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ABSTRACT 

Conducting environmental assessments for federal and state agencies is an integral part for many 

transportation construction projects. Wetlands are a particular environmental feature that could 

potentially be affected by construction projects. The identification of wetland locations can be 

accomplished in a variety of ways, ranging from less involved, lower accuracy methods to highly 

involved, higher accuracy methods. Past efforts to develop wetland identification methods are lacking in 

one or more of the following ways: inadequate use of ancillary data, little automation, not leveraging 

freely available data, excessive computation times, or requiring software not typically available within 

transportation agencies. This study aims to address these issues by developing a Geographic Information 

System (GIS)-based wetland identification tool. The aim of the tool is screening for potential wetland 

areas that can be further investigated by more detailed wetland identification and survey methods. 

Therefore, the tool is designed to minimize the number of false negatives, which are cases where the 

tool incorrectly designates an area as non-wetland when a wetland does in fact exist. Applying the tool 

to a study region with detailed wetland delineations available shows that the tool was able to identify 

potential wetland locations with 69.3% agreement, 24.3% false positives, and only 6.4% false negatives. 

Decision makers can use the prediction confidence levels generated by the tool to balance tradeoffs 

between the size of the area determined to be potential wetland area and the percentage of false 

positive prediction errors within the study area.  
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1 Introduction 

1.1 Background 

Wetlands are a vital natural feature inherently capable of many beneficial hydrological and 

environmental processes. Some of these benefits include storm water runoff control, effluent and 

sediment control, and providing habitats for wildlife and plants. Many wetlands have been destroyed or 

repurposed for agricultural or development purposes (Ouyang, Becker, Shaver, & Chen, 2013). Because 

of this practice, approximately half of America’s original wetlands no longer exist (Klemas, 2011). The 

need to protect wetlands is now well known and required through federal law and regulation. 

There are a wide number of different wetland types, such as marshes, swamps, bogs, and fens, 

with variations in soils, topography, climate, hydrology, water chemistry, and vegetation based on 

geographic locations (Cowardin, Carter, Golet, & Laroe, 2013). Despite the large number of wetland 

types, they all share basic characteristics that are used to describe wetland areas (ACoE, 1987). While 

field-based identification will always be necessary to conclusively identify wetlands, there is the 

potential to use datasets available through federal and state agencies and within a Geographic 

Information Systems (GIS) to determine potential wetland areas. The National Wetland Inventory (NWI) 

provides one example of doing such an analysis, however it is widely acknowledged that NWI, being a 

national-scale data product, often lacks the accuracy required to support transportation decision-

making. 

A number of wetland regulations have been created for the purpose of avoiding unnecessary 

wetland destruction. There are a number of ordinances that govern the protection and prevention of 

destruction for wetlands by both federal and state agencies (Table 1). As a result of these regulations, 

any roadway development project done by State DOT’s must consider a number of alternative paths or 
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corridors. Each of these potential corridors are evaluated on a number of criteria, one of which is the 

corridor’s environmental impact, in particular, the area of wetlands that would be expected to be 

destroyed during construction. This process is to facilitate the selection of the particular corridor that 

minimizes the environmental offset from construction. DOT’s must sufficiently prove that the selected 

corridor for a project meets this criteria, showing that it is the Least Environmentally Destructive 

Practical Alternative (LEDPA) by providing wetlands delineations. The US Army Corps of Engineers (ACoE) 

evaluates these corridors as the governing authority in wetland delineation. This process is referred to 

as jurisdictional determination. If the LEDPA corridor is selected, the DOT will have federal approval for 

construction. 

 

Table 1: List of federal regulations pertaining to wetlands 

 

Current practices for identifying wetlands for LEDPA assessments can range from simple methods 

of referring to a publicly available datasets, such as the NWI to highly advanced and involved methods, 

such as the use of image analysis and geospatial software to execute a composite of different weighted 

classification techniques. Although referencing NWI is the simplest and easiest route, wetland locations 

may be incorrectly identified or missed for a variety of reasons including the fact that NWI is a national-

Program or Act Year Implementing agency Description

River and Harbors Appropriation Act 1899 ACoE Prohibits obstruction of alteration of navigable waters

Migratory Bird Hunting and Conservation Stamps 1934 FWS Aquires wetland easements from revenue of duck stamps

Federal Aid in Wildlife Restoration Act 1937 FWS Provides grants to States for aquiring, restoring, and maintaining wildlife areas

River and Harbors Act 1938 ACoE Due regard must be given to wildlife conservation during water project planning

Wetlands Loan Act 1961 FWS Provides interest free loans for wetlands acquisition and easements

Land and Water Conservation Fund Act 1964 FWS, NPS For aquiring wildlife areas

National Environmental Policy Act 1969 All federal agencies Requires an environmental impact statement (EIS) for federal actions affecting the environment

Ramsar Convention (Treaty) 1973 FWS Maintains a list of wetlands of international importance

Endangered Species Act 1973 FWS Protects threatened and endangered wildlife, fish, and plant species often found in wetlands

Executive Order 11990 1977 All federal agencies Requires federal agencies to minimize impacts on wetlands

Clean Water Act, Section 404 1977 ACoE, EPA, FWS Regulates the discharge of dredge or fill material into the waters

US Tax Code Tax Reform Act 1986 IRS Provies tax edutions for wetlands donors and nonprofit organizations

Emergency Wetlands Resources Act 1986 FWS Pay debts from the FWS for wetlands acquisition

North American Wetlands Conservation Act 1989 FWS Provides matching grants to public/private organizations to protect, retore and enhance wetlands

Food, Agriculture, Conservation, and Trade Act 1990 NRCS Subsidizes restoration of croplands to wetlands

Surface Transportation Revenue Act 1991 USDOT Authorizes funding for wetland mitigation banks for state DOTs

Transportation Equity Act for the 21
st
 Century 1998 USDOT Funding includes restoration of previous wetland loss and wetland mitigation banking

*ACoE - Army Corps of Engineers, CWS - Canadian Wildlife Service, EPA - Environmental Protection Agency, FWS - Fish & Wildlife Services, IRS - Internal Revenue Service, NPS - 

National Park Service, NRCS - National Resources Conservation Service, USDOT - United States Department of Transportation
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scale product and therefor may miss wetlands at the spatial scale required for transportation corridor 

assessments. Alternatively, more advanced methods for wetland identification may use much higher 

resolution data with a series of classification methods. This can also prove to be problematic due to time 

constraints. As the resolution and intensity of the classification technique increase, computation time 

and required resources increase as well. This will have an adverse effect to streamlining projects by 

slowing the delivery of tasks and increasing costs for high resolution data acquisition. Although there are 

a number of methods and techniques for identifying potential wetland locations remotely, none have 

attempted to automate this procedure for large scale projects using freely available geospatial datasets.  

1.2 Purpose and Scope 

The purpose of this research is to develop a wetland identification tool that makes use of freely 

available geospatial datasets to identify potential wetland locations at a spatial-scale relevant for 

transportation corridor assessments. Wetland identification can be a challenging and expensive process 

for state DOTs, particularly for projects covering a large geographic extent. Research has shown an 

opportunity to improve the wetland identification process used by DOTs by leveraging newly available 

remote sensing techniques and Geographic Information Systems (GIS) (Ghobadi et al., 2012; Ozesmi & 

Bauer, 2002). This study advances this past work by (1) using only freely available public datasets and (2) 

creating a tool that automates many of the data processing steps required to transform input datasets 

into a map of potential wetland locations. If these tools can be used by DOTs for wetland identification 

early in the planning phase of a project, it could offer several benefits such as reduced man-hours in the 

field (and associated costs of field studies), expedited approval, and streamlined project delivery. 

1.3 Organization of Thesis 

The remainder of this thesis is organized as follows. Section 2 contains a Literature Review, which 

outlines the current techniques and datasets used for wetlands identification, as well as current 
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practices used by a variety of state Departments of Transportation for wetland identification. Section 3 

contains the Methods for using the wetland identification tool for a case study region including (1) the 

study area, (2) the preliminary steps for preparing datasets for the tool, (3) the required data structure 

hierarchy expected by the wetland identification tool, and (4) processes used within the tool. Section 4 

contains Results and Discussion describing the output from the tool for the case study region and an 

assessment of the tools accuracy compared to on-the-ground surveyed wetlands. Section 5 contains 

Conclusions outlining the findings of this study and suggestions for future work. 
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2 Literature Review 

2.1 Overview of Wetlands Identification Models 

Classification methods used in remote sensing involve identifying features from their spectral 

signature and/or characteristics. Classification methods are broken into two subcategories: 

unsupervised and supervised. The classification process will designate certain pixels of a raster to a 

particular class based on the pixels spectral properties and/or characteristics (Lu & Weng, 2007). 

Unsupervised classification is used to find statistical relationships within the data to create a user 

specified number of land cover types. To accomplish this, clusters representing land cover types are 

created. Accuracy of the unsupervised classification is increased with the use of a larger number of 

clusters. However, this may result in splitting one land class designation into multiple clusters that would 

need to be merged. Although unsupervised classification is able to identify a number of land cover 

types, there is still some confusion in distinguishing wetland vegetation and shrubs from upland 

vegetation. The supervised method utilizes training data, generally ground truth data, to develop a 

characteristic signature for each land cover dataset for a particular region. To accomplish this, manually 

specified training datasets are designated for the supervised classification algorithm to reference (Lu, 

Mausel, Brondízio, & Moran, 2003; Lu & Weng, 2007; Tana, Letu, Cheng, & Tateishi, 2013). 

