

Class Scribe: A Modern Approach to Note-taking

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rahat Maini
Spring 2020

Technical Project Team Members
Benjamin Brown

John Watkins
Henry Weber

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines for
Thesis-Related Assignments

Signature __ Date __________
 ​ Rahat Maini

Approved __ Date __________
 Dr. Ahmed Ibrahim, Department of Computer Science

Table of Contents

Abstract 3

1. Introduction 4
1.1 Problem Statement 4
1.2 Contributions 5

2. Related Work 5

3. System Design 7
3.1 System Requirements 8
3.2 Wireframes 10
3.3 Sample Code 12
3.4 Sample Tests 14
3.5 Code Coverage 16
3.6 Installation Instructions 17

4. Results 22

5. Conclusions 2​3

6. Future Work 24

7. References 26

Abstract

Our project started out with the intention to provide students with a method of

note-taking that allows students to access their notes anywhere with an internet connection, but

2

maintain the benefits of pen on paper note-taking. Researchers have found that taking notes on

pen and paper is the most effective way to take notes, even when compared to taking notes on a

tablet with a stylus (Mueller & Oppenheimer, 2016). The system we designed is composed of

multiple lamp-like devices (fitted with a Raspberry Pi) that will be positioned with a camera

facing downward over each student’s notebook. While in class, the lamps will take pictures of

the notes on a set interval and also record the audio lecture; the data captured by the Raspberry Pi

will be uploaded to the web app which is the second part of the system. The web app will be

where students can go to view their personal notebooks and notebooks shared by other

classmates. The web app is also used to configure the system which consists of the courses, lamp

locations, and professors.

 Our team relied on GitHub for version control, Slack to communicate outside of class,

and in-person meetings to discuss project requirements and discuss how progress was going. We

are looking forward to having our product embraced in the educational community as it provides

the best of both worlds in terms of portability of notes and information retained from the actual

act of taking notes. Recently students are mostly switching to entirely digital forms of

note-taking (either typing or stylus on a touch screen), but these forms have led to declined

academic performance and with Class Scribe this trend could be reversed.

1. Introduction

Currently there are three major ways of note taking in lecture halls: classic pencil and

paper, laptop, or tablet with a stylus. Countless studies have assessed the ineffectiveness of typed

notes for retention of material, and even more have laid out the distractibility of tablets (such as

3

iPads) where notifications fight for your attention. Pencil and paper is an optimal writing

experience, however it lacks the modern touch that makes digital note taking so lucrative (cloud

syncing, search, no weight of books). Class Scribe is a project that aims to bring the best of

modern digital note taking to traditional paper and pencil, with minimal management.

1.1 Problem Statement

It was clear to us that no major note-taking method is inherently bad. There are

drawbacks and also positive points. With a laptop/tablet, we see that students become easily

distracted but feel very at ease thanks to the ability to record lecture audio or type near the speed

of speech. Not missing any key information is a strong benefit of methods that emphasize speed

and efficiency in notation. With a smartpen, we see that students prefer the flexibility, ease, and

intuitiveness of pen/paper but do not appreciate the added cost of specialized hardware and

notebooks. The naturality of handwriting is well-known, with no fumbling of interfaces to

manage content, and people undoubtedly (and perhaps unknowingly) appreciate such design for

a tool as fundamental as the pen and paper. Google Docs and other note taking software has

ushered in an era of digital collaboration and content management that has previously never

existed, a notable achievement that propels forward the notions we have regarding work,

note-taking, and study.

1.2 Contributions

Given the problem statement, we were able to construct a basic idea of a successful

product. To meet our goals, we had to make sure the actual act of note-taking had to be

unobstructed pen/paper notation. This was achieved by giving users the freedom of using their

4

own writing utensil and paper, by developing a camera system for note-capture. We know

capturing lecture audio is an important feature that brings ease to those who fear missing out on

pertinent information, and we achieved this through a microphone system for audio-capture.

Finally, we realize the importance of collaboration and portability of user content, for which we

designed an entire web app to manage, share, and access your notes.

2. Related Work

There are a variety of systems that contend against Class Scribe using various faculties.

Smartpen technology (such as that developed by Livescribe) is able to digitize handwriting,

record and sync lecture audio to handwritten notes, and boasts many note-sharing options.

