
Analysis of Database Algorithms for Performance and Access Optimization

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Andrei Stan
Spring, 2021

Technical Project Team Members

Susan Le
Bradley Lund

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines

for Thesis-Related Assignments

Signature __ Date __________

Andrei Stan

Approved __ Date __________

Nada Basit, Department of Computer Science

Analysis of Database Algorithms for Performance and
Access Optimization

Le, Susan
Computer Science

University of Virginia
Charlottesville, VA
sl3ub@virginia.edu

Lund, Bradley
Computer Science

University of Virginia
Charlottesville, VA

wbl2yj@virginia.edu

Stan, Andrei
Computer Science

University of Virginia
Charlottesville, VA
as4rn@virginia.edu

ABSTRACT
Database design is optimized in several areas for different
contexts. These areas include but are not limited to indexing
and querying. Algorithmic decisions can optimize several of
these areas but with trade-offs in others. To identify these
trade-offs, we will investigate and categorize algorithms, such
as trees, to determine which are most and least suited for each
optimization. This will be done using a document analysis of
relevant literature. Algorithmic efficiency will be evaluated
by metrics such as time and space complexity and feasibility
of implementation. Consolidating information about existing
algorithmic efficacy will allow us to reveal the areas with most
significant potential for improvement. We will describe how
these improvements may benefit respective fields, including
big data and distributed systems.

INTRODUCTION
Big data is based around processing large quantities from a
database. How exactly do the algorithms involved with big
data retrieve data quickly, efficiently, and accurately from the
database? In this paper, we will investigate several algorithmic
implementations for querying and heuristics for making this
process quicker and more reliable. We will first investigate in-
dexing, a core component of fast data retrieval. Then, we will
connect this to the querying process itself, by which relevant
indexed data is extracted from the database. Finally, we will
explore optimizations in the context of big data and distributed
systems to determine practical and feasible applications of
these techniques.

1 INDEXING
Indexing decisions are a vital part of database design. Efficient
indexing ensures quick access to information that users of
the database most frequently want to access. Indexing is
usually performed using trees, especially B+ trees. Many
variants of these trees exist to fulfill specific niches, such as
processing WGIs and graphs. B-Trees can also be augmented
with logging capabilities to improve recovery after failure.

1.1 VR-Tree: A novel tree-based approach for modeling
Web Query Interfaces[6]
A variant called “Visual Reduced Trees” (VR-Trees) can be
used for modeling Web Query Interfaces (WQIs). WQIs serve
as a link between HTML form input and results retrieved from
the database. By understanding the intent and semantics of
each individual WQI, a unified WQI can be created represent-
ing the entire domain of data access instead of one specific
type of query, a task referred to as “WQI modeling.” Modeling
consists of two subtasks: parsing (identifying visual compo-
nents) and components modeling (mapping these components
to a relevant data structure). VR-Trees can automate these
tasks; to automate VR-Tree creation, an algorithm can be ap-
plied to data structures already present in the rendering engine
of web browsers.

The VR-Tree creation algorithm starts with a pre-processing
phase that prunes a browser’s render tree to only relevant
information nodes (RBlock, RTable, RTableCell, and RLine)
and data nodes (RWord and RUIControl). To construct the
VR-Tree, six heuristic rules are applied to this reduced render
tree:

1. WQIs are organized top-down and left-to-right, with depth-
first search used for organization.

2. WQI fields are leaves and may or may not have an associ-
ated label, identified as consecutive RWord nodes.

3. The label associated with a radio button or check box is to
the right of that field.

4. The label associated with a text-input field is almost always
to the left or above that field.

5. A type selection list label is usually to the left.

6. A group label is usually above or left of the group.

To create the VR-Trees, several functions are defined. Assign-
LabelRBlock and AssignLabelRTable both use recursion to
match their respective types (RBlock and RTableCell) with la-
bels based on the heuristics. From these, FindGroupsInBlock
and FindSuperGroups are used to group similar field/label
nodes and then further hierarchically classify these groups.