Supervised classification can also utilize object oriented neighborhood analysis to define the 

vegetative class of a pixel relative to adjacent pixels’ classification (Yan, Mas, Maathuis, Xiangmin, & Van 

Dijk, 2006). The following focal analysis can be used to execute neighborhood analysis: Most Significant 

Component (MSC), Weighted Sum of Components (WSC), and Combined Dominants (CD). MSC will 

return the most frequent pixel classification within a given search radius in order to filter out noise. WSC 

will sum values designated to pixels based on their likelihood to occur in wetlands within a determined 

radius. Pixels with a high likelihood of occurring in wetlands coincide with higher values, meaning that 
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the summation of the pixels within the determined radius gives an indication of the likelihood that the 

area contains wetland vegetation. CD considers a pixel as a wetland if 50% or more of the neighboring 

pixels are considered acceptable for wetland classification as well. These wetlands are mapped by their 

characteristic spectral signatures indicating color, reflectance, and texture, which can be ascertained 

through training datasets. Based on a review of the literature, nearest neighborhood supervised 

classification, primarily Maximum Likelihood, appears to be the most commonly used classification 

method for wetland identification. 

Classification and processing software is available to assist with the classification procedure.   

Below is an outline of programs and classifications used in related literature.  However, this is not an 

exhaustive list and some software are capable of a number of different classification methods.  ERDAS, 

developed by Hexagon Geospatial, is capable of performing both unsupervised and supervised 

techniques using a number of variations of the Maximum Likelihood and Fuzzy Logic algorithms (Mwita 

et al., 2013). Mwita et al. (2013) classified multispectral images using ERDAS unsupervised Iterative Self-

Organizing Data Analysis (ISODATA) method. Other studies use Environmental Studies Research 

Institute’s (ESRI) Image Classification in ArcGIS. The Image classifier provides classification methods for 

Maximum Likelihood, Iso Cluster Unsupervised, Class Probability, and Principle Components 

classification. Trimble’s Definiens Developer (eCognition) is capable of nearest neighbor object oriented 

classification using DELPHI 2, which classifies using a combination of nearest neighborhood and fuzzy 

functions (Nobrega, O’Hara, & Stich, 2011). Exelis Visual Information Solutions (ENVI) can be used for 

the multispectral imagery geo correction and atmospheric corrections and is capable of a number of 

classification methods (Sugumaran, 2004). PANCHROMA can be used for pan-sharpening and gap-filling 

imagery (S. Lee, 2011). 
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2.2 Overview of Key Datasets 

Classification of remote sensing imagery can be combined with other geospatial datasets into an 

algorithm to identify wetlands. The following geospatial datasets were identified through the literature 

review as common datasets used in wetland identification procedures: (i) Digital Elevation Models 

(DEM) and Light Detection and Ranging (LiDAR) to characterize wetlands topographical aspects, 

particularly the slope, curvature, canopy height and depression locations; (ii) multi and hyper spectral 

satellite and aerial imagery data to provide supporting detail about plant vegetation type and soil 

moisture using the specified bands available; (iii) National Resources Conservation Service’s (NRCS) Soil 

Survey Geographic (SSURGO) data to characterize soils, particularly hydric soils; (iv) US Geographical 

Survey’s (USGS) National Hydrography Dataset (NHD) to identify bodies of water; (v) the United States 

Fish and Wildlife Service’s (USFWS) National Wetlands Inventory (NWI) (O’Hara, 2002; Stein et al., 2012). 

Congruent through each dataset, higher resolutions increase the ability to identify small or narrow 

wetland areas. The use of each of these datasets for wetland identification is further explained in the 

following subsections. 

2.2.1 Digital Elevation Model (DEM) and DEM-derived Datasets 

Digital Elevation Models (DEM) are datasets that describe topography in a raster format that is 

well suited for use in GIS and terrain processing tools. The USGS maintains a comprehensive elevation 

data product called the National Elevation Dataset (NED), which is comprised of existing LiDAR data, 

cartographic contour maps, photogrammetrically derived DEM’s, Shuttle Radar Topography Mission 

(SRTM) datasets, Interferometric Synthetic Aperture Radar (IFSAR), and bathymetry (USGS, 2015). As 

such, the NED has a much higher likelihood of containing site specific elevation datasets. The NED has 

the advantage of being consistent across the US. However, due to the number of different sources used 

to compile this comprehensive digital elevation data, the resolution ranges from 3 meters to 90 meters 

depending on the specific location. Since obtaining high-resolution LiDAR data is an expensive process, 
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finding and accessing this data, as well as insuring complete coverage of the site, can prove to be 

problematic and costly (O’Hara, 2002). NOAA’s LiDAR Data Archive and USGS’s EarthExplorer maintain 

statewide LiDAR data, where availability is primarily found in coastal counties.  

By utilizing these DEM datasets, hydrologic flow accumulation and direction can be ascertained 

using geoprocessing methods available in GIS software that look at an individual pixel values within the 

raster and determine flow direction by finding the neighboring pixel with the steepest slope. In the 

instance that no neighboring pixel is of lower elevation, this is representative of a depression where 

water will begin to pool until the depression is typically filled so that flow will proceed downhill as usual. 

These depressions are characteristic of wetland areas, causing soils and vegetation to be maintained in 

saturated conditions for extended periods of time. These depressions can then be extracted as a layer 

for use in the identification process (O’Hara, 2002). The Compound Topographical Index (CTI) can be 

used to ascertain the likely wetness of an area using the topography and upstream contributing area as 

inputs (Knight, Tolcser, Corcoran, & Rampi, 2013). Higher wetness areas correlate to a higher likelihood 

of being classified as a wetland. A DEM can also be used to derive the curvature, which details the 

concavity of an area and can be used to supplement wetlands identification (Knight et al., 2013). 

2.2.2 Multi-Spectral Imagery 

Multi-spectral imagery is obtained from satellites containing a number of radiometers set to 

read particular wavelengths, called bands, generally within the visible and infrared spectrum. Band 

ranges can vary depending on the particular sensors used.  As can be seen from the Appendix, there are 

is a wide variety of satellite imagery with differently specified band ranges.  This difference in band 

ranges can make cross platform imagery comparisons difficult.  These bands can exists in the Red-Green-

Blue (RGB) region, the near infrared (NIR), middle infrared (MIR), and far infrared (FIR) (O’Hara, 2002). 

The typical wavelengths for each of these regions are depicted in Table 1. There are a number of 
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satellites that provide multispectral imagery. The commonly used satellites for wetland identification are 

NASA’s Landsat, European Space Agency’s (ESA) Advanced Synthetic Aperture Radar (ASAR), Satellite 

Pour l’Observation de la Terre (SPOT), NOAA’s Advanced Very High Resolution Radiometer (AVHRR), 

GeoEye’s IKONOS, Indian Remote Sensing Satellite (IRS), and NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Friedl et al., 2010; Olmanson, Bauer, & Brezonik, 2002; Sugumaran, 2004). 

However, these satellites capture images at varying degrees of resolution potentially too coarse for 

project specific locations.  

Multispectral images generally go through geo rectification, geometric correction, and 

atmospheric correction before being used in classification algorithms. These steps are used to set a 

particular projection, correcting to compensate for Earth’s rotation and the positioning of the satellite at 

the time of image capture, and correcting the spectral values from atmospheric effects that cause 

reflectance scattering and absorption by constituents in the atmosphere respectively (Ghobadi et al., 

2012). Pan-sharpening and gap-filling are also used to prepare imagery for use in wetland identification. 

Pan-sharpening is the process of combining higher resolution gray-scale imagery with the lower 

resolution color bands to create a high resolution color image. Gap-filling is used to fill missing values 

within satellite imagery by using a previous year’s imagery or other gapped imagery. Certain wetlands 

are easier to identify and the following outlines the easiest to hardest wetlands to identify using 

multispectral imagery: water, marshes, deciduous forested wetlands, evergreen forested wetlands, and 

scrub-shrub wetlands (Ozesmi & Bauer, 2002). 

Utilizing a combination of bands 3, 4, and 5 (referring specifically to Landsat 7 bands); bands 2, 

4, and 7; and bands 1, 2, and 3 results in improved wetlands depiction. ETM+ band 3 depicts strong 

chlorophyll absorption and strong reflectance for soils, ETM+ band 4 depicts the reflectance for green 

vegetation, and ETM+ band 5 depicts the difference between vegetation and soils. IKONOS imagery has 



10 
 

been found to identify aquatic vegetation better than Landsat imagery (Olmanson et al., 2002). Landsat 

captures bands 1 through 7 with resolutions as high as 15m, SPOT captures bands 1 through 3 and 5 

with resolutions as high as 10m, AVHRR captures 1 through 5 with resolutions as high as 1km, and IRS 

captures 1 through 4 with resolutions as high as 23.5m, however, it is important to note that each of 

these satellites capture different wavelengths for each band (Ozesmi & Bauer, 2002). Higher spatial 

resolutions become particularly important when delineating smaller wetlands approximately less than 

500 hectares, especially when dealing with long, narrow wetland regions (Mwita et al., 2013). Because 

of this, coarse resolution satellite imagery, including widely used Landsat imagery, has been determined 

to be inadequate for mapping small wetlands due to its resolution. For smaller watersheds, alternatives 

like the use of aerial vehicles outfitted with multispectral cameras flown at low altitudes could be 

explored to obtain very high resolution multispectral imagery (Ozesmi & Bauer, 2002). 

