	utilization	

of	selective	S1P	receptor	agonists	that	are	optimized	for	maximal	biologic	effect.	FTY720	

treatment	was	found	to	downregulate	S1PR1	expression,	creating	a	temporary	

pharmacologic	S1PR1-null	state	in	lymphocytes[87].	This	strategy	has	been	adopted	in	

models	of	renal	IR	injury,	with	antagonist	studies	suggesting	the	mechanism	of	activity	to	be	

at	S1PR1[71].	The	co-administration	of	VPC01091	with	a	selective	S1PR1	antagonist	

(VPC44116)	in	the	present	study	supports	a	similar	mechanism	of	protection	from	lung	IR	

injury	through	S1PR1	agonism.		

A	multitude	of	studies	suggest	a	central	role	for	S1P	signaling	in	the	maintenance	of	

endothelial	barrier	function[89].	S1P	and	FTY720	have	been	suggested	to	sustain	the	

endothelial	cell	barrier	during	a	state	of	inflammation	through	S1PR1	activation	and	

induction	of	hepatocyte	growth	factor,	acting	through	a	Gi-coupled	receptor,	tyrosine	

kinases	and	lipid	rafts[90-92].	Parallel	studies	with	S1P	and	FTY720	in	the	setting	of	

reduced	S1PR1	expression	(via	siRNA)	have	demonstrated	an	absence	of	effect	on	
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pulmonary	endothelial	barrier	enhancement,	suggesting	that	the	protective	effects	are	

dependent	on	the	S1PR1[72].	While	these	mechanisms	of	protective	actions	remain	unclear,	

the	present	study	importantly	demonstrates	that	both	FTY720	and	VPC01091	provide	

similar	protection	from	lung	IR	injury	including	potent	preservation	of	endothelial	barrier	

function.	The	reduction	in	vascular	permeability	by	FTY720	and	VPC01091	after	IR	(Figure	

2)	could,	however,	result	from	direct	effects	upon	endothelial	cells,	indirect	effects	of	

reduced	proinflammatory	cytokines/chemokines	or	both.	Further,	while	validating	prior	

studies	that	support	the	efficacy	of	FTY720	in	attenuation	of	IR	injury,	our	utilization	of	

VPC01091	demonstrates	that	antagonistic	activity	at	the	S1PR3	receptor	may	not	limit	

therapeutic	potential	and	suggest	VPC01091	as	a	more	strategic	therapeutic	approach	for	

prevention	of	lung	IR	injury	through	S1PR1	agonism[78].	

	 Prior	study	has	demonstrated	that	S1P	analogues	reduce	inflammation	through	the	

negative	regulation	of	IL-12p70	following	LPS	administration[93].	Further,	S1P	is	decreased	

in	patients	with	cystic	fibrosis,	and	supplementation	has	demonstrated	the	potential	to	

rescue	MHC-II	and	CD40	expression	on	lung	dendritic	cells[94].	These	data	are	supported	

by	our	finding	that	protection	from	lung	IR	injury	by	FTY720	and	VPC01091	was	associated	

with	decreased	IL-12	(p70)	expression	as	well	as	IL-12/IL-23	(p40)	expression	(p40	is	a	

subunit	of	both	IL-12	and	IL-23),	suggesting	mechanistic	effects	on	the	dendritic	cell-T	cell	

axis	during	lung	IR	injury.	The	reduction	in	IL-12/IL-23	by	FTY720	and	VPC01091	likely	

contributed	to	the	observed	decrease	in	IL-17	production	after	IR,	which	confirms	our	

previous	results	that	demonstrate	a	principal	role	for	IL-17	production	by	iNKT	cells	in	lung	

IR	injury	[3].	Thus,	it	is	possible	that	S1PR1	agonism	attenuates	lung	IR	injury,	at	least	in	

part,	by	dampening	the	IL-23/IL-17	axis.	This	becomes	more	relevant	because	we	observed	

that	VPC01091	did	not	affect	iNKT	cell	trafficking	into	the	lung	after	IR	(Figure	6),	which	

supports	findings	by	Hwang	et	al.	showing	that	S1PR1	agonism	affects	NKT	cells	largely	by	
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inhibiting	cytokine	production	rather	than	affecting	migration[95].	Thus,	results	of	the	

present	study	suggest	that	S1PR1	agonism	potently	attenuates	lung	IR	injury	by	modulating	

both	endothelial	barrier	function	and	iNKT	cell	activation.	

	 While	the	present	study	provides	important	insights	into	the	potential	for	S1P	

receptor-targeted	therapies	in	prevention	of	lung	IR	injury,	inherent	limitations	exist.	First,	

the	lung	IR	injury	model	entails	warm	ischemia	and	reperfusion	of	the	lung	but	does	not	

involve	transplantation.	While	this	model	has	been	validated	by	prior	study	and	is	an	

accepted	model	for	mechanistic	studies	in	IR	injury,	immunoregulatory	effects	of	these	

agents	on	donor-recipient	cell	interactions	cannot	be	concluded	from	the	present	study.	

Second,	the	present	study	involves	a	2-hour	period	of	reperfusion	and	thus	focuses	on	acute	

IR	injury.	While	acute	injury	and	chronic	rejection	pathologies	have	causal	and	associative	

linkage	in	lung	transplantation,	no	conclusions	regarding	the	effects	of	these	compounds	on	

chronic	graft	function	can	be	made	from	the	present	study.	Importantly,	however,	we	

predict	that	VPC01091,	through	prevention	of	IR	injury,	would	benefit	long-term	

immunoregulation	and	graft	function.	Thus	it	is	possible	that	S1PR1	agonism	and	paired	

S1PR3	antagonism	may	provide	optimal	S1P	receptor-targeted	prevention	of	rejection	

pathology	after	lung	transplant	while	limiting	the	pro-fibrotic	activity	that	has	been	

associated	with	S1PR3	receptor	activation[58].	This	hypothesis	is	based	on	a	prior	study	in	

a	bleomycin	model	of	lung	injury	that	demonstrated	an	exacerbation	of	lung	injury	with	

diffuse	alveolar	damage	and	more	significant	hyaline	membrane	deposition	with	repeat	

FTY720	administration[96].		

	 In	conclusion,	the	present	study	demonstrates	that	S1P	analogues	provide	a	

promising	modality	for	the	prevention	of	lung	IR	injury.	The	finding	that	VPC01091	affords	

equal	protection	to	FTY720	in	lung	IR	injury	demonstrates	that	the	protective	mechanisms,	

such	as	preservation	of	endothelial	barrier	function	or	modulation	of	iNKT	cell	activation,	
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are	primarily	dependent	on	S1PR1	agonism.	Use	of	VPC01091	may,	therefore,	be	a	more	

effective	approach	to	S1P	receptor-targeted	therapy,	as	it	avoids	the	limited	potency	of	S1P	

alone	while	also	avoiding	potential	deleterious	effects	of	S1P3-mediated	pro-fibrotic	

processes	after	lung	injury.		
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Ex	Vivo	Lung	Perfusion	(EVLP)	as	a	Strategy	for		
Donor	Lung	Assessment	and	Rehabilitation	

	

	
Ex	vivo	lung	perfusion	(EVLP)	is	evaluated	as	a	strategy	for	donor	lung	rehabilitation	
following	donation	after	cardiac	death	(DCD).	A	novel	murine	model	for	DCD	lung	

rehabilitation	is	developed	to	evaluate	the	utilization	of	an	adenosine	2A	receptor	(A2AR)	
agonist	in	donor	lung	allograft	treatment.	A	pre-clinical	porcine	model	is	utilized	to	further	
evaluate	this	strategy	and	to	define	the	optimal	timing	for	EVLP	in	donor	lung	rehabilitation.	

These	studies	provide	the	foundation	for	current	clinical	trials	in	human	lung	
transplantation	and	donor	lung	rehabilitation.	
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Ex	vivo	lung	perfusion	(EVLP)	with	adenosine	2A	receptor	agonist	enhances	

rehabilitation	of	murine	non-heart-beating	donor	lungs	
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Abstract	

Background:	Ex	vivo	lung	perfusion	(EVLP)	enables	assessment	and	rehabilitation	of	

marginal	donor	lungs	prior	to	transplantation.	We	previously	demonstrated	that	adenosine	

A2A	receptor	(A2AR)	agonism	attenuates	lung	ischemia-reperfusion	injury.	The	current	

study	utilizes	a	novel	murine	EVLP	model	to	test	the	hypothesis	that	A2AR	agonist	enhances	

EVLP-mediated	rehabilitation	of	donation	after	circulatory	death	(DCD)	lungs.		

Methods:	Mice	underwent	euthanasia	and	60	min	warm	ischemia,	and	lungs	were	flushed	

with	Perfadex	and	underwent	cold	static	preservation	(CSP,	60	min).	Three	groups	were	

studied:	no	EVLP	(CSP),	EVLP	with	Steen	solution	for	60	min	(EVLP),	and	EVLP	with	Steen	

solution	supplemented	with	ATL1223,	a	selective	A2AR	agonist	(EVLP+ATL1223).	Lung	

function,	wet/dry	weight,	cytokines	and	neutrophil	numbers	were	measured.	Microarrays	

were	performed	using	the	Affymetrix	GeneChip	Mouse	Genome	430A	2.0	Array.	

Results:	EVLP	significantly	improved	lung	function	versus	CSP,	which	was	further,	

significantly	improved	by	EVLP+ATL1223.	Lung	edema,	cytokines,	and	neutrophil	counts	

were	reduced	after	EVLP	and	further,	significantly	reduced	after	EVLP+ATL1223.	Gene	

array	analysis	revealed	differential	expression	of	1,594	genes	after	EVLP,	which	comprise	

canonical	pathways	involved	in	inflammation	and	innate	immunity	including	IL-1,	IL-8,	IL-6	

and	IL-17	signaling.	Several	pathways	were	uniquely	regulated	by	EVLP+ATL1223	

including	the	downregulation	of	genes	involved	in	IL-1	signaling	such	as	ADCY9,	ECSIT,	

IRAK1,	MAPK12	and	TOLLIP.		

Conclusion:	EVLP	modulates	pro-inflammatory	genes	and	reduces	pulmonary	dysfunction,	

edema	and	inflammation	in	DCD	lungs,	which	are	further	reduced	by	A2AR	agonism.	This	

murine	EVLP	model	provides	a	novel	platform	to	study	rehabilitative	mechanisms	of	DCD	

lungs.	 
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Introduction	
	

Lung	transplantation	provides	the	only	curative	option	for	many	patients	with	end-

stage	pulmonary	disease,	yet	the	success	of	this	treatment	is	significantly	limited	by	donor	

organ	shortage	and	the	inherent	threat	of	ischemia-reperfusion	(IR)	injury	that	leads	to	

primary	graft	dysfunction	(PGD).	Advancements	over	the	past	decade	have	decreased	

incidences	of	PGD	from	30%	to	5-15%	while	also	expanding	the	number	of	donor	lungs	

suitable	for	transplantation[1,	21,	23,	97-100].	A	principal	focus	for	continued	progress	in	

lung	transplantation	is	the	rehabilitation	and	utilization	of	both	controlled	(Maastricht	

category	III	and	IV)	and	uncontrolled	(Maastricht	category	I	and	II)	non-heart-beating	

donor	(NHBD)	lungs	that	have	traditionally	carried	a	higher	risk	of	PGD	and	mortality[101,	

102].		

Ex	vivo	lung	perfusion	(EVLP)	is	a	novel	technique	that	provides	normothermic	

perfusion	and	mechanical	ventilation	to	donor	lungs,	allowing	functional	assessment	during	

the	preservation	period[103].	EVLP	has	been	utilized	as	an	effective	strategy	for	the	

assessment	of	marginal,	high-risk	donor	lungs	and	has	demonstrated	potential	for	

expansion	of	the	limited	donor	organ	pool	through	the	rehabilitation	of	DCD	lungs[104-

107].	While	current	advancements	in	EVLP-mediated	rehabilitation	merit	optimism	

concerning	the	future	utilization	of	DCD	lungs,	two	principal	benefits	to	this	approach	that	

have	not	been	explored	well	are	the	delivery	of	therapeutic,	anti-inflammatory	agents	to	the	

injured	lung	and	the	identification	of	molecular	markers	that	may	serve	as	predictors	of	

PGD	after	transplantation.		

We	have	previously	demonstrated	that	adenosine	2A	receptor	(A2AR)	agonism	is	a	

well-defined	approach	for	the	amelioration	of	lung	IR	injury	after	transplant	[99,	108-110]	

largely	through	activation	of	A2ARs	on	neutrophils	and	CD4+	T	cells[100].	We	have	also	

shown	that	EVLP-mediated	delivery	of	A2AR	agonist	is	a	potentially	effective	strategy	for	the	
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rehabilitation	of	Maastricht	category	I	DCD	lungs[105].	Thus,	the	purpose	of	the	current	

study	was	twofold:	1)	to	utilize	a	novel	murine	EVLP	model	to	test	the	hypothesis	that	

administration	of	a	selective	A2AR	agonist	during	EVLP	provides	a	superior	strategy	to	EVLP	

with	Steen	solution	alone	for	the	rehabilitation	of	DCD	lungs	and	2)	to	assess	the	gene	

expression	profile	in	NHBD	lungs	after	EVLP.		

Materials	and	Methods	

Animals	

Wild-type	C57BL/6	mice	(The	Jackson	Laboratory,	Bar	Harbor,	ME)	of	9-12	weeks	

of	age	were	utilized.	The	Institutional	Animal	Care	and	Use	Committee	(IACUC)	of	the	

University	of	Virginia	reviewed	and	approved	this	study,	and	standard	animal	care	was	

conducted	in	accordance	with	the	“Guide	for	Care	and	Use	of	Laboratory	Animals”	(National	

Institutes	of	Health	publication	no.	85-23,	revised	1985).	

Murine	Lung	DCD	Procedure	

Mice	were	anesthetized	by	isoflurane	inhalation	and	euthanized	by	cervical	

dislocation	followed	by	a	60-minute	period	of	“no-touch”	warm	ischemia.	Mice	then	

underwent	extended	median	sternotomy	and	midline	cervical	exposure	followed	by	

orotracheal	or	tracheostomy-mediated	intubation	for	the	initiation	of	mechanical	

ventilation	at	120	strokes/minute	with	room	air.	The	left	atrial	appendage	was	ligated	prior	

to	infusion	of	3	mL	of	4°C	Perfadex®	solution	(Vitrolife	Inc.,	Denver,	CO)	supplemented	with	

THAM	Solution	(Vitrolife,	Kungsbacka,	Sweden),	estimating	weight-based	volume	

recommendations	for	pulmonary	artery	perfusion	(140mL/kg)	[111].	The	chest	was	then	

packed	with	ice	and	the	trachea	occluded	by	silk-suture	tie	at	tidal	volume	(7µL/g	body	

weight)	prior	to	cold	static	preservation	(CSP)	for	60	minutes	at	4°C.	Mice	were	then	

randomized	into	three	experimental	groups:	1)	CSP	alone	with	no	EVLP,	2)	EVLP	with	Steen	

solution	and	3)	EVLP	with	Steen	solution	supplemented	with	the	highly	selective	A2AR	
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agonist,	ATL1223	(30nM,	Lewis	and	Clark	Pharmaceuticals,	Charlottesville,	VA).	ATL1223	

was	chosen	as	the	A2AR	agonist	because	we	have	previously	demonstrated	that	ATL1223	

potently	attenuates	IR	injury	in	mouse	models	and	in	a	porcine	lung	transplantation	model	

and	because	ATL1223	is	a	more	potent	and	selective	A2AR	agonist	versus	earlier	generation	

agonists	(unpublished	studies). Mice	treated	with	ATL1223	during	EVLP	also	received	

ATL1223	treatment	(30nM)	during	the	Perfadex	flush	prior	to	CSP	whereas	the	EVLP	group	

received	vehicle	(DMSO)	during	the	flush.	CSP	lungs,	which	did	not	undergo	EVLP	with	

Steen	solution,	underwent	immediate	functional	assessment	after	re-intubation	as	

described	below	in	order	to	define	the	status	of	the	lungs	at	the	initiation	of	EVLP.	

