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Abstract

Distributed coordination control of complex multi-agent networks has received significant attention over the

past decades, due to its widely recognized advantages and potentials in many applications such as large scale

sensor networks, robotic networks, power grid, distributed computing clouds, social networks and biological

networks. Within the control theory community, the main research task in an engineering multi-agent network

system is to design distributed control algorithms, which only use local neighborhood information, to achieve

some specified global objectives.

Distributed consensus and synchronization are two important problems in complex engineering multi-agent

networks. Consensus is concerned with reaching a network-wide agreement on some quantities of interest

while each agent can only access local information. Synchronization defines the correlated-in-time behavior

between different agents achieved by local interaction strategies. Synchronization control is also employed to

achieve distributed coordinated tracking objectives in multi-agent networks.

A multi-agent network can be quite complex. The amount of agents could be huge, each agent might have

complicated dynamics which might possibly be nonlinear and unknown, and the interaction topology among

the agents could change over time. Regardless of the control algorithms employed, coordinated control of

multi-agent networks relies heavily on interactions among agents, and for this reason the interaction topology

plays an essential role in the development of the distributed coordination control algorithms as well as the

analysis of their performance. Two major approaches, the common Lyapunov function approach and the

multiple Lyapunov function approach, have been demonstrated to be effective in developing and analyzing

control protocols for multi-agent networks with dynamic interaction topologies.

In this thesis, we investigate distributed coordination control problems of complex multi-agent networks

with dynamic interaction topologies, which include three main parts summarized as follows.

i) In the first part of this thesis, we consider the distributed synchronization control problem for a multi-

agent network with nth order unknown nonlinear agent dynamics. We first establish the results for both

an undirected time varying interaction topology and a directed time varying interaction topology. A

standard assumption on the interaction topology connectivity in the literature on this type of problems
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is made, namely, the interaction topology is connected. Distributed synchronization control algorithms

are developed and the desired synchronization performance of the multi-agent network system is proven.

ii) In the second part of this thesis, we address the distributed consensus control problem of a multi-

agent network with high order linear agent dynamics under a directed jointly connected interaction

topology. This enriches the existing literature on multi-agent distributed consensus control under a

jointly connected directed interaction topology, which was limited to very simple single integrator agent

dynamics. The distributed control protocols are developed and the consensus is proven.

iii) In the final part of this thesis, we investigate the distributed coordinated tracking problem for a

multi-agent network under a state dependent jointly connected dynamic interaction topology. In many

applications such as in situations where information exchange among agents is conducted via equipped

sensors, the interaction topology depends on agents’ states such as the distance among agents, and

cannot be simply assumed as a function of time. The distributed control protocols are developed and

the coordinated tracking is proven. In addition, a new topology connectivity enhancing mechanism is

proposed to help ensure coordinated tracking in real world implementations. In comparison with the

existing topology connectivity preserving algorithms, our proposed topology connectivity enhancing

mechanism is effective in maintaining both the initially existent topology edges and the newly formed

topology edges, which enables us to relax the more restrictive requirement that the interaction topology

is initially connected.
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Chapter 1

Introduction

1.1 Overview of Multi-agent Networks

Distributed coordination of complex multi-agent networks has undergone rapid progress over the past decades.

Due to the widely recognized advantages and potentials in various applications such as large scale sensor

networks, robotic networks, distributed computing clouds, power grid, social networks and biological networks,

the distributed coordination problems in complex multi-agent networks have received much attention from

researchers in various disciplines including control, optimization, computer science, physics, social science

and biology. Some earliest influential research works on the distributed multi-agent systems are perhaps the

work in social science by DeGroot [1], the work in distributed decision making by Tsitsiklis ([2, 3]), the work

in statistical physics by Vicsek et al. [4], and the work in distributed computing by Lynch [5]. Within the

control theory community, in the past two decades, much research effort (e.g., [6–14,17–37,41,47–49]) has

been spent on distributed consensus and synchronization control, which are two very important coordinated

control problems in engineering multi-agent networks.

A multi-agent network consists of a number of interacting intelligent agents that cooperate to solve a

problem or to achieve a common objective. Each intelligent agent in the system must be endowed with

autonomy and social ability. That is, each agent must be able to observe the environment and other agents

in the system and to react based on such observations. Intelligent agents can be any entities that possess

such two properties, such as, unmanned vehicles, robots and biological objects.

The most significant feature and the biggest advantage of engineering multi-agent networks is perhaps

that the power of the system as a whole can be greater than the sum of individuals’ power. As a result,

engineering multi-agent networks can be used to solve large-scale or complicated problems that are not
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solvable by individual systems.

Regardless of the control algorithms employed, coordinated control in engineering multi-agent networks

relies heavily on interactions among agents and for this reason the interaction topology plays an essential

role in the development of the distributed coordination control algorithms as well as the analysis of their

performance. Two major approaches have been demonstrated to be effective in developing and analyzing

control protocols for multi-agent networks with time varying interaction topologies. They are the common

Lyapunov function approach and the multiple Lyapunov function approach [51].

1.2 Distributed Consensus Control of Multi-agent Networks un-

der Dynamic Interaction Topologies

Consensus control is an important problem in coordinated control of multi-agent networks. Many algorithms

used to solve other coordination problems, including formation control and swarm tracking, originate from

consensus protocols. Consensus control is concerned with reaching a network-wide agreement on some

quantities of interest while each agent can only access local neighborhood information. Applications of

consensus control include cooperative estimation in wireless sensor networks and management of distributed

database.

The consensus control problem of multi-agent networks under time varying interaction topologies has

been intensively studied by researchers. To be specific, for multi-agent systems with first order integrator

dynamics, Jadbabaie et al. [6] proposed distributed consensus control protocols such that the group of

agents can reach consensus under jointly connected switching interaction topologies. The interaction graph

considered in [6] is undirected, and all edges in the graph have identical weights. In 2005, Ren and Beard [8]

extended the results of [6] to directed interaction graphs. They proposed distributed control protocols for

multi-agent systems with first order integrator agent dynamics and showed that the information consensus can

be achieved asymptotically under their control algorithms if the union of the switching directed interaction

graphs contains a spanning tree frequently enough. Hong et. al [17] in 2007 proposed a Lyapunov-based

approach to solving the second order consensus control problem for multi-agent systems with a stationary

leader, which stands for a fixed objective point, under switching jointly connected interaction topologies. The

interaction topology considered in [17] is undirected, and some additional assumptions about the interaction

graphs which are more restrictive than those in [8] are made to derive the results. In 2012, Su and Huang [24]

proposed consensus control protocols for a class of multi-agent systems with higher order agent dynamics

under switching jointly connected undirected interaction topologies. With the assumption that the linear
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multi-agent system is marginally stable, they showed that consensus can be achieved by the group of agents

under their proposed protocols. Both the leaderless and leader following consensus problems were addressed in

their work. However, as the authors have pointed out, the tool they used in [24] is not applicable to directed

graphs, and thus it is not obvious how their results could be extended to multi-agent systems with directed

interaction topologies. It is pointed out here that, for distributed consensus control under a jointly connected

directed interaction topology, the existing literature is limited to the simplest case of agent dynamics, namely,

single integrator agent dynamics [8].

Here, the exact definitions about graph topology connectivity (e.g., joint connectivity) are referred to

Section 2.1 (“Graph Theory”) of this thesis.

1.3 Distributed Synchronization Control of Multi-agent Networks

under Dynamic Interaction Topologies

Different from consensus, which is concerned with reaching a network-wide agreement on some quantities of

interest, synchronization defines the correlated-in-time behavior between different agents achieved by local

interaction strategies. Namely, distributed synchronization control aims at driving all agents to achieve the

same states, and such synchronized states are allowed to be time varying. Synchronization control can also

be employed to achieve coordinated tracking objectives in multi-agent networks.

Early works on distributed synchronization control of multi-agent networks mainly focus on the case of

known linear agent dynamics. More recently, some emerging research started to address the distributed

synchronization control of multi-agent networks with unknown nonlinearities. In particular, the consensus

problem for multi-agent systems with unknown nonidentical nonlinear dynamics and disturbances, was first

studied by Hou et al. [11] for a fixed connected undirected graph communication topology. In a pair of papers,

Das and Lewis ([12,13]) extended the work [11] to a fixed strongly-connected digraph communication topology,

and they considered the synchronization problem with a leader. First-order systems were considered in [12],

and second-order systems were considered in [13]. However, unfortunately, the results in ([12, 13]) do not

hold due to a technical error. In addition, for such a class of multi-agent network with unknown nonidentical

nonlinear agent dynamics, there is no existing literature addressing the distributed synchronization control

problem under a time varying interaction topology.
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1.4 Distributed Coordinated Tracking of Multi-agent Networks

under State Dependent Dynamic Interaction Topologies

In most of the literature on multi-agent systems with switching interaction topologies, the network interaction

topology connectivity is simply defined as a function of time, and is not dependent on the agent states.

However, in many real world applications, the network topology might actually depend on the agent states.

For example, the connectivity might depend on the distance between agents if equipped sensors are used for

the information exchange between agents.

To be specific, in the case that the interaction topology is defined based on physical proximity and all

agents have identical sensing radius, one well-known work [9] is by Olfati-Saber, who proposed a distributed

virtual leader tracking control protocol for multi-agent systems with second order integrator dynamics. In

particular, under the assumptions that all agents are informed and that the virtual leader travels at a constant

velocity, Olfati-Saber showed that, the proposed virtual leader tracking control algorithm, which incorporates

a navigational feedback, enables all the follower agents to track a virtual leader. Su et al. [22] extended the

results in [9] to the case that only a fraction of the agents are informed. They proposed a revised version

of Olfati-Saber’s algorithm and showed that, when only a fraction of agents are informed, their proposed

control algorithm still enables all the informed agents to move with the desired velocity, and an uninformed

agent to also move with the same desired velocity if it can be influenced by the informed agents from time

to time during the evolution. It is emphasized here that the dynamic network interaction topology is not

required to be connected at each time instant to establish the results. Note that, the proposed distributed

control protocols in [9] and [22] involve quite complicated nonlinear functions, and topology connectivity

maintenance was not considered. The previous works ([20, 21]) also extended [9] to the case that only a

fraction of the follower agents are informed, and their proposed control protocols work for the case that the

virtual leader has a time varying velocity. However, in both [20] and [21], in order to drive the follower agents

to track the virtual leader, it is required that the undirected interaction topology is connected all the time,

which is restrictive.

1.5 Research Objectives

A summary of some existing research and problems that remain unresolved is as follows.

• Distributed synchronization control problem for multi-agent networks with unknown nonlinearities has

been studied in ([11–13]), but time varying interaction topologies were not considered. In addition, for
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agent dynamics, only first order and second order systems were addressed. Moreover, the results for

fixed directed interaction topologies ([12,13]) do not hold, due to a technical error.

• Distributed consensus control problem for multi-agent networks under a jointly connected directed

interaction topology has been studied in [8], but only the simplest case of agent dynamics was considered,

namely, single integrator agent dynamics.

• Distributed virtual leader tracking problem for multi-agent networks under a state dependent dynamic

interaction topology has been studied in ([9,20–22]). However, in ([20,21]), a restrictive assumption

about the network interaction topology connectivity was made, namely, the topology is connected

at each time instant. In ([9, 22]), the proposed controller structure is quite complex and involves

complicated nonlinear functions. Moreover, the velocity information of the virtual leader is required in

all these works ([9, 20–22]).

In view of the problems summarized in the above list, in this research we aimed to:

• Design distributed synchronization control protocols for multi-agent networks with unknown nonlineari-

ties and with general nth order agent dynamics, under time varying interaction topologies. A common

Lyapunov function method is employed to establish our results on time varying undirected interaction

topologies, while a multiple Lyapunov function method is developed to establish our results on time

varying directed interaction topologies.

• Design distributed consensus control protocols for high order linear multi-agent systems under a jointly

connected directed interaction topology. The closed-loop performance is proved.

• Design distributed virtual leader tracking control protocols for multi-agent networks under a state

dependent time varying interaction topology. Our proposed control protocols are much simpler than

those in ([9, 22]), and we do not pose the restrictive connectivity assumption that the topology is

connected all the time as in ([20, 21]). Then, we further extend the results to the case that when

the velocity information of the virtual leader is not available to follower agents. Finally, we design a

novel topology connectivity enhancing mechanism to help ensure virtual leader tracking in real world

implementations. In comparison with the existing topology connectivity preserving algorithms, our

proposed topology connectivity enhancing mechanism is effective in maintaining both the initially

existent topology edges and the newly formed topology edges.
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1.6 Dissertation Outline

The remainder of this dissertation will be organized as follows. In Chapter 2, mathematical tools and concepts

are introduced. Chapter 3 presents our solutions to the distributed synchronization control problems for

multi-agent networks with unknown nonlinearities. In Chapter 4, we address the distributed consensus control

problem for high order linear multi-agent systems under a jointly connected interaction topology. In Chapter

5, we presents research results on the distributed virtual leader tracking for multi-agent networks under a

state dependent time varying interaction topology. Finally, conclusions regarding this work are drawn in

Chapter 6, where possible future works are discussed as well. This dissertation research has resulted in the

publications listed in ([38–46]).
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Chapter 2

Fundamentals

2.1 Graph Theory

Distributed coordinated control of multi-agent systems, including synchronization, consensus and tracking,

relies on the information exchange among the agents. In this work, the communication topology network

among the agents is represented by a directed (or undirected) graph, which might change over time.

Definition 1 A directed weighted graph G(t) = {V,E(t), A(t)} consists of a nonempty set of nodes V =

{v1, v2, · · · , vN}, a set of edges E(t) ⊂ V × V , and an adjacency matrix A(t) = [aij ](t) ∈ RN×N which

specify the weights of the edges. The ordered pair (vi, vj) ∈ E(t) if and only if there exists a directional

communication link from node vi to node vj at time t. For entries of the adjacency matrix A(t), aij(t) > 0 if

(vj , vi) ∈ E(t), and aij(t) = 0 otherwise. A directed edge (vj , vi) at time t denotes that agent i has access to

the information of agent j at time t. Let Ni(t) denote the index set of the neighboring nodes of vi at time t,

that is, Ni(t) = {1 ≤ j ≤ N : (vj , vi) ∈ E(t)}.

Remark 1 In definition 1, for the special case that the edges are bidirectional and aij(t) ≡ aji(t), G(t) =

{V,E(t), A(t)} is said to be an undirected graph.

Remark 2 In definition 1, if E(t) and A(t) do not change over time, then G(t) is said to be a fixed graph,

and the notation of the graph can be simplified as G = {V,E,A}.

Definition 2 In a fixed undirected graph, a path is defined as a sequence of nodes in which any two consecutive

nodes are linked by an edge. A fixed undirected graph G = {V,E,A} is said to be connected if there exists an

undirected path between any pair of two nodes vi and vj, where vi ∈ V , vj ∈ V , i 6= j.
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Definition 3 In a fixed directed graph, a directed path of length l is a sequence of directed edges

(vi1 , vi2), (vi2 , vi3), · · · , (vil , vi(l+1)
). A fixed directed graph G = {V,E,A} is said to be strongly connected if

there exists a directed path from any node vi to any node vj, where vi ∈ V , vj ∈ V , i 6= j.

Definition 4 A time varying undirected weighted graph G(t) = {V,E(t), A(t)} is said to be jointly connected

if, there exists a positive constant T > 0, such that, for any t ≥ 0, the union of the graphs over the time

interval [t, t+ T ) is connected.

Definition 5 A time varying directed weighted graph G(t) = {V,E(t), A(t)} is said to be jointly connected if,

there exists a positive constant T > 0, such that, for any t ≥ 0, the union of the graphs over the time interval

[t, t+ T ) contains a directed spanning tree.

Definition 6 Define the Laplacian matrix of graph G(t) = {V,E(t), A(t)} as L(t) = D(t) − A(t), where

D(t) = diag{d1, d2, · · · , dN} with di =
∑N
j=1 aij(t), i = 1, 2, · · · , N . For an undirected graph, L(t) = (L(t))T.

Definition 7 For a multi-agent network with N follower agents and one leader agent, define a diagonal

matrix B = diag{bi} ∈ RN×N , where bi > 0 if follower agent i has access to the information of the leader

agent, and bi = 0 otherwise.

2.2 Switched System Theory

Switched system theory is very useful in developing and analyzing distributed control protocols for multi-agent

networks under a switching communication topology. In particular, the common Lyapunov function approach

and the multiple Lyapunov function approach are two major approaches that have been demonstrated to

be effective in analyzing the performance of such a multi-agent network with time varying communication

topologies [51].

Lyapunov function approach is a fundamental tool in control theory to analyze stability of linear and

nonlinear systems, including multi-agent network systems. For multi-agent network with a time varying

interaction topology, most existing works rely on the construction of a common Lyapunov function. However,

in many situations, a common Lyapunov function might be very difficult to know or does not exist at

all. In such cases, the multiple Lyapunov function approach to solving the stability analysis problems of

multi-agent systems with switching communication topologies is a promising avenue to pursue. To be specific,

in such a case, a series of different Lyapunov functions would be constructed, where different Lyapunov

functions correspond to different communication interaction topologies. Then these constructed Lyapunov

functions would be used together to analyze the performance of the multi-agent networks under a time

8



Figure 2.1: Two Lyapunov functions (blue solid thick lines correspond to active V1, red dashed thick lines
correspond to active V2, black dashed thin lines correspond to inactive V1, green dashed thin lines correspond

to inactive V2): a) left figure - continuous Vσ; b) right figure - discontinuous Vσ

varying interaction topology. It is pointed out here that, to use the method of multiple Lyapunov function

approach to prove system stability, it is required that the total number of the constructed different Lyapunov

functions is finite.

To illustrate the basic idea of multiple Lyapunov function approach, consider the simple case of a

switched system that consists of only two individual subsystems Sys1 and Sys2, both of which are (globally)

asymptotically stable. Let V1 and V2 be their respective (radially unbounded) Lyapunov functions. We are

interested in the situation where a common Lyapunov function for the two systems is not known or does not

exist. Let the system switch between Sys1 and Sys2 in a sequence defined by a switching signal σ(t), whose

value set is {1, 2}. Namely, if σ(t) = 1, the subsystem Sys1 is active at time t, and if σ(t) = 2, the subsystem

Sys2 is active at time t. Let ti, i = 1, 2, · · · , be the switching time. In the absence of a common Lyapunov

function, the stability of such a switched system in general depends on the switching signal σ(t). If it so

happens that the values of V1 and V2 coincide at each switching time, i.e., Vσ(ti−1)(ti) = Vσ(ti)(ti) for all i,

then Vσ is a continuous Lyapunov function for the switched system, and asymptotic stability follows. This

situation is depicted in Fig 2.1(a). In general, however, the function Vσ will be discontinuous. While each Vp,

p ∈ {1, 2}, decreases when the pth subsystem is active, it may increase when the pth subsystem is inactive.

This behavior is shown in Fig 2.1(b). The basic idea that allows one to show asymptotic stability in this case

is as follows. Let us look at the values of Vp at the beginning of each time interval on which σ = p. For the

switched system to be asymptotically stable, these values must form a decreasing sequence for each p.

‘
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Chapter 3

Distributed Synchronization Control of Multi-

agent Networks With Unknown Nonlinearities

under Connected Dynamic Interaction Topolo-

gies

3.1 Problem Statement

We consider a network of N agents. The dynamics of each agent i, i = 1, 2, · · · , N , in the network are

described as 

ẋi1 = xi2,

ẋi2 = xi3,

...

ẋin = fi(xi1, xi2, · · · , xin) + ui + wi,

(3.1)

where fi(xi1, xi2, · · · , xin) is an unknown nonlinear function, ui is the control input, and wi is the disturbance.

On the other hand, the dynamics of the leader agent are described as follows,



ẋ01 = x02,

ẋ02 = x03,

...

ẋ0n = f0(x01, x02, · · · , x0n, t),

(3.2)
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where f0(x01, x02, · · · , x0n, t) is an unknown nonlinear function.

As with the literature on this type of problems, we make the following standard assumptions on the

agents’ dynamics.

Assumption 1 The dynamics of the agents satisfy the following assumptions:

A1. The disturbance wi is bounded for all i;

A2. The function fi(xi1, xi2, · · · , xin) is smooth for all i;

A3. The neural network activation functions ϕi(xi) are bounded for all i;

A4. The function f0(x01, x02, · · · , x0n, t) is smooth;

A5. The target trajectory (x01(t), x02(t), · · · , x0n(t)) is bounded.