Multi and Hyperspectral imagery can be used to derive the Normalized Difference Vegetation 

Index (NDVI). NDVI is primarily used for monitoring of vegetation density. NDVI is computed using the 

red wavelength from the visible spectrum and a near-infrared wavelength using the following equation. 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑
 

Equation 1: Normalized Difference Vegetation Index (NDVI) equation 

 

NDVI identifies areas based on a -1 to 1 scale, where -1 represents water bodies, around 0 represents 

barren earth, lower positive values represent shrubs, and higher positive values represent forested 

areas (Ghobadi et al., 2012). Pigmentation within plant leaves is attributed to chlorophyll, where healthy 

vegetation contains higher amounts of chlorophyll.  This results in much lower reflectance in the visible 

spectrum bringing the NDVI value closer to 1.   Change detection is accomplished by comparing the 

spectral signatures of individually classified NDVI rasters for two different, but seasonally similar, dates 
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(Klemas, 2011). By using two dates that differ seasonally, emergent and floating vegetation, found in the 

spring, can be isolated from flooded emergent vegetation and open water (Ozesmi & Bauer, 2002; Shi, 

2013). Wetland vegetation generally gives off a stronger NDVI signature due to water inundation, 

helping distinguish wetland vegetation from other potentially water stressed vegetation. Similarly, a 

Tasseled Cap transformation can condense 6 different bands of multispectral imagery into 3 condensed 

bands representing an area’s greenness, wetness, and brightness. The tasseled cap method has shown 

more promise than using only NDVI as this method combines 6 separate bands whereas NDVI utilizes 

only two (Tana et al., 2013). 

 

 

Table 2: Wavelength ranges for specific spectrum regions 

 

2.2.3 Soil Survey Geographic Database (SSURGO) 

SSURGO data is used to identify hydric soils, characteristic of wetland areas (O’Hara, 2002). The 

SSURGO dataset is comprised of a number of polygons with identifier keys that correlate to a series of 

relational tables. The particular table of interest is the map unit aggregate attribute (MUAGGATT), which 

contains the field hydric rating (HYDCLPRS) detailing a soils hydric classification, describing completely 

hydric, partially hydric, not hydric, or unknown soils. Drainage class - dominant condition (DRCLASSDCD), 

Region Wavelength Use

Violet 380–450 nm Deep water imaging

Blue 450–495 nm Deep water imaging

Green 495–570 nm Vegetation and deep water imaging

Yellow 570–590 nm Vegetation and deep water imaging

Orange 590–620 nm Soil, vegetation, man-made objects, and water

Red 620–750 nm Soil, vegetation, man-made objects, and water

NIR 0.75-1.4 µm Vegetation

SWIR 1.4-3 µm Vegetation, soil moisture, and geologic features

MWIR 3-8 µm Vegetation, soil moisture, and geologic features

LWIR 8-15 µm Night studies, thermal changes in water currents

FIR (Thermal) 15-1000 µm Night studies, thermal changes in water currents

Microwave 1-1000 mm Land and sea surface temerature, soil moisture
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flooding frequency - dominant condition (FLODFREQDCD), and ponding frequency - presence 

(PONDFREQPRS) are also used in classification (Shuchman & Court, 2009). 

2.2.4 National Hydrography Dataset (NHD) 

NHD contains vector datasets establishing areas for bodies of water and flow lines. 

Characteristically, some wetlands exist at or near flow lines; therefore incorporating NHD into a wetland 

identification process can improve its accuracy. Wetlands generally exist in riparian zones, which are 

transitional regions between a water body and land and can be determined using geoprocessing to 

create a buffer around these bodies of water (O’Hara, 2002). Similarly, the Federal Emergency 

Management Agency (FEMA) provides Standard Digital Flood Insurance Rate Maps (DFIRMs) that 

contain a number of recurrence intervals that give a much better approximation of riparian zones than a 

simple buffer tool. 

2.2.5 National Wetlands Inventory (NWI) 

The current NWI derives wetland polygons using aerial imagery and detailed on-the-ground 

inspection data using trained image analysts to identify and locate wetland and deep-water habitats. 

Updates to NWI can be made from user submission of FGDC compliant wetlands data layers from 

external sources, which will inevitably be included in the NWI upon being approved by the US Fish and 

Wildlife Service (USFWS). The USFWS disseminates this information using an online mapper, an Open 

GIS Consortium compliant Web Map Service (WMS), and is viewable in Google Earth using Keyhole 

Markup Language (KML). The NWI coverage extends to the contiguous U.S., Hawaii, Puerto Rico, the 

Virgin Islands, Guam, the major Northern Mariana Islands, and 35% of Alaska (O’Hara, 2002). 

2.3 Study of current practices 

Activities by state Departments of Transportation (DOTs) concerned with the identification of 

wetlands as it relates to this thesis were reviewed in order to determine the state-of-the-practice in 
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wetland identification procedures. The list is ordered from most to least relevant in terms of the specific 

objectives of this thesis. 

2.3.1 Colorado Department of Transportation (CDOT) 

The Colorado Department of Transportation (CDOT) funded research in the development of a 

semi-automated method to identify and classify wetlands in the northern Front Range area of Colorado. 

The method uses four imagery products; NAIP, Landsat 7 ETM+, Terra ASTER, and EO-1 Hperion/ALI. 

Landsat data was primarily used to derive various vegetative indices and the soil crust index. EO-1 was 

used to create spectral signatures for the various vegetative types. The method begins by completing a 

rapid assessment using the ISODATA unsupervised classification. This classification breaks data into 

spectral clusters based on the statistical correlation of the raster data, which is followed by manual 

treatment of the clusters, and finally labels are assigned. The study found that the ISODATA 

unsupervised classification was adequate in determining possible wetland locations; however, there 

seems to be some confusion between wetlands and irrigated agricultural regions.  

 The ISODATA classification is then used in an object-based classification method. This method 

utilized Definiens Developer to execute the object-based classification with the nearest neighborhood 

classification using all ASTER bands, all Landsat bands, all EO1 bands, derive tasseled cap transformation 

rasters, NDVI derived from ASTER, NDVI derived from EO1, a stream buffer raster of 165m indicative of 

floodplain areas, a stream buffer raster of 32m indicative of marsh areas, and the wetlands layer 

generated from the ISODATA method. This technique classifies numerous land classes beyond wetlands 

including; aquatic bed, commercial/industrial zone, farm land, floodplain forest, forest, golf course, 

grassland, marshes, residential area, rocks, scrub/shrub, water body, and wet meadow. The overall 

accuracy of the method reaches 83% with accuracies in the following and class categories; marshes with 
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87.88%, wet meadows with 68.8%, aquatic bed with 62.5%, scrub/shrub with 70.6%, floodplain forest 

with 86.4%, and water with 100% (Hsu & Johnson, 2008). 

2.3.2 North Carolina Department of Transportation (NCDOT) 

North Carolina Department of Transportation (NCDOT) contributed to a study by the National 

Consortium for Remote Sensing in Transportation – Environmental Assessment (NCRST-E) by providing 

field wetland assessments adhering to the U.S. Army Corps of Engineers’ wetland delineation manual. 

This study was conducted in collaboration with the U.S. DOT Research Special Projects Administration 

(RSPA) and Mississippi State University using Itres and EarthData International hyperspectral vegetation 

maps. The study ascertained that high-spatial, multi-temporal hyperspectral imagery, high-resolution 

digital elevation data, LiDAR- based digital elevation data, and SSURGO data used with neighborhood 

pixel analysis resulted in a cost and time saving identification and delineation method. The model for 

NCDOT wetland identification currently utilizes digital elevation models to derive slope, curvature, and 

depression rasters as well as soils and land use land cover using ArcGIS with Spatial Analyst, TauDEM, 

and Statistical Analysis System (SAS). Further development for this program includes increasing the 

accuracy within their developed models, expanding to add the ability to identify the wetland type using 

remote sensing, and developing models specific to tidal and marsh wetlands on a regional scale (NCDOT, 

2015). 

The driving factor for NCDOT to progress in using remotely sensed data to identify wetlands was 

the desire to reduce project delivery times and minimize costs (Weatherford, 2014). The NCDOT 

developed identification method is also sufficiently accurate to compare different alternatives for 

environmental planning. Three pilot projects were used to test the implementation of their models. 

Currently, the wetland identification model uses 2 points per square meter (approximately 1m 

resolution), unconditioned statewide LiDAR maps available from the North Carolina Floodplain Mapping 
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Program to create several terrain derivative maps. The model also uses SSURGO data and the most 

recent (2011) National Land Cover Dataset (NLCD). The accuracy assessment of the model is done by 

comparing three data layers: the model output, NWI datasets, and field delineations. However, no 

concrete numbers have been released because accuracy assessments do not currently incorporate 

instances of false positives.  

NCDOT has indicated that terrain derivative maps do not prove to be very useful for 

identification in flat, agricultural regions. NCDOT is not interested in obtaining their own multi or 

hyperspectral data, and does not consider the inclusion of this data into their short-term goals for the 

development of their wetland identification model. The end goals for NCDOT are to develop an 

automated delineation tool for ArcGIS to identify wetland locations, reducing the need to use ground-

truth field delineation to meet Least Environmentally Damaging Practicable Alternative (LEDPA) criteria 

through close coordination and discussion with the Army Corps of Engineers (ACoE). A group at UNC 

Charlotte is working with NCDOT to develop an ArcGIS tool to automate the wetland delineation 

process. NCDOT and the North Carolina Division of Water Quality shared the 2011 Environmental 

Excellence Award from the FHWA for this work. 

2.3.3 Mississippi Department of Transportation (MDOT) 

MDOT evaluated the feasibility of using remote sensing and geospatial technologies to 

streamline the NEPA process. Three coastal counties in Mississippi underwent considerable land cover 

and land use change. Due to large growth in urbanized areas, MDOT proposed to relocate a CSX railway 

and Interstate 10. NCRST-E contributed to this study by compiling historical satellite imagery, historical 

land cover and land use data, digital elevation data, USGS quadrangle maps, USGS digital orthophoto 

quarter quads (DOQQs), new high-resolution aerial imagery, new high-resolution multispectral satellite 

imagery, new high-resolution aerial hyperspectral imagery, and new high-resolution digital elevation 
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data (O’Hara & Barnwell, 2002). Satellite imagery included Quickbird and IKONOS. For the multi and 

hyperspectral imagery classification, two methods were considered, one a combination of unsupervised 

and supervised techniques and another using object-based. The combination methods utilized ERDAS 

Imagine to conduct an ISODATA clustering unsupervised classification, which was used to generate a set 

of signatures for particular classes to be used for Maximum Likelihood supervised classification. 

