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Abstract 

Osteoporosis is an increasingly prevalent global health burden characterized by 

decreased bone strength and increased risk of fracture. Despite its significant impact on 

human health, there is currently a lack of highly effective treatments free of side effects for 

osteoporosis. Genetic discovery has been shown to be effective method for the unbiased 

identification of novel drug targets and genome-wide association studies (GWASs) have 

begun to provide insight. Over the last decade, osteoporosis-related GWASs have led to the 

identification of approximately 1100 associations for bone mineral density (BMD) and other 

bone traits related to risk of fracture. However, there have been limited efforts to identify 

the causal genes and mechanisms underlying these GWAS associations and there is much 

left to learn from these studies. Additionally, osteoporosis is influenced not only by the 

regulation of BMD, but also by gross bone geometry and bone microarchitecture. These 

parameters are difficult to study using human GWAS, but instead rely on model organism 

studies, largely in the mouse.  

Here, we explore the genetic determinants of osteoporosis, regulating both bone 

geometry and BMD. We used allele specific expression analysis in inbred mice to identify 

novel genes potentially influencing bone geometry. Additionally, we built new tools that 

produce visualizations of the colocalization of expression quantitative trait loci (eQTL) with 

GWAS associations. Finally, to investigate BMD GWAS, we integrated gene co-expression 

network analysis with the results of BMD GWAS to identify novel genes influencing BMD. 

Using both computational and experimental methods, we discovered novel genes influencing 

osteoporosis and have developed a platform from which we can better understand the 

mechanisms that underlie bone fragility and increased risk of fracture.  
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1.1 Epidemiology and current therapeutics for osteoporosis  

Osteoporosis is a disease of weakened bone, clinically characterized by low bone 

mineral density (BMD) and an increased risk for fracture 1. Osteoporotic fractures are a 

major public health burden 2,3 and as a larger fraction of the population reaches old age, the 

annual rate of fractures and associated costs in the United States are projected to rise as 

much as 48% by 2025, resulting in approximately 3 million fractures and $25.3 billion in 

health care costs annually 4. This bleak outlook has led to increased efforts to develop a 

more effective means of treating and preventing bone disease. 

  The majority of existing therapeutics for osteoporosis are antiresorptives, such as 

bisphosphonates 5, which inhibit osteoclast-mediated bone resorption 6. While these drugs 

are effective in halting bone loss and further increases in fracture risk, they are prescribed 

upon diagnosis, after significant bone loss has already occurred 7. As a result, anabolic agents 

that build new bone are needed. Teriparatide, an injected peptide that targets the parathyroid 

hormone receptor, has been shown to induce bone formation 8. However, the need for a 

daily injection makes this a difficult course of treatment 9. Romosozumab, an antibody that 

targets the Wnt signaling inhibitor sclerostin, was just approved for clinical use 10. The drug 

has been shown to reduce the incidence of fracture, however side effects have been 

observed for romosozumab 11. Side effects associated with existing therapeutics, such as 

atypical femoral fracture and osteonecrosis of the jaw 12,13, though rare, have led to a marked 

decrease in preventative use 14. Given these many disincentives for using the current 

treatments, the identification of novel anabolic therapeutic targets that can be affected via 

orally active drugs is a major goal in the field. 
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Table 1.1 Anti-osteoporotic drug targets that have been linked to changes in BMD by 
GWAS. 

Drug Class Drug Target Target gene implicated by 
GWAS Refs 

Denosumab RANKL RANKL 15 

Sclerostin inhibitors Sclerostin (SOST) SOST 16 

Selective oestrogen 
receptor modulators 

Oestrogen 
receptor ESR1 17 

Parathyroid hormone 
analogues 

Parathyroid 
hormone (PTH) 

receptor 

Not identified, but pathway 
highlighted by PTH-like 

hormone and PTH-related 
protein 

8,18 

Bisphosphonates Farnesyl 
pyrophosphate Not identified 19 

Oestrogen Oestrogen 
receptor ESR1 20 

Cathepsin K 
inhibitors Cathepsin K Not identified 21 

Dickkopf 1 (DKK1) 
inhibitors DKK1 DKK1 22 

Table adapted from 23.  
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Most of the current anti-osteoporotic therapies (Table 1.1) were identified using 

traditional molecular approaches and mouse knockout screens 9,23,24. Specific genes and 

pathways known to play a role in bone maintenance were tested for effects on bone cell 

function in vitro and bone mass in vivo 25. While this method has been effective, in today’s 

world of vast genetic and genomic tools there may be more efficient ways to identify novel 

drug targets. In fact, a recent retrospective analysis revealed that drugs targeting a wide range 

of diseases that had been implicated through genetic studies were almost twice as likely to 

succeed in the drug development pipeline than those not identified using genetic approaches 

26. The increased success rate of targets supported by genetic evidence may be due to the fact 

that genetic studies provide a way to identify genes that, when modified, lead to an 

observable clinical effect not compensated for by other genes. Thus, genetic and genomic 

approaches provide an avenue for the unbiased discovery of novel drivers and regulators of 

specific biological processes and diseases. As described below, genome-wide association 

studies (GWAS) for BMD and mouse studies of other osteoporosis-related traits have given 

us a wealth of potential new drug targets. 

 

1.2 Genetic studies are potentially powerful approaches to identify anti-osteoporotic 

therapeutics 

The utility of genetics studies, in particular GWAS, are often called into question, 

primarily because GWASs do not directly identify causal genes and mechanisms regulating 

the trait and the effects that are identified are often small 27,28. In light of such criticism it is 

useful to define why genetic studies are important. There are three general ways in which 

information from genetic studies can provide important biological and clinical insight. First, 
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genetic information can be used to “personalize” medicine. In theory, once we define the 

genetic architecture of a disease, this information could be used to identify at-risk 

individuals, for example by calculating polygenic risk scores 29. Information on variants that 

impact an individual’s response to treatment would also be invaluable as a clinical decision-

making tool 30. For instance, genetic diagnostics that identified individuals more likely to 

develop osteonecrosis of the jaw (ONJ) or atypical femoral fractures upon taking 

bisphosphonates would be of enormous clinical utility. Second, genetic studies inform 

biology and identifying novel genes is important to develop a comprehensive understanding 

of osteoporosis and other diseases. The utility of GWAS for this purpose will only grow as 

we develop robust methods for moving from loci to genes to disease mechanisms. It is also 

important to highlight that genetic studies differ from more traditional molecular gene 

discovery approaches in that they are unbiased. The importance of the unbiased nature of 

such studies is underscored by the fact that the majority of loci identified by most GWASs 

do not contain known genes related to the phenotype of interest, highlighting that these 

studies lead to the identification of novel biological insight. Third, possibly the most 

important use of genetic studies, is in the search for new anti-osteoporotic therapeutics. 

Current drug discovery paradigms have been hindered by the high attrition rate in the 

development pipeline. Most targets have been identified by non-genetic studies and as 

described above, evidence suggests that drug targets implicated by GWAS are twice as likely 

to succeed in clinical trials 26. Importantly, the success rate may be even higher for 

osteoporosis given that five out of the eight (63%) anti-osteoporosis therapeutics currently 

approved or in advanced clinical trials are supported by genetic data (Table 1.1) 23. Thus, 

genetic and genomic approaches to identifying drug targets are not only feasible, but are 

likely more successful than other avenues of anti-osteoporotic target identification. 
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1.3 Our current understanding of the genetic architecture of osteoporosis 

 Osteoporosis is a complex disease, influenced by numerous traits that determine 

bone strength, including bone mineral density (BMD), bone geometry, and bone 

microarchitecture 31. While these traits are influenced in part by the environment, they are 

also among the most heritable disease-associated quantitative traits (h2>0.50) 31–34. 

Osteoporosis-associated traits are highly polygenic 35–37 and genetic studies have been carried 

to identify genetic variants and genes that affect osteoporosis-related traits; however, 

identifying the underlying causal variants and genes has proven difficult 38.  

Recently, the omnigenic model of the genetic architecture underlying complex traits 

was developed to explain the observations made in human GWAS and provide a framework 

for understanding the results of GWAS 39,40. The main principle underlying the omnigenic 

model is that all genes expressed in disease-relevant tissues will contribute to disease risk, 

resulting in a GWAS association; however, only a subset of these, termed “core” genes, play 

a direct role in disease etiology. The rest, termed “peripheral” genes, while statistically 

associated with the phenotype via GWAS, do not play a direct role in regulating the 

phenotype. The effect of peripheral genes on the phenotype is mediated by core genes. This 

theory of “core” and “peripheral” genes is supported by observations made in GWASs. 

Though core genes are the most directly related to the phenotype biologically, variants 

associated with disease-relevant genes do not harbor the majority of the heritability of a trait. 

The majority of the heritability for complex traits is spread across the genome, generally 

enriched in regions of active transcription and depleted in regions that are repressed in 

relevant cell-types. This result underlies the hypothesis that all actively expressed genes in 

disease-relevant tissues have an impact on the phenotype. However, this also indicates that 

not all causal GWAS-implicated genes are equally important, from a mechanistic and a 
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therapeutic standpoint. Given their direct role in regulating a phenotype of interest, we are 

particularly interested in identifying core genes.  

 Core genes typically have a biologically interpretable role in the processes involved in 

disease, as they likely play a role in the biological processes that determine the disease 

phenotype. Moreover, perturbations of core genes are expected to produce profound effects 

on phenotypes. Given the expected link between core gene function and the phenotype of 

interest, it is also reasonable to assume that these genes may be better drug targets 39. Thus, 

identifying core genes for osteoporosis-related traits, such as BMD, may be critical to 

developing novel, effective therapeutics for osteoporosis. However, genetic studies alone do 

not provide enough information to distinguish core genes from peripheral genes. Therefore, 

new approaches for the identification of core genes are necessary.  

 The utility of the core gene designation has been debated. Some believe that the 

definition of core genes, as genes whose “product (protein, or RNA for a noncoding gene) 

has a direct effect--not mediated through regulation of another gene--on cellular and 

organismal processes leading to a change in the expected value of a particular phenotype” 40, 

is too narrow and that limiting our study of complex traits to a discrete set of core genes will 

restrict our understanding of the genetic architecture of complex disease 41. Others argue 

that, if we have not yet identified the cellular and organismal processes that influence a 

disease, we are biased in our search for core genes, ignoring biology we do not yet 

understand 42. However, core genes are not simply defined by their membership in a key 

biological pathway known to influence a trait, or by their statistically unconditional effect on 

the trait of interest. Core genes have other predicted properties, for example, perturbation of 

a core gene is predicted to have a large effect on the trait of interest 39,40. Thus, it may be 

possible to leverage the predicted biological properties of core genes, without applying a 
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restrictive definition or bias toward known biology, to further identifying the genes, 

mechanisms, and pathways that drive osteoporosis. 

 

1.4 Genetic Approaches for studying osteoporosis-related traits 

 As described above, current therapeutics for osteoporosis are less than optimal 14 and 

genetic studies have been shown to be effective in identifying drug targets with a greater 

than average chance of making it through the development pipeline 26. Thus, numerous 

genetic studies have been conducted to identify novel biology underlying the etiology of 

osteoporosis. Here, we describe GWAS in humans and genetic approaches in the mouse 

used to study osteoporosis.  

1.4.1 Genome-wide association studies for BMD 

Before the development of GWAS, disease-influencing loci were mapped in humans 

using family-based linkage studies 31. Linkage studies track the co-segregation of genetic 

markers with genetic variants that influence disease in families. The advantage of this 

approach is that large chromosomal regions are co-inherited in families, allowing disease 

alleles to be “tagged” using just a few hundred genetic markers spaced across the genome. 

This was critical because at the time, only a small number of genetic markers were known 

and only a limited number of variants could be easily genotyped, so linkage was the state of 

the art. The disadvantage of linkage is that, due to the small number of recombinations 

breaking up chromosomes in families, the loci identified were large, containing hundreds of 

genes. Two critical advances allowed for the development of more high-resolution genetic 

approaches; (1) the completion of the Human Genome Project in 2003 43 and the 

International HapMap Project 44 in 2005, which provided a large list of reference single 
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nucleotide polymorphisms (SNPs) that could be used as genetic markers 45 and (2) the 

development of massively parallel genotyping assays which allowed for the rapid and cost-

effective collection of hundreds of thousands of SNPs in large numbers of samples 46. These 

two advances made it possible to use GWAS to “scan” for associations between millions of 

SNPs across the genome and phenotypes in large populations. In unrelated individuals, 

historical recombinations have “chopped” the genome into small blocks of co-inherited 

variants, and as a result, GWAS associations typically identify small genomic regions, 

implicating just a few genes. Thus, as genotyping large cohorts became technologically and 

economically feasible, GWAS have become the most common and effective means of 

investigating the genetic basis of common diseases. 
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Figure 1.1 Workflow for genome wide association studies (GWAS). A cohort of subjects, either cases, who 

are diagnosed with disease, and controls, who are healthy, or a group of people who vary in a quantitative 

trait, are genotyped at a large number of SNPs. Next, for a quantitative trait, a regression analysis is used 

to identify differences in phenotype as a function of genotype for millions of genetic variants. In case-control 

studies, the allele frequencies of variants between disease-diagnosed and disease-free subjects are compared. Of 

these comparisons, those that are statistically significant are called associations; these represent genetic loci that 

are associated with changes in the quantitative trait or the disease phenotype. Finally, the genes within these 

associated regions are studied in order to identify the causal genes that impact the phenotype. This process is 

outlined in Fig. 1.2.  
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  GWAS are performed by genotyping hundreds of thousands of SNPs, often in 

cohorts of tens or hundreds of thousands of individuals 47 (Figure 1.1). In addition to 

genotyped SNPs, non-genotyped SNPs are often imputed into a cohort 48. Imputation is the 

process of predicting the genotype of untyped SNPs and is possible because we have 

detailed maps of how variants are co-inherited in specific populations 44,49. Thus, it is 

common for a GWAS to test approximately 5-10 million common SNPs for disease 

associations 50. GWAS are performed using either a case-control or quantitative trait design 

51. In the former, allele frequencies of SNPs are compared between genotyped cases and 

controls. For disease-related quantitative traits, SNP genotypes are tested using regression-

based approaches, which determine if SNP allele dosage is associated with a change in 

phenotype. As of June 2019, the GWAS Catalog currently holds ~3989 GWAS publications, 

identifying ~138,000 associations for various traits 52. This expansion will only continue as 

the cost of genotyping and the methods for phenotyping continue to improve, and as 

resources such as the UK BioBank continue to collect data in ever-growing cohorts 53. 

  The end result of a GWAS is a set of loci that harbor genetic variants that influence a 

disease. This is an important distinction as it is often assumed that GWAS identifies specific 

genes. In actuality, GWAS is just the first step in uncovering genes and variants contributing 

to a disease. GWAS associations pinpoint sets of SNPs in linkage disequilibrium (SNPs that 

are frequently co-inherited in a population). The resulting regions of association vary in size 

and typically implicate multiple genes, only a subset of which drive the observed phenotypic 

differences. Thus, the challenge of GWAS lies in identifying the causal genes and 

understanding the mechanism by which these genes affect the phenotype. Some of these 

associated SNPs are located in exons, or coding regions of genes and can impact protein 

function. It is often easy to identify the mechanism by which coding SNPs affect the 



12 

 

phenotype, however the majority of loci identified through GWAS implicate non-coding 

SNPs 54, suggesting they alter gene regulation 55. Regulatory variation is particularly 

challenging to mechanistically characterize for several reasons. For instance, SNPs can affect 

regulation by altering transcription factor binding sites (TFBSs) 56,57, the 3-dimensional 

structure of the genome 58, or alternative splicing 59. Additionally, the field has yet to develop 

robust approaches to identify regulatory sequences and methods to study the differences in 

function between two alternative regulatory sequences 60–62. Thus, it remains challenging 

dissect how GWAS associations impact disease and the functional entities that mediate the 

effects. 