Neural network is usually employed to approximate unknown functions. It has been proved [52] that any

continuous function f(x) can be approximated by the radial basis function neural network (RBFNN) with one

hidden layer on a compact set to an arbitrary accuracy. That is, for a continuous function f(x) and any given

positive constant ε0, there exists a number η0 such that, for any network of η ≥ η0 neurons, there exists an

ideal neural network weight matrix W such that the function approximation error ε = ‖f(x)−WTϕ(x)‖ ≤ ε0,

where ϕ(x) are the radial basis functions of the neural network. On the other hand, for a neural network

with a given number of neurons η0, there exists a positive constant ε0 and an ideal neural network weight

matrix W such that the function approximation error ε = ‖f(x)−WTϕ(x)‖ ≤ ε0. In this Chapter, we will

use RBFNN to approximate the smooth unknown nonlinearities fi(xi1, xi2, · · · , xin).

Our objective in this chapter is to design distributed control protocols for synchronization of all agents to

the leader agent, referred to as the cooperative tracker problem. Namely, we would like to design ui using

only local neighborhood information of agent i such that xij(t)− x0j(t)→ 0 as t→∞, for all i = 1, 2, · · · , N ,

j = 1, 2, · · · , n. Agents in the multi-agent system have nth order system dynamics. Different kinds of

communication topologies would be addressed. In particular, in Section 3.2, we consider the case of a fixed

strongly-connected directed graph communication topology. In Section 3.3, we presents results on switching

connected undirected graph communication topologies. In Section 3.4, we presents results on switching

connected directed graph communication topologies.

The following fact is important for the control design and analysis in this chapter.

Lemma 1 [53] Suppose x(t) is a smooth function of t, and assume that x(0), ẋ(0), · · · ,xn−1(0) are all

bounded. Define s(x, t) = (λ+ d
dt )

n−1x(t), where λ > 0 is a constant. If s(x, t) is bounded for all t, then x(t),
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ẋ(t), · · · ,xn−1(t) will be bounded for all t. Besides, if s(x, t)→ 0 as t→∞, then x(t)→ 0, ẋ(t)→ 0, · · · ,

xn−1(t)→ 0 as t→∞.

3.2 Synchronization Control of nth-order Systems with a Fixed

Strongly-connected Directed Graph Communication Topology

We consider a network of N agents. Each agent is a nth-order system whose dynamics are described by (3.1).

Besides the N agents, there is also a leader agent, whose dynamics are described by (3.2).

The network communication topology is represented by a directed graph GN = (V,E), where V =

{v1, v2, · · · , vN} is a finite, nonempty set of N vertices (each vertex denotes an agent in the network), and

E ∈ V × V is a set of edges of the graph. An edge (vi, vj) denotes that agent j has access to the information

of agent i. A directed path of length l is a sequence of edges (vi1 , vi2), (vi2 , vi3), · · · , (vil , vi(l+1)
). Agent i

is said to be in the neighborhood of agent j if (vi, vj) ∈ E. Each agent in the network has only limited

communication capability and can only access the information in its neighborhoods. Define the adjacency

matrix as A = [aij ] with aij > 0 if (vj , vi) ∈ E, and aij = 0 otherwise. The weighted in-degree matrix D is

defined as a diagonal matrix D = diag{di} with di =
∑N
j=1 aij . The graph Laplacian matrix is defined as

L = D −A. Besides the N agents in V , the leader agent is labeled as v0. An edge from the leader agent v0

to agent i denotes that agent i has access to the information of the leader agent, with the communication

weight defined as bi > 0. Otherwise, bi = 0. Define matrix B = diag{bi}.

Following fact is important for control design and analysis in this section. M-matrix is defined as a square

matrix with all off-diagonal elements non-positive and all principal minors non-negative [14].

Lemma 2 [14] If a directed graph GN is strongly connected and B = diag{bi} has at least one bi > 0,

then L + B is a non-singular M-matrix. It follows that (L + B)T is a non-singular M-matrix. Define

s = [s1 s2 · · · sN ]T = ((L + B)T)−11, where 1 denotes the vector [1 1 · · · 1]T. Define matrix S = diag{si}.

Then S > 0 and Q = (L+B)TS + S((L+B)T)T = (L+B)TS + S(L+B) > 0.

In the remainder of this section, Section 3.2.1 provides the control algorithm description and main results,

and section 3.2.2 presents the proof of the main results.

3.2.1 Control Protocols and the Closed-loop System Performance

In order to synchronize the states of agents in the network to the state of the leader agent, we propose

following control law,

ui = cri − f̂i(xi) = cri − ŴT

i ϕi(xi), (3.3)
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where

eik =
∑
j∈Ni

aij(xjk − xik) + bi(x0k − xik), (3.4)

and

ri = (1 +
d

dt
)n−1ei1 = C0

n−1ei1 + C1
n−1ei2 + · · ·+ Cn−1

n−1ein. (3.5)

Also, aij and bi are defined in Section 3.2, c > 0 is a control gain parameter, ϕi(xi) are the activation

functions of the neural network, and Ŵi are the neural network weights, which are tuned according to

˙̂
Wi =


−χiϕirT

i +χi
rTi Ŵ

T
i ϕi

Tr{ŴT
i Ŵi}

Ŵi, if− rT
i Ŵ

T
i ϕi > 0 and

Tr{ŴT
i Ŵi}=Wmax i,

−χiϕirT
i , otherwise,

(3.6)

where Wmax i is a given positive constant for limiting the neural network weights, and χi > 0 is a given

constant which controls the adaption rate of Ŵi. This neural network weight matrix updating law is adapted

from [11]. The following lemma, established in [11], guarantees the boundedness of Ŵi.

Lemma 3 [11] Consider the neural network weight matrix updating law (3.6). If the initial value of the

neural network weight matrix satisfies

Tr
(
Ŵ T

i (0)Ŵi(0)
)
≤Wmax i, (3.7)

then,

Tr
(
Ŵ T

i (t)Ŵi(t)
)
≤Wmax i, t ≥ 0, i = 1, 2, · · · , N. (3.8)

Define the synchronization error as

δik = xik − x0k, i = 1, 2, · · · , N, k = 1, 2, · · · , n. (3.9)

Denote δ1 = [δ11 δ21 · · · δN1]T, δ2 = [δ12 δ22 · · · δN2]T, δn = [δ1n δ2n · · · δNn]T and δ = [δT
1 δT

2 · · · δT
n]T.

Then, our main results on the synchronization of the states of all agents to the state of the leader agent can

be stated in the following theorem 1, whose proof is presented in Section 3.2.2.

Theorem 1 Consider a system of N agents whose dynamics are described by (3.1) and steered by the control

protocol specified by (3.3), (3.6) and (3.7). Consider that the leader agent’s dynamics are described by (3.2).

Suppose that Assumption 1 is satisfied. Assume that the digraph communication topology is fixed and strongly
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connected, and the leader agent is at least connected to one agent in the network. Then, given any bounded

set X0, for any initial synchronization error δ(0) that belongs to X0, there exists a positive constant cX0
such

that the synchronization error δ is bounded as long as c ≥ cX0
. Furthermore, the ultimate bound on the

synchronization error δ can be reduced arbitrarily by increasing the value of the control parameter c.

3.2.2 Theoretical Analysis

To prove Theorem 1, we choose the Lyapunov function

V =
1

2
rTSr, (3.10)

where r = [r1 r2 · · · rN ]T and S = diag{si}, with si being the parameters associated with the graph as defined

in Lemma 2.

Denote e1 = [e11 e21 · · · eN1]T, e2 = [e12 e22 · · · eN2]T, en = [e1n e2n · · · eNn]T and e = [eT1 e
T
2 · · · eTn]T.

In view of (3.4), (3.5), (3.9), we have

e1 = −(L+B)δ1,

e2 = −(L+B)δ2,

...

en = −(L+B)δn,

r = C0
n−1e1 + C1

n−1e2 + · · ·+ Cn−1
n−1en. (3.11)

Since the communication topology is strongly connected, L+B is nonsingular, and hence

‖e1‖ ≤ σ̄(L+B)‖δ1‖,

‖e2‖ ≤ σ̄(L+B)‖δ2‖,
...

‖en‖ ≤ σ̄(L+B)‖δn‖, (3.12)

and

‖δ1‖ ≤
‖e1‖

σ(L+B)
,

‖δ2‖ ≤
‖e2‖

σ(L+B)
,
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...

‖δn‖ ≤
‖en‖

σ(L+B)
, (3.13)

Here and later in this proof, for a nonsingular matrix M , σ̄(M) and σ(M) denote the maximal and

minimal singular values of M , respectively.

Consequently,

‖r‖ ≤ C0
n−1σ̄(L+B)‖δ1‖+ C1

n−1σ̄(L+B)‖δ2‖+ · · ·+ Cn−1
n−1 σ̄(L+B)‖δn‖. (3.14)

Let h0 > 0 be such that X0 ⊆ D0 = {δ : ‖δ1‖ ≤ h0, ‖δ2‖ ≤ h0, · · · , ‖δn‖ ≤ h0}. We construct a level set

Ω = {e : V ≤ 1
2 σ̄(S)h2}, where h = 2n−1σ̄(L+B)h0. It follows that X0 ⊆ Ω.

We now evaluate the derivative of V within the level set Ω as follows,

V̇ = rTSṙ, (3.15)

where

ṙ =
d

dt
{C0

n−1e1 + C1
n−1e2 + · · ·+ Cn−1

n−1en}

= −(L+B)(f(x)− f(x0, t) + u+ w) + C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en

= −(L+B)(WTϕ(x) + ε− f(x0, t) + cr − ŴTϕ(x) + w) + C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en

= −(L+B)(W̃Tϕ(x) + ε− f(x0, t) + cr + w) + C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en.

Here, ε ≤ ε0 is the ideal RBFNN function approximation error of f(x) as defined in Section 3.1, ϕ(x) =

[ϕ1(x1) ϕ2(x2) · · · ϕN (xN )]T, f̂(x) = [f̂1(x1) f̂2(x2) · · · f̂N (xN )]T, f(x0, t) = f0(x0, t)[1 1 · · · 1]T and

W̃ = W̃ = W − Ŵ is the neural network weight approximation error with W = diag{Wi} being the ideal

neural network weights and Ŵ = diag{Ŵi}.

Therefore, we have

V̇ = rTSṙ

= −rTS(L+B)
(
W̃Tϕ(x) + ε− f(x0, t) + w

)
+ rTS(C0

n−1e2 + C1
n−1e3 + · · ·+ Cn−2

n−1en)

= −crTS(L+B)r − rTS(L+B)
(
ε− f(x0, t) + w

)
− rTS(L+B)W̃Tϕ(x) + rTS(C0

n−1e2 + C1
n−1e3 + · · ·+ Cn−2

n−1en)
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Since the communication topology is strongly connected, we know from Lemma 2 that the matrix

Q = S(L+B) + (L+B)TS is positive definite. Therefore, we have

V̇ = −1

2
crTQr − rTS(L+B)

(
ε− f(x0, t) + w

)
− rTS(L+B)W̃Tϕ(x) + rTS(C0

n−1e2 + C1
n−1e3 + · · ·+ Cn−2

n−1en)

≤ 1

2
cσ(Q)‖r‖2 + ‖r‖σ̄(S)σ̄(L+B)(‖ε‖+ ‖f(x0, t)‖+ ‖w‖+ ‖W̃‖‖ϕ(x)‖) + ‖r‖σ̄(S)(C0

n−1‖e2‖

+C1
n−1‖e3‖+ · · ·+ Cn−2

n−1‖en‖)

Note that the designed neural network weights tuning law ensures that Tr{ŴT
i Ŵi} would be bounded for

all i. This fact was established as Lemma 2 in [11]. Then it follows that W̃i is bounded for all i. Consequently,

we have

V̇ ≤ −1

2
cσ(Q)‖r‖2 + ‖r‖Bm,

where Bm = σ̄(S)σ̄(L+B)(ε0 + F0 + L0Φm + ∆0) + (2n−1 − 1)σ̄(S)M0 is a positive constant. Here ε0, F0,

L0, Φm, and ∆0 respectively denote the bounds of ε, f(x0, t), W̃ , ϕ(x) and w. M0 denotes an upper bound

for all ‖ei‖, i = 2, 3, · · · , n.

Let

cX0 =
2Bm
σ(Q)h

.

Then, for any c ≥ cX0 , we have V̇ < 0 as long as ‖r‖ > h. This implies that V̇ < 0 as long as V > 1
2 σ̄(S)h2.

Thus, the level set Ω is an invariant set for any c ≥ cX0
.

We have now proven that ‖r(t)‖ is bounded as long as c ≥ cX0
. Recall that r = (1 + d

dt )
n−1 e1 =

C0
n−1e1 +C1

n−1e2 + · · ·+Cn−1
n−1en. It follows from lemma 1 that ||e1(t)||, ||e2(t)||, · · · , ||en(t)|| are all bounded

since ||e1(0)|| , ||e2(0)||, · · · , ||en(0)|| are bounded. In view of (3.13), the synchronization error δ is also

bounded. Furthermore, it is easy to see that the ultimate bound of the synchronization error δ could be

reduced arbitrarily by increasing the value of the control parameter c.

3.3 Synchronization Control of nth-order Systems with Switching

Connected Undirected Graph Communication Topologies

We consider a network of N agents. Each agent is a nth-order system whose dynamics are described by (3.1).

Besides the N agents, there is also a leader agent, whose dynamics are described by (3.2).

16



The network communication topology is represented by a switching undirected weighted graph GN =

(V,E(t), A(t)), where V = {v1, v2, · · · , vN} is a finite, nonempty set of N vertices (each vertex denotes an

agent in the network), E(t) ∈ V × V is a set of edges of the graph which are dynamically changing in time,

and A = [aij(t)] with aij(t) ≥ 0 and aij(t) = aji(t) is the weighted adjacency matrix. At any time instant

t = t0, an edge (vi, vj) denotes that agent i can exchange information with agent j at t = t0, and (vi, vj) ∈

E(t) ⇔ (vj , vi) ∈ E(t). The adjacency matrix A = [aij(t)] satisfies that aij(t) > 0 if (vj , vi) ∈ E(t), and

aij(t) = 0 otherwise. A undirected path of length l is a sequence of edges (vi1 , vi2), (vi2 , vi3), · · · , (vil , vi(l+1)
).

An undirected graph is said to be connected at t = t0 if there exists a path between each pair of vertices

(vi, vj), i = 1, 2, · · · , N , j = 1, 2, · · · , N at t = t0. Besides the N agents in V , the leader agent is labeled as v0.

Again, at any time instant t = t0, an edge between the leader agent v0 and agent i denotes that agent i has

access to the information of the leader agent at t = t0, with the communication weight defined as bi(t) > 0.

Otherwise, bi(t) = 0. Define matrix B = diag{bi(t)}. Define the weighted in-degree matrix D as a diagonal

matrix D = diag{di(t)} with di(t) =
∑N
j=1 aij(t). Define the graph Laplacian matrix L = D −A.

In this section, the communication topology considered is a switching connected undirected weighted

graph. Since the graph GN = (V,E(t), A(t)) is connected all the time, it follows that L+B are nonsingular

all the time. Following assumption is needed in the control design and analysis in this section.

Assumption 2 Assume that the minimal singular value of L+B is lower bounded by some positive constant

σl > 0, where L and B are defined above in Section 3.3.

In the remainder of this section, Section 3.3.1 provides the control algorithm description and main results,

and Section 3.3.2 presents the proof of the main results.

3.3.1 Control Protocols and the Closed-loop System Performance

We propose the following control law,

ui = cri − f̂i(xi)

= cri − ŴT

i ϕi(xi), (3.16)

where

eik =
∑
j∈Ni

aij(t)(xjk − xik) + bi(t)(x0k − xik), k = 1, 2, · · · , n, (3.17)

and

ri = (1 +
d

dt
)n−1ei1 = C0

n−1ei1 + C1
n−1ei2 + · · ·+ Cn−1

n−1ein. (3.18)
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Also, aij(t) and bi(t) are defined above as in Section 3.3, c > 0 is a control gain parameter, ϕi(xi) are the

activation functions of the neural network, and Ŵi are the neural network weights, which are tuned according

to

˙̂
Wi =


−χiϕirT

i +χi
rTi Ŵ

T
i ϕi

Tr{ŴT
i Ŵi}

Ŵi, if− rT
i Ŵ

T
i ϕi > 0 and

Tr{ŴT
i Ŵi}=Wmax i,

−χiϕirT
i , otherwise,

(3.19)

with the initial value of the neural network weight matrix being chosen to satisfy

Tr
(
ŴT

i (0)Ŵi(0)
)
≤Wmax i. (3.20)

Here, Wmax i is a given positive constant for limiting the neural network weights, and χi > 0 is a given

constant which controls the adaption rate of Ŵi.

Define the synchronization error as

δik = xik − x0k, i = 1, 2, · · · , N, k = 1, 2, · · · , n. (3.21)

Denote δ1 = [δ11 δ21 · · · δN1]T, δ2 = [δ12 δ22 · · · δN2]T, δn = [δ1n δ2n · · · δNn]T and δ = [δT
1 δT

2 · · · δT
n]T.

Then, our main results on the synchronization of the states of all agents to the state of the leader agent can

be stated in the following theorem 2, whose proof is presented in Section 3.3.2.

Theorem 2 Consider a system of N agents whose dynamics are described by (3.1) and steered by the control

protocol specified by (3.16), (3.19) and (3.20). Consider that the leader agent’s dynamics are described by

(3.2). Assume that the communication topology is represented by a switching connected undirected graph, and

the leader agent is at least connected to one agent in the network. Suppose that Assumption 1 and Assumption

2 are satisfied. Then, given any bounded set X0, for any initial synchronization error δ(0) that belongs to

X0, there exists a positive constant cX0
such that the synchronization error δ is bounded as long as c ≥ cX0

.

Furthermore, the ultimate bound on the synchronization error δ can be reduced arbitrarily by increasing the

value of the control parameter c.

3.3.2 Theoretical Analysis

To prove Theorem 2, we choose the Lyapunov function

V =
1

2
mTm, (3.22)
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where m = [m1m2 · · · mN ]T = (1 + d
dt )

n−1δ1 with δ1 defined in (3.21). Consequently,

m = C0
n−1δ1 + C1

n−1δ2 + · · ·+ Cn−1
n−1δn,

‖m‖ ≤ C0
n−1‖δ1‖+ C1

n−1‖δ2‖+ · · ·+ Cn−1
n−1‖δn‖, (3.23)

Denote e1 = [e11 e21 · · · eN1]T, e2 = [e12 e22 · · · eN2]T, en = [e1n e2n · · · eNn]T and e = [eT1 e
T
2 · · · eTn]T.

In view of (3.17), (3.18), (3.21), we have

e1 = −(L+B)δ1,

e2 = −(L+B)δ2,

...

en = −(L+B)δn,

r = C0
n−1e1 + C1

n−1e2 + · · ·+ Cn−1
n−1en,

m = C0
n−1δ1 + C1

n−1δ2 + · · ·+ Cn−1
n−1δn. (3.24)

Then it follows that

r = −(L+B)m. (3.25)

Let h0 > 0 be such that X0 ⊆ D0 = {δ : ‖δ1‖ ≤ h0, ‖δ2‖ ≤ h0, · · · , ‖δn‖ ≤ h0}. We construct a level set

Ω = {δ : V ≤ 1
2h

2}, where h = 2n−1h0. It follows that X0 ⊆ Ω.

We now evaluate the derivative of V within the level set Ω as follows,

V̇ = mTṁ, (3.26)

where

ṁ =
d

dt
{C0

n−1δ1 + C1
n−1δ2 + · · ·+ Cn−1

n−1δn}

= (f(x)− f(x0, t) + u+ w) + C0
n−1δ2 + C1

n−1δ3 + · · ·+ Cn−2
n−1δn

= (WTϕ(x) + ε− f(x0, t) + cr − ŴTϕ(x) + w) + C0
n−1δ2 + C1

n−1δ3 + · · ·+ Cn−2
n−1δn

= (W̃Tϕ(x) + ε− f(x0, t) + cr + w) + C0
n−1δ2 + C1

n−1δ3 + · · ·+ Cn−2
n−1δn.

Here, ε ≤ ε0 is the ideal RBFNN function approximation error of f(x) as defined in Section 3.1, ϕ(x) =

[ϕ1(x1) ϕ2(x2) · · · ϕN (xN )]T, f̂(x) = [f̂1(x1) f̂2(x2) · · · f̂N (xN )]T, f(x0, t) = f0(x0, t)[1 1 · · · 1]T and
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W̃ = W̃ = W − Ŵ is the neural network weight approximation error with W = diag{Wi} being the ideal

neural network weights and Ŵ = diag{Ŵi}.