Definiens’ eCognitio was use for object-based classification, using the nearest neighbor and membership 

functions. It was determined the unsupervised and supervised methods performed similarly, where the 

object-based improved the quality of the results (King & O’Hara, 2002; Repaka, Truax, Kolstad, & O’Hara, 

2004). 

2.3.4 Michigan Department of Transportation (MDOT) 

MDOT funded a Transportation Applications of Restricted Use Technology (TARUT) project to 

identify areas where the environmental review process can be improved by reducing timelines. The 

study found the process of selecting wetland mitigation sites could be improved by incorporating a 

geospatially-based wetlands mitigation site suitability tool (WMSST). The tool utilizes SSURGO drainage 

class, flood frequency, hydric soils, and ponding frequency data as well as USGS percent slope data. The 

Michigan Natural Features Inventory (MNFI) also provides presetlement land cover data. The tool also 

uses Landsat imagery to derive topographic wetness index and soil moisture index data. Each of these 

data layers is considered in a weighted mean model that outputs potential wetlands mitigation locations 

using ArcGIS Desktop. The tool allows users to specify weightings to the data layers, where it will output 

a map of potential wetlands mitigation sites to the screen, allowing the user to save if desired. The study 

indicated that the tool successfully identified 19 of 20 known test sites acceptable for wetlands 

mitigation. Due to the tools time efficiency, approximately 73% of costs were cut per wetland mitigation 

site. (Shuchman & Court, 2009). 
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2.3.5 Washington State Department of Transportation (WSDOT) 

Washington State Department of Transportation (WSDOT) was also involved in an NCRST-E 

project involving the I-405 corridor with the USDOT and NASA. The primary concern for this project was 

to develop land use land cover (LULC) maps for this particular corridor to assist the environmental 

division in their EIS procedure (Department of Transportation & National Aeronautics and Space 

Administration, 2002). WSDOT funded research to develop a guidebook for the use of multispectral 

imagery to develop LULC datasets. The study focuses on using Landsat 7 ETM+ imagery, claiming that 

Landsat is the ideal satellite choice because it is cheaper, has a wider coverage, and is collected more 

frequently. Classification clusters were broken into two levels; level 1 containing 9 clusters, level 2 

containing 37 clusters. Supervised classification was utilized using parametric and non-parametric 

parameters. Parametric classification allowed for entire classification using mean vectors and covariance 

matrices and non-parametric classification resulted in gaps or confusion using maximum and minimum 

spectral values. Post processing is then done using manual improvement by overlaying orthophotos to 

extract farmland, golf courses, and rivers and streams, and by merging existing GIS data, including a 

USGS LULC map, census population data, road network, wetlands maps, park boundaries, and 

transportation networks. Four products are produced that result in varying strengths in classification. 

Layer 3 utilizes pan sharpened Landsat 7 ETM+ imagery and wetlands layers for us in prioritizing 

wetlands layers. Their accuracy assessment indicates that the classification accuracy is great for 

urbanized areas and water, but low for wetlands, forested areas, and farmlands. Randomly sampled 

comparison points yielded that wetlands had 0% accuracy, where wetlands pixel were wrongfully 

classified as urban or forested areas (R. Lee, Saulsbury, Lanzer, & Perez, 2004; Xiong, Lee, Saulsbury, & 

Lanzer, 2004). 
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2.3.6 Utah Department of Transportation (UDOT) 

UDOT contributed to a study involving assessing the applicability of using unmanned aerial 

vehicles (UAVs) for highway related problems. The study focused on obtaining aerial imagery for pre and 

post construction scenarios to be used to classify wetlands plant species. This study used ERDAS Imagine 

to execute a Maximum Likelihood supervised classification on a five band reflectance image consisting 

of red, green, blue, NIR, and derived NDVI bands. A Fuzzy Convolution filter was used to remove salt and 

pepper classicization. This method achieved an overall accuracy of 62.57%. The study had the most 

difficulty in identifying narrowleaf and broadleaf cattails with an accuracy of 23.3% (Barfuss, Jensen, & 

Clemens, 2012). 

2.3.7 Connecticut Department of Transportation (ConnDOT) 

ConnDOT funded research investigating the use of color infrared, aerial photography, land use 

land cover maps, topographic and soils data to identify corridor impacts for environmental assessment 

for Route 275. Each of these components are scaled based on an importance factor, where they are 

combined and applied to a path analysis model that will determine the corridor with the minimal 

environmental impact. Impacts considered included surface hydrology, wildlife habitats, minimization of 

runoff/pollutants, preserves or archeology, highway grade, agricultural land, visual landscape, forest, 

urban land, and soil suitability (Kennard, Lefor, & Civco, 1980). ConnDOT also recently contacted the 

USFWS to update NWI maps for Connecticut using recently developed procedures. Existing soils data, 

updated and enhanced NWI+ databases, four-band color infrared imagery, and historical 1890’s 

topographic maps (for historical reference) were used to conduct trained image analysis to update the 

NWI for Connecticut (Tiner, McGucking, & Herman, 2013). 
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2.3.8 Other Departments of Transportation  

Iowa DOT began investigation on the use of remote sensing for environmental assessment 

techniques after development of a bypass around Eddyville was halted due to the project’s impacts on 

protected species and their habitats. Iowa DOT coordinated with NCRST-E to identify known wetland 

locations to do in the field reconnaissance to delineate known wetlands locations and wetland flora and 

create spectral signatures for approximately 81 plant species. Iowa DOT also obtain 48 band 

hyperspectral imagery at 60cm and 1m resolution. The imagery and plant spectral signatures were then 

used by NCRST-E using similar methodologies as with NCDOT and NCRST-E join project to identify 

potential wetland locations (NCRST–E Remote Sensing Mission to Eddyville, Iowa In Conjunction With the 

Iowa Department of Transportation, 2001). 

Illinois DOT responded to the questionnaire e-mail sent out to state DOT’s inquiring about their 

wetlands identification methods using remote sensing. IDOT contracts the Illinois Natural History Survey 

for projects requiring wetlands delineation and INHS will utilize aerial photography, NWI, soils survey, 

and sometimes ground level imagery to determine where likely wetland locations will be. They then will 

pass this information to field surveying crews that will delineate wetlands in the field using GPS units 

that are ultimately turned into shapefiles and Microstation files to help determination of avoidance, 

minimization, and impacts. 

Ohio DOT also responded to a questionnaire e-mail sent out to state DOT’s inquiring about their 

wetlands identification methods using remote sensing. ODOT stated that they do not use any particular 

methodologies for identifying wetlands besides utilization of aerial imagery and current existing 

databases (NWI). 

The Montana DOT also responded to the questionnaire e-mail sent out to state DOT’s inquiring 

about their wetlands identification methods using remote sensing. MDT utilizes NAIP imagery, NWI, and 
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LiDAR for visual interpretation of wetland locations. MDT mentioned that since LiDAR has a high 

production cost, it is reserved for smaller projects to map topography and bathometric contours of large 

rivers. They mentioned problems with using NWI for wetland identification because land management 

practices result in the addition or removal of wetlands in their state.  

Florida DOT utilized satellite imagery, particularly SPOT, to do trained image analysis along a 30-

mile project corridor encompassing 91,000 acres in an undeveloped area throughout Duval County. The 

images obtained were 20m resolution near infrared and a computer tape with all digital information. 

The project focused on separating wetland vegetation from upland vegetation within the study area. 

This project took approximately 45 days saving 3.5 months compared to using traditional methods 

(Hawkins, 1990). 

3 Methods 

A handful of DOT’s have explored the use geospatial software to automate the process of 

identifying potential wetlands locations. North Carolina DOT focuses on the use of high resolution LiDAR, 

SSURGO, and NLCD using ArcGIS to automate the process to accomplish this. Although NCDOT is focused 

on automating this process, the primary governing data set used is LiDAR and lacks multi or hyper 

spectral imagery which has been shown to increase accuracy (Laymon, Cruise, Estes, & Howell, 2001). 

Mississippi DOT uses satellite imagery, aerial photographs, LULC, and DEM data within ERDAS Imagine 

and Definiens’ eCognitio to accomplish this. However, MDOT’s methods make it difficult to automate 

the process by utilizing multiple software and require users to tend to the workflow from step to step. 

This method also uses multispectral imagery that is not freely available (Repaka et al., 2004). Colorado 

DOT utilizes the most extensive use of multi and hyper spectral imagery by using NAIP, Landsat 7 ETM+, 

Terra ASTER, and EO-1 Hyperion/ALI datasets. Although utilizing three different spectral imageries may 

slightly increase accuracy, this would result in massive computational time jumps. This method also lacks 
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ancillary data sets that have shown to increase accuracy in wetlands identification (Stein et al., 2012). 

Michigan DOT has developed a tool using SSURGO data sets and data sets derived from multispectral 

imagery. Although this tool is close to the level of autonomy and accuracy desired, the need for isolated 

derived data sets as input cause this method to hinder the usability of the tool (Shuchman & Court, 

2009). 

