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Abstract

A random polynomial is a polynomial whose coefficients are random variables. A
major task in the theory of random polynomials is to examine how the real roots are
distributed and correlated in situations where the degree of the polynomial is large. In
this dissertation, we investigate two classes of random polynomials that have piqued
the interest of researchers in probability theory and mathematical physics: elliptic
polynomials and generalized Kac polynomials.

Regarding elliptic polynomials, we obtain asymptotic expansions for the variances
of the number of real roots on intervals whose endpoints may vary based on the
polynomial’s degree. Additionally, we provide sharp estimates for the cumulants of
these quantities. As applications, we can determine intervals on which the number of
real roots satisfies a central limit theorem and a strong law of large numbers.

Our next objective is to compute the precise leading asymptotics of the variance
of the number of real roots for generalized Kac polynomials whose coefficients have
polynomial asymptotics. Examples of this class of random polynomials include Kac
polynomials, hyperbolic polynomials, and any linear combinations of their derivatives.
Before our work, such variance asymptotics had only been established for the Kac
polynomials in the 1970s, thanks to Maslova’s influential contribution. Our proof
relies on novel asymptotic estimates for the real roots’ two-point correlation function,
which exposes geometric features in the distribution of real roots for these random
polynomials. As a corollary, we establish asymptotic normality for the number of real
roots of these random polynomials, extending and enhancing a related result of O.
Nguyen and V. Vu.
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Chapter 1

Introduction

1.1 Real roots of random polynomials

Random polynomials, so simple and innocent at first sight but difficult to understand,
have attracted generations of mathematicians. Apart from being of interest from a
probabilistic viewpoint, random polynomials arise naturally and have applications in
various fields of physics, engineering, and economics. Random polynomials serve as a
basic model for the eigenfunctions of chaotic quantum systems [15, 16]. We can also
find their use in filtering theory, statistical communication theory, and the analysis
of capital and investment in mathematical economics [10].

Let n be a positive integer, p0, ..., pn be deterministic polynomials, and let ξ0, ..., ξn
be independent random variables. The linear combination

Pn(x) :=
n∑

j=0

ξjpj(x)

is an example of a random polynomial. If we normalize ξj so that Var[ξj] = 1, then
different definitions of pj(x) give rise to various classes of random polynomials. Some
classes of random polynomials that are objects of much interest in probability theory
and have attracted research attention in mathematical physics include

1. elliptic polynomials (or binomial polynomials) in which pj(x) =
√(

n
j

)
xj;

2. Kac polynomials in which pj(x) = xj, and more generally, generalized Kac
polynomials in which pj(x) = cjx

j with cj having power growth;

3. Weyl polynomials (or flat polynomials) in which pj(x) =
1√
j!
xj;

4. orthogonal polynomials in which pj(x) form a system of orthonormal polyno-
mials with respect to a fixed compactly supported measure; and

5. trigonometric polynomials in which pj(x) are trigonometric polynomials.
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For any subset I of R, where I may depend on n, we denote by Nn(I) the number
of real roots of Pn(x) in I (counting multiplicity). In particular, Nn(R) is the total
number of real roots. These are random variables taking values in {0, 1, ..., n}, and
a central research direction in the theory of random polynomials is to characterize
their statistics when n is large [69].

Most earlier studies about real roots of random polynomials focused on computing the
average value for Nn(R) for the Kac polynomials, starting from Bloch and Pólya [14],
with seminal contributions of Littlewood and Offord [49, 50, 51], Kac [43, 44], Ibrag-
imov and Maslova [38, 39, 40, 41]. Many classical results with numerous references
related to the subject are given in the books by Bharucha-Reid and Sambandham
[10] and by Farahmand [32]. We refer the reader to the articles [69, 27] for more
comprehensive literature reviews.

When ξj are independent standard normal random variables, Kac [43] derived an
exact formula for E[Nn(R)], nowadays known as the Kac-Rice formula, and showed
that

E[Nn(R)] =
2

π
log n+ o(log n).

An elementary geometric derivation of the Kac-Rice formula was provided by Edelman
and Kostlan [30], who showed that E[Nn(R)] is simply the length of the moment curve
x 7→ (p0(x), ..., pn(x)) projected onto the surface of the unit sphere, divided by π. If ξj
are not Gaussian, the key ingredient is the universality method, whose general idea is
to reduce the problem of calculating the distribution of the roots and the interaction
between them to the case where ξj are Gaussian (see Nguyen and Vu [59], Tao and Vu
[69]). By now, we can determine E[Nn(R)] for many classes of random polynomials,
with various choices for pj(x) and under very general assumptions for ξj (see Do [22],
Do, H. Nguyen and Vu [25], Do, O. Nguyen and Vu [27, 28], Nguyen and Vu [59], and
the references given there).

Estimating the variance Var[Nn(R)], however, has proved to be a much more difficult
task, and it is apparent that this problem still awaits rigorous treatment. Despite a
large number of prior studies, only a few are about Var[Nn(R)]. For Kac polynomials,
Maslova [54] proved that if P({ξj = 0}) = 0, E[ξj] = 0, and E[|ξj|2+ε] < ∞ for some
ε > 0, then

Var[Nn(R)] =
[
4

π

(
1− 2

π

)
+ o(1)

]
log n.

While the condition P({ξj = 0}) = 0 has been removed by O. Nguyen and V. Vu
[60], there has been no other result of this type for other generalized Kac polynomials
(even for the Gaussian setting when ξj are all Gaussian). Beyond Kac polynomials,
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examining the asymptotics of Var[Nn(R)] for other models of random polynomials
has been extensively considered since the 1990s and has become an active direction
of research in recent years. Thanks to the Kac-Rice formula and the universality
method, the leading asymptotics of the variance of the real roots were established
for elliptic polynomials (Bleher and Di [11], Dalmao [18]), Weyl polynomials (Do and
Vu [29], Schehr and Majumdar [66]), orthogonal polynomials (Lubinsky and Pritsker
[52, 53]), and for trigonometric polynomials (Bally, Caramellino, and Poly [9], Do, H.
Nguyen and O. Nguyen [23], Granville and Wigman [37]). The important point to
note here is that most works focus on the case where ξj are all Gaussian and that the
second terms in the variance asymptotics for these random models are still unknown.
This dissertation was intended as an attempt to find the true nature of the error term
in the asymptotic estimates for the variance of the number of real roots.

Establishing the limiting law of Nn(R) is a more challenging problem. We say that
Nn(R) satisfies the central limit theorem (CLT for short) if we have the following
convergence in distribution:

Nn(R)− E[Nn(R)]√
Var[Nn(R)]

d−→ N (0, 1) as n → ∞,

where N (0, 1) denotes the standard normal distribution. In 1974, Maslova [55] proved
that the number of real roots of Kac polynomials satisfies the CLT. Almost forty years
after the publication of Maslova’s result, CLTs have been established for other classes
of random polynomials. The CLT for Gaussian Qualls’ trigonometric polynomials
was first proved by Granville and Wigman [37], and subsequently by Azaïs and León
[6] via different methods. Azaïs, Dalmao, and León [5] extended this result to classical
trigonometric polynomials. Dalmao [18] did the same for elliptic polynomials, and
his result was recently generalized by Ancona and Letendre [1] by the method of
moments. The main tool used in [5], [6], and [18] is an L2 expansion of the number of
real roots. CLTs for Weyl polynomials and Weyl series were obtained by Do and Vu
[29], using the cumulant convergence theorem. In 2022, Nguyen and Vu [60] proved
the CLT for generalized Kac polynomials. The proof of Nguyen and Vu has adapted
the universality method and the argument in Maslova [55], which is to approximate
the number of real roots by a sum of independent random variables. Recently, Do et
al. [24] used the method of Wiener chaos and proved the CLT for random orthogonal
polynomials. We emphasize that most of these works deal with the CLT for the
number of real roots in a fixed interval. It is of interest to know whether the CLT
holds for the number of real roots in an interval whose endpoints depend on the degree
of the polynomial.
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In this dissertation, we focus on two specific classes of random polynomials that have
been studied for a long time: elliptic polynomials and generalized Kac polynomials.
More precisely, we study the correlations between the real roots of such polynomials.
As applications, we obtain various statistical properties for the number of real roots.
Namely, for elliptic polynomials, we aim to find

• a complete asymptotic expansion for the variance of the number Nn(a, b) of real
roots in an arbitrary interval (a, b), where a and b may depend on n;

• sharp estimates for the cumulants sk[Nn(a, b)] and central moments µk[Nn(a, b)];
and

• sufficient conditions on the interval (a, b) under which Nn(a, b) satisfies a central
limit theorem and a strong law of large numbers.

For generalized Kac polynomials, we establish the leading asymptotics of Var[Nn(R)].
As a consequence, we extend the asymptotic normality result for Nn(R) of O. Nguyen
and V. Vu in [60, Theorem 1.2 and Lemma 1.3] to new random polynomials in the
generalized Kac regime.

1.2 Correlation functions

In this section, we recall the notion of correlation functions, truncated correlation
functions, and their applications (see, e.g., Do and Vu [29], Nazarov and Sodin [56]).

Let Z denote a random point process on R. For example, we can take Z to be the set
of real roots of a random polynomial. For k ≥ 1, the function ρk : Rk → R is called
the k-point correlation function of Z if, for any compactly supported C∞ function
f : Rk → R, it holds that

E
∑

(z1,...,zk)

f(z1, ..., zk) =

∫
Rk

f(x1, ..., xk)ρk(x1, ..., xk)dx1 · · · dxk,

where the sum is taken over all possible ordered k-tuples of different elements in Z. So
if (zα)α∈I is a labeling of elements of Z, then we are summing over all (zα1 , . . . , zαk

)

where (α1, . . . , αk) ∈ Ik such that αi 6= αj if i 6= j. The correlation function ρk
is symmetric, and the definition does not depend on the choice of labeling. This
implies that ρk is locally integrable on Rk. If there is ε > 0 such that ρk is locally
L1+ε integrable, then by a simple approximation argument, it follows that the above
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equality holds when f is only bounded and compactly supported. In particular, for
every interval I ⊂ R and N(I) = |Z ∩ I|, it holds that

E[N(I)(N(I)− 1) . . . (N(I)− k + 1)] =

∫
Ik
ρk(x1, . . . , xk)dx1 . . . dxk.

We denote by Π(k) the collection of all unordered partitions of the set {1, 2, ..., k}
into disjoint nonempty blocks and by Π(k, j) the collection of all unordered partitions
of the set {1, 2, ..., k} into j disjoint nonempty blocks. For γ ∈ Π(k, j), we denote
the blocks by {γ1, γ2, ..., γj} with an arbitrarily chosen enumeration, and denote the
lengths of the blocks by li = |γi|, for 1 ≤ i ≤ j. If xxx = (x1, ..., xk) and γj ⊂ {1, ..., k},
let xxxγj denote (xi)i∈γj . The function ρTk defined by the formula

ρTk (xxx) =
k∑

j=1

(−1)j−1(j − 1)!
∑

γ∈Π(k,j)

ρl1(xxxγ1) · · · ρlj(xxxγj)

is said to be the k-point truncated correlation function of Z (see, e.g., Nazarov and
Sodin [56]). We see at once that

ρT1 (x1) = ρ1(x1), ρT2 (x1, x2) = ρ2(x1, x2)− ρ1(x1)ρ1(x2),

and so on.

The cumulants sk[N(I)] of the random variable N(I) is defined by the formal equation

logE[eλN(I)] =
∑
k≥1

sk[N(I)]

k!
λk.

In particular,
s1[N(I)] =

d

dλ
logE[eλN(I)]

∣∣∣
λ=0

= E[N(I)]

and

s2[N(I)] =
d2

dλ2
logE[eλN(I)]

∣∣∣
λ=0

= E[N(I)2]− (E[N(I)])2 = Var[N(I)].

Lemma 1.1. For each k ≥ 1, let ρTk denote the k-point truncated correlation function
of Z. For every interval I ⊂ R and N(I) = |Z ∩ I|, it holds that

sk[N(I)] =
∑

γ∈Π(k)

∫
I|γ|

ρT|γ|(xxxγ)dxxxγ, (1.1)
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where |γ| is the number of blocks in the partition γ and dxxxγ is the Lebesgue measure
on I |γ|.

For the proofs, we refer the reader to Do and Vu [29, Appendix B], in which a general
version of Lemma 1.1 was proved. Moreover, a complex variant of Lemma 1.1 was
earlier considered by Nazarov and Sodin [56, Claim 4.3].

One should point out that the correlation functions of a general point process Z do
not always exist. When Z is the set of real roots of a smooth Gaussian process, the
existence of the correlation functions is a consequence of the Kac-Rice formula, which
will be recalled below.

1.3 The Kac-Rice formula

Let G = {G(x), x ∈ I}, I an interval on the real line, be a non-degenerate, centered
Gaussian process having C1 paths. Let ρk be the k-point correlation function of the
real roots of G and let N(I) denote the number of real roots in I. The Kac-Rice
formula asserts that (see, e.g., [8, Chapter 3]) for pairwise different x1, ..., xk,

ρk(x1, ..., xk) = E[|G′(x1) · · ·G′(xk)| | G(x1) = 0, ..., G(xk) = 0]

× pG(x1),...,G(xk)(0, ..., 0),
(1.2)

where pG(x1),...,G(xk) is a joint distribution density of the vector (G(x1), ..., G(xk)).

Let r(x, y) = E[G(x)G(y)]. We normalize G so that r(x, x) = 1. Then

E[G(x)G′(x)] = E[G(y)G′(y)] = 0,

E[G′(x)G(y)] =
∂r

∂x
(x, y) =: r10(x, y),

E[G(x)G′(y)] =
∂r

∂y
(x, y) =: r01(x, y),

E[G′(x)G′(y)] =
∂2r

∂x∂y
(x, y) =: r11(x, y).

Then the 1-point correlation function ρ1 is the density of N(I), so that

E[N(I)] =

∫
I

ρ1(x)dx.
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By (1.2),

ρ1(x) = E[|G′(x)| | G(x) = 0]pG(x)(0) =

∫ ∞

−∞
|s|D(0, s; x)ds,

where D(t, s; x) is a joint distribution density of G(x) and G′(x),

P({a < G(x) ≤ b; c < G′(x) ≤ d}) =
∫ b

a

dt

∫ d

c

D(t, s; x)ds.

Since G(x) and G′(x) are Gaussian, D(t, s; x) is a Gaussian distribution density with
the covariance matrix(

E[G(x)G(x)] E[G(x)G′(x)]

E[G(x)G′(x)] E[G′(x)G′(x)]

)
=

(
1 0

0 r11(x, x)

)
.

Therefore,

ρ1(x) =

∫ ∞

−∞

|s|
2π
√

r11(x, x)
exp

(
− s2

2r11(x, x)

)
ds =

1

π

√
r11(x, x).

Next, we show that the 2-point correlation function ρ2(x, y) is given by

ρ2(x, y) =
1

π2

(√
1− δ2(x, y) + δ(x, y) arcsin δ(x, y)

) σ(x, y)√
1− r2(x, y)

, (1.3)

where

σ(x, y) :=

√(
r11(x, x)−

r210(x, y)

1− r2(x, y)

)(
r11(y, y)−

r201(x, y)

1− r2(x, y)

)
and

δ(x, y) :=
1

σ(x, y)

[
r11(x, y) +

r(x, y)r10(x, y)r01(x, y)

1− r2(x, y)

]
.

Indeed, using (1.2) we get

ρ2(x, y) = E[|G′(x)G′(y)| | G(x) = 0, G(y) = 0]pG(x),G(y)(0, 0),

where pG(x),G(y) is the joint density of (G(x), G(y)), so that

pG(x),G(y)(0, 0) =
1

2π
√
1− r2(x, y)

.
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Observe that conditionally on C := {G(x) = 0, G(y) = 0}, G′(x) and G′(y) have a
joint Gaussian distribution with expectations, variances, and covariances given by the
following formulas, which can be obtained using regression formulas,

E[G′(x) | C] = E[G′(y) | C] = 0,

Var[G′(x) | C] = r11(x, x)−
r210(x, y)

1− r2(x, y)
,

Var[G′(y) | C] = r11(y, y)−
r201(x, y)

1− r2(x, y)
,

E[G′(x)G′(y) | C] = r11(x, y) +
r(x, y)r10(x, y)r01(x, y)

1− r2(x, y)
.

But then, computation shows that√
Var[G′(x) | C]Var[G′(y) | C] = σ(x, y) and E[G′(x)G′(y) | C] = δ(x, y)σ(x, y).

Therefore, using [48, Corollary 3.1] yields

E[|G′(x)G′(y)| | C] = 2

π

(√
1− δ2(x, y) + δ(x, y) arcsin δ(x, y)

)
σ(x, y),

which implies the assertion.

For other proofs of (1.3), we refer the reader to [11, §3] and [52, Lemma 2.2].

According to Lemma 1.1, we get the following lemma.

Lemma 1.2. It holds that

Var[N(I)] =

∫
I2
[ρ2(x, y)− ρ1(x)ρ1(y)] dydx+

∫
I

ρ1(x)dx. (1.4)

Remark 1.3. It should be suggested that with Lemma 1.2 and thorough treatment,
we can deduce the leading asymptotics of Var[Nn(R)] for all Gaussian polynomials
listed in §1.1.

Generally, the k-point correlation function ρk(x1, ..., xk) for pairwise different x1, ..., xk

is given by

ρk(x1, ..., xk) =

∫
Rk

|s1 · · · sk|Dk(0, s1, ..., 0, sk; x1, ..., xk)ds1 · · · dsk,
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where Dk(0, s1, ..., 0, sk; x1, ..., xk) is a joint distribution density of the vector

(G(x1), G
′(x1), ..., G(xk), G

′(xk)).
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Chapter 2

Correlations between the real roots
of elliptic polynomials

This chapter aims to further explore the number Nn(a, b) of real roots of elliptic
polynomials of degree n in an arbitrary interval (a, b), where a and b may depend on n

(see [58]). We first develop an exact and accessible formula for the variance of Nn(a, b)

(Theorem 2.1) and exploit it to derive all terms in the large n asymptotic expansion
(Theorem 2.2). We then provide sharp estimates for the cumulants (Theorem 2.3) and
central moments (Corollary 2.6) of this quantity. These estimates play an important
role in determining sufficient conditions on the interval (a, b) under which Nn(a, b)

satisfies a central limit theorem (Theorem 2.8) and a strong law of large numbers
(Theorem 2.9).

2.1 Introduction and main results

This chapter deals with the number of real roots of elliptic polynomials,

Pn(x) =
n∑

j=0

ξj

√(
n

j

)
xj,

where ξj are i.i.d. standard normal random variables. This kind of polynomial arises
when considering the quantum mechanics of a spin S system whose modulus S is
conserved (see, e.g., Bogomolny, Bohias, and Lebœuf [15]). Therefore, the geometric
structure of elliptic polynomials is of significant interest for applications to quantum
chaos. In addition, such a random polynomial has been intensively studied because
of its mathematical properties (Ancona and Letendre [1], Bleher and Di [11, 12],
Dalmao [18], Flasche and Kabluchko [33], Edelman and Kostlan [30], Nguyen and Vu
[59], Schehr and Majumdar [66], Tao and Vu [69]). To illustrate, let us quote here
a sentence from [30] by Edelman and Kostlan: “This particular random polynomial
is probably the more natural definition of a random polynomial”. In the literature,
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elliptic polynomials are sometimes called SO(2) random polynomials because their
k-point joint probability distribution of real roots is SO(2)-invariant for all k ≥ 1

(see Bleher and Di [11] for more details).

In 1995, Edelman and Kostlan [30] showed that the expected number E[Nn(a, b)] is
given by

E[Nn(a, b)] =
1

π

∫ b

a

√
n

1 + x2
dx =

1

π

√
n(arctan b− arctan a). (2.1)

In 1997, Bleher and Di [11] obtained the leading term in the large n expansion of the
variance Var[Nn(a, b)], where a and b are fixed. Namely, let

δ0(s) =
e−s2/2(1− s2 − e−s2)

1− e−s2 − s2e−s2
, γ0(s) =

1− e−s2 − s2e−s2

(1− e−s2)3/2
,

and
f0(s) =

(√
1− δ20(s) + δ0(s) arcsin δ0(s)

)
γ0(s)− 1.

It was shown in [11, §6] that

Var[Nn(a, b)] = (1 + κ0 + o(1))E[Nn(a, b)] as n → ∞, (2.2)

where
κ0 :=

2

π

∫ ∞

0

f0(s)ds (2.3)

and (1 + κ0) ≈ 0.5717310486. The asymptotics for Var[Nn(R)] was also considered
by Dalmao in [18].