From these functions, two algorithms are created. The
first identifies fields/labels, while the second identifies

1

Figure 1. BuildPartialVR-Tree algorithm for WGIs

Figure 2. BuildFinalVR-Tree algorithm for WGIs

groups/supergroups. Both are recursive. These algorithms
are shown in full in figures 1 and 2.

These algorithms are evaluated using 20 WQIs from five do-
mains: airfare, automobile, book, job, and real estate, selected
at random from two datasets (ICQ and Tel-8). To evaluate,
they use three metrics, including precision (correctly labeled
fields vs labeled fields), recall (correctly labeled fields vs all
fields), and the f-measure (harmonic mean of the previous
factors). In doing so, they demonstrate these algorithms have
an average f-measure of approximately 95%. This sometimes
outperforms several competing algorithms while requiring less
domain-specific knowledge.

1.2 Supergraph Search in Graph Databases via Hierarchi-
cal Feature-Tree [5]
Hierarchical feature-trees can be used to optimize supergraph
search on graph databases. Supergraph search on Q is an al-
gorithm for retrieving all data graphs contained in Q within
the database. This technique is useful for many fields, in-
cluding chemistry, biology, and computer vision. Typically,
it involves subgraph isomorphism testing, an NP-complete
problem; inclusion and exclusion logic can reduce complexity
but not remove the NP-completeness, limiting scalability. To
improve upon this, the graph database is typically pruned us-
ing features. Some features are “frequent features”; many of
these are present in Q and thus cannot be pruned, leading to
computation time wasted on these features.

Thus, a new method is proposed using hierarchical feature-
trees called “DGTrees.” The tree is organized such that each
feature is a subgraph of its descendants (increasing complexity
lower in the tree). When the upper levels fail to prune, the
descendants are used. DGTrees consist of tree-nodes. These
tree-nodes are a data structure containing the eight following
elements

Figure 3. DGTreeConstruct algorithm for supergraph search

1. g.children: a list of child nodes.

2. g.graph: the graph (nodes and vertices) that it represents.

3. grow-edge: an edge not present in its parent node.

4. edge-type: OPEN if a new node is added not in the parent;
CLOSE otherwise.

5. g.S: a set of graph-names containing its graph as a subgraph.

6. g.M(G_i): a set of matches of the graph.

7. g.S*: a set of nodes such that all child nodes’ S* form a
disjoint cover of g.S*.

8. g.score: a score used to select the best edge to grow.

Using these elements, nine algorithms are used to create, ma-
nipulate, and optimize a DGTree. For our purposes, we shall
focus mostly on the first three algorithms, used for indexing.
These 3 are shown in figures 3, 4, and 5.

The (1) DGTreeConstruct algorithm references (2) Candidate-
Feature, which generates candidate features. From these fea-
tures, (3) BestFeature selects the one with the highest score to
use for a new node. There are multiple score functions that
can be used for selecting the node, with the simplest of these
being the magnitude of g.S*; this maximizes for graph cover-
age by the tree but without taking into account pruning power.
The second (more complicated) score function corrects this by
taking the number of matches (g.M) into account. These algo-
rithms combined form a heuristic approach to indexing with a
non-exponential growth, which does not require isomorphism
checking, and which allows infrequent features (often with
high pruning power).

Once the tree is constructed and used for indexing, algorithms
4 and 5 are used to complete a supergraph search. Algorithm
6 is used for optimization, while algorithms 7 and 8 allow
for dynamic, online support, allowing nodes to be inserted
or deleted from an existing database without disrupting the

2

Figure 4. CandidateFeature algorithm for supergraph search

Figure 5. BestFeature

search indexing. Lastly, algorithm 9 is used to reduce false
negatives, thereby increasing efficiency.

To evaluate the efficiency of this method, it was compared
against the IGquery and PrefIndex algorithms (two preexisting
competing algorithms) on the CCD and NCI databases. The
results showed that for larger databases and denser graphs,
DGTree outperforms the competitors. It remains competitve
in simpler cases (but sometimes performs worse). This demon-
strates the scalability brought on by the approximations that
allow for non-exponential calculation.