Since 2007, several GWAS have been performed for bone phenotypes. Most notably, 

BMD has been the trait of choice for GWAS, primarily due to its high heritability (h2>0.50) 

63,64, association with fracture 65 and ease of measurement in large cohorts. There have been 

over 30 GWAS conducted for BMD leading to the identification of over 1100 independent 

associations 23,35–37,66. The largest GWAS for BMD measured by dual-energy x-ray 

absorptiometry (DEXA) was conducted by GEnetic Factors for OSteoporosis (GEFOS) 

Consortium 35. The GEFOSII study was a meta-analysis of lumbar spine (LS) and femoral 

neck (FN) BMD in 17 separate cohorts, identifying 56 associations for BMD. GEFOSII 

used a two-stage design that included both a discovery and replication cohort. The discovery 

cohort consisted of ~32,000 individuals and the effects of the most significant SNPs were 

then replicated in ~50,000 individuals. More recent GWAS for “estimated” BMD (eBMD), 

measured using heel ultrasound as a part of the UK BioBank project, have larger sample 

sizes, and thus have identified many more associations. The Kemp et al. GWAS analyzed 

eBMD data from 142,487 individuals and identified 307 conditionally independent 

associations 36 and the Morris et al. GWAS included 426,824 individuals and identified 1103 
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independent associations 37. The results of these eBMD studies encompass 84% of loci 

previously identified in BMD GWAS using DEXA 35–37.  

 Several important observations were made in the Estrada et al. study and confirmed 

in the Kemp et al. and Morris et al. studies. First, the effects of individual loci on BMD and 

eBMD are small. In aggregate, the 64 loci identified in the Estrada et al. study explained less 

than 5% of the phenotypic variance in LSBMD and FNBMD and the 1103 identified in the 

Morris et al. study explained 20% of the variation in eBMD 35,37. The results of these studies 

indicate that BMD is a complex trait, influenced by thousands of loci, each contributing a 

small effect on BMD. The complex genetic architecture of BMD is further supported in 

mouse studies demonstrating that roughly 10% of random gene knockouts have BMD or 

other skeletal phenotypes 67, and by GWAS for human height in >250,000 people which 

identified nearly 700 independent loci 68. Second, approximately half of the 64 BMD loci 

identified in the Estrada et al. study harbored genes known to be involved in BMD, while the 

rest harbored only genes not previously implicated in the regulation of BMD. In the Morris 

et al. study, 1103 associations were identified and the majority contain no gene known to 

influence BMD. As indicated above, it can be difficult to identify which genes are truly 

causal, but for the loci harboring known genes we expect many of these to play a role. It is 

also possible that a subset of loci contain more than one causal gene. Generally, genes in 

GWAS loci that are known to play a role in BMD include: (1) members of the beta-

catenin/Wnt signaling pathway which regulates osteoblasotgenesis, osteoblast proliferation, 

and apoptosis of osteoblasts and osteoclasts 69,70, (2) the receptor activator of nuclear factor-

κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) pathway, which regulates 

the relationship between osteoblast and osteoclast activity in bone remodeling 71,72, and (3) 
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developmental genes involved in the process of endochondral ossification, namely 

transcription factors which induce expression of key genes in the ossification process 23,73. 

The magnitude of effects of genetic variants fall on a continuous spectrum ranging 

from single “Mendelian” mutations of large effect size that cause diseases like osteogenesis 

imperfecta 74, to the small effects identified by GWAS. Though still a contentious matter of 

debate, it is likely that most diseases and quantitative traits are influenced by variants along 

the entire spectrum from small to large. For example, rare, large-effect variants have been 

identified in Wnt Family Member 1 (WNT1) in individuals with very low BMD 75. 

Additionally, genome sequencing and association studies in large cohorts have identified 

variants near the Engrailed Homeobox 1 (EN1), Leucine-Rich Repeat Containing G 

Protein-Coupled Receptor 4 (LGR4) and Collagen Type I Alpha 2 (COL1A2) genes that are 

rare and have relatively large effects on BMD 76–78. However, the evidence is mounting that 

most of the genetic component of BMD is due to large number of common variants of 

small effects 35, and the omnigenic model posits that the contributions may be largely 

peripheral to the relevant biology, with a subset of variants regulating core genes.  

While GWAS have identified over 1100 associations for BMD, very few of these 

associations have been linked to a gene or mechanism influencing BMD. There is still much 

information to be gleaned from these studies, however it will require novel approaches to 

follow up on these results.  

1.4.2 Murine studies of osteoporosis related-traits 

While the results of BMD GWAS promise to open new doors of investigation in the 

bone field and uncover novel therapeutic targets, it is important to point out that BMD is 

not an “ideal” osteoporosis phenotype. For example, some patients who suffer from low 
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BMD do not experience osteoporotic fracture, and others who have normal BMD do 

experience fractures 31. Additionally, it has been shown that ~50% of the variance in bone 

strength, the main determinant of an individual's risk of fracture, is due to BMD, whereas 

the other half of the variance is due to parameters such as bone size, geometry and tissue-

level properties 79. Thus, there are a number of groups that are expanding to alternative 

phenotypes, such as trabecular and cortical microarchitecture defined by micro computed 

tomography (uCT), to capture genetic influences on bone strength that are independent of 

BMD 80,81. As mentioned above, samples sizes of tens of thousands of subjects are needed to 

identify the small effects of common genetic variants. One of the reasons that GWAS has 

been successful for BMD is the ability to assemble very large cohorts. Therefore, it is unclear 

how successful GWAS for traits other than BMD will be due to the difficulty in measuring 

most bone traits in the large number of subjects (N>10,000) needed for sufficient statistical 

power to detect genetic effects.  It is also likely that case-control GWAS for osteoporotic 

fracture will help to fill the gap, though the small number of studies performed to date have 

identified few loci, likely because fracture is a noisy phenotype 82,83. Fracture is a noisy 

phenotype for GWAS because frequently, fractures from all sites are lumped together in a 

single analysis, introducing more noise. Thus, many researchers have turned to mice in order 

to identify novel genes influencing bone strength-related traits other than BMD. A number 

of reviews have been written on this topic 9,84,85, however, briefly, the approaches fall into 

just a few categories: (1) using congenic mouse strains, (2) mapping bone phenotypes using 

recombinant inbred strains, and (3) using mutagenesis and gene knockout screens to identify 

models of bone disease.  

 Congenic mouse strains are strains in which a quantitative trait locus (QTL) 

harboring variants influencing a phenotype are bred from a donor strain onto a recipient 



16 

 

strain. This is achieved by backcrossing the progeny of a cross between two divergent strains 

to one of the original strains, isolating the effect of a single QTL from the donor strain 86.  

For example, QTLs for high bone mass identified in C3H/HeJ mice have been transferred 

onto the low bone mass C57BL/6J line, leading to the identification of four loci harboring 

variation that influences BMD 87. By continuously backcrossing to isolate smaller and smaller 

subsets of the region, the minimal region required to produce the phenotype could be 

identified, thus narrowing the search space within the QTL. Though congenic strains were 

crucial in the discovery of genetic regions influencing bone phenotypes, the processes of 

breeding such strains is time consuming, and more advanced methods, utilizing high 

throughput genotyping and phenotyping to map traits, expedited the process.  

There have been numerous examples of mapping experiments using crosses of two 

classic inbred strains that have led to the identification of novel genes influencing BMD 88–91 

and disease associated traits other than BMD as well, for example microarchitectural traits 91. 

Recently, more complex genetic reference populations have been leveraged in studies of the 

genetic basis of bone microarchitecture 81, including the collaborative cross (CC) and the 

diversity outbred (DO) populations, which are multi-parental recombinant inbred lines. 

However, these approaches require profiling hundreds of mice, and are also costly.  

Finally, high-throughput phenotyping assays paired with advances in gene knockout 

technology have enabled projects like the International Knockout Mouse Consortium and 

the International Mouse Phenotyping Consortiums 67,92. These studies have identified 

hundreds of genes that produced a bone phenotype with knocked out and publicly reported 

the results in online databases. This data can be used to follow up on human and mouse 

genetic studies of bone mineral density and other osteoporosis-related traits. Mice are 

extremely useful for testing the impact of changes to a single gene, experiments that are not 
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possible to conduct in humans, making them an ideal complementary model system for the 

study of complex traits in humans.  

 

1.5 Causal gene discovery  

Given the importance of translating genetic associations into biological knowledge, 

how does one go from locus to gene to mechanism? Below we outline state-of-the-art 

approaches applicable in both mouse and human studies and discuss how they can be used 

to inform genetic associations for osteoporosis-related traits. 

 1.5.1 “Direct” approaches – fine-mapping, annotating SNPs, eQTLs 

There is not a standard “pipeline” one can use to go from genetic association to 

causal variants/genes (Figure 1.2). Instead, many different approaches may be taken 

depending on the disease, characteristics of the locus under investigation, and the resources 

available. In general, though, it is desirable to both decrease the number of potentially causal 

variants and link those variants to either changes in protein function or, as is more often the 

case, an alteration in gene regulation. 
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Figure 1.2 Workflow for causal gene discovery. As described in Fig. 1.1, GWAS result in the 

identification of genomic loci associated with a trait or disease. Both the significantly associated SNPs and the 

genes within the region can be identified. If a SNP is identified within the coding region of a gene, 

computational techniques can be employed to determine the likelihood that the SNP causes a functional 

change in the protein it produces. If the SNP lies in a non-coding region, it could play a role in regulating 

gene expression. This hypothesis can be supported by relating the SNP to gene expression using expression 

quantitative trait locus (eQTL) analysis, or by SNP colocalization with regulatory epigenomic marks. The 

genes within the region can also be integrated with network information to identify potentially causal genes.  
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Reducing the number of potential causal variants is referred to as fine-mapping. An 

example of fine-mapping is performing targeted complete re-sequencing of a GWAS locus 

in subset of study participants and then genotyping the identified variants in the entire 

cohort. By increasing the number of SNPs investigated in a region it may be possible to 

identify the truly causal variant that would be more statistically associated with the disease. It 

is also possible to fine-map a large number of loci at once by typing dense SNP sets using 

custom genotyping arrays 93. It is also commonplace for the follow-up population to be 

larger than the original GWAS population, which allows for increased power to include or 

exclude individual variants as likely causal. Statistical fine-mapping is another approach that 

can be used to refine the list of potentially causal variants. These methods are similar in 

concept to “direct” fine-mapping, however, instead of targeted variant discovery by 

sequencing, resources such as the complete genome sequences generated by the 1000 

Genomes project are used to identify a nearly comprehensive list of variants that can then be 

“imputed” statistically into the study population across previously identified loci and tested 

for association 49. Imputation is also available in mouse mapping studies, as many classical 

inbred strains have been fully sequenced 94. No matter the method used, fine-mapping can 

be utilized in many cases to reduce the search space for causal SNPs and variants within a 

genetic locus. 

  Once a high-confidence set of variants for a locus is identified the next approach 

typically taken to identify the causal entity in a GWAS locus is to annotate the SNPs within 

the locus. First, this will lead to the identification of non-synonymous (NS) SNPs that lie 

within genes. These altered gene sequences, and their protein products, are often strong 

causal candidates, especially if they are predicted to alter protein function using 

computational methods 95,96. Second, if coding variants are not implicated, which is usually 
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the case, SNPs can be identified that overlap epigenetic marks often associated with poised 

or active regulatory elements, such as DNase I hypersensitivity sites and histone 

modifications. The Encyclopedia of DNA Elements (ENCODE) 97 and Epigenomics 

Roadmap 98 projects have generated epigenomics data on a wide-range of tissues and cell-

types, including cell-types relevant to skeletal biology such as primary human osteoblasts, 

chondrocytes and mesenchymal stem cells. Coupled with these data are a number of 

computational approaches that can be used to inform GWAS, including the integration of 

information about pleiotropy 99, regulation 100, and epigenetics 101. For example, Bayesian 

approaches have been developed that rank SNPs based on functional annotation data 102–104. 

These approaches are generally limited to human studies, where large publicly available 

databases of epigenetic data are available, however similar approaches may be taken in the 

mouse if epigenetic data is available.  

  Once the most likely causal variants have been identified, the next step is to link 

variants to their target gene(s). In the case of NS SNPs, this is immediately evident. For non-

coding variants identifying their target is more difficult. This can be especially challenging in 

light of the observation that distal regulatory elements, such as enhancers, can be located up 

to 1 Mbp away from the gene promoter they act upon and it is often the case that a single 

enhancer works to fine-tune the expression of more than one gene 105. The most direct route 

of linking non-coding variants to their target gene(s) is to use population-scale expression 

data to identify expression quantitative trait loci (eQTL). eQTL are variants that regulate 

transcription or post-transcriptional processing (stability, splicing, etc.) 106,107. There are two 

types of eQTL, distal and local. Distal eQTL are variants that influence the expression of 

genes in trans, typically on different chromosomes 108. In contrast, local, or cis, eQTL 

influence transcript levels of genes in close proximity. In the context of GWAS, we are 
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interested in identifying local eQTL for genes that may be causal for a particular locus. 

eQTL discovery consists of collecting and profiling disease-relevant tissues or cell-types in a 

population of densely genotyped individuals or across a population of inbred mice, using 

either gene expression microarrays 106 or RNA-seq 109. Ideally, these individuals or strains 

would be a subset of the GWAS study population. Variants within a locus can then be tested 

for association with all the genes in proximity of the original locus. There are now resources, 

such as the data generated by the Gene Tissue Expression (GTEx) project 109, that have 

population-scale expression data and eQTL results for a large number of tissues that can be 

used to inform GWAS in the absence of disease-relevant samples from the disease GWAS. 

All of these methods of directly interrogating SNPs can aid in the prioritization of candidate 

genes and SNPs in the region, both through alteration of protein-coding sequence, and via 

regulatory mechanisms. 

  While these direct approaches to find the causal variants narrow down the list of 

candidates, they do not provide biological context for the potential effectors of the 

phenotype. Additionally, these approaches are generally based on the statistical significance 

of the association between the genotype of a particular SNP and the phenotype, which can 

be influenced by experimental design, and does not always reflect biology. In order to gain a 

mechanistic understanding of the drivers of these associations, genes and SNPs need to be 

prioritized based on biological information, rather than statistical ranking. 

1.5.2 Network-based approaches 

An additional framework for following up on GWAS associations is to use network-

based approaches to biologically contextualize loci 110,111. Network-based strategies have been 

implemented in order to predict causal genes at GWAS loci, and to implicate network 

modules in disease (as examples 112–117). Especially in the case of regulatory variation, disease-
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associated SNPs may act via subtle changes that are propagated through entire cellular 

networks. Therefore, by approaching GWAS from a global, systems perspective, we can 

better connect associations with their physiological impacts. 

  One of the most widely used types of networks for informing GWAS are co-

expression networks. Co-expression networks are modular, meaning each distinct module 

represents a group of highly co-expressed genes 118. These modules tend to contain genes 

involved in similar biological processes, e.g. the function of bone-forming osteoblasts or 

bone-resorbing osteoclasts 119. In practice, co-expression network analysis takes all the genes 

in the genome and, in a relatively unbiased manner, organizes them into functionally 

coherent groups. These properties are helpful for causal gene discovery because we know 

that complex traits are typically influenced by functionally similar genes. Therefore, by 

performing an unbiased, biologically driven grouping of genes and identifying modules that 

are enriched for those implicated in genetic studies it is possible to prioritize which genes 

may be causal. Additionally, due to the functional similarity of genes within modules, the 

mechanism by which a novel gene affects disease can be inferred by the function of the 

other genes it is connected to within a module. Furthermore, networks have the property of 

being scale-free, meaning that they contain a small number of highly interconnected genes 

and an increasingly large number of less connected genes 120. Studies have demonstrated that 

in some modules highly interconnected “hub” genes are more likely to be key genes affecting 

a disease-related trait 114,120,121. As a result, analyzing GWAS data in the context of biological 

networks has the potential to identify causal genes and pathways relevant to disease. 