Software such as OneNote and Evernote offer handwriting options for note-taking as well as

audio capture and keyboard input, with free cloud syncing. Alternatives like Rocketbook,

physical notebooks that contain infinitely erasable sheets of paper, offer a smartphone

application where the user can scan their handwritten notes and save a digital copy to their

chosen cloud storage provider. Finally, rounding up the multitude of options for note-takers are

specialized note-taking tablets such as the reMarkable 2, which offers an e-paper display that

resembles real ink on paper for a more natural note-taking experience, as well as handwriting

digitization (increasingly appears to be a standard feature on many of these note-taking tools).

The aforementioned systems all aim to perform similar functions as Class Scribe and are

highly specialized software/hardware offerings, however each system falls short either in

execution or approach. Primarily for the specialized devices, offloading the cost to the user

5

instead of the educational institution is a mistake. Selling users multi-hundred dollar devices

designed for one purpose is a strategy that will ensure a standard is never achieved and improved

upon. In fact, this is a strategy that has only ever worked once before in education and resulted in

the monopoly of Texas Instruments in the calculator business. A $400 e-paper tablet, or a $100

smart pen incompatible with all notebooks save for the $20 ones the manufacturer sells, will

never penetrate the student market to the degree that a free and, notably (for competition

promotion) optional, note-taking device would.

A point of failure for non-paper/pen devices is their ineffectiveness to perfectly replicate

the experience of pen/paper. This ineffectiveness stems from a multitude of reasons, one being

the resultant latency between your device’s stylus tip and the strokes drawn on screen. Recent

advancements in relatively expensive technologies such as the 2018 iPad Pro have brought down

this latency to ~20ms, an improvement however still perceptibly inferior to the physical tools it

is trying to mimic (Miller, 2017). Another reason is the drawing parallax, in other words the

distance between the digital ink and the tip of the stylus. With pen/paper, there is no gap between

the two. There is no glass, digitizer, and optional screen protector between your work and the

tool used to construct it.

Finally, by far the note-taking method that is gaining traction the fastest is also shown to

be the most problematic in terms of actual memory retention and learning comprehension.

Countless studies have shown the detriment of having access to a keyboard, how students turn to

transcribing rather than summarizing and effectively learning through listening. Likewise,

studies have shown the benefits of pen/paper note taking for cognition in comparison to typing

out notes.

6

3. System Design

The goal of our system is to empower our users with useful features that vary among the

different types of users. The users that will interact with the system can be categorized into three

types: students, teachers, and admins. All user types will be able to register and log in to the web

app, with students also being able to enroll their student ids with the lamp to tie their id to their

user accounts. When students use the lamp while taking notes, the lamp will record lecture audio

and periodically scan their notes before uploading them to the web app. In the web app, students

will be able to access their individual notebooks and pages uploaded from the lamp, edit the

name and privacy of their notebooks, delete their notebooks, view and rate the public notebooks

of other students in their class, view their scanned notes from lecture, listen to lecture audio, sync

the audio’s current time to a page or sync the current page to a specific point in the audio, export

a page as a pdf, and send their page to their professor. In the web app, professors will be able to

access notebooks for the classes they are teaching containing pages sent to them from students,

endorse public notebooks for use by students accommodated by the Student Disability Access

Center, and export pages as pdfs. Admin users will be able to create new course entries and edit

existing course entries; able to set the name, room number, meeting times, building, professor

identifier, master lamp serial number, and semester associated with the course course.

To build the application, our team decided to use Django for the backend, and React for

the frontend. We chose Django for the backend because we were all familiar with the framework

from prior coursework in the CS major. While we could have built the entire app in Django, we

decided to use React to build the frontend, due to the greater functionality it provides over

7

Django when building responsive user interfaces. Our code is licensed under General Public

License v3.0, allowing commercial use, modification, distribution, patent use, and private use of

our code.

3.1 System Requirements

Gathering system requirements is a key part of the development process. This step is so

crucial because requirements provide a basis for what the customer expects to be delivered,

which can then be used by the development team to make sure all needs are met. Without

gathering requirements, there would be no assurance that what we were building would satisfy

the customer’s needs.

The following are our minimum requirements in the form of user stories:

 • As a student, I will be able to sign up for a Class Scribe account through the web app

 • As a student, I will be able to enroll my ID to my Class Scribe account through Lamp

 • As a student, I will be able to sign into my Class Scribe account on Lamp (after ID

enrollment) and on the web app

 • As a student, once I sign into Lamp I will have it scan my notes and record the lecture audio

around me

 • As a student, I will be able to see my scanned notes on the web app, hear lecture audio, and

read the transcription of that audio

• As an administrator, I will be able to assign a class, classroom, meeting time, and lamp serial

number through the web app

• As an administrator, I can view all of the course assignments for the selected room.