1.3 A Survey of B-Tree Logging and Recovery Techniques
[3]
First, a distinction is noted between logical and physical con-
tents of trees; two trees representing equivalent data can differ
if the orders of insertion differ. Logical data is protected by
locks, while semaphores protect critical areas of physical mem-
ory. This leads to a difference in user and system transactions
and in logical, physical, and physiological logging. Transac-
tions are independent, atomic, consistent, and durable actions
affecting a database structure and its contents. They are typi-
cally handled by a thread pool with threads that compete for
locks.

The basis of logging is “write-ahead logging.” Each change
has a “do” method for starting a logged change and “undo”
and “redo” methods for reverting or repeating a change in the
event of a failure. Transaction failures involve an application
cancelling a transaction (perhaps automatically due to dead-
lock or lack of space); these must revert a single change. A
media failure is due to communication failure with a hard disk
(perhaps removed from the system), while a system failure
results from a crash or outage of the operating system or hard-
ware. These failures requires repeating a sequence of logged
changes. Frequently, a checkpoint should be added to the log
consisting of changes within an interval; this shortens recovery
time for media and system failures.

Logging should be stored on a stable but slower storage, while
database transactions should be optimized for speed even with
greater risk of failure. Failure can corrupt even completed
transactions if they were written to cached data that hasn’t
been written back. A transaction should not be logged as
completed until written back. On shutdown, the last log entry
should be a checkpoint noting no active transactions.

Devices with limited memory can employ group commit: de-
laying log entries until a memory page is full. Devices can
also create checkpoints of unfinished transactions, dirty cache
pages, etc. to speed up recovery; these should point to the last
completed log record and the last log record to undo. Each log
entry should have a Log Sequence Number (LSN) for unique
identification and for quick access via hashing.

User transactions are requested through an application. Rever-
sal (undo) must be possible until the application commits the
changes. Once committed, the changes must persist through
failure (via redo). Multiple forms of undo exist including eras-
ing the record, marking it invalid, or performing the opposite
action (updating back). Undo is logical and may not reverse

3

all physical changes.

User transactions can utilize lower-level (potentially nested)
system transactions. User transactions modify the logical
structure (inserts, deletes, etc.) while system transactions
modify the physical structure (splitting/merging nodes, etc.).
System transactions inherit locks and other context from a
user transaction that calls them. System transactions are not
logged except in the context of user transactions that require
their completion.

Physical logging logs the change in memory, often as a before-
state and list of modified bytes, perhaps compressed with a run-
length encoding. Logical logging records operations taken but
not their precise memory locations. Logical logging requires
less space but is more complicated to restore. Physiological
logging is a compromise, where log entries refer to a page
number (physical) and a record (logical) within that page.

Deleted records can be marked as invalid “ghost records.”
These reduce deletion time by allowing the system to over-
write memory later. Recovery is likewise easy (just reset the
invalid bit) and less is logged (one bit vs. a whole record).
Logical insertions of identical keys should reuse invalid keys
rather than create a duplicate. Page compaction removes ghost
records for space compression.

Several additional optimizations exist to reduce log complex-
ity of undo and redo operations. Ghost record creation and
replacement can be fused into a single record if these occur
closely in time. Careful write ordering involves logging op-
erations and relevant parameters rather than entire database
records. The source of a copy operation is preserved until
copied to the destination; it acts as the destination’s backup
and as such prevents a need for a logged backup.

2 QUERYING
Being able to parse through large data is essential to under-
standing the knowledge at hand. However, big data sets make
it difficult to sift through and sort timely and accurately. Using
algorithms is then necessary to not only query the information,
but to also make it a much more quick and reliable search.

2.1 Fast Algorithms for Mining Association Rules [1]
Bar-code technology has made it easier for companies to store
large amounts of data. The data can consist of the name
of the item, date purchased, purchased price, etc.. This is
important to keep track of what is coming in and out, as well
as knowing what sells. This is important for marketing teams
to create strategies and plans such as catalog design, add-on
sales, and store layout based off customer buying patterns.
Fast algorithms are needed to carry out these databases that
contain a large amount of information.