Therefore, we have

V̇ = mTṁ

= mT

(
W̃Tϕ(x) + ε− f(x0, t) + w

)
+mT(C0

n−1δ2 + C1
n−1δ3 + · · ·+ Cn−2

n−1δn)

= mT

(
W̃Tϕ(x) + ε− f(x0, t) + c(−(L+B))m+ w

)
+mT(C0

n−1δ2 + C1
n−1δ3 + · · ·+ Cn−2

n−1δn)

= −cmT(L+B)m+mT
(
ε− f(x0, t) + w

)
+mTW̃Tϕ(x) +mT(C0

n−1δ2 + C1
n−1δ3 + · · ·+ Cn−2

n−1δn)

Since the communication topology is connected, we know that L+B is positive definite. Therefore, we

have

V̇ ≤ −1

2
cσ(L+B)‖m‖2 + ‖m‖(‖ε‖+ ‖f(x0, t)‖+ ‖w‖+ ‖W̃‖‖ϕ(x)‖) + ‖m‖(C0

n−1‖δ2‖+ C1
n−1‖δ3‖+ · · ·+ Cn−2

n−1‖δn‖).

Note that the designed neural network weights tuning law ensures that Tr{ŴT
i Ŵi} would be bounded for

all i. This fact was established as Lemma 2 in [11]. Then it follows that W̃i is bounded for all i. Consequently,

we have

V̇ ≤ −1

2
cσ(L+B)‖m‖2 + ‖m‖Bu,

where Bu = ε0 + F0 + L0Φm + ∆0 + (2n−1 − 1)M0 is a positive constant. Here ε0, F0, L0, Φm, and ∆0

respectively denote the bounds of ε, f(x0, t), W̃ , ϕ(x) and w. M0 denotes an upper bound for all ‖ei‖,

i = 2, 3, · · · , n.

Let

cX0
=

2Bu
σlh

,

where σl is as defined in Assumption 2. Then, for any c ≥ cX0
, we have V̇ < 0 as long as ‖m‖ > h. This

implies that V̇ < 0 as long as V > 1
2h

2. Thus, the level set Ω is an invariant set for any c ≥ cX0 .

We have now proven that ‖m‖(t) is bounded as long as c ≥ cX0 . Recall that m = (1 + d
dt )

n−1 δ1 =

C0
n−1δ1 +C1

n−1δ2 + · · ·+Cn−1
n−1δn. It follows from lemma 1 that ||δ1(t)|| , ||δ2(t)||, · · · , ||δn(t)|| are all bounded

since ||δ1(0)|| , ||δ2(0)||, · · · , ||δn(0)|| are bounded. That is, the synchronization error δ is also bounded.

Furthermore, it is easy to see that the ultimate bound of the synchronization error δ could be reduced

arbitrarily by increasing the value of the control parameter c.
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3.4 Synchronization Control of nth-order Systems with Switching

Strongly-connected Directed Graph Communication Topolo-

gies

We consider a network of N agents. Each agent is a nth-order system whose dynamics are described by (3.1).

Besides the N agents, there is also a leader agent, whose dynamics are described by (3.2).

The communication topology under consideration is switching and directed. Let G = {G1, G2, · · · , Gm}

be a finite set of directed communication topologies, where for each Gk, the topology among the N follower

agents is fixed, both in connectivity and edge weights, and strongly-connected, and at least one follower agent

in topology Gk has access to the information of the leader. In this section, such a switching topology G is

called as a switching strongly-connected directed topology. Let σ(t) denote the communication topology

switching signal. For example, σ(t) = i implies that the communication topology Gi is active at time t. For

any given t ≥ 0, σ(t) ∈ {1, 2, · · · ,m}. Let t0, t1, t2, · · · be the time the communication topology switches,

where 0 = t0 < t1 < t2 · · · can be an infinite sequence. In this section, we assume that the communication

topology cannot switch infinitely fast, namely, there exists a constant dwell time τ > 0 such that ti+1− ti ≥ τ

for all i. With the notation above, the switching and directed communication topology under consideration

in this section is denoted as Gσ(t).

For each topology Gk ∈ G, k = 1, 2, · · · ,m, we denote the topology among the N follower agents as

GkFollower = (V,Ek), where V = {v1, v2, · · · , vN} is a finite, nonempty set of N vertices, each denoting an

follower agent in the network, and Ek ⊂ V × V is the set of edges of the graph. An edge (vi, vj) denotes

that agent j has access to the information of agent i. Define the adjacency matrix as A = [aij ] with aij > 0

if (vj , vi) ∈ E and aij = 0 otherwise. The weighted in-degree matrix D is defined as a diagonal matrix

D = diag{d1, d2, · · · , dN} with di =
∑N
j=1 aij , i = 1, 2, · · · , N . The graph Laplacian matrix is defined as

L = D −A. The leader agent is labeled as v0. An edge from the leader agent v0 to follower agent i denotes

that agent i has access to the information of the leader agent, with the communication weight defined as

bi > 0. On the other hand, if a follower agent i does not have access to the information of the leader agent,

then bi = 0. In this section, we assume at least one follower agent has access to the information of the leader

agent, namely, there is at least one bi > 0. Define matrix B = diag{b1, b2, · · · , bN}. Note that matrix A, D

and B are fixed for a given topology Gk. Some or all the matrices A, D and B are different for topologies Gk

and Gj , k 6= j. Note that, for each fixed topology Gk ∈ G = {G1, G2, · · · , Gm}, the weight matrices A and

B are constant.
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The following fact is important in the control design and the analysis of the closed-loop behaviors to be

presented in this section. Recall that an M-matrix is a square matrix with all off-diagonal elements being

non-positive and all principal minors being non-negative.

Lemma 4 ( [54], [16], [14]) If a directed graph topology among the follower agents GkFollower is strongly

connected and B = diag{b1, b2, · · · , bN} has at least one bi > 0, then L + B is a non-singular M-matrix.

It follows that (L + B)T is also a non-singular M-matrix. Define s = [s1 s2 · · · sN ]T = ((L + B)T)−11,

where 1 denotes the vector [1 1 · · · 1]T. Define matrix Sk = diag{s1, s2, · · · , sN}. Then Sk > 0 and

Q = (L+B)TSk + Sk((L+B)T)T = (L+B)TSk + Sk(L+B) > 0.

Based on Lemma 4, for each Gk ∈ G, k = 1, 2, · · · ,m, we can construct a positive definite matrix Sk. Let

σL > 0 denote a lower bound of the minimal singular values of the matrices Sk, k = 1, 2, · · · ,m. Let σU > 0

denote a upper bound of the maximal singular values of the matrices Sk, k = 1, 2, · · · ,m.

In the remainder of this section, Section 3.4.1 provides the control algorithm description and main results,

and Section 3.4.2 presents the proof of the main results.

3.4.1 Control Protocols and the Closed-loop System Performance

We propose the following distributed control laws for the follower agents to synchronize their states to the

state of the leader agent,

ui = cri − f̂i(xi)

= cri − ŴT

i ϕi(xi), i = 1, 2, · · · , N, (3.27)

where

ri =

(
1 +

d

dt

)n−1

ei1

= C0
n−1ei1 + C1

n−1ei2 + · · ·+ Cn−1
n−1ein, (3.28)

with

eik =
∑
j∈Ni

aij(t)(xjk − xik) + bi(t)(x0k − xik). (3.29)

In (3.27) – (3.29), Cji ’s are coefficients of the binomial expansion, c > 0 is a control gain parameter, ϕi(xi) =

[ϕi1(xi) ϕi2(xi) · · · ϕiη(xi)]
T are the activation functions of the neural network with η being the number of

neurons, and Ŵi = [Ŵi1 Ŵi2 · · · Ŵiη]T are the neural network weights, and aij(t) and bi(t) are the constant
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graph parameters (aij and bi) corresponding to the current active communication topology Gσ(t), as defined

in Section 3.4.

The neural network weights Ŵi are updated according to

˙̂
W i =


−χiϕiri+χi riŴ

T
i ϕi

Tr{ŴT
i Ŵi}

Ŵi, if − riŴT
i ϕi> 0 and

Tr{ŴT
i Ŵi}=Wmax i,

−χiϕiri, otherwise,

(3.30)

with the initial value of the neural network weight matrix being chosen to satisfy

Tr
(
ŴT

i (0)Ŵi(0)
)
≤Wmax i. (3.31)

Here, Wmax i is a given positive constant for limiting the neural network weights, and χi > 0 is a given

constant which controls the adaption rate of Ŵi. This neural network weight matrix updating law is adapted

from [11]. Note that, Lemma 3 guarantees the boundedness of Ŵi.

Define the synchronization error as

δik = xik − x0k, k = 1, 2, · · · , n, i = 1, 2, · · · , N. (3.32)

Denote δ1 = [δ11 δ21 · · · δN1]T, δ2 = [δ12 δ22 · · · δN2]T, · · · , δn = [δ1n δ2n · · · δNn]T, and δ = [δT
1 δ

T
2 · · · δT

n]T.

We state our main results in this section in a theorem as follows. The proof of this theorem is provided in

Section 3.4.2.

Theorem 3 Consider a multi-agent system of N follower agents whose dynamics are described by (3.1)

and steered by the control protocols specified by (3.27), (3.30) and (3.31). Let the dynamics of the leader

agent be described by (3.2). Let the communication topology among the follower agents be represented by a

switching strongly-connected directed graph, and at least one follower agent has access to the information

of the leader agent, as described in Section 3.4 above. Then, for any given bounded set X0 ⊂ R(N+1)×n,

there exists a positive constant cX0 such that, for any initial states x(0) = [x0(0)x1(0) · · · xN (0)]T ∈ X0, the

synchronization error δ is ultimately bounded as long as c ≥ cX0
. Furthermore, the ultimate bound on the

synchronization error δ can be reduced arbitrarily by increasing the value of the control gain parameter c.

Theorem 3 extends the previous results in Section 3.2 and Section 3.3 to communication topology which

is represented by a switching strongly-connected directed graph. The communication topologies of many

real-world engineering systems can be both directed and switching, such as a mobile multi-robotic system
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with nonidentical sensing radius. Therefore, the results in Theorem 3 are applicable to more real-world

engineering systems.

3.4.2 Theoretical Analysis

In Section 3.2 and Section 3.3, we employed a common Lyapunov function approach to establishing our

results for a fixed strongly-connected directed graph topology and switching connected undirected graph

topologies. It is not clear how a common Lyapunov function can be constructed for the situation of a switching

strongly-connected directed graph communication topology. To overcome this difficulty, we construct in this

section a sequence of different Lyapunov functions and use them to prove our results in Theorem 3.

Let

∆ = (1 +
d

dt
)n−1 δ1

= C0
n−1δ1 + C1

n−1δ2 + · · ·+ Cn−1
n−1δn. (3.33)

Denote rGk = −(LGk + BGk)∆, where LGk and BGk are the corresponding matrices L and B for graph

Gk ∈ G, as defined in Section 3.4. Then, we construct a sequence of m different Lyapunov functions,

Vk(∆) =
1

2
rT

Gk
SkrGk ,

=
1

2
((LGk +BGk)∆)TSk((LGk +BGk)∆), k = 1, 2, · · · ,m, (3.34)

where Sk is the corresponding positive definite matrix constructed from Gk ∈ G in the way specified by

Lemma 4.

Recall that σL > 0 is a lower bound of the minimal singular values of the diagonal matrices Sk, k =

1, 2, · · · ,m, and σU > 0 is a upper bound of the maximal singular values of the diagonal matrices Sk,

k = 1, 2, · · · ,m. Since the communication topology among the follower agents is strongly connected,

LGk +BGk is a non-singular matrix. Denote zL > 0 as a lower bound of the minimal singular values of the

matrix LGk +BGk , k = 1, 2, · · · ,m, and denote zU > 0 as a upper bound of the maximal singular values of

the matrix LGk +BGk , k = 1, 2, · · · ,m. Then we have,

1

2
σLower‖∆‖2 ≤ Vk ≤

1

2
σUpper‖∆‖2, k = 1, 2, · · · ,m, (3.35)

where σLower = σLz
2
L and σUpper = σUz

2
U.
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Without loss of generality, we can assume that the topologies G1, G2, · · · , Gm are labeled in the same

order as the first time they are active in the switching communication topology. Namely, if we denote Tk as

the first time that Gk is active, then T1 < T2 < · · · < Tm.

Consider the ball B0 = {∆ : ‖∆‖ ≤ h}, where h > 0 is a constant such that x(0) ∈ X0 implies that

∆(0) ∈ B0. Construct m level sets Rk = {∆ : Vk(∆) ≤ hk}, where hk > 0, such that the ball B0 is contained

by the intersection of all these Rk, k = 1, 2, · · · ,m. Note that, these sets Rk are constructed in a way such

that Ri is contained in the set Ri+1, i = m− 1, · · · , 2, 1. Denote the union of all these m level sets Rk as

set R, which is obviously equal to Rm. Define a ball B∞ = {∆ : ‖∆‖ ≤ 1
2h}. Then, to prove our results in

Theorem 3, we will first establish the following lemma.

Lemma 5 As long as the control gain c is greater than some constant cX0
, any trajectory of ∆ starting from

the ball B0 always belongs to the set Rσ(t), and will enter and stay inside the smaller ball B∞ in a finite time.

Moreover, such a ball B∞ can be chosen to be arbitrarily small as long as we increase the value of the control

gain c.

We will prove Lemma 5 as follows.

To start with, we conduct the Lyapunov analysis in a given time interval [ti, ti+1), where ti and ti+1

are contiguous topology switching times. Note that, in such a time interval, the communication topology

is fixed. Denote the corresponding constructed positive definite matrix in this given time interval as

S = Sσ(ti) ∈ {S1, S2, · · · , Sm}, and denote the corresponding topology graph parameter matrices in this

given interval as L = LGσ(ti) and B = BGσ(ti) , where σ(t) is the communication topology switching

signal as defined in Section 3.4. Denote r = [r1 r2 · · · rN ]T, where ri, i = 1, 2, · · · , N , is defined in (3.5).

In view of (3.28), (3.29), (3.32) and (3.33), it is easy to see that, in this given time interval [ti, ti+1),

r = −(LGσ(ti) +BGσ(ti))∆ = −(L+B)∆. Then, the corresponding Lyapunov function in this time interval

V = Vσ(ti) is expressed as

V (∆) =
1

2
((L+B)∆)TS((L+B)∆)

=
1

2
rTSr. (3.36)

Assume that ∆(ti) ∈ R1,∆(ti) ∈ R2, · · · ,∆(ti) ∈ Rm. This assumption can always hold for ti = t0 by

construction of the sets Rk. Later in this section we will prove that ∆(tk) ∈ R1,∆(tk) ∈ R2, · · · ,∆(tk) ∈ Rm

indeed holds for all tk, k = 0, 1, 2 · · · , as long as the control gain c is greater than some constant cX0 .

Let e1 = [e11 e21 · · · eN1]T, e2 = [e12 e22 · · · eN2]T, · · · , en = [e1n e2n · · · eNn]T, and e = [eT1 e
T
2 · · · eTn]T.
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In view of (3.28), (3.29) and (3.32), we have

ek = −(L+B)δk, k = 1, 2, · · · , n,

and

r = C0
n−1e1 + C1

n−1e2 + · · ·+ Cn−1
n−1en.

We note here that

ėk = ek+1, k = 1, 2, · · · , n− 1,

and

ėn = −(L+B) (F (x1, x2, · · · , xN ) + u+ w − F0(x0)) ,

where

F (x1, x2, · · · , xN ) =



f1(x1)

f2(x2)

...

fN (xN )


,

F0(x0, t) =



f0(x0, t)

f0(x0, t)

...

f0(x0, t)


,

u = [u1 u2 · · · uN ]T and w = [w1 w2 · · · wN ]T.

Since the communication topology among the follower agents is strongly connected, L+B is a non-singular

matrix, and hence

‖ek‖ ≤ σ̄(L+B)‖δk‖, k = 1, 2, · · · , n, (3.37)

and

‖δk‖ ≤
‖ek‖

σ(L+B)
, k = 1, 2, · · · , n. (3.38)

Here and later in this proof, for a non-singular matrix M , σ̄(M) and σ(M) denote the maximal and

minimal singular values of M , respectively.

Consequently, we have

‖r‖ ≤ C0
n−1σ̄(L+B)‖δ1‖+ C1

n−1σ̄(L+B)‖δ2‖+ · · ·+ Cn−1
n−1 σ̄(L+B)‖δn‖. (3.39)
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To evaluate the derivative of V along the closed-loop trajectories within the corresponding level set Rσ(ti)

in time interval [ti, ti+1), we first evaluate the derivative of r along the closed-loop trajectories within the

level set Rσ(ti) as follows,

ṙ = C0
n−1ė1 + C1

n−1ė2 + · · ·+ Cn−1
n−1 ėn

= C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en − (L+B) (F (x1, x2, · · · , xN )− F0(x0, t) + u+ w)

= C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en − (L+B)

(
WTϕ(x1, x2, · · · , xN ) + ε− F0(x0, t) + cr − ŴTϕ(x1, x2, · · · , xN ) + w

)
= C0

n−1e2 + C1
n−1e3 + · · ·+ Cn−2

n−1en − (L+B)
(
W̃Tϕ(x1, x2, · · · , xN ) + ε− F0(x0, t) + cr + w

)
.

In the above derivation, ϕ(x1, x2, · · · , xN ) = [ϕ1(x1) ϕ2(x2) · · · ϕN (xN )]T, W = diag{W1,W2, · · · ,WN},

Ŵ = diag{Ŵ1, Ŵ2, · · · , ŴN}, W̃ = Ŵ −W , ε = [ε1 ε2 · · · εN ]T, and (ϕi(xi),Wi) is the neural network

approximation of fi(xi) such that fi(xi) = WT
i ϕi(xi) + εi with |εi| ≤ ε0 for some ε0 > 0 on the compact set

R.

Therefore, the derivative of V along the closed-loop trajectories within the level set Rσ(ti) can be evaluated

as follows,

V̇ = rTSṙ

= −rTS(L+B)
(
W̃Tϕ(x1, x2, · · · , xN ) + ε− F0(x0, t) + cr + w

)
+ rTS

(
C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en

)
= −crTS(L+B)r − rTS(L+B) (ε− F0(x0, t) + w)− rTS(L+B)W̃Tϕ(x1, x2, · · · , xN )

+rTS
(
C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en

)
.

Since the communication topology among the follower agents is strongly connected, by Lemma 4, the

matrix Q = S(L+B) + (L+B)TS is positive definite. Therefore, we have

V̇ = − c
2
rTQr − rTS(L+B) (ε− F0(x0, t) + w)− rTS(L+B)W̃Tϕ(x1, x2, · · · , xN )

+rTS
(
C0
n−1e2 + C1

n−1e3 + · · ·+ Cn−2
n−1en

)
≤ − c

2
σ(Q)‖r‖2 + ‖r‖σ̄(S)σ̄(L+B)

(
‖ε‖+‖F0(x0, t)‖+‖w‖+‖W̃‖‖ϕ(x1, x2, · · · , xN)‖

)
+‖r‖σ̄(S)

(
C0
n−1‖e2‖+C1

n−1‖e3‖+· · ·+Cn−2
n−1‖en‖

)
.

Note that, by Lemma 3, the neural network weights tuning law (3.30) and (3.31) ensures that Tr{ŴTŴ}

is bounded for all time. It follows that W̃ is bounded for all time. Assume that ‖W̃‖ ≤ B
W̃

for some B
W̃
> 0.

By the assumption of the boundedness of trajectories of the leader agent, F0(x0, t) is bounded on R.

27



Assume that ‖F0(x0, t)‖ ≤ BF0 for some BF0 > 0. Recall that, w and ϕ(x1, x2, · · · , xN ) are both bounded.

Let ‖w‖ ≤ Bw for some Bw > 0 and ‖ϕ(x1, x2, · · · , xN )‖ ≤ Bϕ for some Bϕ > 0. Also, by Lemma 1, ei,

i = 1, 2, · · · , n, are bounded on R. Let ‖ei‖ ≤ Be, i = 1, 2, · · · , n, for some Be > 0. Then, we have

V̇ ≤ − c
2
σ(Q)‖r‖2 + B̄‖r‖

≤ −cσ(Q)

σ̄(S)
V +

√
2B̄√
σ(S)

V
1
2

≤ −c1
σ(Q)

σ̄(S)
V − (c− c1)

σ(Q)

σ̄(S)
V +

√
2B̄√
σ(S)

V
1
2

= −c1
σ(Q)

σ̄(S)
V

1
2

(
V

1
2 −

√
2B̄σ̄(S)

c1
√
σ(S)σ(Q)

)
− (c− c1)

σ(Q)

σ̄(S)
V,

where

B̄ = σ̄(S)σ̄(L+B)
(√

Nε0 +BF0
+Bw +B

W̃
Bϕ

)
+ (2n−1 − 1)σ̄(S)Be,

and c1 ∈ (0, c) is a constant parameter whose value is to be determined later.

