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ABSTRACT 

Pickleball as a sport continues to grow in 

popularity, creating a demand for a smart tool to 

help serious players enhance their game. This 

motivates the creation of a smart pickleball 

paddle, the PIKL, equipped with sensors to 

provide real-time feedback on metrics such as 

impact location, swing speed, and stroke 

classification. Such a device demands a robust 

embedded software system that can handle 
sensor data collection, signal processing, and 

wireless transmission. The software runs on a 

microcontroller and is implemented with 

Zephyr, a Real Time Operating System (RTOS). 

Key components of the embedded software 

include sensor data acquisition through an 

analog-to-digital converter (ADC) as well as 

over inter-integrated circuit (I2C), shot data 

processing algorithms, and Bluetooth Low 
Energy (BLE) pairing and transmission. The 

final software system consistently detects 

pickleball shot impacts on the paddle face, 

accurately calculates metrics such as swing 

speed and stroke classification and reliably 

transmits this data in real time to a connected 

user device. Future work could include 

expanding stroke classification to cover 

overheads, volleys, and dinks, as well as tuning 

swing speed estimation using ground truth data. 
 

1. INTRODUCTION 

In recent years, pickleball has surged in 

popularity, becoming the fastest-growing sport 

in the United States (USA Pickleball, 2025). 

Several factors drive this rapid growth, including 

ease of play, health benefits and an addictive 

nature (DeMelo, 2022). Underpinning the 

pickleball craze is the rise of a competitive scene 

with millions of viewers and year-round 

tournaments (USA Pickleball, 2025). This influx 

of serious players eager to improve their game 

creates a demand for performance-enhancing 

technologies. 

For more established sports, data-driven 

training tools have become essential for athletes 

(Frevel, et al., 2022). However, as a relatively 

new sport, pickleball lacks these sophisticated 

technologies. This technological gap presents an 
opportunity to develop PIKL, a smart pickleball 

paddle that provides real-time data analytics on 

swing speed, stroke classification, impact 

location, and impact force. The project seeks to 

fill this void in pickleball and offer experienced 

players a smart paddle to enhance their game. 
 

2. RELATED WORKS 

New technologies are emerging in the 

pickleball space, with a few existing 
competitors. One such product, the Kill-Shot 

Pro, is a pickleball paddle that incorporates a 

sensor panel over the paddle face that detects 

whether a player has hit the central sweet spot. 

(Kill-Shot Pro, 2024). The sweet spot, located in 

the center of the paddle, is the ideal area to make 

contact with the ball, providing maximum shot 

consistency and control (VanOs, 2024). 

Although the sweet spot is valuable for players 

to track, the Kill-Shot Pro’s design has several 
limitations. For one, it only measures this single 

metric, whether the sweet spot was hit, limiting 

the feedback available to players. Furthermore, 

the panel’s placement obstructs the paddle face, 

detracting from a natural playing experience. 

The PIKL addresses these limitations by offering 

a wide range of performance analytics, including 

impact location, impact force, swing speed, and 



 

stroke classification. Additionally, by 

embedding the piezoelectric sensors in the edges 

of the paddle and building off a USA Pickleball 

Association (USAPA)-approved paddle, the 
PIKL preserves the authentic feel of a traditional 

pickleball paddle. Evaluating existing products 

like the Kill-Shot Pro helped identify valuable 

features, such as sweet spot tracking, while also 

highlighting areas for improvement in pickleball 

technology, ultimately shaping the design and 

functionality of the PIKL. 

One of the most challenging aspects of the 

embedded software was implementing an ADC 

capable of sampling fast enough to capture ball-
paddle impacts across multiple channels for the 

piezoelectric sensors. The microcontroller used 

in this project is the Particle Argon, powered by 

an nRF52840 System-on-Chip (SoC) from 

Nordic Semiconductor. This SoC provides BLE 

capabilities and serves as the platform for the 

embedded software. The PIKL’s early ADC 

implementations relied on Zephyr's ADC 

libraries and software timers. However, these 
approaches proved insufficient for the required 

sampling speed and multi-channel operation. 