3.1 Study Area 

The study area for this project is an approximate 17-mile corridor surrounding US Route 460 

between the town of Zuni and the city of Suffolk (Figure 1). The analysis was done for the 26 12-digit 

HUCs that intersect this corridor for a total area of approximately 597,780 acres. The corridor falls 

within the Coastal Plains, one of five physiographic regions in Virginia. This physiographic region 

primarily consists of tidal marshes and tidal forests. The region also contains vernal pools, which only 

accumulate water during spring, making them difficult to identify during drier seasons or years. Vernal 

pools generally reside within forests or meadows. Pocosins are also common to this region, which 

generally sit on hillside plateaus accumulating acidic peat. Occasionally, pocosins may burn, resulting in 

a diversity of shrubby evergreens. The corridor also falls within the Middle Atlantic Coastal Plain, one of 

seven ecoregions in Virginia. The EPA describes this ecoregion as a flat plain with many swampy or 

marshy areas. Forest cover consists primarily of loblolly-shortleaf pine mixed with patches of oak, gum 

and cypress near major streams. The central and southwestern portions of this region are poorly 

drained soils whereas the northeastern portions are not as poorly drained. The central and 

southwestern regions account for approximately 15 percent cropland coverage, whereas the 

northeastern can range from 20-40 percent cropland coverage. 
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Figure 1: Site location for study showing US 460 segment and 12-Digit HUCs 

 

3.2 Data Preparation 

All datasets outlined in the following subsections were projected to the Virginia South State Plan 

Coordinate System in US feet. All datasets were also clipped to the previously mentioned HUCs spanning 

the area of interest for this study. Each process involving conversion of vectorized data to raster data 

and resampling of raster data utilizes the Digital Elevation Model input to set the environments for Cell 

Size, Snap Raster, and Extent. 

3.2.1 Digital Elevation Model (DEM) 

Digital Elevation Models (DEMs) provide topographical information that can be used to derive 

regions where there is a high likelihood for pooled water. DEMs were downloaded from the USGS’s 
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National Map Viewer. A DEM was created using 1/9th and 1/3rd arc-second NED, which correlates to 

approximately 3.14 and 10.22 meter resolution respectively by downloading and merging tiles for the 

area of interest. The 1/3rd resolution DEM data was resampled to match the 1/9th resolution before 

merging together. Although DEM data was readily available for this study’s area of interest, a 7,720 acre 

section found through 3 HUCs was left void due to the lack of 1/9th and 1/3rd resolution elevation data. 

This can be seen in Figure 3 towards the center of the study’s area of interest. This section could have 

been supplemented with 1 arc-sec data, but was left blank and excluded from analysis since this study 

was focused on the use of higher resolution elevation datasets. 

3.2.2 Federal Emergency Management Agency (FEMA) Floodplain Maps 

Floodplain maps are used to identify areas of water inundation for heavy storm or flood events. 

100 year floodplain maps were downloaded from FEMA’s Flood Map Service Center. The 1 percent 

annual chance flood zone designations of Zone A, Zone AO, Zone AH, Zones A1-A30, Zone AE, Zone A99, 

Zone AR, Zone AR/AE, Zone AR/AO, Zone AR/A1-A30, Zone AR/A, Zone V, Zone VE, and Zones V1-V30 

are all referred to as 100 year floodplain, or base flood, zones. All other zones categorized 500 year or 

more flood events.  

3.2.3 Landsat 8 OLI Multispectral Satellite Imagery 

 Multispectral imagery is used to classify wetland spectral signatures and derive vegetative 

indices and vegetation analysis transformations from training data provided by image analysts. Landsat 

8 Operational Land Imager imagery and derived products were downloaded from USGS’s Earth 

Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) On Demand 

interface. This service provides a multitude of derived datasets that include conversion from digital 

numbers to top of the atmosphere (TOA) and surface reflectance values using the Second Simulation of 

a Satellite Signal in the Solar System (6S) radiative transfer models as well as atmospheric corrections 
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using MODIS correction routines. The Landsat 8 satellite follows the World Reference System (WRS-2) 

near-polar, sun-synchronous orbit. One orbit is approximately 99-minutes and provides a temporal 

resolution of complete coverage of the Earth every 16 days. The following table outlines the OLI bands, 

wavelengths, and resolutions. LandsatLook Viewer was used to identify the appropriate scenes required 

for this study, which is imagery from July 6, 2014 and August 14, 2014. The goal in scene selection is to 

identify a dates within or near the wet season. However, since precipitation rates are evenly distributed 

throughout the year, July was isolated as the time frame of interest due to it being historically the 

wettest month for the area of this study. The Scene IDs are designated as LC80140352014187LGN00 

located on Path 14 and Row 35 with 10.23% cloud cover and LC80150342014226LGN00 located on Path 

15 and Row 35 with 0.88% cloud cover. Ideally, we would like cloud cover to be 0%, however, from 

manual image interpretation, no cloud cover was present in the portion of the imagery covering the 

scope of this study. 
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Figure 2: Grayscale images for Landsat 8 OLI bands 2 through 7 
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Table 3: Landsat 8 OLI band details 

 

3.2.4 Soil Survey Geographic database (SSURGO) 

The Soil Survey Geographic database provides valuable information about soil moisture content. 

Wetlands regions generally consist of hydric soils. These hydric soils are provided by the SSURGO 

database in the form of polygon shapefiles. SSURGO datasets were downloaded from the Natural 

Resources Conservation Service’s Web Soil Survey. Data were downloaded on a per county basis for the 

following counties: Isle of Wight County (VA093), Prince George County (VA149), Southampton County 

(VA175), Surry County (VA181), Sussex County (VA183), Chesapeake City (VA550), Dinwiddie County 

(VA653), and City of Suffolk (VA800). The associated Access data base (.mdb) was opened and linked to 

the associated tabular folder, which builds and loads data within the database. After building and filling 

the database was completed, ArcMap was used to import the soilsmu_a_va### polygon shapefile. The 

Join command was used to connect this polygon with data from the component table. Symbology was 

altered to represent the hydricating parameter within the component table. This parameter 

distinguishes hydric soils from non-hydric soils, which can be declared as Yes, No, or Unknown. This 

Band Wavelength (µm) Resolution (m) Description

1 0.43 - 0.45 30 Coastal Aerosol

2 0.45 - 0.51 30 Blue

3 0.53 - 0.59 30 Green

4 0.64 - 0.67 30 Red

5 0.85 - 0.88 30 NIR

6 1.57 - 1.65 30 SWIR 1

7 2.11 - 2.29 30 SWIR 2

8 0.50 - 0.68 15 Panchromatic

9 1.36 - 1.38 30 Cirrus

10 10.60 - 11.19 100 (30) TIRS 1

11 11.50 - 12.51 100 (30) TIRS 2

*TIRS bands are acquired at 100m resolution, but are resampled to 30 meter in 

delivered data product
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symbolized data layer was exported to retain the hydric classification from the join. Each of the county 

layers were then merged into a single polygon shapefile. 

3.2.5 National Hydrography Dataset (NHD) 

The National Map Viewer was also used to obtain the statewide National Hydrography Dataset, 

which provides stream location data found in the NHDFlowlines subset.  

3.2.6 National Land Cover Database (NLCD) 

The National Land Cover Database was downloaded from the Multi-Resolution Land 

Characteristics Consortium’s (MRLC) website. 

3.2.7 National Wetlands Inventory (NWI) 

The National Wetlands Inventory was downloaded from the US Fish and Wildlife Service’s 

(USFWS) website for the entire state of Virginia. 

3.2.8 Watershed Boundary Dataset (WBD) 

The Watershed Boundary Dataset was downloaded for the entire United States through the 

USGS website where the 12-Digit HUCs covering this study’s area of interest were exported into a new 

shapefile. 
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Figure 3: Images of the prepared datasets used as inputs 
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3.2.9 Training Data 

Training data was manually created with the use of aerial imagery and NWI to quickly delineate 

sample locations throughout the scope of the project to encompass a variety of wetland types and 

characteristics to provide the classification algorithm with information about wetland signatures for 

each of the ancillary datasets. The image below shows a sample location of the training data depicting 

inland wetlands as green, river wetlands as purple, and non-wetlands as yellow. 

 

Figure 4: Training data used to train classification algorithm 
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3.2.10 Verification Data 

Ground truth data was provided by the Virginia Department of Transportation to the study that 

was used to execute accuracy assessments of the tool. The data follows two potential alternative 

corridors for US Route 460 and was generated using trained image analysts who delineated the wetland 

locations manually. This data was manually delineated using a trained image analyst using color-infrared 

imagery, land cover maps, NWI, SSURGO, NHD, LiDAR derived DEM, and historical orthophotography, 

where analysts would pan the entire corridor looking at the visual cues indicating an area is wetlands. 

3.3 Input Data Layout 

All datasets are placed in a hierarchical structure readable by the ArcGIS tool. The following 

diagram outlines the structure and naming conventions for folders and files required by the tool. All 

datasets should be projected to the same projected coordinate system and clipped to the same 

boundary. This study uses the NAD 1983 Virginia South State Plane coordinate system and was clipped 

to the previously mentioned 12-digit HUCs. The datasets and formats required for the tool are as 

follows: DEM as raster data, 100-year floodplain map as polygon vector data, Landsat imagery as raster 

data (applicable to bands 2 through 7 from the OLI sensor), SSURGO as polygon vector data, NHD as 

polyline vector data, NLCD as raster data, NWI as polygon vector data, WBD HUC areas as polygon 

vector data, and training data as polygon vector data. 
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Figure 5: Image of data structure hierarchy required by the tool 

 

3.4 Outline of tool algorithm 

Because the Environmental Systems Research Institute’s (ESRI) ArcGIS is a widely accepted 

software in the field of Geospatial Information Systems (GIS), this software was selected as the platform 

for the development and incorporation of the potential wetlands identification tool. This software has 

the capability to develop tool using ModelBuilder. ModelBuilder networks a series of tools together to 

allow users to run a stream of processes without requiring user input, improving the autonomy of the 

tool. 