The following are our desired requirements in the form of user stories​:

8

• As a user, I will be able to toggle dark and light mode for the web app.

• As a student, I will be able to sync my page to the current time in audio playback.

• As a student, I will be able to rename each of my notebooks.

• As a student, I will be able to sync the place in the audio playback to a specific snapshot in a

page.

• As a student, I will be able to set my notebook as public for others in my class to see.

• As a student, I will be able to find other students’ public notebooks for use as a study material.

• As a student, I will be able to export an entire notebook as a pdf.

• As a student, I will be able to enroll my ID with the lamp.

• As a student, I will be able to push a button on the lamp to signal a page switch, to ensure my

next scan is placed in the correct page.

• As a professor, I will be able to label my students' notebooks as SDAC ready.

The following are our optional requirements in the form of user stories:

• As a student, I will be able to toggle between the transcript of the lecture audio and the

transcript of my scanned notes (OCR).

• As a student, when I switch pages while taking notes, the lamp will recognize this change and

place the next scan in the correct page.

• As a professor, I will be able to see my classes attendance through the web app.

9

3.2 Wireframes

For our project, wireframes served several key purposes. When meeting with the

customer, having wireframes allowed our team to give the customer a clear idea of the structure

of our applications interface. This allowed the customer to provide feedback to make sure the

final result met their expectations. Wireframes were just as critical for our team as developers,

allowing us to develop and critique our vision for the applications interface before writing the

code. This made the development process more efficient, minimizing design changes while

developing the application. Our wireframes are provided below.

10

11

3.3 Sample Code

Figure 3.3.1: edit_notebook_view(Django) function that changes the name of a notebook based on input.

12

Figure 3.3.2: NotebookCreateView(Django) function that creates a new notebook object and returns the key of the
new notebook. If a notebook already exists with same name then it just returns the key of that object.

Figure 3.3.3: loadUser(React JS) function that requests user object from Django backend.

Figure 3.3.4: Notebook model class (Django), describing the structure of notebook objects used in the web app.

13

Figure 3.3.5: AudioFile model class (Django), describing the structure of AudioFile objects used in our web app.

Figure 3.3.6: Course model class(Django), describing the structure of course objects used in the web app. The class
includes a __str__ function allowing the object to be displayed as a string.

Figure 3.3.7: loadBuildings function (React JS) - function that loads buildings for a given semester and stores it in
CourseCalendar component.

3.4 Sample Tests

Testing is a crucial part of the development process because without thorough testing, it

is impossible to verify that system requirements have actually been met. Testing is also very

useful because it often alerts developers to strange behavior exhibited by their code. These two

major benefits of testing make it a critical part of development. To test our application we used

14

Django’s test suite for the backend and Jest and Enzyme to test the frontend. Some sample tests

are provided by our team below.

Figure 3.4.1: (Django) Test verifies the requirement that users should be able to favorite public notebooks to add
them to their collection of saved notebooks or unfavorite them to remove a notebook from their collection.

Figure 3.4.2: (Django) Above test tries to edit a course object so that its time will conflict with another course. The
test is verifying that the action will result in an error and will respond with a specific error code, indicating the
conflict.

Figure 3.4.3: (React) Above test verifies that the popup can be activated from the NotebookCard component and
then verifies that it closes after a delay.

15

Figure 3.4.4: (React) The above test verifies that an event component renders correctly based on input provided.

3.5 Code Coverage

To measure code coverage for our project, we used coverage.py for the python backend,

and istanbul for the javascript frontend. To set up coverage.py for measuring coverage, we first

installed the package with the command ​pip install coverage​. After the package was

successfully installed, we were able to generate coverage reports with the package using the

commands in the base django app directory; ​coverage run --source="." manage.py

test​ . ​followed by ​coverage html​, where the results were placed in the same directory the

command was run in. The Istanbul coverage tool was provided in the ​react-scripts ​collection of

scripts included when creating a React app with Create React App library. To generate code

coverage reports with istanbul, we used the command ​react-scripts test

--coverage​.