For any given α ∈ (0, 1), let

cX0
= argmax

Gσ(ti)∈G

[
6B̄σ̄(S)

√
σUpper

α
√
σ(S)σ(Q)hσLower

+
σ̄(S)(log(2σ2

Upper)− log(σ2
Lower))

σ(Q)τ

]
.

Here, we use the notation argmax
Gσ(ti)∈G

since B̄, S and Q are constructed based on the corresponding graph Gσ(ti).

Then, for any c ≥ cX0
, by choosing c1 =

6B̄σ̄(S)
√
σUpper

α
√
σ(S)σ(Q)hσLower

, we have

V̇ ≤ −
log(2σ2

Upper)− log(σ2
Lower)

τ
V < 0, (3.40)

for

∆ ∈
{

∆ :
α2

16

σ2
Lower

σUpper

h2 ≤ V (∆) ≤ hσ(ti)

}
,

where σ(ti) is the topology switching signal.

Recall that ti+1−ti > τ . Then it follows from the above analysis that either V (∆(ti+1)) <
σ2
Lower

2σ2
Upper

V (∆(ti))

or V (∆(ti+1)) < α2

16
σ2
Lower

σUpper
h2 would be true. Recall that, here V (∆(ti+1)) = Vσ(ti)(∆(ti+1)).

Then consider the values of all the other Lyapunov functions Vk(∆) at time t = ti+1, k = 1, 2, · · · ,m,

k 6= σ(ti).
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If Vσ(ti)(ti+1) <
σ2
Lower

2σ2
Upper

Vσ(ti)(ti) is true, then we have

Vk(∆(ti+1)) ≤ σUpper

σLower

Vσ(ti)(∆(ti+1))

≤ σ2
Lower

2σ2
Upper

σUpper

σLower

Vσ(ti)(∆(ti))

≤ σ2
Lower

2σ2
Upper

σ2
Upper

σ2
Lower

Vk(∆(ti))

=
1

2
Vk(∆(ti)). (3.41)

Recall that ∆(ti) ∈ R1,∆(ti) ∈ R2, · · · ,∆(ti) ∈ Rm. It follows directly in this case that, ∆(ti+1) ∈

R1,∆(ti+1) ∈ R2, · · · ,∆(ti+1) ∈ Rm.

On the other hand, if Vσ(ti)(ti+1) < α2

16
σ2
Lower

σUpper
h2 is true, we would have

Vk(∆(ti+1)) ≤ σUpper

σLower

Vσ(ti)(∆(ti+1)) ≤ α2

16
σLowerh

2, k = 1, 2, · · · ,m. (3.42)

In view of (3.35), it follows in this case that the trajectory ∆ has already entered the smaller ball

B∞ = {∆ : ‖∆‖ ≤ α
2 h}. Note that B∞ ⊂ Rk, for each k ∈ 1, 2, · · · ,m. Therefore, in this case we also have

that ∆(ti+1) ∈ R1,∆(ti+1) ∈ R2, · · · ,∆(ti+1) ∈ Rm.

Based on the analysis above, we can conclude that ∆(t) belongs to the level set Rσ(ti) for t ∈ [ti, ti+1),

and that ∆(ti) ∈ R1,∆(ti) ∈ R2, · · · ,∆(ti) ∈ Rm implies ∆(ti+1) ∈ R1,∆(ti+1) ∈ R2, · · · ,∆(ti+1) ∈ Rm.

Next, the same Lyapunov analysis can be carried out within the level set Rσ(ti+1) for time intervals [ti+1, ti+2)

using the corresponding Lyapunov functions Vσ(ti+1) to conclude that ∆(t) belongs to the level set Rσ(ti+1)

for t ∈ [ti+1, ti+2), and ∆(ti+2) ∈ R1,∆(ti+2) ∈ R2, · · · ,∆(ti+2) ∈ Rm. The same analysis can be repeated

for time intervals [ti+2, ti+3), [ti+3, ti+4),· · · . We thus establish that any trajectory of ∆ starting from the

ball B0 always belongs to the set Rσ(t) as long as the control gain c is greater than some constant cX0
.

Besides, in view of (3.35), (3.40), (3.41) and (3.42), we can also easily conclude that any trajectory of ∆

starting from B0 will finally enter and remain in the smaller ball B∞ = {∆ : ‖∆‖ ≤ α
2 h} in a finite time.

Since α ∈ (0, 1) is arbitrary, B∞ could be made to be arbitrarily small by decreasing the value of α. A smaller

value of α entails a larger value of cX0
and hence a larger value of control gain parameter c. This completes

the proof of Lemma 5.

We have now proven that ∆(t) is bounded all the time as long as c ≥ cX0
. We have also proven that

the ultimate bound of ∆ can be reduced arbitrarily by increasing the value of the control gain parameter

c. Next, we apply Lemma 1 to establish the ultimate boundedness of the synchronization error δ. To this
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end, we recall that ∆ = (1 + d
dt )

n−1 δ1 = C0
n−1δ1 +C1

n−1δ2 + · · ·+Cn−1
n−1δn. Then, by using Lemma 1, we can

conclude that ||δ1(t)||, ||δ2(t)||, · · · and ||δn(t)|| are all ultimately bounded, and their ultimate bounds can be

reduced arbitrarily by increasing the value of c. Namely, the synchronization error δ is ultimately bounded,

and their ultimate bounds can be reduced arbitrarily.

This completes the proof of Theorem 3.

3.5 Simulation Results

In this section, simulation results are provided to demonstrate the effectiveness of our proposed control

protocols. In particular, we consider a network of five third-order systems,



ẋ11 = x12,

ẋ12 = x13,

ẋ13 = −2x13 − 3 sinx12 + 4 cosx11 + u1 + w1,

ẋ21 = x22,

ẋ22 = x23,

ẋ23 = −6x23 − 8 sinx22 + 10 cosx11 + u2 + w2,

ẋ31 = x32,

ẋ32 = x33,

ẋ33 = −12x33 − 15 sinx32 + 18 cosx31 + u3 + w3,

ẋ41 = x42,

ẋ42 = x43,

ẋ43 = −20x43 − 24 sinx42 + 28 cosx41 + u4 + w4,

ẋ51 = x52,

ẋ52 = x53,

ẋ53 = −42x53 − 48 sinx52 + 54 cosx51 + u5 + w5,

where the disturbance wi = 2 sin(t+ iΠ
8 ), i = 1, 2, · · · , 5.

The leader agent is taken as a third-order system which has the following dynamics,


ẋ01 = x02,

ẋ02 = x03,

ẋ03 = −3x01 − 3x02 − 4x03 + 11 cos(3t) + 15 sin(3t).
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Then, for such a multi-agent network system, the simulation results for the case of a fixed directed

interaction topology are presented in Section 3.5.1. In Section 3.5.2, we provide the simulation results for the

case of switching undirected interaction topology. Finally, the simulation results for the case of switching

directed interaction topology are presented in Section 3.5.3.

3.5.1 Fixed Strongly-connected Directed Graph Communication Topology

Let the communication topology be as shown in Fig. 3.1, where the weights are all set to be 1.

Figure 3.1: A fixed digraph communication topology

We will use an RBFNN with 27 neurons for each agent in our simulation. The configurations of RBFNN

are the same for all five agents. The parameters in the RBFNN weight tuning law are selected as χi = 1

and Wmax i = 20000, i = 1, 2, · · · , 5. And the initial neural network weights are all set to be 0. The RBFNN

activation functions are selected to have following form

ϕij(xi) = 30e−
‖xi−cj‖

2

1000 , i = 1, 2, · · · , 5; j = 1, 2, · · · , 27;

where, c(j) are the centers of the RBFNN activation functions, which are distributed evenly in the cube

[−1, 1]× [−1, 1]× [−1, 1].

The initial states of the five agents are x1 = [15 1 10]T, x2 = [20 20 2]T, x3 = [3 12.5 1.5]T, x4 = [4 32 3]T,

and x5 = [−5 40 4]T. The initial state of the leader agent is x0 = [10 20 8]T.

Case 1 Using the control protocol defined by (3.3) and (3.6) with the aforementioned parameters, we simulate

the multi-agent system from t = 0.0 to t = 14.0s with c = 100. The synchronized motion phase plane plot

of all five agents and the leader agent is shown in Fig. 3.2, where the blue line represents the leader agent

and the red lines represent the five follower agents. The“×” symbols stand for the initial states, and the “+”
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symbols mean the states at the end of the simulation. As time evolves, the states of all the five follower agents

are synchronized to the state of the leader agent very well. This can also be seen from the tracking error

plot of position, velocity and acceleration -see Fig. 3.3. Basically, as time evolves, all these tracking errors

are approximately zero. Fig. 3.4 plots the unknown nonlinear function fi(xi) as well as the neural network

approximation f̂i(xi), i = 1, 2, · · · , 5. In Fig. 3.4, the black lines represent fi(xi) and the red lines are f̂i(xi).

As we can see, the RBFNN can approximate the unknown nonlinear function fi(xi) very well. Based on Fig.

3.4, the uncertainty compensation capability of the proposed RBFNN is illustrated.

Case 2 This case is used to illustrate the impact of the control parameter c. With the control protocol defined

by (3.3) and (3.6), the multi-agent system is simulated from t = 0.0 to t = 10.0s with 1) c = 20; 2) c = 30;

3) c = 60; 4) c = 100. The tracking error plots are shown in Fig. 3.5, Fig. 3.6, Fig. 3.7 and Fig. 3.8,

respectively. As we can see, the control parameter c has significant impact on the synchronization control

performance. The ultimate bound of synchronization error can be reduced by increasing the value of control

parameter c.

Case 3 The RBFNN uncertainty compensation ability has already been illustrated by Fig. 3.4 in Case 1. This

case is used to further investigate the impact of the RBFNN upon the synchronization control performance.

The multi-agent system is simulated from t = 0.0 to t = 8.0s in following three different cases: 1) use the

control rule specified by (3.3) and (3.6) with control parameter c = 60; 2) use the control rule ui = cri with

control parameter c = 60; 3) use the control rule ui = cri with control parameter c = 500. It is easy to see

that the control rule ui = cri just removes the RBFNN from the proposed control protocol. The synchronized

motion phase plane plots are shown in Fig. 3.9, Fig. 3.10 and Fig. 3.11, respectively. The tracking error

plots are shown in Fig. 3.12, Fig. 3.13 and Fig. 3.14, respectively. By comparing Fig. 3.9, Fig. 3.10, Fig.

3.12 and Fig. 3.13, we know that the employment of the RBFNN can significantly reduce the ultimate bound

of the synchronization error. By comparing Fig. 3.9, Fig. 3.11, Fig. 3.12 and Fig. 3.14, we know that,

without the RBFNN, the control protocol will require a much larger control gain c to achieve the same ultimate

synchronization error bound. This illustrates the benefits to employ the RBFNN in our control protocols.
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Figure 3.3: Tracking error plot, fixed digraph topology, Case 1, c=100
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Figure 3.4: RBFNN approximation, fixed digraph topology, Case 1, c=100

0 1 2 3 4 5 6 7 8 9 10
−20

0

20
Nodes Position Tracking Error Plot (c = 20)

t, sec

0 1 2 3 4 5 6 7 8 9 10
−20

0

20
Nodes Velocity Tracking Error Plot (c = 20)

t, sec

0 1 2 3 4 5 6 7 8 9 10
−100

0

100
Nodes Acceleration Tracking Error Plot (c = 20)

t, sec

Figure 3.5: Tracking error plot, fixed digraph topology, Case 2, c=20

34



0 1 2 3 4 5 6 7 8 9 10
−20

0

20
Nodes Position Tracking Error Plot (c = 30)

t, sec

0 1 2 3 4 5 6 7 8 9 10
−20

0

20
Nodes Velocity Tracking Error Plot (c = 30)

t, sec

0 1 2 3 4 5 6 7 8 9 10
−100

0

100
Nodes Acceleration Tracking Error Plot (c = 30)

t, sec

Figure 3.6: Tracking error plot, fixed digraph topology, Case 2, c=30
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Figure 3.7: Tracking error plot, fixed digraph topology, Case 2, c=60
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Figure 3.8: Tracking error plot, fixed digraph topology, Case 2, c=100
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Figure 3.9: Phase plot, fixed digraph topology, Case 3, c=60, with RBFNN
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Figure 3.10: Phase plot, fixed digraph topology, Case 3, c=60, without RBFNN
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Figure 3.11: Phase plot, fixed digraph topology, Case 3, c=200, without RBFNN
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Figure 3.12: Tracking error plot, fixed digraph topology, Case 3, c=60, with RBFNN
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Figure 3.13: Tracking error plot, fixed digraph topology, Case 3, c=60, without RBFNN
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Figure 3.14: Tracking error plot, fixed digraph topology, Case 3, c=200, without RBFNN

3.5.2 Switching Connected Undirected Graph Communication Topology

Let the switching connected undirected communication topology be as shown in Fig. 3.15. The weight of

each edge is also shown in the figure. The set {Ga, Gb, Gc, Gd, Ge, Gf} represents the six different network

topologies of the multi-agent system. The multi-agent system starts at topology Ga and switches every

T = 0.1s to the next topology. Note that Ga is set to be the next topology of Gf . Namely, the network

topology is switching according to the following rule: Ga → Gb → Gc → Gd → Ge → Gf → Ga → Gb · · · .

We will again use an RBFNN with 27 neurons for each agent in our simulation. The configurations

of RBFNN are the same for all five agents. The control parameters are selected as c = 60, χi = 1 and

Wmax i = 20000, i = 1, 2, · · · , 5. And the initial neural network weights are all set to be 0. The RBFNN

activation functions are selected to have following form

ϕij(xi) = 30e−
‖xi−cj‖

2

1000 , j = 1, 2, · · · , 27; i = 1, 2, · · · , 5;

where, c(j) are the centers of the RBFNN activation functions, which are distributed evenly in the cube

[−1, 1]× [−1, 1]× [−1, 1].
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Figure 3.15: A switching connected undirected communication topology

The initial states of the five agents are x1 = [10 25 3]T, x2 = [−20 15 10]T, x3 = [30 15 − 10]T,

x4 = [−4 − 20 − 12]T, and x5 = [25 4 6]T. The initial state of the leader agent is x0 = [15 10 6]T.

The multi-agent system is simulated from t = 0.0 to t = 10.0s with the aforementioned parameters. The

synchronized motion phase plane plot of all five agents and the leader agent is shown in Fig. 3.16, where the

blue line represents the leader agent and the red lines represent the five follower agents. The “×” symbols

stand for the initial states, and the “+” symbols mean the states at the end of the simulation. As time

evolves, the states of all the five follower agents are synchronized to the state of the leader agent very well.

This can also be seen from the tracking error plot in Fig. 3.17. As we can see, as time evolves, all these

tracking errors are approximately zero. Fig. 3.18 plots the unknown nonlinear function fi(xi) as well as the
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Figure 3.16: Phase plot, switching undirected graph topology, c=60

corresponding neural network approximation f̂i(xi), i = 1, 2, · · · , 5, where the black lines represent fi(xi) and

the red lines are f̂i(xi). As shown in the figure, the RBFNN can captures the unknown uncertainties very

well. Based on Fig. 3.18, the uncertainty compensation capability of the proposed RBFNN is illustrated.
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Figure 3.17: Tracking error plot, switching undirected graph topology, c=60
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3.5.3 Switching Strongly-connected Directed Graph Communication Topology

In this subsection, simulation examples are provided to demonstrate the effectiveness of our proposed control

protocols for the case of switching strongly-connected directed interaction topology.

A. Example 1

Let the communication topology be represented by a switching strongly-connected directed graph as shown

in Fig. 3.19. The weight of each edge is also shown in the figure. The set {G1, G2, G3, G4, G5, G6}

represents the six different network topologies of the multi-agent system. It is easy to verify that all these six

topologies are directed and strongly connected. The multi-agent system starts at topology G1 and switches

every T = 0.2 to the next topology, with G6 followed by G1. Namely, the network topology is switching

according to the following rule: G1 → G2 → G3 → G4 → G5 → G6 → G1 → G2 · · · .

We will again use an RBFNN with 27 neurons for each agent in our simulation. The control parameters

are selected as c = 60, χi = 1 and Wmax i = 20000, i = 1, 2, · · · , 5. The initial neural network weights are all

set to be 0. The RBFNN activation functions are selected to have the following form

ϕij(xi) = 30e−
‖xi−cj‖

2

1000 , j = 1, 2, · · · , 27, i = 1, 2, · · · , 5,

where, cj are the centers of the RBFNN activation functions, which are distributed evenly in the cube

[−1, 1]× [−1, 1]× [−1, 1].

The initial states of the five follower agents are x
(0)
1 = [10 25 3]T, x

(0)
2 = [−20 15 10]T, x

(0)
3 = [30 15 −10]T,

x
(0)
4 = [−4 − 20 − 12]T, and x

(0)
5 = [25 4 6]T. The initial state of the leader agent is x

(0)
0 = [15 10 6]T.

We simulate the multi-agent system using the control protocols defined by (3.27), (3.30) and (3.31) with

the control gain parameter c = 60. The state tracking error trajectories of all five follower agents are shown

in Fig. 3.20. As we can see, the states of all the five follower agents synchronize to the state of the leader

agent very well. The steady state synchronization errors are very close to zero.

The phase trajectories of the states, as is shown in Fig. 3.21, also help us to visualize the synchronization

of the multi-agent system. In the figure, the blue dotted line denotes the phase trajectory of the leader agent

and the red solid lines represent the phase trajectories of the five follower agents. The “�” symbols stand

for the initial states, and the “4” symbols represent the states of the agents at the end of the simulation.

As we can see, although starting from quite different initial states, the states of all the five follower agents

synchronize to the state of the leader agent very well as time elapses. This can be easily observed by noticing
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Figure 3.19: A switching strongly-connected directed graph communication topology

that all the six “4” symbols, which represent the states of the agents at the end of the simulation, are very

close to each other.

As for the uncertainty compensation capability of the proposed RBFNN, it can be easily seen by plotting

the unknown nonlinear function fi(xi) as well as the corresponding neural network approximation f̂i(xi),

i = 1, 2, · · · , 5, as is shown in Fig. 3.22. The blue dashed-dotted lines denote fi(xi) and the black dashed

lines represent f̂i(xi). As seen in the figure, the RBFNNs approximate the unknown nonlinear functions

fi(xi) very well.
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Figure 3.20: Tracking errors under control protocols (3.27), (3.30) and (3.31) with c = 60

45



Figure 3.21: Phase trajectories of the leader agent and the follower agents under control protocols (3.27),
(3.30) and (3.31) with c = 60
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Figure 3.22: Strongly-connected directed graph: approximation of fi(xi) (blue dashed-dotted lines) by
RBFNNs (black dashed lines) for the 5 follower agents under control protocols (3.27), (3.30) and (3.31) with

c = 60
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B. Example 2

In this work, the multiple Lyapunov function approach is used to establish the results for switching directed

communication topology in Section 3.4. It is easy to see that, the fixed directed communication topology and

switching undirected communication topology considered in Section 3.2 and Section 3.3 are special cases of

the switching directed communication topology considered in Section 3.4.

However, compared with the results in Section 3.3 for siwtching undirected communication topology, an

additional assumption that the set of all possible topologies G is finite is imposed when using the multiple

Lyapunov function proof technique to establish the results in Section 3.4. Therefore, a question raised

naturally: Is this additional assumption a necessary condition for our proposed method to work? Or, would

the proposed method still work (though it might need different proof technique) without this additional

finiteness assumption of G?

Note that, if we consider only non-weighted (i.e., 0 − 1 binary edge weights) graph communication

topologies, the set of all possible topology is always finite, for a given number of agents. But when taking

into consideration of weighted graph communication topologies, this set of all possible topology can definitely

be infinite since the edge weights can be any nonnegative real number. As a result, the question posed in the

paragraph above would arise.

Motivated by this question, in this simulation example, we investigate the performance of our proposed

control protocols when the set of all possible topologies G is infinite.