The following is a formal statement of the problem: Let I
= i1, i2, ...im be a set of literals, called items. Let D be a set
of transactions, where each transaction T is a set of items
such that T ⊆ I. Associated with each transaction is a unique
identifier, called its T ID. We say that a transaction T contains
X , a set of some items in I, if X ⊆ T . An association rule is
an implication of the form X → Y , where X ⊂ I, Y ⊂ I, and
X ∩Y = 0. The rule X → Y holds the transaction set D with

confidence c if c% of transactions in D that contain X also
contain Y . The rule X → Y has support s in the transaction set
of D if s% of transactions in D contain X ∪Y .

Once given the set of transaction, we can generate the rules that
have support and confidence greater than the user-specified
thresholds, called “minsup” and “minconf” respectively. There
had previously been two algorithms to find all association
rules called AIS algorithm and SETM algorithm. This paper
presents a new algorithm called Apriori that differ fundamen-
tally from the first two mentioned. Not only does new algo-
rithms outperform the original two, but the performance gap
increases with problem size.

Discovering all association rules can be difficult and the matter
can be separated into two subproblems. The first is finding all
itemsets that have transaction support above minimum support.
The support of an itemset is the number of transactions that
contain the itemset. The second is using the itemsets to create
rules. This paper however only addresses in solving the first
problem.

In order to find large itemsets, the algorithm will make multiple
passes over the data. The first pass will consist of counting the
support of individual items to determine which of them have
the minimum support. In each additional pass, a seed set of
large itemsets in the past round are used to find potential new
large itemsets, called candidate itemsets. This continues until
no new large itemsets are found.

In the original algorithms, the candidate itemsets are generated
impulsively during the pass as data is being read. The Apriori
algorithm instead generate the candidate itemsets to be counted
in a pass by using only the itemsets found large in the previous
pass. This results in a much smaller passed set.

The Apriori algorithm’s first pass counts item occurances to
determine large 1-itemsets. The next pass will consist of
two parts. The first part will use the large itemset found
in the previous round to create candidate itemsets using the
following algorithm. The second part will consist of scanning
the database and counting the support of the candidate items
set found in part one of this pass.

Candidate itemsets are stored in a hash-tree. A node of the
hash-tree either contains a leaf node of a list of itemsets or an
interior node of a hash table. In the hash table, each bucket
of the hash table points to another. However, all nodes are
initially created as leaf nodes. It is only when then number of
itemsets in a leaf node exceeds a specified threshold that the
leaf node is converted to an interior node.

When starting at the root node, the subset function finds all
the candidates contained in a transaction, t. This is because
when we are at a leaf node, we find which of the itemsets in
the leaf are contained in t and add references to them to the
answer set.

When it came to performance, this new method outperformed
the previous methods every time. The performance gap even
increased with the problem size, showing that this can be easily
scaled.

4

2.2 Exploiting the Potential of Large Databases of Elec-
tronic Health Records for Research using Rapid Search
Algorithms and an Intuitive Query Interface [9]
The growth of technology has led to electronically kept health
records. This information is of great resource for those in
the health services and clinical research industry, as these
records can help to identify patients with a specific disease or
condition and investigate patterns of diagnosis and symptoms.

The UK’s primary care database system contains diagnos-
tic, demographic, and prescribing information for millions
of patients. However, extracting relevant information can be
difficult and time-consuming, since this database contains in-
formation about millions of patients and each patient can have
multiple records.

This new algorithm can be used to identify patients that are fit
into the specification for further screening for recruitment into
randomized controlled trials within general practices. TrialViz
would parse the data that is held within The Clininal Prac-
tice Research Datalink (CPRD), which represents the largest
collection of anonymized primary care patient records in the
world, to enable users to select General Practices (GP) based
on suitability of the patient base for the intended study and
practice-based measures of the quality of data recording. De-
mographic and clinical parameters will further help parse the
data.

Based off feedback from a team of data analysts, epidemiol-
ogists, statisticians, graphical designers, software engineers,
and computer scientists, the following were chosen as particu-
larly important for this new engine.