  One group, studying coronary artery disease (CAD), utilized both databases of 

known metabolic and signaling pathways and novel, tissue-specific gene co-expression 

networks generated from their own RNA-seq data 117. First, both “knowledge-driven 
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pathways” and “data-driven modules” were used to generate a comprehensive list of gene 

sets potentially involved in CAD. Gene sets included “knowledge-based” biological 

pathways from the Reactome 122, Biocarta 123 and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) 124 and “data-driven” co-expression modules from ten different human 

and mouse co-expression studies of various CAD-related tissues, including adipose, blood, 

liver, muscle, heart, and kidney. Next, using gene expression data, eQTL were identified and 

correlated with results from the CARDIoGRAM GWAS 125. Only SNPs that were both 

associated with CAD by the CARDIoGRAM GWAS and identified as influencing gene 

expression by eQTL analysis were included in downstream analyses. Using prioritized SNPs 

in conjunction with the comprehensive list of knowledge-based pathways and data-driven 

modules, specific gene sets that were enriched for GWAS/eQTL SNPs were identified. In 

order to identify the most influential genes, the resulting gene sets were then overlaid on a 

causal network derived from Bayesian network models of gene-gene interactions 126,127. 

Genes central to the gene-gene interaction network that were highly connected with CAD-

associated genes and were identified in more than one gene set were termed “key drivers” of 

CAD. Finally, key drivers were perturbed using siRNA treatment, and their regulatory role 

was characterized. This work led to the association of novel genes with CAD, for example 

glyoxalase 1 (GLO1), which aids in defending against improperly glycated forms of proteins. 

This analysis was made possible by the large amount of available disease relevant and tissue-

specific data, but could be applied to many other phenotypes with a wealth of high 

dimension data. However, this is not currently a feasible approach to study osteoporosis and 

other bone diseases, as we lack large-scale genomic data from disease-relevant tissues. As 

more genomic data are generated in bone, this could become a more feasible approach for 

the study of osteoporosis.  
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Despite the success of these network-based methods in some models, many of them 

rely on genomic data from relevant primary tissues. Efforts to further understand the results 

of BMD GWAS have been stymied by a lack of genomic data from bone tissue and specific 

bone cell types. Thus, many have employed gene expression data from mice have to 

successfully identify novel genes involved in complex traits 128, including the immune 

response 129, response to viral infection 130, and bone mineral density 131. There is great 

promise in using genetic and genomic approaches in the mouse to understand human 

disease.  

 

1.6 Summary 

In summary, over the past decade, genetic studies in the mouse and human GWASs 

have provided an unprecedented understanding of how genetic variation influences 

osteoporosis and fracture. We now know that most of the variation in BMD at the 

population level is due to thousands of variants with subtle effects on BMD and most of 

these variants exert their impact on bone by altering gene regulation. While the initial GWAS 

results are promising, there is much to be done both in terms of comprehensively defining 

the genetic architecture of osteoporosis and fracture and converting genetic data into 

biological knowledge. In this work, we aim to further characterize previously identified 

genetic associations, from both mouse and human, using novel, unbiased approaches in the 

following studies: 

(1) In Chapter 2, we follow up on Feml2, an association for femur length 

identified in a cross between two mouse strains: C57BL6/J, which has long 

femurs, and CAST/EiJ, which has short femurs. Using RNA sequencing data 

from C57BL6/J x CAST/EiJ F1s, we identified 6 genes exhibiting allele-
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specific expression, which may be novel determinants of femur length and 

bone strength.  

(2) In Chapter 3, we present a novel tool for visualizing the relationship between 

genetic associations and eQTL. Testing whether a genetic association and 

eQTL colocalize is an effective method for predicting the causal gene driving 

an association; however, until now there had not been an effective data 

visualization strategy for these relationships. 

(3) In Chapter 4, we integrate a cell-type and biological-process specific, mouse 

co-expression network with the results of BMD GWAS and use the 

predicted properties of core genes to identify a module enriched for core 

genes for mineralization. We then identify four novel genes that likely 

underlie BMD GWAS associations.  

Ultimately, this work contributes to our understanding of the genetic architecture of 

osteoporosis-related traits and presents new tools to follow up on GWAS studies more 

generally.  
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2.1 Abstract 

Parameters of bone geometry such as width, length, and cross-sectional area are 

major determinants of bone strength. Though these traits are highly heritable, few genes 

influencing bone geometry have been identified. Here, we dissect a major quantitative trait 

locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross 

between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur 

length in high growth mice 2 (Feml2). Feml2 was located on Chromosome (Chr.) 9 at ~20 

cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures 

Feml2. In an F2 congenic cross, we fine-mapped the location of Feml2 to an ~6 Mbp region 

extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the 

complete genome sequence of CAST/EiJ and through allele specific expression analysis of 

growth plates in C57BL/6J x CAST/EiJ F1 hybrids. Interestingly, we also find that the 

refined location of Feml2 overlaps a cluster of six independent genome-wide associations for 

human height. This work provides the foundation to identify novel genes affecting bone 

geometry. 

 

2.2 Introduction 

Osteoporosis is a disease of severe bone loss that leads to skeletal fragility and an 

increased risk of fracture 7. In the U.S., osteoporosis affects over 12 million people and is 

directly responsible for 1.5 million fractures annually 7. Although fracture is not commonly 

associated with mortality, of the ~300,000 people each year that suffer a hip fracture, one in 

five will die in the subsequent 12 months 132.  

Bone geometry is one of the many factors that contribute to bone strength 133. 

Studies in mice have demonstrated that up to 50% of the variance in bone strength is due to 

bone size 134. Furthermore, the relationship between bone geometry and fracture risk in 
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humans has been demonstrated in both the wrist and the spine, as decreased cross-sectional 

area of the radius and vertebrae are associated with increased risk of fracture 133. In addition, 

similar to most other characteristics of bone, bone geometry is highly heritable (h2>0.50) and 

amenable to genetic analysis 135. Therefore, increasing our understanding of the genes 

influencing bone geometry using genetic analyses has the potential to inform strategies for 

the treatment and prevention of bone fragility. 

To identify quantitative trait loci (QTL) affecting body composition, Corva et al. 

generated an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ (CAST) strains 136. 

The HG strain is a C57BL/6J (B6) mouse that is homozygous for a deletion encompassing 

the Socs2 gene (the high-growth (hg) locus), a negative regulator of growth hormone 

signaling, resulting in increased growth and body size 137,138. In contrast, CAST mice are 

genetically divergent wild-derived inbred mice that are small and lean. One QTL identified in 

the hg x CAST cross was femur length in high growth mice 2 (Feml2). Feml2 was located on 

Chr. 9 at ~20 cM, explained 10.7% of the variance in femur length and was independent of 

the hg locus 136. In order to identify the gene(s) responsible for Feml2, we generated the 

HG.CAST-(D9Mit249-D9Mit133)/Ucd (HG9) congenic strain that possessed CAST alleles 

from 9 to 84 Mbp on an HG background 139. The HG9 strain has previously been used to 

fine-map a distinct QTL affecting adiposity 140. 

  In the current study, two HG9 F2 intercrosses were used to fine-map Feml2. We 

used the complete genome sequences of the B6 and CAST strains and allele-specific 

expression analysis of B6 x CAST F1 mice to identify candidate genes driving the effect on 

femur length. Interestingly, the human syntenic region contains a cluster of six genome-wide 

associations with human height. These data provide the foundation to identify genes 

contributing to bone size and geometry. 
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2.3 Results 

2.3.1 Feml2 is captured in HG9 mice  

We characterized femur geometry in HG9 and HG male mice. As shown in Table 

2.1 femur length was decreased by 6% (P=1.3 x 10-5) in HG9 males, consistent with the 

effects of Feml2 in the original F2 cross 136. In addition, medio-lateral and anterior-posterior 

femur widths were also decreased by 6-7% (P=2.1 x 10-3 and P=3.7 x 10-2) in HG9 males 

(Table 2.1). These data confirm the capture of Feml2 in the HG9 congenic. 

 

Table 2.1 Characterization of femur geometry in male HG and HG9 mice 

  HG (N=14) HG9 (N=7) Difference (%) 
(HG9- 

HG/HG) 

P value 

Femur length (mm) 17.2 ± 0.1 16.2 ± 0.1 -6 1.3 x 10-5 

Medio-Lateral femur 
width (mm) 

2.41 ± 0.04 2.28 ± 0.02 -6 2.1 x 10-3 

Anterior-Posterior 
femur width (mm) 

1.55 ± 0.05 1.45 ± 0.02 -7 3.7 x 10-2 

 

2.3.2 High-resolution mapping of Feml2 

To refine the location of Feml2 within the HG9 congenic interval, we generated two 

F2 crosses, HG9 X HG (N=283) and HG9 X B6 (N=457). Femur length was first mapped 

in each cross separately. No differences in the LOD score profile of peak positions were 

observed (Figure 2.1A, B). As a result, both crosses were combined to increase mapping 

resolution (Figure 2.1C). Feml2 mapped to 30.1 cM with a peak LOD score of 40.0 (Figure 

2.1C). The effects of Feml2 on femur length were additive with each CAST allele decreasing 

femur length by 0.23 mm (Figure 2.1D). Feml2 explained 7.8% of the total variance in femur 
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length. The 95% confidence interval for Feml2 extended from 28.0 to 31.7 cM, which in 

physical distance equated to the 5.7 Mbp region extending from 57.6 to 63.3 Mbp 

(GRCm38/mm10). 

Figure 2.1 Feml2 LOD score profiles. Vertical lines indicate peak LOD scores. The peak of Feml2 was 

located at 30.1 cM in the HG9 x HG (N=283) cross (A), 30.0 cM in the HG9 x B6 (N=457) cross 

(B), and 30.1 cM in both crosses combined (N = 740). The 95% CI for the location of Feml2 in the 

combined cross was 28.3-31.7 cM (57.6-63.3 Mbp) (C). Feml2 had highly significant effects (P<0.001) 

on femur length in both male and female mice.  

 

2.3.3 Characterizing Feml2 variants between CAST and B6 

Feml2 contains a total of 69 RefSeq protein-coding genes (Supplemental Table 2.1). 

Based on the sequenced CAST genome 141, Feml2 contains 46,624 high-confidence single 

nucleotide polymorphisms (SNPs) between CAST and B6. Most (45,664; 97.9%) of the 

SNPs are noncoding (Table 2.2). There are 960 (2.1%) coding variants of which 86 were 
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potentially “high-impact”. Of the 86, there are 81 missense, one initiator codon, three stop-

gained and one stop-retained variants (Table 2.2). Potentially high-impact variants were 

found in 37 of the 69 Feml2 genes. The initiator codon variant is in the enhancer of mRNA 

decapping 3 (Edc3) gene; however, a second in-frame ‘ATG’ is located 6 bp downstream. 

Two of the stop-gain and the stop-retained variants were found in the “unclassified” gene 

1700036A12Rik. The other stop-gain variant was in another “unclassified” gene Gm10657 

(Supplemental Table 2.1) 

Table 2.2 List of SNPs located within Feml2 

Variant Number 

Non-Coding   

downstream gene variant 1993 

upstream gene variant 2230 

intergenic variant 20949 

intron variant 20452 

splice region variant 40 

total 45664 

Coding   

3 prime UTR variant 523 

5 prime UTR variant 51 

synonymous variant 246 

missense variant 81 

initiator codon variant 1 

stop gained 3 

stop retained 1 

mature miRNA variant 1 

non-coding exon variant 53 

total 960 
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In addition to SNPs, there were 8803 small insertions/deletions (INDELs). There were 189 

INDELs in untranslated exons (UTR), two frameshifts and one in-frame insertion. The rest 

were intergenic. The two frameshift variants were found in Arid3b and Nptn; however, both 

occurred in exons predicted by Ensembl, that were not part of the RefSeq transcript for 

either gene. The in-frame insertion was also found in the Arid3b gene and did occur with a 

RefSeq exon. 

 

2.3.4 Characterizing Feml2 allele-specific expression using CAST X B6 F1 RNA-seq 

data  

To identify Feml2 genes whose expression is under genetic regulation, we quantified 

allele-specific expression in growth plate tissue in CAST x B6 F1 mice. Six of the 69 genes 

from the Feml2 region were found to be expressed in an allele-specific manner, 

demonstrating higher transcript levels originating from either the B6 or CAST chromosomes 

in growth plate samples at an FDR<0.20 (Table 2.3, Figure 2.2). These genes are GRAM 

domain containing 2 (Gramd2), La Ribonucleoprotein Domain Family Member 6 or Acheron 

(Larp6), ADP-Dependent Glucokinase (Adpgk), Bone Marrow Stromal Cell-Derived 

Ubiquitin-Like 7(Ubl7), Meiotic Recombination Protein REC114-Like (Rec114), and 

Heparin/Heparan Sulfate:Glucuronic Acid C5-Epimerase (Glce). All of these genes, except 

for Adpgk, were preferentially expressed from the CAST allele as compared to the B6 allele 

(Figure 2.2).  
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Figure 2.2 Boxplots of the expression of six genes demonstrating significant (FDR<0.20) allele-specific 

expression differences. Expression is expressed in transcripts per million (tpm) and binned by strain of origin.  

 

Table 2.3 Allele-specifically expressed genes from the Feml2 region 

Gene 
Name 

Chr CAST/ 
EiJ 

mean 
tpm 

C57BL/ 
6J mean 

tpm 

CAST/ 
EiJ mean 
counts 

C57BL/ 
6J mean 
counts 

logFC1 p-value FDR 

Gramd2 9 5.11 4.22 534 339 0.69 0.002 0.11 

Larp6 9 2.13 1.40 216 142 0.64 0.005 0.11 

Adpgk 9 5.66 8.72 586 893 -0.60 0.013 0.13 

Ubl7 9 4.49 3.14 247 174 0.54 0.012 0.13 

Rec114 9 2.12 1.04 43 19 1.09 0.008 0.13 

Glce 9 2.06 1.46 341 254 0.49 0.021 0.17 
1Positive logFC values correspond to favored CAST/EiJ expression, while negative logFC 
values correspond to favored C57BL/6J expression. 
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2.3.5 Feml2 overlaps with a cluster of human height genome-wide associations  

Given the significant impact of Feml2 on femur length, it is possible that Feml2 

harbors multiple independent variants impacting skeletal dimensions. To determine if there 

is evidence that Feml2 represents a “hot-spot” of genes influencing long bone size, we 

analyzed the syntenic region of the human genome for human height associations (which are 

often driven by changes in skeletal dimensions 142) identified by GWAS 68. Feml2 is syntenic 

with human Chromosome 15 from 67.5 to 75.5 Mbp. This region contains six independent 

associations as identified by GWAS for human height 68(Figure 2.3). Through permutation, 

there was suggestive evidence that the human region syntenic with Feml2 contained more 

associations for height than would be expected by chance (P=0.06). Additionally, these 

SNPs were found to be near the human homologs of all six genes exhibiting allelic 

expression (Table 2.4).  
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Figure 2.3 UCSC Genome browser view of mm10 chr9:57300000-63300000, which 

comprises the Feml2 locus. The uppermost track displays potential high-impact predicted 

coding polymorphisms between CAST and B6 (black = missense, green = initiator codon 

variant, purple = stop gained and stop retained variants). The second uppermost track (blue) 

contains SNPs homologous to those identified in a GWAS for human height 68, which may 

play a regulatory role in gene expression that influences femur length. Finally, the bottom-

most track displays the genes within the Feml2 region. In red are genes that are exhibited 

significant (FDR<0.20) differences in allele-specific expression. 

 

Table 2.4 Human homologs of genes in Feml2 with observed allele specific expression in CAST/EiJ x 

C57BL/6J F1 mice and the lead height-associated SNPs nearest the human genes. 

Gene Start (Mbp)1 End (Mbp)1 
Nearest 
rsID# Chr 

SNP coord 
(Mbp)1 

Dist to 
TSS 

(Kbp) 

Gramd2 72.159807 72.197785 rs12904334 15 72.550363 390.556 

Larp6 70.829130 70.854159 rs975210 15 70.072012 757.118 

Rec114 73.443158 73.560014 rs4337252 15 73.934423 491.265 

Ubl7 74.445977 74.461182 rs5742915 15 74.044291 401.686 

Adpgk 72.751369 72.783785 rs12904334 15 72.550363 201.006 

Glce 69.160634 69.272199 rs10152591 15 69.755817 595.183 
1Human genome build hg38 
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2.4 Discussion 

As a first step in identifying the gene(s) responsible for a QTL with a major effect on 

bone geometry, we developed a congenic strain containing the Feml2 QTL and conducted an 

F2 intercross to refine the location of Feml2. Furthermore, we used the CAST and B6 

genome sequences to identify genes within Feml2 potential impact by coding variation. 