Let the switching strongly-connected directed graph communication topology with infinite many different

topologies be represented by a switching strongly-connected directed graph as shown in Fig. 3.23. The weight

of each edge is also shown in the figure, where t denotes the time. The set {G1, G2, G3, G4, G5, G6}

represents the six different types of network topologies of the multi-agent system. It is easy to verify that all

these six types of topologies are directed and strongly connected. The multi-agent system starts at topology

G1 and switches every T = 0.2 to the next topology, with G6 followed by G1. Namely, the network topology is

switching according to the following rule: G1 → G2 → G3 → G4 → G5 → G6 → G1 → G2 · · · . Note that the

time dependent edge weight terms such as 1/(1 + exp(−t)) ensures that the set of all possible communication

topology graph G is infinite.
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Figure 3.23: A switching strongly-connected directed graph communication topology with infinite many
different graph

Next, with exactly the same initial condition as well as exactly the same control protocol parameter

setting as Section 3.5.3, we simulate the multi-agent system using the control protocols defined by (3.27),

(3.30) and (3.31) with the control gain parameter c = 60. The state tracking error trajectories of all five

follower agents are shown in Fig. 3.24, and the phase trajectories of the states of all agents are shown in Fig.

3.25.

As we can see, as time elapses, the states of all the five follower agents synchronize to the state of the

leader agent very well. The steady state synchronization errors are very close to zero.

Therefore, the simulation results presented here indicates that our proposed control protocols still works

even without the assumption that the set of all possible topologies G is finite. Namely, it seems that this

additional assumption might probably be not necessary to guarantee the proposed control algorithm to

work. On the other hand, to prove the results without this additional assumption, we might need quite

different tools from the multiple Lyapunov function method employed in this chapter to prove the closed-loop
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Figure 3.24: Infinite topology set G case: tracking errors under control protocols (3.27), (3.30) and (3.31)
with c = 60

performance of the system under our proposed control protocols. This is because that, based on the existing

literature, it is not clear how the multiple Lyapunov function method could be applied when there are infinite

number of different switching Lypunov functions. This might be an interesting future research direction to

explore.

50



Figure 3.25: Infinite topology set G case: phase trajectories of the leader agent and the follower agents under
control protocols (3.27), (3.30) and (3.31) with c = 60

3.6 Summary

In this chapter, the distributed synchronization control of multi-agent networks with unknown nonlinearities

and nth order agent dynamics was investigated. We first consider the case of a fixed directed interaction

topology, and then extend the results to undirected switching topologies and directed switching topologies. To

be specific, we proposed distributed synchronization control protocols, and through the Lyapunov functional

approach, we proved that the constructed control law achieve synchronization of all follower agents to the

leader agent. Numerical examples demonstrated the effectiveness of the proposed control protocols. The

contributions of this study can be summarized as follows.

1. Before this work, for multi-agent network system with unknown nonlinearities, described by (3.1) and

(3.2), the distributed synchronization control problem has not been studied on time varying interaction

topologies. We proved that, our proposed control protocols achieve synchronization of all follower

agents to the leader agent, if the time varying interaction topology is directed and strongly connected

all the time, or if the time varying interaction topology is undirected and connected all the time.

2. Even for the case of a fixed interaction topology, in the previous works, only the simpler cases for agent

dynamics were considered, namely, the first order and second order agent dynamics. In addition, those
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results for first order and second order agent dynamics are incorrect, due to a technical error. In our

work, we have established results for more general nth order agent dynamics, and our results hold for

both fixed and time varying interaction topologies.

3. This work demonstrates that the common Lyapunov function approach and multiple Lyapunov function

approach from switch system theory are very useful to address distributed coordination control problems

of multi-agent network under a time varying interaction topology. For a given multi-agent network

coordination control problem, we construct a common Lyapunov function or a series of different Lyapunov

function accordingly. Such approaches might be applicable to many other classes of coordination control

problems for multi-agent networks with a dynamic interaction topology.
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Chapter 4

Distributed Consensus Control under Jointly

Connected Dynamic Interaction Topologies

As mentioned in Section 1.5, in the second part of this thesis we will address the distributed consensus control

problem for multi-agent networks with high order linear agent dynamics under jointly connected directed

interaction topologies. This enriches the existing literature on multi-agent distributed consensus control

under a jointly connected directed interaction topology, which was limited to very simple single integrator

agent dynamics. The distributed control protocols will be developed, and the consensus will be proven.

4.1 Problem Statement

We consider a network of N agents, with each agent described by the following higher order linear dynamic

system:

ẋi = Axi +Bui, i = 1, 2, · · · , N, (4.1)

where xi ∈ Rn is the state vector of agent i, ui ∈ R is the control input to agent i, and (A,B) is controllable.

Without loss of generality, we can rewrite the linear dynamic system (4.1) in the following canonical form

via certain coordinate transformation:



ẋi1 = xi2,

ẋi2 = xi3,

...

ẋin = α1xi1 + α2xi2 + · · ·+ αnxin + ui,

(4.2)
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where xi = [xi1 xi2 · · · xin]T is the state vector of agent i, α1, α2, · · · , αn are scalar coefficients, and ui is the

control input.

Let the network interaction topology be represented by a directed graph G = (V,E(t), A(t)). The detailed

relevant notations for a directed graph G = (V,E(t), A(t)) is referred to Section 2.1 of this thesis.

The objective in this chapter is to design distributed control algorithm such that consensus can be

achieved asymptotically by the group of agents specified by (4.2), under a jointly connected directed dynamic

interaction topology. In particular, we would like to design ui for each agent i by using only local neighborhood

information of agent i such that (xik(t) − xjk(t)) → 0 as t → ∞, i = 1, 2, · · · , N , j = 1, 2, · · · , N , and

k = 1, 2, · · · , n.

Such a multi-agent network consensus control problem under a jointly connected directed dynamic

interaction topology has once been investigated in a well known work [8] by Ren and Beard, but only the

very simple first order integrator agent dynamics were considered. They proposed distributed consensus

control protocols and showed that the network consensus will be achieved under a weak network topology

connectivity assumption that the union of the directed interaction topology graphs contains a spanning tree

frequently enough. Under this network connectivity assumption, the underlying directed dynamic interaction

topology is jointly connected.

To be specific, in [8], Ren and Beard considered a network of N agents with following first order integrator

agent dynamics,

ẋi = ui, i = 1, 2, · · · , N, (4.3)

where xi is the state of the agent i, and ui is the control input.

For the multi-agent system described by (4.3), Ren and Beard [8] proposed the following distributed

consensus control algorithm:

ui = −
N∑
j=1

aij(xi − xj), (4.4)

where aij ≥ 0 denotes the weight of the edge from agent j to agent i of the interaction graph.

Using graph theory and the related stochastic matrix analysis technique, Ren and Beard proved that

information consensus under dynamically changing interaction topologies can be achieved asymptotically with

their proposed control protocols. To be specific, their main results can be stated in the following lemma:

Lemma 6 [8] Let t1, t2, · · · be an infinite time sequence at which the interaction graph or weighting factors

aij switch and τi = ti+1 − ti ∈ γ, i = 0, 1, · · · . Here, γ is an infinite set generated from set τ̂ , which is

closed under addition, and multiplications by positive integers, with τ̂ being a finite set of arbitrary positive
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numbers. Let G(ti) be a switching interaction graph at time t = ti and all nonzero entries of the adjacency

matrix A = [aij ] are lower bounded by a positive constant σL and upper bounded by a positive constant σM .

Then the distributed control protocols (4.4) achieves consensus asymptotically for the multi-agent systems

specified by (4.3) if there exists an infinite sequence of uniformly bounded, nonoverlapping time intervals

[ tij , tij+lj ), lj ∈ [1, ij+1−ij), j = 1, 2, · · · , starting at ti1 = t0, with the property that each interval [tij+lj , tij+1
)

is uniformly bounded and the union of the directed graphs across each interval [tij+lj , tij+1
) has a spanning

tree. Furthermore, the consensus value is a constant. On the other hand, if the union of the graphs after

some finite time does not contain a spanning tree, then consensus cannot be achieved for the multi-agent

systems specified by (4.3).

Remark 3 The results stated in Lemma 6 hold for both cases of leaderless consensus and leader following

consensus with a stationary leader. To be specific, if there is one agent in the group which does not have

any incoming link, but the union of the interaction graphs contains a spanning tree frequently enough, then

this agent must be the root of the directed spanning tree, namely, the leader. Since information consensus is

guaranteed, in this case, the state of all other agents will converge to the state of the leader asymptotically.

In [15], Ren and Beard extended their work in [8] to multi-agent systems with second order integrator

agent dynamics. Namely, the dynamics of each agent i, i = 1, 2, · · · , N , are described by

 ẋi1 = xi2,

ẋi2 = ui,
(4.5)

where xi = [xi1 xi2]T is the state vector of the agent i, and ui is the control input.

For the multi-agent system described by (4.5), Ren and Beard proposed the following distributed consensus

control protocols:

ui = −
N∑
j=1

aij [(xi1 − xj1) + r(t)(xi2 − xj2)], (4.6)

where r(t) is a positive scalar at time t.

Their main results about the second order consensus control protocols (4.6) under switching interaction

topologies are stated as follows:

Lemma 7 [15] Let t1, t2, · · · be the times when the directed interaction graph GN (t) switches. Also let τ

be the dwell time such that ti+1 − ti ≥ τ , ∀ i = 0, 1, · · · . If GN (t) has a directed spanning tree for each

t ∈ [ti, ti+1), and γ and τ satisfies certain inequality conditions as stated in ([15]), the algorithm (4.6) achieves

consensus asymptotically and is robust to perturbations under directed switching interaction topologies.
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In comparison with Lemma 6, a much stronger network connectivity assumption was made in Lemma 7,

namely, the interaction graph has a directed spanning tree at each time instant. In fact, simulation examples

have been provided by Ren and Beard in [15] to illustrate that the weaker network connectivity assumption

made in Lemma 6 is generally not sufficient for the proposed second order consensus algorithm (4.6) to

achieve information consensus.

In this chapter, we aim at designing new distributed consensus control algorithm and extending the results

in Lemma 6 to higher order systems. We will show that, under our proposed control protocols, information

consensus can be achieved asymptotically with the same network connectivity assumption that the union of

the switching directed interaction graphs contains a spanning tree frequently enough.

4.2 Consensus Control Protocols and the Closed-loop System Per-

formance Analysis

Before stating our main results, we would like to mention the following fact which is important for control

design and analysis in this section.

Lemma 8 [53] Let x(t) be a smooth function of t and assume that x(0), ẋ(0), · · · , x(n−1)(0) are all bounded.

Define

s(x, t) =

(
λ+

d

dt

)n−1

x(t),

where λ > 0 is a constant. If there exists a scalar Φ > 0 such that |s(x(t), t)| ≤ Φ for all t ≥ 0, then there

exists a finite T0, dependent on the values of x(0), ẋ(0), · · · , x(n−1)(0), such that

∥∥∥x(i)(t)
∥∥∥ ≤ 2iΦ

λn−i−1
, t ≥ T0, i = 0, 1, · · · , n− 1.

4.2.1 Consensus Control Protocols and the Closed-loop System Performance

For the multi-agent systems specified by (4.2), in order to achieve information consensus asymptotically, we

propose the following distributed control laws for each agent i, i = 1, 2, · · · , N ,

ui = −
N∑
j=1

aij(zi − zj)−
(
C0
n−1λ

n−1xi2 + C1
n−1λ

n−2xi3 + · · ·+ Cn−2
n−1λxin

)
−(α1xi1 + α2xi2 + · · ·+ αnxin), (4.7)
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where

zi =

(
λ+

d

dt

)n−1

xi1

= C0
n−1λ

n−1xi1 + C1
n−1λ

n−2xi2 + · · ·+ Cn−2
n−1λxi(n−1) + Cn−1

n−1xin, (4.8)

with λ > 0 being a positive constant, and Cji ’s being coefficients of the binomial expansion.

Then our main results on the information consensus of the group of agents under the proposed control

protocols can be stated in the following theorem.

Theorem 4 Consider a multi-agent system of N agents whose dynamics are described by (4.2) and steered

by the control protocols specified by (4.7) and (4.8). Let t1, t2, · · · be an infinite time sequence at which the

interaction graph or weighting factors aij switch and τi = ti+1 − ti ∈ γ, i = 0, 1, · · · . Here, γ is an infinite

set generated from set τ̂ , which is closed under addition, and multiplications by positive integers, with τ̂

being a finite set of arbitrary positive numbers. Let G(ti) be a switching interaction graph at time t = ti

and all nonzero entries of the adjacency matrix A = [aij ] are lower bounded by a positive constant σL and

upper bounded by a positive constant σM . Then the distributed control protocols (4.7) achieves consensus

asymptotically for the multi-agent systems specified by (4.2) if there exists an infinite sequence of uniformly

bounded, nonoverlapping time intervals [ tij , tij+lj ), lj ∈ [1, ij+1 − ij), j = 1, 2, · · · , starting at ti1 = t0, with

the property that each interval [tij+lj , tij+1
) is uniformly bounded and the union of the directed graphs across

each interval [tij+lj , tij+1) has a spanning tree. Furthermore, the consensus is reached at a constant state

[c 0 0 · · · 0]T. On the other hand, if the union of the graphs after some finite time does not contain a spanning

tree, then consensus cannot be achieved for the multi-agent systems specified by (4.2).

4.2.2 Theoretical Analysis

Proof of Theorem 4: It is easy to verify that, for the linear dynamic system (4.2) with control input ui

specified by (4.7) and (4.8), we have

żi =
d

dt

(
C0
n−1λ

n−1xi1 + C1
n−1λ

n−2xi2 + · · ·+ Cn−2
n−1λxi(n−1) + Cn−1

n−1xin
)

= C0
n−1λ

n−1xi2 + C1
n−1λ

n−2xi3 + · · ·+ Cn−2
n−1λxin + Cn−1

n−1 ẋin

= C0
n−1λ

n−1xi2 + C1
n−1λ

n−2xi3 + · · ·+ Cn−2
n−1λxin + (ui + α1xi1 + α2xi2 + · · ·+ αnxin)

= −
N∑
j=1

aij(zi − zj),
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Namely, we have

żi = −
N∑
j=1

aij(zi − zj). (4.9)

It is easy to verify that the dynamic system (4.9) is exactly the same as the closed-loop system of (4.3) with

control input ui specified by the first order consensus algorithm (4.4).

Therefore, we can apply Lemma 6 and have the conclusion that zi − zj converges to zero asymptotically

and the consensus value of zi is a constant, i = 1, 2, · · · , N , and j = 1, 2, · · · , N , if the union of the

switching directed interaction graphs contains a spanning tree frequently enough. In view of (4.8), we have

zi − zj =
(
λ+ d

dt

)n−1
(xi1 − xj1). It then follows from Lemma 8 that Φ in Lemma 8 can be chosen to be

arbitrarily small since zi− zj → 0, and we can conclude that (xik−xjk)→ 0, i = 1, 2, · · · , N , j = 1, 2, · · · , N ,

and k = 1, 2, · · · , n. Namely, the information consensus is achieved by the group of agents asymptotically.

By the dynamics of (4.2), the states xij , j = 1, 2, · · · , n, i = 1, 2, · · · , N , all converge to zero as t→∞.

Since zi converges to a constant, it follows from (4.8) that xi1, i = 1, 2, · · · , N , converges to a constant.

The proof of the second part statement of Theorem 4 (i.e., if the union of the graphs after some finite

time does not contain a spanning tree, then consensus cannot be achieved) is the same as in the proof of

Lemma 6 in [8].

Remark 4 Theorem 4 holds for both cases of leaderless consensus and leader following consensus with a

stationary leader. Such a conclusion could be drawn based on a similar argument as used in Remark 3.

4.2.3 Discussion

The contribution of this work is that the results in [8], which are limited to first order integrator dynamics, are

extended to nth order controllable linear dynamic systems, with the same network connectivity assumption

being made that the union of the switching directed interaction graphs contains a spanning tree frequently

enough. The results are much more general than existing literature and will be important in many applications.

Obviously, the results in [8] can be thought of as a special case of the results in Theorem 4, and all the

assumptions required in Theorem 4 are the same as those made in [8]. This can be seen by that, for first

order systems, zi is reduced to xi, and our proposed control protocols (4.7) and (4.8) are reduced to the

consensus algorithm (4.4) proposed in [8].

When compared with the second order consensus algorithm (4.6) proposed in [15], we can find that our

proposed control protocols (4.7) and (4.8) require only much weaker assumptions (connectivity, dwell time,

etc.) to guarantee information consensus than the algorithm (4.6). To make the algorithm comparison more
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straightforward, for second order systems (4.5), our proposed control protocols (4.7) and (4.8) are reduced to

ui = −
N∑
j=1

aij (λ(xi1 − xj1) + (xi2 − xj2))− λxi2. (4.10)

By comparing (4.10) and (4.6) and setting λ = 1
γ , it is easy to know that it is the term −λxi2 that makes the

difference about the convergence performance between our proposed consensus algorithm and algorithm (4.6).

Reference [17] proposed a Lyapunov-based approach and solved the second order consensus control problem

with a stationary leader under switching jointly connected interaction topologies. For a straightforward

comparison, the proposed second order consensus algorithm in [17] is as follows,

ui = −
N∑
j=1

(aij(xi1 − xj1))− bi(xi1 − x01)− κxi2, (4.11)

where x0 = [x01 x02]T denotes the state of the stationary leader with x01 being a constant and x02 ≡ 0, bi is

the weight of the edge of agent i to the leader, and κ is a positive constant satisfying a certain inequality as

specified in [17]. The results in [17] can also be thought of as a special case of our more general results in this

chapter, in the sense that they considered only undirected interaction topologies and they made some more

restrictive assumptions about the interaction graph weighting factors. It is not obvious how their method can

be extended to leaderless consensus control case, directed interaction topologies or higher order systems.

Compared with reference [24] which concerns with undirected interaction topologies, Theorem 4 is

applicable to directed interaction topologies. Besides, Theorem 4 does not require matrix A to be marginally

stable. Our extension of [24] is made possible by a different structure of the control algorithm.

4.3 Simulation Results

4.3.1 Consensus without a Leader

We consider a network of five third-order systems


ẋi1 = xi2,

ẋi2 = xi3,

ẋi3 = ui, i = 1, 2, · · · , 5,

where ui is the control input.
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Figure 4.1: A switching directed graph interaction topology without a leader

Let the communication topology be represented by a switching directed graph as shown in Fig. 4.1. The

weight of each edge is also shown in the figure. The set {Ga , Gb , Gc , Gd , Ge , Gf} represents the six different

network topologies of the multi-agent system. The multi-agent system starts at topology Ga and switches

every T = 0.1 to the next topology, with Gf followed by Ga . Namely, the network topology is switching

according to the following rule: Ga → Gb → Gc → Gd → Ge → Gf → Ga → Gb · · · . As we can see, at any

given time instant, the directed interaction topology does not have a spanning tree. It is easy to verify that

the union of the directed interaction graphs contains a spanning tree frequently enough for the interaction

topology shown in Fig 4.1.

The initial states of the five follower agents are x
(0)
1 = [10 25 3]T, x

(0)
2 = [−20 15 10]T, x

(0)
3 = [30 15 −10]T,

x
(0)
4 = [−4 − 20 − 12]T, and x

(0)
5 = [25 4 6]T. The parameter λ in our proposed consensus control algorithm

(4.7) and (4.8) is set to be 1.

60



Figure 4.2: Errors between states of the agents and their centroid

Simulation results are shown in Fig. 4.2. As we can see, the states of the five agents converges to each

other.
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4.3.2 Consensus with a Stationary Leader

We consider a network of five follower agents and one stationary leader agent. Each follower agent i,

i = 1, 2, · · · , 5, is a third-order system specified as follows,


ẋi1 = xi2,

ẋi2 = xi3,

ẋi3 = ui,

where ui is the control input to agent i.

The dynamics of the stationary leader agent are as follows,


ẋ01 = x02,

ẋ02 = x03,

ẋ03 = 0,

where x0 = [x01 x02 x03]T denotes the state of the stationary leader with x01 being a constant, x02 ≡ 0 and

x03 ≡ 0.

Let the communication topology be represented by a switching directed graph as shown in Fig. 4.3. The

weight of each edge is also shown in the figure. The set {Ga , Gb , Gc , Gd , Ge , Gf} represents the six different

network topologies of the multi-agent system. The multi-agent system starts at topology Ga and switches

every T = 0.1 to the next topology, with Gf followed by Ga . Namely, the network topology is switching

according to the following rule: Ga → Gb → Gc → Gd → Ge → Gf → Ga → Gb · · · . As we can see, at any

given time instant, the directed interaction topology does not have a spanning tree. It is easy to verify that

the union of the directed interaction graphs contains a spanning tree frequently enough for the interaction

topology shown in Fig 4.3.