1. Data abstraction tools – users can upload or select codes to
create rules or queries for selecting the patients of interest

2. Data extraction tools for running queries using the data
abstraction riles in close to real time

3. A protocol for measuring data quality for each practice and
how fit it is for a particular study

4. Visualization tools to investigate the results

A challenge that is presented when parsing through the data is
the amount of data present. As mentioned earlier, each patient
may have multiple records, and there may also be multiple
codes for a disease or symptom. For example, there are over
200 codes for diabetes and 40 codes that align with abdominal
pain. After running these queries, another challenge that is
presented is the process time involved.

SQL is known to not handle large datasets well. So instead,
an interface based on ‘stacks and cards’ was developed for
the web portal to run complex queries interactively and to
visualize the results. Each card represents the results of a
single query and the stacks represent a container of cards in
which users can place multiple cards. Furthermore, the stack
serves two purposes. The first purpose is to have a visual
presentation for the set theory rules. The second purpose is to
select the date ranges. A search is built using these cards and
cards are essentially patient lists. Cards are logically grouped
on stacks and stack represents a union of the card it contains

Figure 6. K-Cluster Evaluation Function

while the search represents the intersect of the participating
stacks.

2.3 Selection of K in K-means clustering [7]
Clustering is an important part of different applications such
as data mining and knowledge discovery, data compression
and vector quantization, and pattern recognition pattern clas-
sification. It allows objects with similar characteristics to be
grouped together to make processing the data easier. The K-
means algorithm is a well-known data clustering algorithm,
but to use it requires a pre-known and user chosen number of
clusters. However, the challenges that arise with this is that
it can be subjective in nature of deciding what that number
should be.

When determining K, the number must be reasonably large but
significantly smaller than the number of objects in the data set.
This will create clusters of substantial sizes. Previous studies
of K-means clustering did not specify any logic for choosing
a value for K. Previous mistakes that had been made are a)
using one or two values for K and b) using a relatively large
K in comparison to the number of objects. Often times, this
number is found by trial-and-error.

Other than there being no set method in choosing K, there
are also other outside factors. For example, the level of detail
required. A data set with n objects grouped into clusters
between 1 and n would respectively correspond to lowest and
highest level of details. This is because in order to further
group the data, one would need more information about the
observed objects.

To evaluate the cluster result, a function f (K) is used. The
evaluation function is defined in Figure 6 where Sk is the sum
of the cluster disortions when the number of clusters is K, Nd
is the number of data set attributes (such as the number of
dimensions) and αk is a weight factor.

This new function of f (K) can allow for multiple suggestions
of K for various levels of details. It also takes into account
information reflecting the performance of the algorithm.

3 BIG DATA
Big data queries are a particular difficulty for database design
in traditional implementations. The serial access as well as the
large size of the types of queries executed, sometimes larger
than the available memory on the machine, makes access time,

5

reliability, durability, and the time frame for gathering and
interpreting useful information unreasonable. Augmenting
this process with distributed and replicated database systems
improves upon these issues but has the added complexity of
maintaining proper access patterns and predictability when
using the system. Algorithms must be specifically designed
to either address these issues or augment previously used
techniques in order to work with such a setup. In some cases
however, parallelization may make some traditional algorithms
more feasible for use on distributed systems, specifically in
the context of overhead.

3.1 An Algorithm for Concurrency Control and Recovery
in Replicated Distributed Databases [2]
Replicated/distributed DBs add additional complexity in terms
of security and consistency of operations in comparison to
traditional DBs. The complexity is worth it for the benefits
but this is only if the correctness of operations is maintained.
Replication and concurrency control must be guaranteed in
order for correctness to be.

Replication control means that a set of replicas behaves the
same as a single unit would. An operation done on any set of
copies must affect the entire set of replicas as if they were one.
Concurrency control means the effect of a series of executions
on a traditional, single database system must be the same for
distributed systems, where they may be running in parallel and
thus, not necessarily in order.

To handle this, the typical method would be two-phase locking
(2PL). This means that a read is performed on any copy of the
data, writes update all copies of the data they are changing, and
concurrency control is handled with locks on particular copies
during and depending on access Reads acquire read-locks and
writes acquire write-locks.

This addresses the problem of concurrency control but not
of replication control which the proposed algorithm attempts
to solve. For “an environment where sites fail and recover,”
a method of being able to dynamically react to replica sites
being up or down is required. This ensures that the physical
execution of transactions on the multiple replicas matches the
logical order/execution and expected effect of the submitted,
declarative-style transaction.

