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“Biology is chaos. Biological systems are the product not of logic but of 

evolution, an inelegant process. Life does not choose the logically best 

design to meet a new situation. It adapts what already exists...The 

result, unlike the clean straight lines of logic, is often irregular, messy.” 

- Author: John M Barry 
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Abstract 
The human gastrointestinal (GI) microbiome is a complex ecosystem consisting of trillions of 

microorganisms. The microbial life present in the gut contributes significantly to human physiological 

processes, health, and well-being. Conversely, disturbances in the GI microbiome have been correlated 

with a broad array of diseases, having a particularly strong connection to the brain, immune system, 

cardiovascular system, and GI tract. With a high exposure to external factors, the GI microbiome can be 

rapidly influenced by drugs, diet, and life-style. There is a need for an improved understanding of GI 

microbial communities for applications in medical diagnostics and treatments. In this dissertation I 

worked to advance three distinct tools for the study of GI microbiomes. In aim 1, I identify biomarkers 

for Parenteral Nutrition Associated Cholestasis in neonatal intensive care unit (NICU) infants using 16S 

sequencing data and fecal metabolomics. This aim is the first step in work to develop a point-of-care 

diagnostic tool to expand precision medicine in the NICU. Leveraging systems biology to understand 

clinical microbiome data and developing a mechanistic understanding of pathophysiology requires 

advanced research tools. In aim 2, I design and develop a computational tool to aid in the procedural 

generation of organism-specific metabolic network reconstructions that explicitly accounts for 

uncertainty in the datasets utilized for the building process. An essential aspect of this tool relies on an 

alteration to the structure of these models for enhanced representation of the biological evidence for 

the resulting network. In aim 3, I developed an in vitro culture device for the pairwise co-culture of 

microbes to study contact-independent microbial interactions. The co-culture plate allows bacterial 

growth curves to be generated for two microbial cultures that are physically separated by a 

semipermeable membrane while interacting via diffusion. Contact-independent interactions are 

important for understanding the mechanisms that influence how microorganisms interact in 

communities. This dissertation covers the design and development of three different tools for the study 

and leveraging of the human GI microbiome to improve the treatment of associated diseases.   
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Chapter 1 Introduction 1 

1.1 The Human Gastrointestinal Microbiome 2 

The human body harbors trillions of microorganisms that form complex ecosystems called 3 

microbiomes (1,2). Microbial ecosystems reside on all bodily surfaces that are exposed, directly or 4 

indirectly, to the external environment. The skin, lungs, gastrointestinal tract, and vagina all have 5 

distinct microbial ecosystems (3–7). The organisms, or microbiota, present in these ecosystems are 6 

primarily bacteria, archaea, and fungi (8–10). The remaining abiotic components that are present along 7 

with the resident microbiota, such as metabolites, sum up to be defined as the microbiome (11). 8 

Currently the study of human microbiomes is primarily focused on bacterial populations living on the 9 

human body (12,13). However, there are additional fields of study focused on the other types of 10 

microorganisms present, while also including viruses (8–10,14). The communities of bacteria living on 11 

the human body are commonly measured in several ways: the total weight of resident microbes ranges 12 

from 2-4 kilograms, the number of individual cells is roughly equivalent to the number to human cells 13 

with nuclei, and the amount of non-human genetic material is roughly 150 times greater than the 14 

human genome (1,15,16). However, it has been proposed that the gastrointestinal microbiota should be 15 

considered an independent human organ, due to how essential it is to human physiology (17–20). 16 

Therefore, perhaps the most important lens through which we can measure human associated 17 

microbiota is grounded in the health promoting physiological contributions provided by the resident 18 

microbiota (8,10,21–28).  19 

There are several exceptionally important functions that the GI microbiota contributes to 20 

human physiology. Three of the most important functions are colonization resistance against GI 21 

pathogens, training of the immune system, and the production of valuable metabolites (26). 22 

Colonization resistance is an emergent property of a robust microbial community present in the GI tract 23 

(27). Just as a healthy ecosystem is resistant and resilient to invasion, the human GI microbiota is best 24 
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able to resist colonization from foreign microbes when there is sufficient diversity and ecological 25 

stability (27,29). The GI microbiota has an exceptionally intimate connection to the immune system. The 26 

current understanding is that the immune system directly samples the GI microbiota resulting in proper 27 

regulation of autoimmunity (30). Additionally, the immune system plays in important role in regulating 28 

the community composition primarily via mucus composition and anti-bacterial peptides (29). Finally, 29 

the GI microbiota aids in the digestion of fiber in the colon while producing essential metabolites. Short-30 

chain fatty acids are the primary example of metabolic byproducts from the GI microbiome that have a 31 

significant impact on the human body; they are an energy source for colonocytes that also provide 32 

important anti-inflammatory signaling (31–37). Examples of other physiologically important metabolic 33 

byproducts that are produced by the GI microbiota include several essential amino acids, vitamins, and 34 

neurotransmitters (31,38).  35 

Human microbiomes can readily be altered by exposure to the external environment (39). The 36 

fact that human microbiomes can be influenced by external factors is a double-edged sword from a 37 

medical point of view. Although we can quickly resort microbial communities to improve health 38 

outcomes, such as fecal microbiota transplants for the effective treatment of C. difficile, there are also 39 

many aspects of daily life that have an enormous impact on the composition and functions of the GI 40 

microbiota (40). These aspects include sleep, stress, diet, therapeutics, and exercise (39,41,42). The GI 41 

microbiota also contributes to the production of detrimental compounds such as TMAO and 42 

enterotoxins (43). It has been shown that there are measurable negative health outcomes that result 43 

from the disruption of the GI microbiome due to infection, genetic factors, poor diet, or other 44 

deleterious life-style choices (41,42). The GI microbiome is an aspect of human physiology that can be 45 

rapidly changed to either promote or negatively impact overall health at a systems-level.  46 
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1.2 Gaps in medical knowledge about the GI Microbiome 47 