The initial states of the five follower agents are x
(0)
1 = [15 20 36]T, x

(0)
2 = [−20 −8 15]T, x

(0)
3 = [40 25 −10]T,

x
(0)
4 = [−4 −50 −18]T, and x

(0)
5 = [25 14 6]T. The initial state of the stationary leader agent is x

(0)
0 = [15 0 0]T.

The parameter λ in our proposed consensus control algorithm (4.7) and (4.8) is set to be 1.

The state tracking error of all the five follower agents are shown in Fig. 4.4. As we can see, under

our proposed distributed control protocols, the states of all the five follower agents achieve consensus

asymptotically, with the consensus value being equal to the state of the stationary leader agent.
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Figure 4.3: A switching directed graph interaction topology with a stationary leader

4.4 Summary

In this chapter, we considered the distributed control problem of information consensus for multi-agent

systems with higher order controllable linear agent dynamics under dynamically changing directed interaction

topologies and weighting factors. In particular, we proposed new consensus control protocols and extended the

first order system results in [8] to nth order linear controllable dynamic systems. We show that, information

consensus can be achieved asymptotically by the group of agents under our proposed control protocols if the

union of the directed interaction graphs contains a spanning tree frequently enough. Such results are much

more general than existing results in the literature. Numerical simulation illustrates the effectiveness of our

proposed control algorithm.

‘
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Figure 4.4: Agents’ state tracking errors with a stationary leader
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Chapter 5

Distributed Coordinated Tracking under State

Dependent Dynamic Interaction Topologies

As mentioned in Section 1.5, in the third part of this thesis we will address the distributed coordinated

tracking problem for a multi-agent network under a state dependent jointly connected dynamic interaction

topology.

5.1 Problem Statement

We consider a multi-agent network of N follower agents and one virtual leader moving in n dimensional space.

The dynamics of each follower agent i, i = 1, 2, · · · , N , are described by

 q̇i = pi,

ṗi = ui,
(5.1)

where xi = [qT
i p

T
i ]T ∈ R2n denotes the state of agent i, and ui is its control input.

The dynamics of the virtual leader are described by

 q̇γ = pγ ,

ṗγ = 0,
(5.2)

where xγ = [qT
γ p

T
γ ]T ∈ R2n describes the state of the virtual leader.
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For notational convenience, we also define

q =



q1

q2

...

qN


, p =



p1

p2

...

pN


.

Assume that each agent has only a limited communication capability and can only communicate with

agents within its neighborhood. The neighbor set of agent i at time t is denoted as,

Ni(t) = {j : ‖qi − qj‖ ≤ r, j = 1, 2, · · · , N, j 6= i}, (5.3)

where ‖·‖ is the Euclidean norm. Thus, we have assumed that all agents have an identical influencing/sensing

radius of r.

Note that the neighbor set of each agent may change over time because the distance between agents may vary

over time. We define the undirected neighborhood graph as GN (t) = (V,E(t)), where V = {v1, v2, · · · , vN}

is a set of N vertices, each denoting a follower agent, and E(t) ⊂ V × V is the set of edges of the graph at

time t. An edge (vi, vj) ∈ E(t) denotes that ‖qi(t)− qj(t)‖ ≤ r, namely, agent j and agent i are within the

neighborhood of each other at time t. In this situation, agent i and agent j are also said to be adjacent at

time t. Define the adjacency matrix as A = [aij(t)] with aij(t) ≥ 0 if (vj , vi) ∈ E(t) and aij(t) = 0 otherwise.

Define the graph Laplacian L(t) as L(t) = D(t)−A(t), where D(t) is the diagonal in-degree matrix with the ith

diagonal element being
∑N
j=1 aij(t). A path of length l is a sequence of edges (vi1 , vi2), (vi2 , vi3), · · · , (vil , vil+1

)

with all these l + 1 vertices being distinct from each other.

In 2006, Olfati-Saber [9] proposed distributed control protocols of the following form,

ui =
∑

j∈Ni(t)

∇qiψα(‖qj − qi‖σ) +
∑

j∈Ni(t)

aij(t)(pj − pi)− (c1(qi − qγ) + c2(pi − pγ)),

c1 > 0, c2 > 0, (5.4)

where ‖z‖σ is the ‖·‖σ norm of the vector z defined as ‖z‖σ = 1
ε

[√
1 + ε‖z‖2 − 1

]
with a parameter ε > 0.

The gradient ∇qiψα(‖qj − qi‖σ) is a nonlinear term derived from an artificial potential function. To be

specific, ψα(z) is a smooth pairwise attractive/repulsive potential with a finite cut-off at rα = ‖r‖σ and a
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global minimum at z = dα = ‖d‖σ. Mathematically, ψα(z) is defined as follows,

ψα(z) =

∫ z

dα

φα(s)ds,

with

φα(z) =
1

2
ρh(z/rα)

[
(a+ b)

z − dα + c√
1 + (z − dα + c)2

+ a− b

]
,

where the parameters satisfy 0 < a ≤ b, c = |a−b|√
4ab

, and the bump function ρh(z), h ∈ (0, 1), is defined as

ρh(z) =


1, if z ∈ [0, h),

0.5
[
1 + cos

(
π z−h1−h

)]
, if z ∈ [h, 1],

0, otherwise.

The adjacency weight function aij(t) is also a nonlinear function of the states of the agents defined as

aij(t) =


0, if j = i,

ρh(‖qj − qi‖σ/‖r‖σ), if j 6= i.

Under the control protocols (5.4), Olfati-Saber showed that all the follower agents would be driven to

track the virtual leader. The control protocols (5.4) indicate that all the follower agents are informed, that is,

all the agents have access to the information of the virtual leader.

In 2009, Su et al. [22] extended the results in [9] to the case that only a fraction of the follower agents are

informed. To be specific, they proposed the following control protocols,

ui =
∑

j∈Ni(t)

∇qiψα(‖qj − qi‖σ) +
∑

j∈Ni(t)

aij(t)(pj − pi)− hi(c1(qi − qγ) + c2(pi − pγ)),

c1 > 0, c2 > 0, (5.5)

where hi = 1 if agent i is informed and hi = 0 otherwise.

Then, using the LaSalle Invariance Principle and the artificial potention functional approach, Su et al.

showed that such control protocols enable all the informed agents to move with the desired velocity, and an

uninformed agent to also move with the same desired velocity if it can be influenced by the informed agents

from time to time during the evolution. It is also shown that the distance between any informed follower

agent and the virtual leader is bounded for all t ≥ 0.
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Note that both the control protocols (5.4) and the control protocols (5.5) are nonlinear due to the

appearance of the gradient term
∑
j∈Ni(t)∇qiψα(‖qj − qi‖σ) and an adjacency weight function term aij(t),

both of which are rather complicated nonlinear functions of the agent states. Moreover, in both [9] and [22],

the informed agents are assumed to have access to both the position and velocity information of the virtual

leader, and topology connectivity preserving was not considered.

In this chapter, we will design a much simpler distributed controller to achieve virtual leader tracking

(flocking, consensus tracking) objectives, both in the presence and in the absence of the virtual leader velocity

information. In addition, we will propose a new connectivity enhancing mechanism that is effective in

maintaining not only the initially existent topology edges but also those newly formed edges that were not

initially existent.

5.2 Virtual Leader Tracking Control Protocols and the Closed-

loop System Performance Analysis

In this section, we first propose new distributed control protocols that are much simpler than those in [9]

and [22], and show that the virtual leader tracking objective will be achieved (Section 5.2.1). Then we

analyze the performance of our proposed control protocols in the absence of the virtual leader velocity

information (Section 5.2.2). After that, we propose a new connectivity enhancing mechanism which is effective

in improving the topology connectivity to help achieve the tracking objective (Section 5.2.3).

5.2.1 Control Protocols and the Closed-loop System Performance Analysis with

Virtual Leader Velocity Information

In this section, we make the same assumption as in [22] that only some, but not all, of the follower agents are

informed agents who are given the position and velocity information of the virtual leader. Then, we propose

distributed control protocols that are much simpler than those in [9] and [22] and show that they achieve the

virtual leader tracking control objective.

More specifically, we will propose the following distributed control protocol for each agent i, i = 1, 2, · · · , N ,

ui = k1

∑
j∈Ni(t)

aij(t)(qj − qi) + k2

∑
j∈Ni(t)

aij(t)(pj − pi)− hi(c1(qi − qγ) + c2(pi − pγ)),

k1 > 0, k2 > 0, c1 > 0, c2 > 0, (5.6)
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where hi = 1 if agent i is informed and hi = 0 otherwise. Here, k1, k2, c1 and c2 are arbitrary positive

constants. aij(t) is the ijth entry of the adjacency weight matrix network topology, with

aij(t) =


0, if j = i or ‖qj(t)− qi(t)‖ > r,

r−‖qj−qi‖
δ , if j 6= i and ‖qj(t)− qi(t)‖ ∈ (r − δ, r],

1, if j 6= i and ‖qj(t)− qi(t)‖ ≤ r − δ,

where δ ∈ (0, r) is a positive constant that can be tuned according to specific applications.

It is easy to see that our proposed control protocols (5.6) are much simpler than the control protocols

(5.4) proposed in [9] and the control protocols (5.5) proposed in [22].

Without loss of generality, we assume that the first M0 (1 ≤M0 ≤ N) agents are informed agents, namely,

hi = 1 for i = 1, 2, · · · ,M0, and hi = 0 for i = M0 + 1, M0 + 2, · · · , N . Recall that we have assumed the

virtual leader to move along a fixed direction with a constant velocity pd.

Before stating our main results, we will use the same definitions as in [22] for Type I uninformed agents

and Type II uninformed agents, as follows.

Definition 8 [22] Denote the union of all neighborhood graphs across a nonempty finite time interval

[ti, ti+1), ti+1 > ti as Ĝ(ti, ti+1), whose edges are the union of the edges of those neighborhood graphs. For

an uninformed agent, if there is a path between this agent and one informed agent in the union Ĝ(ti, ti+1),

then we say that there exists a joint path between the uninformed agent and the informed agent during the

finite time interval [ti, ti+1). We divide all the uninformed agents into two types. An uninformed agent is

called a Type I uninformed agent if there exists an infinite sequence of contiguous, nonempty and uniformly

bounded time-intervals [ti, ti+1), i = 0, 1, 2, · · · , such that across each time interval there exists a joint path

between this agent and one informed agent. Otherwise, it is called a Type II uninformed agent.

It is important to note that a Type I uninformed agent is only required to be linked with an informed

agent through a joint path during each time interval [ti, ti+1), and not necessary to stay in touch with an

informed agent through a path all the time. It is also obvious that, if the interaction topology among all the

follower agents is jointly connected, then all the uninformed follower agents would be Type I uninformed

agents.

To state the main results of this section, we define a positive semi-definite energy function Q(q, p) as

follows,

Q(q, p) =
1

2

N∑
i=1

(Ui(q) + (pi − pγ)T(pi − pγ)), (5.7)
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where

Ui(q) =
k1

2

N∑
j=1,j 6=i

Vij(qi, qj) + hic1(qi − qγ)T(qi − qγ). (5.8)

with

Vij(qi, qj) =


‖qi − qj‖2, if ‖qj(t)− qi(t)‖ ≤ r − δ,

(r − δ)2 +
1
2 r‖qi−qj‖

2− 1
3‖qi−qj‖

3

δ −
1
2 r(r−δ)

2− 1
3 (r−δ)3

δ , if ‖qj(t)− qi(t)‖ ∈ (r − δ, r],

(r − δ)2 + r3

6δ −
1
2 r(r−δ)

2− 1
3 (r−δ)3

δ , if ‖qj(t)− qi(t)‖ > r.

Then our main results on virtual leader tracking of the group of agents can be stated in the following

theorem.

Theorem 5 Consider a multi-agent system of N agents whose dynamics are described by (5.1) and steered

by the control protocols specified by (5.6). The dynamics of the virtual leader are described by (5.2). Suppose

that a portion of the follower agents are informed agents which can get access to the position and velocity

information of the virtual leader. Suppose that the initial energy Q0 := Q(q(0), p(0)) is finite. Then the

following statements hold:

i) The distance between each informed agent and the virtual leader is not greater than
√

2Q0/c1 for all

t ≥ 0.

ii) If the interaction topology among all the follower agents is jointly connected, then all the informed and

uninformed agents will achieve asymptotic tracking of the virtual leader.

iii) In the case that the interaction topology is not necessarily jointly connected, all the informed agents and

Type I uninformed agents will still achieve asymptotic tracking of the virtual leader.

Remark 5 The previous works ( [20, 21]) also extended [9] to the case that only a fraction of the follower

agents are informed, and their proposed control protocols work for the case that the virtual leader has a time

varying velocity. However, in both [20] and [21], in order to drive the follower agents to track the virtual

leader, it is required that the undirected interaction topology is connected all the time, while in Theorem 5, only

joint connectivity condition is required. In addition, Part iii) of Theorem 5 also established some guaranteed

desired performance of the proposed control protocols for situations where even the mild joint connectivity

condition is not satisfied.

Proof of Theorem 5: We will now first prove Part i) of Theorem 5 as follows. Denote the position difference

vector and the velocity difference vector between agent i and the virtual leader as q̃i = qi−qγ and p̃i = pi−pγ ,
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respectively. Then, 
˙̃qi = p̃i,

˙̃pi = ui, i = 1, 2, · · · , N.
(5.9)

Let qij = qi − qj , q̃ij = q̃i − q̃j , pij = pi − pj and p̃ij = p̃i − p̃j . Clearly, we have q̃ij = qij and p̃ij = pij .

Therefore, the control protocols (5.6) can be rewritten as

ui = k1

∑
j∈Ni(t)

aij(q̃j − q̃i) + k2

∑
j∈Ni(t)

aij(p̃j − p̃i)− hic1q̃i − hic2p̃i, i = 1, 2, · · · , N, (5.10)

and the positive semi-definite energy function (5.7) can be rewritten as

Q(q̃, p̃) =
1

2

N∑
i=1

(Ui(q̃) + p̃T

i p̃i) , (5.11)

where

Ui(q̃) =
k1

2

N∑
j=1,j 6=i

Vij(q̃i, q̃j) + hic1q̃i
Tq̃i, (5.12)

and

q̃ =



q̃1

q̃2

...

q̃N


, p̃ =



p̃1

p̃2

...

p̃N


.

It is clear that Q(q̃, p̃) is a positive semi-definite function of (q̃, p̃). Now consider the term Vi =

1
2

∑N
j=1,j 6=i Vij . It is easy to show that

V̇i =
∑

j∈Ni(t)

aij(t)(q̃j − q̃i)T(p̃j − p̃i),

from which, by a change of summation order, we have

N∑
i=1

V̇i =

N∑
i=1

∑
j∈Ni(t)

aij(t)(q̃j − q̃i)T(p̃j − p̃i)

= −2

N∑
i=1

∑
j∈Ni(t)

aij(t)(q̃j − q̃i)Tp̃i.

(5.13)
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Therefore, the derivative of Q along the trajectories of the follower agents and the virtual leader is given

by,

Q̇ =
1

2

N∑
i=1

(
U̇i(q̃) + 2p̃T

i
˙̃pi

)
,

= −p̃T ((k2L(t) + c2H(t))⊗ In) p̃, (5.14)

where L(t) is the Lapalacian matrix for the network topology, and H(t) is a diagonal matrix whose ith

diagonal entry is hi.

Since both L(t) and H(t) are positive semi-definite, we have Q̇ ≤ 0. This implies that Q(t) is a non-

increasing function for all t ≥ 0 and thus Q(t) ≤ Q(0) for all t ≥ 0. It then follows from (5.11) and (5.12)

that c1q̃
T
i q̃i ≤ 2Q0 for any informed agent i. Hence the distance between an informed agent i and the virtual

leader is not greater than
√

2Q0/c1 for all t ≥ 0.

This completes the proof of Part i) of Theorem 5.

Next, we prove Parts ii) and iii) of Theorem 5.

According to Part i) of the Theorem 5, the distance between an informed agent and the virtual leader

is not greater than
√

2Q0/c1 for all t ≥ 0, and Q(t) ≤ Q(0) for all t ≥ 0. It follows from (5.11) and (5.12)

that ‖p̃i‖ ≤
√

2Q0, i = 1, 2, · · · , N . Namely, the velocity difference between any agent and the virtual leader

is not greater than
√

2Q0 for all t ≥ 0. Then, by definition of Type I uninformed agent, there exists a

joint path between a Type I uninformed agent and one informed agent in each finite time interval [ti, ti+1),

i = 0, 1, 2, · · · , with the definition of these time intervals [ti, ti+1) provided in Definition 8. Then we can

easily conclude that the distance between any Type I uninformed agent and the virtual leader is also finite

for all t ≥ 0.

Let M , M0 ≤M ≤ N , denote the total number of informed agents and Type I uninformed agents in the

group. Without loss of generality, we label the Type I uninformed agents from M0 + 1 to M . By definition,

there exists a T > 0, such that all the informed agents and Type I uninformed agents cannot be influenced

by a Type II uninformed agents directly or indirectly for all t ≥ T . For any t ≥ T , we consider the following

positive semi-definite energy function

Q̂(ˆ̃q, ˆ̃p) =
1

2

M∑
i=1

(
Ûi(ˆ̃q) + p̃T

i p̃i

)
, (5.15)

where

Ûi(ˆ̃q) =
k1

2

M∑
j=1,j 6=i

Vij(q̃i, q̃j) + hic1q̃i
Tq̃i, (5.16)
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and

ˆ̃q =



q̃1

q̃2

...

q̃M


, ˆ̃p =



p̃1

p̃2

...

p̃M


.

Obviously, it follows from (5.11) and (5.15) that Q̂ ≤ Q. Then following a procedure similar to the one in

calculating Q̇ in the proof of Part i), we have that the derivative of Q̂ along the trajectories of the follower

agents and the virtual leader is given by

˙̂
Q =

1

2

M∑
i=1

(
˙̂
Ui(ˆ̃q) + 2p̃T

i
˙̃pi

)
,

= − ˆ̃pT

(
(k2L̂(t) + c2Ĥ(t))⊗ In

)
ˆ̃p, (5.17)

where L̂(t) = [l̂ij(t)]M×M is the corresponding Lapalacian matrix of the subgraph consisting of only informed

agents and Type I uninformed agents, namely,

l̂ij(t) =


−aij(t), if i 6= j,∑M
j=1 aij(t), if i = j,

and Ĥ(t) is a diagonal matrix of size M ×M with the ith diagonal entry being hi, i = 1, 2, · · · ,M .

Then, following a similar analysis that led to Q̇ ≤ 0, we can show that
˙̂
Q ≤ 0. Therefore, we have

Q̂(t) ≤ Q̂(T ) ≤ Q(T ) ≤ Q0 for all t ≥ T .

Obviously, the set of all (ˆ̃q, ˆ̃p) such that Q̂ ≤ Q0, namely,

Ω :=
{

[ˆ̃qT, ˆ̃pT]T ∈ R2Mn : Q̂(ˆ̃q, ˆ̃p) ≤ Q0

}

is an invariant set. We next show that this is also a compact set. In view of (5.15) and (5.16), p̃T
i p̃i ≤ 2Q0 for

all i = 1, 2, · · · ,M . That is, all p̃i are bounded, i = 1, 2, · · · ,M . Recall that, at the beginning of this part

of proof, we have already established that the distance between any informed agent and the virtual leader is

bounded for all t ≥ 0, and we have also shown that the distance between any Type I uninformed agent and

the virtual leader is bounded for all t ≥ 0. That is, all q̃i are bounded, i = 1, 2, · · · ,M . This shows that the

set Ω is compact.

In view of (5.17), it is clear that
˙̂
Q = 0 if and only if ˆ̃pT((k2L̂(t) + c2Ĥ(t))⊗ In)ˆ̃p = 0. Since both L̂(t) and

Ĥ(t) are positive semi-definite, we have that ˆ̃pT(L̂(t)⊗ In)ˆ̃p = 0 and ˆ̃pT(Ĥ(t)⊗ In)ˆ̃p = 0. Let Ĝ(t) denote
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the neighborhood graph consisting of all the informed agents and Type I uninformed agents. At any time

t ≥ T , suppose that Ĝ(t) consists of m(t), 1 ≤ m(t) ≤M , connected subgraphs, and there are Mk(t) agents

in the kth, 1 ≤ k ≤ m(t), connected subgraph.

Then based on the proof in [22],we can have the following lemma.