Consistent with the high polymorphism rate between CAST and B6 141, 37 of the 69 Feml2 

genes contained coding variants predicted to potentially impact protein function (Table 2.2). 

Additionally, we hypothesized that non-coding variants between CAST and B6 could be 

driving expression differences between the two strains and that this change in expression 

could be responsible for the reduced femur length in CAST mice. Using RNA-seq data from 

tibial growth plates of CAST x B6 F1s, we identified six of the 69 genes in the Feml2 region 

that are preferentially expressed from one parental allele. 

Of the genes influenced by allele-specific expression, we note two that have the 

potential to be driving the observed femur length phenotype based on their known 

biological function. Larp6, also known as Acheron, is an RNA-binding protein, which is 

specific to collagen mRNAs 143. Larp6 regulates the translation of type I collagen subunits 

through sequence-specific binding to conserved stem loops in the 5’ UTR of collagen 

mRNAs 144. Collagens, predominantly type I collagen, comprise 90% of the bone matrix and 

its processing is critical for proper skeletal development 145 and it has been observed that 

overexpression of Larp6 blocks ribosomal loading onto collagen mRNAs, reducing 

translation of collagen and bone matrix formation 146. In CAST x B6 F1s the expression of 

Larp6 was higher from the CAST allele, potentially consistent with shorter femurs in HG9 

mice. Adpgk, also known as ADP-dependent glucokinase, catalyzes the phosphorylation of 

D-glucose to D-glucose 6-phosphate using ADP as the phosphate donor 147. Knockouts of 
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Adpgk result in short stature and slender bones 148. In CAST x B6 F1s the expression of 

Adpgk was lower from the CAST allele, consistent with shorter and more slender femurs in 

HG9 mice. The allele-specific expression of these genes suggests they may be involved in the 

regulation of femur length. 

  We identified the human syntenic region for Feml2 and found that it contained a 

number of associations for human height identified through GWAS. Human height is, in 

part, influenced by long bone length 149 and this well-powered GWAS, conducted by Wood 

et al., provides a robust collection of loci associated with human height to compare with the 

Feml2 region’s influence on mouse long bone length. This human region appears to be a 

hotspot for associations with height, further implicating the murine region as a region 

influencing femur length and, more generally, skeletal dimension (Figure 2.3). Further 

characterization of the genes in the Feml2 region in mouse is potentially applicable to the 

study of human height. 

In conclusion, this study identified Feml2, a region of the murine genome influencing 

femur length and identified genes with coding and regulatory alterations, a subset of which 

may be responsible for the effects of Feml2. Additionally, comparisons with its human 

syntenic region support the notion that Feml2 may contain multiple polymorphic genes, 

which in aggregate are responsible for its effect on bone geometry. Further characterization 

of these candidate genes and the identification of the mechanism by which they alter femur 

dimension will aid in the study of bone geometry and bone strength. 
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CRF developed and characterized the HG9 mouse, mapped the Feml2 locus, and 

characterized the Feml2 variants between B6 and CAST in the lab of JFM. OLS collected and 

processed the growth plate tissue for RNA sequencing, conducted the allele-specific 

expression analysis, and carried out the comparison of the Feml2 locus and human height 

GWAS results in the lab of CRF.  

 

2.6 Methods 

Mouse strains and husbandry: 

The mouse strains used in the study were B6, HG and the HG9 (MGI:3771219) 

congenic strain. The development of the HG and HG9 congenic strains have been 

previously described 139,150. B6 and HG mice were obtained from vivarium stock. Mice were 

provided a normal chow diet (Purina 5008; 23.5% protein, 6.5% fat, 3.3 Kcal/g) and water 

ad libitum and housed in groups of 2-5 in polycarbonate cages bedded with a 2 to 1 mixture 

of CareFRESH (Absorption Corp, Ferndale, WA) and soft paper chips (Canbrands Int, 

Moncton, Canada). Mice were maintained under controlled conditions of temperature 

(21°C±2°C), humidity (40–70%), and lighting (14 h light, 10 h dark, lights on at 7 AM). All 

mouse protocols were managed according to the guidelines of the American Association for 

Accreditation of Laboratory Animal Care (AAALAC) and approved by the Institutional 

Animal Care and Use Committee at the University of California, Davis. 
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 Characterization of bone geometry in HG9 congenic mice: 

At 9 weeks of age (± 5 days) male HG9 congenic (N=7) and HG control mice 

(N=14) mice were anesthetized and body weights and lengths were measured to the nearest 

decigram and centimeter, respectively. Mice were then euthanized and femurs were removed 

and cleaned of soft tissue. For each femur, we measured the length and width, in the 

mediolateral and anterior-posterior orientations, using digital calipers (Mitutoyo, 

Corporation, Takatsu-ku, Japan). Experimenters were blinded to the genotype of the mice. 

Development and characterization of the HG9F2 mapping populations: 

The congenic F2 mouse populations used in this study have been described in 140. 

Briefly, HG9 X HG (N=283) and HG9 X B6 (N=457) male and female F2 mice were 

generated by intercrossing F1 mice. F2 mice were phenotyped as described above for HG9 

congenics. Mice were genotyped using microsatellite markers. HG9 x B6 F2 mice were 

genotyped for the hg locus as described in 139. 

 Feml2 fine-mapping: 

All statistical analyses were performed using the R Language and Environment for 

Statistical Computing 151. The R/qtl package was used to perform the linkage analysis 152. 

Sex-averaged genetic maps were generated and conditional genotype probabilities were 

estimated, using the calc.genoprob function, along the length of the congenic donor region 

at 0.1 cM intervals. Both F2 crosses were combined for the linkage analysis. The scanone 

function, using the Haley-Knott regression algorithm, was used to perform interval mapping 

using a model that included sex, body weight, and cross type (HG9 X HG=1 or HG9 X 

B6=2) terms as additive covariates. LOD significance for all models tested were empirically 

determined using 1000 permutations. We converted genetic to physical distance by 

regressing Mbp onto cM for all markers. 
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 Growth Plate RNA collection: 

Seven male F1s from a cross between B6 and CAST were euthanized at 21 days of 

age by isoflurane anesthesia followed by cervical dislocation. Proximal and distal tibial 

growth plates were rapidly dissected, placed in TRIzol (Ambion by Life Technologies) and 

pulverized using the Tissue Tearor homogenizer (BioSpec Products). Total RNA was 

extracted from homogenized tissue (mirVana miRNA Isolation Kit, Ambion by Life 

Technologies). RNA concentration was measured by fluorometry (Qubit 2.0 Fluorometer, 

Life Technologies). 

RNA-sequencing sample preparation: 

RNA-Seq libraries were constructed from 200 ng of total RNA using Illumina 

TruSeq Stranded Total RNA with Ribo-Zero Gold sample prep kits (Illumina, Carlsbad, 

CA). Constructed libraries contained RNAs >200 nt (both unpolyadenylated and 

polyadenylated) and were depleted of cytoplasmic and mitochondrial rRNAs. An average of 

6.7 million 2 x 75 bp paired-end reads were generated for each sample on an Illumina 

NextSeq 500 (Illumina, Carlsbad, CA). 

RNA-seq alignment strategy and allele specific expression (ASE) analysis: 

Using g2gtools 153 a transcriptome containing both B6 (mm10) and CAST (mm10 

with version 4 SNPs and indels from the Mouse Genome Project, 

http://www.sanger.ac.uk/science/data/mouse-genomes-project) alleles was generated. 

Reads from each F1 hybrid were aligned to the joint transcriptome using Bowtie, allowing 

no more than 3 mismatches and reporting all alignments of the stratum containing the 

fewest number of mismatches 154. Next, EMASE 155 was used to quantify the number of 

reads from both the maternal and paternal allele. Each end of the paired-end samples was 

processed separately and only reads aligning in both samples were included. Similarly, each 
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lane was processed separately in order to correct for lane-specific effects. Post-

quantification, all samples passed quality control checks based on the expected global 

proportions of reads aligning to each parental strain. All samples showed nearly equal reads 

mapping to each parental strain. In order to identify genes showing allelic expression, edgeR 

was used to compare the quantity of each transcript by strain across the seven samples. Only 

those transcripts with measured expression in at least one haplotype in all of the samples 

were included in ASE analysis. The glmFit and glmLRT functions were used to statistically 

compare the expression of each transcript between the CAST and B6 alleles. 

 Additional statistical analyses: 

Bone geometry measures in HG9 congenic and HG control mice were compared 

using a student’s T-test in R 151. Comparisons at a P<0.05 were deemed significant. 

Permutation analysis was used to determine the probability of six GWAS associations for 

height occurring within the 7.5 Mbp human region syntenic with Feml2 by randomly 

selecting 1000 7.5 Mbp regions from the genome and counting the number of associations 

within each region. Genome-wide significant SNPs identified through a GWAS for human 

height were mapped to mm10 from hg18 using the liftover tool from UCSC. 

Data Availability 

Both C57BL/6J and CAST/EiJ strains are commercially available from Jackson 

Labs. Supplementary file 2.1 contains QTL mapping information, including mouse IDs, 

phenotype information, and SNP marker identifiers, locations, and genotypes. Phenotype 

information can be found in the accompanying README file. Gene expression data from 

chondrocytes are available at GEO with the accession number: GSE90055.  
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Chapter 3 

RACER: A data visualization strategy for exploring multiple genetic associations 

Olivia L. Sabik and Charles R. Farber 

 

Preprint: Sabik, O. L. & Farber, C. R. RACER: A data visualization strategy for exploring 

multiple genetic associations. bioRxiv 495366 (2018). doi:10.1101/495366 
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3.1 Abstract 

Genome-wide association studies (GWASs) have identified thousands of loci associated with 

risk of various diseases; however, the genes responsible for the majority of loci have not 

been identified. One means of uncovering potential causal genes is the identification of 

expression quantitative trait loci (eQTL) that colocalize with disease loci. Statistical methods 

have been developed to assess the likelihood that two associations (e.g. disease locus and 

eQTL) share a common causal variant, however, visualization of the two loci is often a 

crucial step in determining if a locus is pleiotropic. While the current convention is to plot 

two associations side-by-side, it is difficult to compare across two x-axes, even if they are 

identical. Thus, we have developed the Regional Association ComparER (RACER) package, 

which creates “mirror plots”, in which the two associations are plotted on a shared x-axis. 

Mirror plots provide an effective tool for the visual exploration and presentation of the 

relationship between two genetic associations. 

 

Availability and Implementation RACER is provided under the GNU General Public 

License version 3 (GPL-3.0). Source code is available at 

https://github.com/oliviasabik/RACER. 

 

3.2 Introduction 

Genome-wide association studies (GWASs) have identified thousands of loci 

associated with disease risk; however, the genes responsible for the majority of these disease-

associated loci remain largely unknown 38. A common approach to identify causal genes is to 

determine if disease-associated variants also influence molecular phenotypes, such as gene 

expression 156. This approach has become more widely implemented as expression 



44 

 

quantitative trait loci (eQTL) across many tissues have become available from projects such 

as the Genotype-Tissue Expression Project (GTEx) 157. Several statistical approaches that 

provide formal evidence of colocalization between two associations (e.g. a disease locus and 

eQTL) have been developed 158–161; however, effective visualization is often an important 

component of colocalization analyses to ensure the presence of a single pleiotropic 

association. A common convention is to plot two associations separately using LocusZoom 

or LocusCompare and present them side by side, though it is often difficult to compare 

associations plotted on two different x-axes 162. To address this issue, we built the Regional 

Association ComparER (RACER) package, which creates “mirror plots” for two individual 

associations. Mirror plots illustrate two associations, one inverted, on a shared x-axis, 

allowing for the direct comparison of the associated variants for two phenotypes. 

 

3.3 Results 

3.3.1 RACER Features 

RACER was developed as a data visualization tool for the comparison of two sets of 

association data that share a common locus. With RACER, users can plot association data, 

minimally containing columns for chromosome, genomic coordinates, and p-values for an 

association. RACER contains a formatting function which can take any association data as 

input and format it for compatibility with plotting functions. RACER also contains a 

function for annotating association data with population-specific linkage disequilibrium (LD) 

data from the 1000 genomes project using LD Link using reference SNP IDs or formatting 

existing linkage disequilibrium provided by the user for a specific study population 43,163. 

Once the association data has been formatted and annotated, RACER can produce three 

different types of plots. (1) a plot of a single association (Supplemental Figure 3.1), (2) a 
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scatter plot of the p-values from two different association data sets (Supplemental Figure 

3.2), or (3) a mirror plot for two associations (Figure 3.1). 

Figure 3.1. Mirror plots for MARK3, TRMT61A and CKB eQTL and a BMD GWAS locus. 

The mirror plots illustrate the similarity of the BMD association and MARK3 eQTL, the 

complexity of the TRMT61A eQTL, and the dominance of the secondary association in the 

CKB eQTL. 

 

A vignette illustrating how to create the MARK3 eQTL/BMD association mirror plot 

described below can be found at 

https://oliviasabik.github.io/RACERweb/articles/IntroToRACER.html. 

 

3.3.2 RACER Application 

As a demonstration of the utility of RACER, we present a case using GTEx eQTL 

data to interrogate a locus on Chr. 14q32.32 associated with bone mineral density (BMD). 

The Chr. 14q32.32 locus spanned approximately 160 Kbp and included three genes: 

MARK3, CKB and TRMT61A. We previously demonstrated that the expression of all three 
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genes were influenced by significant eQTL (p < 1.0×10−5) in at least one GTEx tissue 131. In 

the original paper, we analyzed these relationships using GTEx release v6 and BMD GWAS 

data from a 2012 study 35. To demonstrate the use of RACER, we performed a new analysis 

using GTEx release v7 and BMD GWAS data from a 2017 study (Supplemental File 3.1, 

3.2) 36,164. First, we used the coloc R package to estimate the posterior probability (PPH4) 

that each pair of associations were due to single causal variants 158. Using coloc, we observed 

that both MARK3 and TRMT61A were likely to share a causal variant (PPH4 = 95.9% and 

PPH4 = 83.4%, respectively). The likelihood that the CKB eQTL colocalizes with the Chr. 

14q32.32 locus was low (PPH4 = 21.3%) 

We used RACER to create mirror plots comparing the BMD association with each 

of the three eQTL. This visualization of the MARK3 and TRMT61A eQTL in direct 

comparison with the BMD association indicate that the MARK3 eQTL has an architecture 

more similar to the BMD association than the TRMT61A eQTL. The MARK3 eQTL is 

nearly identical to the BMD association; the same variants are the most significantly 

associated with both MARK3 expression and BMD and the pattern of association is similar 

across SNPs of decreasing LD. While the TRMT61A eQTL and BMD association have a 

PPH4>75%, which is considered sufficient evidence of a shared causal variant, it appears to 

be influenced by multiple associations in this region 158. The variants that are the most 

significantly associated with TRMT61A expression only exhibit low linkage disequilibrium 

with the SNPs that are the most significantly associated with BMD. However, the most 

significant BMD variants do see to be represented in the association, albeit at a lower level of 

significance. As observed in the coloc results, the CKB eQTL signal is dominated by an 

alternative signal, similar in architecture to the strongest signal in the TRMT61A eQTL. 

Using RACER, we confirmed the coloc results for CKB and gained a more nuanced view of 
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the TRMT61A and MARK3 results. Though this analysis does not exclude the involvement 

of TRMT61A or CKB, it does provide further evidence that MARK3 is responsible for the 

association. 

While we demonstrated the comparison between a disease association and an eQTL, 

RACER can be used to visualize the comparison between any two associations at a common 

locus, including associations for different phenotypes which may arise from a pleiotropic 

variant, or comparable associations arising from studies carried out in populations of 

different ethnicities. 