Over the past several years there has been an explosion in the number of correlations identified 48 

that link various diseases with disturbances in the GI microbiome (43,44). There are two major 49 

classifications that each of these correlative links will ultimately fall into: (a) correlative biomarkers that 50 

can be leveraged to diagnose disease, and (b) governing causal mechanisms that drive the disease in 51 

question. Both classifications require an improved understanding to create accurate diagnostic tests 52 

and, with greater difficulty, to characterize the mechanisms with the GI microbiome that are driving a 53 

disease. Improved understanding of both of these two areas of research will improve the treatment of 54 

several difficult diseases that are currently on the rise across the globe.  55 

There are several existing types of treatments that have demonstrated utility in the treatment 56 

of human disease, in the case when the GI microbiota is causally linked. The most promising treatment 57 

that has recently become common in clinical practice is the fecal microbiota transplant (FMT) for the 58 

direct treatment of C. difficile infection. FMTs have been found to be impressively successful compared 59 

to other treatment options (40). Other probiotic treatments similar to FMTs have also been shown to be 60 

clinically relevant, such as the use of Lactobacilli for the treatment of inflammatory bowel disease (IBD) 61 

(45). Another related treatment option is to alter nutritional inputs to alter community composition and 62 

increase diversity. There is a growing body of research exploring how various types of fiber influence the 63 

composition of resident microbiota. This type of intervention is largely relevant for chronic diseases such 64 

as cardiovascular disease, IBD, colorectal cancer, depression, and obesity (46). The final important 65 

aspect of microbiome research in medicine involves understanding how drugs interact with the GI 66 

microbiome (47). Improvements in antibiotic usage may result in a reduction in the prevalence of C. 67 

difficile infections; the use of broad-spectrum antibiotics disrupts the GI microbiota providing an 68 

opportunity for C. difficile to flourish and begin producing toxins (48,49). Additionally, there are 69 
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examples of drugs that have been metabolized by the liver being converted into toxic metabolites by 70 

resident microbes (43,47). 71 

The need for more advanced analysis techniques has become obvious with the advent of large 72 

complex datasets that are now available for studying the GI microbiome. The precise perturbation of a 73 

GI microbiota in situ is a daunting task that requires a great deal of mechanistic understanding of how 74 

microbial communities function. Currently, existing treatments are either utilized as a last resort (e.g. 75 

FMTs), or are particularly nonspecific and unreliable (e.g. generic probiotic supplements). Bioinformatics 76 

and systems biology have both developed in part to help solve complex medical challenges related to 77 

diagnosing disease earlier and more accurately, while also improving understanding of the causative 78 

factors driving disease. Specifically, for the GI microbiome, there is a great deal of interest in utilizing 79 

systems biology to understand how metabolites and drugs flow through microbial communities in order 80 

to understand how to precisely alter the community to induce an intended affect (50).  81 

1.3 Systems biology: Applying advanced mathematics to complex biological systems 82 

Biological systems are composed of interacting components that are typically governed by 83 

simple rules, but result in complex emergent behaviors. Systems biology aims to understand how 84 

perturbations impact complex biological systems for targeted manipulation of a system, diagnosis of 85 

why a system is behaving a certain way, or predicting how a system will change as a result of a specific 86 

perturbation. The goals for systems biology are achieved via the collection of high-throughput data, 87 

advanced statistics, and quantitively modeling (51). The methods and models utilized to study biological 88 

data are based on and designed for vast sets of biological observations. Combining different forms of 89 

biological data is an essential aspect of understanding biological systems, in part, due to the innate 90 

uncertainty associated with each type of data. Reference databases have become absolutely essential 91 

for all aspects of analyzing biological data. There are two broad applications of systems biology that are 92 
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particularly relevant to this dissertation: machine learning, and quantitative network modeling of 93 

biological systems. When combined, these two methods provide a path forward for studying the 94 

governing mechanisms of human associated microbiota.  95 

Machine learning that has been tailored to systems biology data is a field of study grounded in 96 

advances statistical techniques that leverage computational power to make high-dimensional data more 97 

human interpretable and to establish the variables in a dataset that contribute most to the classification 98 

of samples into known experimental groups. Unsupervised machine learning provides a variety of tools 99 

for determining classifications based on similarity across samples within a dataset and supervised 100 

learning utilizes known experimental groups to determine a small set of variables that are the primary 101 

drivers that differentiate the groups (52).  102 

Quantitative network modeling includes many different variations, notably: signaling, 103 

regulatory, and metabolic network modeling (51). All three involve data that represents the connections 104 

(edges) between components (nodes). The relationships among components in a system are particularly 105 

important because it is this information that allows for the modeling systems-level emergent behavior. 106 

For metabolic network the three high-throughput dataset that are most common are genomics, 107 

transcriptomics, and proteomics (51,53). These data are utilized to determine how phenotypic data can 108 

be mechanistically explained. When studying metabolism within a cell, it can be helpful to incorporate 109 

known biochemical structure when analyzing high-throughput data. Known biochemical structure 110 

includes the process of how a gene is translated into a protein, the stoichiometry of biochemical 111 

reactions that are catalyzed by enzymes, and the thermodynamics of biochemical reactions (51). Each 112 

additional layer of information can help to contextualize and intelligently connect different types of 113 

high-throughput data. Genome-scale metabolic network reconstructions (GENREs) are an example of a 114 

type of model that is capable of contextualizing a larger array of data types (54,55). GENREs are 115 

increasingly being used to understand microbial communities (56,57).  116 
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In the case of studying microbial communities, machine learning is an essential tool for 117 