It is worth pointing out that for fixed a and b, (2.1) provides an exact formula for
E[Nn(a, b)], whereas (2.2) gives an asymptotic bound with a worse error term o(n1/2).
To our knowledge, the true nature of the error term in Var[Nn(a, b)] has not been
known. Finding the precise error in the variance asymptotics is not a trivial task, and
it is quite technical. It is apparent that this problem still awaits rigorous treatment
because it seems very difficult to improve the order of magnitude of the error term
by using all of the existing approaches. As a matter of fact, the second asymptotic
term in the variance expansion of the number of real roots for all classes of random
polynomials listed in §1.1 has never been obtained yet, which leaves plenty of room
for further improvement.

Our purpose is to solve this problem for elliptic polynomials. More generally, we
are interested in finding a complete asymptotic expansion for the variance of real
roots in the large degree limit. To this end, we first obtain an exact and accessible
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formula for Var[Nn(a, b)] which can be used to derive the precise error in the variance
asymptotics. To formulate our results, we introduce the functions

∆n(s) := (1 + s2)−n/2 (1 + s2)[1− (1 + s2)−n]− ns2

1− (1 + s2)−n − ns2(1 + s2)−n
,

Γn(s) :=
1− (1 + s2)−n − ns2(1 + s2)−n

[1− (1 + s2)−n]3/2
,

Fn(s) :=
(√

1− δ2(s) + δ(s) arcsin δ(s)
)
Γn(s)− 1,

and the integrals

Kn(a, b) :=
2

π

∫ √
n|α(a,b)|

0

Fn(s/
√
n)

1 + s2/n
ds,

Ln(a, b) :=
2

π2

∫ √
n|α(a,b)|

0

Fn(s/
√
n)

1 + s2/n

√
n arctan(s/

√
n)ds,

where α(a, b) := (b − a)/(1 + ab), for −∞ ≤ a, b ≤ ∞. We will write Kn and Ln

instead of Kn(a, b) and Ln(a, b), respectively, if
√
n|α(a, b)| is replaced by ∞.

Theorem 2.1 (Exact formulas for the variances).

1. If α(a, b) > 0, then

Var[Nn(a, b)] = (1 +Kn(a, b))E[Nn(a, b)]− Ln(a, b). (2.4)

2. For α(a, b) = 0, one has (a, b) = R and

Var[Nn(R)] = (1 +Kn)E[Nn(R)]. (2.5)

3. Otherwise, when α(a, b) < 0, it holds that

Var[Nn(a, b)] = (1 +Kn)E[Nn(a, b)]

+ (Kn −Kn(a, b))
(
E[Nn(a, b)]−

√
n
)
− Ln(a, b).

(2.6)

With Theorem 2.1 and delicate analytical tools, we can establish precise asymptotics
for the variance Var[Nn(a, b)]. The advantage of using Theorem 2.1 lies in the fact
that we can handle the case where the interval (a, b) depends on n. In particular, we
show that Var[Nn(a, b)] admits a complete asymptotic expansion provided that (a, b)
does not shrink too rapidly as n → ∞.
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Theorem 2.2 (Asymptotic expansions for the variances). Write αn =
√
nα(a, b).

1. Assume first that |αn| → ∞ as n → ∞. Let

dn =

⌊
α2
n + 3 log |αn|

log n

⌋
, (2.7)

where b·c denotes the integer part. Then

Var[Nn(a, b)] =

(
1 +

dn∑
k=0

κk

nk

)
E[Nn(a, b)]−

dn∑
k=0

ℓk
nk

+O(α4
ne

−α2
n), (2.8)

in which κk and ℓk are real constants independent of n, a, and b. In particular,
κ0 is defined as in (2.3) and

ℓ0 =
2

π2

∫ ∞

0

sf0(s)ds.

Consequently, if α2
n/ log n → ∞ as n → ∞, then Var[Nn(a, b)] admits a full

asymptotic expansion of the form

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κk

nk

)
E[Nn(a, b)]−

∞∑
k=0

ℓk
nk

. (2.9)

2. Assume now that |αn| = O(1) as n → ∞. If αn = c > 0, then

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κc,k

nk

)
E[Nn(a, b)]−

∞∑
k=0

ℓc,k
nk

, (2.10)

in which κc,k and ℓc,k are real constants. In particular,

κc,0 =
2

π

∫ c

0

f0(s)ds and ℓc,0 =
2

π2

∫ c

0

sf0(s)ds.

For αn = −c < 0, we have

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κk

nk

)
E[Nn(a, b)]

−

(
∞∑
k=0

κk − κc,k

nk

) √
n

π
arctan

c√
n
−

∞∑
k=0

ℓc,k
nk

.

(2.11)
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3. Finally, assume that αn = o(1) as n → ∞. If αn > 0, then

Var[Nn(a, b)] =
1

π
αn −

1

π2
α2
n +

1

12π
α3
n −

5

12π

α3
n

n
+

2

3π2

α4
n

n
+O(α5

n). (2.12)

If αn < 0, then

Var[Nn(a, b)] =

(
1 +

qn∑
k=0

κk

nk

)
√
n+

2

π

(
αn −

α3
n

3n

) rn∑
k=0

κk

nk

+
1

π
αn −

1

π2
α2
n −

1

12π
α3
n −

1

4π

α3
n

n
+

2

3π2

α4
n

n
+O(|αn|5),

(2.13)

where
qn :=

⌊
1

2
− 5 log |αn|

log n

⌋
and rn :=

⌊
−4 log |αn|

log n

⌋
.

If, in addition, rn → ∞ as n → ∞, then

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κk

nk

)
√
n. (2.14)

In particular, Var[Nn(R)] has a full asymptotic expansion of the form

Var[Nn(R)] ∼

(
1 +

∞∑
k=0

κk

nk

)
√
n. (2.15)

The proof of Theorem 2.1 is given in §2.2. In §2.3, we derive asymptotic expansions of
Kn(a, b) and Ln(a, b) and use them to prove Theorem 2.2. The definitions of κk, κc,k,
ℓk, and ℓc,k are also given in §2.3, along with some detailed numerical computations
(see Table 2.1).

Our next goal is to find the asymptotics of the cumulants sk[Nn(a, b)].

Theorem 2.3 (Asymptotics of the cumulants). For each positive integer k, there
exists a real constant βk, independent of n, a, and b, such that

sk[Nn(a, b)] = βkE[Nn(a, b)] + O(1) as n → ∞. (2.16)

Remark 2.4. Since s1[Nn(a, b)] = E[Nn(a, b)], (2.16) is trivial when k = 1, with
β1 = 1. Using Theorem 2.2 and s2[Nn(a, b)] = Var[Nn(a, b)], we see that (2.16) holds
for k = 2, with β2 = 1 + κ0. It should be mentioned that when studying the gap
probabilities for elliptic polynomials, Schehr and Majumdar [66, Appendix E] proved
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that
s3[Nn(a, b)] ∼ β3E[Nn(a, b)] as n → ∞,

under the assumptions that β3 is well-defined and that E[Nn(a, b)] ∼
√
n in the large

n limit. They expected a similar mechanism to hold for higher values of k (see [66,
Equation 93]). Accordingly, our theorem provides a fuller treatment.

Remark 2.5. The error term in (2.16) is only O(1), which is best possible, as shown
in Theorem 2.2 for the case k = 2. Recently, Gass [34] also computed the cumulant
asymptotics for random models with rapidly decreasing covariance functions. Gass’s
method refines the recent approach by Ancona and Letendre [1, 2], where it has been
proved that the k-th central moment, when properly rescaled, converges towards the
k-th moment of a Gaussian random variable. As a matter of fact, the methods in
these works cannot lead to the true nature of the error term in sk[Nn(a, b)]. Further-
more, it should be noted that the combinatorics of cumulants is a bit more accurate
than the method of moments since the asymptotics of cumulants allow us to recover
the asymptotics of moments. Indeed, we can exploit Theorem 2.3 to deduce the
asymptotics of the central moments µk[Nn(a, b)] as follows.

Corollary 2.6 (Asymptotics of the central moments). Fix k ≥ 1. As n → ∞, it
holds that

µ2k[Nn(a, b)] =
(2k)!βk

2

k!2k
(E[Nn(a, b)])

k +O((E[Nn(a, b)])
k−1) (2.17)

and

µ2k+1[Nn(a, b)] =
(2k + 1)!βk−1

2 β3

(k − 1)!2k−13!
(E[Nn(a, b)])

k +O((E[Nn(a, b)])
k−1). (2.18)

Remark 2.7. The asymptotics of the central moments of Nn(R) in the large n limit
were earlier studied by Ancona and Letendre [1] (see [2] for more general settings).
They showed that, as n → ∞,

µk[Nn(R)] = µk[N (0, 1)]β
k/2
2 nk/4 +O(n(k−1)/4 logk(n)), (2.19)

where µk[N (0, 1)], for k ≥ 1, are the moments of the standard normal distribution.
Since µ2k+1[N (0, 1)] = 0, formula (2.19) does not imply the leading asymptotics of
µ2k+1[Nn(R)]. Thus, our results in Corollary 2.6 not only fill this gap but also offer
an improvement of (2.19), as our error terms are only O(n(⌊k/2⌋−1)/2).

The proofs of Theorem 2.3 and Corollary 2.6 are given in §2.5 and §2.6, respectively.
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To derive our results, in §2.4, we provide a detailed exposition of the correlation and
truncated correlation functions of the real roots for elliptic polynomials.

Finally, we consider the limiting law of Nn(a, b). In 2015, Dalmao [18] proved that
Nn(R) satisfies the CLT. The proof of Dalmao used the Wiener-Itô expansion of
the standardized number of real roots and the fourth-moment theorem. In 2021,
Ancona and Letendre [1] recovered Dalmao’s CLT by the method of moments. They
also proved a strong law of large numbers for Nn(R). In this dissertation, via a
different method, we examine a more general framework in which we propose sufficient
conditions on (a, b) under which Nn(a, b) satisfies the CLT and a strong law of large
numbers. Roughly speaking, it is required that the interval (a, b) does not shrink too
rapidly as n → ∞.

Theorem 2.8 (Central limit theorem). Let αn be defined as in Theorem 2.2. If either
αn ≤ 0 or αn → ∞ as n → ∞, then Nn(a, b) satisfies the CLT.

Theorem 2.9 (Strong law of large numbers). If either αn ≤ 0 or
∑∞

n=1 1/α
k
n < ∞

for some k > 0, then
Nn(a, b)

E[Nn(a, b)]

a.s.−−→ 1 as n → ∞.

Theorem 2.8 follows from applying Theorem 2.3 and the cumulant convergence the-
orem given by Janson [42, Theorem 1] (see Proposition 2.26), while Theorem 2.9
follows from Corollary 2.6 by a Borel-Cantelli type argument.

Remark 2.10. Similar considerations may apply to the linear statistics Nn(ϕ) defined
by

Nn(ϕ) =
∑
x∈Zn

ϕ(x),

where Zn is the real zero set of an elliptic polynomial of degree n and ϕ satisfies
appropriate assumptions. Note that Nn(ϕ) reduces to Nn(a, b) if we take ϕ(x) =

111(a,b)(x), the indicator function of the interval (a, b).

Remark 2.11. We conclude this section with some suggestions for further work.

First, it follows from (2.1) that, for the Gaussian case, E[Nn(R)] =
√
n exactly for

all n. In [12], among other results, Bleher and Di extended this result to the non-
Gaussian setting.

Proposition 2.12 ([12]). Let ξj be i.i.d. random variables with mean zero and
variance one. Assume furthermore that for some c, C > 0, the characteristic function
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φ(s) of ξj satisfies

|φ(s)| ≤ 1

(1 + c|s|)6
,

∣∣∣∣djφ(s)dsj

∣∣∣∣ ≤ C

(1 + c|s|)6
, j = 1, 2, 3, s ∈ R.

Then, as n → ∞,
E[Nn(R)] =

√
n+ o(n1/2). (2.20)

The same result with the assumption on φ(s) being removed was obtained in a recent
work of Flasche and Kabluchko [33]. In [69, Theorem 5.6], Tao and Vu showed that the
same result holds when the random variables ξj are only required to be independent
with mean zero, variance one, and finite (2+ε)-moments. A more quantitative version
of (2.20) was recently given by Nguyen and Vu [59, Corollary 6.4]:

E[Nn(R)] =
√
n+O(n1/2−d), d > 0.

By (2.2), we see that for the Gaussian case,

Var[Nn(R)] = (1 + κ0)
√
n+ o(n1/2) as n → ∞. (2.21)

One may ask whether (2.21) is still true if ξj are only required to be independent
with mean zero, variance one, and finite (2 + ε)-moments. More generally, it would
be desirable to extend the results of this dissertation to the non-Gaussian setting.

Second, it might be interesting to extend the above results to the number of real zeros
of a square system PPP = (P1, . . . , Pm) of m polynomial equations in m variables with
common degree n > 1,

Pℓ(xxx) =
∑
|jjj|≤n

ωωω
(ℓ)
jjj xxxjjj,

where

• jjj = (j1, . . . , jm) ∈ Nm and |jjj| =
∑m

k=1 jk;

• ωωω
(ℓ)
jjj = ω

(ℓ)
j1...jm

∈ R, ℓ = 1, . . . ,m, |jjj| ≤ n, and the coefficients ωωω(ℓ)
jjj are indepen-

dent centered normally distributed random variables with variances

Var[ωωω
(ℓ)
jjj ] =

(
n

jjj

)
=

n!

j1! . . . jm!(n− |jjj|)!
;

• xxx = (x1, . . . , xm) and xxxjjj =
∏m

k=1 x
jk
k .
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Such a system, also known as a Kostlan-Shub-Smale system, was first introduced and
studied by Kostlan [45], and subsequently developed by Armentano et al.[3, 4], Azaïs
and Wschebor [7], Bleher and Di [12], Edelman and Kostlan [30], Shub and Smale
[67], Wschebor [72]. Accordingly, we hope that the concepts and techniques of this
dissertation may stimulate further research in this fascinating area.

2.2 Exact formulas for the variances

This section deals with the proof of Theorem 2.1. Let us now apply Lemma 1.2 to
G = {Pn(x) : x ∈ (a, b)}, where Pn(x) are elliptic polynomials. Using the binomial
theorem we see that the normalized correlator of elliptic polynomials is given by

r(x, y) =
E[Pn(x)Pn(y)]√

Var[Pn(x)]Var[Pn(y)]
=

(1 + xy)n√
(1 + x2)n(1 + y2)n

.

A direct computation now shows that

r10(x, y) = nr(x, y)
(y − x)

(1 + xy)(1 + x2)
, r01(x, y) = nr(x, y)

(x− y)

(1 + xy)(1 + y2)
,

r11(x, y) = nr(x, y)

(
1

(1 + xy)2
− n(x− y)2

(1 + xy)2(1 + x2)(1 + y2)

)
.

Using α(x, y) = (y − x)/(1 + xy) and (1 + x2)(1 + y2) = (1 + xy)2 + (x− y)2, we can
write (1.3) in the form

ρ2(x, y) =
1

π2

n

(1 + x2)(1 + y2)
(Fn(α(x, y))− 1).

Together with
ρ1(x)ρ1(y) =

1

π2

n

(1 + x2)(1 + y2)
,

we deduce from (1.4) that

Var[Nn(a, b)] = In,2(a, b) + E[Nn(a, b)], (2.22)

where
In,2(a, b) :=

1

π2

∫ b

a

∫ b

a

n

(1 + x2)(1 + y2)
Fn(α(x, y))dydx. (2.23)

The proof of Theorem 2.1 now falls naturally into three following lemmas.
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Lemma 2.13. If α(a, b) > 0, then

In,2(a, b) = Kn(a, b)E[Nn(a, b)]− Ln(a, b). (2.24)

This gives (2.4) when substituted in (2.22).

Proof. The condition α(a, b) > 0 implies ab > −1. Thus, 1+ xy = 0 has no solutions
in (a, b) × (a, b). Fix x ∈ (a, b) and make the change of variables s =

√
nα(x, y) for

the integral
∫ b

a

√
nFn(α(x,y))

1+y2
dy, we see that

In,2(a, b) =
1

π2

∫ b

a

√
ndx

1 + x2

∫ √
nα(x,b)

√
nα(x,a)

Fn(s/
√
n)

1 + s2/n
ds.

By Fubini’s Theorem, arctanα(s/
√
n, a) = arctan a− arctan(s/

√
n), and (2.1),∫ b

a

√
ndx

1 + x2

∫ 0

√
nα(x,a)

Fn(s/
√
n)

1 + s2/n
ds =

∫ 0

√
nα(b,a)

Fn(s/
√
n)

1 + s2/n
ds

∫ b

α(s/
√
n,a)

√
ndx

1 + x2

=
π2

2
Kn(a, b)E[Nn(a, b)]−

π2

2
Ln(a, b).

Similarly,∫ b

a

√
ndx

1 + x2

∫ √
nα(x,b)

0

Fn(s/
√
n)

1 + s2/n
ds =

π2

2
Kn(a, b)E[Nn(a, b)]−

π2

2
Ln(a, b).

Combining these we obtain (2.24) as required.

Lemma 2.14. Equation (2.5) follows from the fact that

In,2(R) = Kn

√
n. (2.25)

Proof. It follows from (2.23) that

In,2(R) =
1

π2

∫ ∞

−∞
dx

∫ ∞

−∞

nFn(α(x, y))

(1 + x2)(1 + y2)
dy. (2.26)

Fix x ∈ (−∞, 0) and substitute s =
√
nα(x, y), we see that

1

π2

∫ 0

−∞
dx

∫ ∞

−∞

nFn(α(x, y))

(1 + x2)(1 + y2)
dy =

1

π2

∫ 0

−∞

√
n

1 + x2
dx

∫ ∞

−∞

Fn(s/
√
n)

1 + s2/n
ds =

√
n

2
Kn.
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Similarly,
1

π2

∫ ∞

0

dx

∫ ∞

−∞

nFn(α(x, y))

(1 + x2)(1 + y2)
dy =

√
n

2
Kn.

Substituting the results just obtained into (2.26) yields (2.25) as claimed.

Lemma 2.15. If α(a, b) < 0, then

In,2(a, b) = KnE[Nn(a, b)] + (Kn −Kn(a, b))
(
E[Nn(a, b)]−

√
n
)
− Ln(a, b), (2.27)

which implies (2.6) when combined with (2.22).

Proof. Write

In,2(a, b) =
1

π2

∫ −1/b

a

√
ndx

1 + x2

∫ −1/x

a

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ −1/b

a

√
ndx

1 + x2

∫ b

−1/x

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ −1/a

−1/b

√
ndx

1 + x2

∫ b

a

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ b

−1/a

√
ndx

1 + x2

∫ −1/x

a

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ b

−1/a

√
ndx

1 + x2

∫ b

−1/x

√
nFn(α(x, y))

1 + y2
dy.

We can now proceed analogously to the proof of Lemma 2.13. Using the substitution
s =

√
nα(x, y), Fubini’s Theorem, and the facts that

arctanα(x, y) =


arctan y − arctan x if 1 + xy > 0,

arctan y − arctan x− π if 1 + xy < 0 and y > 0,

arctan y − arctan x+ π if 1 + xy < 0 and y < 0,

and

arctan x+ arctan(1/x) =

{
+π/2 if x > 0,

−π/2 if x < 0,
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we conclude that

In,2(a, b) =
1

2
(Kn +Kn(−1/a, b))(E[Nn(a, b)]−

√
n/2)− 1

2
Ln(−1/a, b)

+
1

2
(Kn −Kn(a, b))(E[Nn(a, b)]−

√
n) +

1

2
(Ln − Ln(a, b))

+

√
n

2
Kn −Kn(−1/a, b)(E[Nn(a, b)]−

√
n/2)− Ln + Ln(−1/a, b)

+
1

2
(Kn −Kn(a, b))(E[Nn(a, b)]−

√
n) +

1

2
(Ln − Ln(a, b))

+
1

2
(Kn +Kn(−1/a, b))(E[Nn(a, b)]−

√
n/2)− 1

2
Ln(−1/a, b)

= KnE[Nn(a, b)] + (Kn −Kn(a, b))(E[Nn(a, b)]−
√
n)− Ln(a, b),

which gives (2.27).

2.3 Asymptotic expansions for the variances

This section provides a detailed proof of Theorem 2.2. Let us first mention some
lemmas that will be imperative to the proof. Note that Theorem 2.1 allows us to derive
the large n expansion of Var[Nn(a, b)] using that of Kn(a, b) and Ln(a, b). To expand
Kn(a, b) and Ln(a, b), we first show that Fn(s/

√
n)

1+s2/n
and Fn(s/

√
n)

1+s2/n

√
n arctan(s/

√
n) can

be transformed into series of terms which are powers of 1/n.
Lemma 2.16. Given 0 < cn <

√
n, one has

Fn(s/
√
n)

1 + s2/n
=

∞∑
k=0

fk(s)

nk
uniformly for s ∈ [0, cn], (2.28)

in which fk(s) have continuous extensions to [0,∞) such that, as s → 0,

fk(s) =


−1 + π

4
s+O(s3) if k = 0,

−π
4
s+ s2 +O(s3) if k = 1,

O(s3) if k ≥ 2,

(2.29)

and, as s → ∞,

fk(s) =
1

2k+1k!
s4k+4e−s2 +O(s4k+2e−s2), k ≥ 0. (2.30)

Proof. The proof will be divided into four steps.
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Step 1. Expand ∆n(s/
√
n).