Although ArcGIS is capable of a number of classification methods, Maximum Likelihood was 

selected as it is the more accepted method for classification. The Maximum Likelihood classification 

requires a manually generated training dataset in order for the classification to build a spectral profile 
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for land cover types. Alternative classification methods include Iso Cluster, which are capable of 

classification without training data, however, output is organized into statistically clustered groups 

which then will need intensive manual post processing to merge clusters into appropriate land use land 

class categories. The tool uses built-in ArcMap functions to execute a work flow that results in a final 

land use land cover raster that identifies wetland locations. 

The images below depicts the workflow of the ModelBuilder tool used for potential wetlands 

mapping. The tool is segmented into four sections: satellite Imagery processing, DEM raster processing, 

riparian zone processing, and tertiary processes that handle all other ancillary data sets. 

 

 

Figure 6: Flow diagram for potential wetlands identification tool. Figures 7-9 provide zoom-in views of the key components of 
the workflow that are highlighted with dashed lines in this figure. 

 



33 
 

 

Figure 7: Satellite imagery processing 

 

The satellite imagery processing section consist of generating three descriptive indices created 

from using a Tasseled Cap Transformation (TCT) on the Landsat 8 OLI imagery for bands 2 through 7. 

Bands 2, 3, and 4 are channels found in the visible spectrum, where bands 5, 6, and 7 are channels found 

in the shortwave infrared (SWIR) and near infrared spectrum (NIR). The tool utilizes these bands and 

condenses them into the three indices, which describe the greenness, wetness, and brightness of an 

areas. Each of these rasters were created using Raster Calculator and the following equations describing 

the weighted sum of comments method for generating these rasters. The following table outlines the 

scalars used for weighting each band (Hasan Ali Baig, Zhang, Shuai, & Tong, 2014). 



34 
 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =  ∑(𝑤1𝑖 ∗ 𝑏𝑎𝑛𝑑𝑖)

7

𝑖=2

 

Equation 2: Brightness weighted sum of components equation 

 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 =  ∑(𝑤2𝑖 ∗ 𝑏𝑎𝑛𝑑𝑖)

7

𝑖=2

 

Equation 3: Greenness weighted sum of components equation 

 

𝑊𝑒𝑡𝑛𝑒𝑠𝑠 =  ∑(𝑤3𝑖 ∗ 𝑏𝑎𝑛𝑑𝑖)

7

𝑖=2

 

Equation 4: Wetness weighted sum of components equation 

 

 

Table 4: Tasseled Cap Transformation coefficients for the Landsat 8 OLI sensor 

(Landsat 8) (Blue) (Green) (Red) (NIR) (SWIR1) (SWIR2)

TCT Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Brightness 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872

Greenness -0.2941 -0.2430 -0.5424 0.7276 0.0713 -0.1608

Wetness 0.1510 0.1973 0.3283 0.3407 -0.7117 -0.4559
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Figure 8: DEM processing 
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The DEM processing section uses DEM data to compute a sink raster, which identifies 

depressions throughout the topography. The DEM is first conditioned using NHD flow lines converted to 

a raster. The NHD flow line raster is multiplied by a large value, in this case 100 feet, and is subtracted 

from the DEM. This process is known as burning in streams. The Fill tool is then used to fill any 

depressions within the burned DEM. The filled and original DEM are then used in Raster Calculator, and 

pixels with changes in elevation are designated a value of 1 and pixels with the same elevation are 

designated a value of 0. The Fill tool is generally used to remove small imperfections in topography for 

flow path analysis, however, here it is used to identify depressed areas. Burning in streams is required to 

avoid cases where Fill may consider an extremely large area a depression. For example, a bridge crossing 

a stream would register at a higher elevation than the stream it is crossing and the Fill tool would fill all 

contributing areas up to the bridge, which would incorrectly lead to identifying these areas as a 

depressions. 
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Figure 9: Riparian processing 
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The Riparian zone processing section creates a buffer of 100 feet surrounding each NHD flowline 

and converts the polygons to a raster, where raster calculator was then used to compute a binary raster 

where pixels within the 100 foot riparian zone are designated a value of 1 and all other areas designated 

a value of 0.  

All tertiary processing revolves around the creation of binary rasters that represent wetlands 

traits. The tool assumes that the DEM is the highest resolution raster and is used as a processing 

constraint for the resolution, cell size, snap raster, and processing extent for all tools that involve 

conversion of vector data to raster data or resampling of lower resolution data. FEMA data is converted 

from polygon to raster. Raster Calculator is then used to compute a binary raster where pixels within the 

floodplain are designated a value of 1 and all other areas a value of 0. SSURGO data is converted from 

polygon to raster. Raster Calculator is then used to compute a binary raster where pixels containing 

hydric soils are designated a value of 1 and non-hydric soils a value of 0. NWI data is converted from 

polygon to raster. Raster Calculator is then used to compute a binary raster where pixels containing 

wetland areas delineated by USFWS are designated a value of 1 and non-wetland areas a value of 0. 

NLCD data data is incorporates as is. User generated training data is converted from polygon to raster, 

specifying pixels with the appropriate land use land cover designation specified. 

After all previously mentioned processing is complete, the tool composites each of these rasters 

into a comprehensive image, with the exception of the training data and NWI data. The rasterized 

training areas and composite image then used to develop signatures for the particular known land 

classes found throughout the image. This builds a library of spectral signatures that is then used for the 

maximum likelihood classification, in this study’s case, the land cover designations are river wetlands, 

inland wetlands, and non-wetlands. The result of these operations is a land use land cover raster 
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mapping the user specified land classes as well as a confidence raster describing the certainty of the 

maximum likelihood classification for 14 levels of confidence. The tool then merges the river wetlands 

and inland wetlands into one class and uses raster calculator to also include NWI designated wetlands.  

4 Results and Discussion 

4.1 Model Predictions 

Figure 10 depicts two datasets that contain mapped wetlands: this study’s model output and 

VDOT identified wetlands. The color depiction for each of the datasets are as follows: model output for 

wetlands is green, model output for non-wetlands is beige, and VDOT delineated wetlands are a red 

outline. The model performed well for region shown in Figure 10 with a low percentage of false 

negatives. However, there are still areas where false positives appear. The purple outline identifies a 

false negative where the model predicted no wetland, but the VDOT delineation identified a wetland. 

The blue outline identifies a false positive where the model predicted a wetland, but the VDOT 

delineation did not identify a wetland. In terms of this study’s goals of creating a potential wetland 

identification map that can be used to focus survey-based identification efforts, false positives are less 

concerning than false negatives. It is important to note that the VDOT data only extends to the 

associated corridor, therefore, model verification does not extend beyond the corridor extent. 
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Figure 10: Survey vs model predicted wetlands 

 

4.2 Confidence Level 

Figure 11 presents the confidence raster associated with the model predictions. This raster is 

generate through ArcGIS’s Maximum Likelihood classification and can be used to supplement the model 

projections for decision support applications. This raster depicts the Maximum Likelihood classification’s 

confidence in classification of each particular pixel. The level of confidence ranges from values of 1 to 

14, where lower values represent lower confidence and higher values represent higher confidence. 

These discrete levels where combined into 4 levels of confidence: none, low, moderate, and high. None 

spans values 1 to 3, Low spans values 3 to 6, Moderate spans values 6-10, and High spans values 10-14.  
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Figure 11: Grouped confidence raster 

4.3 Accuracy Assessment 

Figure 12 provides a comparison of the model output to VDOT mapped wetlands, which are 

considered the ground truth for the accuracy assessment. The figure was generated by using a raster 

difference calculation. For both the model output and VDOT mapped wetlands, wetland locations are 

designated with a value of 1 and non-wetland areas designated with a value of 0. The ArcGIS Raster 

Calculator tool was used to subtract the VDOT binary rasters from the model output binary raster. This 

results in false negatives being assigned a value of -1, shown in red, false positive being assigned a value 

of 1, shown in blue, and agreement between the two rasters being assigned a value of 0, shown in 

green.  



 
 

42 

The tool is configured to minimize false negatives (predicting no wetland when there is in fact a 

wetland) in order to focus survey efforts for wetland delineation on areas that have potential wetlands. 

For high levels of accuracy in identifying as many actual wetlands locations as possible, reducing the 

number of false negatives is extremely important, whereas minimizing the number of false positives is 

much less important. The tool can be reconfigured to meet other objectives, such as minimizing both 

false positives and false negatives if simple prediction of actual wetlands is the primary need of the 

decision maker. 

In Figure 12, the bottom left images are focused on two prominent problem areas found within 

the model output where false negatives were high. Future work should be directed to better 

understanding the reason for these clustered regions of false negative predictions. Potential reasons for 

these errors include either in accuracies in the “ground truth data” or missing information in the 

wetland identification algorithm. To verify the accuracy in the “ground truth” dataset, on the ground 

field work should be done to double check that the areas are truly wetland areas. If the area is verified 

to be wetlands, then there may be unique characteristics of these locations that could be incorporated 

into the prediction tool to remove these false negative predictions. It is also possible that there have 

been recent land changes in these regions that are not reflected in the underlying datasets used in the 

prediction tool.  
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Figure 12: Difference raster 

 

Table 5 outlines the total area for false negatives, false positives, and agreement pixels. The tool 

agreed with the VDOT wetland delineations for 69.3% of the study area. For the remaining portion of 

the study region, the majority of this area included false positive errors (24.3%) where the model 

predicted a wetland, but no wetland existing according to the VDOT delineation. Only 6.4% of the study 

region resulted in false negatives. Again, because the primary goal of the tool is to minimize false 

negatives, this 6.4% is the best reflection of the “accuracy” of the model. If this tool was used as a 

preliminary screening tool that focused wetland delineation efforts in potential wetland areas identified 
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by the tool, then while this would streamline delineation efforts by reducing the area required for 

wetland delineation, 6.4% of the wetlands in the study area would have been missed.  