determining the microbial species, and metabolites that show the greatest difference among 118 

experimental or disease groups. Quantitative network modeling can be utilized to gain a better 119 

understand of how the key actors in a community are metabolizing environmental compounds. An 120 

existing gap in the study of metabolism in microbial communities is a lack of data for the mechanisms 121 

that govern how microbes interact with one another.  122 

1.4 Clinical diagnostic technology and precision medicine 123 

Precision medicine was born from the advent of genomics. An overarching goal of personalized 124 

medicine is to maximize an individual’s health outcomes by intervening sooner to ultimately prevent 125 

serious disease (58,59). Therefore, an essential aspect of personalized medicine is rapid and accurate 126 

diagnostics tools that allow for preventative medicine. Currently, medical teams in the NICU rely on 127 

precision medicine. Genetic information, collected from blood samples, is a form static precision 128 

medicine because the patient’s genome is a source of unchanging information (60). Whereas, constant 129 

monitoring of metabolic markers in the blood is an example of dynamic precision medicine. Both 130 

aspects contribute to precisely treating each infant to maximize health outcomes. However, diseases 131 

still remain to be diagnosed via exclusion, thus necessitating more precise diagnostics and mechanistic 132 

understanding. Systems biology and advanced statistics provide a path forward toward personalized 133 

medicine that is grounded in the analysis of readily available biological materials, such as blood, stool, 134 

urine, and DNA. The study of human waste products has gained interest due to advancements in data 135 

collection technologies, such as metabolomics and genomics (61,62). Stool samples provide research 136 

with a glimpse of the microbiome present in the GI tract of an individual. However, analysis of these 137 

samples can be difficult due to their complexity. Nevertheless, it has been shown that certain 138 

microorganisms and metabolites are correlated with disease (63). A better understanding of these 139 

correlations may provide medical teams with additional diagnostics for personalized medicine.  140 
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1.5 Constraint-based Computational Modeling: Utilizing Optimization to Understand 141 

Biological Systems 142 

Systems biology can take many forms, one of these is constraint-based computational modeling 143 

(CBM). CBM leverages mathematical optimization and linear algebra to computationally represent 144 

biological systems. One class of CBMs are genome-scale metabolic network reconstructions (GENREs) 145 

are quantitative biological models of metabolism that are structured to leverage mathematical 146 

optimization to represent all known biochemical reactions that occur in a cell (51,64). The biochemical 147 

reactions that are thought to occur in an organism are represented in a hypergraph network by explicitly 148 

accounting for all of the reaction stoichiometries and metabolite conversions at an elemental level. Each 149 

reaction consists of metabolites that are composed on their constituent elements with an associated 150 

structure. These data can be utilized to perform Flux Balance Analysis (FBA), an optimization technique 151 

that, in its most basic form, allows a researcher to maximize the production of a certain set of 152 

metabolites. Most commonly for prokaryotes, the set of metabolites selected to be maximally produced 153 

represent cellular biomass and thus growth (64). The resulting output data is the metabolic flux 154 

distribution through the network, an indication of the reactions that are required for optimal growth of 155 

the organism in a given growth condition. This type of model can also be utilized to have different 156 

objective functions, aside from maximizing growth, that provide the researcher with the ability to 157 

explore different aspects of a metabolic network.  158 

GENREs have been shown to accurately determine the reactions that are actively catalyzed by 159 

an organism during exponential growth phase (64). However, accurate reaction flux values are 160 

dependent upon building a GENRE that contains the reactions that are catalyzed by an organism. The 161 

building process of a GENRE is a difficult task that requires genomic data to be annotated based on 162 

reference databases to determine a set of reactions that are thought to be catalyzed by an organism 163 

(64). Other functional data is then utilized to further improve the GENRE to increase the network 164 
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accuracy when recapitulating the associated phenotypic data (64). For the study of microbial 165 

communities and microbe-microbe metabolic interactions, there is a great need for more advanced 166 

methods of quickly building accurate GENREs. Additionally, GENREs offer a means for contextualizing 167 

other forms of data, such as transcriptomics, proteomics, and metabolomics. Since each node in a 168 

GENRE represents a biochemical reaction, there are several ways of determining which reactions are 169 

actively catalyzed in a given condition. Each genomics, transcriptomics, and proteomics provide 170 

information about the presence enzymes. Metabolomics provides an opportunity to determine the 171 

metabolites that are present and thus are a measure of the functional output of an organism. However, 172 

when accounting for associated uncertainty, the knowledge of which reactions are active in an organism 173 

remains under-constrained; therefore necessitating a quantitative representation of the resulting 174 

uncertainty when building a GENRE.  175 

1.6 Experimental data collection 176 

The optimal combination of computational modeling and sophisticated in vitro biological data is 177 

an important step forward for understanding biological systems. A thorough understanding of the 178 

limitations involved with computational modeling in tandem with advanced in vitro techniques is 179 

important for establishing a functional understanding of how a biological system behaves. An essential 180 

aspect of computational modeling and understanding complex biological mechanisms is grounded in the 181 

acquisition of in vitro biological data. For studying microbial interactions that occur within microbial 182 

communities, such as the GI microbiome, it has been shown that pairwise interactions provide a great 183 

deal of information about how higher-order interactions occur (65). Therefore, generating experimental 184 

data about how pairs of different microorganisms interact is a valuable for building computational 185 

models to represent microbial communities. Although there are many new high-throughput datatypes, 186 

there remains a need for elegant experimental design to best align the data collected with the innate 187 

assumptions that constrain the computational techniques available for analysis. In order to study the 188 
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metabolic cascade of compounds through a microbial community, there is a need for better culturing 189 

techniques that allow for researchers to determine how pairs of microbial species may interact within a 190 

community.  191 

1.7 Dissertation Specific Aims: A Preview 192 

A unique characteristic of engineering is that we aim to identify problems that can be solved 193 

through the elegant design of tools. It is an incremental process of improving upon existing 194 

technologies/tools while maintaining an understanding of the constraints and objectives when designing 195 

the optimal solution. If a tool is ever to be utilized and ultimately have a positive impact on the world, 196 

the engineer designing it must account for not only quality of the tool, but also costs associated with 197 

building and using the tool. In this dissertation, I identified three problems in studying the GI 198 

microbiome and designed tools to attempt to solve these problems.  199 

In Chapters 2 and 3, I discuss the first aim of my dissertation. I identify biomarkers for Parenteral 200 