Murine	EVLP		

In	the	two	groups	that	underwent	EVLP,	mice	were	re-intubated	after	CSP	to	permit	

mechanical	ventilation	with	room	air	(100	strokes/minute,	tidal	volume	=	7	µl/g	body	

weight,	2	cm	H2O	PEEP)	by	anterior	tracheostomy.	The	right	ventricle	was	cannulated	for	

placement	onto	a	murine	isolated,	lung	perfusion	apparatus	(Hugo	Sachs	Elektronik,	March-

Huggstetten,	Germany)	as	previously	described[112].	The	inferior	vena	cava	was	transected	

for	exsanguination	and	the	left	ventricle	vented	through	an	apical	ventriculotomy.	The	lungs	

were	perfused	with	Steen	solution	at	a	constant	rate	of	60	µl/g	body	weight/minute,	an	

established	standard	for	isolated	murine	lung	perfusion[4,	6].	Steen	solution	within	the	

circuit	was	gradually	warmed	from	4°C	to	37°C	through	the	circuit	water	bath,	and	EVLP	

continued	for	60	minutes.	Steen	solution	perfusate	was	supplemented	with	10,000	IU	

heparin,	500mg	cefazolin	and	500mg	methylprednisolone	per	1500mL,	modeling	

preclinical	and	clinical	EVLP	protocols[103,	105].	Steen	solution	was	also	supplemented	

with	vehicle	(DMSO)	for	the	EVLP	group	or	with	ATL1223	(30nM)	for	the	ATL1223-treated	

group.	
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Lung	function	

Pulmonary	function	and	hemodynamic	measurements	were	recorded	at	the	end	of	

60	minutes	of	perfusion	using	the	PULMODYN	data	acquisition	system	(Hugo	Sachs	

Elektronik)	as	previously	described[4].	To	measure	lung	function	of	the	CSP	group,	lungs	

were	placed	directly	on	the	isolated	lung	perfusion	apparatus	and	perfused	with	standard	

Krebs-Henseleit	buffer	for	a	5-minute	equilibration	period	before	data	was	recorded	for	an	

additional	5	minutes.	These	CSP	lungs	were	utilized	to	obtain	the	data	shown.	A	separate	

group	of	CSP	lungs	were	perfused	with	Krebs-Henseleit	buffer	for	one	hour	and	compared	

to	the	EVLP	and	EVLP+ATL1223	groups	in	order	to	assess	temporal	changes	in	function	

during	perfusion	(Figure	13).	
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Figure	13.	Diagram	of	the	murine	EVLP	system.	An	isolated,	buffer-perfused	mouse	lung	
system	(Hugo	Sachs	Elektronik,	March-Huggstetten,	Germany)	was	utilized.	The	right	
ventricular	(RV)	cannula	is	passed	through	the	pulmonary	valve	into	the	pulmonary	artery.	
A	left	atrial	(LA)	cannula	drains	perfusate	into	waste	container.	Lungs	are	perfused	at	a	
constant	flow	of	60	μl/g	body	wt/min.	Lungs	are	ventilated	with	room	air	at	100	
breaths/min	at	a	tidal	volume	of	7	μl/g	body	weight	with	a	positive	end	expiratory	pressure	
of	2	cm	H2O	using	a	positive	pressure	ventilator.	The	perfusate	and	lungs	are	maintained	at	
37°C	by	use	of	a	circulating	water	bath	as	shown.	Air	bubbles	are	removed	from	the	
perfusate	via	a	bubble	trap	as	shown.	Several	differential	pressure	transducers	(DPT)	and	a	
pneumotachometer	are	used	to	measure	arterial	pressure,	tracheal	pressure	and	
respiratory	flow	via	the	PULMODYN	data	acquisition	system	(Hugo	Sachs	Elektronik). 
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Cytokine	measurements	

Using	separate	groups	of	animals,	proinflammatory	cytokines	were	measured	in	

whole	lung	lysates	using	a	multiplex	cytokine	panel	assay	(Bio-Rad	Laboratories,	Hercules,	

CA)	as	described	previously[4,	100].		

Neutrophil	counts	

Using	lungs	from	separate	groups	of	animals,	calculation	of	neutrophil	numbers	per	

high-powered	field	were	performed	on	immunostained	lung	sections	as	described	

previously[4].	

Lung	wet/dry	weight	ratio	

Right	lungs	were	weighed	and	desiccated	until	a	stable	dry	weight	was	achieved	to	

calculate	the	lung	wet/dry	weight	as	an	indicator	of	edema.	

Statistical	Analysis	

Statistical	analyses	were	performed	using	GraphPad	Prism	6.0	software,	and	data	

are	presented	as	the	mean	±	standard	error	of	the	mean.	One-way	ANOVA	with	post-hoc	

Tukey’s	multiple	comparison	test	was	performed	to	compare	experimental	groups.	

Statistical	significance	was	set	at	P	<	0.05.	

RNA	isolation	and	microarray	hybridization	

Using	separate	groups	of	animals,	total	RNA	was	extracted	from	whole	lungs	using	

TRIzol	reagent	(Life	technologies,	Carlsbad,	CA),	following	the	Affymetrix	GeneChip®	

Expression	Analysis	Manual	(Affymetrix,	Santa	Clara,	CA,	USA)	guidelines	and	

recommendations.	All	RNA	samples	met	purity	and	integrity	quality	control	criteria	

previously	established[113].	Reactions	for	cDNA	synthesis	and	in	vitro	transcription	for	

labeled	cRNA	probe,	microarray	hybridization,	image	generation,	and	probesets	reading	

process	were	performed	as	reported	previously[113,	114].	In	total,	twelve	Affymetrix	

GeneChip	Mouse	Genome	430A	2.0	microarrays	were	hybridized	for	three	separate	groups	
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of	animals	(n=4/group).	After	hybridization,	each	chip	was	scanned	on	an	Affymetrix	

GeneChip®	Scanner	3000	G7.	Raw	intensities	for	every	probe	were	stored	in	electronic	files	

(.DAT	and	.CEL	formats)	by	the	GeneChip®	Operating	Software	(GCOS).	 	

Microarray	Quality	Control	and	Data	Analysis	

The	hybridized	Affymetrix	GeneChip	Mouse	Genome	430A	2.0	microarrays	were	

analyzed	using	RMAexpress	software	to	normalize	probeset	data	by	quantile	normalization	

and	summarized	with	median	polish	summarization	using	the	Robust	Multiarray	Average	

method	[115,	116].	Pairwise	comparisons	(EVLP	vs.	CSP	and	EVLP+ATL1223	vs.	CSP)	were	

fit	using	two-sample	t-test	in	the	R	programming	environment[117].	To	adjust	for	the	

multiple	hypothesis	tests,	the	p-values	were	used	in	estimating	the	false	discovery	rate	

(FDR)	using	the	Benjamini	and	Hochberg	method[118,	119].	P-values	≤	0.001	under	a	

controlled	FDR	<	1%	were	considered	significant.	Fold-change	values	were	used	for	

differential	expression	magnitudes.	

Interaction	Networks,	Functional	Analysis,	and	Upstream	regulators.	

The	Ingenuity	Pathway	Analysis	(IPA,	www.ingenuity.com)	tool	was	used	to	analyze	

gene	 ontology	 and	 pathways	 of	 differential	 expressed	 genes.	 P-values	 ≤0.05	 were	

considered	 significant.	 Spreadsheet	 lists	 containing	 probesets	 ID	 and	 fold-changes	 were	

generated	and	uploaded	to	IPA.	

Results	

ATL1223	Improves	Lung	Function	and	Reduces	Edema	During	EVLP	of	DCD	Lungs		

DCD	lungs	undergoing	EVLP	demonstrated	significantly	increased	pulmonary	

compliance	(3.70±0.13	vs.	1.88±0.21	µl/cm	H2O,	respectively)	and	decreased	pulmonary	

artery	pressure	(9.22±0.21	vs.	14.14±0.37	cm	H2O,	respectively)	after	1	hour	of	perfusion	

compared	to	CSP	lungs	(Figure	14).	In	addition,	EVLP	significantly	reduced	pulmonary	

edema	as	assessed	by	wet/dry	weight	compared	to	CSP	lungs	(4.58±0.13	vs.	5.15±0.18,	
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respectively)	(Figure	14).	Furthermore,	EVLP	with	Steen	solution	supplemented	with	

ATL1223	significantly	increased	pulmonary	compliance	(5.17±0.15	vs.	3.70±0.13	µ	l/cm	

H2O,	respectively)	and	reduced	pulmonary	artery	pressure	(7.79±0.22	vs.	9.22±0.21	cm	

H2O,	respectively)	when	compared	to	EVLP	alone	after	1	hour	of	perfusion	(Figure	14).	

Temporal	measurements	of	lung	function	during	the	1	hour	perfusion	period	demonstrate	

that	function	in	the	EVLP	+	ATL1223	group	began	to	significantly	diverge	from	the	EVLP	

group	by	30	minutes	of	perfusion	and	that	lung	function	in	the	CSP	group	did	not	

significantly	change	when	perfusion	was	extended	to	one	hour.	In	accordance	with	

functional	improvement,	EVLP	with	ATL1223	also	significantly	reduced	pulmonary	edema	

compared	to	EVLP	alone	(4.08±0.10	vs.	4.58±0.13,	respectively).	
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Figure	14.	EVLP-directed	delivery	of	ATL1223	improves	function	and	reduces	edema	
in	DCD	lungs.	Compared	to	lungs	after	cold	static	preservation	(CSP),	EVLP	significantly	
increased	pulmonary	compliance	and	reduced	pulmonary	artery	pressure	and	wet/dry	
weight	(edema).	ATL1223	treatment	during	EVLP	provided	further,	significantly	improved	
lung	function	and	reduced	edema.	One-way	ANOVA	with	post-hoc	Tukey’s	multiple	
comparison	test	was	performed	to	compare	groups.	Results	are	presented	as	mean	±	SEM.	
*p<0.05	versus	CSP;	#p<0.05	versus	EVLP;	n=10-12/group	(pulmonary	compliance	and	
pulmonary	artery	pressure);	n=8-9/group	(wet/dry	weight).	
	
EVLP	with	ATL1223	Reduces	Pro-Inflammatory	Cytokine	Expression	

Expression	of	CXCL1,	CCL2	and	TNF-α	were	reduced	in	lungs	following	EVLP,	

although	this	did	not	reach	significance	(Figure	15).	Treatment	with	ATL1223	during	EVLP	

significantly	reduced	the	levels	of	CXCL1,	CCL2	and	TNF-α	versus	EVLP	alone.	CXCL1	results	

for	CSP,	EVLP	and	EVLP+ATL1223	groups	were:	78.9±37.6,	19.6±4.4	and	4.8±0.4	pg/ml,	
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respectively.	CCL2	results	for	CSP,	EVLP	and	EVLP+ATL1223	groups	were:	319.7±78.7,	

208.4±46.2	and	89.8±20.2	pg/ml,	respectively.	TNF-α	results	for	CSP,	EVLP	and	

EVLP+ATL1223	groups	were:	268.4±24.6,	210.0±39.5	and	150.4±19.0	pg/ml,	respectively.	

	

	

Figure	15.	EVLP-directed	delivery	of	ATL1223	reduces	proinflammatory	cytokine	
production	in	DCD	lungs.	Compared	to	lungs	after	cold	static	preservation	(CSP),	
expression	of	CXCL1,	CCL2	and	TNF-α	were	slightly,	but	not	significantly,	reduced	by	EVLP.	
ATL1223	treatment	during	EVLP	resulted	in	significant	reductions	in	expression	of	CXCL1,	
CCL2	and	TNF-α.	One-way	ANOVA	with	post-hoc	Tukey’s	multiple	comparison	test	was	
performed	to	compare	groups.	Results	are	presented	as	mean	±	SEM.	*p<0.05	versus	CSP;	
#p<0.05	versus	EVLP;	n=4-7/group.	
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EVLP	with	ATL1223	Reduces	Lung	Neutrophil	Numbers	

Immunostaining	of	lung	sections	revealed	a	small	decrease	in	neutrophil	numbers	

after	EVLP	versus	CSP,	although	this	was	not	significant	(Figure	16).	However,	EVLP	with	

ATL1223	significantly	reduced	neutrophil	numbers	versus	both	CSP	and	EVLP	groups	

(2.06±0.34	vs.	5.42±1.13	and	4.06±0.77,	respectively).		

	
Figure	16.	EVLP-directed	delivery	of	ATL1223	depletes	pulmonary	neutrophils.	(A)	
Representative	lung	sections	(20x	magnification)	showing	immunostaining	for	neutrophils	
(red	staining).	(B)	Quantitation	of	the	number	of	neutrophils	per	high-powered	field	(HPF)	
in	immunostained	lung	sections.	EVLP	with	ATL1223	resulted	in	significantly	fewer	
neutrophils/HPF	versus	cold	static	preservation	(CSP)	and	EVLP	alone.	One-way	ANOVA	
with	post-hoc	Tukey’s	multiple	comparison	test	was	performed	to	compare	groups.	Results	
are	presented	as	mean	±	SEM.	*p<0.05	versus	all;	n=5-6/group.	
	
Gene	Expression	Profiles	in	DCD	Lungs	After	EVLP	

EVLP	of	DCD	lungs	resulted	in	the	differential	expression	of	1,594	genes	(1,762	

probesets)	compared	to	CSP	(Figure	17A).	Core	analysis	was	performed	to	interpret	the	

data	set	in	the	context	of	biological	processes,	canonical	pathways	and	molecular	networks.	

The	top	two	networks	identified	from	the	dataset	included	1)	connective	tissue	

development	and	function,	tissue	morphology,	cell	cycle	(score	36,	score	≥5	was	considered	
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significant)	and	2)	molecular	transport,	skeletal	and	muscular	system	development	and	

function,	free	radical	scavenging	(score	31).	

	

	
	
Figure	17.	Differentially	expressed	genes	among	study	groups	as	a	function	of	EVLP-
mediated	rehabilitation	strategy	for	DCD	lungs.	(A)	Venn	diagram	showing	numbers	of	
differentially	expressed	genes	in	lungs	from	EVLP	and	EVLP+ATL1223	groups	when	
compared	to	the	cold	static	preservation	(CSP)	control	group	(FDR	1%).	(B)	Volcano	plots	
depicting	the	gene	expression	profile	of	pairwise	comparisons	of	indicated	groups.	Each	dot	
represents	a	unique,	differentially	expressed	probeset.	Significant	probesets	[p-value	≤	
0.001	or	–log10	(p-value)	≥	3]	are	illustrated	by	red	dots.	
	