This is accomplished mainly by implementing data directories.
These are created for each item in the database and store (1)
a list of all the available copies of the data item and (2) a list
of all the available copies of the directory for that item. This
means that the directories themselves must also be replicated.

These directories are used for status transactions, which are
used to update availability and access meta-data for each data
item. Include() and Exclude() are used to make a copy avail-
able/unavailable for user transactions, based on the availability
of the site storing that particular copy. There is also a Di-
rectoryInclude() status transaction which performs the same
function but for a particular copy of an item’s directory. It
is described that a DirectoryExclude() is not necessary since
a directory copy immediately becomes unavailable when its
site fails. Additional locks are used to change values in the

directories, consistent with 2PL.

With the status transactions available, read() and write() calls
can be changed to fit with the new system goals. Each user
transaction has a transaction manager, which handles its meta-
data related status transactions and acquires an available di-
rectory copy for that data item. An available directory copy is
now required for any transaction to proceed. Having no avail-
able directory copies implies that every site for that particular
data item is down and that the user transaction cannot occur.

With a directory copy available, reads and writes can occur
on data items. Reads are expanded to set a read-lock on some
available data copy from the directory copy’s list of available
data items, and read the data from that copy. This is in contrast
to simply setting a read-lock on any copy and reading from
it. Writes are a little bit more complicated. Before setting the
write-lock on each of the available data copies, a lock must be
set on the directory copy being used. Once both of these are
complete, the write-locked copies are checked once again for
availability. The data copy is written to if it is still available
and ignored otherwise.

Between the first and second check for availability in the write
procedure, the transaction reaches its locked point, which is
when all of the data copies in the directory for that item are
either write-locked or unavailable. This is used for cleanup
of the transaction. The transaction is aborted, since it cannot
ensure correctness, if there is any mismatch between the data
copies that were read and the available data copies still in the
directory copy’s list or if the particular data item is currently
being excluded. The process for this is also parallelizable,
making it reasonably fast.

In order for these implementations to be possible, the algo-
rithm also makes some assumptions about the predictability
and type of failures. The failures must be clean, meaning that
when a site goes down it does so completely, not in a way in
which it still seems to respond but performs transactions in-
correctly. Network failures are assumed to be the same, where
the network is either completely up or down. Additionally, it
is assumed that the network and the sites themselves handle
recovery and failure reporting, with the algorithm implemen-
tation only needing to check up/down status. Additionally, the
algorithm performs best when site failures are uncommon and
“data access patterns [are] predictable.” When all assumptions
are met, the algorithm is believed to be a preferable alternative
to 2PL, although a correctness proof is only sketched out and
not formally performed.

3.2 Parallel Implementation of Apriori Algorithm Based on
MapReduce [4]
Algorithms that perform transactions on databases are not the
only ones that require adjustment when considering distributed
databases. Access patterns, such as frequent access, and the
algorithms behind them also need to adjust depending on the
scale of the database, especially in cases where dataset size is
larger than memory. The typical way to do this is to use the
Apriori algorithm, described in section 2.1. However, since the
calculation overhead of apriori scales with database size and
makes it decreasingly effective as database size increases. The

6

Figure 7. PApriori Map Step

proposed algorithm by Li et. al. recognizes the effectiveness of
the frequent-access pattern that Apriori provides and combines
this algorithm with MapReduce for calculation steps in order
to reduce the overhead of the calculation required to maintain
the access pattern. It is easy to see how an algorithm like
Apriori, which starts with a large dataset of small items and
combines them into a small result set, can be augmented with
MapReduce, which is used to parallelize such computations.