Nutrition Associated Cholestasis (PNAC) in neonatal intensive care unit (NICU) infants using 16S 201 

sequencing data and fecal metabolomics. PNAC is a specific type of liver disease that often occurs in NICU 202 

infants that can be difficult to diagnose and treat quickly (66). In the first study presented in this chapter, 203 

we utilized 16S sequencing data from stool samples to determine the microbial genera that are highly 204 

associated with PNAC. In the second study presented in this chapter, we identified fecal metabolic 205 

biomarkers for the early detection of PNAC that may provide medical teams with an indication that an 206 

infant is beginning to develop PNAC before the standard clinical metric is detected in the blood. Finally, 207 

we calculated the expected accuracy of a diagnostic tool using a small set of fecal metabolites to predict 208 

infants at risk of developing PNAC. 209 

In Chapter 4, for my second aim, I design and develop a tool to aid in the procedural generation 210 

of GENREs while explicitly accounting for the uncertainty in the source genetic annotation data utilized 211 



10 | P a g e  
 

for the reconstruction process. This method is called CANYUNs (Constraint-based Analysis Yielding 212 

reaction certainty and Usage across metabolic Networks) and relies on a novel form for Flux Balance 213 

Analysis (FBA) and an altered model structure. The structural changes made to the resulting GENREs are 214 

intended to connect the network reconstruction directly to the source biological data utilized during 215 

building. We validate the performance of CANYUNs using aerobic and anaerobic growth data across an 216 

array of carbon and nitrogen sources for E. coli K-12 and benchmarked its performance against a manually 217 

curated E. coli GENRE. 218 

In Chapter 5, for my third aim, I developed an in vitro culture device for the pairwise co-culture of 219 

microbes to generate contact-independent microbial interaction data. The design of the co-culture 220 

growth plate allows for the generation of bacterial growth curves for two microbial cultures that are 221 

physically separated by a semi-permeable membrane while interacting via diffusion. Contact-independent 222 

interaction determined with the co-culture plate provides a tool for understanding the different types of 223 

mechanisms that influence how microorganisms interact in communities. We validated the performance 224 

of the co-culture plate under expected usage conditions. Finally, to demonstrate its utility, we use the co-225 

culture plate to generate contact-independent interaction growth curves for P. aeruginosa and B. 226 

cenocepacia, two pathogens found to interact when infecting patients with cystic fibrosis. 227 

In the final chapter, I conclude this dissertation with a discussion of the broader impacts of the 228 

work I was involved with during my PhD career and explore my thoughts on the future work that will 229 

follow.  230 

  231 
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Chapter 2 Microbiota changes in twins discordant for parenteral 232 

nutrition associated cholestasis  233 

 234 
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 248 

Published work in Journal of Pediatric Gastroenterology and Nutrition; 2020 249 

2.1 Abstract 250 

Parenteral nutrition associated cholestasis (PNAC) causes significant morbidity in the NICU. Infection with 251 

gut-associated bacteria is associated with cholestasis but the role of intestinal microbiota in PNAC is poorly 252 

understood. We examined the composition of stool microbiota from premature twins discordant for PNAC 253 

as a strategy to reduce confounding from variables associated with both microbiota and cholestasis. 254 

Eighty-four serial stool samples were included from four twin sets discordant for PNAC. Random Forests 255 

was utilized to determine genera most discriminatory in classifying samples from infants with and without 256 

PNAC. In infants with PNAC, we detected a significant increase in the relative abundance of Klebsiella, 257 

Veillonella, Enterobacter and Enterococcus (P<0.05). Bray-Curtis dissimilarities were significantly different 258 

(p<0.05) from infants with and without PNAC. Our findings warrant further exploration in larger cohorts 259 

and experimental models of PNAC to determine if a microbiota signature predicts PNAC, setting the stage 260 

for interventions to mitigate liver injury. 261 
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2.2 Introduction 262 

Parenteral nutrition (PN) is an essential component of nutritional support for premature infants 263 

yet is frequently complicated by its association with liver disease. Preterm infants are at increased risk of 264 

developing PN associated cholestasis (PNAC) due to immaturity of the hepatobiliary system compounded 265 

by lack of enteral feeding (67), with cholestasis often persisting after PN cessation (68). Thus PNAC causes 266 

significant morbidity in the neonatal intensive care unit (NICU) and beyond (69). Clinical factors associated 267 

with PNAC include low birth weight, longer duration of PN, delayed enteral nutrition, antimicrobial 268 

administration, gram-negative infections, necrotizing enterocolitis and, gastrointestinal malformations 269 

(66). 270 

Altering the composition of PN and lipid sparing strategies to prevent or alleviate the 271 

development of cholestasis has been partially successful (70). More recently, studies have focused on the 272 

role of the intestinal microbiota in the development of PNAC. PN has been associated with an altered 273 

intestinal microbiota (71), although this can be difficult to separate from the effect of lack of enteral 274 

nutrition on the microbiota. Evidence also suggests that cholestasis may be related to the composition of 275 

the microbiota (72,73). Bile acids, diminished in cholestasis, normally have an antimicrobial effect on the 276 

microbiota; conversely, the intestinal microbiota metabolizes and biotransforms bile acids (73). In adults, 277 

perturbations in the intestinal microbiota have been associated with worsening liver function, cirrhosis, 278 

and primary biliary cholangitis, with dysbiosis worsening as liver disease progresses (74,75). 279 