Observe that

∆n(s/
√
n) =

(
1 +

s2

n

)−n/2
(1 + s2/n)[1− (1 + s2/n)−n]− s2

1− (1 + s2)(1 + s2/n)−n
.

If s ∈ [0, cn], then s2/n ≤ c2n/n < 1. Hence, for any c > 0,

−cn log(1 + s2/n) = −cs2 + c
∞∑
k=1

qk(s)

k!

1

nk
uniformly for s ∈ [0, cn],

in which qk(s) = (−s2)k+1k!/(k + 1). But then(
1 +

s2

n

)−cn

= e−cs2

(
1 +

∞∑
k=1

ec,k(s)

nk

)
, (2.31)

where

ec,k(s) =
1

k!

k∑
j=1

cjBk,j(q1(s), ..., qk−j+1(s)) (2.32)

with Bk,j denoting the exponential partial Bell polynomials (see [17, §3.3]). Explicit
formulas for these polynomials are as follows

Bk,j(q1(s), ..., qk−j+1(s)) =
∑ k!

m1! · · ·mk−j+1!

k−j+1∏
r=1

(
(−s2)r+1

r + 1

)mr

(2.33)

where the sum is over all solutions in non-negative integers of the equations

m1 + 2m2 + · · ·+ (k − j + 1)mk−j+1 = k,

m1 +m2 + · · ·+mk−j+1 = j.

Combining (2.32) with (2.33) yields

ec,k(s) =

{
c(−1)k+1

k+1
s2k+2 +O(s2k+4) as s → 0,

ck

k!2k
s4k +O(s4k−2) as s → ∞.

(2.34)
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With (2.31) and a bit of work, we can write(
1 +

s2

n

)−n/2 [
(1 + s2/n)[1− (1 + s2/n)−n]− s2

]
=

∞∑
k=0

uk(s)

nk
,

in which

u0(s) = e−s2/2
(
1− s2 − e−s2

)
, u1(s) = e−s2/2

[
s2 +

s4

4
− s6

4
− e−s2

(
s2 +

3s4

4

)]
,

and, for k ≥ 2,

uk(s) = e−s2/2
[
s2e1/2,k−1(s) + (1− s2)e1/2,k(s)

]
− e−3s2/2

[
e3/2,k(s) + s2e3/2,k−1(s)

]
.

Notice that

u0(s) =

{
−1

2
s4 +O(s6) as s → 0,

−s2e−s2/2 +O(e−s2/2) as s → ∞,
(2.35)

u1(s) =

{
1
2
s4 +O(s6) as s → 0,

−1
4
s6e−s2/2 +O(s4e−s2/2) as s → ∞,

(2.36)

and, by (2.34), for k ≥ 2,

uk(s) =

{
O(s2k+2) as s → 0,

− 1
4kk!

s4k+2e−s2/2 +O(s4ke−s2/2) as s → ∞.
(2.37)

For s ∈ (0, cn], one has 0 < (1 + s2)(1 + s2/n)−n < 1, and so

1

1− (1 + s2)(1 + s2/n)−n
= 1 +

∞∑
m=1

(1 + s2)m
(
1 +

s2

n

)−mn

= 1 +
∞∑

m=1

(1 + s2)me−ms2

(
1 +

∞∑
k=1

em,k(s)

nk

)

=: v0(s) +
∞∑
k=1

vk(s)

nk
.

Clearly,

v0(s) = 1 +
∞∑

m=1

(1 + s2)me−ms2 =
1

1− (1 + s2)e−s2
,
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which gives

v0(s) =

{
2s−4 +O(s−2) as s → 0,

1 +O(s2e−s2) as s → ∞.
(2.38)

For k ≥ 1, vk(s) can be expressed in terms of the polylogarithm functions (see [47])
defined by

Lij(z) :=
∞∑

m=1

zm

mj
.

Indeed, by definition of vk(s) and (2.32),

vk(s) =
∞∑

m=1

(1 + s2)me−ms2em,k(s)

=
∞∑

m=1

(1 + s2)me−ms2 1

k!

k∑
j=1

mjBk,j(q1(s), ..., qk−j+1(s))

=
1

k!

k∑
j=1

Bk,j(q1(s), ..., qk−j+1(s)) Li−j((1 + s2)e−s2).

In particular,

v1(s) = B1,1(q1(s)) Li−1((1 + s2)e−s2) =
s4

2

(1 + s2)e−s2

(1− (1 + s2)e−s2)2
.

Since, for 1 ≤ j ≤ k,

Li−j((1 + s2)e−s2) ∼

{
j!2j+1s−4(j+1) as s → 0,

(1 + s2)e−s2 as s → ∞,

it follows that

vk(s) =

{
2s−4 +O(s−2) as s → 0,
1

2kk!
s4k+2e−s2 +O(s4ke−s2) as s → ∞.

(2.39)

Next, by the Cauchy product, for s ∈ (0, cn],(
∞∑
k=0

uk(s)

nk

)(
∞∑
k=0

vk(s)

nk

)
=

∞∑
k=0

δk(s)

nk
,
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where

δk(s) :=
k∑

j=0

uj(s)vk−j(s), k ≥ 0.

In particular,

δ0(s) =
e−s2/2(1− s2 − e−s2)

1− (1 + s2)e−s2
,

δ1(s) =
s4e−s2/2

2

(1− s2 − e−s2)(1 + s2)e−s2

(1− (1 + s2)e−s2)2

+
e−s2/2

1− (1 + s2)e−s2

[
s2 +

s4

4
− s6

4
− e−s2

(
s2 +

3s4

4

)]
.

We check at once that

δ0(s) =

{
−1 +O(s2) as s → 0,

−s2e−s2/2 +O(e−s2/2) as s → ∞.
(2.40)

Using (2.37), (2.38), and (2.39), we see that, for k ≥ 1,

δk(s) =

{
u0(s)vk(s) + u1(s)vk−1(s) +O(s2) as s → 0,

uk(s)v0(s) +O(s4k+4e−3s2/2) as s → ∞.

Together with (2.35) and (2.36), we arrive at

δk(s) =

{
O(s2) as s → 0,

− 1
4kk!

s4k+2e−s2/2 +O(s4k+4e−3s2/2) as s → ∞.
(2.41)

This implies that the functions δk(s) extend by continuity at s = 0. Hence,

∆n(s/
√
n) =

∞∑
k=0

δk(s)

nk
uniformly for s ∈ [0, cn]. (2.42)

Step 2. Expand h(∆n(s/
√
n)), where h(x) :=

√
1− x2 + x arcsin x.

For s > 0, we see that −1 < ∆n(s/
√
n) < 1. Thus, by (2.42) and Faà di Bruno’s
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formula (see [17, §3.4]),

h(∆n(s/
√
n)) = h(0) +

∞∑
m=1

h(m)(0)

m!
(∆n(s/

√
n))m

= 1 +
∞∑

m=1

h(m)(0)

m!

(
∞∑
k=0

δk(s)

nk

)m

=: z0(s) +
∞∑
k=1

zk(s)

nk
,

where
z0(s) = 1 +

∞∑
m=1

h(m)(0)

m!
δm0 (s) = h(δ0(s)),

and, for k ≥ 1,

zk(s) =
1

k!

k∑
j=1

h(j)(δ0(s))Bk,j(1!δ1(s), ..., (k − j + 1)!δk−j+1(s)).

In particular,
z1(s) = B1,1(δ1(s))h

′(δ0(s)) = δ1(s) arcsin(δ0(s)).

By (2.40) and the asymptotic behaviors of h(x) as x → 0 and as x → −1+,

z0(s) =

{
π/2 +O(s2) as s → 0,

1 + 1
2
s4e−s2 +O(s2e−s2) as s → ∞.

(2.43)

Note that h′(x) = arcsin x, so

h′(x) =

{
O(1) as x → −1+,

x+O(x3) as x → 0,

and, for j ≥ 2,

h(j)(x) =

{
O((1− x2)(3−2j)/2) as x → −1+,
1+(−1)j

2
+O(x2) as x → 0.

Together with (2.40), we see that

h′(δ0(s)) =

{
O(1) as s → 0,

−s2e−s2/2 +O(s6e−3s2/2) as s → ∞,
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and, for j ≥ 2,

h(j)(δ0(s)) =

{
O(s3−2j) as s → 0,
1+(−1)j

2
+O(s4e−s2) as s → ∞.

Thus, using (2.41) and the fact that 1 + Bk,2(1, ..., 1) = 2k−1, we get

zk(s) =

{
O(s2) as s → 0,

1
2k+1k!

s4k+4e−s2 +O(s4k+2e−s2) as s → ∞.
(2.44)

Summarizing, we have

h(∆n(s/
√
n)) =

∞∑
k=0

zk(s)

nk
uniformly for s ∈ [0, cn]. (2.45)

Step 3. Expand Γn(s/
√
n).

For this purpose, let us consider the function x 7→ gs(x) given by

gs(x) =
1− (1 + s2)x

(1− x)3/2
, x ∈ (−1, 1).

For s > 0, we have 0 < (1 + s2/n)−n < 1 and

Γn(s/
√
n) =

1− (1 + s2)(1 + s2/n)−n

[1− (1 + s2/n)−n]3/2
= gs

(
(1 + s2/n)−n

)
.

Therefore,

Γn(s/
√
n) = gs(0) +

∞∑
m=1

g
(m)
s (0)

m!

(
1 +

s2

n

)−mn

= 1 +
∞∑

m=1

g
(m)
s (0)

m!
e−ms2

∞∑
k=0

em,k(s)

nk

= 1 +
∞∑

m=1

g
(m)
s (0)

m!
e−ms2 +

∞∑
k=1

(
∞∑

m=1

g
(m)
s (0)

m!
e−ms2em,k(s)

)
1

nk

=: γ0(s) +
∞∑
k=1

γk(s)

nk
.
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In particular,

γ0(s) = 1 +
∞∑

m=1

g
(m)
s (0)

m!
e−ms2 = gs(e

−s2) =
1− (1 + s2)e−s2

(1− e−s2)3/2
.

To determine γk(s), for k ≥ 1, we utilize the following identity (see [17, §5.1]), for
m ≥ 1 and 1 ≤ j ≤ k,

mj =

j∑
r=1

S(j, r)(m)r,

where S(j, r) are the Stirling numbers of the second kind, and (m)r are the falling
factorials defined by (m)r = m(m− 1) · · · (m− r + 1). This implies

γk(s) =
∞∑

m=1

g
(m)
s (0)

m!
e−ms2em,k(s)

=
∞∑

m=1

g
(m)
s (0)

m!
e−ms2 1

k!

k∑
j=1

mjBk,j(q1(s), ..., qk−j+1(s))

=
1

k!

k∑
j=1

Bk,j(q1(s), ..., qk−j+1(s))

j∑
r=1

S(j, r)e−rs2g(r)s (e−s2).

In particular,

γ1(s) = B1,1(q1(s))S(1, 1)e
−s2g′s(e

−s2) =
s4e−s2(1− 2s2 − (1 + s2)e−s2)

4(1− e−s2)5/2
.

A trivial verification shows that

γ0(s) =

{
1
2
s+O(s3) as s → 0,

1− s2e−s2 +O(e−s2) as s → ∞,
(2.46)

γ1(s) =

{
−1

2
s+O(s3) as s → 0,

−1
2
s6e−s2 +O(s4e−s2) as s → ∞.

(2.47)

Notice that

gs(e
−s2) =

1− (1 + s2)e−s2

(1− e−s2)3/2
=

{
1
2
s+O(s3) as s → 0,

1 +O(s2e−s2) as s → ∞
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and

g(r)s (e−s2) =
2r

(2r + 1)!!

1− (1 + s2)e−s2

(1− e−s2)(2r+3)/2
− r2r−1

(2r − 1)!!

1 + s2

(1− e−s2)(2r+1)/2

=

{
− r2r−1

(2r−1)!!
s−(2r+1) +O(s−(2r−1)) as s → 0,

− r2r−1

(2r−1)!!
s2 +O(1) as s → ∞.

Combining with (2.33) yields, for k ≥ 2,

γk(s) =

{
O(s2k−1) as s → 0,

− 1
2kk!

s4k+2e−s2 +O(s4ke−s2) as s → ∞.
(2.48)

Therefore,

Γn(s/
√
n) =

∞∑
k=0

γk(s)

nk
uniformly for s ∈ [0, cn]. (2.49)

Step 4. Expand Fn(s/
√
n)

1+s2/n
.

Combining (2.45) with (2.49), we can write

Fn(s/
√
n) =

(
∞∑
k=0

zk(s)

nk

)(
∞∑
k=0

γk(s)

nk

)
− 1 =

∞∑
k=0

ak(s)

nk
(2.50)

uniformly for s ∈ [0, cn], in which

a0(s) = z0(s)γ0(s)− 1 and ak(s) =
k∑

j=0

zj(s)γk−j(s), k ≥ 1.

On account of (2.43), (2.44), (2.46), (2.47), and (2.48), we have

a0(s) =

{
−1 + π

4
s+O(s3) as s → 0,

1
2
s4e−s2 +O(s2e−s2) as s → ∞,

a1(s) =

{
−π

4
s+O(s3) as s → 0,

1
4
s8e−s2 +O(s6e−s2) as s → ∞,

and, for k ≥ 2,

ak(s) =

{
O(s3) as s → 0,

1
2k+1k!

s4k+4e−s2 +O(s4k+2e−s2) as s → ∞.
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Since
1

1 + s2/n
=

∞∑
k=0

(−s2)k

nk
,

it follows from (2.50) that

Fn(s/
√
n)

1 + s2/n
=

(
∞∑
k=0

ak(s)

nk

)(
∞∑
k=0

(−s2)k

nk

)
=

∞∑
k=0

fk(s)

nk

uniformly for s ∈ [0, cn], in which

fk(s) :=
k∑

j=0

(−1)js2jak−j(s), k ≥ 0.

By the above, fk(s) have continuous extensions to [0,∞) such that

f0(s) =

{
−1 + π

4
s+O(s3) as s → 0,

1
2
s4e−s2 +O(s2e−s2) as s → ∞,

f1(s) =

{
−π

4
s+ s2 +O(s3) as s → 0,

1
4
s8e−s2 +O(s6e−s2) as s → ∞,

and, for k ≥ 2,

fk(s) =

{
O(s3) as s → 0,

1
2k+1k!

s4k+4e−s2 +O(s4k+2e−s2) as s → ∞.

Thus, Lemma 2.16 is verified.

Recall that
f0(s) = h(δ0(s))γ0(s)− 1

and
f1(s) = h(δ0(s))γ1(s) + δ1(s) arcsin(δ0(s))γ0(s)− s2f0(s),

where explicit formulas for h(x), δ0(s), δ1(s), γ0(s), and γ1(s) are provided. This
means that one can also obtain explicit formulas for both f0(s) and f1(s). In Figure
2.1, we show plots of f0(s) and f1(s) for s ∈ [0, 5].
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Figure 2.1: Plots of f0(s) and f1(s).

Note that, for −1 ≤ s/
√
n ≤ 1,

√
n arctan(s/

√
n) =

∞∑
k=0

(−1)ks2k+1

2k + 1

1

nk
.

Together with Lemma 2.16, we obtain the following lemma.

Lemma 2.17. Given 0 < cn <
√
n, one has

Fn(s/
√
n)

1 + s2/n

√
n arctan(s/

√
n) =

∞∑
k=0

gk(s)

nk
uniformly for s ∈ [0, cn], (2.51)

in which

gk(s) =
k∑

j=0

(−1)js2j+1

2j + 1
fk−j(s), k ≥ 0.

Moreover, gk(s) have continuous extensions to [0,∞) such that, as s → 0,

gk(s) =


−s+ π

4
s2 +O(s4) if k = 0,

−π
4
s2 + 4

3
s3 +O(s4) if k = 1,

O(s4) if k ≥ 2,

(2.52)

and, as s → ∞,

gk(s) =
1

2k+1k!
s4k+5e−s2 +O(s4k+3e−s2), k ≥ 0. (2.53)

Note that explicit formulas for g0(s) and g1(s) can be obtained from g0(s) = sf0(s)
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and g1(s) = sf1(s) − s3

3
f0(s). Plots of g0(s) and g1(s) for s ∈ [0, 5] are included in

Figure 2.2.

Figure 2.2: Plots of g0(s) and g1(s).

We can now define, for k ≥ 0 and c > 0,

κk :=
2

π

∫ ∞

0

fk(s)ds, κc,k :=
2

π

∫ c

0

fk(s)ds,

ℓk :=
2

π2

∫ ∞

0

gk(s)ds, ℓc,k :=
2

π2

∫ c

0

gk(s)ds.

The continuity of fk(s) and gk(s), and the asymptotic behaviors given in (2.29),
(2.30), (2.52), and (2.53) make the definitions of κk, ℓk, κc,k, and ℓc,k allowable. Using
explicit formulas for fk(s) and gk(s), for k = 0, 1, we can numerically compute κk, ℓk,
κc,k, and ℓc,k, for k = 0, 1, and c > 0. Some such numerical values are listed in Table
2.1, in which the integrals involved were evaluated numerically using MATLAB.

Table 2.1: Numerical values of κk, ℓk, κ1,k, and ℓ1,k for k = 0, 1.

k κk ℓk κ1,k ℓ1,k
0 −0.4282689510 −0.0580365252 −0.3955313789 −0.0505415303
1 −0.1522064957 −0.0082122652 −0.1093878905 −0.0138350833

We emphasize that the expansions given in (2.28) and (2.51) allow us to expand
Kn(a, b) and Ln(a, b) into series of terms which are powers of 1/n, provided that
|αn| <

√
n. Our next task is thus to estimate Kn −Kn(a, b) and Ln − Ln(a, b) when

|αn| is arbitrarily large.

Lemma 2.18. If |αn| → ∞ as n → ∞, then for all n sufficiently large,

Kn −Kn(a, b) = O
(
|αn|3

(
1 + α2

n/n
)−n
)
, (2.54)

Ln − Ln(a, b) = O
(√

n|αn|3
(
1 + α2

n/n
)−n
)
. (2.55)
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Proof. Observe that

Kn −Kn(a, b) =
2

π

∫ ∞

|αn|

Fn(s/
√
n)

1 + s2/n
ds,

Ln − Ln(a, b) =
2

π2

∫ ∞

|αn|

Fn(s/
√
n)

1 + s2/n

√
n arctan(s/

√
n)ds.

Since arctan(s/
√
n) is bounded, (2.55) is a consequence of (2.54). To prove (2.54),

we first show that, for any fixed n ≥ 1, as s → ∞,

Fn(s/
√
n)

1 + s2/n
=

(
1− 1

n

)2
s4

2

(
1 +

s2

n

)−n−1

+O

((
1 +

s2

n

)−n
)
. (2.56)

Indeed, as s → ∞,

|∆n(s/
√
n)| =

(
1− 1

n

)
s2
(
1 +

s2

n

)−n/2

+O

((
1 +

s2

n

)−n/2
)
,

Γn(s/
√
n) = 1 + O

((
1 +

s2

n

)−n
)
,

and therefore,

Fn(s/
√
n) =

(
1− 1

n

)2
s4

2

(
1 +

s2

n

)−n

+O

(
s2
(
1 +

s2

n

)−n
)
,

which implies (2.56).

We now prove (2.54). Since |αn| → ∞ as n → ∞, it follows that for all n sufficiently
large, the function s 7→ s3 (1 + s2/n)

−n/2 achieves its maximum value on [|αn|,∞) at
s = |αn|. So∫ ∞

|αn|

s4

2

(
1 +

s2

n

)−n−1

ds ≤ |αn|3

2

(
1 +

α2
n

n

)−n/2 ∫ ∞

|αn|
s

(
1 +

s2

n

)−n/2−1

ds

=
|αn|3

4

(
1 +

α2
n

n

)−n

.

Combining with (2.56) yields (2.54) as required.

We can now formulate the asymptotic expansions of Kn(a, b) and Ln(a, b).
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Lemma 2.19. As n → ∞, if α2
n/ log n → ∞, then

Kn(a, b) ∼
∞∑
k=0

κk

nk
and Ln(a, b) ∼

∞∑
k=0

ℓk
nk

. (2.57)

Consequently, as n → ∞,

Kn ∼
∞∑
k=0

κk

nk
and Ln ∼

∞∑
k=0

ℓk
nk

. (2.58)

Proof. We first prove (2.57). If α2
n ≥ n, one has

|αn|3
(
1 + α2

n/n
)−n ≤ n3/22−n.