From	the	analysis	of	molecular	and	cellular	functions	using	the	differentially	

expressed	genes	between	the	EVLP	vs.	CSP	groups,	cell	death	and	survival	(p-value	

range=1.15E-09–1.06E-02,	299	genes),	gene	expression	(p-value	range=1.39E-08–8.38E-04,	

179	genes)	and	lipid	metabolism	(p-value	range=4.59E-08–1.07E-02,	153	genes)	were	

identified	as	the	more	relevant	between	the	groups.	A	total	of	123	canonical	pathways	were	

identified	as	significant	and	associated	with	the	EVLP	gene	expression	profile	when	
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compared	to	CSP	(p<0.05).	From	these	canonical	pathways,	ten	selected	pathways	focusing	

on	inflammation	and	innate	immune	responses	are	highlighted	in	Figure	18A	including	IL-

1	signaling	(p-value=3.5E-04),	IL-8	signaling	(p-value=5.0E-04)	and	IL-17	signaling	(p-

value=1.7E-02).	Further	analysis	of	the	IL-1	and	IL-8	signaling	pathways	showed	an	

important	number	of	genes	down-regulated	by	EVLP	including	IL6ST,	SOCS3,	PIK3CA,	

PIK3C2A,	PIK3R1,	MAPK13,	TRAF6,	FOS,	JUN,	CRP,	PIK3CD,	TNFRSF1B,	IL1RAP,	TNF	and	

ATM,	among	others.	Overall,	as	shown	in	Figure	18A,	these	pathways	showed	a	higher	

percentage	of	genes	down-regulated	in	the	EVLP	group.	
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Figure	18.	Differentially-expressed	canonical	pathways	affected	by	EVLP.	(A)	Ten	
canonical	pathways	focused	on	inflammatory	and	innate	immune	responses	(selected	from	
the	significant	canonical	pathways,	p<0.05)	are	shown	along	the	x-axis	that	are	significantly	

Downregulated Upregulated No overlap with dataset 

0 

25 

50 

75 

100 

P
er

ce
nt

ag
e 

91 183 152 72 180 123 180 173 116 73 

IL
-1

 S
ig

na
lin

g 

IL
-8

 S
ig

na
lin

g 

C
X

C
R

4 
S

ig
na

lin
g 

JA
K

/S
ta

t S
ig

na
lin

g 

P
ro

du
ct

io
n 

of
 N

itr
ic

 
O

xi
de

 a
nd

 R
ea

ct
iv

e 
O

xy
ge

n 
S

pe
ci

es
 

P
I3

K
/A

K
T 

S
ig

na
lin

g 

N
R

F2
-m

ed
ia

te
d 

O
xi

da
tiv

e 
S

tre
ss

 
R

es
po

ns
e 

N
F-
κB

 S
ig

na
lin

g 

IL
-6

 S
ig

na
lin

g 

S
TA

T3
 P

at
hw

ay
 

A 

B 

0 

25 

50 

75 

100 

P
er

ce
nt

ag
e 

IL
-1

 S
ig

na
lin

g 

IL
-8

 S
ig

na
lin

g 

C
X

C
R

4 
S

ig
na

lin
g 

JA
K

/S
ta

t S
ig

na
lin

g 

P
ro

du
ct

io
n 

of
 N

itr
ic

 
O

xi
de

 a
nd

 R
ea

ct
iv

e 
O

xy
ge

n 
S

pe
ci

es
 

P
I3

K
/A

K
T 

S
ig

na
lin

g 

N
F-
κB

 S
ig

na
lin

g 

IL
-6

 S
ig

na
lin

g 

S
TA

T3
 P

at
hw

ay
 

N
R

F2
-m

ed
ia

te
d 

O
xi

da
tiv

e 
S

tre
ss

 
R

es
po

ns
e 

0 

25 

50 

75 

100 

P
er

ce
nt

ag
e 

169 62 63 35 74 173 24 25 66 

180 123 91 173 73 180 116 72 152 183 

C 

R
ol

e 
of

 J
A

K
1 

an
d 

JA
K

3 
in

 Y
c 

C
yt

ok
in

e 
S

ig
na

lin
g 

IL
-1

5 
S

ig
na

lin
g  

R
ol

e 
of

 J
A

K
 fa

m
ily

 
K

in
as

es
 in

 IL
-6

-ty
pe

 
C

yt
ok

in
e 

S
ig

na
lin

g 

N
F-
κB

 S
ig

na
lin

g 

G
M

-C
S

F 
S

ig
na

lin
g 

R
ol

e 
of

 J
A

K
2 

in
 H

or
m

on
e-

 
lik

e 
C

yt
ok

in
e 

S
ig

na
lin

g 

IL
-2

2 
S

ig
na

lin
g 

FL
T3

 S
ig

na
lin

g 
in

 
H

em
at

op
oi

et
ic

  
P

ro
ge

ni
to

r C
el

ls
 

A
cu

te
 P

ha
se

 
R

er
sp

on
se

 S
ig

na
lin

g 



	 69	

different	between	EVLP	versus	CSP.		(B)	Ten	canonical	pathways	focused	on	inflammatory	
and	innate	immune	responses	(selected	from	the	significant	canonical	pathways,	p<0.05)	
are	shown	along	the	x-axis	that	are	significantly	different	between	EVLP+ATL223	versus	
CSP.	(C)	The	canonical	pathways	resulting	from	the	evaluation	of	genes	uniquely	
differentially	expressed	in	EVLP+ATL1223	vs.	CSP	(801	genes,	FDR	1%).	The	total	number	
of	genes	associated	with	each	pathway	is	listed	above	each	bar.	Green	and	red	bars	indicate	
the	percentage	(y	axis)	of	those	genes	down-	or	up-regulated,	respectively,	as	calculated	by	
(#	genes	in	a	given	pathway	that	meet	cutoff	criteria)	/	(total	#	genes	that	comprise	that	
pathway).	Pathways	are	presented	left-to-right	from	highest	to	lowest	significance.	
	
Differential	Gene	Expression	Analysis	in	DCD	Lungs	After	EVLP+ATL1223	

A	comparison	between	the	EVLP+ATL1223	and	CSP	groups	resulted	in	a	total	of	

1,917	differentially	expressed	genes,	with	1,116	genes	overlapping	with	the	EVLP	vs.	CSP	

comparison	analysis	(Figure	17A).	This	indicates	an	important	overlap	between	affected	

biological	pathways	in	both	EVLP	conditions.	However,	the	number	of	unique	genes	affected	

in	the	EVLP+ATL1223	vs.	CSP	analysis	was	higher	than	in	the	EVLP	vs.	CSP	analysis.	A	direct	

comparison	analysis	of	EVLP	vs.	EVLP+ATL1223	revealed	a	limited	number	of	genes	

differentially	expressed	between	these	groups	even	when	a	flexible	cutoff	for	significance	

(p-value<0.001)	was	used	(Figure	17B).	

When	comparing	EVLP+ATL1223	to	CSP,	the	top	molecular	and	cellular	functions	

associated	with	the	statistical	differentially	expressed	genes	included	1)	gene	expression	(p-

value	range=3.7E-22–3.2E-04,	427	genes),	2)	cellular	growth	and	proliferation	(p-value	

range=3.3E-20–3.1E-04,	627	genes)	and	3)	cell	death	and	survival	(p-value	range=1.1E-16–

3.7E-04,	596	genes).	A	total	of	166	canonical	pathways	were	identified	as	significant	and	

associated	with	the	EVLP+ATL1223	gene	expression	profile	when	compared	to	CSP	

(p<0.05).	From	these	canonical	pathways,	ten	selected	pathways	focusing	on	inflammation	

and	innate	immune	responses	are	highlighted	in	Figure	18B	including	IL-1	signaling	(p-

value=3.0E-03),	IL-8	signaling	(p-value=2.7E-02)	and	IL-17	signaling	(p-value=3.6E-02).	

Interestingly,	the	evaluation	of	unique	genes	differentially	expressed	in	EVLP+ATL1223	vs.	

CSP	showed	an	overall	effect	of	down-regulation	of	genes	related	to	NF-κB	signaling,	among	
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other	pathways	(9	in	total),	with	most	of	these	genes	down-regulated	in	EVLP+ATL1223	vs.	

CSP	(Figure	18C).		

Identification	of	Differential	Gene	Expression	Profiles	Associated	with	

EVLP+ATL1223	versus	EVLP	Alone	

To	evaluate	differences	strictly	associated	with	ATL1223	treatment	during	EVLP,	we	

compared	EVLP	and	EVLP+ATL1223	to	the	same	CSP	group	and	performed	comparison	

analysis	using	IPA.	From	the	analysis,	a	noticeably	greater	number	of	IL-1	signaling	genes	

were	down-regulated	in	the	EVLP+ATL1223	group	including	down-regulation	of	ADCY9,	

ECSIT,	IRAK1,	MAPK12	and	TOLLIP;	indicating	a	greater	effect	in	the	number	of	

inflammatory	genes	decreased	with	the	use	of	ATL1223.	Also,	a	similar	effect	was	observed	

for	acute	phase	response	signaling	with	an	additional	number	of	genes	down-regulated	in	

the	EVLP+ATL1223	group	including	PTPN11,	MAP3K5,	CP,	PDPK1,	SOCS5,	MAPK12,	

TRADD,	MAP3K7	and	IRAK1	(data	not	shown).		

Discussion	

Our	group	and	others	have	demonstrated	in	preclinical	models	that	DCD	lungs	with	

extended	warm	ischemic	times	(up	to	60	minutes)	may	be	rehabilitated	by	EVLP	to	an	

acceptable	state	for	transplantation	[106,	120].	These	results	have	been	furthered	by	

clinical	studies	in	which	initially	rejected	human	donor	lungs	have	been	rehabilitated	to	

acceptable	standards	for	transplantation	[121,	122].	While	these	results	support	a	

promising	future	for	use	of	DCD	lungs	in	successful	transplantation,	not	all	lung	grafts	are	

recoverable	and	many	experience	a	decrease	in	oxygenation	capacity	with	an	increase	in	

interstitial	edema	during	EVLP	[123].	The	future	application	of	EVLP	is,	therefore,	

dependent	on	early,	targeted	therapy	and	the	establishment	of	predictive	standards	for	

post-transplantation	lung	function.	For	example,	experimental	studies	have	identified	

nebulized	arginase	inhibitor	and	adenoviral	vector	delivery	of	IL-10	as	potential	
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rehabilitative	strategies	during	EVLP	[124,	125].	Furthermore,	an	understanding	of	the	

mechanisms	that	underlie	EVLP-mediated	rehabilitation	would	lead	to	the	advancement	of	

this	technique	for	lung	transplantation.		

The	present	study	introduces	a	novel	murine	model	of	EVLP	of	DCD	lungs,	which	

provides	a	fundamental	framework	for	future	studies	aimed	toward	identifying	potential	

predictive	markers	of	PGD	after	EVLP	and	transplantation	as	well	as	the	assessment	of	

novel	targeted	therapies	for	EVLP-mediated	donor	lung	rehabilitation.	Importantly,	our	

study	demonstrates	that	EVLP	of	DCD	lungs	leads	to	significantly	improved	function	and	

reduced	edema.		

A2AR	agonism	has	been	established	as	an	effective	strategy	for	the	prevention	of	IR	

injury	after	experimental	lung	transplantation	[99,	108-110,	120].	Recently,	using	a	porcine	

model,	our	group	has	demonstrated	that	A2AR	agonist	therapy	provides	effective	EVLP-

mediated	rehabilitation	of	heart-beating	donor	lungs	after	extended	cold	ischemic	

preservation	[126].	While	this	study	demonstrated	the	potential	for	translation	of	this	

therapy	to	clinical	transplantation,	no	comparative	analysis	of	EVLP-mediated	A2AR	agonist	

treatment	has	been	previously	performed	in	DCD	lungs.	Thus,	the	present	study	utilizes	the	

murine	EVLP	model	to	demonstrate	enhanced	rehabilitation	of	DCD	lungs	via	A2AR	agonist	

therapy,	which	results	in	significantly	improved	lung	function	as	well	as	reduced	edema	and	

inflammation.	

Although	EVLP	improved	function	of	murine	DCD	lungs,	EVLP	resulted	in	small	

reductions	of	pro-inflammatory	cytokine	levels	and	neutrophil	counts	that	were	not	

statistically	significant.	It	is	possible	that	EVLP	with	Steen	solution	largely	preserves	

endothelial	function	to	attenuate	edema	and	dysfunction,	resulting	in	more	indirect	effects	

on	cytokine	expression	during	reperfusion.	Importantly,	EVLP	with	A2AR	agonist	treatment	
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significantly	decreased	pro-inflammatory	cytokine	levels	and	neutrophil	numbers,	two	

established	hallmarks	of	lung	IR	injury	and	PGD	[127].	

Because	lungs	are	perfused	with	acellular	Steen	solution,	neutrophil	numbers	in	

lungs	were	overall	lower	than	what	is	typically	observed	after	IR	in	vivo	[4].	As	shown,	it	is	

likely	that	most	observed	neutrophils	are	marginated	(i.e.	temporarily	adhered	to	

endothelium).	We	have	previously	shown	that	buffer	perfusion	of	isolated	murine	lungs	

does	not	readily	wash	away	significant	numbers	of	marginated	neutrophils	[6].	Although	

EVLP	may	have	slightly	decreased	the	number	of	marginated	neutrophils,	the	inclusion	of	

ATL1223	with	EVLP	resulted	in	significantly	fewer	neutrophils.	This	suggests	that	A2AR	

agonism	reduces	the	adhesion	of	marginated	neutrophils,	which	is	supported	by	studies	

showing	that	A2AR	agonists	modulate	adhesion	molecule	expression	[128]	and	inhibit	

neutrophil	transepithelial	migration	[129].	Because	neutrophil	activation	and	infiltration	is	

a	key	component	of	IR	injury,	the	flushing	away	of	greater	numbers	of	marginated	

neutrophils	in	DCD	lungs	by	EVLP-mediated	A2AR	agonist	delivery	would	be	beneficial	in	

attenuating	IR	injury	after	transplantation.	

A	traditional	measure	of	lung	function	during	EVLP,	often	used	to	predict	successful	

transplantation,	has	been	the	partial	pressure	of	oxygen	(PO2)	in	the	EVLP	perfusate.	

However,	this	may	be	misleading	since	Yeung	et	al.	used	a	preclinical	study	of	high-risk	

donor	lungs	to	demonstrate	a	higher	predictive	value	for	decreased	compliance	and	

increased	airway	pressure	than	PO2	during	EVLP	[130].	Thus	Yeung	et	al.	demonstrated	that	

one	cannot	place	the	full	emphasis	of	lung	assessment	on	PO2	during	EVLP	and	that	ex	vivo	

PO2	may	not	be	the	first	indication	of	lung	injury	[130].	Although	PO2	levels	during	EVLP	

were	not	measured	in	the	present	study,	our	results	support	the	concept	that	pulmonary	

compliance	and	pulmonary	artery	pressure	may	be	useful	and	important	physiologic	

predictors	of	graft	function.		
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Gene	expression	analysis	revealed	a	large	number	of	canonical	pathways,	including	

many	associated	with	inflammation	and	innate	immune	responses,	that	are	significantly	

affected	by	EVLP,	with	the	overall	affect	being	downregulation	of	most	genes	in	these	

pathways.	The	induction	of	inflammatory	responses	after	reperfusion	is	believed	to	be	the	

major	contributor	to	IR	injury	and	PGD	after	transplantation,	and	the	present	study	

suggests	that	proinflammatory	responses	in	DCD	lungs	occur	quickly	after	perfusion	and	

that	EVLP	with	Steen	solution	effectively	attenuates	these	responses	via	modulation	of	the	

expression	of	many	proinflammatory	genes.	Although	treatment	with	ATL1223	during	

EVLP	resulted	in	a	limited	number	of	differentially	expressed	genes	compared	to	EVLP	

without	ATL1223,	a	larger	number	of	canonical	pathways	overall	were	significantly	affected	

after	EVLP	with	ATL1223.	Gene	analysis	demonstrated	the	modulation	of	multiple	and	

overlapping	inflammatory	pathways	after	EVLP	with	or	without	ATL1223.	It	is	possible	that	

some	of	these	may	be	useful	biomarkers	to	assess	inflammation	in	lungs	during	EVLP	as	a	

potential	means	to	gauge	the	acceptability	of	DCD	lungs	for	successful	transplantation.	

There	are	several	limitations	to	the	current	study.	First,	the	circuit	design	is	‘open’	

rather	than	‘closed’	as	typically	utilized	in	clinical	EVLP	protocols.	This	may	actually	

introduce	the	potential	for	improved	efficacy,	as	the	murine	model	drains	perfusate	through	

the	left	atrium	and	may	more	effectively	clear	both	pro-inflammatory	cytokines	and	

neutrophils	that	would	persist	in	a	closed	circuit.	While	recognizing	this	limitation,	many	

advocate	a	standardized	approach	of	Steen	solution	replacement	during	EVLP	[103],	and	

the	present	study	supports	the	potential	benefit	of	this	approach.	Second,	murine	lungs	

were	assessed	ex	vivo	but	were	not	transplanted.	While	murine	models	of	transplantation	

exist,	the	focus	of	this	initial	study	was	to	evaluate	lung	function	and	injury	during	EVLP,	

and	thus	these	results	could	not	be	translated	to	transplanted	lungs.	Third,	EVLP	was	

performed	for	1	hour	whereas	clinical	EVLP	is	typically	performed	for	4	hours	(or	even	
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longer).	Although	1	hour	of	EVLP	was	sufficient	for	significant	improvements	in	lung	

function	and	edema,	it	is	possible	that	a	longer	period	of	EVLP	would	lead	to	more	

significant	effects	on	inflammation	markers	such	as	cytokines	or	gene	expression.	