 

Table 5: Difference raster areas 

 

4.4 Utilizing Model Predictions with Confidence Level 

Figure 13 presents a composite of the model predictions with the confidence level added for false 

negative areas. The confidence level provides important information to decision makers that can be 

used when determining the benefits and costs of focusing wetland delineation efforts to streamline 

projects. For example, if a high level of confidence is needed, then the decision maker may wish to 

survey all pixels that have a minimal, low, or moderate confidence level, even if the tool determined 

these pixels to be non-wetland areas. This would increase the total area that required surveying, 

therefore increasing the cost and time required to complete the surveying, but it would reduce the 

number of missed wetland areas. Table 6 provides the area within each confidence level for the false 

negative predictions along with its percentage of the total site area and the percentage of false positives 

in that confidence level compared to the total site area. This data shows that, if all non-wetland 

“minimal confidence” and “low confidence” regions were included in the wetland delineation survey, it 

would have resulted in the need to survey 2,584 more acres (31.6% of the study region). At the same 

time, it would have reduced the false negatives from 6.4% of the study region to 2.9% of the study 

region.  

Area (acre) Percent Area (%)

False Negatives 523 6.4

Agreement 5669 69.3

False Positives 1984 24.3

Area within both corridors
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Figure 13: Difference raster supplemented with confidence levels 

 

  

Table 6: Difference/Confidence raster areas 

 

Figure 14 further describes this trade-off between reducing the number of false negative 

predictions and increasing the area of the study region that must be surveyed. Given that the area of the 

region that must be surveyed is a surrogate for the cost and time required to complete the wetland 

Area (acre) Percent Area (%) Percent False Positives (%)

Minimal Confidence 781 9.5 1.90

Low Confidence 1803 22.1 1.56

Moderate Confidence 1834 22.4 2.86

High Confidence 123 1.5 0.09
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delineation, this figure illustrates the trade-off between error (false positives) and cost (survey area) for 

the study region. Given this information, a decision maker may elect to reduce the percentage of false 

negatives from 6.4% to 4.5% by surveying an additional 9.5% of the project site area. The additional 

9.5% of the site area that would be surveyed are pixels that were classified as non-wetland, but with 

only minimal confidence.  This relationship between error and cost may be specific to this study region 

and further work applying the wetland identification tool and performing surveyed wetland delineation 

for other regions would be necessary to gain insight into the regional variability of the error vs cost 

relationship. If a general relationship is found, it could be applied for sites without survey data to 

understand the potential trade- off between error and cost for the wetland identification tool.  

 

Figure 14: Relationship between level of certainty and increase surveyed areas 

5 Conclusions and Future Work 

5.1.1 Conclusions 

The semi-autonomization of current wetlands identification techniques using freely available 

datasets to isolate target sites for on the ground wetlands delineation has shown great promise for 
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reducing man-hours in the field, expediting approval, and streamlining project delivery. By utilizing this 

approach, it was possible to obtain results in agreement with those from a trained image analyst’s 

method for nearly 70% of the study region. Because the tool was configured to minimize false negatives 

(predicting no wetland when there is in fact a wetland), the majority of disagreement between the tool 

and the trained image analyst’s method were cases where the tool identified a wetland when the 

analyst did not (false positives). Only about 6% of the study region resulted in false negatives. The tool 

run time took approximately 6 hours, whereas a trained image analysts may take several days, therefore 

it offers benefits especially if used as a screening tool to focus the efforts of the trained analyst to 

regions where wetlands are probable. Although the data preparation for the model would take an 

estimated week, the same procedures would be required when using manual identification methods. 

The tool has the added benefit that it could be used for other regions, given that it is based on national-

scale publically available datasets.  

An important part of the tool is the resulting prediction confidence raster. This information can 

be used to balance the trade off between error and cost for the wetland identification tool. For example, 

a decision maker could override the model results by electing to have a trained image analyst survey 

areas that have a low confidence level for its “non-wetland” prediction. Doing so would reduce the error 

(number of false negative predictions) but increase the cost by increasing the area that would need to 

be surveyed. The confidence raster also provides important insights into the predictive capability of the 

tool and potential areas for improvement. For example, the confidence raster indicates that the tool is 

easily able to identify lakes, rivers, and ocean pixels, which can be attributed to their characteristic 

spectral response of being highly absorptive in the near infrared bands which is a stark difference 

between other land cover types. Urbanized areas generally had higher classification confidence levels 

due to their distinctive spectral response.  
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The coarse spatial resolution of Landsat imagery appears to be the restrictive dataset that 

causes the tool to be inaccurate. The pixelated mapping of the model output edges is indicative that the 

multispectral imagery component of the model is governing, which is apparent in this imagery due to its 

coarse resolution in comparison to the other model components. Unfortunately, due to a poor spatial 

resolution of 30 meters, these areas can account for some error within the tools classification. The 

spectral response for a single pixel is associated with a 900 square meter area, which may include a 

number of different land cover types, resulting in a pixel value not representative of this area and result 

in wrongful classification. 

Another source of error for the tool could be due to inaccuracies within the verification data 

provided. Manual inspection of the verification data cross referenced with areal imagery showed a few 

instances where wetland areas may have been identified incorrectly. For example, certain wetland 

polygon regions in the verification data intersected roadways. It is possible that these wetlands exists 

underneath bridge structures, which would not have been identified by the tool as wetlands locations. 

Alternatively, inconsistency in the time of acquisition for the model datasets and verification data can 

result in errors in location where drastic land cover changes occur in short periods of time. Regardless, 

field verification of areas where the model projections different from the survey projections would help 

to further refine the model. 

5.1.2 Future Work 

Future work should focus on increasing accuracies using higher resolution data as they become 

available. Digital elevation model (DEM) datasets can be replaced with higher resolution LiDAR-dervied 

DEM datasets in the future. With the inclusion of LiDAR data, the tool has access to drastically higher 

spatial resolutions, thereby increasing the detection of smaller or thinner wetlands. LiDAR also can be 

utilized to provide height characteristics of vegetation, which would be useful if it is necessary to type 
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the vegetation or wetlands. For example, differentiating between forest or scrub-shrub wetlands could 

be possible with this additional information. 

Another advancement to this study would be to implement newer and higher resolution 

satellite imagery when it becomes available. GeoEye’s IKONOS satellite currently can provide resolutions 

up to 1m, but the data can be expensive. Advancements in satellite imagery are increasing at a swift 

pace, so increases in spatial and spectral resolution are not far away and, as a result, may parallel 

increases in resolution with freely available imagery as well. Also, newer satellites are offering 

hyperspectral imagery, which will drastically increases the number of available bands, giving the ability 

to develop more continuous spectral profiles. 

Satellites are also pushing advancement into longer wavelengths, particularly the microwave 

region. Soil Moisture Active Passive (SMAP) is one such satellite that operates in the microwave 

wavelengths and is capable of penetrating atmospheric and canopy disturbances to evaluate surface soil 

moisture levels. This data can be extremely beneficial to supplement SSURGO soil information. While 

soil hydrologic groups are important for wetland identification, soil moisture, which is difficult to obtain 

now for broad regions, would be a critical dataset for identifying wetland locations given that wetlands 

will have very high soil moisture profiles relative to neighboring locations.  

Another potential area of improvement would be the use of Unmanned Areal Vehicles (UAV) 

rather than satellites for data collection. Using UAVs has the advantage of operating at lower elevations, 

avoiding most atmospheric disturbances, to obtain extremely high spatial resolutions. It may also be 

possible to obtain more up-to-date data using UAVs compared to satellites. There are challenges with 

this approach, however, including changing regulations and a nascent commercial market for UAV 

services. It is projected that the use of UAVs for a variety of purposes including environmental 
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monitoring will increase in the future, and if so, UAV derived data could be used in a tool like the one 

developed in this research to improve its accuracy at identifying potential wetland locations. 
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7 Appendix 
 

EO-1 ALI   

Bands Wavelength (µm) Resolution (m) 

Pan 0.48 - 0.69 10 

MS - 1' 0.433 - 0.453 30 

MS - 1 0.45 - 0.515 30 

MS - 2 0.525 - 0.605 30 

MS - 3 0.63 - 0.69 30 

MS - 4 0.775 - 0.805 30 

MS - 4' 0.845 - 0.89 30 

MS - 5' 1.2 - 1.3 30 

MS - 5 1.55 - 1.75 30 

MS - 7 2.08 - 2.35 30 

   

   

EO-1 Hyperion   

Bands 
Average Wavelength 

(nm) 
Resolution (m) 

B1 355.59 30 

B2 365.76 30 

B3 375.94 30 

B4 386.11 30 

B5 396.29 30 

B6 406.46 30 

B7 416.64 30 

B8 426.82 30 

B9 436.99 30 

B10 447.17 30 

B11 457.34 30 

B12 467.52 30 

B13 477.69 30 

B14 487.87 30 

B15 498.04 30 

B16 508.22 30 

B17 518.39 30 

B18 528.57 30 

B19 538.74 30 

B20 548.92 30 

B21 559.09 30 

B22 569.27 30 
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B23 579.45 30 

B24 589.62 30 

B25 599.8 30 

B26 609.97 30 

B27 620.15 30 

B28 630.32 30 

B29 640.5 30 

B30 650.67 30 

B31 660.85 30 

B32 671.02 30 

B33 681.2 30 

B34 691.37 30 

B35 701.55 30 

B36 711.72 30 

B37 721.9 30 

B38 732.07 30 

B39 742.25 30 

B40 752.43 30 

B41 762.6 30 

B42 772.78 30 

B43 782.95 30 

B44 793.13 30 

B45 803.3 30 

B46 813.48 30 

B47 823.65 30 

B48 833.83 30 

B49 844 30 

B71 851.92 30 

B50 854.18 30 

B72 862.01 30 

B51 864.35 30 

B73 872.1 30 

B52 874.53 30 

B74 882.19 30 

B53 884.7 30 

B75 892.28 30 

B54 894.88 30 

B76 902.36 30 

B55 905.05 30 

B77 912.45 30 

B56 915.23 30 
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B78 922.54 30 