But then (2.54) implies that the integral 2
π

∫ |αn|√
n

Fn(s/
√
n)

1+s2/n
ds is negligible. Thus, it

suffices to assume that α2
n < n. By (2.28),

Kn(a, b) =
∞∑
k=0

(
2

π

∫ |αn|

0

fk(s)ds

)
1

nk
. (2.59)

We now show that
∞∑
k=0

(
2

π

∫ ∞

|αn|
fk(s)ds

)
1

nk
= O

(
|αn|3e−α2

n+α4
n/2n

)
. (2.60)

In fact, since |αn| → ∞ as n → ∞, we see that, for any fixed k ≥ 0 and all
n sufficiently large, the function s 7→ s4k+3e−s2/2 achieves its maximum value on
[|αn|,∞) at s = |αn|. This implies

0 ≤
∫ ∞

|αn|

s4k+4e−s2

2k+1k!
ds ≤ |αn|4k+3e−α2

n/2

2k+1k!

∫ ∞

|αn|
se−s2/2ds =

|αn|4k+3e−α2
n

2k+1k!
.

Therefore,

∞∑
k=0

(
2

π

∫ ∞

|αn|

s4k+4e−s2

2k+1k!
ds

)
1

nk
≤ |αn|3e−α2

n+α4
n/2n

π
,

which gives (2.60) when combined with (2.30). Next, in view of (2.59) and (2.60),
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the series on the right-hand side of (2.57) converges and

Kn(a, b) =
∞∑
k=0

κk

nk
+O

(
|αn|3e−α2

n+α4
n/2n

)
.

Since O(|αn|3e−α2
n+α4

n/2n) is negligible when α2
n/ log n → ∞, we get (2.57). The term

Ln(a, b) can be handled in much the same way.

Finally, by Lemma 2.18, (2.58) follows from (2.57).

Note that if α2
n does not grow faster than log n, then |αn|3e−α2

n+α4
n/2n ≥ n−d for some

constant d > 0. We are thus looking for finite expansions of Kn(a, b) and Ln(a, b).

Lemma 2.20. If |αn| → ∞ as n → ∞ and α2
n = O(log n), then for dn given by (2.7),

we have

Kn(a, b) =
dn∑
k=0

κk

nk
+O(|αn|3e−α2

n) and Ln(a, b) =
dn∑
k=0

ℓk
nk

+O(α4
ne

−α2
n).

Proof. Since α2
n = O(log n), dn is bounded. A slight change in the proof of Lemma

2.16 actually shows that, for s ∈ [0, |αn|] and any integer d ≥ 0,

Fn(s/
√
n)

1 + s2/n
=

d∑
k=0

fk(s)

nk
+O

(
α4d
n

nd+1

)
.

It follows that

Kn(a, b) =
dn∑
k=0

(
2

π

∫ |αn|

0

fk(s)ds

)
1

nk
+O

(
|αn|4dn+1

ndn+1

)

=
dn∑
k=0

κk

nk
−

dn∑
k=0

(
2

π

∫ ∞

|αn|
fk(s)ds

)
1

nk
+O

(
|αn|4dn+1

ndn+1

)
.

Analysis similar to that in the proof of (2.60) shows

dn∑
k=0

(
2

π

∫ ∞

|αn|
fk(s)ds

)
1

nk
≤ 1 + dn

π
|αn|3e−α2

n = O(|αn|3e−α2
n).

This clearly forces

Kn(a, b) =
dn∑
k=0

κk

nk
+O(|αn|3e−α2

n).
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The term Ln(a, b) can be handled in much the same way.

Our next goal is to establish the asymptotics of Kn(a, b) and Ln(a, b) when αn = o(1).

Lemma 2.21. If αn = o(1) as n → ∞, then

Kn(a, b) = − 2

π
|αn|+

1

4
α2
n −

1

4

α2
n

n
+

2

3π

|αn|3

n
+O(α4

n), (2.61)

Ln(a, b) = − 1

π2
α2
n +

1

6π
|αn|3 −

1

6π

|αn|3

n
+

2

3π2

α4
n

n
+O(|αn|5). (2.62)

Proof. By (2.28) and (2.29),

Kn(a, b) =
2

π

∫ |αn|

0

[
−1 +

π

4
s+

1

n

(
−π

4
s+ s2

)]
ds+O(α4

n)

= − 2

π
|αn|+

1

4
α2
n −

1

4

α2
n

n
+

2

3π

|αn|3

n
+O(α4

n),

and (2.61) is proved. Similarly, (2.62) follows from applying Lemma 2.17.

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The proof is based on the large n behavior of αn.

1. Assume first that |αn| → ∞ as n → ∞. Then (2.9) is a consequence of Theorem
2.1 and Lemma 2.19, while (2.8) follows from Theorem 2.1, the relation (2.58),
and Lemma 2.20.

2. If αn = c > 0, then
E[Nn(a, b)] =

√
n

π
arctan

c√
n
.

Thus, using (2.4), Lemmas 2.16 and 2.17, we see that (2.10) holds true. When
αn = −c, (2.11) is deduced from (2.6), (2.58), Lemmas 2.16 and 2.17, and

E[Nn(a, b)] =
√
n+

√
n

π
arctan

c√
n
.

3. Suppose that αn = o(1) as n → ∞. If αn > 0, then

E[Nn(a, b)] =

√
n

π
arctanα(a, b) =

1

π

(
αn −

α3
n

3n

)
+O(α5

n).
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Hence, (2.12) follows from (2.4) and Lemma 2.21. Next, for αn < 0,

E[Nn(a, b)] =
√
n+

1

π

(
αn −

α3
n

3n

)
+O(|αn|5).

Together with (2.6), Lemma 2.21, and the facts that
√
n/nqn = O(|αn|5) and

αn/n
rn = O(|αn|5), we deduce (2.13). If, in addition, rn → ∞, we have qn → ∞

and αn = o(n−rn/4) which is negligible, so (2.14) is indeed a consequence of
(2.13). Finally, substituting (2.58) into (2.5) yields (2.15).

2.4 Correlations between the real roots

Let ρn,k and ρTn,k, respectively, be the k-point correlation and truncated correlation
functions of the real roots of the elliptic polynomials. As shown in [11] that if x1, ..., xk

are k distinct fixed points, then

ρn,k(x1, ..., xk) =
k∏

j=1

( √
n

1 + x2
j

)∫
Rk

|y1 · · · yk|Dn,k(0, y1, ..., 0, yk; x1, ..., xk)dy1 · · · dyk,

(2.63)
where Dn,k(s1, y1, ..., sk, yk; x1, ..., xk) is a (2k) × (2k) Gaussian density with the co-
variance matrix

Σn =
(
Σ

(n)
ij

)k
i,j=1

,

in which

Σ
(n)
ij = (1 + α2(xi, xj))

−n/2

(
1 −

√
nα(xi, xj)√

nα(xi, xj) 1 + (1− n)α2(xi, xj)

)
. (2.64)

In particular,
ρTn,1(x1) = ρn,1(x1) =

√
n

π(1 + x2
1)
.

For k ≥ 2, to find a scaling limit of ρTn,k, let us make the change of variables

tj =
√
nα(x1, xj), j = 2, ..., k. (2.65)

But then
α(xi, xj) = α(ti/

√
n, tj/

√
n), i, j = 2, ..., k. (2.66)
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The integral
∫
Rk |y1 · · · yk|Dn,k(0, y1, ..., 0, yk; x1, ..., xk)dy1 · · · dyk appeared in (2.63)

can be interpreted as a function of (k − 1) variables t2, ..., tk. More precisely, by
letting t1 = 0, we deduce from (2.64) and (2.66) that∫

Rk

|y1 · · · yk|Dn,k(0, y1, ..., 0, yk; x1, x2, ..., xk)dy1 · · · dyk

=

∫
Rk

|y1 · · · yk|dn,k(0, y1, ..., 0, yk; 0, t2, ..., tk)dy1 · · · dyk,

in which dn,k(s1, y1, ..., sk, yk; t1, t2, ..., tk) is a Gaussian density with the covariance
matrix

Ωn =
(
Ω

(n)
ij

)k
i,j=1

,

in which

Ω
(n)
ij =

(
1 + α2

(
ti√
n
,
tj√
n

))−n
2

(
1 −

√
nα( ti√

n
,

tj√
n
)

√
nα( ti√

n
,

tj√
n
) 1 + (1− n)α2( ti√

n
,

tj√
n
)

)
. (2.67)

For γj ⊂ {1, ..., k} with lj = |γj| ≥ 1, let us introduce the lj-point functions

Θn,lj(tttγj) =

∫
Rlj

|y1 · · · ylj |dn,lj(0, y1, ..., 0, ylj ; tttγj)dy1 · · · dylj ,

where tttγj = (ti)i∈γj . We also consider the corresponding truncated functions

ΘT
n,k(t1, ..., tk) =

k∑
j=1

(−1)j−1(j − 1)!
∑

γ∈Π(k,j)

Θn,l1(tttγ1) · · ·Θn,lj(tttγj). (2.68)

Put this way, one has

ρTn,k(xxx) =

(
k∏

j=1

√
n

1 + x2
j

)
ΘT

n,k(0, t2, ..., tk). (2.69)

Note that, for fixed ti, tj ∈ R, we have

lim
n→∞

√
nα

(
ti√
n
,
tj√
n

)
= tj − ti,

and by (2.67),
lim
n→∞

Ωn = Ω = (Ωij)
k
i,j=1,
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where
Ωij = e−(tj−ti)

2/2

(
1 −(tj − ti)

tj − ti 1− (tj − ti)
2

)
. (2.70)

Therefore,

lim
n→∞

Θn,k(t1, ..., tk) =

∫
Rk

|y1 · · · yk|dk(0, y1, ..., 0, yk; t1, ..., tk)dy1 · · · dyk,

where dk(s1, y1, ..., sk, yk; t1, ..., tk) is a Gaussian density with the covariance matrix
Ω. Generally, for γj ⊂ {1, ..., k} with lj = |γj| ≥ 1, we can define

Θlj(tttγj) := lim
n→∞

Θn,lj(tttγj). (2.71)

Thus, it follows from (2.68) and (2.71) that

lim
n→∞

ΘT
n,k(t1, ..., tk) =

k∑
j=1

(−1)j−1(j − 1)!
∑

γ∈Π(k,j)

Θl1(tttγ1) · · ·Θlj(tttγj).

Next, we restrict out attention to this scaling limit. Namely, let

ΘT
k (t1, ..., tk) =

k∑
j=1

(−1)j−1(j − 1)!
∑

γ∈Π(k,j)

Θl1(tttγ1) · · ·Θlj(tttγj). (2.72)

Using Θ1 ≡ 1/π, we get

ΘT
1 (t1) =

1

π
, ΘT

2 (t1, t2) = Θ2(t1, t2)−
1

π2
,

ΘT
3 (t1, t2, t3) = Θ3(t1, t2, t3)−

1

π
[Θ2(t1, t2) + Θ2(t1, t3) + Θ2(t2, t3)] +

2

π3
,

and so on. The inversions to (2.72) have the form

Θk(t1, ..., tk) =
k∑

j=1

∑
γ∈Π(k,j)

ΘT
l1
(tttγ1) · · ·ΘT

lj
(tttγj). (2.73)

Lemma 2.22. For k ≥ 2, we have ΘT
k (0, t2, ..., tk) ∈ L1(Rk−1, dt2 · · · dtk) and∫

Rk−1

ΘT
k (0, t2, ..., tk)dt2 · · · dtk =

∫
Ak−1

n

ΘT
k (0, t2, ..., tk)dt2 · · · dtk+O(e−α2

n/k
2

), (2.74)

where An := (−|αn|, |αn|).



40

Proof. We first rewrite Θk(t1, t2, ..., tk) in a more explicit form

Θk(t1, t2, ..., tk) =
1

(2π)k
√
detΩ

∫
Rk

|y1 · · · yk|e−
1
2
⟨Ω−1yyy,yyy⟩dy1 · · · dyk,

where yyy = (0, y1, ..., 0, yk). It was shown in [11, Appendix C] that Ω > 0 at distinct
points tj, so Θk(t1, t2, ..., tk) is well-defined when the point tj are distinct. Let adj(Ω)
denote the adjugate of Ω, so Ω−1 = (detΩ)−1 adj(Ω). Making the change of variables
yj = ηj

√
detΩ, j = 1, ..., k, we obtain

Θk(t1, t2, ..., tk) =
(detΩ)(k−1)/2

(2π)k

∫
Rk

|η1 · · · ηk|e−
1
2
⟨adj(Ω)ηηη,ηηη⟩dη1 · · · dηk,

where ηηη = (0, η1, ..., 0, ηk). This formula implies that Θk(t1, t2, ..., tk) has a continuous
extension to the entire space such that Θk(t1, t2, ..., tk) = 0 whenever ti = tj for some
i 6= j. By (2.72), ΘT

k (t1, t2, ..., tk) also has a continuous extension to the entire space.
Thus,

∫
Ak−1

n
ΘT

k (0, t2, ..., tk)dt2 · · · dtk is well-defined. Let Rk−1(αn) = Rk−1\Ak−1
n . It

remains to show that∫
Rk−1(αn)

ΘT
k (0, t2, ..., tk)dt2 · · · dtk = O(e−α2

n/k
2

). (2.75)

By (2.73),

ΘT
k (t1, t2, ..., tk) = Θk(t1, t2, ..., tk)−

k∑
j=2

∑
γ∈Π(k,j)

ΘT
l1
(tttγ1) · · ·ΘT

lj
(tttγj).

Thus, if ti = tj for some i 6= j, then ΘT
k (t1, t2, ..., tk) is completely expressed in terms

of the j-point truncated functions for j < k. Moreover, we have ΘT
2 (0, t2) = f0(t2)/π

2

which satisfies the conclusion of the lemma. Hence, by induction on k, it suffices to
treat the case where

min
i ̸=j

|ti − tj| ≥ r > 0.

Under this condition, we conclude from (2.70) that, as r → ∞, the matrix Ω ap-
proaches the unit matrix with the rate of convergence being O(r2e−r2/2). This gives

Θk(t1, t2, ..., tk) =
1

πk
+O(r4e−r2) as r → ∞.

Consequently, in exactly the same way as in [13, Corollary 5.8], we infer that

ΘT
k (t1, t2, ..., tk) = o(e−R2/k) as R → ∞,
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where R = maxi ̸=j |ti − tj|. Since t1 = 0, it follows that R ≥ |tj|, for j = 2, ..., k.
Hence, as tj → ∞,

ΘT
k (0, t2, ..., tk) = O

(
k∏

j=2

e−t2j/k
2

)
,

which gives (2.75). The lemma is proved.

Remark 2.23. The proof above gives more, namely for k ≥ 2 and a polynomial
P (t2, ..., tk), we have P (t2, ..., tk)Θ

T
k (0, t2, ..., tk) ∈ L1(Rk−1, dt2 · · · dtk).

Lemma 2.24. For k ≥ 2 and An = (−|αn|, |αn|), we have∫
Rk−1

ΘT
n,k(0, t2, ..., tk)dt2 · · · dtk =

∫
Ak−1

n

ΘT
n,k(0, t2, ..., tk)dt2 · · · dtk

+O
(
(1 + α2

n/n)
−n/k2

)
.

(2.76)

If, in addition, |αn| <
√
n, one has∫

Ak−1
n

ΘT
n,k(0, t2, ..., tk)dt2 · · · dtk =

∫
Ak−1

n

ΘT
k (0, t2, ..., tk)dt2 · · · dtk +O

(
α2
n/n
)
.

(2.77)

Proof. The estimate (2.76) follows the same method as in the proof of Lemma 2.22.
Next, if ti, tj ∈ An and |αn| <

√
n,

√
nα

(
ti√
n
,
tj√
n

)
= (tj − ti)

(
1 +O

(
α2
n/n
))

and by (2.67),
Ωn = Ω

(
1 +O

(
α2
n/n
))

.

This gives
ΘT

n,k(t1, t2, ..., tk) = ΘT
k (t1, t2, ..., tk)

(
1 +O

(
α2
n/n
))

,

which yields (2.77).

2.5 Asymptotics of the cumulants

In this section, we give the proof of Theorem 2.3. We begin by recalling the relation
between the cumulant sk[Nn(a, b)] and the truncated correlation functions ρTn,j, for
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1 ≤ j ≤ k. By Lemma 1.1,

sk[Nn(a, b)] =
∑

γ∈Π(k)

∫
(a,b)|γ|

ρTn,|γ|(xxxγ)dxxxγ, (2.78)

where |γ| is the number of blocks in the partition γ and dxxxγ is the Lebesgue measure
on (a, b)|γ|.

Thus, the task is now to estimate the integrals
∫
(a,b)|γ|

ρTn,|γ|(xxx)dxxx.

Lemma 2.25. For k ≥ 1, we have, as n → ∞,∫
(a,b)k

ρTn,k(x1, ..., xk)dx1 · · · dxk = CkE[Nn(a, b)] + O(1) (2.79)

in which C1 = 1 and

Ck = π

∫
Rk−1

ΘT
k (0, t2, ..., tk)dt2 · · · dtk, k ≥ 2.

Notice that Theorem 2.3 immediately follows from applying (2.78) and Lemma 2.25.
Indeed, substituting (2.79) into (1.1), we obtain (2.16), in which

βk :=
∑

γ∈Π(k)

C|γ|.

For k = 1, Lemma 2.25 is trivial. Assume now that k ≥ 2. By Lemma 2.22, the
constants Ck, for k ≥ 2, are well-defined. Making the change of variables (2.65), we
see that √

n

1 + x2
j

dxj =
1

1 + t2j/n
dtj, j = 2, ..., k,

which together with (2.69) yields

ρTn,k(x1, ..., xk)dx1 · · · dxk =

√
n

1 + x2
1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dx1dt2 · · · dtk, (2.80)

where ΘT
n,k(t1, t2, ..., tk) is given by (2.68).

To prove Lemma 2.25, we consider three cases of αn. To shorten the notation, let
In,k(a, b) stand for the integral on the left-hand side of (2.79).

Claim 1. If αn > 0, then (2.79) holds.
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Proof. Using (2.80), we obtain

In,k(a, b) =

∫ b

a

√
n

1 + x2
1

dx1

∫
Rn(x1)

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk,

where

Rn(x1) :=
{
(t2, ..., tk) ∈ (a, b)k−1 :

√
nα(x1, a) < t2, ..., tk <

√
nα(x1, b)

}
.

By Fubini’s Theorem,

In,k(a, b) =

∫
(−αn,αn)k−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk
∫ b

a

√
n
G(x1, t2, ..., tk)

1 + x2
1

dx1,

where

G(x1, t2, ..., tk) :=
k∏

j=2

(
111(−αn,0)(tj)111(α(tj/

√
n,a),b)(x1) + 111(0,αn)(tj)111(a,α(tj/

√
n,b))(x1)

)
.

For k ≥ 2, let Λ(k) be the set of all ordered pair (λ1, λ2) of disjoint subsets of {2, ..., k}
such that λ1∪λ2 = {2, ..., k}. For each λ = (λ1, λ2) ∈ Λ(k), we introduce the function

Gλ(x1, t2, ..., tk) :=
∏
j∈λ1

111(−αn,0)(tj)111(α(tj/
√
n,a),b)(x1)

∏
i∈λ2

111(0,αn)(ti)111(a,α(ti/
√
n,b))(x1)

so that

In,k(a, b) =

∫
(−αn,αn)k−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk
∑

λ∈Λ(k)

∫ b

a

√
n
Gλ(x1, t2, ..., tk)

1 + x2
1

dx1.

For each λ = (λ1, λ2) ∈ Λ(k) and (t2, ..., tk) ∈ Rk−1, let

tmin
λ1

=

{
0 if λ1 = ∅,

minj∈λ1 tj if λ1 6= ∅,
and tmax

λ2
=

{
0 if λ2 = ∅,

maxi∈λ2 ti if λ2 6= ∅.
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By a direct computation, we obtain∫ b

a

√
n
Gλ(x1, t2, ..., tk)

1 + x2
1

dx1 = π
∏
j∈λ1

111(−αn,0)(tj)
∏
i∈λ2

111(0,αn)(ti)E[Nn(a, b)]

+
∏
j∈λ1

111(−αn,0)(tj)
∏
i∈λ2

111(0,αn)(ti)
√
n

(
arctan

tmin
λ1√
n
− arctan

tmax
λ2√
n

)
.

For any fixed (t2, ..., tk) ∈ Rk−1, we have

lim
n→∞

√
n

(
arctan

tmin
λ1√
n
− arctan

tmax
λ2√
n

)
= tmin

λ1
− tmax

λ2
.

Together with Remark 2.23, we can assert that, as n → ∞,

In,k(a, b) =

(
π

∫
(−αn,αn)k−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk

)
E[Nn(a, b)] + O(1).

Note that if αn > log n, then by (2.76),∫
(−αn,αn)k−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk

=

∫
(− logn,logn)k−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk +O((1 + log2 n/n)−n/k2),

in which the term O((1 + log2 n/n)−n/k2) is negligible because

O((1 + log2 n/n)−n/k2)E[Nn(a, b)] = o(1).