Preliminary	studies	indicated	that	perfused	lungs	typically	stabilize	within	30	minutes	and	

remain	stable	throughout	1	hour	of	perfusion	and	beyond,	thus	we	chose	to	assess	lungs	

after	1	hour.	Fourth,	it	is	possible	that	anti-inflammatory	effects	of	methylprednisolone	

could	have	an	influence	on	lung	inflammation	(e.g.	cytokine	levels)	during	EVLP.	Steen	

solution	was	supplemented	with	methylprednisolone	(as	well	as	heparin	and	cefazolin)	in	

order	to	model	what	is	used	in	many	preclinical	and	clinical	EVLP	protocols.	However,	both	

the	EVLP	and	EVLP+ATL1223	groups	of	lungs	were	perfused	with	identical	perfusate	(+/-	

ATL1223)	and	thus	were	directly	comparable.	Finally,	it	is	possible	that	the	beneficial	

effects	of	ATL1223	during	EVLP	could	be	due	to	the	vasodilatory	actions	of	A2AR	agonism	as	

shown	by	many	studies.	However,	this	is	unlikely	since	the	dose	of	A2AR	agonist	required	for	

cardiovascular	effects	are	much	higher	than	the	dose	required	for	inhibition	of	

inflammation,	and	the	dose	of	ATL1223	utilized	in	the	present	study	was	based	on	well-

established	doses	used	in	prior	studies	that	prevent	IR	injury	but	do	not	have	significant	

cardiovascular	effects	[108,	109,	131].	

In	conclusion,	the	present	study	demonstrates	that	EVLP	provides	an	effective	

platform	for	the	rehabilitation	of	DCD	lungs	in	a	novel	murine	model.	EVLP-mediated	

therapy	with	A2AR	agonist	results	in	significantly	enhanced	protection	as	demonstrated	by	

reductions	in	pulmonary	dysfunction,	edema,	pro-inflammatory	cytokines	and	neutrophil	

numbers.	Additionally,	a	decrease	in	the	expression	of	genes	associated	with	inflammation	

was	observed	after	EVLP.	The	murine	EVLP	model	provides	a	reproducible	and	effective	

means	for	experimental,	mechanistic	studies	of	novel	EVLP-directed	therapies	that	may	

help	in	the	identification	of	predictive	biomarkers	of	lung	function	after	EVLP	and	
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transplantation.	Future	translation	of	EVLP	and	A2AR	agonist	therapy	to	DCD	lungs	could	

greatly	impact	all	lung	transplant	recipients	by	not	only	increasing	the	donor	pool	size	to	

reduce	the	wait-list	mortality	but	may	also	attenuate	PGD	leading	to	improved	short-	and	

long-term	outcomes	for	lung	transplant	patients.	
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Abstract	
	
Objectives:	Ex	vivo	lung	perfusion	(EVLP)	is	a	promising	modality	for	the	evaluation	and	
treatment	of	marginal	donor	lungs.		The	optimal	timing	of	EVLP	initiation	and	potential	for	
rehabilitation	of	donor	lungs	with	extended	warm-ischemic	times	is	unknown.		This	study	
compares	the	efficacy	of	different	treatment	strategies	for	uncontrolled	non-heart-beating	
donor	lungs.	
	

Methods:	Mature	swine	underwent	hypoxic	arrest	followed	by	60	minutes	of	no-touch	
warm-ischemia.		Lungs	were	harvested	and	flushed	with	4°C	Perfadex®.		Three	groups	
(n=5/group)	were	stratified	according	to	preservation	method:	cold-static	preservation	
(CSP:	4	hrs	4°C	storage),	immediate	EVLP	(I-EVLP:	4	hrs	EVLP	at	37°C),	and	delayed	EVLP	
(D-EVLP:	4	hrs	cold	storage	followed	by	4	hrs	EVLP).		EVLP	groups	were	perfused	with	
Steen	solution™	supplemented	with	heparin,	methylprednisolone,	cefazolin,	and	an	
adenosine	2A	receptor	agonist.		Lungs	then	underwent	allotransplantation	and	four	hours	
of	recipient	reperfusion	prior	to	allograft	assessment	for	resultant	ischemia-reperfusion	
injury.				
	

Results:		Donor	blood	oxygenation	(PO2:FiO2)	prior	to	euthanasia	was	not	different	
between	groups.		Oxygenation	after	transplantation	was	significantly	higher	in	the	D-EVLP	
group	compared	to	the	I-EVLP	or	CSP	groups.		Mean	airway	pressure,	pulmonary	artery	
pressure,	and	expression	of	IL-8,	IL-1β,	and	TNF-α	were	all	significantly	reduced	in	the	D-
EVLP	group.		Importantly,	post-transplant	oxygenation	exceeded	acceptable	clinical	levels	
only	in	D-EVLP	lungs.				
	

Conclusions:	Uncontrolled	non-heart-beating	donor	lungs	with	extended	warm-ischemia	
can	be	reconditioned	for	successful	transplantation.		The	combination	of	CSP	and	EVLP	
present	in	the	D-EVLP	group	was	necessary	to	obtain	optimal	post-transplant	function.		This	
finding,	if	confirmed	clinically,	will	allow	expanded	use	of	non-heart-beating	donor	lungs.			
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Introduction	
	
	 Lung	transplantation	is	a	lifesaving	treatment	for	patients	with	end-stage	

pulmonary	disease;	however,	its	success	is	limited	by	significant	donor	organ	shortages.		To	

address	this	growing	problem,	many	centers	now	utilize	a	limited	number	of	marginal	or	

extended	criteria	heart-beating	(HB)	donor	lungs.		Recently,	transplantation	of	lungs	from	

non-heart-beating	(NHB)	donors	has	gained	renewed	interest	as	a	potential	mechanism	to	

alleviate	donor	organ	shortages.		NHB	donors	are	classified	by	Maastricht	category	

according	to	the	circumstances	of	expiration	(I	–	dead	on	arrival	to	the	hospital,	II	–	failed	

resuscitation,	III	–	withdrawal	of	life	support,	awaiting	cardiac	arrest,	IV	–	cardiac	arrest	in	

brain-dead	donor),	and	further	described	as	uncontrolled	(categories	I	and	II)	and	

controlled	(categories	III	and	IV)	donors[132].		Unfortunately,	several	case	series	using	NHB	

donor	lungs	for	transplantation	have	shown	higher	rates	of	primary	graft	dysfunction,	

bronchiolitis	obliterans,	and	mortality	in	comparison	to	HB	donor	lungs,	and	accurately	

predicting	post-transplantation	function	of	NHB	donors	lungs	has	proven	difficult	in	part	

due	to	variation	in	warm	ischemic	times[101,	133,	134].		

	 	Ex	vivo	lung	perfusion	(EVLP)	is	a	technique	of	normothermic	acellular	lung	

perfusion	for	both	donor	lung	assessment	and	rehabilitation	ex	vivo[103,	135].		The	promise	

of	this	technique	has	been	demonstrated	in	recent	human	clinical	trials	with	marginal	donor	

lungs	(Maastricht	III	and	IV),	yet	questions	remain	regarding	the	optimal	timing	of	EVLP,	

potential	application	as	a	platform	for	therapeutic	delivery,	and	rehabilitation	potential	for	

Maastricht	category	I	and	II	donor	lungs[21,	97].	

	 The	purpose	of	this	study	was	to	determine,	using	a	preclinical	porcine	transplant	

model,	if	lungs	from	uncontrolled	NHB	donors	(Maastricht	category	I)	with	extended	warm	

ischemic	times	could	be	rehabilitated	to	an	acceptable	functional	status	for	subsequent	

successful	transplantation.		We	hypothesized	that	initiation	of	EVLP	immediately	after	NHB	
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donor	lung	explantation	would	minimize	cold	ischemic	time,	allow	for	rapid	initiation	of	

directed	donor	lung	treatment,	and	result	in	superior	outcomes	after	lung	transplantation	

when	compared	to	either	cold	static	preservation	alone	or	delayed	initiation	of	EVLP	after	a	

period	of	cold	static	preservation.			

Materials	and	Methods	

Animals	

	 The	University	of	Virginia’s	Institutional	Animal	Care	and	Use	Committee	reviewed	

and	approved	all	aspects	of	this	study.		Humane	animal	care	was	observed	in	accordance	

with	the	“Guide	for	Care	and	Use	of	Laboratory	Animals”	(National	Institutes	of	Health	

publication	no.	85-23,	revised	1985).	

Study	Groups	

	 Mature	domestic	swine	of	both	sexes	(20-38	kg)	were	randomized	throughout	the	

study	among	3	different	study	groups	(n=5/group)	stratified	according	to	donor	lung	

preservation	method.		Donor	swine	from	all	groups	underwent	hypoxic	arrest	followed	by	

60	minutes	of	no-touch	warm	ischemia.		The	cold-static	preservation	(CSP)	group	

underwent	lung	procurement	and	4	hours	of	storage	in	4°C	Perfadex®	(Vitrolife	Inc.,	

Denver,	CO),	a	commercially	available	preservative	solution	widely	used	for	human	lung	

transplantation.		Left	donor	lungs	were	subsequently	transplanted	into	size-matched	

recipients.		The	CSP	group	served	as	the	ischemia-reperfusion	injury	control.		The	

immediate	EVLP	(I-EVLP)	group	underwent	lung	procurement	and	4	hours	of	immediate	

normothermic	EVLP,	followed	by	transplantation.		The	delayed	EVLP	(D-EVLP)	group	

received	a	combination	of	both	strategies	and	underwent	lung	procurement,	4	hours	of	

storage	in	4°C	Perfadex,	followed	by	4	hours	of	normothermic	EVLP	prior	to	

transplantation.	After	left	lung	transplantation,	lungs	of	all	animals	were	perfused	in	vivo	for	
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a	continuous	4-hour	period,	after	which	parameters	of	lung	function	and	injury	were	

assessed	as	described	below.		

Porcine	Arrest	and	Donor	Lung	Procedure	

	 Donor	animals	were	anesthetized	with	ketamine	(50	mg/kg)	and	xylazine	(5	

mg/kg),	ventilated	with	room	air,	and	intubated.		After	intubation,	anesthesia	was	

maintained	for	10	minutes	with	3%	isoflurane	and	the	lungs	were	ventilated	with	100%	

fraction	of	inspired	oxygen	(FiO2)	using	a	volume	control	ventilator	(Harvard	Apparatus,	

Boston	MA)	at	a	tidal	volume	of	8	mL/kg,	respiratory	rate	of	14-18	breaths/minute,	and	a	

positive	end-expiratory	pressure	(PEEP)	of	5.0	cm	H2O.		Each	swine	was	placed	in	the	

supine	position	and	continuous	electrocardiographic	monitoring	was	initiated.		After	10	

minutes,	a	baseline	arterial	blood	gas	sample	was	obtained	via	percutaneous	withdrawal	

from	the	carotid	artery.		Following	arterial	blood	gas	measurement,	the	ventilator	was	

disconnected,	the	endotracheal	tube	was	occluded,	and	the	animal	was	euthanized	via	

hypoxic	arrest.		Electrocardiographic	activity	was	monitored	until	full	cessation	of	electric	

activity	occurred	at	which	point	the	animal	was	declared	dead.			Following	expiration,	the	

animal	was	kept	at	room	temperature	for	a	60-minute	no-touch	period.		Ventilation	was	

then	resumed	per	pre-euthanasia	settings,	and	lung	harvest	was	performed	using	a	

standard	operative	technique	as	previously	described[109].	

Briefly,	donor	animals	underwent	a	median	sternotomy	and	pericardiotomy	to	

expose	the	heart,	great	vessels,	and	both	lungs.	The	main	pulmonary	artery	(PA)	was	

cannulated	with	a	cardioplegia	cannula	(Sarns,	Ann	Arbor,	MI),	the	PA	was	cross-clamped	

proximal	to	this	point,	and	prostaglandin	E1	(10mg/kg)	was	injected	directly	into	the	main	

PA.		The	left	atrial	appendage	was	incised,	the	superior	and	inferior	vena	cavae	were	ligated,	

and	antegrade	flushing	of	both	lungs	was	performed	with	1.5L	of	4°C	Perfadex.		Due	to	the	

prolonged	warm	ischemic	time,	clot	formation	was	commonly	encountered	in	the	left	
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atrium	and	pulmonary	veins.		Heparin	(10,000	IU)	was	added	to	the	Perfadex	flush	for	all	

animals.		During	the	flush,	the	left	atrium	was	incised	and	efforts	were	made	to	manually	

remove	as	much	clot	as	possible	from	the	atrium	and	pulmonary	veins	(Figure	19A).		Upon	

completion	of	the	antegrade	flush,	both	lungs	were	inflated	with	100%	FiO2	to	tidal	volume	

and	the	heart	and	both	lungs	were	explanted	en	bloc.		The	heart	was	then	removed	with	

care	to	preserve	a	generous	atrial	cuff	and	the	lungs	were	retrograde	flushed	with	an	

additional	500	mL	of	4°C	Perfadex	to	remove	remaining	clot	from	the	pulmonary	

vasculature.		For	the	CSP	and	D-EVLP	groups,	the	lungs	were	placed	in	a	standard	

preservation	bag	and	stored	in	4°C	Perfadex.		For	the	I-EVLP	group,	lungs	were	placed	

directly	on	ex	vivo	perfusion.	
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Figure	19.	Non-heart-beating	donor	lung	harvest	and	ex	vivo	lung	perfusion	(EVLP)	
procedures.		A.	Fresh	clot	being	removed	from	the	donor	left	atrium	and	pulmonary	veins	
during	the	antegrade	lung	flush.		B.	Donor	lungs	pictured	during	EVLP	with	the	pulmonary	
artery	cannula,	left	atrial	cannula,	and	endotracheal	tube	secured	in	place.	
	
Porcine	Ex	Vivo	Lung	Perfusion	

	 EVLP	was	performed	as	described	previously	[126]	and	based	upon	earlier	studies	

by	Cypel	et	al.[103].	Briefly,	a	funnel-shaped	plastic	cannula	(Vitrolife)	was	sewn	to	the	left	

atrial	cuff,	a	plastic	cannula	(Vitrolife)	was	secured	into	the	main	pulmonary	artery	(PA),	

and	an	8-0	endotracheal	tube	with	the	balloon	removed	was	secured	into	the	trachea	

(Figure	19B).		The	EVLP	circuit	consisted	of	a	bypass	centrifugal	pump	(Medicus,	

Minneapolis,	MN),	membrane	oxygenator,	heat	exchanger,	venous	reservoir	(Sorin	Group,	

Arvada,	CO),	and	polyethylene	tubing.		Lungs	were	transferred	to	an	XVIVO	chamber	

(Vitrolife),	and	retrograde	flow	was	initiated	through	the	left	atrium	to	de-air	the	

pulmonary	vasculature	and	flush	any	remaining	clot.		The	PA	cannula	was	then	connected	

and	antegrade	flow	was	commenced	at	0.1	L/min.		EVLP	was	performed	using	acellular	

A B 
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Steen	solution™	(Vitrolife	Inc.,	Denver,	CO),	a	commercially	available	preservative	solution	

designed	for	ex	vivo	lung	assessment,	supplemented	with	10,000	IU	heparin	(APP	

Pharmaceuticals,	Schaumburg,	IL),	500	mg	cefazolin	(Apotex	Corp.,	Weston,	FL),	500	mg	

methylprednisolone	(Pfizer,	New	York,	NY),	and	3.0	ng/kg/min.	continuous	infusion	of	ATL-

1223	(Dogwood	Pharmaceuticals,	Charlottesville,	VA),	a	selective	adenosine	2A	receptor	

(A2AR)	agonist.		ATL-1223	was	included	to	optimize	the	rehabilitative	potential	of	EVLP	

because	we	have	previously	established	the	potent	anti-inflammatory	effects	of	A2AR	

agonism	in	lung	ischemia-reperfusion	injury	and	the	potential	protective	advantages	

afforded	with	EVLP-directed	A2AR	agonism	treatment[99,	100,	108,	126,	136].	The	

perfusate	was	slowly	warmed	to	37°C	over	a	30-minute	period	as	the	flow	was	titrated	up	

to	the	target	of	40%	of	the	estimated	cardiac	output	(estimated	cardiac	output	=	100	

ml/kg).		When	the	perfusate	reached	32°C,	ventilation	was	initiated	with	room	air	at	a	tidal	

volume	of	8	mL/kg,	respiratory	rate	of	8	breaths	per	minute,	and	a	positive	end-expiratory	

pressure	(PEEP)	of	5.0	cm	H2O.		After	initiation	of	ventilation,	a	mixture	of	6%	O2,	8%	CO2,	

and	86%	N2	was	infused	into	the	membrane	oxygenator	to	de-oxygenate	the	pulmonary	

artery	perfusate	and	allow	for	accurate	measurement	of	lung	oxygenation	capability.		At	1	

and	4	hours	after	initiation	of	EVLP,	the	lungs	were	ventilated	with	100%	FiO2	for	10	

minutes	and	a	sample	of	the	perfusate	was	taken	from	the	left	atrial	return	for	arterial	blood	

gas	analysis.		At	the	conclusion	of	the	4-hour	EVLP	period,	the	lungs	were	removed	from	the	

EVLP	circuit	and	an	antegrade	flush	was	performed	with	500mL	of	4°C	Perfadex.		The	lungs	

were	separated	and	the	right	lung	was	discarded,	while	the	left	lung	was	stored	in	4°C	

Perfadex	prior	to	transplantation.	