The actual proposed PApriori (for parallel Apriori) algorithm
considers the use of MapReduce at the combination step for
Apriori computations. Starting with the candidate itemsets of
size 1, MapReduce is run iteratively for the combination of as-
sociations. This is possible because the individual occurrence
counting of itemsets in transactions has no overlap, causing
no concurrency issues, which would add additional overhead.
The map step (figure 7) takes the candidate itemsets and out-
puts them, mapped by transaction to their respective reduce
nodes, based on their membership of said transactions. The
reduce nodes (figure 8) then combine these results, summing
the values for the current transaction, and output the results
to the next iteration of the PApriori process, so that the strong
rules for the k-itemsets can be generated. This is done on every
iteration until the specified, maximum number of iterations has
been reached (K < maxIterations). This means that the most
intensive portion of the Apriori calculation receives a boost in
performance due to the parallelization offered by MapReduce.

This proposed performance increase is consistent with the re-
sults prescribed in the paper. Evaluation is performed using
scaleup: “the ability of an m-times larger system to perform
an m-times larger job in the same time as an original system,”
sizeup: “how much longer it takes on a given system when the
dataset size is m-times larger than the original dataset,” and
speedup: “how much [the] parallel algorithm is faster than”
its corresponding sequential counterpart. For small datasets,
as expected, the performance does not scale well, especially

Figure 8. PApriori Reduce Step

with higher CPU-core counts. For larger datasets, however,
performance is increased particularly well, with the relation-
ship of core count to speedup becoming more and more linear
with increasing slope for the largest dataset sizes tested. When
datasets have “ either many short transactions with few fre-
quent itemsets, or fewer larger transactions with many frequent
itemsets, PApriori algorithm [shows] good performance.” This
result is also particularly important for the same reasons that
MapReduce is, in that this speedup is achieved using “com-
modity hardware” rather than highly complex, powerful, and
expensive single computing systems.

3.3 SQL: From Traditional Databases to Big Data [8]
SQL is popular because it is declarative and simple to learn.
The simplicity is an important aspect that makes SQL acces-
sible to a vast number of people but the declarative nature
shines since it is able to provide opportunities for extraction
and optimization. This makes it useful for newer types of
databases which use new technologies to speed up queries, ac-
cess, and implementation. The ways in which this can be done
are organized into three technologies: MapReduce, NoSQL,
and NewSQL.

MapReduce works by splitting workload into chunks, mapped
to different reducer nodes, reduced to final answers, and com-
bined to get the final answer(s). Instead of requiring a single
machine to perform the entire operation on a certain set, the
workload is distributed among multiple machines. This not
only makes it easier to achieve desired runtimes, but also more
accessible, since each machine (worker node) only needs basic
hardware to perform its portion of the workload.

In a Mapreduce setup the dataset for the operation is divided
into chunks which are portioned out (mapped) to specific
reducer nodes. These reducer nodes perform their operation
on (reduce) their subset of the data and return an answer to
one or more combine nodes which assemble (combine) the
individual results from the reduce step to produce the final
result(s) of the operation. This can be used for database queries
as the control flow of the actual physical operations on the
data, with SQL as the logical operation “front-end” for the
system.

NoSQL is a non-relational database system, intentionally built
to be scalable and distributable. It uses key-value pairs and
documents to store data in such a way that organization is
achieved through nesting of these pairs or documents. Because
of this, the system is schema-free and has little need for join

7

operations, since data can be reached by simply searching the
documents for the data needed.

It is also very scalable and highly available. The insertion of
documents based on context means that it does not have to be
planned ahead of time, and expands as needed. The system
does not have to be redesigned when the data changes since no
schema needs to be changed. SQL is also easy to implement
for it, despite the name, because of SQL’s declarative property.
SQL operation control flow can be specifically implemented
and adapted to each specific use case in order to allow the
logical operations typical of SQL to perform as expected. New
SQL is described to take this last principle and recreate it as a
standalone system, designed to be a modern, NoSQL-backed
implementation of traditional, SQL-style relational databases.
This makes it much faster and retains the modern accessibility
and scalability attributes.