Thus, it suffices to assume that αn ≤ log n. Using (2.74), (2.77), and the fact that

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

= ΘT
n,k(0, t2, ..., tk)(1 + O(α2

n/n)),

we get

π

∫
(−αn,αn)k−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk = Ck +O(e−α2
n/k

2

+ α2
n/n).

Since O(e−α2
n/k

2
+ α2

n/n)E[Nn(a, b)] = O(1), it follows that the asymptotic formula
(2.79) holds true.
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Claim 2. The asymptotic formula (2.79) holds for αn = 0.

Proof. When αn = 0, we have (a, b) = R. By (2.80), Lemmas 2.22 and 2.24,

In,k(R) =
∫ ∞

−∞

√
n

1 + x2
1

dx1

∫
Rk−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk

=

(
π

∫
Rk−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk

)
E[Nn(R)]

= CkE[Nn(R)] + o(1),

which yields (2.79).
Claim 3. If αn < 0, then (2.79) takes place.

Proof. We first write

In,k(a, b) =

(∫ −1/b

a

+

∫ −1/a

−1/b

+

∫ b

−1/a

)
dx1

∫
(a,b)k−1

ρTn,k(xxx)dx2 · · · dxk.

By (2.80) and Fubini’s Theorem,

In,k(a, b) =

∫
Rk−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk
∫ b

a

√
n
H(x1, t2, ..., tk)

1 + x2
1

dx1,

where

H(x1, t2, ..., tk) = 111(a,−1/b)(x1)
k∏

j=2

(
111(−∞,αn)(tj)111(a,α(tj/

√
n,b))(x1)

+ 111(n/αn,0)(tj)111(α(tj/
√
n,a),−1/b)(x1) + 111(0,∞)(tj)

)
+111(−1/b,−1/a)(x1)

k∏
j=2

(
111(−∞,n/αn)(tj)111(α(tj/

√
n,a),−1/a)(x1)

+ 111(n/αn,−n/αn)(tj) + 111(−n/αn,∞)(tj)111(−1/b,α(tj/
√
n,b))(x1)

)
+111(−1/a,b)(x1)

k∏
j=2

(
111(−∞,0)(tj) + 111(0,−n/αn)(tj)111(−1/a,α(tj/

√
n,b))(x1)

+ 111(−αn,∞)(tj)111(α(tj/
√
n,a),b)(x1)

)
.
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Analysis similar to that in the proof of Claim 1 shows

In,k(a, b) =

(
π

∫
Rk−1

ΘT
n,k(0, t2, ..., tk)∏k
j=2(1 + t2j/n)

dt2 · · · dtk

)
E[Nn(a, b)] + O(1),

which establishes the asymptotic formula (2.79).

2.6 Asymptotics of the central moments

This section is devoted to the proof of Corollary 2.6. Observe first that the explicit
expression for the k-th central moment in terms of the first k cumulants can be
obtained by using Faà di Bruno’s formula for higher derivatives of composite functions.
More precisely, let

K(t) = logE
[
etNn(a,b)

]
and C(t) = E

[
et(Nn(a,b)−E[Nn(a,b)])

]
.

Then
sk[Nn(a, b)] =

dk

dtk
K(t)

∣∣∣∣
t=0

and µk[Nn(a, b)] =
dk

dtk
C(t)

∣∣∣∣
t=0

.

Since
C(t) = eK(t)−tE[Nn(a,b)],

it follows from Faà di Bruno’s formula that

µk[Nn(a, b)] =
dk

dtk
eK(t)−tE[Nn(a,b)]

∣∣∣∣
t=0

=
k∑

j=1

Bk,j(0, s2[Nn(a, b)], ..., sk−j+1[Nn(a, b)]).

Recall that, for 1 ≤ j ≤ k,

Bk,j(x1, ..., xk−j+1) =
∑ k!

m1! · · ·mk−j+1!

k−j+1∏
r=1

(xr

r!

)mr

,

where the sum is over all solutions in non-negative integers of the equations

m1 + 2m2 + · · ·+ (k − j + 1)mk−j+1 = k,

m1 +m2 + · · ·+mk−j+1 = j.
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Note that m1 ≥ 1 whenever j > k/2, so Bk,j(0, x2, ..., xk−j+1) = 0 for all j > k/2.
Therefore, for k ≥ 2,

µk[Nn(a, b)] =

⌊k/2⌋∑
j=1

Bk,j(0, s2[Nn(a, b)], ..., sk−j+1[Nn(a, b)]).

Together with (2.16), we obtain

µ2k[Nn(a, b)] = B2k,k(0, s2[Nn(a, b)], ..., sk+1[Nn(a, b)]) + O((E[Nn(a, b)])
k−1)

=
(2k)!

k!

(
s2[Nn(a, b)]

2!

)k

+O((E[Nn(a, b)])
k−1),

which yields (2.17). Similar arguments apply to (2.18).

2.7 Asymptotic normality for the real roots

We now prove Theorem 2.8. The main idea is the cumulant convergence theorem of
Janson [42, Theorem 1].

Proposition 2.26 ([42]). Let {Xn} be a sequence of random variables such that, as
n → ∞,

• s1[Xn] → 0,

• s2[Xn] → 1, and

• sk[Xn] → 0 for every k ≥ m,

where m ≥ 3. Then Xn
d−→ N (0, 1) as n → ∞. Furthermore, all moments of Xn

converge to the corresponding moments of N (0, 1).

To deduce Theorem 2.8, let us consider

Xn :=
Nn(a, b)− E[Nn(a, b)]√

Var[Nn(a, b)]
, n ≥ 1.

We must show that as n → ∞, Xn
d−→ N (0, 1), provided that either αn ≤ 0 or

αn → ∞ as n → ∞.
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Evidently, s1[Xn] = E[Xn] = 0 and s2[Xn] = Var[Xn] = 1. By Proposition 2.26, it
remains to show that the higher cumulants of Xn converge to 0 as n → ∞. In fact,
for k ≥ 3, we have

sk[Xn] =
sk[Nn(a, b)]

(Var[Nn(a, b)])k/2
.

If either αn ≤ 0 or αn → ∞ as n → ∞, then E[Nn(a, b)] → ∞. By Theorem 2.3,

sk[Xn] =
βkE[Nn(a, b)] + O(1)

(β2E[Nn(a, b)] + O(1))k/2
→ 0 as n → ∞.

2.8 Strong law of large numbers

This section deals with the proof of Theorem 2.9. The given assumption implies that

∞∑
n=1

1

(E[Nn(a, b)])k
< ∞.

But then, due to Corollary 2.6,

E

[
∞∑
n=1

(
Nn(a, b)

E[Nn(a, b)]
− 1

)2k
]
=

∞∑
n=1

µ2k[Nn(a, b)]

(E[Nn(a, b)])2k
= O

(
∞∑
n=1

1

(E[Nn(a, b)])k

)
< ∞.

Then, almost surely, we have

∞∑
n=1

(
Nn(a, b)

E[Nn(a, b)]
− 1

)2k

< ∞,

which implies
Nn(a, b)

E[Nn(a, b)]
− 1

a.s.−−→ 0 as n → ∞,

and the theorem is proved.
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Chapter 3

Variance of the real roots of
generalized Kac polynomials

This chapter deals with the real roots of random polynomials whose deterministic
coefficients have polynomial asymptotics [26]. We first compute the precise leading
asymptotics of the variance of the number of real roots (Theorem 3.1). The main
ingredients of the proof are new asymptotic estimates for the two-point correlation
function of the real roots, revealing geometric structures in the distribution of the real
roots of these random polynomials. As a corollary, we obtain asymptotic normality
for the number of real roots for these random polynomials (Corollary 3.5).

3.1 Introduction and main results

We consider random polynomials of the form

Pn(x) =
n∑

j=0

ξjcjx
j, (3.1)

where ξj are independent real-valued random variables with zero mean E[ξj] = 0

and unit variance Var[ξj] = 1, and cj are deterministic real-valued coefficients with
polynomial asymptotics. The precise technical conditions for cj will be formulated
shortly. The class of random polynomials in our main results, Theorem 3.1, contains
several interesting ensembles of random polynomials, including (but not limited to)
the following examples:

• the Kac polynomials, where cj = 1 for all j;

• hyperbolic polynomials, where cj =
√

L(L+1)···(L+j−1)
j!

(for some fixed L > 0);
and

• linear combinations of the derivatives of the above examples.
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Recall that for the Gaussian Kac polynomials, Kac [43] showed that

E[Nn(R)] =
2

π
log n+ o(log n). (3.2)

Edelman and Kostlan [30] improved (3.2) by finding two more asymptotic terms. The
complete asymptotic expansion of E[Nn(R)] was earlier given by Wilkins [71].

The asymptotic formula (3.2) has been extended to Kac polynomials with general
random coefficients. Namely, Kac [44] proved (3.2) when ξj are independent and
uniformly distributed on [−1, 1], and Stevens [68] extended this result further to
cover a large class of smooth distributions with certain regularity properties. In 1956,
Erdős and Offord [31] extended the result to the Bernoulli distribution case. In the
late 1960s and early 1970s, Ibragimov and Maslova [38, 40] successfully refined Erdős-
Offord’s method to extend the result to all mean-zero distributions in the domain of
attraction of the normal law, with the extra assumption that P({ξj = 0}) = 0.
In 2016, H. Nguyen, O. Nguyen, and V. Vu [57] removed this extra condition and
furthermore showed that the error term in (3.2) is bounded. For several interesting
classes of Kac polynomials, the nature of the error term in (3.2) was shown to be of
the form C + o(1) in a joint work of the first author with H. Nguyen and V. Vu [25].

The formula (3.2) has recently been extended to generalized Kac polynomials, which
are random polynomials of the form (3.1) where the deterministic coefficients cj have
polynomial growth. In Do, Nguyen, and Vu [27], the polynomial growth condition is
formulated as follows. For some C1, C2, C3, N0 > 0 fixed (independent of n) assume
that {

C1j
τ ≤ |cj| ≤ C2j

τ if N0 ≤ j ≤ n,

c2j ≤ C3 if 0 ≤ j < N0.
(3.3)

The order of growth τ is also assumed to be independent of n. Note that cj are allowed
to depend on n; otherwise, the second condition in (3.3) is superfluous. In [27], it
was proved that if ξj have uniformly bounded 2 + ε moments and τ > −1/2, then
E[Nn(R)] grows logarithmically with respect to n. In [27], it was furthermore shown
that if |cj| have polynomial asymptotics, namely, there is a fixed constant C1 > 0

such that1

|cj| = C1j
τ (1 + oj(1)), (3.4)

then
E[Nn(R)] =

1 +
√
2τ + 1

π
log n+ o(log n). (3.5)

1The oj(1) notation in (3.4) means that this term can be bounded by some oj independent of n
such that limj→∞ oj = 0.
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See also Do [22] for an extension of [27] to settings with non-centered random co-
efficients. The asymptotic formula (3.5) in the special cases when ξj are Gaussian
and cj = jτ for some τ > 0 was previously formulated by Das [19, 20], Sambandham
[62], Sambandham, Gore, and Farahmand [63], Schehr and Majumdar [65, 66]. For
non-Gaussian cases, (3.5) recovers Maslova’s result in [54, Theorem 2] for the first
derivatives of the Kac polynomials.

Generalized Kac polynomials appear naturally when considering derivatives of the
Kac polynomials and hyperbolic polynomials. Recently, they have also attracted
research attention in the mathematical physics community. In particular, Schehr
and Majumdar [65, 66] made a connection between the persistence exponent of the
diffusion equation with random initial conditions and the probability that a certain
generalized Kac polynomial has no real root in a given interval. A more complete
treatment was given later by Dembo and Mukherjee [21], who derived general criteria
for continuity of persistence exponents for centered Gaussian processes. The authors
of [21] then used these criteria to study the gap probabilities for both real roots of
random polynomials and zero-crossings of solutions to the heat equation initiated by
Gaussian white noise.

Evaluating the variance of Nn(R) for generalized Kac polynomials has proved to be a
much more difficult task. As far as we know, despite a large number of prior studies,
the only result that establishes the leading asymptotics for Var[Nn(R)] is for the Kac
polynomials, a celebrated result of Maslova [54] from the 1970s, who proved that if ξj
are independent identically distributed random variables such that P({ξj = 0}) = 0,
E[ξj] = 0, and E[|ξj|2+ε] = O(1), then

Var[Nn(R)] =
[
4

π

(
1− 2

π

)
+ o(1)

]
log n. (3.6)

While the condition P({ξj = 0}) = 0 has been removed by O. Nguyen and V. Vu [60],
there has been no other result of this type for other generalized Kac polynomials (even
for the Gaussian setting when ξj are all Gaussian). We mention here another result
due to Sambandham, Thangaraj, and Bharucha-Reid [64], who proved an estimate of
Var[Nn(R)] for random Kac polynomials with dependent Gaussian coefficients.

For generalized Kac polynomials, O. Nguyen and V. Vu [60] have recently proved the
following lower bound:

log n � Var[Nn(R)], (3.7)
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provided that

|cj|
|cn|

− 1 = O
(
e−(log log n)1+ε

)
, n− ne− log1/5 n ≤ j ≤ n− elog

1/5 n. (3.8)

Here we use the usual asymptotic notation X � Y or X = O(Y ) to denote the bound
|X| ≤ cY where c is independent of Y . The other assumptions for (3.7) needed in
[60] include sup1≤j≤n E[|ξj|2+ε] = O(1) and the polynomial growth condition (3.3).

In this dissertation, we are interested in establishing the leading asymptotics of
Var[Nn(R)] for generalized Kac polynomials whose deterministic coefficients have
polynomial asymptotics, as described in condition (A2). We recall that the leading
asymptotics for E[Nn(R)] in [27] was also established under the same assumption;
therefore, this setting seems reasonable for us to consider the leading asymptotics for
the variance.

We assume that there are fixed positive constants C0, C1, C2, N0, ε, and a fixed
constant τ > −1/2, where

(A1) ξ0, . . . , ξn are independent real-valued random variables, with E[ξj] = 0 for
j ≥ N0, Var[ξj] = 1 for j ≥ 0, and sup0≤j≤n E[|ξj|2+ε] < C0,

(A2) each cj is real and may depend on both j and n, such that{
|cj| = C1j

τ (1 + oj(1)), for N0 ≤ j ≤ n,

|cj| ≤ C2, for 0 ≤ j < N0.

To formulate our results, we first fix some notations. Let

fτ (u) =
(√

1−∆2
τ (u) + ∆τ (u) arcsin∆τ (u)

)
Στ (u)− 1, (3.9)

where

∆τ (u) := uτ+1/2 u(1− u2τ+1)− (2τ + 1)(1− u)

1− u2τ+1 − (2τ + 1)u2τ+1(1− u)
, (3.10)

Στ (u) :=
1− u2τ+1 − (2τ + 1)(1− u)u2τ+1

(1− u2τ+1)3/2
,

and let
κτ =

(
2τ + 1

π

∫ ∞

0

fτ (sech
2 v)dv +

√
2τ + 1

2

)
1

π
. (3.11)

Some basic properties of fτ (including integrability) are collected in Lemma 3.22.
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Theorem 3.1 (Asymptotics of variances). Assume that the polynomial Pn defined by
(3.1) satisfies conditions (A1) and (A2). Then

Var[Nn(R)] =
[
2κτ +

2

π

(
1− 2

π

)
+ o(1)

]
log n,

where the implicit constants in the o(1) term depend only on N0, C0, C1, C2, ε, τ ,
and the rate of decay of oj(1) in condition (A2).

Remark 3.2. When τ = 0 we have∫ ∞

0

fτ (sech
2 v)dv =

∫ ∞

0

(
tanh2 v + tanh v sech v arcsin(sech v)− 1

)
dv =

π

2
− 2,

thus it follows from (3.11) that

κτ =
1

π

(
1− 2

π

)
,

recovering Maslova’s result given in (3.6) for the Kac polynomials.

Let us mention an important consequence of Theorem 3.1.

Corollary 3.3. Let ξ0, . . . , ξn be real-valued independent random variables with zero
mean, unit variance, and uniform bounded (2 + ε) moments, for some ε > 0. Let
L > 0 and consider the random hyperbolic polynomial

Pn,L(x) = ξ0 +
√
Lξ1x+ · · ·+

√
L(L+ 1) · · · (L+ n− 1)

n!
ξnx

n.

For any k ≥ 0, let Nn,k(R) be the number of real roots of the kth derivative of Pn,L

(so k = 0 means Pn,L itself). Then for τ = k + L−1
2

, we have

Var[Nn,k(R)] =
[
2κτ +

2

π

(
1− 2

π

)
+ o(1)

]
log n.

Recall that when L = 1 the random hyperbolic polynomial Pn,L becomes a random
Kac polynomial; thus, this corollary also applies to derivatives of the Kac polynomials.

In [60], the lower bound (3.7) enabled O. Nguyen and V. Vu to show asymptotic
normality for the number of real roots for such random polynomials, thanks to their
following result.
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Proposition 3.4 ([60]). Assume that the polynomial Pn defined by (3.1) satisfies
conditions (A1) and (3.3). Assume further that log n � Var[Nn(R)]. Then Nn(R)
satisfies the CLT.

From Theorem 3.1 and this result, we obtain the following corollary.

Corollary 3.5 (Central limit theorem). Suppose that the polynomial Pn satisfies
conditions (A1) and (A2). Then Nn(R) satisfies the CLT.

Remark 3.6. Corollary 3.5 extends the asymptotic normality result for Nn(R) of O.
Nguyen and V. Vu in [60, Theorem 1.2 and Lemma 1.3] to new random polynomials
in the generalized Kac regime. For the convenience of the reader, we include here
an example to demonstrate that the asymptotic condition (3.4) (which is part of
condition (A2)) is not equivalent to Nguyen-Vu’s condition (3.8).

Consider the sequence cj = jτ
(
1 + (−1)j

log j

)
, which satisfies (3.4), we will show that it

does not satisfy (3.8). Observe that for n− e(logn)
1/5 ≥ j ≥ n− ne−(logn)1/5 we have

jτ

nτ
=

(
1 + o

(
1

log n

))τ

= 1 + o

(
1

log n

)
.

Now if n− j is odd then we claim that∣∣∣∣∣ 1 +
(−1)j

log j

1 + (−1)n

logn

− 1

∣∣∣∣∣ ≥ 1

log n
.

To see this, consider two cases. First, if n is even then

1− 1
log j

1 + 1
logn

≤ 1− 1

log j
≤ 1− 1

log n
,

and if n is odd then
1 + 1

log j

1− 1
logn

≥ 1 +
1

log j
≥ 1 +

1

log n
,

so the claim is proved. It follows that, for n large,∣∣∣∣ |cj||cn|
− 1

∣∣∣∣ =
∣∣∣∣∣ jτnτ

1 + (−1)j

log j

1 + (−1)n

logn

− 1

∣∣∣∣∣ ≥ 1

2

1

log n
=

1

2
e− log log n,

so condition (3.8) is not satisfied.
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We remark that this example can be modified to show that the asymptotic condition
(3.4) does not imply conditions similar to (3.8) where one requires a decay estimate
for
∣∣ |cj |
|cn| − 1

∣∣ (as n → ∞) that is stronger than the uniform decay rate for | jτ
nτ − 1|

(over the range of j under consideration).

Note that Proposition 3.4 strengthens Maslova’s result in [55, Theorem] for the Kac
polynomials. For the derivatives of the Kac polynomials and random hyperbolic
polynomials for which the CLT in [60] applies, our asymptotic estimates for the
variances also strengthen the CLT in [60], since they provide the details about the
denominator of Nn(R)−E[Nn(R)]√

Var[Nn(R)]
.

Remark 3.7. The assumption τ > −1/2 is used in many places in our proof. It
might be interesting to consider generalized Kac polynomials in the setting when
τ ≤ −1/2. It is curious to see if the method given here can be extended to estimate
Var[Nn(R)], and this will be left for further investigation. For a recent account of
these polynomials, we refer the reader to the work of Krishnapur, Lundberg, and
Nguyen [46], who provided asymptotics for the expected number of real roots and
answered the question on bifurcating limit cycles.

Remark 3.8. As a numerical illustration, let us consider the first derivatives of the
Kac polynomials. By Theorem 3.1, we have

Var[Nn(R)] = C log n+ o(log n),

where
C = 2κ1 +

2

π

(
1− 2

π

)
≈ 0.575737841.

Figures 3.1 and 3.2 provide some numerical simulations of this result. The numerical
evidence given in Figure 3.3 seems to support the conjecture that Var[Nn(R)]−C log n

converges to a limit as n → ∞, and the limit may depend on the distribution of ξj.