In a prior study of infants with short bowel syndrome receiving PN, infants who developed PN-280 

associated liver disease displayed less diverse microbiota and a higher abundance of pathogenic bacteria 281 

(76). Moreover, infection with gram-negative bacteria, including Escherichia coli urinary tract infections 282 

or Klebsiella septicemia, has been associated with the development of cholestasis (74–78). 283 
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Early enteral feeding has been shown to be the most effective maneuver to prevent the 284 

development of cholestasis (79); however, initiation of enteral feeding in the NICU is often restricted by 285 

clinical factors. Other targets to decrease the burden of PNAC in the NICU are needed and the intestinal 286 

microbiota provides a compelling target. Due to methodological challenges in comparing infants with 287 

different genetics, diets, and environments, little is known about changes in the intestinal microbiota 288 

associated with PNAC in NICU patients. Therefore, the goal of this study was to investigate intestinal 289 

microbiota composition from serial stool samples of premature twins discordant for PNAC. 290 

2.3 Methods 291 

Subjects and sample collection  292 

Subjects were chosen from a larger cohort in two ongoing neonatal microbiome studies from level 293 

IV NICUs at Inova Fairfax Hospital, Virginia (IRB approval #15-1945) and the University of Virginia (IRB 294 

approval #18244). Neonates with an anticipated length of stay over 5 days were recruited. Detailed 295 

maternal, pregnancy and delivery data were collected. While in the NICU infants had stool collected at 296 

least twice a week and frozen at -80°C within 12 hours. Detailed data regarding feeding, medications and 297 

health status were collected. 298 

Twin sets were selected for discordance for PNAC, i.e., twin pairs simultaneously receiving PN but 299 

only one twin developed PNAC. Selected subjects were admitted to the NICU for prematurity only; no 300 

subject developed necrotizing enterocolitis. Subjects were not included from the larger cohort if they 301 

were singletons, had cholestasis from causes other than PNAC, were admitted to the NICU for causes 302 

other than prematurity, had congenital abnormalities or developed necrotizing enterocolitis. PNAC was 303 

defined as a direct bilirubin level of ≥1mg/dL, deemed to be caused by PN by the treating physician, with 304 

no other apparent causes for cholestasis (80). Tests conducted to screen for other causes of cholestasis 305 

included a right upper quadrant ultrasound, Alpha-1 Antitrypsin deficiency testing, urine CMV PCR, urine 306 

culture and thyroid stimulating hormone; specific tests conducted varied for each cholestatic subject. 307 
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Twin sets were chosen as a strategy to reduce potential confounding variables associated with both the 308 

microbiota and cholestasis including age, intrauterine environment, genetics (although the environment 309 

has been shown to dominate the shaping of the microbiome more than genetics (81)) and maternal breast 310 

milk. 311 

DNA extraction and 16S ribosomal RNA gene sequencing 312 

Whole stool samples were stored at -80°C until DNA extraction. Prepped samples were loaded on 313 

the EZ1 Advanced (Qiagen, Valencia, CA) using the EZ1 Tissue Kit and the Bacterial DNA Extraction protocol 314 

card. Samples were cleaned and concentrated using the DNeasy PowerClean Cleanup kit (Qiagen, 315 

Valencia, CA). 316 

Sequencing libraries were prepared using a Nextera XT kit (Illumina, San Diego, CA) using a 317 

modified Illumina 16S Metagenomics Sequencing Library Preparation protocol for analysis of 318 

hypervariable region V4. Each sample was sequenced on the Illumina MiSeq with paired-end reads of 319 

301bp. Sequencing of negative controls of lysis buffer and positive controls of Staphylococcus aureus 320 

(Strain NCTC 8532, ATCC, VA) and Escherichia coli (Strain NCTC 9001, ATCC, VA) were included. The 321 

sequence data are being deposited in NCBI Sequence Read Archive (SRA). 322 

16S ribosomal RNA gene analysis 323 

Sequence analysis was performed using DADA2 (version 1.6.0) (82,83). The forward read was 324 

truncated to 200 base pairs and reads with ambiguous ‘N’ bases, and >2 expected errors were filtered 325 

out. Chimeras were removed. Taxonomy was assigned using the Ribosomal Database Project’s naïve 326 

Bayesian classifier (84) with RDP training set 16. Resulting sequence variant counts (SVs) and taxonomic 327 

assignments were analyzed using several R packages: Phyloseq (v. 1.22.3), Vegan (v. 2.4.6), GGplot2 (v. 328 

2.2.1), and mice (v. 2.46.0) (85,86). Ultralow abundance SVs (<2 raw reads and present in <5% of samples) 329 

were removed. Missing values in the metadata were imputed using mice. Benjamini-Hochberg corrected 330 

Wilcoxon rank sum tests were used to compare the alpha diversity, and genus relative abundances. A 331 
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PERNANOVA (Adonis test in the Vegan R package) was used to compare the sample clusters displayed in 332 

the non-metric multidimensional scaling (NMDS) ordination plot.  333 

Random Forest model generation 334 

The R package AUCRF (v. 1.1) was used to generate a Random Forest (RF) model to classify the 335 

samples according to the disease state of the individual each sample was sourced from. Relative SV 336 

counts, agglomerated to the genus taxonomic level were used to train the RF. During the creation of an 337 

optimal RF, 5-fold cross validation with 20% of the data left out for validation was used to assess the fit of 338 

the model. The forest used has 1000 trees with a node split (mtry) of 2, and the classes were manually 339 

weighted to account for the imbalance between the PNAC and non-PNAC classes. Features were selected 340 

by maximizing model accuracy and minimizing the features required for classification. All code is available 341 

on Github (https://github.com/Tjmoutinho/PNAC_microbiome). 342 

2.4 Results 343 

Demographics and clinical characteristics 344 

A total of 84 serial stool samples were included from 4 twin sets discordant for PNAC. Twins 345 

ranged from 25 to 31 weeks gestational age (mean = 27 weeks). All twin sets were delivered by emergency 346 

