
Engineering Route Planning Algorithms in Polar Coordinates

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Brian H. Nguyen

Spring, 2022.

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Upsorn Praphamontripong, Department of Computer Science

Engineering Route Planning Algorithms in Polar Coordinates

CS 4991 Capstone Report, 2022

Brian Nguyen
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
bhn5ger@virginia.edu

Abstract
Computing an optimal route in a network between a
specified beginning and end destination is a frequent
task when planning trips with public transportation
and cars. Rigorous research has brought
improvements to the functionality of classic route
planning algorithms, but they have yet to be placed
and examined in more complex settings. The
objective of my technical research is to adapt existing
route planning algorithms to more complex
environments and, potentially, further optimize them.
More specifically, I will place these algorithms in
polar coordinates to gain insight as to how they work,
which will be done by building a simulator in the
form of a Java applet. Placing well-known
route-planning algorithms in the simulator has already
led to some remarkable observations, including an
intuitive depiction of weighted versus unweighted
algorithms using arc length. Although some progress
has been made, going forward, more algorithms are to
be implemented into the simulator, so I can convert
observations into optimizations to make them more
efficient and improve route planning in practice.

1 Introduction
There are many applications such as logistic planning
that solve a large number of requests to calculate
shortest-paths in transportation networks. Mobility is
very important in our society; every time people travel
from one location to another, they must determine the
best route to reach the destination, accounting for
random variables such as the day and week, time,
congestion patterns, and construction. Car navigation
systems are capable of taking over these tasks that are
otherwise performed by the driver; using route
optimization software leads to increased safety,
reduced transportation expenses, and better planning.

By having a clear route set out, the driver experiences
a significant impact on risk reduction, potentially
helping avoid accidents. Transportation expenses such
as fuel and maintenance rise quickly from unplanned
routes that result in long periods of driving time. For
businesses that require scale to reach hundreds of
destinations in one day, route planning arranges the
destinations in a timely and efficient manner for the
best solution. Optimal routing drastically cuts fuel
costs, guarantees the safest path, and efficiently
utilizes vehicles to allow businesses and individuals to
achieve more.

2 Background
As described in the next section, there is a
considerable amount of prior art related to the
research topic, and one may argue that would leave
little room for breakthroughs in the near future.
However, most research in route planning algorithms
is on how they work, not how they are being used. In
other words, there has been rigorous research and
improvements to the functionality of classic route
planning algorithms, but they have yet to be placed
and examined in more complex settings. In particular,
route planning algorithms have only been commonly
modeled on the Cartesian plane, using Euclidean
distance. This research will initially challenge how
they are being used by simulating them in more
complex environments, particularly polar coordinates,
to adapt them to such settings and then circle back to
insights as to how they work.

3 Related Works
Currently, virtually all route planning algorithms use
depth-first or breadth-first search as a basis [1]. In

fact, the most widely used algorithm for route
planning is simply BFS weighted, Dijkstra’s
algorithm. The algorithm maintains the tentative
distances for each node and settles the nodes of the
road network in the order of their distance to the
source node, until the target node is visited [2].
Bidirectional search is another classical route
planning algorithm used today, which executes
Dijkstra’s simultaneously forward from the source and
backwards from the destination [3]. These same
algorithms are examined in this research, but in a
non-Euclidean setting.

4 Project Design
Please see
https://github.com/bhn5ger/pathfinding-visualizer
for the full project, including source code and
animations of the images that follow.

4.1 Procedure
To carry out the stated objective, the following
methodology was performed:

1. Simulating existing route planning algorithms
in polar coordinates

2. Making observations for potential to optimize
A Java applet was built from scratch for full control
over simulation. The following sections discuss the
applet’s representation, components, and capabilities.

4.2 Weighted and Unweighted Graph
Representations
The graph/grid is undirected, but either weighted or
unweighted depending on the algorithm selected.
Dijkstra's algorithm uses weights while depth-first
search and breadth-first search do not. To determine
the numerical weights of the weighted graph/grid for
Dijkstra's algorithm, the measurements shown below
in Figure 1 were used.

Figure 1: Polar Plane Measurements

With these radii and angles, weights for edges that
stem left and right from nodes were calculated with
the arc length formula s = rθ, while weights for edges
that stem forward and backward from nodes are 1
(because the distance from traveling forward and
backward from nodes is constant). Figure 2 below is a
weighted graph that roughly represents the polar grid
for Dijkstra's.

https://github.com/bhn5ger/pathfinding-visualizer

Figure 2: Weighted Graph Representation of Polar
Grid

Note that this graph is not the exact one used in the
application, and that the actual graph has 16 nodes per
circle (instead of 6), 11 circles (instead of 3), and
possibly obstructions. However, the weights between
edges in the image properly depict that traveling left
and right between nodes farther away from the origin
is more costly (because of a greater arc length),
whereas traveling forward and backward between
nodes is the same distance anywhere on the graph.
Consequently, Dijkstra's will choose the path that is
closer to the center as going left and right is less
costly when closer to the origin.

Since depth-first search and breadth-first search do
not take weights into account, weights for all edges
are 1. Figure 3 below is an unweighted graph that
roughly represents the polar grid for these algorithms.

Figure 3: Unweighted Graph Representation of Polar
Grid

Note again that this graph is not the exact one used in
the application, and that the actual graph has 16 nodes
per circle (instead of 6), 11 circles (instead of 3), and
possibly obstructions.

4.3 Console and Control Panel
The console is located at the top left of the application
and consists of a label to display instructions,
information about algorithms, unweighted path and
weighted path length. It also has a label to track the
number of nodes checked.