Thus, to improve performance, it became 

necessary to leverage the SoC's hardware more 

effectively. A particularly useful reference from 

Nordic's online Developer Academy (Nordic 

Semiconductor, 2024) provided guidance on 

using Nordic's nrfx drivers and proprietary 

hardware features of the SoC such as 

Programmable Peripheral Interconnect (PPI) to 
implement high-speed sampling. This reference 

significantly informed the ADC implementation, 

shaping how the system efficiently collects and 

processes samples from the piezoelectric 

sensors. 
 

3. PROJECT DESIGN  

A block diagram of the entire embedded 

software design is shown below in Figure 1. 

 
Figure 1. Embedded Software Diagram 

 

3.1 ADC 

The first embedded sub-component to 

analyze is the ADC. The outputs from the three 

piezoelectric amplifier circuits are analog 

voltages and must be converted with an ADC to 

be represented in the digital microcontroller unit 
(MCU). Thus, each piezo sensor circuit is 

connected to an ADC input channel on the MCU. 

From sensor testing, the fastest pickleball impact 

duration was approximately 334 µs or ~2.98 kHz 

as read by the piezo sensor/circuit. Based on 

Nyquist's sampling theorem, the ADC must 

sample at a rate exceeding 5.96 kHz (167 µs 

intervals) to ensure no impacts are missed and 

that a good representation of the impact’s signal 

is captured. Furthermore, since three piezo 
sensors are used to estimate impact location, the 

ADC implementation must support rapid 

sampling across multiple channels. To meet 

these requirements, the software employs a 

double-buffered direct memory access (DMA) 

approach with programmable peripheral 

interconnect (PPI) and a hardware timer. PPI 

enables peripherals to interact directly without 

CPU intervention, optimizing efficiency. A 
hardware timer triggers periodic ADC sampling 

via PPI, storing data in a buffer. Once filled with 

150 samples, DMA switches to a second buffer, 

ensuring uninterrupted data collection while the 

CPU processes the first buffer. During 

processing, each sample is checked against a 

1.5V impact threshold. If exceeded, shot 

processing begins. This setup supports up to six 



 

channels at over 8 kHz, enabling high-speed, 

multi-channel data acquisition. 
 

3.2 IMU 

The next embedded sub-component is the 6-
axis inertial measurement unit (IMU) sensor, 

which is used to sense motion and derive critical 

statistics such as swing speed, impact force 

classification, and stroke classification. The 

IMU, specifically the ISM330DHCX chip, 

includes a 3-axis accelerometer and a 3-axis 

gyroscope. The output data rate of 104 Hz for the 

IMU was chosen based on testing that showed an 

average swing lasts less than a second. With 104 

samples per second, per axis, this provides 
sufficient resolution to capture the motion 

dynamics of a swing. To accurately interpret the 

IMU's measurements, it is essential to define its 

reference frame in the context of the paddle. The 

IMU is mounted inside the handle of the paddle, 

with its axes aligned as shown in Figure 2 below. 
 

 
Figure 2. IMU Reference Frame Axes 

 

The IMU communicates with the MCU via 
I2C. To synchronize data acquisition, a hardware 

timer generates periodic interrupts at 104 Hz, 

matching the sensors’ output data rate. The timer 

interrupt handler submits a work item to the 

system work queue to read IMU samples. This 

design offloads the more time-intensive I2C 

data-fetching process to the main thread, 

preventing it from blocking BLE transmissions 

or other critical CPU tasks. The work handler 

uses the Zephyr sensor API to fetch 
accelerometer and gyroscope data, storing the 

results in circular buffers. These circular buffers 

store the most recent 85 samples, automatically 

overwriting older data when full. This ensures 

that, when a shot is detected, the accelerometer 

and gyroscope buffers contain the most recent 

swing data, ready for analysis. 
 

3.3 Processing 

Once the ADC code indicates that an impact 

has occurred, a work item is submitted to the 

system work queue to initiate shot processing. 