Cesarean Section. Each twin set has one subject that was diagnosed with PNAC for part of the sampling 347 

period. Birth weights did not differ between twins who did and did not develop cholestasis (P >> 0.05, 348 

Wilcoxon rank sum test); see birth weights in Supplementary Table 2.1. There was no significant difference 349 

in antibiotic exposure between twins who did and did not develop cholestasis. Both members from one 350 

twin set (Twin set 3) were treated for sepsis, with negative blood and urine cultures, and hence had more 351 

days of antibiotic use than the other twin sets. No other subjects were diagnosed with sepsis or an 352 

infection; all blood cultures drawn on all subjects during the study were negative. Twins who developed 353 

cholestasis trended towards being on PN longer than their sibling without cholestasis (Table 2.1) due to 354 

slower tolerance of advancement of enteral feeds or less satisfactory weight gain, although this difference 355 
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was not significant; however cholestasis in the affected twin in all twin sets developed while both twins 356 

were still on PN. When enteral feeding was started, all subjects received maternal breast milk. 357 

Demographic and clinical characteristics of twin sets are listed in Table 2.1. The range of peak cholestasis 358 

in the twins with PNAC was 1.9–10.1mg/dL, mean=5 mg/dL; see hepatic function panel values for subjects 359 

in Supplementary Table 2.2. 360 

Table 2.1: Demographic and clinical characteristics of twin sets. 361 

Twin 
Set 

Twin with 
cholestasis 

Gestational 
age at birth 

Twin 
Type 

Sex Days on PN 
(Twin A/Twin 
B) 

Days of 
Antibiotics Use 
(Twin A/Twin B) 

1 A 28w3d Di-Di Female/Female 24/15 2/2 

2 A 31w3d Mono-Di Male/Male 14/11 0/0 

3 B 25w1d Di-Di Male/Female 20/31 11/9 

4 A 25w1d Mono-Di Female/Female 26/12 2/5 

Di-Di = Dichorionic/Diamniotic. Mono-Di = Monochorionic Diamniotic 362 

PNAC stool samples were different from non-PNAC samples; there were five significantly 363 

differentially abundant genera driving this difference.  364 

All samples were classified by the clinical PNAC diagnosis at sampling. PNAC and non-PNAC 365 

samples cluster separately (p < 0.001, PERMANOVA; Figure 2.1A). There were five statistically significant 366 

differentially abundant genera between PNAC and non-PNAC samples (p < 0.05, corrected Wilcoxon rank-367 

sum; Figure 2.1B). PNAC was associated with increased levels of gram-negative bacteria Klebsiella, 368 

Veillonella and Enterobacter, increased levels of Enterococcus and decreased levels of 369 

Escherichia/Shigella. Klebsiella, Enterococcus, and Veillonella have the highest median relative 370 

abundances and tend to be more abundant in PNAC samples. Alpha diversity (Shannon index) was not 371 

significantly associated with PNAC. In several subjects, the alpha diversity increased with age, but this was 372 

not seen in all individuals (Figure 2.1C). Five genera dominating most samples (Staphylococcus, 373 

Escherichia/Shigella, Klebsiella, Veillonella, Enterococcus) consisting of two phyla (Proteobacteria and 374 

Firmicutes) (Figure 2.1D).  375 
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 376 

Figure 2.1: Microbiota 16S rRNA gene sequence data. 377 

(A) Microbiota 16S rRNA gene sequence data is visualized using NMDS (Bray-Curtis) to compare samples. 378 
The PNAC samples cluster is different from the non-PNAC samples cluster (p< 0.001, PERMANOVA). (B) 379 
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Differentially abundant taxa in samples with and without PNAC are starred (*) (Benjamini-Hochberg 380 
corrected p-value<0.05). (C) Alpha diversity (Shannon Diversity Index) was not significantly different 381 
between PNAC vs non-PNAC. The sample with the greatest direct bilirubin level per subject is starred (*). 382 
(D) Relative abundance of microbial genera is displayed for each sample. (E) AUCRF was used to select 383 
the optimal random forest model with the lease number of predictive features. The optimal RF model 384 
generated for classifying the microbiota samples had an accuracy of 90%. Using 5-fold cross validation, 385 
with a 1/5 of the samples for a validation set, the average accuracy was 88%, indicating that the optimal 386 
model was not over fit to the dataset. The five microbial features (genera) used in the optimal RF model 387 
are displayed. Each feature is listed in order of descending importance to the model.  388 

Random Forest model predicts PNAC based on relative abundance of specific genera.  389 

Feature reductions was performed using AUCRF (Area Under the ROC Curve Random Forest) to 390 

identify the microbial features that were predictive of PNAC vs. non-PNAC samples. Feature reduction 391 

involved starting with all the genera with at least one non-zero median value as seen in Figure 2.1A. The 392 

optimal RF model consisted of five genera and predicts sample diagnosis with 90% accuracy (Figure 393 

2.1E). Five-fold cross validation indicated that the model was not overfit to the dataset. The high 394 

predictive capability of the optimal RF model indicates that there is a strong microbial signature 395 

associated with PNAC.  396 

2.5 Discussion 397 

We detected significant differences in the stool microbiota of premature twins discordant for 398 