When generating coverage reports with coverage.py, the reports include results for all

files within the directory the command was run, indicating the name of the file, the number of

statements, the number of uncovered statements, the percentage covered, and the line numbers of

uncovered statements. Generating coverage reports with istanbul produces a similar report to

16

coverage.py, however, for istanbul the metrics reported are percentage of statements covered,

percentage of branches covered, percentage of functions covered, percentage of lines covered,

and the line number of uncovered statements for each file in the directory.

3.6 Installation Instructions

Before being able to use the application, there are a few steps that must be completed first.

1. Download Heroku cli, git, and node:

a. Heroku cli: ​https://devcenter.heroku.com/articles/heroku-cli#download-and-install

b. git: ​https://git-scm.com/downloads

c. Node: ​https://nodejs.org/en/download/

2. Next download and unzip the codebase from the Class SCribe GitHub repo:

a. Link: ​https://github.com/uva-cp-1920/Class-Scribe/tree/master

3. Open a console on your computer (terminal for MacOS, powershell for Windows).

4. Use the terminal to navigate to the folder of the codebase you just downloaded.

a. Can use command ​cd <path of codebase>

17

https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://git-scm.com/downloads
https://nodejs.org/en/download/
https://github.com/uva-cp-1920/Class-Scribe/tree/master

5. Go to this link to sign up for a Heroku account:

a. https://signup.heroku.com

b. After following the link you should see this view.

c. You can then follow the prompts to signup.

6. After signing up for heroku, create two Heroku apps in your dashboard in Heroku (one

for front-end, one for back-end) using the names of your choice

a. You should see a button (text: ​New​) in the top right corner of the screen.

18

https://signup.heroku.com/

b. Click the button and you should see the following on your screen.

c. Now click the create new app button.

d. You should now see a screen that looks like this.

e. Proceed to create both your frontend and backend apps.

f. After returning to the dashboard you should see a view similar to this.

19

7. Now click on the backend app in your dashboard and follow the next few steps:

a. Go to the settings tab.

b. Under the buildpacks section, select "Add buildpack" and select Python

c. Open your file explorer and navigate to where the codebase was downloaded to

(named Class-Scribe-master)

d. Go into the src folder, then the classscribe folder, then go to the api folder, then

open the file called views.py using a text editor

e. in the text editor, look a few lines down from the top and edit the line that starts

with "server_url", take the url for your heroku app (for example

https://classscribe-be.herokuapp.com/​) in between the quotation marks on that

line, and make sure to include a forward slash at the end of url when you paste it.

20

https://classscribe-be.herokuapp.com/

8. Next, ​Enter these following commands into your terminal, which should be pointed to the

root folder (Class-Scribe-master) of the git repo that you downloaded (you can use the cd

command to navigate to the folder in terminal: type cd <the path to the folder>, where the

path is the path of the downloaded code and can be copied from the file explorer window

you have opened):

a. heroku login​ ​(and follow on-screen instructions to login to your heroku

account)

b. git remote add heroku

<INSERT_HEROKU_GIT_URL_FROM_HEROKU_BACKEND_APP_SETTING

S_PAGE> ​(1 line)

c. git subtree split --prefix src/classscribe master​ ​(use

results in step 5)

d. heroku config:set DISABLE_COLLECTIONSTATIC=1

e. git push heroku<step c characters>:refs/heads/master

f. heroku run python manage.py migrate --run-syncdb

g. The backend should be up and running

21

9. Click on the frontend app (the other one of two Heroku apps you created) in your Heroku

dashboard now:

a. go to the settings tab

b. select the nodejs buildpack under the buildpacks section

c. from the root folder (Class-Scribe-master), using a file explorer, go into src, then

classscribe-fe, then go into the src folder and then open App.js with a text editor

d. in the text editor, look for the line that starts with "export const base_url", and

change the the text in the quotes on that line to the url of your BACKEND heroku

app (the first app you made in these instructions, so for example,

https://classscribe-be.herokuapp.com/​), make sure to include the slash at the end

of the url when you paste it.

10. Now in the terminal, pointed to the root of the git repo you downloaded:

a. switch the git heroku repo to the new git heroku repo of the frontend app by

running the following commands

b. git remote rm heroku

c. git remote add heroku

<INSERT_HEROKU_GIT_URL_FROM_HEROKU_BACKEND_APP_SETTING

S_PAGE>​ (1 line)

d. git subtree split --prefix src/classscribe-fe master

(keep results for next step)

e. git push heroku<step d results>:refs/heads/master

22

https://classscribe-be.herokuapp.com/

f. Refresh the yourFrontEndAppName.herokuapp.com URL for the frontend should

any errors occur initially when testing after successful deployment.