We now discuss some of the main ideas of our proof. To prove Theorem 3.1, our
starting point is the universality argument of O. Nguyen and V. Vu in [60], reducing
the proof to the Gaussian case. However, our consideration of the Gaussian setting
differs from O. Nguyen and V. Vu’s argument. In [60], the authors used a novel swap-
ping argument to compare the Gaussian version of Pn with a classical Kac polynomial
(using the assumption (3.8) and via the reciprocal formulation of Pn) and deduced the
lower bound (3.7) from Maslova’s variance estimate for real roots inside [−1, 1]. This
elegant approach, however, only involves the real roots outside of [−1, 1] of Pn and
the consequential lower bound in [60] for the variance is unfortunately not sharp. We
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Figure 3.1: Plot of sample variances versus the degree n.

Figure 3.2: Sample variances divided by log(n) are approaching C.
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Figure 3.3: We subtract C log(n) from the sample variances, and the curves seem to
converge to different values.

do not use Maslova’s estimates as black boxes in our approach. The main ingredients
in our evaluation of the variance for the Gaussian case are new asymptotic estimates
for the two-point correlation function of the real roots of P̃n (the Gaussian analog
of Pn), see Section 3.3. These estimates reveal some underlying hyperbolic geometry
inside the distribution of the real roots of generalized Kac polynomials (especially
under the hypothesis (3.4)): the asymptotics depend on a certain notion of pseudo-
hyperbolic distance between the real roots. One of the main difficulties in the proof is
the fact that there are various instants when one has to find the leading asymptotics
for an algebraic sum where the asymptotics of the summands may negate each other,
especially when the mentioned pseudo-hyperbolic distance is very small. A separate
consideration is often required in such situations, where a geometric property of this
distance (Lemma 3.13) becomes useful in the proof.

We would also like to mention that Maslova’s proof in [54] for the Kac polynomials
is based on very delicate computations for the variance of real roots inside carefully
chosen local intervals. It seems very difficult to extend such explicit computations to
the setting of the current paper, where there are no closed-form formulas for cj. The
estimates for the correlation functions in the current paper can certainly be used to
derive asymptotic estimates for the variances of the number of real roots inside local
intervals, and we include some local estimates in Theorem 3.10.

Our results also demonstrate universality for Var[Nn(R)], and this is part of an active
area of research to understand the universality of the distribution of real roots for
random polynomials. While there have been many studies of universality for the
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expectation E[Nn(R)], results about universality for the variance Var[Nn(R)] are
harder to come by. Besides the Kac polynomials, the class of random trigonometric
polynomials is another model where universality for the variance of real roots is also
well understood; see the work of Bally, Caramellino, and Poly [9] and Do, H. Nguyen,
and O. Nguyen [23] for more details. Unlike (generalized) Kac polynomials, the
variance for the trigonometric model is not universal and depends on the distribution
of the underlying coefficients through their kurtosis [9, 23].

For Gaussian random polynomials, leading asymptotics for the variances of real roots
have also been established for several other models. We refer the reader to the works
of Lubinsky and Pritsker [52, 53] for random orthogonal polynomials associated with
varying weights and exponential weights (essentially generalizing Azaïs, Dalmao, and
Leon [5]), Gass [35] for random trigonometric polynomials with dependent coefficients
(generalizing Granville and Wigman [37]), Do and Vu [29] for the Weyl polynomials,
Bleher and Di [11] and Dalmao [18] for the elliptic polynomials (see also Chapter 2
for more precise asymptotics).

The rest of this chapter is organized as follows. In §3.2, we recall the universality
method of [60] to reduce to the Gaussian case. Estimates for correlation functions
are presented in §3.3, and the proof of the Gaussian case is presented in §3.4.

3.2 Reduction to the Gaussian case

We begin by recalling the universality arguments in [60] to reduce Theorem 3.1 to
the Gaussian case, and also to localize Nn to the core region In, defined as follows.

Here and subsequently, fix d ∈ (0, 1/2) and let dn := elog
d
4 n, an := 1/dn, bn := dn/n,

and In := [1− an, 1− bn]. We define

In = In ∪ −In ∪ I−1
n ∪ −I−1

n ,

where for any given set S, we define −S := {−x : x ∈ S} and S−1 := {x−1 : x ∈ S}.

Let P̃n(x) stand for the Gaussian analog of Pn(x); that is,

P̃n(x) :=
n∑

k=0

ξ̃jcjx
j,

where ξ̃j’s are i.i.d. standard Gaussian random variables and cj’s satisfy assumption
(A2). For S ⊂ R, we denote by Ñn(S) the number of real roots of P̃n(x) inside S.
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The following results were proved in [60, Corollary 2.2 and Proposition 2.3].
Lemma 3.9 ([60]). There exist positive constants c and λ such that for sufficiently
large n,

|Var[Nn(In)]−Var[Ñn(In)]| ≤ caλn + cn−λ

and

E[N2
n(R\In)] ≤

{
c((log an)

4 + log2(nbn)) if bn ≥ 1/n,

c(log an)
4 if bn < 1/n.

With the aid of Lemma 3.9, Theorem 3.1 will be proved once we proved the following
theorem for the Gaussian case.
Theorem 3.10 (Gaussian case). Fix Sn ∈ {−In, In}. As n → ∞, it holds that

Var[Ñn(Sn)] = (κτ + o(1)) log n,

Var[Ñn(S
−1
n )] =

[
1

π

(
1− 2

π

)
+ o(1)

]
log n,

and
Var[Ñn(In)] =

[
2κτ +

2

π

(
1− 2

π

)
+ o(1)

]
log n,

where the implicit constants in the o(1) terms depend only on the constants N0, C1,
C2, τ , and the rate of decay of oj(1) in condition (A2).

3.3 Estimates for the correlation functions

The proof of Theorem 3.10 relies on Lemma 1.2. Let r(x, y) denote the normalized
correlator of P̃n defined as

r(x, y) :=
E[P̃n(x)P̃n(y)]√

Var[P̃n(x)]Var[P̃n(y)]
.

Set k(x) :=
∑n

j=0 c
2
jx

j, we see that

r(x, y) =
k(xy)√

k(x2)k(y2)
. (3.12)

The estimates for the variances rely on the asymptotic estimates for the correlation
functions ρ1 and ρ2, which will be established shortly. To this end, we first investigate
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the behavior of r(x, y) for x, y ∈ In∪ (−In), and thanks to (3.12) this will be done via
estimates for k(x) for |x| ∈ I2n := {uv : u, v ∈ In}. In what follows, we will assume
that n is sufficiently large and Sn ∈ {In,−In}.

By assumption (A2), we can write c2j = C2
1j

2τ (1 + oj,n) for N0 ≤ j ≤ n, where
oj,n = oj(1) as j → ∞.

Lemma 3.11. Let

τ 0n := max
log(log n)≤j≤n

{
|oj,n|+ aτ+1/2

n + an
}
.

Then it holds uniformly for x ∈ I2n that

k(x) =
C2

1Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ 0n))

and
k(−x) = O(τ 0n)k(x).

Here the implicit constants have the same possible dependence mentioned in Theo-
rem 3.10.

Proof. Clearly τ 0n = o(1). By scaling invariant we may assume C1 = 1. For x ∈ I2n
we have

k(x) =

N0−1∑
j=0

c2jx
j +

n∑
j=N0

j2τ (1 + oj,n)x
j

=

N0−1∑
j=0

c2jx
j + (1 + O(τ 0n))

n∑
j=1

j2τxj +O

⌊log(log n)⌋∑
j=1

j2τxj


=: φ(x) + (1 + O(τ 0n))vn(x) +O(tn(x)).

It is clear that φ(x) is bounded uniformly on any compact subset of R, and the bounds
are independent of n. For O(tn(x)), we note that

|tn(x)| = O
(
[log(log n)]2τ+1

)
=

O(a
τ+1/2
n )

(1− x)2τ+1
=

O(τ 0n)

(1− x)2τ+1
, x ∈ I2n.

The estimate for the middle term is based on the asymptotics of vn(x). For |x| < 1,
vn(x) converges to v∞(x) = Li−2τ (x) as n → ∞, where Lis(z) is the polylogarithm
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function defined by

Lis(z) =
∞∑
j=1

zj

js
, |z| < 1.

It is well-known that (see [70, p. 149])

Lis(z) = Γ(1− s)(− log z)s−1 +
∞∑

m=0

ζ(s−m)
(log z)m

m!
,

for | log z| < 2π and s /∈ {1, 2, 3, ...}, where ζ(s) is the Riemann zeta function. Thus,
uniformly for x ∈ I2n (and one could also let x ∈ I4n),

Li−2τ (x) = Γ(2τ + 1)(− log x)−2τ−1 +O(1) =
Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ 0n)),

here in the second estimate we implicitly used the fact that 1− x = O(an) = O(τ 0n).
Now, to estimate Li−2τ (−x) for x ∈ I2n, we use the first estimate of the last display
and the duplication formula (see [47, §7.12]),

Li−2τ (−x) + Li−2τ (x) = 22τ+1 Li−2τ (x
2),

and find that uniformly for x ∈ I2n,

Li−2τ (−x) = O(1).

For |x| ∈ I2n, we have 1− |x| ≥ bn = dn/n and |x|n+1 ≤ (1− bn)
2(n+1) = O(e−2dn), so∣∣∣∣∣

∞∑
j=n+1

j2τxj

∣∣∣∣∣ = |x|n+1

∣∣∣∣∣
∞∑
j=0

(j + n+ 1)2τxj

∣∣∣∣∣
= |x|n+1O

(
∞∑
j=0

j2τ |x|j + (n+ 1)2τ
∞∑
j=0

|x|j
)

= |x|n+1O

(
Li−2τ (|x|) +

(n+ 1)2τ

1− |x|

)
= o(e−dn).

Thus, uniformly for x ∈ I2n,

vn(x) = Li−2τ (x)−
∞∑

j=n+1

j2τxj =
Γ(2τ + 1)

(1− x)2τ+1
(1 + O(τ 0n))
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and
vn(−x) = O(1).

Therefore, uniformly for x ∈ I2n,

k(x) =
C2

1Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ 0n)).

Since
k(−x) = φ(−x) + C2

1

n∑
j=N0

j2τ (−x)j + C2
1

n∑
j=N0

j2τoj,n(−x)j,

it follows that

|k(−x)| ≤ O(1) + O(τ 0nvn(x)) = O(τ 0n)k(x), x ∈ I2n,

here in the last estimate we used a2τ+1
n = O(τ 0n). This completes the proof of the

lemma.

The proof can also be applied to k
(i)
n (where τ is replaced by τ + 1

2
i). Note that the

oj,n term may change, but it is not hard to see that, for i ≥ 1,

|c2jj(j − 1) . . . (j − i+ 1)| = C2
1j

2τ+i (1 +O(on,j) +O (1/j)) .

Since (an)
c = O( 1

log log n
) for any positive constant c, we then let

τn := max
log(log n)≤j≤n

∣∣∣∣ |cj|C1jτ
− 1

∣∣∣∣+ 1

log log n
= o(1),

and obtain the following corollary.

Corollary 3.12. For any 0 ≤ i ≤ 4 it holds uniformly for x ∈ I2n that

k(i)(x) =
C2

1Γ(2τ + i+ 1)

(1− x)2τ+i+1
(1 +O(τn))

and
k(i)(−x) = O(τn)k

(i)(x).

Here the implicit constants have the same possible dependence mentioned in Theo-
rem 3.10.
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For (x, y) ∈ R× R with 1− xy 6= 0, let us introduce the function

α := α(x, y) := 1−
(

y − x

1− xy

)2

=
(1− x2)(1− y2)

(1− xy)2
.

Clearly 0 ≤ α ≤ 1. It is well-known in complex analysis that

ϱ(z, w) =
|z − w|
|1− wz|

,

defines a metric on the hyperbolic disk D := {z ∈ C : |z| < 1} and is known as the
pseudo-hyperbolic distance on D (see, e.g. [36]). A related notion is

|x− y|2

(1− |x|2)(1− |y|2)
≡ 1

α
− 1,

which can be naturally extended to Rn where it is an isometric invariant for the
conformal ball model Bn := {xxx ∈ Rn : ‖xxx‖ < 1}, and the classical Poincaré metric on
Bn can also be computed from this invariant (see, e.g. [61, §4.5]).

We first prove a property of the pseudo-hyperbolic distance that will be convenient
later.

Lemma 3.13. Let 0 ≤ c < 1√
5

be a fixed constant. Suppose that for some x, y ∈
(−1, 1) that have the same sign we have ϱ(x, y) ≤ c. Then for every z1, z2, z3, z4
between x and y it holds that

1

1− z1z2
=

1 +O(ϱ(x, y))

1− z3z4

and the implicit constant may depend on c. Consequently,

ϱ(z1, z2) ≤ ϱ(x, y)[1 + O(ϱ(x, y))].

Proof. It is clear that in the conclusion of Lemma 3.13 the second desired estimate
follows immediately from the first desired estimate and the inequality |z1 − z2| ≤
|x− y|. Below we prove the first estimate.

Without loss of generality, we may assume |x| ≤ |y|. Since z1, z2, z3, z4 will be of the
same sign, we have x2 ≤ z1z2, z3z4 ≤ y2, thus it suffices to show that

1

1− y2
=

1 +O(ϱ(x, y))

1− x2
.
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It follows from the given hypothesis that α = 1− ϱ2(x, y) ≥ 1− c2. Consequently,

|x− y|√
(1− x2)(1− y2)

=

√
1

α
− 1 ≤ ϱ(x, y)√

1− c2
.

Therefore

0 ≤ 1

1− y2
− 1

1− x2
=

y2 − x2

(1− x2)(1− y2)
≤ 2|x− y|

(1− x2)(1− y2)

≤ 2ϱ(x, y)/
√
1− c2√

(1− x2)(1− y2)
≤ 2ϱ(x, y)/

√
1− c2

1− y2
.

Since 2ϱ(x,y)√
1−c2

≤ 2c√
1−c2

< 1, we obtain

1

1− y2
≤
(
1− 2ϱ(x, y)√

1− c2

)−1
1

1− x2
= (1 + O(ϱ(x, y)))

1

1− x2
,

and the lemma follows.

In the following, we will prove asymptotic estimates for rn and its partial derivatives.
Under hypothesis (A2), P̃n is very similar to a hyperbolic random polynomial, and it is
well-known that the root distributions of (complex) Gaussian hyperbolic polynomials
are asymptotically invariant with respect to isometries of the hyperbolic disk D. Thus,
it seems natural to expect that the asymptotic estimates for the correlation functions
of the real roots of P̃n will involve isometric invariants (such as the pseudo-hyperbolic
distance). The next few lemmas will demonstrate this heuristic.

Lemma 3.14. It holds uniformly for (x, y) ∈ Sn × Sn that

r(x, y) = ατ+1/2(1 + O(τn)) (3.13)

and
1− r2(x, y) = (1− α2τ+1)(1 + O( 4

√
τn)). (3.14)

Proof. Inequality (3.13) follows immediately from (3.12) and Corollary 3.12.

To prove (3.14), we consider two cases depending on whether x and y are close in
the pseudo-hyperbolic distance. Let D := {(x, y) ∈ Sn × Sn : | y−x

1−xy
| > 4

√
τn} and

D′ := (Sn × Sn)\D (see Figure 3.4).
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x

y

In−In

In

−In

|y
−
x|
≤

4√ τ n
(1
−
xy
)

Figure 3.4: D′ is the intersection of the red region with one of the blue squares.

First, if (x, y) ∈ D then 1− α >
√
τn and so by the mean value theorem we have

1− α2τ+1 ≥ (2τ + 1)(1− α)min(α2τ , 1)

≥ (2τ + 1)
√
τnα

2τ+1.

Therefore we can use (3.13) to obtain

1− r2(x, y) = 1− α2τ+1(1 +O(τn)) = (1− α2τ+1)(1 + O(
√
τn)),

which implies (3.14).

Now, if (x, y) ∈ D′ we have α = 1 + O(
√
τn), so using the mean value theorem we

obtain
1− α2τ+1 = (2τ + 1)(1− α)(1 + O(

√
τn)). (3.15)

Using Lemma 3.13, for any z1, z2 between x and y we gave

1

1− z1z2
=

1 +O( 4
√
τn)

1− y2
=

1 +O( 4
√
τn)

1− x2
, and |z1 − z2|

|1− z1z2|
= O( 4

√
τn). (3.16)

Fix x. We now have

1− r2(x, y) =
A(y)

k(x2)k(y2)

where A(y) := k(x2)k(y2)− k2(xy) for y ∈ Sn. Using (3.16) we have

k(x2)k(y2) =

(
C2

1Γ(2τ + 1)

(1− x2)2τ+1

)2

(1 + O( 4
√
τn)) .
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Now, A(x) = 0, A′(x) = 0, and for any z between x and y we have

A′′(z) = 2k(x2)k′(z2) + 4z2k(x2)k′′(z2)− 2x2k′′(xz)k(xz)− 2x2(k′(xz))2.

Using Corollary 3.12 and (3.16), we obtain

A′′(z) =
C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4

[
2 + 4(2τ + 2)(z2 − x2) +O( 4

√
τn)
]

=
2C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4
(1 + O( 4

√
τn)).

Since A(x) = A′(x) = 0, by the mean value theorem there exists some z between x

and y such that A(y) = 1
2
A′′(z)(y − x)2. Consequently,

1− r2(x, y) =
A(y)

k(x2)k(y2)
=

(y − x)2A′′(z)

2k(x2)k(y2)

= (2τ + 1)

(
y − x

1− x2

)2

(1 + O( 4
√
τn))

= (2τ + 1)

(
y − x

1− xy

)2

(1 +O( 4
√
τn)),

which gives (3.14) when combined with (3.15).

Our next task is to estimate the partial derivatives of r(x, y). To avoid the messy
algebra in the computations, let ℓ(x, y) := log |r(x, y)|. Note that

r10(x, y) = r(x, y)ℓ10(x, y), r01(x, y) = r(x, y)ℓ01(x, y), (3.17)

and
r11(x, y) = r(x, y) (ℓ11(x, y) + ℓ10(x, y)ℓ01(x, y)) . (3.18)

The following lemma indicates that one can take the natural log of (3.13) and then
differentiate and the estimates remain essentially valid.

Lemma 3.15. It holds uniformly for (x, y) ∈ Sn × Sn that

ℓ10(x, y) =
2τ + 1

1− x2

(
y − x

1− xy

)
(1 +O(

√
τn)) (3.19)

and
ℓ11(x, y) =

2τ + 1

(1− xy)2
(1 +O(τn)) . (3.20)
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Proof. We start with the proof for (3.19). From (3.12), we have

ℓ(x, y) = log |k(xy)| − 1

2
log k(x2)− 1

2
log k(y2),

whence

ℓ10(x, y) = y
k′(xy)

k(xy)
− x

k′(x2)

k(x2)
=

yk′(xy)k(x2)− xk′(x2)k(xy)

k(xy)k(x2)
. (3.21)

Using Corollary 3.12, it holds uniformly for (x, y) ∈ Sn × Sn that

k′(xy)

k(xy)
=

2τ + 1

1− xy
(1 +O(τn)) and k′(x2)

k(x2)
=

2τ + 1

1− x2
(1 +O(τn)). (3.22)

We now divide the proof into two cases, similar to the proof of Lemma 3.14.

Let R := {(x, y) ∈ Sn × Sn : | y−x
1−xy

| ≥ √
τn} and R′ := (Sn × Sn)\R.

For (x, y) ∈ R, one has

1− x2

|y − x|
=

1− xy

|y − x|
+ x

y − x

|y − x|
<

2
√
τn
,

therefore
max

{
τn

1− x2
,

τn
1− xy

}
< 2

√
τn

|y − x|
(1− x2)(1− xy)

,

so (3.22) implies

ℓ10(x, y) = y
k′(xy)

k(xy)
− x

k′(x2)

k(x2)
=

2τ + 1

1− x2

(
y − x

1− xy

)
(1 +O(

√
τn)) .

We now suppose that (x, y) ∈ R′, then α = 1 + O(τn). Using Lemma 3.13, for all
z1, z2 between x and y we have

1

1− z1z2
=

1 +O(
√
τn)

1− y2
=

1 +O(
√
τn)

1− x2
, and |z1 − z2|

|1− z1z2|
= O(

√
τn). (3.23)

Fix x ∈ Sn and write
ℓ10(x, y) =

B(y)

k(xy)k(x2)
,

where B(y) := yk′(xy)k(x2) − xk′(x2)k(xy) viewed as a function of y ∈ Sn. Then
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B(x) = 0 and

B′(y) = k(x2)[k′(xy) + xyk′′(xy)]− x2k′(x2)k′(xy).

Using Corollary 3.12 and (3.23), for any z between x and y we have

B′(z)

k(x2)k(xz)
=

2τ + 1

(1− x2)2

[
(1− x2) + xz(2τ + 2)− x2(2τ + 1) + O(

√
τn)
]

=
2τ + 1

(1− x2)2
[1 + (2τ + 2)x(z − x) +O(

√
τn)]

=
2τ + 1

(1− x2)2
[1 + O(

√
τn)] .