Porcine	Left	Lung	Recipient	Transplantation	 	

	 Transplantation	of	the	left	lung	was	performed	as	described	previously[109].	

Briefly,	a	left	thoracotomy	and	left	pneumonectomy	were	performed	in	a	size-matched	
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recipient	swine	after	heparin	administration	(5,000	IU).	The	donor	lung	was	then	brought	

into	the	field	and	the	donor-to-recipient	left	bronchus	anastomosis	was	completed	in	

continuous	fashion	followed	by	the	donor-to-recipient	pulmonary	artery	anastomosis.		A	

portion	of	the	left	atrial	appendage	was	then	isolated	with	a	side-biting	vascular	clamp,	the	

atrium	was	incised,	and	the	donor	atrial	cuff	was	then	anastomosed	to	the	recipient	atrial	

appendage	in	continuous	fashion.		The	vascular	and	airway	clamps	were	then	removed	to	

establish	reperfusion	and	ventilation	of	the	transplanted	lung.	

Lung	Physiology	

	 All	transplanted	lungs	underwent	4	hours	of	in	vivo	reperfusion.		During	

reperfusion,	hourly	arterial	blood	gas	measurements	were	obtained	in	addition	to	mean	

arterial	pressure,	heart	rate,	and	mean	pulmonary	artery	pressure	via	a	Swan-Ganz	

catheter.		Pulmonary	function	post-transplantation	was	additionally	evaluated	with	mean	

airway	pressure	measurements	obtained	utilizing	a	pressure	monitoring	line	attached	to	

the	endotracheal	tube.		After	3.5	hours,	the	endotracheal	tube	was	advanced	into	the	left	

main-stem	bronchus	and	the	right	main	pulmonary	artery	was	occluded	by	a	preplaced	

vessel	loop,	thereby	establishing	isolated	perfusion	and	ventilation	of	the	transplanted	left	

lung	that	continued	for	30	minutes.		Upon	isolation,	ventilator	settings	were	changed	to	a	

tidal	volume	of	5	ml/kg	(equivalent	to	approximately	10	mL/kg	on	the	isolated	left	lung)	

and	the	rate	was	increased	to	maintain	minute	ventilation.		Upon	conclusion	of	the	30-

minute	isolated	reperfusion	period,	additional	assessment	of	the	recipient	swine	and	the	

transplanted	donor	lung	was	performed	by	way	of	final	arterial	blood	gas,	pulmonary	

function,	and	PA	catheter	measurements	before	explantation	of	the	transplanted	lung.				

Cytokine	Measurement	

	 Bronchoalveolar	lavage	(BAL)	of	the	upper	lobe	of	the	left	lung	was	performed	

immediately	after	explantation	in	all	groups	using	40	mL	normal	saline.		BAL	samples	were	
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centrifuged	at	1800	rpm	for	8	minutes	and	the	supernatant	was	then	stored	at	-80°C.		

Quantification	of	cytokine	levels	in	BAL	fluid	was	assessed	using	a	commercially	available	

porcine	cytokine	multiplex	immunoassay	kit	(RayBiotech,	Norcross,	GA).	

Histopathology	and	Lung	Injury	Severity	Score	

	 The	lower	lobe	was	fixed	in	10%	buffered	formalin	via	tracheal	inflation	to	25	

cmH20.		Three	tissue	specimens	were	obtained	from	standardized	locations	within	the	lung	

parenchyma	with	subsequent	paraffin	embedding	and	hematoxylin-eosin	staining.		Lung	

sections	were	blindly	assessed	by	a	lung	pathologist	and	graded	according	to	total	

neutrophil	counts	per	high	power	field,	the	extent	of	alveolar	edema,	and	the	degree	of	

interstitial	infiltration.		A	score	on	a	scale	of	0-3	was	assigned	for	each	section	using	

previously	reported	criteria[109]:	neutrophils	per	high	powered	field	(score:	0=<5,	1=6-10,	

2=11-20,	3=>20),	alveolar	edema	(score:	0=<5%,	1=6-25%,	2=26=50%,	3=>50%),	and	

interstitial	infiltration	(score:	0=none,	1=minimal,	2=moderate,	3=severe),	and	a	composite	

score	was	obtained	by	summation	of	these	three	criteria	(0-9).		The	average	of	the	three	

sample	values	for	each	variable	was	obtained	for	group	comparisons.		

Statistical	Analysis	

	 All	experimental	methodology	was	designed	to	test	the	null	hypothesis	that	no	

significant	differences	in	the	degree	of	injury	would	be	observed	despite	different	

preservation	strategies.		Independent,	pairwise	group	comparisons	were	performed	

utilizing	the	unpaired	Student’s	t	test.		Experimental	results	are	reported	as	mean	±	

standard	deviation.		Significance	was	defined	as	p<0.05.	

Results	

Lung	Function	

	 Although	we	hypothesized	that	I-EVLP	lungs	would	function	better	after	

transplantation,	we	instead	observed	that	lung	function	was	significantly	improved	in	the	D-
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EVLP	group	when	compared	to	either	CSP	or	I-EVLP	(Figure	20).		Compared	to	the	CSP	

group,	final	blood	oxygenation	was	significantly	higher	in	the	D-EVLP	group	(D-EVLP:	

508.7±90.4	vs.	CSP:	159.4±70.1,	p<0.001),	while	mean	pulmonary	artery	pressure	(D-EVLP:	

22.4±5.9	vs.	CSP:	30.2±2.8	mmHg,	p=0.03)	and	mean	airway	pressure	(D-EVLP:	6.8±0.8	vs.	

CSP:	11.8±1.0	mmHg,	p<0.001)	were	significantly	reduced.		The	D-EVLP	group	also	

demonstrated	significantly	higher	blood	oxygenation	(D-EVLP:	508.7±90.4	vs.	I-EVLP:	

228.5±130.7,	p<0.01),	significantly	lower	mean	airway	pressure	(D-EVLP:	6.8±0.8	vs.	I-

EVLP:	10.1±2.6	mmHg,	p=0.03),	and	reduced	mean	pulmonary	artery	pressure	(D-EVLP:	

22.4±5.9	vs.	I-EVLP:	29.2±11.0	mmHg,	p=0.26)	compared	to	the	I-EVLP	group.		Blood	

oxygenation	(I-EVLP:	228.5±130.7	vs.	CSP:	159.4±70.1,	p=0.33),	pulmonary	artery	pressure	

(I-EVLP:	29.2±11.0	vs.	CSP:	30.2±2.8	mmHg,	p=0.85),	and	mean	airway	pressure	(I-EVLP:	

10.1±2.6	vs.	CSP:	11.8±1.0	mmHg,	p=0.27)	did	not	significantly	differ	between	the	CSP	and	I-

EVLP	groups.		There	were	no	significant	differences	observed	among	all	groups	in	age,	

weight,	mean	total	anastomotic	time,	mean	arterial	pressure,	or	heart	rate	(data	not	

shown).	
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Figure	20.	Lung	physiology	after	4	hours	of	reperfusion.		A.	Mean	airway	pressure	(mmHg).		
B.	Mean	pulmonary	artery	(PA)	pressure	(mmHg).	C.	Oxygenation	as	represented	by	the	
ratio	of	partial	pressure	of	oxygen	to	fraction	of	inspired	oxygen	(PO2:FiO2)	measured	at	
four	time	points:	donor	arterial	blood	oxygenation	prior	to	euthanasia,	EVLP-perfusate	
oxygenation	at	one	hour,	EVLP-perfusate	oxygenation	at	four	hours,	and	recipient	arterial	
blood	oxygenation	at	the	end	of	transplantation.		Groups:	cold-static	preservation	(CSP),	
immediate	ex	vivo	lung	perfusion	(I-EVLP),	and	delayed	ex	vivo	lung	perfusion	(D-EVLP).		A.,	
B.:	*p	<	0.05	vs.	CSP,	#p	<	0.05	vs.	CSP	and	I-EVLP.	C.:	*p	<	0.05	vs.	I-EVLP,	#p	<	0.05	vs.	CSP	
and	I-EVLP.	
	
	 All	groups	had	similar	pre-euthanasia	donor	blood	oxygenation	levels.		A	divergence	

was,	however,	present	thereafter	as	a	function	of	the	preservation	strategy	utilized	(Figure	

20C).		In	the	CSP	group	blood	oxygenation	dropped	from	419.4±108.9	pre-euthanasia	to	

159.4±70.1	post-transplantation.		Similarly,	pre-euthanasia	blood	oxygenation	in	the	I-EVLP	
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group	was	high	(406.1±120.0)	and	perfusate	oxygenation	levels	steadily	decreased	

throughout	the	EVLP	period	to	a	final	blood	oxygenation	level	of	228.5±130.7	after	

transplantation.		Oxygenation	in	the	D-EVLP	group	started	high	(358.2±151.1)	and	

improved	after	the	period	of	cold-static	preservation	and	one-hour	period	of	EVLP	

(450.3±95.0).	Oxygenation	levels	in	the	D-EVLP	group	continued	to	improve	through	the	

end	of	EVLP	(477.6±88.7)	and	reached	a	final	blood	oxygenation	level	of	508.7±90.4	after	

transplantation.																 	

Proinflammatory	Cytokine	Expression	

	 The	effect	of	the	various	preservation	strategies	on	the	expression	of	

proinflammatory	cytokines	in	BAL	fluid	was	assessed	at	the	end	of	reperfusion	(Figure	21).		

In	parallel	with	the	lung	function	results,	the	D-EVLP	group	had	significantly	decreased	

expression	of	IL-1β	(D-EVLP:	259.5±87.3	vs.	CSP:	851.1±262.8	pg/ml,	p=0.001),	IL-8	(D-

EVLP:	112.1±74.8	vs.	CSP:	531.5±331.4	pg/ml,	p=0.03),	and	TNF-α	(D-EVLP:	233.2±84.9	vs.	

CSP:	1050.2±353.8	pg/ml,	p=0.001)	compared	to	the	CSP	group.		Additionally,	the	D-EVLP	

demonstrated	significantly	decreased	IL-1β	(D-EVLP:	259.5±87.3	vs.	I-EVLP:	566.3±202.1	

pg/ml,	p=0.01),	IL-8	(D-EVLP:	112.1±74.8	vs.	I-EVLP:	248.4±96.3	pg/ml,	p=0.04),	and	TNF-α	

(D-EVLP:	233.2±84.9	vs.	I-EVLP:	568.1±218.2	pg/ml,	p=0.01)	in	comparison	to	the	I-EVLP	

group.		As	shown	in	Figure	21,	the	I-EVLP	group	had	intermediate	cytokine	levels	with	

significantly	decreased	expression	of	TNF-α	(p=0.03)	compared	to	CSP	group.		In	addition,	

IL-1β	(p=0.09)	and	IL-8	(p=0.10)	were	also	decreased,	but	this	did	not	reach	statistical	

significance.	
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Figure	21.	Mean	proinflammatory	cytokine	levels	(pg/mL)	in	bronchoalveolar	lavage	fluid	
at	the	end	of	4	hours	of	reperfusion.	Groups:	cold-static	preservation	(CSP),	immediate	ex	
vivo	lung	perfusion	(I-EVLP),	and	delayed	ex	vivo	lung	perfusion	(D-EVLP).		*p	<	0.05	vs.	CSP.		
#p	<	0.05	vs.	CSP	and	I-EVLP.	
	
Gross	and	Histologic	Evidence	of	Lung	Injury	

	 Overall,	the	D-EVLP	group	had	improved	histologic	and	gross	appearance	(Figure	

22)	in	addition	to	decreased	lung	injury	scores	(Figure	23)	compared	to	both	the	CSP	and	I-

EVLP	groups.		Individual	parameters	of	the	lung	injury	severity	score	demonstrated	less	

injury	in	the	D-EVLP	group	compared	to	the	CSP	group	with	significantly	fewer	neutrophils	

per	high-powered	field	(D-EVLP:	1.6±0.7	vs.	CSP:	2.6±0.6,	p=0.04)	(Figure	23).		The	D-EVLP	

group	also	had	decreased	alveolar	edema	(D-EVLP:	0.1±0.2	vs.	CSP:	0.5±0.6,	p=0.13)	and	

less	interstitial	infiltrate	(D-EVLP:	0.9±0.6	vs.	CSP:	1.7±1.0,	p=0.12)	compared	to	the	CSP	

group,	but	these	variables	did	not	achieve	statistical	significance.		Additionally,	composite	

lung	injury	severity	scores	were	less	for	the	D-EVLP	group	compared	to	the	CSP	group	(D-

EVLP:	2.5±1.2	vs.	CSP:	4.8±2.0,	p=0.06).	The	D-EVLP	group	had	values	less	than	the	I-EVLP	

group	for	each	parameter	yet	achieved	statistical	significance	only	for	the	grade	of	

interstitial	infiltrate	(D-EVLP:	0.9±0.5	vs.	I-EVLP:	1.7±0.4,	p=0.03).		The	I-EVLP	group	did	
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not	demonstrate	a	statistically	significant	reduction	in	any	lung	injury	parameter	in	

comparison	to	the	CSP	group.	

	

Figure	22.	Representative	histologic	(top,	hematoxylin-eosin	sections,	20X)	and	gross	
(bottom)	appearance	of	lungs	after	4	hours	of	reperfusion.	Groups:	cold-static	preservation	
(CSP),	immediate	ex	vivo	lung	perfusion	(I-EVLP),	and	delayed	ex	vivo	lung	perfusion	(D-
EVLP).	
	
	
	

       CSP                                  I-EVLP                            D-EVLP CSP                            I-EVLP                       D-EVLP 



	 91	

	
Figure	23.	Mean	lung	injury	severity	scores	by	histology.		A	score	on	a	scale	of	0-3	was	
assigned	for	each	section:	neutrophils	per	high	powered	field	(score:	0=<5,	1=6-10,	2=11-
20,	3=>20),	alveolar	edema	(score:	0=<5%,	1=6-25%,	2=26=50%,	3=>50%),	interstitial	
infiltration	(score:	0=none,	1=minimal,	2=moderate,	3=severe),	and	a	composite	score	
obtained	by	summation	of	these	three	criteria	(0-9).	Groups:	cold-static	preservation	(CSP),	
immediate	ex	vivo	lung	perfusion	(I-EVLP),	and	delayed	ex	vivo	lung	perfusion	(D-EVLP).		*p	
<	0.05	vs.	CSP.		#p	<	0.05	vs.	I-EVLP.	
	