4. Results

The system solved all the problems it set out to solve, with all stakeholders of the project

having had their functionality needs fulfilled. This fulfillment of needs has resulted in a backend,

frontend, and lamp-end that work well together to perform all of our minimum and desired

requirements. Students can use the lamps to link their notes to their accounts and be able to view

their and others’ notes, provided they opted to make their notebook publically viewable, as well

as send notes or worksheets to their professors should this be a utility of our service their

professor wishes to use.

Teachers can make an official notebook for each class using pages from students’ public

notebooks, they can see attendance for a given class using the lamps, and they can label a public

notebook as SDAC ready. University administrators can create course schedules, view the

different courses that take place in a given classroom on a weekly basis, and search through

existing course entries.

There is no meaningful way to have any real measurements for the primary function of

our product as it adds digital capabilities and features to pen/paper notetaking, therefore not

resulting in quantifiable “speed improvements” like a normal software project would do for a

system it is supplanting. The only true metrics we would be able to gauge is doing a research

study on long term productivity of students that utilize Class Scribe, which is beyond the scope

of this class

23

5. Conclusions

The biggest takeaway from the research, development, and testing of this product has

been the idea that a seismic shift is due in the way we take notes. It cannot be overstated how we

are at a unique inflection point in our society where multiple companies are building

technologies aimed towards finding solutions to problems in the education marketplace. Chief

among them (and there are many, from textbooks and actual delivery of educational material

from instructors), is the fragmentation across the methods students employ to take their notes.

Solving this problem is paramount for higher success in education, and success in education

creates success in society, this much is obvious.

Class Scribe, when executed properly, has broad implications and the ability to solve this

problem. Addressing all the shortcomings of the methods before it, while adding unique and

innovative spins of its own, Class Scribe is an impressive achievement that deserves interest and

further development. Ideally, such a product would be deployed institution-wide, existing

silently in the background and offering its users indispensable utility. Achieving that status is the

task that a technology must undertake before being accepted as the de facto method for

accomplishing a task, and Class Scribe is the only method of note-taking that exists today that is

ideologically and technologically equipped to do so.

6. Future Work

There is sufficiently enough work left to be done for Class Scribe to mature into a serious

and formidable contender going forward that it would be wise to carry the project forward to

another research team in the future. While there are several tweaks and redesigns for the

24

hardware components that would improve the experience of the product (such as higher quality

components, custom chipsets tuned for computer vision algorithms, and a clip-on stand to allow

the device to fit onto a fold-out school desk), these are beyond the scope of our research project.

There also exist interesting research problems regarding human computer interaction, and studies

to be completed on note-taking using the preliminary solution we have devised here with Class

Scribe. However these are similarly beyond the preset scope of this course for which Class

Scribe was developed. Instead, there are many computer science based challenges left to solve as

well as innovative new software utilities to develop.

Further reducing human-computer interaction in the interest of a frictionless experience

will require automatic detection of new pages being scanned. Removal of obstructions and

generally unwanted objects in note scans will require advanced computer vision algorithms that

can detect, remove, and replace data such as hands, blur, shadows, and pen/pencils.

Authenticating a user currently requires a physical student ID card, an archaic methodology

inevitably to be replaced by biometrics or some other methods such as handwriting verification.

Annotation and digital inking tools are appreciative features that would make the web app a

more suitable note-taking application comparable to OneNote or Evernote. Commenting and

similar social features for notebooks, as well as a “looking for group” study group feature are

welcome directions for the software to take. The possibilities are endless, and the opportunities

Class Scribe presents are likewise.

25

References

Mueller, P. A., & Oppenheimer, D. M. (2016). Technology and note-taking in the classroom,

boardroom, hospital room, and courtroom. Trends in Neuroscience and Education, 5(3),

139–145. ​https://doi.org/10.1016/j.tine.2016.06.002

Miller (2017, June 5). Apple Pencil: Improved 20ms latency, mark up support in iOS 11, new

case w/ storage slot. Retrieved from

https://9to5mac.com/2017/06/05/apple-pencil-improved-20ms-latency-mark-up-support-i

n-ios-11-new-case-w-storage-slot/

26

https://doi.org/10.1016/j.tine.2016.06.002