PNAC. Specifically, the relative abundance of genera differed, including increased levels of gram-negative 399 

bacteria Veillonella, Klebsiella, and Enterobacter in infants with PNAC. This finding is intriguing given well 400 

known associations of gram-negative infections in neonates and the development of cholestasis (77,78) 401 

and raises the question of whether increased intestinal colonization alone, rather than frank infection, 402 

with these microbes is sufficient to provoke cholestasis. Indeed, increased intestinal Enterobacteriaceae 403 

(74) has been described in adults with cirrhosis, whereas increased Klebsiella and Veillonella has been 404 

described in adults with primary biliary cholangitis (75). A predominance of Enterobacteriaceae has also 405 

been identified in infants with short bowel syndrome and PN-associated liver disease (76). The actual 406 
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species and strains associated with PNAC will need to be identified in future studies, using techniques 407 

such as shotgun metagenomic sequencing. 408 

The extent to which these changes in the relative abundance of genera occur prior to cholestasis 409 

versus a result of cholestasis cannot to be answered in this pilot study because cholestatic subjects from 410 

two twin sets (1 and 2) developed cholestasis before the first stool sample was collected. However, in one 411 

twin set (4) the subject who developed PNAC displayed an increase in Veillonella abundance relative to 412 

their non-PNAC twin at the same time point. This question is of the utmost importance to answer, due to 413 

the significant potential utility of being able to identify which infants might be susceptible to PNAC before 414 

clinical evidence of PNAC develops. Early interventions to mitigate the development of PNAC could then 415 

be initiated in at risk infants, e.g., early enteral feeding and the use of fish oil-based lipid emulsions (70). 416 

While this approach would be difficult to test in human neonates, gnotobiotic models of PNAC might offer 417 

one path forward for testing whether specific gram-negative bacteria are predictive, or even causal, in the 418 

development of PNAC (87). 419 

Certainly, the ability to predict the development of cholestasis based on a microbiota signature 420 

would be powerful. In our study, a predictive model of PNAC was created based on five genera, providing 421 

a method for identifying informative microbial signatures using RF. This model needs to be further trained 422 

and tested on larger datasets to ensure that it remains valid in a broader population of at-risk infants. In 423 

addition, testing it in at-risk infants who have not yet developed PNAC will be imperative. If increased 424 

levels of certain gram-negative bacteria are found to be causal or compounding in PNAC, targeted 425 

interventions such as antibiotics, probiotics, or fecal microbiota transplantation could be investigated.  426 

Limitations of this study include the small number of infant twin pairs. However, this limited 427 

sample size is offset somewhat by the use of discordant twin pairs, potentially reducing confounding from 428 

the intrauterine environment, age, genetics and maternal breast milk and rigorous analysis of serial stool 429 
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samples. An additional limitation is that tests used to exclude other causes of cholestasis in each 430 

cholestatic subject were not homogeneous and were dependent on the clinical situation.  431 

In conclusion, we found marked differences in the diversity and relative abundance of stool 432 

microbiota in infants who developed PNAC versus twin controls, most notably an increase in gram-433 

negative bacteria Veillonella, Klebsiella, and Enterobacter. This finding warrants further exploration in 434 

larger cohorts and experimental models to determine if signals in the microbiota are predictive of PNAC, 435 

thereby providing a basis for interventions to mitigate the development of PNAC in vulnerable infants.  436 
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3.1 Abstract 464 

Parenteral nutrition associated cholestasis (PNAC) in the Neonatal Intensive Care Unit (NICU) can 465 

cause significant morbidity and associated healthcare burdens. While certain clinical factors can be used 466 

to predict which infants may be more likely to develop PNAC, the current standard diagnostic 467 

measurement is the detection of elevated direct bilirubin levels in the blood. Noninvasive markers in 468 

early life that predict which infants are at risk of developing PNAC would be beneficial, enabling the 469 

earlier implementation of liver protective strategies. Stool samples are currently an underutilized 470 

resource in the NICU with the potential to be used for diagnostic purposes. We demonstrate in our 471 

analysis that the stool samples that we collected and analyzed using metabolomics have predictive 472 

potential in diagnosing PNAC before the standard clinical metric presents in the blood. Based on the 473 

data we collected, it may be possible to develop into a simple point-of-care diagnostic test to provide 474 

NICU clinicians with an additional tool for early identification to catalyze intervention for infants at risk 475 

for PNAC. A diagnostic such as this could enable clinicians to confidently optimize caloric nutrition with 476 

PN for infants at low risk of developing PNAC and enable earlier detection of infants at risk of developing 477 
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life-threatening cholestasis which can be proactively mitigated with alterations to the administered 478 

parenteral nutrition.  479 

3.2 Introduction 480 

Through poorly understood mechanisms, a subset of neonates receiving parenteral nutrition 481 

(PN) develop liver damage and ultimately parenteral nutrition associated cholestasis (PNAC). PNAC is 482 

characterized by an elevated level of direct bilirubin in the blood that can only be detected once there is 483 

decreased bile flow through bile ducts. The incidence of PNAC exceeds 50% of infants born less than 484 

1000 grams, and 85% of infants requiring PN for longer than 14 weeks (69). Liver injury persists even 485 

after cessation of PN, representing a significant health and economic burden (68). Recently, alternative 486 

PN lipid emulsions sourced from fish (Omegaven®) or a mixture of plant and fish lipids (Smoflipid®) have 487 

been shown to limit the progression and injury from PNAC (70,88). However, due to a variety of factors 488 

that may include cost, insurance limitations, and the requirement for a second IV line, these potentially 489 

protective lipid formulations are not yet utilized for all infants in the NICU (89). 490 