Lemma 9 [22] ˆ̃pT(L̂(t)⊗ In)ˆ̃p = 0 implies that

ˆ̃pk1 = ˆ̃pk2 = · · · = ˆ̃pkMk(t), k = 1, 2, · · · ,m(t),

namely, the velocity for agents in the same connected subgroup reach consensus. And, ˆ̃pT(Ĥ(t)⊗ In)ˆ̃p = 0

implies that p̃i = 0 if agent i is informed, i = 1, 2, · · · ,M .

Recall that we have proven that
˙̂
Q ≤ 0. It is easy to see that the whole system considered in this chapter

is autonomous, since the system dynamics only depend on the initial conditions of agents’ states and do not

depend on any other independent variables. By the LaSalle Invariance Principle, all trajectories of the agents

that start from Ω will converge to the largest invariant set inside the region

S :=
{

[ˆ̃qT, ˆ̃pT]T ∈ R2Mn :
˙̂
Q = 0

}
.

Now we will prove that the neighborhood graph will not switch within the invariant set S. To prove this,

let’s assume that the neighborhood graph switches at time t′, i.e., at time t′, either an agent i is disconnected

from another agent j or an agent i is connected with another agent j. In either case, we have p̃i(t
′) 6= p̃j(t

′).

It then follows from (5.11), (5.17) and Lemma 9 that
˙̂
Q < 0 at least within a small time interval around time

t′, which contradicts with the fact that
˙̂
Q = 0 within the invariant set S. Therefore, we conclude that the

neighborhood graph will not switch within the set S.

Now we divide the connected subgroup of agents into two categories. A connected subgroup is called an

uninformed connected subgroup if it does not include any informed agent. Otherwise, it is called an informed

connected subgroup.

Recall that we have proven that the neighborhood graph will not switch within the set S. By definition,

all Type I uninformed agents must have a path to one informed agent in the fixed neighborhood graph.

Consequently, none of the connected subgroups would be uninformed connected subgroups in such a fixed

neighborhood graph.

We will now prove that the position tracking errors and velocity tracking errors of all the agents in an

informed connected subgroup converge to zero asymptotically. In view of (5.17) and Lemma 9, we already have

that, within the largest invariant set S, the velocities of all these agents in an informed connected subgroup
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are the same, and p̃i = 0 if agent i is informed. This implies that, within S, the velocity tracking errors for

both the Type I uninformed agent and the informed agents in the same informed connected subgroup are all

0.

Next, we will prove that, within S, the position tracking errors of all agents in an informed connected

subgroup is also 0. Recall that we have proven that the velocity tracking errors of all these agents in an

informed connected subgroup are identically zero. Therefore, the derivatives of the velocity tracking errors of

these agents are all identically zero. Thus,

Mk(t)∑
i=1

q̃T

i
˙̃pi = 0,

namely,

−k1q̃
T

Mk(t)(L̂Mk(t)(t)⊗ In)q̃Mk(t) − c1q̃T

Mk(t)(ĤMk(t) ⊗ In)q̃Mk(t) = 0,

where, Mk(t) is the number of agents in this connected subgroup k, L̂Mk(t)(t) is the corresponding Lapalacian

matrix associated with this connected subgroup k, and ĤMk(t) is the corresponding diagonal matrix with the

ith diagonal entry being hi, i = 1, 2, · · · , Mk(t).

Note that both L̂Mk(t)(t) and ĤMk(t) are positive semi-definite. Since these agents formed a connected

subgroup and at least one entry of the ĤMk(t) is positive, we have that the matrix L̂Mk(t)(t) + ĤMk(t) is

positive definite ( [14, 16]). This implies that, within S, the position tracking errors of all these agents in an

informed connected subgroup are also 0. Therefore, we have completed Part iii) of Theorem 5.

Note that, for Part ii) of Theorem 5, where the interaction topology among all the follower agents is

jointly connected, by the definitions of joint connectivity and Type I uninformed agent, all the uninformed

agents would be Type I. Then, by following the proof for Part iii) of Theorem 5, we can conclude that all the

informed and uninformed agents will achieve asymptotic tracking of the virtual leader under our proposed

control protocols. Therefore, we have also completed Part ii) of Theorem 5.

This completes the proof of Theorem 5.

5.2.2 Control Protocols and the Closed-loop System Performance Analysis with-

out Virtual Leader Velocity Information

Recall that, in Section 5.2.1 of this thesis and in ( [9, 22]), both the position and velocity information of the

virtual leader are assumed to be given to the informed agents. In this section, we make the assumption that

only a portion (some, but not all) of the agents are informed agents who are given the position information

of the virtual leader, and none of the agents are provided the velocity information of the virtual leader. We
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propose distributed control protocols and show that the whole group of agents will still be driven to track

the virtual leader if the underlying dynamic interaction topology among all the follower agents is jointly

connected.

More specifically, we propose the following distributed control protocol for each agent i, i = 1, 2, · · · , N ,

ui = k1

∑
j∈Ni(t)

aij(t)(qj − qi) + k2

∑
j∈Ni(t)

aij(t)(pj − pi)− hic1(qi − qγ), k1 > 0, k2 > 0, c1 > 0, (5.18)

where hi, k1, k2, c1 and aij(t) are defined the same as those in Section 5.2.1.

It is easy to see that, in comparison with the control protocols (5.6), the proposed control protocols (5.18)

do not contain the term hic2(pi − pγ), and thus informed follower agents are not assumed to be given the

virtual leader velocity information.

Without loss of generality, we assume that the first M0 (1 ≤M0 < N) agents are informed agents, namely,

hi = 1 for i = 1, 2, · · · ,M0, and hi = 0 for i = M0 + 1, M0 + 2, · · · , N .

To state the main results of this section, we define a nonnegative energy function Q(q, p) in the same

form as in Section 5.2.1.

Then our main results on the information consensus of the group of agents under the proposed control

protocols can be stated in the following theorem.

Theorem 6 Consider a multi-agent system of N agents whose dynamics are described by (5.1) and steered

by the control protocols specified by (5.18). The dynamics of the virtual leader are described by (5.2). Assume

that a portion of the follower agents (some, but not all) are informed agents which can only get access to the

position information of the virtual leader. Suppose that the initial energy Q0 := Q(q(0), p(0)) is finite. Then

the following statements hold:

i) The distance between each informed agent and the virtual leader is not greater than
√

2Q0/c1 for all

t ≥ 0.

ii) If the dynamic interaction topology among the follower agents is jointly connected, then all the informed

and uninformed agents will achieve asymptotic tracking of the virtual leader.

iii) In the case that the interaction topology is not jointly connected, all Type I uninformed agents will

still achieve asymptotic tracking of the virtual leader, and all informed agents will achieve bounded

tracking of the virtual leader. Furthermore, if the agents operate in one dimensional space (i.e., qi ∈ R,

i = 1, 2, · · · , N), and if there exists at least one Type I uninformed agent, then all informed agent can

actually also achieve asymptotic tracking of the virtual leader.

76



Remark 6 For part iii) in Theorem 6, it seems counterintuitive that only bounded tracking errors are ensured

for informed agents, while asymptotic tracking behavior are guaranteed for Type I uninformed agents. The key

to this phenomenon is the asymptotic tracking behavior results from the interactions between informed agents

and Type I uninformed agents (which can be seen in the proof of this theorem below). By definition, any Type

I uninformed agents must interact with some informed agents (directly or indirectly), and thus asymptotic

tracking behavior can be guaranteed. In contrast, an informed agent (or a group of informed agents) might

possibly be isolated from all Type I uninformed agents and not necessarily interact with a Type I uninformed

agent, in which case, only bounded tracking errors can be guaranteed for these informed agents in the absence

of the virtual leader velocity information.

Remark 7 In Theorem 6, it is assumed that a portion of the follower agents (some, but not all) are informed

agents, and thus it does not address the limit case that all the follower agents are informed agents. In such a

case, by following a similar analysis procedure as the proof for Part i) of Theorem 6, it is straightforward

and easy to prove that all these informed agents will achieve bounded tracking of the virtual leader under the

proposed control protocols (5.18).

Remark 8 The previous works ( [20, 21]) also extended [9] to the case that only a fraction of the follower

agents are informed, and their proposed control protocols work for the case that the virtual leader has a time

varying velocity. However, in both [20] and [21], in order to drive the follower agents to track the virtual

leader, it is required that the undirected interaction topology is connected all the time, while in Theorem 6, only

joint connectivity condition is required. In addition, in Theorem 6, we assume that only virtual leader position

information but not velocity information is provided to the informed follower agents, while in ( [20, 21]), the

informed agents are assumed to know both the position and velocity information of the virtual leader.

Remark 9 The consensus tracking problems were considered in Theorem 5 and Theorem 6. However, the

proposed simple distributed control protocols can be easily adapted to achieve other control objectives such as

flocking by only making some small changes. For example, if we simply replace the term k1

∑
j∈Ni(t) aij(t)(qj−

qi) in (5.6) and (5.18) with k1

∑
j∈Ni(t) âij(t)(qj − qi), then flocking control objective can be achieved and
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collision can be avoided, where,

âij(t) =



0, if j = i or ‖qj(t)− qi(t)‖ > r,

r−‖qj−qi‖
δ , if j 6= i and ‖qj(t)− qi(t)‖ ∈ (r − δ, r]

1, if j 6= i and ‖qj(t)− qi(t)‖ ∈ (r − δ1, r − δ],

1− 2(δ1−‖qj−qi‖)
δ1−δ2 , if j 6= i and ‖qj(t)− qi(t)‖ ∈ (r − δ2, r − δ1],

− (r−δ2)2

‖qj−qi‖2 , if j 6= i and ‖qj(t)− qi(t)‖ ≤ r − δ2,

with 0 < δ ≤ δ1 ≤ δ2 < r being positive constants that can be tuned according to specific applications. The

proof will remain quite similar after constructing the corresponding Vij for such âij(t), and thus the details

are omitted here for brevity.

Proof of Theorem 6: With the same notation and definitions provided in Section 5.2.1, we will use the

same form positive semi-definite energy function Q(q, p), Q(q̃, p̃) and Q̂(ˆ̃q, ˆ̃p) as defined in (5.7), (5.8), (5.11),

(5.12), (5.15) and (5.16) to prove Theorem 6.

By directly following a similar proof of Part i) of Theorem 5, it is straightforward to show that the

derivative of Q along the trajectories of the follower agents and the virtual leader is given by,

Q̇ =
1

2

N∑
i=1

(
U̇i(q̃) + p̃T

i
˙̃pi

)
,

= −k2p̃
T(L(t)⊗ In)p̃, (5.19)

where L(t) is the Lapalacian matrix for the network topology.

Since L(t) is positive semi-definite for an undirected graph, we have Q̇ ≤ 0. This implies that Q(t) is a

non-increasing function for all t ≥ 0 and thus Q(t) ≤ Q(0) for all t ≥ 0. It then follows from (5.11) and (5.12)

that c1q̃
T
i q̃i ≤ 2Q0 for any informed agent i. Hence the distance between an informed agent i and the virtual

leader is not greater than
√

2Q0/c1 for all t ≥ 0.

This completes the proof of Part i) of Theorem 6.

So far, we have proven that the distance between an informed agent and the virtual leader is not

greater than
√

2Q0/c1 for all t ≥ 0, and Q(t) ≤ Q(0) for all t ≥ 0. It follows from (5.11) and (5.12) that

‖ ˜(pi)‖ ≤
√

2Q(0), i = 1, 2, · · · , N . Namely, the velocity difference between any agent and the virtual leader

is not greater than
√

2Q0 for all t ≥ 0. Then, by definition of Type I uninformed agent, there exists a

joint path between a Type I uninformed agent and one informed agent in each finite time interval [ti, ti+1),

i = 0, 1, 2, · · · , with the definition of these time intervals [ti, ti+1) provided in Definition 8. Then we can
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easily conclude that the distance between any Type I uninformed agent and the virtual leader is also finite

for all t ≥ 0.

Next, We will prove Part ii) of Theorem 6 as follows. Recall that, by the definition of jointly connected

topology and Type I uninformed agents, if the interaction topology among all the follower agents is jointly

connected, then all the uninformed follower agents will be Type I uninformed agents.

Obviously, the set of all (q̃, p̃) such that Q ≤ Q0, namely,

Ω :=
{

[q̃T, p̃T]T ∈ R2Mn : Q(q̃, p̃) ≤ Q0

}
is an invariant set. Since we have proven that all q̃i and p̃i are bounded, i = 1, 2, · · · , N , the set Ω is compact.

In view of (5.19), it is clear that Q̇ = 0 if and only if k2p̃
T(L(t) ⊗ In)p̃ = 0. Then based on the proof

in [22],we can have the following lemma.

Lemma 10 [22] p̃T(L(t) ⊗ In)p̃ = 0 implies that the velocity for agents in the same connected subgroup

reach consensus.

Recall that we have proven that Q̇ ≤ 0. It is easy to see that the whole system considered in this chapter

is autonomous. Next, by the LaSalle Invariance Principle, all trajectories of the agents that start from Ω will

converge to the largest invariant set inside the region

S :=
{

[q̃T, p̃T]T ∈ R2Mn : Q̇ = 0
}
.

Now we will prove that the neighborhood graph will not switch within the invariant set S. To prove this,

let’s assume that the neighborhood graph switches at time t′, i.e., at time t′, either an agent i is disconnected

from another agent j or an agent i is connected with another agent j. In either case, we have p̃i(t
′) 6= p̃j(t

′).

It then follows from (5.11), (5.14) and Lemma 10 that Q̇ < 0 at least within a small time interval around

time t′, which contradicts with the fact that Q̇ = 0 within the invariant set S. Therefore, we conclude that

the neighborhood graph will not switch within the set S.

Now we divide the connected subgroup of agents into two categories. A connected subgroup is called an

uninformed connected subgroup if it does not include any informed agent. Otherwise, it is called an informed

connected subgroup.

Recall that we have proven that the neighborhood graph will not switch within the set S. By definition, if

the topology among all the follower agents is jointly connected, then all the informed and uninformed agents

must form a single connected group in such a fixed neighborhood graph.
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We will now prove that the position tracking errors and velocity tracking errors of all the agents in this

single connected subgroup converge to zero asymptotically. In view of (5.19) and Lemma 10, we already have

that the velocities of all these agents in such a connected group are the same. Then, clearly, the control input

(5.18) for an uninformed agent in such a fixed connected group is a constant. It follows directly that the

control input for an informed agent in the same connected subgroup must also be a constant. In view of the

control protocol (5.18), this implies that the position tracking error for this informed agent is also a constant.

This implies that the velocity tracking error for this informed agent is 0. Since the velocities of all agents

in such a fixed connected group are the same, we have that the velocity tracking error for each uninformed

agent in the same connected group is also 0.

Next, we will prove that the position tracking errors of all agents in such a fixed connected group is also 0.

Recall that we have proven that the velocity tracking errors of all agents in this fixed connected group are

identically zero. Therefore, the derivatives of the velocity tracking errors of these agents are all identically

zero. Then we have,
N∑
i=1

q̃T

i
˙̃pi = 0,

namely,

−k1q̃
T(L(t)⊗ In)q̃ − c1q̃T(H(t)⊗ In)q̃ = 0,

i = 1, 2, · · · , N .

Note that both L(t) and H(t) are positive semi-definite. Since these agents form a connected group and

at least one entry of the H(t) is positive (i.e., there exist at least one informed follower agent), we have that

the matrix L(t) +H(t) is positive definite. This implies that the position tracking errors of all the agents in

such a single fixed connected group also approach 0. Therefore, we have completed the proof of Part ii) of

Theorem 6.

Finally, we will prove Part iii) of Theorem 6. By directly following the proof of Part iii) of Theorem 5,

it is easy to establish that there exists a T > 0, such that all the informed agents and Type I uninformed

agents cannot be influenced by a Type II uninformed agents directly or indirectly for all t ≥ T . Next, for any

t ≥ T , it is also straightforward to show that Q̂ ≤ Q and the derivative of Q̂ along the trajectories of the

follower agents and the virtual leader is given by

˙̂
Q =

1

2

M∑
i=1

(
˙̂
Ui(ˆ̃q) + p̃T

i
˙̃pi

)
,

= −k2
ˆ̃pT(L̂(t)⊗ In)ˆ̃p, (5.20)
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where L̂(t) = [l̂ij(t)]M×M is the corresponding Lapalacian matrix of the subgraph consisting of only informed

agents and Type I uninformed agents. Since L̂(t) is positive semidefinite for a undirected graph,
˙̂
Q ≤ 0, we

have Q̂(t) ≤ Q̂(T ) ≤ Q(T ) ≤ Q0 for all t ≥ T .

Next, following a similar analysis as in the proof of Theorem 5, it is straightforward to show that:

i) The set Ω
′

:=
{

[ˆ̃qT, ˆ̃pT]T ∈ R2Mn : Q̂(ˆ̃q, ˆ̃p) ≤ Q0

}
is invariant and compact;

ii) All trajectories of the agents that start from Ω
′

will converge to the largest invariant set S
′

inside the

region Ω
′

1 :=
{

[ˆ̃qT, ˆ̃pT]T ∈ R2Mn :
˙̂
Q = 0

}
;

iii) The neighborhood graph will not switch within the invariant set S
′
.

Now we divide the connected subgroup of agents into 3 categories as follows. A connected subgroup is

called an uninformed connected subgroup if it does not include any informed agent. A connected subgroup is

called Type A informed connected subgroup if it includes at least one informed agent and at least one Type I

uninformed agent. A connected subgroup is called Type B informed connected subgroup if it includes only

informed agents.

Recall that we have proven that the neighborhood graph will not switch within the invariant set S
′
. By

definition, all Type I uninformed agents must have a path to one informed agent in the fixed neighborhood

graph within the invariant set S
′
. Consequently, none of the connected subgroups would be uninformed

connected subgroups in such a fixed neighborhood graph.

For agents in a Type A informed connected subgroup, by simply following the procedure as in the proof

for Part ii) of Theorem 6 above, it is straightforward to show that both the position tracking errors and

the velocity tracking errors of all the agents in a Type A informed connected subgroup converge to zero

asymptotically. In fact, in Part ii) of Theorem 6, all the informed and uninformed agents just finally form a

single Type A informed connected group within the set of S. Note that, by definition, within the invariant

set S
′
, each Type I uninformed agent must belong to a Type A informed connected subgroup. Therefore, we

have proven that all the Type I uninformed agents will achieve asymptotic tracking of the virtual leader.

Next, we will analyze the position tracking errors and velocity tracking errors of agents in a Type B

informed connected subgroup, and prove that all informed agents will achieve bounded tracking of the virtual

leader, and will even achieve asymptotic tracking if the agents operate in one dimensional space and there

exists at least one Type I uninformed agent.

Recall that, within the largest invariant set S
′
, the velocity of all agents in a connected subgroup are the

same. In view of the control protocol (5.18), it is easy to see that the agent dynamics equation for an agent

in such a Type B informed connected subgroup reduces to the following form,
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˙̃qi = p̃i,

˙̃pi = δi − c1q̃i,
(5.21)

where δi =
∑
j∈Ni(t) aij(q̃j − q̃i) is independent of t since p̃i are identically the same for all agents in this

connected subgroup. Note that, within the largest invariant set S
′
, the topology does not switch, and it

follows from (5.21) that the agents’ dynamics are decoupled on the n dimensions. Therefore, (5.21) can be

rewritten as

ẋil = Axil +Bv, l = 1, 2, · · · , n, (5.22)

with xil = [q̃il p̃il]
T, A = [0 1;−c1 0], B = [0 δil]

T and v = 1. The solution of (5.22) can be written as

xil(t) = eAtxil(0) +
∫ t

0
eA(t−τ)Bv(τ)dτ , l = 1, 2, · · · , n. Note that, for A = [0 1;−c1 0] with c1 > 0, it is easy

to compute that

eAt =

 cos(
√
c1t) sin(

√
c1t)

− sin(
√
c1t) cos(

√
c1t)

 ,
and

eAtxil(0) =

 q̃il(0) cos(
√
c1t) + p̃il(0) sin(

√
c1t)

−q̃il(0) sin(
√
c1t) + p̃il(0) cos(

√
c1t)

. (5.23)

Recall that, within the largest invariant set S
′
, for these agents in the same connected subgroup, their

velocities are always the same. Then it follows directly from (5.23) that, within the largest invariant set S
′
,

the position tracking errors q̃i of all these agents in the same Type B informed connected group would also

be identically the same. Therefore, all the δi here would be 0, and xil(t) = eAtxil(0), l = 1, 2, · · · , n. In view

of (5.23), it is easy to observe that, on each dimension l, l = 1, 2, · · · , n, the position tracking error trajectory

q̃il(t) is a sinusoidal function fluctuating around zero, and the velocity tracking error trajectory p̃il(t) is also

a sinusoidal function fluctuating around zero. Recall that, within the largest invariant set S
′
, for an informed

agent that belongs to a Type A informed connected subgroup, the position tracking error and the velocity

tracking error are both zero. Therefore, we have proven that, for all informed agents, the position tracking

errors and velocity tracking errors are bounded.