Now, using the mean value theorem and (3.23), we see that, for some z between x

and y,
B(y) = B(x) + B′(z)(y − x) = B′(z)(y − x),

therefore

ℓ10(x, y) =
(y − x)B′(z)

k(xy)k(x2)
=

(2τ + 1)(y − x)

(1− x2)2
(1 +O(

√
τn)) ,

=
2τ + 1

1− x2

(
y − x

1− xy

)
(1 +O(

√
τn)) ,

and (3.19) is proved.

To show (3.20), we will use Corollary 3.12 and obtain

ℓ11(x, y) =
k′(xy)

k(xy)
+ xy

k′′(xy)

k(xy)
− xy

(
k′(xy)

k(xy)

)2

(3.24)

=
2τ + 1

1− xy
+ xy

(2τ + 1)(2τ + 2)

(1− xy)2
− xy

(
2τ + 1

1− xy

)2

+O

(
τn

(1− xy)2

)
=

2τ + 1

(1− xy)2
(1 +O(τn)) ,

and the proof is complete.

We obtain, as a corollary of the above estimates, an asymptotic estimate for ρ1.

Corollary 3.16. Uniformly for x ∈ Sn ∪ (−Sn), it holds that

ρ1(x) =
1

π

√
2τ + 1

1− x2
(1 +O(τn)) . (3.25)
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We remark that a variant of (3.25) is also implicit in [27], with a stronger bound for
the error term (but more stringent assumptions on cj).

Proof. By symmetry, it suffices to consider x ∈ Sn. Using r(x, x) = 1 and ℓ10(x, x) =

ℓ01(y, y) = 0, we see that

ρ1(x) =
1

π

√
r11(x, x) =

1

π

√
ℓ11(x, x).

Thus, (3.25) follows immediately from (3.20).

We now prove asymptotic estimates for ρ2. We recall that

ρ2(x, y) =
1

π2

(√
1− δ2(x, y) + δ(x, y) arcsin δ(x, y)

) σ(x, y)√
1− r2(x, y)

, (3.26)

where using (3.17) and (3.18) we may rewrite σ and δ as

σ(x, y) = π2ρ1(x)ρ1(y)

×

√(
1− r2(x, y)ℓ210(x, y)

(1− r2(x, y))ℓ11(x, x)

)(
1− r2(x, y)ℓ201(x, y)

(1− r2(x, y))ℓ11(y, y)

) (3.27)

and

δ(x, y) =
r(x, y)

σ(x, y)

(
ℓ11(x, y) +

ℓ10(x, y)ℓ01(x, y)

1− r2(x, y)

)
. (3.28)

To keep the proof from being too long, we separate the estimates into several lemmas.

Lemma 3.17. Uniformly for (x, y) ∈ Sn × Sn, it holds that

ρ2(x, y) =
2τ + 1

π2

1 + fτ (α)

(1− x2)(1− y2)
(1 + O( 16

√
τn)) , (3.29)

where fτ is defined as in (3.9).

Furthermore, there is a positive constant α0 > 0 (independent of n but may depend
on the implicit constants and rate of convergence in conditions (A1) and (A2)) such
that when α ≤ α0 the following holds

ρ2(x, y)− ρ1(x)ρ1(y) =
O(α2τ+1)

(1− x2)(1− y2)
. (3.30)
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Proof. (i) We start with (3.29). For this, we first derive asymptotic estimates for σ

and δ.

For σ(x, y), we first show that

(1− r2(x, y))ℓ11(x, x)− (r(x, y)ℓ10(x, y))
2

=
2τ + 1

(1− x2)2
(
1− α2τ+1 − (2τ + 1)(1− α)α2τ+1

)
(1 +O( 16

√
τn)) .

(3.31)

Let g(u) = 1 − u2τ+1 − (2τ + 1)(1 − u)u2τ+1, defined for u ∈ [0, 1]. Then it can be
seen that g is non-increasing on [0, 1] and g(1) = 0. It follows that g(α) ≥ 0, i.e.

1− α2τ+1 ≥ (2τ + 1)(1− α)α2τ+1.

We consider two cases. First, if 8
√
τn(1−α2τ+1) ≤ g(α) then (3.31) follows immediately

from Lemmas 3.14 and 3.15. Now, if 8
√
τn(1− α2τ+1) > g(α) we will show that x and

y are close in the pseudo-hyperbolic distance, namely

|x− y|
|1− xy|

= O( 16
√
τn).

To see this, note that on [0, 1) the inequality g(u)− 8
√
τn(1− u2τ+1) ≤ 0 implies

u2τ+1 ≥ (1− 8
√
τn)

1− u2τ+1

(2τ + 1)(1− u)
≥ (1− 8

√
τn)min(1, u2τ ),

thanks to the mean value theorem, which then implies

u ≥ min
(
1− 8

√
τn, (1− 8

√
τn)

1/(2τ+1)
)
= 1−O( 8

√
τn),

therefore α = 1 + O( 8
√
τn) as desired.

Now, since g(1) = g′(1) = 0 and g′′(t) = (2τ + 2)(2τ + 1)(1 + O( 8
√
τn)) for every

t ∈ [α, 1], using the mean value theorem we may rewrite the right-hand side (RHS)
of (3.31) as

RHS =
(2τ + 1)2(τ + 1)

(1− x2)2
(1− α)2(1 +O( 8

√
τn)). (3.32)

Fix x. Rewrite the left-hand side of (3.31) as

(1− r2(x, y))ℓ11(x, x)− (r(x, y)ℓ10(x, y))
2 =

1
2
A(y)A′′(x)− B2(y)

k3(x2)k(y2)
,
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recalling that A(y) = k(x2)k(y2) − k2(xy) and B(y) = yk′(xy)k(x2) − xk′(x2)k(xy).
Let C(y) := 1

2
A(y)A′′(x)− B2(y). We check at once that C(x) = 0, C ′(x) = 0,

C ′′(x) =
1

2
[A′′(x)]2 − 2[B′(x)]2 = 0,

C ′′′(x) =
1

2
A′′(x)[A′′′(x)− 6B′′(x)] = 0,

and for all z between x and y,

C(4)(z) =
1

2
A(4)(z)A′′(x)− 2B(z)B(4)(z)− 8B′(z)B′′′(z)− 6[B′′(z)]2.

Now, using Lemma 3.13 if follows that for all z1, z2 between x and y we have

1

1− z1z2
=

1 +O( 16
√
τn)

1− y2
=

1 +O( 16
√
τn)

1− x2
, and |z1 − z2|

|1− z1z2|
= O( 16

√
τn). (3.33)

Using Corollary 3.12 and (3.33) we obtain

k3(x2)k(y2) =

(
C2

1Γ(2τ + 1)

(1− x2)2τ+1

)4

(1 +O( 16
√
τn)) ,

and for any z between x and y, arguing as in the proof of Lemma 3.14 and Lemma 3.15
we have

B(z) =
C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4
(z − x)

(
1 +O( 16

√
τn)
)

=
C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+3
O( 16

√
τn),

B(i)(z) = k(x2)
[
zk(i+1)(xz)xi + ik(i)(xz)xi−1

]
− k′(x2)k(i)(xz)xi+1

=
C4

1Γ(2τ + 1)Γ(2τ + i+ 1)

(1− x2)4τ+i+3

×
(
(2τ + i+ 1)zxi + ixi−1(1− x2)− (2τ + 1)xi+1 +O( 16

√
τn)
)

=
C4

1Γ(2τ + 1)Γ(2τ + i+ 1)

(1− x2)4τ+i+3

(
ixi−1 +O( 16

√
τn)
)
, (i ≥ 1).

Since x = 1 + O(τn) for x ∈ Sn, we obtain

B(i)(z) =
C4

1Γ(2τ + 1)Γ(2τ + i+ 1)

(1− x2)4τ+i+3

(
i+O( 16

√
τn)
)
.
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Similarly,

A′′(x) =
2C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4
(1 + O( 16

√
τn)),

A(4)(z) = 16k(4)(z2)k(x2)(1 + O(τn))

− 2k(4)(xz)k(xz)− 8k′′′(xz)k′(xz)− 6(k′′(xz))2

=
C4

1Γ(2τ + 5)Γ(2τ + 1)

(1− x2)4τ+6

×
[
14− 8(2τ + 1)

2τ + 4
− 6(2τ + 2)(2τ + 1)

(2τ + 4)(2τ + 3)
+O( 16

√
τn)

]
.

Consequently,

C(4)(z) =
24C8

1(τ + 1)Γ2(2τ + 2)Γ2(2τ + 1)

(1− x2)8τ+10
(1 +O( 16

√
τn)).

Remark 3.18. We may arrive at this estimate by formally differentiating the leading
asymptotics of C(y) (obtained using Corollary 3.12) with respect to y, then letting y =

x. In general, when ϱ(x, y) is o(1) small, it is possible that there is cancellation inside
the differentiated asymptotics, in which case the expression obtained from the formal
differentiation may no longer be the leading asymptotics for the underlying derivative
of C(y). Lemma 3.13 is useful in the examination of the differentiated asymptotics,
effectively allowing us to let y = x at the cost of error terms of (theoretically) smaller
orders.

Now, applying the mean value theorem and (3.33), we find that

C(y)

k3(x2)k(y2)
=

C(4)(z) (y−x)4

4!

k3(x2)k(y2)
=

(2τ + 1)2(τ + 1)

(1− x2)2
(1− α)2(1 + O( 16

√
τn)),

which gives (3.31) when combined with (3.32).

From (3.31), it holds uniformly for (x, y) ∈ Sn × Sn that

1− r2(x, y)ℓ210(x, y)

(1− r2(x, y))ℓ11(x, x)
=

(
1− (2τ + 1)(1− α)α2τ+1

1− α2τ+1

)
(1 +O( 16

√
τn)) .

Likewise,

1− r2(x, y)ℓ201(x, y)

(1− r2(x, y))ℓ11(y, y)
=

(
1− (2τ + 1)(1− α)α2τ+1

1− α2τ+1

)
(1 + O( 16

√
τn)) .
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Combining the above estimates with (3.27) we get

σ(x, y)

π2ρ1(x)ρ1(y)
=

(
1− (2τ + 1)(1− α)α2τ+1

1− α2τ+1

)
(1 +O( 16

√
τn)) . (3.34)

For the asymptotics for δ, we now show that

ℓ11(x, y) +
ℓ10(x, y)ℓ01(x, y)

1− r2(x, y)

=
2τ + 1

(1− x2)(1− y2)

(
α− (2τ + 1)(1− α)

1− α2τ+1

)
(1 +O( 16

√
τn)).

(3.35)

The argument is similar to the proof of (3.31), so we will only mention the key steps.
We may assume α = 1 + O( 8

√
τn), otherwise (3.35) will follow from Lemma 3.14 and

Lemma 3.15. With this constraint on α we have

α− (2τ + 1)(1− α)

1− α2τ+1
= −1

2

(
(α− 1)2(2τ + 1)(2τ + 2)

1− α2τ+1

)
(1 +O( 8

√
τn)).

Now, arguing as before and taking advantage of Lemma 3.14, Lemma 3.13, and
Corollary 3.12, it suffices to show

ℓ11(x, y)(1− r2(x, y)) + ℓ10(x, y)ℓ01(x, y) = −(2τ + 1)2(τ + 1)(y − x)4

(1− x2)4
(1 + O( 8

√
τn)).

Fix x. We then write the left-hand side as E(y)
k2n(xy)k(x

2)k(y2)
, where

E(y) = A(y)a(y) + B(y)b(y),

a(y) := [k′(xy) + k′′(xy)xy]k(xy)− xy[k′(xy)]2,

b(y) := xk′(xy)k(y2)− yk′(y2)k(xy).

One can check that, as a function of y, E(x) = E ′(x) = E ′′(x) = E ′′′(x) = 0. Indeed,
by direct computation,

A(x) = A′(x) = b(x) = B(x) = 0,

A′′(x) = −2b′(x) = 2B′(x) = 2a(x),

A′′′(x) = −2b′′(x) = 6B′′(x) = 6a′(x)

from there one can see that E vanishes up to the third derivative at y = x. Further-
more, using Lemma 3.13, and Corollary 3.12, we can show that, for all z between x
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and y,
E(4)(z) = −24(2τ + 1)2(τ + 1)C4

1(Γ(2τ + 1))4

(1− x2)8τ+8
(1 + O( 16

√
τn)),

which implies the desired estimate, thanks to an application of the mean value theo-
rem.

On account of (3.28), (3.34), and Lemma 3.14, we conclude that

δ(x, y) = ατ+1/2 α(1− α2τ+1)− (2τ + 1)(1− α)

1− α2τ+1 − (2τ + 1)α2τ+1(1− α)
(1 + O( 16

√
τn))

= ∆τ (α) (1 + O( 16
√
τn)) ,

where ∆τ is defined by (3.10). Let

Λ(δ) :=
√
1− δ2 + δ arcsin δ, δ ∈ [−1, 1].

Since Λ(δ) ≥ 1 and |Λ′(δ)| = | arcsin δ| ≤ π/2 for all δ ∈ (−1, 1), and |∆τ (α)| ≤ 1 for
all (x, y) ∈ Sn × Sn, it follows from the mean value theorem that

Λ(δ(x, y)) = Λ(∆τ (α)) + O(|∆τ (α)O( 16
√
τn)|)

= Λ(∆τ (α))(1 + O( 16
√
τn)). (3.36)

Substituting (3.14), (3.34), and (3.36) into (3.26), we deduce (3.29) as claimed.

(ii) We now discuss the proof of (3.30). In the computation below we will assume
α ≤ α0, a sufficiently small positive constant. Using Lemma 3.14 and Lemma 3.15
we have

r2(x, y)ℓ210(x, y)

(1− r2(x, y))ℓ11(x, x)
=

O(α2τ+1)O
(

1
(1−x2)2

)
(1 + O(α2τ+1)) 1

(1−x2)2

= O(α2τ+1).

Similarly,
r2(x, y)ℓ201(x, y)

(1− r2(x, y))ℓ11(y, y)
= O(α2τ+1).

Using (3.27), it follows that

σ(x, y) = π2ρ1(x)ρ1(y)(1 + O(α2τ+1)).
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From Lemma 3.15 we also have

ℓ11(x, y) +
ℓ10(x, y)ℓ01(x, y)

1− r2(x, y)

= O

(
1

(1− xy)2

)
+O

(
(x− y)2

(1− xy)2(1− x2)(1− y2)

1

1 +O(α2τ+1)

)
= O

(
1

(1− x2)(1− y2)

)
.

Thus, it follows from (3.28) that

δ(x, y) = O(ατ+ 1
2 ).

Recall Λ(δ) =
√
1− δ2 + δ arcsin δ satisfies Λ′(0) = 0 and Λ′′(δ) = O(1) for δ near 0,

thus Λ(δ) = 1 + O(δ2) near 0. Consequently, using Lemma 3.14 again, we obtain

ρ2(x, y)

ρ1(x)ρ1(y)
= Λ(δ(x, y))

σ(x, y)

π2ρ1(x)ρ1(y)
√

1− r2(x, y)

= (1 + O(δ2(x, y)))
1 +O(α2τ+1)√
1 +O(α2τ+1)

= 1 + O(α2τ+1).

This completes the proof of Lemma 3.17.

Lemma 3.19. Uniformly for (x, y) ∈ Sn × Sn it holds that

ρ2(−x, y)− ρ1(−x)ρ1(y) =
2τ + 1

π2

α2τ+1

(1− x2)(1− y2)
o(1). (3.37)

Proof. Using (3.12) and Corollary 3.12, we have

r(−x, y) =
k(−xy)√
k(x2)k(y2)

=
O(τn)k(xy)√
k(x2)k(y2)

= O(τn)r(x, y) = o(1).

Now, by explicit computation (see also (3.21) and (3.24)),

ℓ10(−x, y) = y
k′(−xy)

k(−xy)
+ x

k′(x2)

k(x2)
.
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Therefore, using (3.20) and Corollary 3.12, we obtain

∣∣∣∣r2(−x, y)ℓ210(−x, y)

ℓ11(−x,−x)

∣∣∣∣ ≤ 2

|ℓ11(−x,−x)|
(k′(−xy))2

k(x2)k(y2)
+ 2r2(−x, y)

(
k′(x2)
k(x2)

)2
|ℓ11(−x,−x)|

=
(1− x2)2

(1− xy)2
O(τ 2n)r

2(x, y) +O(r2(−x, y))

= O(τ 2n)r
2(x, y) = O(τ 2n)α

2τ+1.

Similarly,
(r(−x, y)ℓ01(−x, y))2

(1− r2(−x, y))ℓ11(y, y)
= O(τ 2n)α

2τ+1.

Substituting these estimates into (3.27) yields

σ(−x, y) = π2ρ1(−x)ρ1(y)
(
1 +O(τ 2n)α

2τ+1
)
, (x, y) ∈ Sn × Sn.

Similarly, it holds uniformly for (x, y) ∈ Sn × Sn that

δ(−x, y) = O(τn)|r(x, y)| = O(τn)α
τ+1/2. (3.38)

While the proof is fairly similar, we include the details since in the proof there is an
artificial singular term that appears because we use ℓ (instead of r) to compute δ via
(3.28). To start, by explicit computation (see also (3.24)) we have

ℓ11(−x, y) =
k′(−xy)

k(−xy)
− xy

k′′
n(−xy)

k(−xy)
+ xy

(
k′(−xy)

k(−xy)

)2

,

therefore

r(−x, y)ℓ11(−x, y) =
O
(
|k′(−xy)|+ |k′′

n(−xy)|)
)

√
k(x2)k(y2)

+ r(−x, y)xy

(
k′(−xy)

k(−xy)

)2

= O(τn)
r(x, y)

(1− xy)2
+ r(−x, y)xy

(
k′(−xy)

k(−xy)

)2

=
O(τnr(x, y))

(1− x2)(1− y2)
+ r(−x, y)xy

(
k′(−xy)

k(−xy)

)2

.
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Similarly,

r(−x, y)ℓ10(−x, y)ℓ01(−x, y)

= r(−x, y)

(
y
k′(−xy)

k(−xy)
+ x

k′(x2)

k(x2)

)(
−x

k′(−xy)

k(−xy)
− y

k′(y2)

k(y2)

)
= −r(−x, y)xy

(
k′(−xy)

k(−xy)

)2

+O(τnr(x, y))

(
1

1− xy

1

1− x2
+

1

1− xy

1

1− y2
+

1

1− x2

1

1− y2

)
= −r(−x, y)xy

(
k′(−xy)

k(−xy)

)2

+
O(τnr(x, y))

(1− x2)(1− y2)
.

Thus, from (3.28) and the above estimates we have

δ(−x, y) =
r(−x, y)

σ(−x, y)

(
ℓ11(−x, y) +

ℓ10(−x, y)ℓ01(−x, y)

1− r2(−x, y)

)
=

O(τnr(x, y))

σ(−x, y)(1− x2)(1− y2)

+
r(−x, y)

σ(−x, y)
xy

(
k′(−xy)

k(−xy)

)2(
1− 1

1− r2(−x, y)

)
= O(τnr(x, y)) + O

(
|r3(−x, y)|
|σ(−x, y)|

∣∣∣∣k′(−xy)

k(−xy)

∣∣∣∣2
)

= O(τnr(x, y)) + O(τ 3nr
3
n(x, y)) = O(τnr(x, y)).

This completes the proof of (3.38).

Now, note that Λ(δ) = 1 + O(δ2) near 0, so it follows that

Λ(δ(−x, y)) = 1 + O(τ 2n)α
2τ+1.

But then

ρ2(−x, y) =
1

π2
Λ(δ(−x, y))

σ(−x, y)√
1− r2(−x, y)

= ρ1(−x)ρ1(y)
(
1 +O(τ 2n)α

2τ+1
)
,

which yields (3.37) when combined with (3.25).

Note that the above analysis is only directly applicable to estimating the variances
of the numbers of real roots inside subsets of (−1, 1). For (−∞,−1)∪ (1,∞), we will
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pass to the reciprocal polynomial

Qn(x) :=
xn

cn
P̃n(1/x)

that converts the roots of P̃n in (−∞,−1)∪ (1,∞) to the roots of Qn in (−1, 1). Note
that

Qn(x) =
n∑

j=0

ξ̃n−j
cn−j

cn
xj

is also a Gaussian random polynomial. Let kQn(x) denote the corresponding variance
function,

kQn(x) =
n∑

j=0

c2n−j

c2n
xj =

xnk(1/x)

c2n
.

Recall that In = [1− an, 1− bn] where an = d−1
n = exp(− logd/4 n) and bn = dn/n. As

we will see, for x ∈ In, kQn(x) converges to 1
1−x

as n → ∞, which suggests that Qn

would behave like a classical Kac polynomial (this heuristics is well-known, see e.g.
[27]). Let

en := max
0≤j≤n

√
an

∣∣∣∣ |cn−j|
|cn|

− 1

∣∣∣∣+ 1

log log n
, (3.39)

we will show the following.