 

3.4 Conclusions 

We have developed RACER, an R package to produce mirror plots, which allow for the 

direct comparison of two different associations within the same locus. Mirror plots provide 

an effective tool for the visual exploration and presentation of the relationship between two 

genomic associations. 
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4.1 Abstract 

Genome-wide association studies (GWASs) for bone mineral density (BMD), one of 

the most significant predictors of osteoporotic fracture, have identified over 1100 

independent associations; however, few of the causal genes have been identified. Recently, 

the “omnigenic” model of the genetic architecture of complex traits proposed two general 

categories of causal genes, core and peripheral. Core genes play a direct role in regulating 

traits; thus, their identification is key to revealing critical regulators and potential therapeutic 

targets. Here, we identified a co-expression module enriched for genes exhibiting properties 

consistent with core genes for BMD by analyzing GWAS data through the lens of a cell-type 

and timepoint-specific gene co-expression network for mineralizing osteoblasts. We 

identified multiple co-expression modules enriched for genes implicated by BMD GWAS 

and prioritized modules based on their enrichment for genes with core-like properties. Only 

one module, the purple module, was enriched for genes correlated with in vitro mineralization 

(r = 0.49; FDR = 0.012), with known roles in skeletal development (P < 2.2 x 10-16), that 

when perturbed produce a bone phenotype in mice (Odds Ratio (OR) = 4.1; P = 2.14 x 10-

9), and are monogenic bone disease genes in humans (OR = 21.3; P = 6.94 x 10-9). 

Furthermore, the purple module contained genes from two distinct transcriptional profiles 

with regards to osteoblast differentiation, one of which, termed the late differentiation 

cluster (LDC), was more highly enriched for genes with core-like properties. Within the 

LDC, we found that the most highly connected genes were more likely to overlap a BMD 

GWAS association and associations that contained LDC genes overlapped enhancers and 

promoters in osteoblasts. Finally, we identified four LDC genes (B4GALNT3, CADM1, 

DOCK9, and GPR133) with colocalizing expression quantitative trait loci (eQTL) and altered 

BMD in mouse knockouts. Our network-based approach identified a “core” module for 
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BMD and has provided a resource for expanding our understanding of the genetics of bone 

mass. 

 
4.2 Introduction 

Osteoporosis is a disease characterized by low bone mineral density (BMD) and an 

increased risk of fracture 165. Worldwide, osteoporosis is estimated to affect over 200 million 

individuals, directly resulting in 8.9 million fractures 166. Osteoporosis is a multifactorial 

disease, influenced by both environmental and genetic variation. While environmental 

impacts on fracture are significant, fracture-related traits, such as BMD, are among the most 

heritable disease-associated quantitative traits (h2>0.50) 31–33. Due to its high heritability, 

clinical importance, and ease of measurement in large cohorts, nearly all genome-wide 

association studies (GWAS) for osteoporosis have focused on BMD 167. These studies have 

been tremendously successful, identifying over 1100 independent BMD associations 35,36,168. 

However, despite the wealth of genetic signals, the genes and mechanisms through which 

these associations impact bone remain largely unknown. As a result, there is a critical need 

for new approaches to identify causal genes 167.  

Recently, the “omnigenic model” was proposed as a framework for understanding 

the genetic architecture of complex traits such as BMD 39,40. The model posits that all genes 

expressed in disease-relevant cell types have the potential to contribute to disease variation. 

One of the key concepts of the omnigenic model is the classification of causal genes as 

either “core” or “peripheral”. Core genes directly modulate traits, independent of all other 

genes. In contrast, peripheral genes impact traits through their effects on core genes 40. 

Given the direct role that core genes play in the regulation of disease-related traits, there is 

great interest in identifying them, however GWASs alone are incapable of distinguishing 

between core and peripheral genes.  
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The precise definition of a core gene is open to debate 40–42,169; however, as direct 

mediators of disease-related phenotypes, core genes are expected to exhibit certain 

characteristics. For example, core genes are expected to participate in trait-related biological 

processes and have expression levels that correlate with disease. Additionally, severe 

perturbation of a core gene is anticipated to have a large impact on a disease (e.g. monogenic 

disease genes). In the omnigenic model, it is hypothesized that peripheral genes account for 

a substantial component of the heritability of a trait because their effects are amplified by 

interactions with networks of co-regulated core genes, which, if co-regulated 

transcriptionally, will be co-expressed 40. Given the expectation that core genes will be co-

expressed, integrating the results of GWAS with co-expression networks that reflect the 

transcriptional programs associated with the trait of interest is a logical approach to identify 

modules of core genes. In fact, a number of studies have successfully used co-expression 

networks to inform GWAS 117,170–173. For example, we previously used a bone co-expression 

network to identify the osteoblast functional module (OFM), a group of co-expressed genes 

related to osteoblast activity, and used it to predict causal genes underlying BMD GWAS loci 

and infer their function 131.  

Here, we extend and refine our previous approach with the goal of identifying core 

genes for BMD. We used weighted gene co-expression network analysis (WGCNA) to 

generate a co-expression network for mature, mineralizing osteoblasts and identified 

modules enriched for genes implicated by BMD GWASs. We then used the following 

biologically motivated filters to identify “core” modules: (1) correlation with in vitro 

mineralization (a process of fundamental importance to BMD), (2) enrichment for genes 

when knocked-out in mice alter BMD, and (3) enrichment for genes involved in monogenic 

skeletal disease. Of the 65 network modules, the purple module was highlighted by all filters 
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and contained many genes with well-known roles in osteoblast activity and bone formation. 

Furthermore, using gene expression data collected in purified osteoblasts throughout 

differentiation, we were able to identify two clusters of genes within the purple module that 

follow distinct patterns of expression, an early and a late differentiation cluster (EDC and 

LDC). We found that the LDC was more enriched for all genes with known core-like 

properties. Within the LDC, we observed that the most highly connected genes were more 

likely to overlap a GWAS association and were more strongly correlated with in vitro 

mineralization. We identified four highly connected genes from the LDC that had 

colocalizing human eQTL and altered BMD in mouse knockout studies: B4GALNT3, 

CADM1, DOCK9, and GPR133. We anticipate that this integrative approach, utilizing cell-

type and biological process-specific transcriptomic profiles, filters reflecting the properties of 

core genes, and the results of GWAS, will aid in the search for critical core genes and 

pathways underlying complex phenotypes and disease. 

 

 
4.3 Results 

4.3.1 Construction of a co-expression network reflecting transcriptional programs in 

mineralizing osteoblasts 

The goal of this work was to use a cell- and stage-specific co-expression network to 

identify osteoblast “core” genes underlying BMD GWAS associations. To identify core 

genes related to BMD, we chose to focus on a single cell type at a single-time point during 

differentiation: mature, mineralizing osteoblasts. We began by using WGCNA to construct a 

co-expression network using transcriptomic profiles generated from mineralizing primary 

calvarial osteoblasts from 42 strains of Collaborative Cross (CC) mice 174. The resulting 

network consisted of 65 modules of genes, with an average of 292 genes per module (Figure 
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4.1 and Supplemental File 4.1). Each co-expression module was distinguished by its 

assigned color, e.g. the purple module.  

To confirm that modules of genes produced by the co-expression analysis 

represented transcriptional programs reflecting specific biological processes, we assessed 

whether modules were enriched for genes associated with specific gene ontology (GO) terms 

175. Most network modules were enriched for general biological processes, such as the 

immune response (Padj = 6.6 x 10-36) in the blue module, mRNA metabolism (Padj = 7.8 x 10-

9) in the darkolivegreen module, and chromatin remodeling (Padj = 1.9 x 10-4) in the grey60 

module (Figure 4.1 and Supplemental File 4.2). However, as would be expected, there 

were a subset of modules enriched for genes involved in the activity of osteoblasts. For 

example, the cyan module was enriched for members of the Wnt signaling pathway (a key 

regulator of osteoblast activity) (Padj = 2.3 x 10-4), the turquoise module was enriched for 

genes encoding extracellular matrix proteins (Padj = 3.5 x 10-25) (such as genes encoding for 

collagens (Padj = 0.4.2 x 10-10)), and the purple module was enriched for genes involved in 

skeletal system development (Padj = 2.3 x 10-10) and osteoblast differentiation (Padj = 2.0 x 10-

6) (Figure 4.1 and Supplemental File 4.2). Given that our network modules represented 

distinct biological processes, including those involved in mineralization and osteoblast 

activity, we were confident it would provide a platform for identifying core genes related to 

mineralization that potentially underlie BMD GWAS associations.  
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Figure 4.1 Weighted gene co-expression network generated using transcriptomic profiles from mineralizing 

osteoblasts. The network was composed of 65 modules of co-expressed genes, many of which 

were enriched for specific biological processes relevant to osteoblasts. 

 

4.3.2 Identification of co-expression modules enriched for genes implicated by 

GWAS  

To identify modules of co-expressed genes informative for GWAS, we first 

determined if any of the 65 modules were enriched for genes that overlapped GWAS 

associations. Using data from the two largest GWASs performed at the time, one study of 

Dual Energy X-Absorptiometry (DEXA)-derived areal BMD measures at the lumbar spine 

and femoral neck 35 (“Estrada et al. GWAS”; N=32,961) and one study of ultrasound 

determined heel estimated BMD (eBMD) 36 (“Kemp et al. GWAS”, N=142,487), we 

developed a list of 789 human genes (NEstrada = 179, NKemp = 701, (91 shared genes)) 

intersecting BMD GWAS loci. A total of 723 (92%) of these had mouse homologs in the 

network (Supplemental File 4.3&4.4). Of the 65 modules in the network, 13 were enriched 

for mouse homologs of human genes implicated by GWAS (Fisher’s exact test, Padj < 0.05) 

(Supplemental File 4.5 and Figure 4.2A). Additionally, we performed stratified linkage 

disequilibrium (LD) score regression by calculating the BMD heritability partitioned by 
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SNPs surrounding genes in each module using the Kemp et al. GWAS 36,176. We found 16 

modules enriched for partitioned BMD heritability, including nine of the 13 enriched for 

BMD GWAS implicated genes (Figure 4.2B and Supplemental File 4.6).  

 

4.3.3 The purple module is enriched for core genes 

Next, we focused on identifying which of the 13 modules identified above contained 

genes with core-like properties. Instead of using the strict statistical definition proposed by 

39,40, we selected genes using biologically motivated criteria. First, we compared the 13 

module eigengenes with in vitro mineralization across the same 42 CC strains used in the 

construction of the co-expression network (Supplemental Figure 4.1). Only one, the 

purple module, had a pattern of expression that was significantly correlated with 

mineralization (r = 0.49, Padj = 0.012), suggesting the purple module was enriched for genes 

with a direct role in mineralization (Figure 4.2C and Supplemental Figure 4.2).  

Core genes are defined by their direct influence on disease-relevant biological 

processes 39,40. Thus, perturbation of core genes are more likely to result in a significant 

impact on a phenotype, as in the case of a mouse knockout or human monogenic disease. 

We identified all gene knockouts that produced a bone phenotype, defined as either a change 

in BMD, bone mineral content (BMC), abnormal bone morphology, or abnormal bone cell 

activity by utilizing mouse knockout phenotype data from several databases 92,177–179 

(Supplemental File 4.7). Of the 13 modules enriched for BMD GWAS genes, two were 

enriched for genes whose deficiency impacted bone in mice (Figure 4.2D). The purple 

module was the most significantly enriched (Odds Ratio (OR) =5.4, Padj = 1.61x10-34). We 

also compiled a list of 35 known drivers of monogenic bone diseases associated with 

osteoblast dysfunction, including osteogenesis imperfecta, hyperostosis, and osteosclerosis 
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(Supplemental File 4.8) 180–184. Again, the purple module, containing 11 of 35 (31.4%) 

monogenic disease genes, was the most significantly enriched (OR = 21.3, Padj = 6.94 x 10-9) 

(Figure 4.2E). Together, these independent lines of evidence suggested the purple module 

was enriched for BMD core genes. 

 
 
Figure 4.2 The purple module is enriched for genes with core-like properties. (A) Module enrichments 

for genes overlapping a BMD GWAS association. (B) Enrichments for partitioned BMD 

heritability for each module determined using stratified LD score regression. (C) Correlation 

between each module eigengene and in vitro mineralization. (D) Module enrichments for 

genes that, when knocked out, produced a bone phenotype and (E) human monogenic bone 

disease genes. Red line in each panel represents Padj < 0.05. 

 

4.3.4 New BMD GWAS associations further support the purple module as a core 

gene module 

While we were analyzing the Kemp et al. GWAS data, a second eBMD GWAS was 

conducted (Morris et al. GWAS) 37. The Estrada et al. (N=32,961) and Kemp et al. 

(N=142,487) GWASs identified 56 and 307 conditionally independent associations, 
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respectively 35,36. In comparison, the Morris et al. GWAS (N=426,824) identified 1103 eBMD 

associations; an increase of over 3.5-fold 37.  The associations identified by the Morris et al. 

GWAS overlapped 1581 genes, as compared to 789 by the Estrada et al. and Kemp et al. 

GWASs (Supplemental File 4.9). Assuming the genetic architecture of BMD is consistent 

with the omnigenic model, we expected the inclusion of the Morris et al. GWAS data would 

increase the number of modules enriched for GWAS implicated genes. Consistent with this 

hypothesis, the number of modules enriched for GWAS-implicated genes doubled (NKemp = 

13, NMorris = 26) using the Morris et al. GWAS (Figure 4.3A, Supplemental File 4.10). As 

observed in the first analysis, most (18/26, 69%) of the new modules enriched for GWAS-

implicated genes were also enriched for partitioned BMD heritability (Supplemental File 

4.11 & Figure 4.3C). These new modules were enriched for genes involved in general 

biological processes such as RNA splicing (brown module, Padj = 4.04x10-11), cell junctions 

(floralwhite module, Padj = 6.16x10-3), cell motor activity (orange, Padj = 6.61x10-3), the cell 

cycle (lightgreen, Padj = 3.17x10-4), ER to Golgi trafficking (salmon, Padj = 1.80x10-2), the 

glycolytic process (red, Padj = 1.08x10-13), and not processes specific to osteoblast activity 

and/or mineralization (Supplemental File 4.2).  

Similar to our first analysis, the purple module was among the most enriched for 

GWAS implicated genes (OR = 2.67, Padj = 3.4 x 10-11) (Figures 4.3A) and BMD heritability 

captured (OR = 5.8, Padj = 4.7 x 10-6) (Figures 4.3B). Using the Estrada et al. and Kemp et al. 

GWAS, the purple module contained 45 genes implicated by GWAS (OR = 3.15, Padj = 2.3 x 

10-8) (5.7% of GWAS genes; 8.9% of purple module genes) and explained 27% of the SNP-

heritability (hg
2) in the study, or 4.6% of the total heritability. Using the Morris et al. GWAS, 

the number of purple module genes implicated by GWAS increased to 77 (OR = 2.7, Padj = 

3.4 x 1011) (4.9% of GWAS genes; 15.2% of purple module genes) explaining 25.3% of the 
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hg
2, or 5.4% of the total heritability. Additionally, the purple module was still the only one 

correlated with in vitro mineralization (Figure 4.3D), the most significantly enriched for 

genes eliciting a bone phenotype when knocked-out in mice (Figure 4.3E), and human 

monogenic bone disease genes (Figure 4.3F). These data indicate that even with a 

significant increase in the number of GWAS-implicated genes included in the analysis, the 

purple module is still the only one enriched for genes with core properties.  

 

 
Figure 4.3 The purple module was the only core module even after increasing the number of analyzed 

GWAS associations by 3.5-fold. (A) Modules identified as enriched for GWAS implicated genes 

in the Kemp et al. GWAS versus the Morris et al. GWAS using all genes within the 

boundaries of the association. (B) Module enrichments for partitioned BMD heritability for 

each module determined using stratified LD score regression. (C) Correlation between each 

module eigengene and in vitro mineralization. (D) Module enrichments for genes that, when 

knocked out, produced a bone phenotype and (E) human monogenic bone disease genes. 