B57 925.41 30 

B79 932.64 30 

B58 935.58 30 

B80 942.73 30 

B59 945.76 30 

B81 952.82 30 

B60 955.93 30 

B82 962.91 30 

B61 966.11 30 

B83 972.99 30 

B62 976.28 30 

B84 983.08 30 

B63 986.46 30 

B85 993.17 30 

B64 996.63 30 

B86 1003.3 30 

B65 1006.81 30 

B87 1013.3 30 

B66 1016.98 30 

B88 1023.4 30 

B67 1027.16 30 

B89 1033.49 30 

B68 1037.33 30 

B90 1043.59 30 

B69 1047.51 30 

B91 1053.69 30 

B70 1057.68 30 

B92 1063.79 30 

B93 1073.89 30 

B94 1083.99 30 

B95 1094.09 30 

B96 1104.19 30 

B97 1114.19 30 

B98 1124.28 30 

B99 1134.38 30 

B100 1144.48 30 

B101 1154.58 30 

B102 1164.68 30 

B103 1174.77 30 

B104 1184.87 30 
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B105 1194.97 30 

B106 1205.07 30 

B107 1215.17 30 

B108 1225.17 30 

B109 1235.27 30 

B110 1245.36 30 

B111 1255.46 30 

B112 1265.56 30 

B113 1275.66 30 

B114 1285.76 30 

B115 1295.86 30 

B116 1305.96 30 

B117 1316.05 30 

B118 1326.05 30 

B119 1336.15 30 

B120 1346.25 30 

B121 1356.35 30 

B122 1366.45 30 

B123 1376.55 30 

B124 1386.65 30 

B125 1396.74 30 

B126 1406.84 30 

B127 1416.94 30 

B128 1426.94 30 

B129 1437.04 30 

B130 1447.14 30 

B131 1457.23 30 

B132 1467.33 30 

B133 1477.43 30 

B134 1487.53 30 

B135 1497.63 30 

B136 1507.73 30 

B137 1517.83 30 

B138 1527.92 30 

B139 1537.92 30 

B140 1548.02 30 

B141 1558.12 30 

B142 1568.22 30 

B143 1578.32 30 

B144 1588.42 30 

B145 1598.51 30 
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B146 1608.61 30 

B147 1618.71 30 

B148 1628.81 30 

B149 1638.81 30 

B150 1648.9 30 

B151 1659 30 

B152 1669.1 30 

B153 1679.2 30 

B154 1689.3 30 

B155 1699.4 30 

B156 1709.5 30 

B157 1719.6 30 

B158 1729.7 30 

B159 1739.7 30 

B160 1749.79 30 

B161 1759.89 30 

B162 1769.99 30 

B163 1780.09 30 

B164 1790.19 30 

B165 1800.29 30 

B166 1810.38 30 

B167 1820.48 30 

B168 1830.58 30 

B169 1840.58 30 

B170 1850.68 30 

B171 1860.78 30 

B172 1870.87 30 

B173 1880.98 30 

B174 1891.07 30 

B175 1901.17 30 

B176 1911.27 30 

B177 1921.37 30 

B178 1931.47 30 

B179 1941.57 30 

B180 1951.57 30 

B181 1961.66 30 

B182 1971.76 30 

B183 1981.86 30 

B184 1991.96 30 

B185 2002.06 30 

B186 2012.15 30 
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B187 2022.25 30 

B188 2032.35 30 

B189 2042.45 30 

B190 2052.45 30 

B191 2062.55 30 

B192 2072.65 30 

B193 2082.75 30 

B194 2092.84 30 

B195 2102.94 30 

B196 2113.04 30 

B197 2123.14 30 

B198 2133.24 30 

B199 2143.34 30 

B200 2153.34 30 

B201 2163.43 30 

B202 2173.53 30 

B203 2183.63 30 

B204 2193.73 30 

B205 2203.83 30 

B206 2213.93 30 

B207 2224.03 30 

B208 2234.12 30 

B209 2244.22 30 

B210 2254.22 30 

B211 2264.32 30 

B212 2274.42 30 

B213 2284.52 30 

B214 2294.61 30 

B215 2304.71 30 

B216 2314.81 30 

B217 2324.91 30 

B218 2335.01 30 

B219 2345.11 30 

B220 2355.21 30 

B221 2365.2 30 

B222 2375.3 30 

B223 2385.4 30 

B224 2395.5 30 

B225 2405.6 30 

B226 2415.7 30 

B227 2425.8 30 
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B228 2435.89 30 

B229 2445.99 30 

B230 2456.09 30 

B231 2466.09 30 

B232 2476.19 30 

B233 2486.29 30 

B234 2496.39 30 

B235 2506.48 30 

B236 2516.59 30 

B237 2526.68 30 

B238 2536.78 30 

B239 2546.88 30 

B240 2556.98 30 

B241 2566.98 30 

B242 2577.08 30 

   

   

GeoEye-1 GIS-MS   

Bands Wavelength (µm) Resolution (m) 

Panchromatic 0.450-0.800 0.46 

Blue 0.450-0.510 1.84 

Green 0.510-0.580 1.84 

Red 0.655-0.690 1.84 

Near Infra Red 0.780-0.920 1.84 

   

   

GeoEye-1 IKONOS-2   

Bands Wavelength (µm) Resolution (m) 

Panchromatic 0.760-0.850 0.82 

Blue 0.455-0.520 3.2 

Green 0.510-0.600 3.2 

Red 0.630-0.700 3.2 

Near Infra Red 0.760-0.850 3.2 
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Landsat 7 ETM+   

Bands Wavelength (µm) Resolution (m) 

Band 1 0.45-0.52 30 

Band 2 0.52-0.60 30 

Band 3 0.63-0.69 30 

Band 4 0.77-0.90 30 

Band 5 1.55-1.75 30 

Band 6 10.40-12.50 60 * (30) 

Band 7 2.09-2.35 30 

Band 8 .52-.90 15 

   

   

Landsat 8 OLI   

Bands Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

   

   

Orbview-3   

Bands Wavelength (µm) Resolution (m) 

Pan 0.450-0.900 1 

MS1 (Blue) 0.450-0.520 4 

MS2 (Green) 0.520-0.600 4 

MS3 (Red) 0.625-0.695 4 

MS4 (NIR) 0.760-0.890 4 

   

 

 

 

 

 

 

 

 

   



 
 

62 

SPOT 7   

Bands Wavelength (µm) Resolution (m) 

Panchromatic 0.450-0.745 1.5 

Blue 0.450-0.520 1.5 

Green 0.530-0.590 1.5 

Red 0.625-0.695 1.5 

Near Infrared 0.760-0.900 1.5 

   

   

Quickbird   

Bands Wavelength (µm) Resolution (m) 

Panchromatic 0.405-1.053 0.55 

Blue 0.430-0.545 2.16 

Green 0.466-0.620 2.16 

Red 0.590-0.710 2.16 

Near-IR 0.715-0.918 2.16 

   

   

RapidEye   

Bands Wavelength (µm) Resolution (m) 

Blue 0.440-0.510 5 

Green 0.520-0.590 5 

Red 0.630-0.685 5 

Red Edge 0.690-0.730 5 

NIR 0.760-0.850 5 

   

   

SkySat-2   

Bands Wavelength (µm) Resolution (m) 

Blue 0.450-0.515 2 

Green 0.515-0.595 2 

Red 0.605-0.695 2 

Near Infra-Red 0.740-0.900 2 
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Terra ASTER   

Bands Wavelength (µm) Resolution (m) 

1 0.52-0.60 15 

2 0.63-0.69 15 

3N 0.78-0.86 15 

3B 0.78-0.86 15 

4 1.60-1.70 30 

5 2.145-2.185 30 

6 2.185-2.225 30 

7 2.235-2.285 30 

8 2.295-2.365 30 

9 2.360-2.430 30 

10 8.125-8.475 90 

11 8.475-8.825 90 

12 8.925-9.275 90 

13 10.25-10.95 90 

14 10.95-11.65 90 
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WorldView-3   

Bands Wavelength (µm) Resolution (m) 

Panchromatic 0.450-0.800 0.31 

Coastal 0.400-0.450 1.24 

Blue 0.450-0.510 1.24 

Green 0.510-0.580 1.24 

Yellow 0.585-0.625 1.24 

Red 0.630-0.690 1.24 

Red Edge 0.705-0.745 1.24 

Near-IR1 0.770-0.895 1.24 

Near-IR2 0.860-1.040 1.24 

SWIR-1 1.195-1.225 3.7 

SWIR-2 1.550-1.590 3.7 

SWIR-3 1.640-1.680 3.7 

SWIR-4 1.710-1.750 3.7 

SWIR-5 2.145-2.185 3.7 

SWIR-6 2.185-2.225 3.7 

SWIR-7 2.235-2.285 3.7 

SWIR-8 2.295-2.365 3.7 

Desert Clouds 0.405-0.420 30 

Aerosol-1 0.459-0.509 30 

Green 0.525-0.585 30 

Aerosol-2 0.635-0.685 30 

Water-1 0.845-0.885 30 

Water-2 0.897-0.927 30 

Water-3 0.930-0.965 30 

NDVI-SWIR 1.220-1.252 30 

Cirrus 1.365-1.405 30 

Snow 1.620-1.680 30 

Aerosol-3 2.105-2.245 30 

Aerosol-4 2.105-2.245 30 

 