The control panel is below the console and contains
buttons to generate and clear maps, a toolbox for
drawing a map, a drop down menu to select an
algorithm, a slider to set animation speed, and finally
a button to initiate searching. Clicking the clear map
button resets the color of each node back to white, and
clicking the generate map button creates a maze with
a random start, finish, and random walls. The toolbox
contains radio buttons to select between drawing a
start (green), a finish (red), walls (black), and using an
eraser (sets nodes back to white). The drop down
menu allows you to pick from Dijkstra's algorithm,
breadth-first search, and depth-first search, and
updates the label that displays information about the
algorithms in the console when selected. The slider
controls the speed of the searching animation; the
farther to the right the slider the quicker the
animation. The search button initiates searching, but
only works when there is a start and finish node
marked on the grid and an algorithm selected. While
searching, the control panel is disabled. Figure 4
below shows the console and control panel on the left.

Figure 4: Console and Control Panel

4.4 Algorithms (BFS, DFS, and Dijkstra’s)

The applet is capable of simulating three existing
pathfinding algorithms: breadth-first search,
depth-first search, and Dijkstra’s algorithm. The
following subsections review what they each do and
then show images of each in action. The start and
destination are green and red. Nodes that are checked
are blue and nodes that are part of the path are yellow.

4.4.1 BFS
Breadth-first search explores equally in all directions,
is unweighted, and guarantees the shortest unweighted
path. Figure 5 shows BFS being simulated in the
applet.

Figure 5: Simulation of Breadth-First Search

While journeying towards the destination, a fanning
effect is observed.

4.4.2 DFS

Depth-first search traverses by exploring as far as
possible down each path before backtracking. DFS is
unweighted and does not guarantee the shortest
unweighted or weighted path. Figure 6 shows DFS
being simulated in the applet.

Figure 6: Simulation of Depth-First Search

4.4.3 Dijkstra’s
Dijkstra’s Algorithm prioritizes which paths to
explore; instead of exploring all possible paths
equally like BFS, it favors lower cost paths. Dijkstra's
is weighted and guarantees the shortest weighted path.
Figure 7 shows Dijkstra’s being simulated in the
applet.

Figure 7: Simulation of Dijkstra’s

5 Results

5.1 Comparing Algorithms
Performing step 2 of the procedure and making
observations, this gif
https://user-images.githubusercontent.com/72827220/

https://user-images.githubusercontent.com/72827220/105569844-5793d500-5d13-11eb-9ee6-394efafc2ad3.gif

105569844-5793d500-5d13-11eb-9ee6-394efafc2ad3.
gif shows each algorithm pathfinding for the same
map.

As seen in the gif, BFS finds the shortest unweighted
path of 11. However, it does not take weights into
account and does not find the shortest weighted path
(finds a weighted path of 20.96), traveling left before
going towards the origin. Dijkstra's, on the other hand,
takes weights into account and finds the shortest
weighted path of 11.53 by traveling towards the origin
before traveling left. DFS is very ineffective as its
property to go down a path as far as possible before
backtracking makes it go in a very long spiral, finding
an unweighted path length of 133 and a weighted path
length of 367.32.

5.2 Observations

Placing well-known route-planning algorithms in the
simulator has led to some remarkable observations:

1. BFS does not take into account the arc length
weights on the polar grid and can look
misleading in the depiction. However, BFS is
still able to find the shortest unweighted path
represented by the number of edges

2. DFS’ property to go as far down a path before
backtracking makes it go in a spiral in a polar
grid

3. As a weighted algorithm, watching Dijkstra’s
on the polar grid was able to find the shortest
weighted path by journeying as close to the
origin as possible before going left and right,
recognizing how arc length is less with
smaller radii closer to the origin

The visualizer makes it obvious why unweighted
algorithms do not work on the weighted polar grid,
leading to the discovery of an intuitive depiction of
weighted versus unweighted algorithms using arc
length.

6 Conclusion

This research has led to the creation of a Java applet
useful for visualization, and numerous discoveries of
graph algorithms in polar coordinates listed in section
5.2. Popular graph algorithms were placed in a unique
environment, introducing a new perspective to their
behavior.

7 Future Work

Although some progress has been made, going
forward, more algorithms are to be implemented into
the simulator, including A* and bidirectional search.
Observations are still in the process of being
converted into optimizations to make them more
efficient and improve route planning in practice.

References

[1] Banerjee, N., Chakraborty, S. and Raman, V.
Improved Space Efficient Algorithms for
BFS, DFS and Applications. 2022.

[3] Dramski, M. Bi-directional search in route
planning in navigation. Yadda.icm.edu.pl,
2022.
https://yadda.icm.edu.pl/baztech/element/bw
meta1.element.baztech-c9e1b9b9-ef5b-424b-
b14d-58c264a5834f.

[2] Sanders, P. Algo2.iti.kit.edu, 2022.
http://algo2.iti.kit.edu/schultes/hwy/schultes_
diss.pdf.

https://user-images.githubusercontent.com/72827220/105569844-5793d500-5d13-11eb-9ee6-394efafc2ad3.gif
https://user-images.githubusercontent.com/72827220/105569844-5793d500-5d13-11eb-9ee6-394efafc2ad3.gif
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c9e1b9b9-ef5b-424b-b14d-58c264a5834f
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c9e1b9b9-ef5b-424b-b14d-58c264a5834f
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c9e1b9b9-ef5b-424b-b14d-58c264a5834f
http://algo2.iti.kit.edu/schultes/hwy/schultes_diss.pdf
http://algo2.iti.kit.edu/schultes/hwy/schultes_diss.pdf