Red line in each panel represents Padj < 0.05. 
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4.3.5 The purple module contains genes belonging to one of two distinct 

transcriptional programs across osteoblast differentiation 

As described above, the purple module was enriched for GO categories important 

for the function of osteoblasts. Consistent with this, it contained many genes known to play 

a role in osteoblast differentiation and mineralization, including Runx2 185, Sp7 186, Sost 187,188, 

Bglap 189, and Alpl 190 (Supplemental File 4.12). Thus, to further investigate the purple 

module, we evaluated the expression of its genes with regards to osteoblast differentiation. 

To do this, we utilized transcriptomic profiles collected from purified osteoblasts at multiple 

time points across differentiation (GSE54461). Using k-means clustering, we found that the 

genes within the purple module clearly partitioned into two distinct transcriptional profiles 

with regards to differentiation (Figure 4.4A, B). We have termed these groups the Early 

Differentiation Cluster (EDC; high expression early and low expression late) (N=192 

transcripts; 175 unique genes) and the Late Differentiation Cluster (LDC; low expression 

early and high expression late) (N=423 transcripts; 323 unique genes).  

We assessed whether there were differences between the EDC and the LDC with 

regard to network parameters and their enrichment for functional annotations seen in the 

purple module. We first looked at intramodular connectivity, measured by module 

membership (correlation between the expression of each gene and the module eigengene). 

On average, LDC genes had higher module membership scores than EDC genes (P = 

3.0x10-4) (Figure 4.4C). Additionally, the LDC was more significantly enriched than the 

EDC for genes implicated by GWAS (OR = 3.0, Padj = 5.2 x 10-10), osteoblast relevant GO 

terms (e.g. “skeletal development” (Padj = 9.6 x 10-11) and “osteoblast differentiation” (Padj = 

1.4 x 10-4)), genes that when knocked-out result in a bone phenotype (OR = 7.3, Padj = 1.1 x 

10-33) and monogenic bone disease genes (OR = 33.2, Padj = 8.4 x 10-11) (Figure 4.4D). The 
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fact that LDC genes are expressed at high levels during late differentiation, coincident with 

when the osteoblasts are actively mineralizing, suggests that LDC contains core genes 

specific for the process of mineralization. For all downstream analyses we focused on the 

LDC. 

 
Figure 4.4 The purple module consists of genes representing two distinct transcriptional profiles across 

osteoblast differentiation, one of which, the late differentiation cluster (LDC), is more enriched for genes with 

properties consistent with core genes for mineralization. (A) Purple module genes show two distinct 

patterns of expression across differentiation, (B) Genes in cluster 1 (or the early 

differentiation cluster; EDC; N=192 genes) are expressed high early in osteoblast 

differentiation. Genes in cluster 2 (or the late differentiation cluster; LDC; N=423 genes) are 

expressed high late in osteoblast differentiation. (C) LDC genes have a significantly higher 

purple module membership score (P= 3.0x10-4). (D) The LDC is more significantly enriched 

than the EDC for genes implicated by BMD GWAS in humans, associated with GO terms 

for bone development, for genes that when knocked out, produce a bone phenotype, and 

for genes involved in monogenic bone disorders. 
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4.3.6 BMD-associated variants in GWAS loci harboring LDC genes overlap active 

regulatory elements in osteoblasts 

Based on the fact that the LDC is enriched for genes involved in osteoblast 

differentiation and that mineralization is fundamental in the regulation of BMD, we 

anticipate that many of the genes in the LDC are true core genes and causal genetic drivers 

of BMD. If true, then BMD-associated variants in associations harboring LDC genes should 

regulate the expression of LDC genes in osteoblasts. To test this, we utilized histone 

modification data from the Roadmap Epigenome Project 98. In the Morris et al. BMD 

GWAS, 48 LDC genes overlapped 84 (7.6% of the 1103 total) associations (a subset of LDC 

genes overlapped multiple clustered associations). For each of the 84 independently 

associated lead SNPs, we analyzed histone modifications across the osteoblast genome and 

observed that they were more likely to overlap regions marked by modifications associated 

with active regulatory elements such as H3K4me1 (2.8x enrichment, P < 1x10-3), H3Kme2 

(3.2x enrichment, P < 1x10-3), H3K4me3 (3.8x enrichment, P < 1x10-3), and H3K27ac (2.6x 

enrichment, P < 1x10-3) relative to 1000 sets of random SNPs matched for allele frequency 

and distance from a transcription start site (Figure 4.5). Additionally, we observed depletion 

of LDC SNPs in heterochromatic regions marked by H3K9me3 (0.14x depletion, P < 1x10-

3). To determine if the enrichments were specific to osteoblasts, we calculated the ratio 

between the LDC BMD set overlap and the mean random set overlap across all 129 

Roadmap tissues and cell-types. For all activating marks (H3K27ac, H3K4me1, H3K4me2, 

H3K4me3) osteoblasts were in the top 10% when tissues were ranked based on the overlap 

ratio (Supplemental File 4.13). The tissues for which the random sets had a higher ratio 

included cell types related to osteoblasts, such as mesenchymal stem cell (MSC) derived 

chondrocytes and other MSC-derived tissues including adipose and skeletal muscle. These 



63 

 

data support the premise that loci harboring LDC genes impact BMD through the regulation 

of gene expression in osteoblasts, further supporting the causality of LDC genes. 

 
Figure 4.5 Lead SNPs for GWAS associations harboring LDC genes overlap active regulatory elements 

in osteoblasts. Grey bars represent the proportion of LDC SNPs (n = 84) that overlap each of 

the epigenetic marks measured in osteoblasts. Box and dot plots represent the proportion of 

each set of random SNPs (N = 1000) (matched to the LDC SNPs for MAF and distance 

from TSS) overlapping each epigenetic mark measured in osteoblasts.  

 

4.3.7 The LDC genes CADM1, B4GALNT3, DOCK9, and GPR133 are novel genetic 

determinants of BMD 

The overarching goal of this study was to identify causal genes for BMD GWAS 

associations. As described above, 48 (14.9%) LDC genes overlapped an eBMD GWAS 

association from the Morris et al. study. To further identify those with strong evidence of 
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being causal, we utilized expression quantitative trait locus (eQTL) data from the Gene 

Tissue Expression (GTEx) project to identify local eQTL colocalizing with BMD 

associations 164. We also used total body BMD data on LDC gene knockouts collected as 

part of the International Mouse Phenotyping Consortium (IMPC) 178. Together, these data 

allowed us to directly link BMD associated variants to LDC genes and LDC genes to 

pathways regulating BMD. We performed a colocalization analysis for each eQTL/BMD 

association pair for all 48 genes in all tissues and identified 12 LDC genes with colocalizing 

eQTL with a significant posterior probability of colocalization (PPH4>0.7) (Supplemental 

File 4.14 and Figures 4.6A, B, C, and D). The IMPC has measured total body BMD via 

DEXA scan on a large collection of mouse knockouts. We queried each of 12 LDC genes 

with a colocalizing eQTL and found that 5 (41.7%) mutants had been analyzed for BMD. Of 

these, four genes (Cadm1, B4galnt3, Dock9, and Adgrd1) had significantly altered total body 

BMD (Padj < 0.05) (Supplemental File 4.15 and Figures 4.6E, F, G and H). For Cadm1 

and Dock9 the direction of effect inferred from the eQTL/BMD association matched the 

direction of the effect observed in the mouse knockout; however, for B4galnt3 and Adgrd1 

the directions did not match (Supplemental File 4.15). Together, these data strongly 

support Cadm1, B4galnt3, Dock9 and Adgrd1 as core genes and causal regulators of BMD. 

Lastly, we evaluated network parameters of Cadm1, B4galnt3, Dock9 and Adgrd1. We 

observed that Cadm1 and B4galnt3 were ranked in the top 20 based on LDC connectivity 

(Supplemental File 4.12). In fact, Cadm1 was the 2nd most highly connected gene. 

Together, the four genes had, on average, higher module membership than the average LDC 

gene (0.72 vs. 0.52; P = 0.002). In support of the importance of connectivity in the LDC, we 

observed that more highly connected LDC genes were more likely (P=0.008) to overlap a 

BMD GWAS locus (Supplemental Figure 4.3A) and there was a strong positive correlation 
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between connectivity and in vitro mineralization for all LDC genes (r = 0.71, P<2.2x10-16) 

(Supplemental Figure 4.3B). These data suggest that connectivity is an important feature 

of the LDC and a strong proxy for biological importance. 

 
Figure 4.6 Adgrd1, B4galnt3, Cadm1, and Dock9 are novel regulators of BMD. (A-D) All four 

genes have an eQTL in at least one tissue in the GTEx database that colocalizes with a 

proximal BMD GWAS association. (E-H) Knockout mice from the KOMP for each gene 

exhibit altered BMD.  

 

4.4 Discussion 

Osteoporosis is an increasingly common disease associated with reduced BMD and 

negative health outcomes, namely fracture 165. Despite the prevalence of the disease, we still 

do not fully understand the genes and mechanisms that influence its determinants, such as 

BMD. Moreover, current therapeutics for osteoporosis have been associated with rare, but 

severe side effects, leading to decreased compliance 14. Identification of the causal core genes 
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that regulate BMD will help us to further understand the etiology of the disease and lead to 

the development of novel therapeutics. In this study, we identified the LDC, a module 

enriched for core genes influencing BMD, by integrating a cell- and timepoint-specific co-

expression network with the results of BMD GWAS. Furthermore, we identified four LDC 

genes that overlap a GWAS locus, have colocalizing eQTL, and exhibit altered BMD in 

knockouts, suggesting they are causal for their respective BMD GWAS association. 

Many have debated the utility of the core designation proposed in the omnigenic 

model 39,41,42,169, as the definition is quite narrow, including only genes whose “product 

(protein, or RNA for a noncoding gene) has a direct effect--not mediated through regulation 

of another gene--on cellular and organismal processes leading to a change in the expected 

value of a particular phenotype” 40. We found, however, that employing the properties of 

core genes was helpful in identifying a core module enriched for causal genes underlying 

BMD GWAS loci. We leveraged the ideas that core genes would be related to key biological 

processes related to BMD regulation and that perturbation of core genes would lead to 

significant changes in the phenotype 39,40 and identified modules enriched for genes 

exhibiting these characteristics. We used gene ontology analysis, the correlation between 

gene expression and in vitro mineralization, and enrichment for genes that produced a bone 

phenotype in mice when knocked out and genes that drive monogenic bone disease in order 

to identify the purple module as a core module for BMD. The purple module was enriched 

for genes that have a demonstrated role in regulating BMD, many of which have been 

implicated by previous BMD GWAS, including RUNX2 191, ESR1 192, and SOST 193.  

We compared the Kemp et al. study with the Morris et al. study, which identified 

twice as many candidate modules enriched for BMD GWAS genes 36,37. Despite the 

increased number of candidate modules, we found that the purple module was consistently 
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exceptional among the modules enriched for GWAS genes. We also observed that increased 

GWAS sample size led to an increase in diversity of the biological processes represented by 

the modules enriched for GWAS genes. These results support the premise of the omnigenic 

model that any gene that is expressed in a cell-type of interest will be associated with a 

phenotype, given enough power 39. Overall, these results indicate that our method of 

utilizing a cell-type specific co-expression network and core-related in vitro and in vivo 

phenotypes effectively led to the identification of a module of core genes.  

Using GTEx eQTL data and in vivo mouse phenotypes, we provided strong 

supporting evidence that CADM1, B4GALNT3, DOCK9 and GPR133 are novel regulators 

of BMD and causal for their respective GWAS association. None of these genes had been 

previously directly connected to the regulation of BMD. CADM1 (Cell Adhesion Molecule 

1) is a ubiquitously expressed cell adhesion molecule involved in many biological processes, 

including cancer, spermatogenesis, and neuronal/mast/epithelial cell function 194–196 that had 

been implicated in osteoclast proliferation and activity 197 and as an osteoblast-specific 

marker in the context of osteosarcoma 198,199. B4GALNT3 (Beta-1,4-N-Acetyl- 

Galactosaminyltransferase 3) is a glycosyltransferase that transfers N-acetylgalactosaine 

(GalNAc) onto glucosyl residues, thus forming N,N-prime-diacetyllactoseadiamine 

(LacdiNAc), which serves as a terminal structure of cell surface N-glycans that contributes to 

cell signaling 200,201. B4GALNT3 is expressed in bone and associated with circulating levels of 

sclerostin 16,202,203. DOCK9 (Dedicator of Cytokinesis 9) is a guanine nucleotide-exchange 

factor that activates Cdc42 204, which has been shown to regulate osteoclast differentiation 

and ossification 205,206. GPR133 (Adhesion G Protein-Coupled Receptor D1) is a G protein-

coupled receptor that participates in cell-cell and cell-matrix interactions 207. Our results 

demonstrate the utility of the LDC in increasing our understanding of the molecular and 
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genetic basis of BMD. In addition to identifying core genes potentially responsible for 

GWAS associations, the use of networks to inform GWAS has the added benefit of 

providing insight into novel gene function. By using GO enrichments, gene expression 

across differentiation, and membership of key lineage genes, it was clear the LDC contained 

genes important for the process of mineralization. Also, using epigenomics data on human 

osteoblasts from the ROADMAP project 98, we were able to show that the lead BMD 

GWAS SNPs for associations overlapping LDC genes were more likely to fall in active 

regions of the genome in osteoblasts. The implicated SNPs overlapped activating marks 

including H3K4me2, which marks transcription factor binding sites 208 , and transcription 

start sites 209, and H3K27ac, H3K4me2, and H3K4me3, which all mark active enhancers 210–

214. Additionally, we observed depletion of LDC SNPs in heterochromatic regions, marked 

by H3K9me3 215,216. Overall, these data supported the role of the underlying LDC genes as 

core genes with a causal role in the process of osteoblast-mediated mineralization.  

 While these findings are promising, additional data would help to clarify our results. 

For example, the eQTL used in this study were not derived from expression data in bone 

tissue, as bone tissue expression was not measured in the GTEx project. While we identified 

colocalizing eQTL in other tissues, only two of these eQTL/GWAS associations 

relationships match the results of the mouse knockout phenotypes, however this may be 

because the direction of effect of the eQTL in the surrogate tissue does not reflect the 

direction of effect in osteoblasts. Thus, a comprehensive characterization of eQTL in bone 

cells would be beneficial for future studies. Additionally, there is not complete concordance 

in the direction of effect between the Estrada et al. GWAS study of BMD measured via 

DEXA scan and the Kemp et al. and Morris et al. studies of eBMD 35–37. In the Kemp et al. 

study, six specific cases are outlined in which the opposite direction of effect is observed for 
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BMD and eBMD for the same variants 36. These differences could also contribute to our 

observation that the direction of effect between the eQTL/GWAS associations is not 

consistent with the mouse knockout for two of our candidate genes. Moreover, this is not a 

comprehensive study of the determinants of BMD, as we used gene expression data from 

the mouse as a discovery platform. Using mouse cells to generate our network may limit the 

translational applications of the work due to missing homologs between mouse and human. 

Furthermore, more detailed mechanistic studies of the four genes we identified will be 

needed to definitively determine the mechanism by which they regulate osteoblast activity.  

While we identified four novel regulators of bone mineral density, there is still much 

to be gleaned from the late differentiation cluster. For example, SLC8A3 (solute carrier 

family 8 member 3, aka NCX3) is a sodium/calcium exchanger that controls calcium 

homeostasis 217 and is a highly interconnected gene within the module. Slc8a3 overlapped a 

BMD locus identified in a meta-analysis 218 however, summary statistics for the region were 

not reported, so we could not conduct colocalization analysis between this association and 

the local SLC8A3 eQTL. Additionally, SLC8A3 knockout mice have been generated and 

extensively phenotyped for bone microarchitecture and histomorphometry and results 

indicate that SLC8A3 likely plays a role in bone, though much remains to be studied. 

SLC8A3 is just one example of the wealth of information in the LDC that we have yet to 

tap into. There are still many genes with no known connection to BMD in the LDC that are 

likely very important to osteoblast biology and mineralization. However, the LDC is not just 

a list of candidate genes; it also provides insight into the molecular hierarchy driving 

osteoblast differentiation and mineralization, which can provide biological context that can 

help lead to the identification of key drivers of these processes. Furthermore, we can utilize 

the property of LDC membership to infer that candidate genes within the LDC likely play a 
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role in the process of mineralization. Moving forward, the LDC can serve as a platform for 

the identification of novel determinants of BMD. 