	
Discussion	

	 This	study	used	a	preclinical	porcine	lung	transplantation	model	to	demonstrate	

that	EVLP	can	rehabilitate	lungs	from	uncontrolled	NHB	donors	(Maastricht	category	I)	

with	extended	warm	ischemic	times	to	an	acceptable	functional	status	for	successful	

transplantation.		Interestingly,	the	results	of	this	study,	regarding	the	timing	and	initiation	

of	EVLP	and	inclusion	of	a	CSP	period,	were	contrary	to	our	initial	hypothesis.		These	results	

demonstrate	that	a	combination	of	4	hours	of	CSP	followed	by	4	hours	of	normothermic	

EVLP	is	significantly	more	protective	than	either	4	hours	of	CSP	or	4	hours	of	immediate	

EVLP	alone.		This	conclusion	is	supported	by	the	finding	that	the	D-EVLP	group	

demonstrated	significantly	improved	lung	physiology,	decreased	proinflammatory	cytokine	

expression,	decreased	neutrophil	infiltration	and	conserved	lung	histology	despite	a	
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doubling	of	the	preservation	period.		Although	the	I-EVLP	group	did	demonstrate	decreased	

proinflammatory	cytokine	expression	and	a	trend	toward	improved	lung	physiology	

compared	to	the	CSP	group,	these	differences	were	not	significant,	unlike	those	observed	

with	the	D-EVLP	group.		Therefore,	while	our	hypothesis	was	incorrect,	we	are	encouraged	

by	the	finding	that	excellent	post-transplantation	lung	function	can	be	achieved	with	

uncontrolled	NHB	donor	lungs	with	extended	warm-ischemic	times	through	the	use	of	

delayed	normothermic	EVLP.		Additionally,	we	believe	that	this	study	provides	the	

foundation	for	further	research	directed	toward	the	goal	of	expanding	the	limited	human	

donor	pool	through	the	use	of	uncontrolled	NHB	donation.	

	 One	aspect	of	this	study	that	warrants	further	discussion	is	the	use	of	ATL-1223,	a	

selective	A2AR	agonist,	in	the	perfusion	circuit	for	both	EVLP	groups.		Our	laboratory	has	

extensive	experience	with	the	use	of	selective	A2AR	agonists	in	animal	models	of	

transplantation[99,	100,	108].		It	is	well-established	that	specific	A2AR	activation	decreases	

the	release	of	TNF-α	and	other	proinflammatory	cytokines,	down-regulates	adhesion	

molecules	(P-selectin,	intercellular	adhesion	molecule-1,	and	vascular	cell	adhesion	

molecule-1),	and	blocks	neutrophil	activation	and	infiltration[100,	137,	138].		We	have	

recently	demonstrated	in	a	HB	donor	porcine	transplant	model	that	ATL-1223	attenuates	

ischemia-reperfusion	injury	after	transplantation[109].		In	addition,	we	have	shown	that	

administration	of	a	selective	A2AR	agonist	in	the	EVLP	circuit	effectively	decreases	

inflammation	and	improves	lung	function	in	a	porcine	EVLP	non-transplant	model[126].	

The	present	study	was	designed	to	evaluate	the	capability	for	rehabilitation	of	uncontrolled	

NHB	donor	lungs	using	EVLP.		Given	the	known	benefits	of	ATL-1223	treatment	along	with	

the	unknown	level	of	lung	dysfunction	incurred	by	either	the	mechanism	of	donor	

euthanasia	or	the	subsequent	60-minute	warm	ischemic	time,	we	included	ATL-1223	in	the	

EVLP	circuit	for	both	groups	to	enhance	the	probability	of	achieving	or	exceeding	
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acceptable	lung	function	outcomes.		We	recognize	that	one	limitation	of	this	study	is	that	we	

are	unable	to	make	specific	conclusions	on	the	role	of	ATL-1223,	just	as	we	are	unable	to	

make	any	conclusions	on	the	roles	of	other	agents	that	are	currently	utilized	in	standard	

EVLP	protocols.		Both	the	I-EVLP	and	D-EVLP	groups	underwent	identical	exposure	to	ATL-

1223	and	our	results	demonstrate	that	D-EVLP	is	superior	to	I-EVLP	in	the	setting	of	

uncontrolled	NHB	donor	lung	transplantation.	

Conventional	wisdom	in	organ	transplantation	holds	that	cold	ischemic	time	is	

damaging	to	donor	organs,	and	the	United	Network	for	Organ	Sharing	(UNOS)	divides	the	

United	States	into	11	geographic	transplant	regions	with	the	goal	of	minimizing	

transportation	times	to	limit	donor	organ	preservation	periods[139,	140].		We	found	that	a	

period	of	cold-static	preservation	prior	to	EVLP	was	beneficial	in	optimizing	organ	function	

and	minimizing	inflammation	despite	the	prolonged	preservation	period	this	strategy	

employed.		While	our	findings	include	an	extended	preservation	period,	the	benefits	of	this	

timeframe	are	supported	in	the	literature.		In	a	2011	human	clinical	EVLP	trial,	lungs	from	

marginal	and	NHB	Maastricht	category	III	and	IV	donors	underwent	EVLP	after	a	period	of	

CSP.		EVLP	donor	lungs	yielded	equivalent	post-transplantation	outcomes	compared	to	

standard	non-marginal	donor	lungs	despite	an	average	of	10.9	hours	of	total	preservation	

time	(versus	6.2	hours	for	the	non-marginal	lungs)[21].		Additionally,	in	the	first	reported	

series	investigating	the	use	of	EVLP	in	transplantation	for	standard	HB	donors,	donor	lungs	

underwent	CSP	followed	by	EVLP	with	a	total	preservation	time	averaging	17.4	hours,	and	

excellent	post-transplantation	lung	function	was	achieved	in	all	patients[141].			

The	benefit	of	hypothermia	is	well-established	in	clinical	protocols	for	organ	

preservation	and	protection.		Hypothermia	is	the	current	clinical	standard	for	

neuroprotection	during	cardiac	surgery	and	is	an	emerging	treatment	for	patients	following	

cardiac	arrest.		The	benefit	of	hypothermia	is	proposed	to	involve	mechanisms	beyond	the	
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slowing	of	metabolism	with	colder	temperatures[142,	143].		Multiple	mechanisms	for	

hypothermic	protection	have	been	previously	described	and	include:	decreased	free	radical	

production[144],	inhibition	of	apoptosis[145],	suppression	of	the	inflammatory	response	

via	inhibition	of	neutrophil	infiltration[146],	reduction	of	lipid	peroxidation	and	leukotriene	

production[147],	and	attenuation	of	the	nitric	oxide	response[148].		Applying	this	

knowledge	to	the	present	study,	we	propose	that	establishment	of	lung	hypothermia	prior	

to	the	initiation	of	EVLP	serves	to	effectively	arrest	the	ongoing	tissue	damage	and	

inflammatory	response	associated	with	the	extended	warm	ischemic	time.		Subsequent	

acellular	EVLP	with	the	addition	of	anti-inflammatory	compounds	including	

methylprednisolone	and	ATL-1223	provides	a	therapeutic	environment	for	tissue	

rehabilitation	prior	to	transplantation.		In	contrast,	transplantation	directly	after	CSP	

results	in	an	amplification	of	the	ischemia-reperfusion	inflammatory	cascade,	resulting	in	

subsequent	donor	organ	injury.		Similarly,	we	propose	that	initiation	of	EVLP	immediately	

at	the	conclusion	of	the	warm-ischemic	period	results	in	a	sustained,	hostile	pro-

inflammatory	environment	within	the	donor	lung,	ultimately	leading	to	further	organ	

damage.		Certainly,	further	study	of	the	cellular	and	molecular	mechanisms	behind	the	

observed	results	will	be	required	as	our	study	is	limited	by	the	absence	of	mechanistic	data	

both	throughout	the	preservation	process	and	following	graft	reperfusion.	Despite	this	

limitation,	these	data	demonstrate	that	functional	parameters	during	the	EVLP	period	

provide	predictive	information	regarding	the	potential	graft	function	and	candidacy	for	

transplantation.		With	this	understanding,	the	results	of	this	study	demonstrate	that	the	

combination	of	CSP	followed	by	normothermic	EVLP	effectively	reduces	the	inflammatory	

response	and	tissue	injury	associated	with	NHB	donor	lung	transplantation.							

	 The	findings	of	the	present	study	support	future	studies	to	define	the	rehabilitative	

mechanisms	and	optimal	timing	of	both	CSP	and	EVLP.			In	the	present	study,	both	the	
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donor	organ	harvest	and	subsequent	storage	procedure	were	consistent	with	current	

clinical	HB	donor	protocols.		In	addition,	4	hours	of	CSP	was	chosen	to	approximate	the	

average	donor	lung	cold	ischemic	time.		Therefore,	with	proper	approvals	and	consent,	

transplant	centers	could	adopt	EVLP	as	a	strategy	to	further	study	the	assessment	and	

rehabilitation	of	uncontrolled	Maastricht	category	I	and	II	NHB	donor	lungs.		In	addition	to	

further	study,	our	findings	support	the	continued	inclusion	of	CSP	in	clinical	EVLP	

rehabilitation	protocols.		As	we	embark	on	the	clinical	adoption	of	EVLP,	our	findings	

provide	promise	for	the	inclusion	of	uncontrolled	NHB	donors	in	future	human	clinical	

trials	for	lung	transplantation.	

	 In	conclusion,	delayed	ex	vivo	lung	perfusion	after	a	period	of	cold-static	

preservation	is	an	effective	strategy	for	the	rehabilitation	of	uncontrolled	NHB	donor	lungs	

for	subsequent	transplantation	in	a	preclinical	porcine	transplant	model.		Clinical	adoption	

of	this	lung	preservation	strategy	could	be	easily	applied	to	current	organ	procurement	

protocols.		If	clinically	correlated	in	human	NHB	donor	lungs,	the	findings	of	the	present	

study	will	lead	to	improved	human	lung	transplantation	by	allowing	for	safe	transplantation	

of	uncontrolled	NHB	donor	lungs,	thus	significantly	decreasing	the	donor	organ	shortage	

and	saving	lives.						
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Abstract	
	
Purpose:		Ex	vivo	lung	perfusion	(EVLP)	provides	a	technique	for	donor	lung	functional	
assessment,	pharmacologic	treatment,	and	rehabilitation.	Treatment	with	adenosine	2A	
receptor	(A2AR)	agonism	has	demonstrated	promise	in	the	recovery	of	warm	ischemic	
donor	lungs,	yet	the	efficacy	of	this	strategy	compared	to	standard	EVLP	remains	undefined.	
Thus,	the	purpose	of	this	study	was	to	evaluate	the	rehabilitation	potential	of	EVLP	with	a	
selective	A2AR	agonist	compared	to	standard	Steen	solution	alone	for	donor	lungs	following	
60	minutes	of	warm	ischemia.	
	
Methods:	Donor	lungs	from	4	swine	underwent	standard	cold-static	preservation	(group	1)	
to	serve	as	a	non-treatment	control.	20	domestic	swine	were	randomized	into	two	
treatment	groups	(n=10/group):	Steen	EVLP	(group	2)	and	Steen	EVLP	supplemented	with	
a	selective	A2AR	agonist	(ATL-1223,	group	3).	All	lungs	underwent	60-minutes	of	no-touch	
warm	ischemia,	and	groups	2	and	3	underwent	EVLP	for	4	hours	prior	to	left	lung	
transplantation.	Lung	function	as	represented	by	perfusate	or	blood	oxygenation	(PaO2)	
was	obtained	during	EVLP	and	post-transplantation.	Additionally,	hemodynamic	
parameters	were	monitored	after	transplantation	throughout	the	3.5-hour	period	of	double	
lung	perfusion	and	final	30-minutes	of	left	lung	isolated	perfusion	and	ventilation.	
	
Results:	3	of	10	lungs	in	group	2	were	transplanted	without	complication	and	achieved	
satisfactory	recipient	single-lung	oxygenation	levels	(mean	PaO2=416.1±28.7).		The	
addition	of	ATL-1223	during	EVLP	(group	3)	resulted	in	successful	transplantation	in	3	of	5	
lungs	(mean	PaO2=489.1±32.1).	5	swine	within	group	3	experienced	death	prior	to	
recipient	pneumonectomy.	Following	successful	transplantation,	EVLP	with	ATL-1223	
resulted	in	higher	PaO2	levels	compared	to	EVLP	with	Steen	solution	alone	and	remained	
statistically	higher	than	group	1.	No	differences	were	observed	for	mean	airway	pressure	or	
pulmonary	artery	pressure	following	transplantation	between	EVLP	treatment	groups.		
	
Conclusion:	EVLP	provides	a	novel	method	for	the	assessment	and	treatment	for	donor	
lungs	with	extended	warm	ischemic	times.	A2AR	agonism-directed	rehabilitation	during	
EVLP	results	in	superior	lung	function	and	enhances	the	rehabilitation	potential	of	EVLP.	
Warm	ischemic	times	of	60	minutes;	however,	may	lead	to	irreversible	lung	injury	that	is	
detected	by	EVLP	prior	to	transplantation.		
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Introduction	
	
	 Ex	vivo	lung	perfusion	(EVLP)	provides	a	novel	approach	to	lung	rehabilitation	and	

assessment	following	donor	organ	harvest[97].		This	technique	has	inspired	renewed	

interest	in	the	procurement	and	utilization	of	lungs	following	controlled	(Maastricht	

category	III)	and	uncontrolled	(Maastricht	category	IV)	cardiac	death.		Our	recent	

experience	has	demonstrated	that	lungs	following	uncontrolled	donation	after	circulatory	

death	(DCD)	may	be	utilized	after	60	minutes	of	warm	ischemia,	utilizing	a	strategy	of	EVLP	

with	Steen	solution™	(Vitrolife	Inc.,	Denver,	CO)	and	a	selective	adenosine	2A	receptor	

(A2AR)	agonist,	ATL-1223	(Dogwood	Pharmaceuticals,	Charlottesville,	VA)[105].		

Pharmacologic	A2AR	receptor	agonism	is	of	particular	interest	within	the	context	of	organ	

rehabilitation	given	the	established	effect	on	the	recruitment	of	anti-inflammatory	

regulatory	T	cells	and	the	suppression	of	pro-inflammatory	pathways	involving	neutrophils,	

macrophages,	and	natural	killer	T	cells[3,	100,	149,	150].		Despite	these	promising	findings,	

the	rehabilitative	potential	of	A2AR	agonist-directed	therapies	for	lung	rehabilitation	

remains	undefined.		Thus,	the	purpose	of	this	study	was	to	evaluate	the	rehabilitative	

potential	of	EVLP	and	A2AR	agonist-directed	therapies	for	DCD	lung	donation	within	a	

preclinical	porcine	lung	transplantation	model.		We	approached	this	study	with	the	

hypothesis	that	ATL-1223	supplemented	Steen	solution	provides	a	superior	strategy	to	

Steen	solution	alone	for	the	successful	rehabilitation	of	Maastricht	category	IV	donor	lungs.		

Methods	
	
Study	Groups	
	
	 Mature	domestic	swine	were	utilized	for	the	present	study,	with	four	swine	

assigned	to	the	control	cold-static	preservation	group	(Group	1)	and	20	swine	randomized	

to	either	Steen	EVLP	(Group	2,	n=10)	or	Steen	+	ATL-1223	EVLP	(Group	3,	n=10)	groups.	

The	University	of	Virginia’s	Institutional	Animal	Care	and	Use	Committee	reviewed	and	
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approved	the	study.		Additionally,	the	presented	practices	conformed	to	the	“Guide	for	Care	

and	Use	of	Laboratory	Animals”,	(National	Institutes	of	Health	publication	no.	85-23,	

revised	1985)[105].	

Porcine	Arrest	and	Donor	Lung	Allograft	Assignment	
	
	 As	previously	published,	a	DCD	model	was	utilized	that	entailed	the	hypoxic	arrest	

of	donor	swine	followed	by	a	60-minute	period	of	no-touch	warm	ischemia[105].	

Importantly,	no	heparin	was	administered	prior	to	arrest	as	such	systemic	administration	

has	both	ethical	implications	for	the	donation	process	and	such	practice	has	shown	no	

significant	impact	on	outcomes	following	transplantation[151,	152].		

	 Briefly,	swine	were	anesthetized	(50mg/kg	ketamine,	5mg/kg	xylazine),	intubated	

and	ventilated	on	room	air.	Anesthesia	was	maintained	and	lungs	were	pre-oxygenated	for	

10	minutes	with	1.0	fraction	of	inspired	oxygen	(FiO2)(tidal	volume:	8mL/kg;	respiratory	

rate:	14-18	breaths/minutes,	and	positive	end-expiratory	pressure	(PEEP):	5.0cm	H20).	

Baseline	arterial	oxygenation	concentration	was	measured	prior	to	ventilator	

disconnection,	endotracheal	tube	occlusion,	and	controlled	euthanasia	by	hypoxic	arrest.	

Death	was	determined	at	the	point	of	electrocardiographic	activity	cessation.	Swine	were	

maintained	at	room	temperature	for	60	minutes	prior	to	resumption	of	pre-euthanasia	

ventilator	settings	and	subsequent	donor	harvest.	