To calculate the first metric, swing speed, three 

different methods are used, each with its own 

trade-offs and considerations. Method one 

utilizes numerical integration of the z-axis 

acceleration, as this will yield the z-axis velocity 

vector pointing directly out of the paddle face. 
The second method relies on the large, inward 

centripetal acceleration along the x-axis induced 

during a swing. From the equation for centripetal 

acceleration, the tangential velocity, which 

equates to the velocity pointing out of the paddle 

face, can be derived. The final method utilizes 

the peak y-axis angular velocity from the 

gyroscope during a swing. This angular velocity 

is multiplied with an approximated swing radius 
to yield the linear velocity of the paddle. 

The next metric, paddle impact location, is 

computed by averaging the ten ADC voltage 

values on each piezo sensor after impact. With 

these averages, a triangulation is computed to 

find the weighted midpoint coordinates of where 

the ball hit the paddle face. Next, the impact 

force metric is trivially calculated by multiplying 

the z-axis acceleration at impact with the 

measured mass of the paddle (0.4 kg) as force is 
equal to mass times acceleration. Lastly, to 

classify strokes as forehand or backhand, the 

computed swing velocity is used alongside the y-

axis acceleration at the point of impact. Since the 

y-axis is perpendicular to the handle, flipping the 

paddle from a forehand to backhand position 

causes the sign of the y-axis acceleration (ay) to 

flip. However, because the paddle has two sides, 

an additional variable is needed to account for 

the player rotating the paddle and striking with a 
different face. Therefore, the sign of the 

estimated swing velocity (from either method 1 

or 3) is used to determine which side of the 

paddle was used for the hit. The classification 

logic is shown in Table 2 below. 



 

 

Table 1. Stroke Classification Logic 

Swing 

Velocity 

y-axis 

Acceleration 

Classified 

Stroke 

vswing > 0 ay > 0 Backhand 

vswing > 0 ay < 0 Forehand 

vswing< 0 ay > 0 Backhand 

vswing < 0 ay < 0 Forehand 

 

Once shot processing is complete, the four 

computed metrics are transmitted to the 

connected user device via BLE notifications. 
Each metric is assigned a unique characteristic 

identifier within a custom BLE Generic 

Attribute service. 
 

4. RESULTS 

The embedded software functions as 

required. All shots are consistently detected by 

the ADC implementation and BLE 

transmissions are reliable and rapid, giving a 

real-time feedback experience. Furthermore, the 

accuracy of the four pickleball metrics provided 
by the system is measured. Without a radar gun, 

the swing speed could only be evaluated for 

relative, and not absolute or grounded accuracy. 

However, testing showed accurate relative swing 

speed reports. Next, the impact location 

accuracy was shown to be 70% accurate across 

all regions of the paddle face. The stroke 

classification feature was then tested and 

achieved an overall accuracy of 76.7%, with 
86.7% forehand accuracy and 66.7% backhand 

accuracy. Lastly, the classification of soft, hard, 

and medium hits from the impact force metric 

showed 83.3% accuracy. These results show the 

embedded software system is able to estimate 

the four key pickleball metrics to a high degree 

of accuracy. 

 

5. CONCLUSION 

The PIKL successfully delivers a suite of 
performance metrics, including impact location 

detection, stroke classification, swing speed 

estimation, and impact force measurement. 

These metrics are calculated with a high degree 

of accuracy and are stored for post-match 

analysis, providing players with meaningful 

insights into their performance. As pickleball’s 

popularity continues to rise, the PIKL smart 

paddle offers substantial value to dedicated 
players and professionals seeking to better 

understand and improve their game. 

 

6. FUTURE WORK 

As a prototype, the PIKL is a success. 

However, there are still numerous areas for 

future improvement. For one, more reliable 

swing speed estimation using ground truth data. 

Currently, the PIKL estimates swing speed using 

a median filter on three different swing speed 
calculations. This method is effective in 

providing reliable and reasonable estimations of 

swing speed, but it is not reinforced with ground 

truth swing speed data. To improve the swing 

speed estimator, the actual speed of the swing 

could be measured using a radar gun and 

compared to the IMU measurements. This 

comparison can help to calibrate the IMU and 

the data processing code. Additionally, this 
ground truth data could be used to tune speed 

estimation and could even be incorporated into a 

supervised learning algorithm such as linear 

regression for more accurate measurements. 
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