Finally, this approach could also be applied to other bone cell types. For example, 

one could use in vitro measures of bone resorbing osteoclast activity as a filter to identify 

groups of genes influencing osteoclast activity and ultimately, BMD. This workflow could be 

useful for determining the cell-type specific contributions of other isolated cell types in 

complex, tissue-level phenotypes, in particular those for which there is an illustrative in vitro 

model.  

  Overall, we have used an integrative, network-based method to identify core genes 

for the process of mineralization and BMD. While the definition of a core gene is still open 

to debate, we found the expected properties of core genes are effective lenses through which 

to contextualize GWAS associations. Integrating gene co-expression networks, GWAS data, 

in vitro and in vivo phenotypic data, and eQTL information has led us to a more complete 

understanding of the biology and genetics of BMD.  
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4.6 Methods 

RNA Sequencing 

Neonatal collaborative cross heads were received from the University of North 

Carolina. At UNC, neonatal (3-5 days) collaborative cross mice were euthanized by CO2, 

decapitated onto paper towels soaked in 70% ethanol, and placed in cold PBS on ice for 

overnight shipping. Once received, calvaria were dissected, paying special attention to brain 

and interparietal bone removal. Isolated calvaria were placed in 24 well plates containing 0.5 

mL of digest solution (0.05% trypsin and 1.5 U/ml collagenase P) and incubated on a 

rocking platform at 37 degrees during six, fifteen-minute digestions in 0.5 mL of digestion 

solution. Fraction 1 is discarded and fractions 2-6 are collected. Fractions 2-6 are added to 

an equal volume of cold plating media (89 mL DMEM, 1 mL 100x Pen/Strep solution, and 

10 mL Lot tested FBS). The resulting cells are filtered using a 70-100 mm cell strainer to 

remove clots, centrifuged at 1000 rpm for 5 minutes and re-suspended in 0.5 ml plating 

media. The resulting cells are plated in a T25 flask. 24 hours later, cells are washed with PBS, 

treated with trypsin, counted, and plated at a density of 1.5x105 cells per well in a 12-well 

plate, and allowed to grow to confluence for 48 hours. After 48 hours of growth, cells are 

switched to differentiation media (10 mL lot tested FCS, 1 mL 100x Pen/Strep solution, 

283.8 uL ascorbic acid (0.1 M), 400 uL B-glycerol phosphate (1 M), and 88.3 mL alpha-
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MEM per 100 mL) and allowed to differentiate for 10 days. On day 10, total RNA was 

extracted from the mineralized cultures using mirVana RNA isolation kit (ThermoFisher 

Scientific).  

RNA-Seq libraries were constructed from 200 ng of total RNA using Illumina 

TruSeq Stranded Total RNA with Ribo-Zero Gold sample prep kits (Illumina, Carlsbad, 

CA). Constructed libraries contained RNAs >200 nt (both unpolyadenylated and 

polyadenylated) and were depleted of cytoplasmic and mitochondrial rRNAs. An average of 

39.7 million 2 x 75 bp paired-end reads were generated for each sample on an Illumina 

NextSeq 500 (Illumina, Carlsbad, CA). FastQC was used to evaluate the quality of the reads, 

and all samples passed the QC stage 219. Reads were mapped to the eight collaborative cross 

founder transcriptomes using Bowtie, and quantified using EMASE 220. EMASE output 

transcript level expression estimates calculated by assigning multi-mapping reads across the 

genome using and expectation-maximization algorithm to allocate reads that differentiate 

between genes, then isoforms of a gene, and then alleles (GSE134081). 

WGCNA network construction 

Estimated transcript count data was used as the basis for co-expression network 

construction. We removed transcripts with less than an average tpm <= 0.3 tpm across all 

samples, resulting in 29,000 transcripts used to construct the network. We used a variance 

stabilizing transformation from the DESeq2 package that decouples the variance from the 

mean 221. Next, we used PEER in order to remove latent confounding batch effects from 

our data 222. As per PEER recommendations, we estimated PEER factors equal to one 

quarter of the number of samples (N = 24) and included covariates in the calculation. We 

carried out the downstream analysis with the residual values from PEER transformation. 
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Finally, we used quantile normalization to match the distribution of each of the samples in 

the analysis.  

The resulting expression data was used to construct a signed, weighted gene co-

expression network using the weighted gene co-expression network analysis (WGCNA) 

package 223. There were no evident outliers from the hierarchical clustering analysis. The 

pickSoftThreshold() function from the WGCNA package was used to determine the power 

used to calculate the network. The minimum power value that had an R2 >= 0.9 for the 

scale-free topology model fit was used, and the network was calculated using a power of 9. 

We then used the blockwiseModules() function to construct a signed network with a merge 

cut height of 0.15, and a minimum module size of 20 genes. Using WGCNA, we constructed 

a signed network composed of 65 modules of co-expressed genes, with an average of 292 

genes per module.  

Gene Ontology Analysis 

For those modules that were enriched for BMD GWAS genes, we conducted gene 

ontology analysis to identify the functional categories represented by each module. Using the 

ToppFun tool on the ToppGene site, we identified the significantly enriched categories for 

GO molecular functions, GO biological processes, GO cellular components, human and 

mouse phenotypes, and pathways 224. The significance cutoffs reported for these 

enrichments were Benjamini & Hochberg corrected FDR q-values.  

Creating BMD GWAS list 

In order to identify co-expression modules enriched for BMD GWAS genes, we 

identified all genes overlapping a BMD GWAS locus using the 2012 and 2017 BMD GWAS 

35,36. For each BMD locus, a bin was defined by the furthest upstream and downstream SNPs 

with LD >= 0.7 as calculated from the European populations in the 1000 genomes phase III 
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data identified using the LDLink LDProxy tool 163. Then, using the Genomic Ranges tool, 

we identified all genes from the GRCh37/hg19 Ensembl gene set overlapping a BMD 

GWAS bin 225,226. If no gene intersected a bin, we identified the nearest upstream and 

downstream genes from the bin. The Estrada GWAS resulted in 179 genes and the eBMD 

GWAS resulted in 701 genes, resulting in a list of 731 unique genes. We converted the list of 

human genes to mouse homologs. 

BMD GWAS gene enrichment 

In order to identify modules of genes enriched for GWAS genes, we used a fisher’s 

exact test to measure the statistical significances of the representation of GWAS genes in 

each module. We then applied a Bonferroni correction to correct for testing the enrichment 

of all 65 modules, and applied a significance cutoff of 0.05 to the adjusted p-values, resulting 

in 13 modules of genes enriched for 2012 and 2017 GWAS genes, and 26 modules of genes 

enriched for 2012, 2017, and 2018 GWAS genes. 

LD Score Regression 

In order to evaluate the relevance of the BMD GWAS gene enriched modules we 

calculated the partitioned heritability of the SNPs in the regions surrounding the genes in 

each module. We used the LD score regression method, which takes gene lists as an input 

and returns the enrichment of the associated SNP set for heritability for the tested trait. For 

each set of modules, we tested using this method, we corrected the enrichment p-values for 

multiple testing using a Bonferroni correction, and applied a p-value cutoff of 0.05 to the 

adjusted p-values.  

In vitro mineralization measurement and correlation 

In order to identify the modules of co-expressed genes with patterns of expression 

correlated with mineralization, we measured in vitro mineralization in osteogenic cells from 
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the calvaria of 42 strain of collaborative cross mice. After 10 days of differentiation and 

mineral production, cells are washed with PBS and treated with 10% NBF (1 mL per well) 

and incubated at room temperature for 15 minutes. The NBF is removed and cells are 

washed with H2O (1mL x 2). Next, wells are stained with alizarin red (0.5 mLs, 40 mM @ 

pH 5.6) for 20 minutes on a shake plate at 120 rpm. Alizarin red stain is then removed, and 

cells are washed 5 times with deionized H2O for 5 minutes on a shake plate at 180 rpm. 

Once rinsed, the mineralized wells are scanned, and .tiff images are retained to extract 

geometric parameters of the mineral deposits. After imaging, the wells are de-stained by 

incubation with 5% perchloric acid (1 mL) at room temperature for 5 minutes while shaking 

at 120 rpm. Eluent is collected and read at 405 nm. The levels of in vitro mineralization varied 

significantly across the population, with a 63-fold change from the highest to lowest 

mineralization samples (max_mmAR = 2.995993, min_mmAR = 0.04719, mmAR = 

millimolar alizarin red).  

In this population, in vitro mineralization had a heritability of 47.8% (p=1.8x10-46), 

indicating that the between-strain variation is larger than the within strain variation and that 

there is a genetic contribution to the process of mineralization. Using the WGCNA package, 

the eigengene of each module was calculated, and the correlation between the eigengene and 

the in vitro mineralization phenotype was calculated using the cor() function in R. The p-

values associated with the correlation between the module eigengenes and in vitro 

mineralization were corrected for multiple testing using a Bonferroni correction and a p-

value cutoff of 0.05 was applied to the adjusted p-values.  

Module enrichment for genes with associated bone phenotypes and monogenic bone disease 

In order to identify modules of co-expressed BMD GWAS genes that are enriched 

for genes with bone phenotype annotations, we curated a list of genes which produce a bone 
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phenotype when knocked out. We used four databases of gene perturbations that result in 

bone phenotypes, including genes annotated with a bone phenotype in the Mouse Genome 

Informatics database (MGI), the Origins of Bone and Cartilage Disease (OBCD) database, 

the International Mouse Phenotyping Consortium (IMPC), and the Bonebase Database 92,177–

179. Specifically, we pulled BMD, altered bone morphology, altered bone cell activity, changes 

in ossification or mineralization, or association with a known bone disease from the MGI 

database. The OBCD database contained genes with changes in bone mineral content 

(BMC), bone volume fraction (BV/TV), and BMD of the femur and BMD of the vertebra. 

We mined the IMPC database for any genes with altered BMD, and we pulled all Bonebase 

genes with altered BV/TV in the femur or vertebra. This resulted in a list of 923 unique 

“bone” genes (Supplemental File 4.7).  

We also curated a list of genes associated with monogenic bone disorders using a 

literature review, specifically focusing on genes that disrupt osteoblast function, leading to 

monogenic bone disorders 180–184) (Supplemental File 4.8).  

We used a fisher’s exact test to measure the statistical significance of the 

representation of genes with associated mouse knockout bone phenotypes and monogenic 

bone disease in each module. We then applied a Bonferroni correction to correct for testing 

the enrichment of all 13 or 26 modules and applied a significance cutoff of 0.05 to the 

adjusted p-values.  

Clustering analysis in osteoblast differentiation gene expression data 

We investigated the expression profiles of all purple module genes in the context of 

differentiation. Using gene expression data from osteoblasts throughout differentiation 

(Series GSE54461), we used k-means clustering to identify differentiation-related 

transcriptional programs in the purple module. We tested k = 1:5, and found two robust 
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clusters of genes within the purple module. Enrichment analysis of the two cluster were 

assessed for enrichment in all function categories as described above.  

Epigenetic enrichment analysis for LDC BMD GWAS associations 

For BMD GWAS lead SNP (and proxies with LD >= 0.7) overlapping an LDC gene 

(n = 84), GenomicRanges 225 was used to calculate the proportion of lead SNPs overlapping 

regions marked by epigenetic modifications, including H3K4me1, H3K4me2, H3K4me3, 

H3K9me3, H3K27ac, H3K27me3, H3K26me3, H3K79me2 and H4K20me1, and histone 

H2AZ from the Roadmap Project 98. Using the GenomicRanges function findOverlaps(), we 

quantified the overlap between the LDC-associated lead SNPs and each epigenetic mark. To 

assess the enrichment of this overlap, we compared against 1000 sets of control SNPs (n = 

84). We chose sets of control SNPs that were within +/- 20% of the mean distance from a 

transcription start site for the BMD GWAS lead SNPs, and within +/- 20% of the mean 

minor allele frequency of the BMD GWAS lead SNPs. P-values were calculated by taking 

the proportion of random sets of SNPs with a more extreme enrichment in the tail of the 

distribution with which we are comparing our experimental proportion. If the experimental 

proportion is more extreme than any measured random set, the p-value is reported as < 

1x10-3. This same procedure was used to evaluate the tissue specificity for each mark. For 

each mark, the overlap with the LDC BMD SNP set and the 1000 random SNP sets were 

computed and the ratio between the proportion of overlapping LDC BMD SNPs and the 

mean proportion of overlapping random SNPs was computed. Higher ratios indicated 

greater enrichment of the LDC BMD SNPs over random SNPs with a given mark in a given 

tissue.  

Colocalization analysis 
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For each gene in the LDC that overlapped a BMD GWAS association from the 

Morris et al. study, eQTL from all GTEx tissues were identified 164,168. Using the coloc 

package, we assessed the potential for colocalization between the QTL for BMD and the 

proximal cis-eQTL 158.  Two associations were considered to colocalize if the posterior 

probability of hypothesis four (PPH4), which is the probability of colocalization, is > 0.7. 

The RACER package to plot the two associations in a mirrorPlot 227. 

Mouse phenotype statistical comparisons 

Using the International Mouse Phenotyping Consortium (IMPC) database, we 

identified genes from the purple module that have eQTL that colocalize with BMD QTL 

and exhibit a difference in BMD when knocked out in mouse 178. Using the PhenStat 

package, we analyzed the differences between control and knockout animals using a mixed 

model framework 228. The specific equation used for each analysis are in Supplemental File 

4.15.  

Network Topology Analysis 

 A t-test was used to compare the module membership of the four causal genes and 

the remainder of the LDC genes and the connectivity of the LDC genes overlapping a BMD 

GWAS locus as opposed to those that do not. A linear model was used to assess the 

relationship between gene connectivity and gene correlation with in vitro mineralization.  
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 Despite the success of a decade of GWAS aimed at uncovering the genetic basis of 

osteoporosis, our understanding of the genes and mechanisms driving these genetic 

associations has been modest. Until now, the majority of follow up studies have focused on 

three key areas: (1) candidate gene studies related to known pathways involved in regulating 

bone mineral density, which are limited in scope, (2) fine-mapping approaches, which help 

narrow the set of potential causal variants, but do not provide biological context, and (3) 

network-based approaches, which rely on molecular data in tissues of interest 167. These 

approaches have provided limited improvements in our understanding of the genetic basis of 

BMD and thus, in this work, we set out to develop new approaches to identifying causal 

genes underlying genetic associations for osteoporosis-related traits and follow up on 

previously identified associations with the goal of identifying novel genes influencing BMD.  

 We began by investigating a QTL for femoral length (Feml2), identified in a cross 

between C57BL/6J-hg/hg (HG) and CAST/EiJ mice 136. Feml2 was located on Chromosome 

9 and had been captured in a congenic strain (HG9) 139. We utilized full genome sequence 

data from the C57BL/6J and CAST/EiJ strains to identify variants potentially responsible 

for the effects of Feml2. We then performed RNA-seq on growth plates from HG9 mice and 

identified 6 genes exhibiting allele-specific expression in C57BL/6J x CAST/EiJ F1 mice. 

We also identified that the human genomic region syntenic to Feml2 was a hotspot for 

associations with height, indicating that this region may harbor multiple regulators of femur 

length 68. This study demonstrated the power of mouse genetics in the identification of novel 

genes underlying associations for osteoporosis traits other than BMD.  

 Our most exciting findings were from the integration of a co-expression network 

and BMD GWAS data to identify novel causal genes underlying BMD GWAS. To identify 

novel genes influencing BMD, we focused on one of the fundamental processes regulating 
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BMD—mineralization. By measuring gene expression in bone-forming osteoblasts, we were 

able to focus on identifying genes involved in mineralization. We constructed a co-

expression network using gene expression data from mineralizing osteoblasts and identified 

the co-expression modules enriched for genes implicated by BMD GWAS. Next, we utilized 

the concept of core genes, as described in the omnigenic model 39,40. Core genes are 

statistically defined as causal GWAS genes that have a direct effect on a trait, conditionally 

independent of all other genes. Identifying core genes by this definition is difficult, requiring 

a full understanding of the mechanisms through which a gene impacts a phenotype. We 

defined core genes based on a biological rather than statistical definition 41,42. We found 

utility in applying the anticipated properties of core genes to the modules enriched for genes 

implicated by BMD GWAS, identifying one core module for BMD, from which we could 

identify novel genes influencing BMD.  The four genes we identified, Adgrd1, B4galnt3, 

Cadm1, and Dock9, have the potential to serve as novel therapeutic targets for osteoporosis.  