Next, we will prove that, if the agents operate in one dimensional space (i.e., n = 1) and if there is at

least one Type I uninformed follower agent, the position tracking errors and velocity tracking errors of all

informed agents approach zero asymptotically. The detail of the proof is presented below.

If there is at least one Type I uninformed follower agent, then there exists at least one Type A informed

connected subgroup in the fixed neighborhood graph. Note that we have proven that the position tracking

errors of all agents in a Type A informed connected subgroup converge to zero asymptotically. We have
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also proven that, for a Type B informed connected subgroup, the position tracking error trajectories q̃i(t)

is a sinusoidal function fluctuating around zero. Then at some time point this Type B informed connected

subgroup will be connected with the Type A informed connected subgroup, which implies a neighborhood

graph switching occurs. Since we have proven that the neighborhood graph will not switch within the largest

invariant set S
′
, this is a contradiction. Therefore, we can conclude that, if there is at least one Type I

uninformed follower agent, then none of the connected subgroup in the final fixed neighborhood graph would

be Type B informed connected subgroup (i.e., all the connected subgroups in the final fixed neighborhood

graph would be Type A informed connected subgroup). Recall that we have already proven that, for all

agents in a Type A informed connected subgroup, both the position tracking errors and the velocity tracking

errors converge to zero asymptotically. Therefore, we have completed the proof of Part iii) of Theorem 6.

This completes the proof of Theorem 6.

5.2.3 Connectivity Enhancing Coordinated Tracking Control Protocols and the

Closed-loop System Performance Analysis

In this section, we propose a new connectivity enhancing mechanism, and analyze the closed-loop performance

of such connectivity enhancing coordinated tracking control protocols. Existing connectivity preserving

coordinated tracking control protocols all assume the interaction topology to be initially connected, and

technical issues associated with those edges that are not initially existent have not been adequately addressed.

In fact, in many existing connectivity preserving control works, for those edges that were not initially existent,

their weights are usually simply treated as aij(t) = 1 for j ∈ Ni(t) and aij(t) = 0 for j 6∈ Ni(t), sometimes

enhanced with a hysteresis nonlinearity. As a result, those newly formed topology edges that were not initially

existent are not guaranteed to be maintained, and an initial connected topology is required. In addition,

such a sudden jump of aij(t) will lead to the discontinuity on the right side of the agent dynamics equations.

Because of such discontinuity resulting from jumps in aij(t), the standard assumption (i.e., essentially one

sided local Lipschitz condition) to guarantee solution uniqueness will not be satisfied, even in the sense

of Filippov solution. In contrast, our proposed topology connectivity enhancing mechanism is effective in

maintaining both the initially existent topology edges and the newly formed topology edges, which enables

us to relax the more restrictive requirement that the interaction topology is initially connected. Also, our

proposed algorithms are designed in a way such that the local Lipschitz condition is satisfied and thus

technical issues on solution uniqueness are avoided.
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To be specific, we propose the following distributed connectivity enhancing coordinated tracking control

protocols for each agent i, i = 1, 2, · · · , N ,

ui = k1

∑
j∈Ni(t)

bij(t)(qj − qi) + k2

∑
j∈Ni(t)

aij(t)(pj − pi)− hic1(qi − qγ), k1 > 0, k2 > 0, c1 > 0, (5.24)

where hi, k1, k2, c1 and aij(t) are defined the same as those in Section 5.2.2, and bij(t) is a locally Lipschitz

function of qj(t)− qi(t), defined for connectivity enhancing purpose as follows,

i) If ‖qi(0)− qj(0)‖ < r,

bij(t) =


δ2

(‖qi−qj‖−r)2 , if ‖qj(t)− qi(t)‖ ∈ (r − δ, r)

1, if ‖qj(t)− qi(t)‖ ≤ r − δ.

ii) If ‖qi(0)− qj(0)‖ ≥ r, let tconnectij
be the first time instant that ‖(qi(t)− qj(t)‖ ≤ r− δ, where δ ∈ (0, r)

is a constant parameter which can be adjusted according to specific applications, then 1) for t ≤ tconnectij ,

bij(t) = aij(t); and 2) for t ≥ tconnectij ,

bij(t) =


δ2

(‖qi−qj‖−r)2 , if ‖qj(t)− qi(t)‖ ∈ (r − δ, r)

1, if ‖qj(t)− qi(t)‖ ≤ r − δ.

To state the main results of this section, we define a nonnegative energy function Q(q, p) as follows,

Q(q, p) =
1

2

N∑
i=1

(Ui(q) + (pi − pγ)T(pi − pγ)), (5.25)

where

Ui(q) =
k1

2

N∑
j=1,j 6=i

Vij(qi, qj) + hic1(qi − qγ)T(qi − qγ). (5.26)

with Vij(qi, qj) being a differentiable function whose derivative satisfies that

V̇i =
∑

j∈Ni(t)

bij(t)(q̃j − q̃i)T(p̃j − p̃i),

where Vi = 1
2

∑N
j=1,j 6=i Vij .
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Given the expression of bij(t), it is not difficult to construct such Vij . By the definition of bij(t), if

‖qi(0) − qj(0)‖ ≥ r and if the expression of bij(t) switches at t = tconnectij , the expression of Vij will also

switch at t = tconnectij
. Note that Vij are chosen such that it is continuous at such switching time instant

t = tconnectij .

Then our main results on the information consensus of the group of agents under the proposed control

protocols can be stated in the following theorem.

Theorem 7 Consider a multi-agent system of N agents whose dynamics are described by (5.1) and steered

by the control protocols specified by (5.24). The dynamics of the virtual leader are described by (5.2). Assume

that a portion of the follower agents (some, but not all) are informed agents which can only get access to the

position information of the virtual leader. Suppose that the initial energy Q0 := Q(q(0), p(0)) is finite. Then

the following statements hold:

i) The distance between each informed agent and the virtual leader is not greater than
√

2Q0/c1 for all

t ≥ 0.

ii) If the dynamic interaction topology among the follower agents is jointly connected, then all the informed

and uninformed agents will achieve asymptotic tracking of the virtual leader.

iii) In the case that the interaction topology is not jointly connected, all Type I uninformed agents will

still achieve asymptotic tracking of the virtual leader, and all informed agents will achieve bounded

tracking of the virtual leader. Furthermore, if the agents operate in one dimensional space (i.e., qi ∈ R,

i = 1, 2, · · · , N), and if there exists at least one Type I uninformed agent, then all informed agents will

also achieve asymptotic tracking of the virtual leader.

iv) All those initially existent edges of the topology graph will be preserved, and any new edge eij that is

not initially existent can also be maintained for all t ≥ tconnectij if the distance between agent i and j is

not greater than r − δ at certain time instant tconnectij > 0.

Proof of Theorem 7: To prove Theorem 7, the switched energy function Q defined above in (5.25) is

chosen as the Lyapunov function. Note that, although the expression of Q switches at time instants when the

expression of some bij switches, the above constructed Q is still continuous and differentiable except at the

time of switching.

In particular, by directly following a similar proof as Part i) of Theorem 5, for all those time intervals

during which Q does not switch, it is straightforward to show that the derivative of Q along the trajectories
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of the follower agents and the virtual leader is given by,

Q̇ =
1

2

N∑
i=1

(
U̇i(q̃) + p̃T

i
˙̃pi

)
,

= −k2p̃
T(L(t)⊗ In)p̃, (5.27)

where L(t) is the Lapalacian matrix as defined in Section 3.4. Therefore, we have that Q̇ ≤ 0 when Q does

not switch. Recall that Q is continuous at the time of switching. It follows directly that Q(t) ≤ Q(0) for all

t ≥ 0. From this, it is easy to obtain Part i) of Theorem 7.

Since we have prove that Q(t) ≤ Q(0) for all t ≥ 0, it follows directly that all those initially existent

edges of the topology graph will be preserved, and any new edge eij that is not initially existent can also

be maintained for all t ≥ tconnectij
if the distance between agent i and j is not greater than r − δ at certain

time instant tconnectij > 0. Otherwise, Vij (and thus Q(t)) will increase to infinity, which is a contradiction.

Therefore, we have also proven Part iv) of Theorem 7.

Next, based on the proven Part iv) of Theorem 7 and by definition of bij(t), it is easy to see that Vij

can only switch at most once for a pair of agent i and j. Therefore, the constructed switched Lyapunov

function Q can at most switch finite times. As a result, the switched Lyapunov function Q chosen here is a

very special case of the multiple Lyapunov functional approach where the values of the Lyapunov functions

coincide at the time of switching, and the total number of switching is finite. The analysis of such a switched

Lyapunov function Q can simply follow the same analysis procedure as with a common Lyapunov function

in Section 5.2.2. As a result, it is not hard to obtain the results in Part ii) and Part iii) of Theorem 7, by

mimicking the proof procedure of Theorem 6 using the switched Lyapunov function Q constructed above for

Theorem 7. The proof details are omitted for brevity.

This completes the proof of Theorem 7.

Remark 10 From Theorem 7, since the proposed new topology connectivity maintenance mechanism is

effective in maintaining both the initially existent edges and the new edges that are not initially existent, it

is obvious that the connectivity enhancing coordinated tracking objective can still be achieved if the network

topology graph is not initially connected, but only connected in an integral sense. As a result, such a more

effective connectivity maintenance mechanism will make the mild network connectivity condition to be even

more easily satisfied in real world implementations. Different from the existing connectivity preserving control

protocols, our proposed algorithms are designed in a way such that the local Lipschitz condition is satisfied and

thus technical issues on solution uniqueness of the closed-loop system are avoided. This proposed mechanism
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would be useful especially for large scale network applications where an initially connected configuration is

infeasible or inefficient. The constant parameter δ here could be adjusted according to specific applications.

Remark 11 In Theorem 7, the proposed topology connectivity enhancing mechanism is applied to Section

5.2.2 for the situation where the virtual leader velocity information is not available. But it is easy to see that

such a topology connectivity enhancing mechanism is also applicable to the situation in Section 5.2.1, where

the virtual leader velocity information is available. In fact, such a proposed topology connectivity enhancing

mechanism and the corresponding constructed switched energy function (Lyapunov function) proof technique

can be applied to relax the initial topology connectivity condition in many other connectivity preserving

coordinated control problems of multi-agent systems.

5.3 Simulation Results

5.3.1 Distributed Coordinated Tracking Control with Virtual Leader Velocity

Information

We consider a network of 39 follower agents and a virtual leader moving in a 2-dimensional space. The initial

position and velocity of the virtual leader are set as qγ(0) = [5, 5]T and pγ(0) = [0.1, 0.1]T. The initial positions

and initial velocities of the 39 follower agents are chosen randomly from the boxes [−20, 20] × [−20, 20]

and [−0.1, 0.1]× [−0.1, 0.1], respectively. The parameters in the control protocols (5.6) are set as k1 = 1.5,

k2 = 3, c1 = 5, c2 = 2, and δ = 0.01. The influencing/sensing radius is chosen as r = 10. The number of

informed agents is 1.

Shown in Figs. 5.1 and 5.2 are some simulation results. In these figures, the green solid line denotes

the informed follower agent and blue dotted lines denote the uninformed follower agents. Note that, for

the chosen initial conditions, by analyzing the eigenvalues of the Laplacian matrix of the initial interaction

topology at t = 0, we verify that zero is not a simple eigenvalue (in fact, it has multiplicity of two) of

the initial Laplacian matrix and thus the initial interaction topology among all the follower agents is not

connected. In fact, this can also be observed by looking at the position tracking errors in Figs. 5.1 and 5.2,

from which we can get a rough idea that there exist two separate connected subgroups at t = 0 (recall that

the sensing radius r = 10). Obviously, in such a case, the assumption that the interaction topology among

all the follower agents are connected all the time, which is a quite standard assumption in the literature for

this type of problems (e.g., ( [20, 21])), is not satisfied. Our Theorem 5 establishes that, even though the

dynamic interaction topology among all the follower agents is not connected all the time, under our proposed

control protocols, all the informed and uninformed agents are still guaranteed to achieve asymptotic tracking
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of the virtual leader as long as the milder joint connectivity assumption is satisfied. This is verified by the

simulation results in Figs. 5.1 and 5.2 , from which we can see all the informed and uninformed follower

agents are driven to track the virtual leader, and both the position tracking errors and velocity tracking

errors converge to zero asymptotically, even if the interaction topology is not connected all the time. Such

simulation results demonstrate that our Theorem 5 enriches the literature on this type of problems by relaxing

the more restrictive condition on network topology connectivity (i.e., the topology is connected all the time)

to a milder joint connectivity condition.

On the other hand, there are situations where even such a mild joint connectivity condition is not necessary

guaranteed to be satisfied. In such cases, the new network connectivity enhancing mechanisms we propose in

this chapter can be used to help achieve the desired tracking performance. We next conduct simulation study

to verify the performance of the control protocols (5.6) with the topology connectivity enhancing mechanism

implemented. For example, Fig. 5.3 shows the simulation results for comparison of the tracking performance

under our proposed control protocols (5.6) without and with the network topology connectivity enhancing

mechanism. For the simulation in Fig. 5.3, the initial positions and initial velocities of the 39 follower agents

are chosen randomly from the boxes [−20, 20]× [−20, 20] and [−15, 15]× [−15, 15], respectively. Parameter

δ is set to be 1. All other control parameters as well as the initial virtual leader position and velocity are

the same as those used for Figs. 5.1 and 5.2. As can be seen by comparing Fig. 5.3 and Fig. 5.4, for the

chosen initial conditions, without the topology connectivity enhancing mechanism, even though the initial

interaction topology is connected, the dynamic interaction topology among all the follower agents does not

satisfy the mild joint connectivity condition, and as a result, only the informed follower agents and a portion

of the uninformed agents (i.e., Type I uninformed follower agents) achieve asymptotic tracking of the virtual

leader. In contrast, with the help of the topology connectivity enhancing mechanism, the dynamic interaction

topology among all the follower agents remains connected, and all the informed and uninformed agents achieve

asymptotic tracking of the virtual leader. In fact, our extensive simulation study verify that, with the help of

the proposed topology connectivity enhancing mechanism, if the initial interaction topology among all the

follower agents is connected, then it is always the case that all the informed and uninformed agents will track

the virtual leader asymptotically. Moreover, under our proposed topology connectivity enhancing mechanism,

for situations where the topology is not initially connected, when two initially separated connected subgroups

interact with each other with the closest distance between the two groups being less than r − δ at some

time instant, they will be combined into a single connected group and the connectivity would be maintained

afterwards. As a result, the network topology connectivity could be enhanced as time goes by. This indicates

that our proposed connectivity enhancing mechanism is effective in helping enhance the topology connectivity

and cause the informed and uninformed agents to track the virtual leader.
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Figure 5.1: The 1st dimension tracking errors between follower agents and the virtual leader under control
protocols (5.6)

5.3.2 Distributed Coordinated Tracking Control without Virtual Leader Veloc-

ity Information

In this section, we investigate the performance of our proposed control protocols (5.18) without the virtual

leader velocity information. In particular, we again consider a network of 39 follower agents and a virtual
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Figure 5.2: The 2nd dimension tracking errors between follower agents and the virtual leader under control
protocols (5.6)

leader moving in a 2-dimensional space. The initial position and velocity of the virtual leader are set as

qγ(0) = [5, 5]T and pγ(0) = [0.1, 0.1]T. The initial positions and initial velocities of the 39 follower agents

were chosen randomly from the boxes [−20, 20] × [−20, 20] and [−0.1, 0.1] × [−0.1, 0.1], respectively.

The parameters in the control protocol (5.6) are set as k1 = 1.5, k2 = 3, c1 = 5 and δ = 0.01. The

influencing/sensing radius is chosen as r = 10. The number of informed agents is 1.

90



Figure 5.3: Tracking performance under control protocols (5.6) without the proposed topology connectivity
maintenance mechanism

Shown in Figs. 5.5 and 5.6 are some simulation results. For the simulation results in Figs. 5.5 and 5.6,

we have used exactly the same initial condition for Figs. 5.1 and 5.2 as in Section 5.3.1, and the initial

interaction topology is not connected. Again, in these figures, the green solid line denotes the informed

follower agent and blue dotted lines denote the uninformed follower agents. As can be seen in Figs. 5.5 and

5.6, in the absence of the virtual leader velocity information, our proposed control protocols are still able to
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Figure 5.4: Tracking performance under control protocols (5.6) with the proposed topology connectivity
maintenance mechanism

drive all the informed and uninformed agents to achieve asymptotic tracking of the virtual leader, even if the

underlying interaction topology is only jointly connected but not connected all the time. Such simulation

results demonstrate that our Theorem 6 enriches the literature on this type of problems by not only relaxing

the more restrictive condition on network topology connectivity (i.e., the topology is connected all the time),

but also relaxing the requirement on the availability of the virtual leader velocity information.
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Figure 5.5: The 1st dimension tracking errors between follower agents and the virtual leader under control
protocols (5.18)
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Figure 5.6: The 2nd dimension tracking errors between follower agents and the virtual leader under control
protocols (5.18)

5.4 Summary

In this chapter, we revisited the problem of distributed virtual leader tracking for a class of multi-agent

systems with second order agent dynamics under a state dependent dynamic topology. In particular, we
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proposed a controller structure that is much simpler than those in the literature to solve the multi-agent

system virtual leader tracking problem under a jointly connected state dependent topology. In addition,

we have also proposed a novel connectivity enhancing mechanism in which the adjacency matrix is defined

in such a way that the mild topology connectivity condition can be more easily satisfied in real world

implementations. In comparison with existing topology preserving algorithms, our proposed mechanism is

effective in maintaining both the initially existent topology edges and those newly formed topology edges

that were not initially existent, and does not require the initial topology to be initially connected. Therefore,

under our proposed mechanism, the topology connectivity could be enhanced as time goes by. In contrast,

existing connectivity preserving coordinated tracking control results all assume the interaction topology to

be initially connected, and technical issues on solution uniqueness of the closed-loop system have not been

adequately addressed. Our proposed technique applies to both consensus tracking and flocking. It is noted

that the proposed connectivity enhancing mechanism and the corresponding analysis technique are also

applicable to connectivity enhancing coordinated control problems of other multi-agent systems.
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Chapter 6

Conclusions

This dissertation studied the distributed coordination control of complex multi-agent networks with dynamic

interaction topologies. Both state independent interaction topologies and state dependent interaction

topologies have been addressed.

In the first part of this thesis, we solved the distributed synchronization control problem for a multi-agent

network with nth order unknown nonlinear agent dynamics. We established the results for both an undirected

time varying interaction topology and a directed time varying interaction topology. A standard assumption

on the interaction topology connectivity in the literature on this type of problems was made, namely, the

interaction topology is connected. Distributed synchronization control algorithms were developed and the

desired synchronization performance of the multi-agent network system was proven.

In the second part of this thesis, we investigated the distributed consensus control problem of a multi-agent

network with high order linear agent dynamics under a directed jointly connected interaction topology. This

enriches the existing literature on multi-agent distributed consensus control under a jointly connected directed

interaction topology, which was limited to very simple single integrator agent dynamics. The distributed

control protocols were developed and the consensus was proven.

In the third part of this thesis, we addressed the distributed coordinated tracking problem for a multi-agent

network under a state dependent jointly connected dynamic interaction topology. In many applications such

as in situations where information exchange among agents is conducted via equipped sensors, the interaction

topology depends on agents’ states such as the distance among agents, and cannot be simply assumed as a

function of time. The distributed control protocols are developed and the coordinated tracking was proven.

In addition, a novel topology connectivity enhancing mechanism is proposed to help ensure coordinated

tracking in real world implementations. In comparison with the existing topology connectivity preserving
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algorithms, our proposed topology connectivity enhancing mechanism is effective in maintaining both the

initially existent topology edges and the newly formed topology edges, which enables us to relax the more

restrictive requirement that the interaction topology is initially connected.

For each of the coordinated control problems considered in this dissertation, simulation results were

presented to illustrate the performance of the proposed coordinated control protocols.

For future research, it will be interesting to extend the results in this thesis to also take into account other

practical factors such as time delay effects and actuator saturation. Besides, the extension of these results to

multi-agent network systems with more general agent dynamics is another promising future research direction

to pursue. Finally, extension of the work in this dissertation to scenarios where there are both cooperative

and competitive agents would also be an interesting and challenging future research direction.
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