	 Donor	lung	harvest	occurred	according	to	previously	published	practices[105].	

Median	sternotomy	and	great	vessel	isolation	were	performed	prior	to	cannulation	of	the	

main	pulmonary	artery	with	a	standard	cardioplegia	cannula	(Sarns,	Ann	Arbor,	MI).	

Proximal	clamp	application	permitted	treatment	of	the	allograft	with	prostaglandin	E1	

(10mg/kg)	with	coordinated	left	atrial	appendage	ligation,	superior	and	inferior	vena	cava	

ligation	and	antegrade	flush	of	the	lungs	with	1.5L	4°C	Perfadex®	supplemented	with	

heparin.	Visible	clot	within	the	left	atrium	was	removed	during	the	flush	period.	Following	
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completion,	lungs	were	harvested	at	a	static	tidal	volume.	The	heart	was	removed	on	the	

back	table	in	accordance	with	clinical	practices	and	an	additional	retrograde	flush	of	500mL	

Perfadex®	was	performed.	The	EVLP	Steen	+ATL-1223	group	had	ATL-1223	

supplementation	within	Perfadex	(10mMol)	administered	during	the	flush	period.	

Allografts	within	the	cold-static	preservation	control	group	(Group	1)	were	stored	

for	4	hours	at	4°C	Perfadex®	(Vitrolife	Inc.,	Denver,	CO).	The	EVLP	groups	underwent	a	

period	of	4	hours	of	cold-static	preservation	followed	by	4	hours	of	EVLP	with	either	Steen	

solution	(Group	2,	n=10)	or	Steen	solution	+	ATL-1223	(Group	3,	n=10).	Left	donor	lungs	

within	all	groups	were	then	transplanted	into	recipient	swine	as	described	below.	

Porcine	EVLP	
	
	 EVLP	was	performed	as	previously	described	and	in	accordance	with	clinical	EVLP	

protocols[103,	105].	Standardized	cannulation	and	perfusion	equipment	were	utilized	to	

achieve	isolated	allograft	ex	vivo	perfusion	and	ventilation.	Antegrade	flow	was	initiated	

following	cannulae	fixation	at	0.1L/min.	and	titrated	to	maintain	directionality	and	absence	

of	negative	pressure	within	the	left	atrial	venous	return.	Steen	solution	(Vitrolife	Inc.,	

Denver,	CO)	was	supplemented	with	10,000	IU	heparin	(APP	Pharmaceuticals,	Schaumburg,	

IL),	500mg	cefazolin	(Apotex	Corp.,	Weston,	FL),	500mg	methylprednisolone	(Pfizer,	New	

York,	NY).	The	ATL-1223	treatment	group	received	treatment	by	continuous	infusion	at	

3.0ng/kg/min.	Perfusate	re-warming	was	initiated	upon	achievement	of	isolated	perfusion	

to	a	goal	of	37°C	over	a	30	minute	period	as	the	flow	was	titrated	to	a	goal	of	40%	the	

estimated	cardiac	output	(CO,	100mL/kg).	Ventilation	was	initiated	at	32°C	and	at	a	tidal	

volume	of	8mL/kg	(rate:	8	breaths	per	minute,	PEEP:	5cm	H2O).	Deoxygenation	was	

maintained	through	a	membrane	oxygenator	with	the	infusion	of	a	standardized	gas	

mixture	of	6%	O2,	8%	CO2,	and	86%	N2,	enabling	the	measurement	of	lung	oxygenation	

capacity.	Each	hour,	lungs	were	ventilated	with	1.0	FiO2	for	10	minutes	to	allow	assessment	
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of	perfusate	oxygenation	by	sampling	of	left	atrial	return	perfusate.	Following	the	4	hour	

EVLP	period,	donor	allografts	were	removed	and	an	antegrade	flush	was	performed	with	

500mL	Perfadex	prior	to	back-table	preparation	of	the	left	lung	for	subsequent	

transplantation.	

Porcine	Left	Lung	Transplantation	
	
	 Donor	left	lung	allografts	were	implanted	according	to	prior	published	techniques	

and	clinical	practice.	A	left	thoracotomy	and	pneumonectomy	were	performed	with	heparin	

administration	prior	to	vascular	isolation	(5,000IU).	The	donor	allograft	was	then	sewn-in	

in	standard	sequence:	bronchial,	pulmonary	artery,	pulmonary	venous	cuff	to	left	atrium.	

All	anastomoses	were	performed	in	a	continuous	running	fashion.	The	vascular	and	airway	

occlusive	clamps	were	removed	following	completion	of	the	anastomoses	to	establish	

reperfusion	and	ventilation.	

Lung	Physiology	
	
	 Recipient	allografts	were	reperfused	following	transplantation	for	4	hours.	Serial	

arterial	blood	gas	assessments	in	addition	to	mean	arterial	pressure	and	pulmonary	arterial	

pressures	were	monitored	and	recorded	throughout	the	reperfusion	period.	A	Swan-Ganz	

catheter	and	standard	saline-column	locked	pressure	line	were	utilized	to	obtain	

pulmonary	arterial	and	airway	pressure	measurements,	respectively.	Following	3.5	hours	of	

reperfusion,	the	left	pulmonary	artery	was	isolated	by	occlusion	of	the	right	pulmonary	

artery	to	support	isolated	allograft	perfusion	for	30	minutes.	During	this	period	of	time,	the	

left	mainstem	bronchus	was	intubated	for	isolated	ventilation	with	corresponding	

adjustment	to	the	tidal	volume	(5mL/kg)	and	respiratory	rate	to	maintain	minute	

ventilation.	Final	measurements	for	swine	not	demonstrating	ventricular	failure	or	

dysrhythmia	were	obtained	by	arterial	blood	gas,	pulmonary	catheter,	and	airway	pressure	

measurements.	
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Statistics	

	 Intergroup	comparisons	were	performed	with	the	unpaired	Student’s	t	test	such	as	

to	test	the	null	hypothesis.	Data	are,	thus,	presented	as	mean	±	standard	deviation	with	p	<	

0.05	defined	as	a	significant	difference.	

	
Results	
	
Study	Population	

	 Pre-euthanasia	partial	pressures	of	oxygen	in	donor	swine	demonstrated	no	

significant	differences	among	the	groups	(p=0.28,	Figure	24A).		Additionally,	donor	and	

recipient	weights	did	not	significantly	differ	(p=0.35	and	0.31,	respectively)(Figure	24B-C).		

Anastomotic	times	for	the	transplantation	operation	did	not	significantly	differ	between	

treatment	groups	(p=0.30,	Figure	24D).	Study	groups	were	allocated	to	support	

comparison	of	EVLP	treatment	groups,	as	we	have	previously	demonstrated	the	superiority	

of	EVLP	to	CSP	following	60-minutes	of	warm	ischemia	in	a	porcine	transplantation	

model[103].	Thus,	four	swine	were	allocated	to	the	CSP	group	while	10	swine	comprised	

the	Steen	EVLP	and	Steen	+	ATL-1223	EVLP	groups,	respectively.	Outcomes	for	all	swine	

randomized	within	the	study	are	listed	in	Figure	25.	
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Figure	24.	Study	group	descriptive	statistics	and	
operative	variables.	A.	Pre-euthanasia	donor	blood	
partial	pressure	of	oxygen,	PaO2.	B.	Donor	weight,	kg.	
C.	Recipient	weight,	kg.	D.	Anastomotic	time,	mins.	
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Figure	25.	All-inclusive	outcomes	for	swine	randomized	for	single-lung	transplantation	and	
stratified	by	donor	lung	preservation	technique.	
	
Lung	Physiology	
	

As	demonstrated	in	Figure	26C	and	as	presented	in	our	prior	studies,	cold-static	

preservation	results	in	variable	and	sub-optimal	oxygenation	at	both	the	3.5	hour	double-

lung	perfusion	time	point	and	during	isolated	left	lung	perfusion	following	single	lung	

transplantation[105].		Additionally,	one	swine	within	the	CSP	group	had	right	ventricular	

failure	during	single	lung	perfusion	that	resulted	in	an	early	mortality.		EVLP	groups,	as	

demonstrated	in	Figures	26A	and	26B,	maintained	stable	or	improving	perfusate	

oxygenation	levels	throughout	the	preservation	period.	EVLP	with	Steen	solution	(Figure	

26A)	resulted	in	maintenance	of	oxygenation	throughout	the	perfusion	period	with	

improvement	in	double-lung	oxygenation	capacity	in	a	single	transplant	recipient.	Single	
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lung	oxygenation	levels	were	lower	in	all	recipients	that	maintained	stable	hemodynamics	

and	cardiac	rhythm	during	the	single	lung	perfusion	and	ventilation	period.		PaO2	as	

measured	at	the	conclusion	of	the	4-hour	EVLP	period	in	the	Steen	perfusate	was	predictive	

of	double	lung	recipient	blood	oxygenation	following	transplantation.		The	addition	of	ATL-

1223	to	the	Steen	perfusate	resulted	in	favorable	improvement	of	oxygenation	potential	

during	the	EVLP	period	as	demonstrated	in	Figure	26B.		All	donor	lungs	meeting	pre-

transplantation	thresholds	for	transplantation	demonstrated	stable	or	improved	

oxygenation	following	3.5	hours	of	recipient	perfusion	when	compared	to	levels	at	the	

conclusion	of	the	4	hour	EVLP	period.		With	the	exception	of	one	recipient	that	had	

hemodynamic	instability	related	to	right	heart	failure	upon	single	lung	perfusion,	all	

recipient	allografts	in	the	Steen	+	ATL-1223	group	had	significantly	improved	oxygenation	

compared	to	Steen	solution	alone	(Figure	26).		

	

	

Figure	26.	Perfusate	and	recipient	blood	partial	pressure	pressure	of	oxygen	
measurements	(PaO2)	at	selected	time	points	during	EVLP	and	after	single	lung	
transplantation	into	recipient	swine.	a.	Cold-static	preservation	(CSP),	b.	Steen	EVLP,	c.	
Steen	+	ATL-1223	EVLP.	
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time	points	were	significantly	lower	in	the	ATL-1223	group	when	compared	to	Steen	

solution	alone	(p=0.0029,	p=0.0013,	respectively)(Figure	27).			

	
This	significant	difference	was	absent	at	the	3-	and	4-hour	time	points	(p=0.34,	

p=0.16,	respectively).	Following	transplantation,	significant	functional	heterogeneity	

existed	between	EVLP	groups	yet	lungs	perfused	with	Steen	+	ATL-1223	achieved	the	

highest	oxygenation	following	four	hours	of	reperfusion	(Figure	28).	
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Figure	27.	Interval	partial	pressure	of	oxygen	measurements	
within	EVLP	perfusate	for	Steen	EVLP	and	Steen	+	ATL-1223	
treatment	groups.	
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Figure	28.	Single	lung	measurements	post-transplantation	for	mean	airway	pressure	(A),	
pulmonary	artery	pressure	(B),	and	partial	pressure	of	oxygen	(C).		
	
	
Discussion	
	
	 EVLP	has	fostered	a	renewed	hope	for	donor	lung	allograft	rehabilitation	and	

assessment	for	lung	transplantation,	demonstrating	promise	within	clinical	trials	utilizing	

marginal	and	high-risk	donor	lungs	for	successful	transplantation[21].	The	rehabilitation	of	

injured	DCD	lungs	is	a	principal	focus	for	the	advancement	of	this	technology.	Such	a	

practice	promises	to	provide	a	potential	allograft	for	the	many	awaiting	lung	

transplantation	yet	face	an	increasing	donor	organ	shortage.	The	adoption	of	DCD	donors	

remains	limited	within	the	United	States,	accounting	for	less	than	5%	of	lung	transplant	

activity	despite	the	international	demonstration	of	comparable	outcomes	for	DCD	and	

standard	brain	death	donor	transplantation[153-156].	Maastricht	category	III	(controlled	

donation	after	cardiac	death)	donor	lungs	have	been	utilized	internationally	for	successful	

transplantation,	accounting	for	94.8%	of	DCD	lungs	transplanted	in	2013-2014,	while	

Maastricht	category	IV	(uncontrolled	donation	after	cardiac	death)	lungs	accounted	for	only	

4%	of	DCD	lungs	transplanted[20].	The	purpose	of	this	study	was	to	evaluate	the	utilization	

of	EVLP	and	an	established	A2AR	agonist	(ATL-1223)	in	the	rehabilitation	of	Maastricht	

category	IV	lungs,	as	we	have	previously	demonstrated	the	promise	of	this	allograft	
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treatment	strategy	within	a	murine	EVLP	model[157].	The	study	design	enabled	the	

comparison	of	this	strategy	to	treatment	with	EVLP	and	Steen	solution	alone,	as	we	have	

previously	demonstrated	a	superiority	of	delayed	EVLP	treatment	to	standard	cold-static	

preservation	in	DCD	lung	donation	within	a	preclinical	lung	transplantation	model[105].	

	 The	findings	of	our	study	demonstrate	that	Maastricht	category	IV	DCD	lung	

donation	carries	a	significant	risk.	While	supporting	a	need	for	objective,	selective	markers	

for	transplantation	utilization,	the	present	results	demonstrate	that	EVLP	perfusate	

oxygenation	and	allograft	function	were	directly	proportional	to	that	achieved	post-

transplantation.	Prior	study	has	supported	caution;	however,	in	the	utility	of	functional	

parameters	alone	for	allograft	assessment	secondary	to	the	inherent	physiologic	on-circuit	

shunt	that	may	occur	within	an	injured	allograft[130].	Our	prior	studies	have	demonstrated	

that	rapid	changes	in	pulmonary	gene	expression	at	the	mRNA	level	occurs	during	EVLP,	

offering	a	potential	technique	for	donor	allograft	assessment	and	selection[157].	Consistent	

with	prior	study,	our	experience	also	demonstrates	that	EVLP	may	exacerbate	lung	injury	

when	lungs	have	reached	a	point	of	irreversible	injury.	Our	data	suggest	that	a	decline	in	

function	after	4	hours	of	EVLP	is	predictive	of	poor	post-transplantation	function.	Lungs	

with	the	capacity	for	improvement	in	function	on	EVLP	demonstrated	superior	post-

transplantation	function,	demonstrating	a	rehabilitative	capability	for	this	strategy.	Thus,	

these	data	support	serial	assessments	of	donor	allograft	function	and	perfusate	oxygenation	

during	the	EVLP	period,	as	the	trend	of	these	values	rather	than	absolute	values	may	offer	

insight	into	rehabilitative	processes	for	successful	transplantation.	

	 A2AR	agonism	is	an	established	targeted	therapy	for	the	amelioration	of	lung	IR	

injury,	with	demonstrated	effects	on	macrophage	signaling	pathways	and	iNKT	cell	

activation[3,	6,	112].	These	findings	supported	our	application	of	this	targeted	therapy	into	

the	EVLP	platform	with	prior	demonstration	of	rehabilitative	promise	within	a	murine	
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model	of	EVLP[157].	We	demonstrate	that	oxygenation	during	the	EVLP	period	is	improved	

in	donor	allografts	treated	with	ATL-1223.	Paired	with	this	finding	is	an	initial	decline	in	

oxygenation	within	the	ATL-1223	group	on	EVLP	followed	by	a	progressive	recovery	of	lung	

function	to	levels	satisfactory	for	subsequent	transplantation.	This	trend	in	perfusate	

oxygenation	warrants	further	study;	however,	it	may	be	postulated	that	the	vasodilatory	

effects	of	A2A	agonism	decrease	intra-pulmonary	shunt	such	that	injured	regions	of	the	

lung	are	perfused	in	treated	groups[158].	This	vasodilatory	effect	is	exacerbated	by	hypoxia	

within	coronary	arterioles,	a	mechanism	involving	cyclic	AMP	and	heat-shock	protein	20	

signaling	pathways[159].	These	effects	support	further	study	yet	offer	the	potential	

improvement	in	the	predictive	value	of	functional	parameters	of	lung	injury	during	the	

EVLP	period,	through	a	mechanism	of	decreased	shunt	and	increased	perfusion	of	injured	

segments	within	the	donor	lung.	