Moving forward, increasing the genomic resources available from human bone tissue 

will be critical to improving this approach. One of the obstacles hindering causal gene 

discovery for bone GWAS is the paucity of population-scale transcriptomic and epigenomic 

data from bone tissue or primary bone cells. There are a number of large repositories of 

expression and epigenetic data from particular tissue types; however, there is no such 

resource for the bone field yet. For example, the Gene Tissue Expression (GTEx) project is 

an NIH funded effort to generate RNA-seq expression profiles (and soon epigenetics and 

proteomics data) from multiple tissues (>40) in a large genotyped human cohort 109. The 

resulting resource is extraordinarily powerful and provides the opportunity to understand 

how genetic variation influences expression on a genome-wide basis. One of the primary 

efforts of GTEx to date is to provide the genetics and genomics community with eQTL 
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results, allowing investigators to use these data to inform GWAS. Unfortunately, GTEx is 

not collecting bone tissues and primary bone cells. Our group and others are using the 

GTEx resource, along with data from two small bone eQTL studies 229,230 to inform BMD 

GWAS; however, this only works for signals shared between bone and non-bone tissues or 

genetic effects on bone that arise from expression changes in non-bone tissues. Related 

resources, such as the ENCODE project 97, which focuses on cataloging functional elements 

found in the genome, does contain histone modification and DNase I hypersensitivity site 

data on primary osteoblasts and related cells such as mesenchymal stem cells and 

chondrocytes, though not from other bone cells. Thus, there is a significant need in the bone 

field for generating “-omics” data on bone and primary bone cells that can be used for causal 

gene discovery and as an independent discovery platform. 

As we have discussed above, one of the major bottlenecks in our understanding of 

how genetic variation leads to differences in traits, such as BMD, is identifying causal genes 

for existing GWAS loci. However, that does not imply that the utility of GWAS has been 

exhausted. To the contrary, there is much more to discover, even for BMD, especially in 

light of the observation that the most recent BMD GWAS only explains ~20% of the 

heritability in BMD 37.  Heritability estimates for BMD are generally >50%, so to date 

GWASs have explained roughly 40% of its genetic component 37.  Additional GWASs are 

ongoing and there will no doubt be larger meta-analyses for BMD that will yield even more 

loci. Additionally, GWAS conducted in understudied ethnic populations, such as the meta-

analysis that identified a genome-wide significant locus for LDC gene Slc8a3 conducted in 

East Asians 231, will also be important in the study of the genetics of BMD.  

There is also a need for continued investigation of phenotypes beyond BMD. In 

particular, GWASs for traits that account for aspects of bone strength independent of BMD 



83 

 

would be ideal, for example bone size and microarchitecture. Though many of these traits 

are more difficult to measure than BMD, their interrogation would provide significant 

insight into the genetics of bone strength and fracture risk. Such studies are already starting 

to be performed in large-scale cohorts.  For example, trabecular microarchitecture as 

measured by quantitative computed tomography (QCT) was recently investigated by GWAS 

in a cohort of ~15,000 individuals 232. We anticipate the trend of GWAS for a more diverse 

set of bone-strength related traits will increase in the coming years. In addition to more 

diverse phenotypes, a powerful application of GWAS would be to separate the genetic 

analysis of bone accrual and bone loss, especially in light of the observation that the genetic 

correlation between BMD in pre- and postmenopausal women is modest (r=0.30) 233. Bone 

is accrued until peak bone mass between the ages 20 and 25. GWAS in pediatric populations 

could therefore be used to identify loci specifically affecting the attainment of peak bone 

mass 234. Small GWASs for BMD in pediatric populations have already started to provide 

insight 235. We are also interested in developing a much better understanding of genetic loci 

affecting bone loss due to aging in both sexes, or more importantly, bone loss in females 

after menopause. The dramatic loss of bone after menopause in women is the primary 

reason why 80% of the 12 million Americans with osteoporosis are female 7. To date, 

GWAS has not been used to study bone loss in postmenopausal women, although it is the 

single strongest determinant of poor bone health in women. Lastly, with the exception of 

GWAS studies for BMD in Asian populations (as examples 231,236), most GWAS for bone 

traits have been performed in individuals of European ancestry 35. In order for GWAS 

results to inform drug discovery that is applicable to all populations of people it is imperative 

that GWASs for all bone traits be performed in populations with diverse ethnic 

backgrounds. 
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As discussed above, in the context of causal gene discovery it is imperative that 

transcriptomic, and other “-omics” data, on bone and bone cells be collected in large 

genotyped populations.  Without these resources it will be difficult to definitively identify 

causal variants and genes. However, in combination with these resources there is a need for 

better methods for defining causal variants and genes. Ideally such methods will include 

computational strategies for defining cis-acting regulatory sequences and accurately 

predicting the effects of genetic variation on these sequences 237. Furthermore, experimental 

methods are needed to query large number of variants on regulatory sequence function 238.  

Currently, most experimental strategies rely on reporter assays that assess regulatory function 

of variants using artificial systems that investigate sequences outside of their native 

chromosomal context 60.  There are, however, new methods, such as using lentiviral based 

reporter assays that integrate into the genome that are very promising 239. Additionally, 

CRISPR/Cas9 based genome-editing approaches that allow one to modify individual 

variants in human cells are becoming more efficient and will likely play a large role in causal 

variant and gene discovery moving forward 240. Such experiments will need to be performed 

in human cells, thus cell lines that mimic their in vivo counterparts are urgently needed. An 

attractive alternative to cell lines is bone cells derived from induced pluripotent stem cells 

(iPSCs). These would be the ideal resources for the necessary human cell studies and groups 

have already demonstrated that iPSCs can be used to derive osteoblasts 241 and osteoclasts 242.  

In conclusion, BMD GWAS has provided a rich resource for the study of the genetic 

determinants of BMD, however alternative approaches are required to understand the 

genetic basis of osteoporosis more fully. Mouse studies of osteoporosis-related traits that are 

difficult or impossible to measure in humans will provide a greater understanding of the full 

set of parameters that govern bone strength and may unlock alternative approaches to 
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increasing strength, independent of BMD. New methods for the identification of novel 

genes underlying BMD GWAS associations have the potential to unlock new insight into the 

etiology and treatment of the disease. And as our understanding of the genetic architecture 

of complex traits evolves, so too should our approach to identifying novel genes driving 

complex phenotypes. This work has contributed to this goal by identifying novel genes 

influencing bone geometry and BMD and by developing new tools and approaches for 

identifying and contextualizing genes underlying GWAS associations, laying the foundation 

for future studies of complex traits.  
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Appendix A 

Supplemental Data  

All supplemental data are available at: 

https://github.com/oliviasabik/supplemental_dissertation_data 
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Supplemental file 2.1 QTL mapping information, including mouse IDs, phenotype 

information, and SNP marker identifiers, locations, and genotypes. 

Supplemental Data 3.1 Example BMD GWAS association data from the Chr. 14q32.32 

locus. 

Supplemental Data 3.2 Example GTEx eQTL data for MARK3 from thyroid. 

Supplemental File 4.1 Co-expression network data. Contains summary data, gene 

significance (GS) and module membership (MM) information for each module for each 

transcript. 

Supplemental File 4.2 Gene ontology results for all 65 co-expression modules. 

Supplemental File 4.3 Mouse and human homologs of the genes overlapping BMD 

GWAS associations from the Estrada et al. study 35.  

Supplemental File 4.4 Mouse and human homologs of the genes overlapping BMD 

GWAS associations from the Kemp et al. study 36.  

Supplemental File 4.5 Results of enrichment analysis for Kemp and Estrada BMD GWAS 

genes.  

Supplemental File 4.6 Results of LD score regression for the Kemp et al. GWAS for all 64 

modules. 

Supplemental File 4.7 Mouse genes that produce a bone phenotype when knocked out, 

curated from 92,177–179. 

Supplemental File 4.8 Human genes that drive monogenic bone disorders, curated from 
180–184.  

Supplemental File 4.9 Mouse and human homologs of the genes overlapping BMD 

GWAS associations from the Morris et al. study 37.  

Supplemental File 4.10 Results of enrichment analysis for Morris BMD GWAS genes.  

Supplemental File 4.11 Results of LD score regression for the Morris et al. GWAS for all 

64 modules. 

Supplemental File 4.12 Purple module transcript annotations, including purple module 

membership, in vitro mineralization gene significance calculations, and osteoblast 

differentiation cluster membership.  

Supplemental File 4.13 Tissue enrichments for epigenetic overlap analysis.  

Supplemental File 4.14 Results of colocalization tests for all LDC genes and proximal 

BMD GWAS signals.  
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Supplemental File 4.15 Directions of effect for eQTL and proximal BMD GWAS signals 

and mouse knockout data for Cadm1, B4galnt3, Dock9, and Adgrd1. 
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Supplemental Figures and Tables 
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Supplemental Table 2.1 List of potentially high-impact CAST/EiJ variants within Feml2 
genes.  
*expressed in mouse growth plated as determined by RNA sequencing. 

Chr Position Gene dbSNP Ref CAST 
/EiJ 

Consequence 

9 57537750 2310046O06Rik rs260748872 C G missense variant 

9 57538878 2310046O06Rik rs38947963 G A missense variant 

9 57544878 *Mpi - T C missense variant 

9 57545287 *Mpi - T C missense variant 

9 57552713 *Mpi - T C missense variant 

9 57609252 *Lman1l rs39219434 G T missense variant 

9 57611095 *Lman1l rs38081297 T C missense variant 

9 57611815 *Lman1l rs36883533 C T missense variant 

9 57611844 *Lman1l rs235424109 A T missense variant 

9 57612578 *Lman1l rs36560024 G A missense variant 

9 57613650 *Lman1l rs223545612 A G missense variant 

9 57620573 *Lman1l rs265481243 C T missense variant 

9 57620661 *Lman1l rs255256004 T C missense variant 

9 57681790 Cyp1a2 rs8236810 G C missense variant 

9 57681997 Cyp1a2 rs8236815 G A missense variant 

9 57700121 Cyp1a1 rs8250141 G A missense variant 

9 57713398 *Edc3 rs36786250 A G initiator codon 
variant 

9 57833545 *Gm17231 rs258660237 G A missense variant 

9 57929714 *Ubl7 rs30066215 T G missense variant 

9 57940299 *Sema7a rs226337950 G T missense variant 

9 57954532 *Sema7a rs48774862 G A missense variant 

9 58015195 *Cyp11a1 rs45867326 G A missense variant 

9 58058276 *Ccdc33 rs29643506 T C missense variant 

9 58076623 *Ccdc33 rs51621524 C A missense variant 

9 58081975 *Ccdc33 rs29690624 T G missense variant 
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9 58143018 *Stra6 rs50728118 C G missense variant 

9 58157937 *Islr rs212222891 G A missense variant 

9 58157952 *Islr rs230884510 T C missense variant 

9 58234760 *Pml rs237113441 G T missense variant 

9 58234761 *Pml rs256533111 C T missense variant 

9 58234914 *Pml rs232090362 C T missense variant 

9 58260402 *Stoml1 rs255702081 A G missense variant 

9 58260854 *Stoml1 rs224651736 C G missense variant 

9 58499197 *6030419C18Rik rs252396713 C T missense variant 

9 58530599 *Cd276 - C A missense variant 

9 58554844 *Gm10657 rs216192681 A C missense variant 

9 58554863 *Gm10657 rs256521291 C T missense variant 

9 58554899 *Gm10657 rs252702259 G C missense variant 

9 58555164 *Gm10657 rs48739782 G A stop gained 

9 58824166 *Hcn4 rs258098063 G C missense variant 

9 58957975 *Neo1 rs48614416 T A missense variant 

9 58978730 *Neo1 rs48614416 A C missense variant 

9 59146096 *Gm7589 rs219826815 C T missense variant 

9 59146165 *Gm7589 rs49703292 A G missense variant 

9 59314743 *Adpgk rs13480222 A G missense variant 

9 59396591 *Arih1 - C T missense variant 

9 59709498 *Gramd2 rs237544748 A G missense variant 

9 59713832 *Gramd2 rs220530268 T C missense variant 

9 59713884 *Gramd2 rs37111673 A G missense variant 

9 59855424 *Myo9a rs36786203 G A missense variant 

9 59870922 *Myo9a rs223983082 T G missense variant 

9 59871291 *Myo9a rs242891687 T A missense variant 

9 59871941 *Myo9a rs249734798 C A missense variant 

9 59884573 *Myo9a rs261498011 G T missense variant 
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9 59921846 *Myo9a rs37457286 C A missense variant 

9 59982794 *Thsd4 rs37565778 A G missense variant 

9 59987366 *Thsd4 rs6224703 T C missense variant 

9 60002916 *Thsd4 rs38077312 C T missense variant 

9 60428188 *Thsd4 rs39206755 C T missense variant 

9 60428239 *Thsd4 rs38716900 G A missense variant 

9 60428477 *Thsd4 rs38047306 T C missense variant 

9 60587859 *Lrrc49 rs241323558 C A missense variant 

9 60737152 *Larp6 rs38513944 C T missense variant 

9 60737422 *Larp6 rs37357660 A G missense variant 

9 60769608 *1700036A12Rik rs263607526 C G missense variant 

9 60769781 *1700036A12Rik rs254161566 C A stop gained 

9 60769804 *1700036A12Rik rs224669653 C T missense variant 

9 60769851 *1700036A12Rik rs254164990 G T stop gained 

9 60769942 *1700036A12Rik rs257856766 C T missense variant 

9 60769955 *1700036A12Rik rs213290293 A G stop retained 
variant 

9 60821859 *Gm9869 rs227683477 T C missense variant 

9 60821898 *Gm9869 rs258591700 G C missense variant 

9 60838083 *Gm9869 rs36651271 C T missense variant 

9 60869590 *Uaca rs234670406 A G missense variant 

9 60869607 *Uaca rs3667578 T G missense variant 

9 60870316 *Uaca rs215156422 C T missense variant 

9 60870608 *Uaca rs37765393 A G missense variant 

9 62060441 *Glce rs255376057 G C missense variant 

9 62273017 Spesp1 rs240098849 T A missense variant 

9 62273131 Spesp1 - G C missense variant 

9 62520391 *Coro2b rs33689334 A G missense variant 

9 62767727 *Itga11 rs30437685 G A missense variant 

9 62838912 *Cln6 rs232500018 T C missense variant 



93 

 

9 62849051 *Cln6 rs233474328 G A missense variant 

9 63144390 *Skor1 rs215460083 C T missense variant 

9 63145482 *Skor1 rs252858589 C T missense variant 

 

 
Supplemental Figure 3.1 Single association plot for the BMD GWAS locus. RACER can 

also be used to create a plot of a single association, for example, this plot of the Chr. 

14q32.32 association for BMD. 

 
Supplemental Figure 3.2 Scatter plots for MARK3, TRMT61A, and CKB eQTL and a 

BMD GWAS locus. These scatter plots illustrate the similarity of the BMD association and 

MARK3 eQTL, and the complex relationship between the CKB eQTL, the TRMT61A 

eQTL, and the BMD association. 
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Supplemental Figure 4.1 In vitro mineralization varied across the 42 strains of CC mice. 

Osteoblast cultures were stained ten days post-induction of differentiation with alizarin red 

stain. Inset images are examples of high mineralizing (strain = IL16768) and low 

mineralizing (strain = OR5306) strains.  

 
Supplemental Figure 4.2 The purple module eigengene was correlated with in vitro 

mineralization across the population.  
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Supplemental Figure 4.3 More highly interconnected purple module genes (A) are more 

likely to overlap GWAS associations and (B) have patterns of expression more highly 

correlated with in vitro mineralization.  
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