Lemma 3.20. Let ρ
(1)
Qn

and ρ
(2)
Qn

, respectively, denote the one-point and two-point
correlation functions for the real roots of Qn. Fix Sn ∈ {−In, In}. It holds uniformly
for x ∈ Sn that

ρ
(1)
Qn

(x) =
1

π

1

1− x2
(1 + O(en)).

Uniformly for (x, y) ∈ Sn × Sn,

ρ
(2)
Qn

(x, y) =
1

π2

1 + f0(α)

(1− x2)(1− y2)
(1 +O( 16

√
en)) ,

where f0 is defined as in (3.9) with τ = 0.

Furthermore, there is a positive constant α1 > 0 (independent of n but may depend
on the implicit constants and rate of convergence in conditions (A1) and (A2)) such
that when α ≤ α1 the following holds

ρ
(2)
Qn

(x, y)− ρ
(1)
Qn

(x)ρ
(1)
Qn

(y) =
O(α)

(1− x2)(1− y2)
.



79

Also, uniformly for (x, y) ∈ Sn × Sn,

ρ
(2)
Qn

(−x, y)− ρ
(1)
Qn

(−x)ρ
(1)
Qn

(y) =
1

π2

α

(1− x2)(1− y2)
o(1).

Note that explicitly we can write

f0(u) = (
√
1− u+

√
u arcsin

√
u)
√
1− u− 1.

Proof. Write

kQn(x) =
∑

0≤j≤n
√
an

c2n−j

c2n
xj +

∑
n
√
an<j≤n

c2n−j

c2n
xj.

By the assumption (A2),

c2n−j

c2n
=

{
1 + on(1) if 0 ≤ j ≤ n

√
an,

O
(
n|2τ |) if n

√
an < j ≤ n,

where on(1) → 0 as n → ∞. For x ∈ I2n, it holds that

n|2τ |+1xn
√
an ≤ n|2τ |+1(1− bn)

2n
√
an = O(e−

√
dn) = O(an).

Consequently, by putting

e0n := max
0≤j≤n

√
an

∣∣∣∣ |cn−j|
|cn|

− 1

∣∣∣∣+ an,

we see that uniformly for x ∈ I2n,

kQn(x) =
1

1− x
(1 +O(e0n))

and
kQn(−x) = O(1) + O(e0n)kQn(x) = O(e0n)kQn(x).

For the derivatives of kQn , we will similarly compare them with the corresponding
derivatives of the analog of kQn for the classical Kac polynomials, obtaining analogs
of Lemma 3.11 (more precisely Corollary 3.12) for kQn . Note that to account for the
derivatives of kQn one has to add an O(1/j) term to e0n (where j ≥ log log n as in the
proof of Lemma 3.11). Thus with en defined by (3.39) (which dominates e0n), we will
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have

k
(j)
Qn

(x) =
j!

(1− x)1+j
(1 + O(en)) and k

(j)
Qn

(−x) = O(en)k
(j)
Qn

(x) (3.40)

uniformly for x ∈ I22 , for j = 0, 1, ..., 4. In other words, en plays the same role as τn
in the prior treatment of P̃n inside (−1, 1).

Let rQn(x, y) denote the normalized correlator of Qn,

rQn(x, y) =
E[Qn(x)Qn(y)]√

Var[Qn(x)]Var[Qn(y)]
=

kQn(xy)√
kQn(x

2)kQn(y
2)
.

It follows from (3.40) that, uniformly for (x, y) ∈ Sn × Sn,

rQn(x, y) =

[
(1− x2)(1− y2)

(1− xy)2

]1/2
(1 +O(en)) = α1/2(1 +O(en))

and
rQn(−x, y) = O(en)rQn(x, y).

The rest of the proof is entirely similar to the prior treatment for P̃n, with τ = 0 and
C1 = 1.

Our next task is to estimate the two-point real correlation function for P̃n between
the roots inside (−1, 1) and the roots outside (−1, 1).

Lemma 3.21. Fix Sn ∈ {−In, In} and Tn ∈ {−I−1
n , I−1

n }. It holds uniformly for
(x, y) ∈ Sn × Tn that

r(x, y) = o(e−dn/2) (3.41)

and
ρ2(x, y)− ρ1(x)ρ1(y) = ρ1(x)ρ1(y)o(e

−dn/2), (3.42)

where ρ1(x) satisfies (3.25) and

ρ1(y) =
1

π

1

y2 − 1
(1 +O(en)), y ∈ Tn. (3.43)

Proof. It is well-known that ρ1(y) = y−2ρ
(1)
Qn

(1/y), this can be seen via a change of
variables (see e.g. [27]) or via explicit computations. Recall the definition of en from
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(3.39). Applying (3.40) and proceed as in the proof of Lemma 3.15, we see that

ρ1(y) =
1

π

1

y2 − 1
(1 +O(en)), y ∈ Tn,

which gives (3.43), and it also follows that ℓ11(y, y) =
1

π2(y2−1)2
(1 +O(en)).

Since k(x2) � 1 for x ∈ Sn, to show (3.41) it suffices to show that

|k(m)(xy)| = o
(
e−2dn/3

√
k(y2)

)
, (3.44)

for any m ≥ 0 bounded integer. To see this, note first that from the polynomial
growth of cj, we obtain

|k(m)(xy)| = O(n2τ+1+m(|xy|n+1 + 1)).

Using k(y) = c2ny
nkQn(1/y) and the asymptotic behavior of kQn given in (3.40), we

see that
k(y2) = c2n

y2n+2

y2 − 1
(1 + o(1)) � n2τ |y|2(n+1), y ∈ Tn.

For (x, y) ∈ Sn × Tn and any bounded constant c we have

nc|x|n = O(nc(1− bn)
n) = o(e−2dn/3), and similarly nc

|y|n
= o(e−2dn/3).

Consequently,∣∣∣∣∣k(m)
n (xy)√
k(y2)

∣∣∣∣∣ = O

(
nO(1)√
k(y2)

+
nO(1)|x|n+1|y|n+1√

k(y2)

)

≤ O

(
nO(1)

|y|n+1

)
+O

(
nO(1)|x|n+1

)
= o(e−2dn/3),

completing the proof of (3.44), and thus (3.41) is verified.

To prove (3.42), we first use the explicit computation of ℓ10 (see (3.21)) to estimate

∣∣∣∣∣(r(x, y)ℓ10(x, y))2ℓ11(x, x)

∣∣∣∣∣ ≤
∣∣∣∣ 2y2

ℓ11(x, x)

(k′(xy))2

k(x2)k(y2)

∣∣∣∣+
∣∣∣∣∣∣∣2r2(x, y)

(
k′(x2)
k(x2)

)2
ℓ11(x, x)

∣∣∣∣∣∣∣ .
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Using (3.44), we have

|k′(xy)|2

k(x2)k(y2)
= o(e−dn), (x, y) ∈ Sn × Tn.

It follows from Lemma 3.15 and Corollary 3.12 that

2y2

ℓ11(x, x)
= o(1) and

(
k′(x2)
k(x2)

)2
ℓ11(x, x)

= O(1).

Together with (3.41), we obtain

1− (r(x, y)ℓ10(x, y))
2

(1− r2(x, y))ℓ11(x, x)
= 1 + o(e−dn), (x, y) ∈ Sn × Tn. (3.45)

Similarly, we also have

1− (r(x, y)ℓ01(x, y))
2

(1− r2(x, y))ℓ11(y, y)
= 1 + o(e−dn), (x, y) ∈ Sn × Tn. (3.46)

Substituting (3.45) and (3.46) into (3.27) yields

σ(x, y) = π2ρ1(x)ρ1(y)(1 + o(e−dn)), (x, y) ∈ Sn × Tn.

Similarly, we can show that

δ(x, y) = o(e−dn/2), (x, y) ∈ Sn × Tn.

To prove this, we proceed as in the proof of (3.38) in Lemma 3.19. Recall from (3.24)
that

ℓ11(x, y) =
k′(xy)

k(xy)
+ xy

k′′(xy)

k(xy)
− xy

(
k′(xy)

k(xy)

)2

,

therefore

r(x, y)ℓ11(x, y) =
O
(
|k′(xy)|+ |k′′(xy)|)

)
√
k(x2)k(y2)

− r(x, y)xy

(
k′(xy)

k(xy)

)2

= o(e−dn/2)− r(x, y)xy

(
k′(xy)

k(xy)

)2

.
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On the other hand, using (3.21)

r(x, y)ℓ10(x, y)ℓ01(x, y) = r(x, y)
(
y
k′(xy)

k(xy)
− x

k′(x2)

k(x2)

)(
x
k′(xy)

k(xy)
− y

k′(y2)

k(y2)

)
.

As we will see, the main term on the right-hand side is r(x, y)xy
(k′(xy)

k(xy)

)2. In the
estimate below, we will use the crude estimate |k′(t2)/k(t2)| ≤ n for all t ∈ R.
Combining with (3.44), it follows that

r(x, y)ℓ10(x, y)ℓ01(x, y) = r(x, y)xy

(
k′(xy)

k(xy)

)2

+ o(e−dn/2).

Since r(x, y) = o(e−dn/2) and σ(x, y) � 1 (as proved above), using (3.28) we obtain

δ(x, y) =
r(x, y)

σ(x, y)
xy

(
k′(xy)

k(xy)

)2(
1

1− r2(x, y)
− 1

)
+

o(e−dn/2)

σ(x, y)

=
O(|r(x, y)|3)

σ(x, y)

(
k′(xy)

k(xy)

)2

+
o(e−dn/2)

σ(x, y)

= o(e−dn/2),

which proves the desired claim.

Together with (3.26), we deduce (3.42) as desired.

3.4 Proof of the Gaussian case

In this section, we give the proof of Theorem 3.10. It follows from Lemma 3.21
that the numbers of real roots of P̃n in Sn ∈ {−In, In} and in Tn ∈ {−I−1

n , I−1
n } are

asymptotically independent. Indeed, on account of (3.42), (3.43), and (3.25), we have

Cov[Ñn(Sn), Ñn(Tn)] =

∫
Sn

dx

∫
Tn

(ρ2(x, y)− ρ1(x)ρ1(y)) dy

= o(e−dn/2)

∫
Sn

1

1− x2
dx

∫
Tn

1

y2 − 1
dy

= o(e−dn/2)O(log2 n) = o(1).

This gives

Var[Ñn(In)] = Var[Ñn(−In ∪ In)] +Var[Ñn(−I−1
n ∪ I−1

n )] + o(1).
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Thus, the proof of Theorem 3.10 now falls naturally into Lemma 3.23 and Lemma 3.24.
We first collect some basic facts about fτ that will be convenient for the proof.

Lemma 3.22. For τ > −1/2 it holds that supu∈[0,1] |fτ (u)| < ∞, and

fτ (u) =

{
O(u2τ+1) as u → 0+,

−1 +O(
√
1− u) as u → 1−.

Furthermore, given any ε′ ∈ (0, 1/2), fτ is real analytic on (ε′, 1−ε′) and in particular
the equation fτ (u) = 0 has at most finitely many real roots in (0, 1), each of them has
a finite vanishing order.

Proof. The estimates near 0 and 1 for fτ are immediate consequences of the definition
of fτ and Taylor expansions, in fact for u near 0 one has

fτ (u) =

{
2τ 2u2τ+1(1 + o(1)) if τ 6= 0,

−1
3
u2(1 + o(1)) if τ = 0.

In particular, by continuity, we know f0(u) = 0 has no real root in (0, 1), while the
equation fτ (u) = 0, with τ 6= 0, has at least one root inside (0, 1) (see Figure 3.5),
and the above endpoint estimates show that the roots do not accumulate to 0 or 1.

Figure 3.5: Plots of fτ on [0, 1] when τ = 1, 0,−1
4
.

Now, note that 0 ≥ ∆τ (u) ≥ −1 and the inequalities are strict if u ∈ (0, 1) (see
Figure 3.6). Indeed, writing ∆τ = uτ+1/2 Num

Denom
, we will show that Num < 0 while

uτ+ 1
2Num+Denom > 0 for u ∈ (0, 1). First, by examination, Num is strictly increas-

ing on (0, 1), so Num < Num(1) = 0.
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Figure 3.6: Plots of ∆τ on [0, 1] when τ = 1, 0,−1
4
.

Now, let

h(u) := uτ+ 1
2 Num + Denom = (1− u2τ+1)(1 + uτ+ 3

2 )

− (2τ + 1)(1− u)(uτ+ 1
2 + u2τ+1).

If τ ≥ 0, then one can check that (1 − u2τ+1) − (2τ + 1)(1 − u)uτ is decreasing for
u ∈ (0, 1), and therefore (1− u2τ+1) ≥ (2τ + 1)(1− u)uτ . It follows that

h(u) ≥ (2τ + 1)(1− u)(uτ + u2τ+ 3
2 − uτ+ 1

2 − u2τ+1)

= (2τ + 1)uτ (1− u)(1−
√
u)(1− uτ+1) > 0.

If −1
2
< τ < 0, then we will show that h is strictly decreasing for u ∈ (0, 1). One has

h′(u) = (2τ + 2)(τ +
3

2
)uτ+ 1

2 + (2τ + 2)(2τ + 1)u2τ+1 − (3τ +
5

2
)u3τ+ 3

2

− (2τ + 2)(2τ + 1)u2τ − (2τ + 1)(τ +
1

2
)uτ− 1

2

and

d

du
(u−2τh′(u)) = (2τ + 2)(τ +

3

2
)(
1

2
− τ)u−τ− 1

2 + (2τ + 2)(2τ + 1)

− (3τ +
5

2
)(τ +

3

2
)uτ+ 1

2 + (2τ + 1)(τ +
1

2
)(τ +

1

2
)u−τ− 3

2

> uτ+ 1
2

[
(2τ + 2)(τ +

3

2
)(
1

2
− τ) + (2τ + 2)(2τ + 1)

+ (2τ + 1)(τ +
1

2
)(τ +

1

2
)− (3τ +

5

2
)(τ +

3

2
)
]

= 0.
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It follows that u−2τh′(u) is strictly increasing on (0, 1) and so u−2τh′(u) < h′(1) = 0

for u ∈ (0, 1). Consequently, h′ < 0 and h is strictly decreasing on (0, 1), and so
h(u) > h(1) = 0. This completes the proof of the claimed estimates for ∆τ .

By continuity, the above consideration implies maxu∈[ε′,1−ε′] |∆τ (u)| < 1. Thus, using
the principal branch of log it is clear from the definition that fτ has analytic contin-
uation to a neighborhood of [ε′, 1 − ε′] in C, thus the claimed properties about real
zeros of fτ follow.

Lemma 3.23. It holds that

Var[Ñn(Sn)] = (κτ + o(1)) log n, Sn ∈ {−In, In}, (3.47)

and
Var[Ñn(−In ∪ In)] = (2κτ + o(1)) log n. (3.48)

Proof. (i) We start with (3.47). Let ε′ > 0 be arbitrary, it suffices to show that for n

large enough (depending on ε′) the following holds

|Var[Ñn(Sn)]− κτ log n| = O(ε′ log n).

By (3.25),

E[Ñn(Sn)] =

∫
Sn

√
2τ + 1

π

1

1− x2
(1 + o(1)) dx =

(√
2τ + 1

2π
+ o(1)

)
log n.

Now, using the change of variables x = tanh t and y = tanh s, we see that

dxdy

(1− x2)(1− y2)
= dtds and α = sech2(s− t), (t, s) ∈ Jn × Jn,

where

Jn :=

{
(1
2
log 2−an

an
, 1
2
log 2−bn

bn
) if Sn = In,

(1
2
log bn

2−bn
, 1
2
log an

2−an
) if Sn = −In,

and it is clear that
|Jn| =

1

2
log n− log

d
4 n+ o(1).

Recall the constant α0 > 0 from Lemma 3.17. Then there is a constant M0 > 0 such
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that sech2(t) ≤ α0 is equivalent to |t| ≥ M0. It follows that∫∫
Sn×Sn:α≤α0

|ρ2(x, y)− ρ1(x)ρ1(y)| dxdy

= O

(∫∫
Jn×Jn:|s−t|≥M0

sech4τ+2(s− t)dsdt

)
= O

(∫ |Jn|

M0

(|Jn| − v) sech4τ+2(v)dv

)

= |Jn|O
(∫ ∞

M0

sech4τ+2(v)dv

)
+O(1).

We now can refine α0 (making it smaller) so that∫ ∞

M0

sech4τ+2(v)dv < ε′,

and it follows that∫∫
Sn×Sn:α<α0

|ρ2(x, y)− ρ1(x)ρ1(y)|dxdy = O(ε′ log n). (3.49)

We now consider
∫∫

Sn×Sn:α≥α0
. We separate the integration region into

(I) := {(x, y) ∈ Sn × Sn : α ≥ α0, |fτ (α)| < 32
√
τn},

(II) := {(x, y) ∈ Sn × Sn : α ≥ α0, |fτ (α)| ≥ 32
√
τn}.

We will use the same change of variable x = tanh t and y = tanh s, so that α =

sech2(s− t).

For (I), using Lemma 3.22 it is clear that the set E = {u ∈ [α0, 1] : |f(u)| < 32
√
τn}

can be covered by a union of finitely many subintervals of [α0, 1], each having length
o(1). Let F = {v : sech2(v) ∈ E}. Then it is clear that F may be covered by a
union of finitely many intervals, each having length o(1). (The implicit constant may
depend on α0). Thus, using boundedness of fτ and Lemma 3.17 we have∫∫

(I)

|ρ2(x, y)− ρ1(x)ρ1(y)| dxdy ≤ O

(∫∫
(I)

ρ1(x)ρ1(y)dxdy

)
≤
∫∫

Jn×Jn:|s−t|∈F
O(1)dsdt

= o(|Jn|) = o(log n).
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For (II), we note that

(1 + fτ (α))(1 + O( 16
√
τn)) = 1 + fτ (α) +O(|fτ (α)| 32

√
τn).

Thus, using Lemma 3.17 and the above estimates (for the region (I)) and boundedness
of fτ , we obtain∫∫

(II)

[ρ2(x, y)− ρ1(x)ρ1(y)] dxdy

=

∫∫
(II)

(
fτ (α) +O( 32

√
τn)|fτ (α)|

)
ρ1(x)ρ1(y)dxdy

= o(log n) +

∫∫
Sn×Sn:α≥α0

(
fτ (α) +O( 32

√
τn)|fτ (α)|

)
ρ1(x)ρ1(y)dxdy.

Making the change of variables x = tanh t and y = tanh s again. From Lemma 3.22
we know

∫∞
0

|fτ (sech2 v)|dv and
∫∞
0

v|fτ (sech2 v)|dv both converge. It follows that∫∫
Sn×Sn:α≥α0

fτ (α)ρ1(x)ρ1(y)dxdy

=
2τ + 1

π2

∫∫
Jn×Jn:|t−s|≤M0

fτ (sech
2(t− s))dsdt

=
2(2τ + 1)

π2

∫ M0

0

(|Jn| − v)fτ (sech
2 v)dv

=
2τ + 1

π2

(∫ ∞

0

fτ (sech
2 v)dv +O(ε′)

)
log n+ o(log n).

Similar computation works for |fτ (α)|, giving a contribution of order O( 32
√
τn log n) =

o(log n), and we obtain∫∫
Sn×Sn:α≥α0

[ρ2(x, y)− ρ1(x)ρ1(y)] dxdy

=

(
2τ + 1

π2

∫ ∞

0

fτ (sech
2 v)dv +O(ε′)

)
log n.

Combining these with (3.49) and (1.4), we get

Var[Ñn(Sn)] =

(
2τ + 1

π

∫ ∞

0

fτ (sech
2 v)dv +

√
2τ + 1

2
+O(ε′)

)
1

π
log n,

for any ε′ > 0, which gives (3.47), recalling the definition of κτ in (3.11).
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(ii) We now prove (3.48). Using (3.37), we get

Cov[Ñn(−In), Ñn(In)] =

∫∫
In×In

(ρ2(−x, y)− ρ1(−x)ρ1(y)) dxdy

=

∫∫
In×In

2τ + 1

π2

α2τ+1(x, y)

(1− x2)(1− y2)
o(1)dxdy

= o(1)

∫ |Jn|

0

(|Jn| − v)(sech2 v)2τ+1dv

= o(1) log n.

Combining with (3.47) and

Var[Ñn(−In ∪ In)] = Var[Ñn(−In)] +Var[Ñn(In)] + 2Cov[Ñn(−In), Ñn(In)],

we deduce (3.48) as desired.

Lemma 3.24. It holds that

Var[Ñn(Tn)] =

[
1

π

(
1− 2

π

)
+ o(1)

]
log n, Tn ∈ {−I−1

n , I−1
n },

and
Var[Ñn(−I−1

n ∪ I−1
n )] =

[
2

π

(
1− 2

π

)
+ o(1)

]
log n.

Proof. The proof is entirely similar to the proof of Lemma 3.23 presented above
(specialized to the case τ = 0), making use of Lemma 3.20.
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