	 While	the	present	study	demonstrates	promise	for	the	EVLP-mediated	

rehabilitation	of	Maastricht	category	IV	lungs,	it	also	demonstrates	that	many	lungs	are	

unrecoverable	and	that	porcine	models	for	transplantation	of	high-risk	donor	lungs	are	

limited	by	labile	and	often-unpredictable	cardiac	rhythm	profiles	within	recipient	swine.	

Swine	demonstrating	a	degree	of	dysrhythmia	during	single	lung	perfusion	were	excluded	

from	further	analysis	as	these	animals	had	altered	physiology,	specifically	significant	

variability	of	perfusion	pressures	within	the	recipient	allograft	during	single	lung	perfusion.	

Paired	increases	during	single	lung	ventilation	and	oxygenation	of	both	preload	and	

afterload	were	not	well-tolerated	in	many	swine	within	the	randomized	study	model.	This	

finding	supports	donor	lung	assessment	during	double-lung	perfusion	and	suggests	that	

single	lung	perfusion	functional	measurements	may	be	a	function	more	of	cardiac	tolerance	

rather	than	allograft	performance.	Paired	with	this	consideration	is	that	lung	injury	and	

pulmonary	vascular	resistance	within	the	selected	swine	were	severe	and	that	the	ensuing	
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right	ventricular	failure	was	a	result	more	of	injury	than	poor	cardiac	functional	reserve.	

This	potential	explanation	is	not	supported	by	the	variability	within	swine,	as	both	injured	

and	non-injured	lungs	resulted	in	ventricular	dysrhythmias	during	single	lung	perfusion	

and	oxygenation.	A	further	limitation	to	this	model	is	the	absence	of	analysis	at	the	cellular	

signaling	level,	as	significant	heterogeneity	existed	in	donor	lung	assessment	by	either	

biopsy	or	bronchoalveolar	lavage.	While	each	of	these	techniques	was	utilized	for	donor	

lung	assessment,	regional	variation	in	lung	injury	within	each	allograft	introduced	a	

significant	sampling	bias.	Standardized	techniques	for	donor	lung	assessment	are	needed,	

supporting	EVLP	perfusate	analysis	and	fluorescent	labeling	as	promising	measures	for	

comprehensive	allograft	assessment.		

	 In	conclusion,	the	present	study	demonstrates	that	EVLP	and	ATL-1223	treatment	is	

a	promising	strategy	for	the	rehabilitation	of	Maastricht	category	IV	lungs,	while	also	

establishing	that	not	all	Maastricht	category	IV	lungs	are	recoverable.	Such	findings	support	

the	continued	study	of	objective	parameters	for	donor	allograft	assessment	during	the	EVLP	

period	with	further	evaluation	of	intra-pulmonary	shunt	mechanisms	and	the	effect	on	

physiologic	measurements	of	function.	Additionally,	porcine	transplantation	protocols	

utilizing	single	lung	oxygenation	and	perfusion	should	be	performed	with	the	

understanding	for	potential	cardiac	dysrhythmias	and	their	effect	on	measurements	of	

allograft	function.	Together	these	findings	demonstrate	that	a	responsible	advancement	of	

this	treatment	strategy	promises	to	define	markers	for	allograft	usability	and	carries	the	

potential	to	address	a	significant	need	in	the	amelioration	of	donor	lung	allograft	shortages	

internationally.	
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Human	EVLP	
	
	 The	promise	of	EVLP	and	ATL-1223	rehabilitative	strategies	has	been	recognized	

with	national	and	international	funding	support	from	both	the	National	Institute	of	Health	

and	the	Roche	Organ	Transplantation	Research	Fund.	This	support	has	enabled	a	current	

clinical	trial	evaluating	the	efficacy	of	EVLP	and	A2AR	agonist	therapies	in	donor	lung	

rehabilitation.	Presented	in	Figure	29	are	the	first	human	lungs	recovered	and	perfused	by	

EVLP	at	the	University	of	Virginia	with	the	respective	demonstration	of	improvement	in	

perfusate	oxygenation	during	the	EVLP	period.	

	

Figure	29.	A.	First	human	DCD	lungs	on	EVLP.	B.	Perfusate	PaO2	during	EVLP	
rehabilitation	period.	
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Concluding	Remarks	and	Future	Directives	
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Future	directives	
	
Implications	for	iNKT	cell	activation	
	
	 Prior	to	our	study	of	early	cellular	mediators	of	lung	IR	injury	we	identified	iNKT	

cells	and	IL-17	as	principal	mediators	of	IR	injury	pathogenesis[3].	This	study	provided	the	

foundational	motivation	for	our	evaluation	of	IL-12	and	IL-23	signaling,	as	these	cytokines	

are	implicated	in	both	iNKT	cell	activation	and	IL-17	signaling[160-162].	Thus,	further	

study	is	needed	to	provide	a	causal	relationship	between	IL-23	signaling	and	iNKT	cell	

activation	within	the	context	of	lung	IR	injury.	As	presented	in	the	cytokine	profiles	for	our	

cellular	knockout	models,	baseline	sham	IL-17	levels	within	bronchoalveolar	lavage	fluid	is	

elevated.		This	finding	limited	our	determination	of	the	effect	of	macrophage	and	dendritic	

cell	depletion	on	iNKT	cell	activation	and	IL-17	release.	Thus,	future	study	with	the	adoptive	

transfer	of	IL-23	receptor	and	IL-12	receptor	knockout	iNKT	cells	into	Jα-18	mice	(deficient	

in	iNKT	cells)	would	provide	added	insight	into	IL-23	and	IL-12	mediated	iNKT	cell	

activation[163].	Further,	mRNA	studies	and	flow	cytometry	intra-cellular	cytokine	staining	

provide	potential	adjunctive	studies	to	determine	transcriptional	and	translational	

alterations	in	IL-23/IL-17	production	during	lung	IR	injury.	As	demonstrated	in	the	S1P	

agonism	studies,	cellular	recruitment	of	iNKT	does	not	appear	to	diminish	with	the	

pharmacologic	disruption	of	the	examined	pro-inflammatory	cytokine	pathways,	yet	lung	

injury	is	decreased.	This	finding	suggests	a	decreased	activation	state	for	end	effector	cells	

of	lung	IR	injury	rather	than	an	alteration	in	cellular	recruitment.	The	in	vitro	study	of	

dendritic	cells	and	sub-selected	pulmonary	macrophages	in	lung	IR	injury	is	limited	by	the	

significant	fragility	of	these	cell	populations	in	vitro	and	the	requirement	for	sophisticated	

sorting	protocols	that	threaten	cell	viability.	To	potentially	circumvent	this	challenge,	a	

plasmid-encoding	construct	of	the	Flt3-ligand	was	administered	by	tail	vein	injection[164].	

While	the	expansion	of	pulmonary	dendritic	cells	was	achieved,	cellular	clumping	and	
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viability	remained	a	significant	challenge	in	obtaining	adequate	purity	for	in	vitro	cellular	

isolates.	Refinement	of	this	process;	however,	would	permit	the	co-culturing	of	dendritic	

cells	and/or	macrophages	with	iNKT	cells	to	discern	potential	cross-talk	mechanisms	

between	each	cell	type	and	the	implications	of	each	cell	type	in	iNKT	cell	activation	along	

with	IL-23/IL-17	production.	While	we	have	demonstrated	feasibility	of	in	vitro	hypoxia-

reoxygenation	conditions	with	iNKT	cells,	translation	of	this	model	to	dendritic	cells	and	

macrophages	resulted	in	a	significant	loss	of	cell	viability,	which	limited	validity	of	in	vitro	

conclusions[165].	Thus,	these	studies	were	not	included	in	the	presented	findings;	however,	

such	a	model	would	provide	valued	insight	into	the	cross-talk	mechanisms	of	dendritic	cells	

and	macrophages	on	iNKT	cell	activation.	While	the	current	study	demonstrates	that	

depletion	of	macrophages	independent	of	dendritic	cells	provides	protection	from	lung	IR	

injury	and	provides	indirect	linkage	to	IL-23	production	and	lung	IR	injury,	further	analysis	

directed	by	these	findings	provides	the	potential	direct	linkage	of	these	cell	types	and	

specific	end	effector	cells	in	IR	injury	pathogenesis.	

Cellular-based	perfusion	techniques	
	
	 The	demonstrated	findings	of	the	composite	EVLP	studies	support	a	role	for	this	

technology	in	the	assessment	and	rehabilitation	of	donor	lungs	with	promise	in	the	rescue	

of	DCD	lungs	with	prolonged	warm	ischemic	time.	These	findings	have	significant	

implications	for	clinical	lung	transplantation	for	both	the	improvement	of	outcomes	and	

expansion	of	a	limited	donor	organ	pool.	Prior	study	in	renal	IR	injury	has	demonstrated	

that	ex	vivo	treatment	of	dendritic	cells	with	an	A2AR	agonist	has	a	protective	effect	in	IR	

injury[14].	This	finding	has	direct	applicability	and	rational	translation	to	the	advancement	

of	EVLP	with	lung	transplantation.	The	presented	conclusions	support	a	protective	and	

rehabilitative	role	for	A2AR	agonists	in	EVLP	treatment	and	it	can	be	theorized	that	cell-

based	treatment	may	provide	a	more	effective	and	efficient	strategy	for	achievement	of	
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immunologic	tolerance.	Direct	translation	of	the	presented	findings	and	application	of	these	

prior	conclusions	within	renal	IR	injury	would	support	the	evaluation	of	A2AR	agonist-

treated	dendritic	cells	and	macrophages	and	the	delivery	of	treated	cells	by	EVLP	to	the	

donor	allograft.	Further,	the	presented	S1P	agonism	studies	provide	an	additional	potential	

pharmacologic	route	for	dendritic	cell	signaling	alteration	through	EVLP-directed	

treatment.	The	promise	of	this	therapy	is	that	it	provides	a	vehicle	for	continuous	perfusion	

and	cellular	monitoring	at	the	epithelial	cell	level	of	the	donor	lung	allograft.	While	an	

acellular	perfusate	was	utilized	in	the	presented	studies,	a	potential	avenue	for	future	study	

would	be	to	pre-treat	the	donor	organ	with	recipient	dendritic	cells	and/or	macrophages	

that	have	been	tolerized	with	either	an	A2AR	agonist	or	S1P1	receptor	agonist.	Such	study	

may	provide	a	potential	approach	to	true	alteration	of	the	immunologic	profile	of	the	donor	

organ	prior	to	transplantation,	limiting	both	the	inherent	injury	and	need	for	recipient	

immunosuppression	post-implantation	and	recipient	reperfusion.	

Markers	of	injury	and	assessment	of	the	donor	lung	

	 Clinical	lung	transplantation	and	donor	allograft	utilization	is	currently	based	upon	

clinician	examination	of	the	donor	lung	along	with	a	pre-donation	determination	of	

oxygenation	potential	through	an	arterial	blood	gas	sample.		This	traditional	approach	to	

donor	allograft	assessment	is	dependent	on	additional	physiologic	parameters	and	may	

account	for	a	high	percentage	of	early	graft	failures	secondary	to	poor	allograft	selection.	

EVLP	provides	the	privileged	isolated	perfusion	of	the	donor	allograft,	eliminating	

physiologic	variables	that	may	lead	to	inconsistencies	in	assessment	that	threaten	both	

outcomes	and	utilization.	Early	study	with	EVLP	has	demonstrated	an	upregulation	of	IL-6,	

IL-8,	G-CSF,	and	MCP-1	and	downregulation	of	GM-CSF	during	acellular	EVLP	perfusion	of	

rejected	human	donor	lungs	when	examined	in	lung	biopsy	specimens[166].	These	findings	

have	provided	limited	insight	into	predictive	models	for	lung	injury	during	the	EVLP	period	
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and	are	potentially	limited	by	heterogeneity	within	the	lung	parenchyma	that	leads	to	

sampling	error	and	variability.	Examination	of	metabolic	activity	within	the	lung	has	also	

failed	to	achieve	a	predictive	model	of	lung	injury,	as	lactate/pyruvate	ratios	have	lacked	

predictive	potential	for	lung	injury	post-transplantation[167].	The	presented	findings	

demonstrate	the	real-time	measurement	of	functional	parameters	during	EVLP	and	provide	

introductory	insight	into	alterations	at	the	gene	expression	level	within	lungs	perfused	

following	cardiac	death.		Each	of	these	avenues	afforded	promising	predictive	potential	of	

post-transplantation	function	in	our	preclinical	porcine	transplantation	model.	Thus,	

further	study	to	establish	objective	markers	of	lung	injury	promises	to	provide	standards	of	

acceptance	for	subsequent	lung	transplantation.	Such	criteria	would	limit	the	

transplantation	of	injured	lungs	and	improve	utilization	of	high-risk	donor	lungs,	providing	

a	significant	advancement	from	current	clinical	pre-donation	standards	of	oxygenation	

potential.	It	is	feasible	that	genetic	analysis	of	both	donor	and	recipient	expression	profiles	

could	aid	in	the	determination	of	EVLP-directed	therapies	to	optimize	the	donor	allograft	

for	transplantation	and	reperfusion	periods.	

Genetic	manipulation	of	allograft	

	 Immunologic	tolerance	is	defined	as	“the	specific	absence	of	a	destructive	immune	

response	to	a	transplanted	tissue	in	the	absence	of	immunosuppression”	and	is	considered	

the	ultimate	benchmark	of	transplantation	pharmacology	and	cell-based	therapies[168].	

The	presented	findings	provide	insight	into	cell-based	and	pharmacologic	avenues	for	

donor	allograft	manipulation,	while	providing	a	reproducible	vehicle	for	delivery	of	such	

therapies	to	the	isolated	donor	lung.	Adenoviral	vector	gene	delivery	has	demonstrated	

promise	in	the	encoding	of	anti-inflammatory	profiles	following	transplantation	when	

delivered	during	EVLP	to	the	isolated	donor	allograft[125].	These	early	studies	demonstrate	

that	alteration	of	the	recipient	genetic	profile	is	possible	and	introduce	the	concept	that	
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immunologic	tolerance	may	be	achieved	by	alteration	of	a	donor	allograft	prior	to	recipient	

implantation	and	reperfusion.	Memory	T	lymphocytes	have	been	demonstrated	to	be	the	

major	barrier	to	long-term	graft	survival	with	the	acceleration	of	rejection	responses	

following	rapid	infiltration,	activation	and	production	of	pro-inflammatory	mediators[169].	

Study	of	this	cell	population	has	demonstrated	significant	inherent	complexity	within	T	cell	

sub-populations	and	co-stimulatory	molecule	expression,	implicating	T	cell	subsets	both	in	

graft	acceptance	and	acute	rejection[169].	Such	fluidity	within	cell	populations	in	the	lung	

demonstrates	that	both	cellular	delivery	and	alteration	of	recipient	pro-inflammatory	

cytokine	profiles	offer	promise	in	the	achievement	of	immunologic	tolerance	and	

abolishment	of	deleterious	injury	following	transplantation.	

Concluding	Comment	

	 The	presented	contributions	provide	foundational	insight	into	the	roles	for	

dendritic	cells	but	most	predominately	macrophages	in	the	early	response	to	lung	injury,	

providing	cellular	surface	markers	for	implicated	cell	populations	within	the	lung.	

Additionally,	the	absence	of	IL-23p19	ligand	is	demonstrated	to	have	a	protective	advantage	

in	lung	IR	injury.	Pharmacologic	modulation	of	this	pro-inflammatory	axis	is	achieved	

through	S1P1	receptor	agonism,	offering	a	novel	approach	to	abrogating	lung	IR	injury.	

Finally,	studies	within	both	a	murine	and	pre-clinical	porcine	EVLP	model	demonstrate	

promise	for	A2AR	therapies	in	the	rehabilitation	of	lungs	following	donation	after	cardiac	

death	but	most	importantly	demonstrate	that	both	ex	vivo	assessment	and	donor	lung	

treatment	are	possible.	The	composite	of	these	studies	will	continue	to	inspire	personal	

pursuit	of	improved	outcomes	and	expansion	of	lung	donation	for	patients	with	end	stage	

pulmonary	disease.	The	aim	of	continued	study	will	be	to	provide	insight	into	standards	for	

EVLP-directed	assessment,	while	furthering	the	study	of	donor	allograft	genetic	

manipulation	in	pursuit	of	immunologic	tolerance	for	successful	transplantation.	
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