CONCLUSION
Database algorithms that work on top of the database system
are generally used for improving performance and decreasing
access time. Indexing as a category acts as a general speed
increase as well as allowing concurrent access at times when
different parts of data are accessed. Querying specialization
algorithms are used to shape the desired data in such a way
that performance is optimized for specific use cases, whether
catering for frequent access, grouped information, or large
queries. Further enhancing specifically those queries that are
very large, distributed systems allow for parallelized access
of desired data which improves performance but adds addi-
tional complexity. Algorithms used for indexing and specific
use case queries have to be adjusted to work with distributed
systems but can also be much faster due to the parallel access
reducing the overhead involved with these algorithms. How-
ever, additional techniques also have to be created in order
to help ensure what is normally ACID compliance, but ap-
plied to distributed systems in the form of BASE compliance.
These algorithms further rely on the principles of indexing and
use case querying optimization to ensure a reasonably small
overhead for these additional operations.

REFERENCES
[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast

Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB ’94).
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 487–499.

[2] Philip A. Bernstein and Nathan Goodman. 1984. An
Algorithm for Concurrency Control and Recovery in
Replicated Distributed Databases. ACM Trans. Database
Syst. 9, 4 (Dec. 1984), 596–615. DOI:
http://dx.doi.org/10.1145/1994.2207

[3] Goetz Graefe. 2012. A Survey of B-Tree Logging and
Recovery Techniques. ACM Transactions on Database
Systems 37, 1 (2012), 1 – 1:35.
http://proxy01.its.virginia.edu/login?url=https:

//search.ebscohost.com/login.aspx?direct=true&db=iih&

AN=72956519&site=ehost-live&scope=site

[4] Ning Li, Li Zeng, Qing He, and Zhongzhi Shi. 2012.
Parallel Implementation of Apriori Algorithm Based on
MapReduce. In 2012 13th ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed
Computing. 236–241. DOI:
http://dx.doi.org/10.1109/SNPD.2012.31

[5] Bingqing Lyu, Lu Qin, Xuemin Lin, Lijun Chang, and
Jeffrey Xu Yu. 2019. Supergraph Search in Graph
Databases via Hierarchical Feature-Tree. IEEE
Transactions on Knowledge Data Engineering 31, 2
(2019), 385 – 400.
http://proxy01.its.virginia.edu/login?url=https:

//search.ebscohost.com/login.aspx?direct=true&db=iih&

AN=134073130&site=ehost-live&scope=site

[6] Heidy Marin-Castro and Victor Sosa Sosa. 2017.
VR-Tree: A novel tree-based approach for modeling
Web Query Interfaces. Journal of Intelligent Information
Systems 49, 3 (2017), 367 – 390.
http://proxy01.its.virginia.edu/login?url=https:

//search.ebscohost.com/login.aspx?direct=true&db=iih&

AN=126055153&site=ehost-live&scope=site

[7] D T Pham, S S Dimov, and C D Nguyen. 2005.
Selection of K in K-means clustering. Proceedings of
the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science 219, 1 (2005),
103–119. DOI:
http://dx.doi.org/10.1243/095440605X8298

[8] Yasin N. Silva, Isadora Almeida, and Michell Queiroz.
2016. SQL: From Traditional Databases to Big Data. In
Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE ’16).
Association for Computing Machinery, New York, NY,
USA, 413–418. DOI:
http://dx.doi.org/10.1145/2839509.2844560

[9] A. Rosemary Tate, Natalia Beloff, Balques Al-Radwan,
Joss Wickson, Shivani Puri, Timothy Williams, Tjeerd
Van Staa, and Adrian Bleach. 2014. Exploiting the
potential of large databases of electronic health records
for research using rapid search algorithms and an
intuitive query interface. Journal of the American
Medical Informatics Association 21, 2 (2014), 292 – 298.
http://proxy01.its.virginia.edu/login?url=https:

//search.ebscohost.com/login.aspx?direct=true&db=iih&

AN=94425993&site=ehost-live&scope=site

8

http://dx.doi.org/10.1145/1994.2207
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=72956519&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=72956519&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=72956519&site=ehost-live&scope=site
http://dx.doi.org/10.1109/SNPD.2012.31
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=134073130&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=134073130&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=134073130&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=126055153&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=126055153&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=126055153&site=ehost-live&scope=site
http://dx.doi.org/10.1243/095440605X8298
http://dx.doi.org/10.1145/2839509.2844560
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=94425993&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=94425993&site=ehost-live&scope=site
http://proxy01.its.virginia.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=94425993&site=ehost-live&scope=site