We, and others, have shown an intriguing association between the development of PNAC and a 491 

differential composition in the gut microbiome (71–73,90). These findings suggest that there are 492 

detectable changes in the stool that may predict PNAC. There is a great need for identifying safe and 493 

effective biomarkers in infants to aid in diagnosing disease in the NICU (62). Stool and urine samples, 494 

although non-invasive and with minimal risk to the infant, do not currently play a role in diagnostic 495 

protocols in the NICU. It is well known that the urine and stool can contain valuable information about 496 

physiological processes (61,62). However, stool and urine remain an untapped resource for diagnostic 497 

applications in the NICU. 498 

Infants in the NICU are an ideal patient population for expanding upon precision medicine due 499 

to their tightly regulated nutritional sources, treatment administration, and consistent monitoring. We 500 
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believe that stool and urine samples have an integral role to play in monitoring the health of NICU 501 

infants. We hypothesize that it will be possible to identify liver injury before bilirubin levels in the blood 502 

show signs of PNAC by utilizing metabolites present in stool samples. These data will provide medical 503 

teams with valuable information for making clinical decisions involving PN formulations and 504 

preventative treatments. It is important to maximize infant nutrition and minimize the occurrence of 505 

liver injury, while also accounting for healthcare costs and additional challenges associated with 506 

hepatoprotective lipid emulsions. In this study, our aim was to identify the metabolites that are highly 507 

associated with the development of PNAC before direct bilirubin level elevate above the clinical 508 

threshold for diagnosing PNAC.  509 

3.3 Results 510 

This analysis included 60 infants: 23/60 (38%) of subjects were female, 10 (17%) identified as 511 

Hispanic or Latino, and 10 (17%) identified as Black or African American. The infants in this study were 512 

selected from a patent study encompassing 202 individuals. The mean gestational age at birth was 30 513 

weeks (range 23-39 weeks). A total of 200 serial stool samples were collected and analyzed with Liquid 514 

chromatography - Mass Spectrometry (LC-MS) to measure the stool metabolome. Additionally, 327 serial 515 

stool samples underwent 16S ribosomal RNA gene sequencing. Across all subjects, the mean gestational 516 

age was 30 weeks (range 23-39 weeks) and 23 (38%) infants were female. All of the infants received PN 517 

with Intralipid as the lipid emulsion with a total of 19 (32%) developing PNAC during the study. All infants 518 

were verified to have no other causes of cholestasis. 519 

We collected relevant clinical data for all infants enrolled in this study, including but not limited 520 

to their gestational age at birth, birth weight, number of days of PN before developing PNAC, information 521 

about antibiotics, and calculated metrics such as birth weight percentile adjusted for gestational age. 522 

Among the clinical metrics measured, only birth weight and the number of days of PN before occurrence 523 
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of PNAC are statistically different between the disease and control groups (Figure 3.1A; p < 0.05). 524 

However, in our cohort we found that infants with a birth weight percentile greater than 40% and a birth 525 

weight greater than 1.1 kilograms did not develop PNAC. These clinical criteria are consistent with known 526 

clinical risk factors (Figure 3.1B). Since PN administration is associated with the development of PNAC, we 527 

inspected the relationship further in our cohort to better understand how PNAC is impacted by the 528 

amount of time an infant is on PN. We found a positive correlation between PNAC diagnosis and the 529 

amount of time an infant receives PN before diagnosis. Additionally, there is a noticeable increase in the 530 

rate of PNAC diagnosis after 20 days of PN administration for an individual. 531 

 532 

Figure 3.1: Clinical characteristics of infants with and without PNAC.  533 

A) Continuous clinical variables were tested for a statistically significant difference between the control 534 
and PNAC groups using a Wilcoxon rank sum test. We determined that all six variables are statistically 535 
different except for the number of days of antibiotics an infant received before developing PN cholestasis 536 
(p-value < 0.05). For the control distribution, we used the total number of days on PN or antibiotics 537 
administered to those infants never diagnosed with PNAC. B) The comparison of two clinical metrics 538 
reveals that there are simple thresholds that classify infants in our cohort as high or low risk. Infants born 539 
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above the 40th weight percentile (adjusted for gestational age) and also weigh greater than 1.1 kg at 540 
birth are at a low risk of developing PN cholestasis compared to the rest of the infants. C) PNAC diagnosis 541 
is correlated with the amount of time an infant receives PN. There is a noticeable increase in incidence of 542 
PNAC at greater than 20 days of PN indicating that there may be clinical benefit in transitioning infants 543 
away from Intralipid PN before this critical time point. 544 

Bacterial taxa correlate with PNAC, but lack predictive potential in this cohort 545 

Within this cohort of NICU infants, we identified several microbial taxa that are statistically 546 

different between the disease and control groups (p < 0.05). Among these taxa, the Enterobacteriaceae 547 

family is present at greater abundance in the stool samples with high associated direct bilirubin levels in 548 

the blood (Figure 3.2A). However, the three known genera within the Enterobacteriaceae family all 549 

demonstrate an opposite trend with high abundance in the control group (Figure 3.2B). The unknown 550 

genera within the Enterobacteriaceae family show a higher abundance in samples from infants with PNAC 551 

(Figure 3.2C). Although this result is consistent with our previous work (90), more research is needed to 552 

identify the primary Enterobacteriaceae genera that are present at elevated levels in infants with PNAC. 553 

Finally, at the species level, Veillonella dispar appears to be at an elevated relative abundance in infants 554 

with PNAC (Figure 3.2D). It is important to note that none of these microbes show a strong predictive 555 

value for determining infants at risk of developing PNAC, all are simply correlated with elevated levels of 556 

direct bilirubin.  557 
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 558 

Figure 3.2: Microbiota composition correlated with direct bilirubin levels.  559 

A) The infants in our cohort have microbiota that are primarily dominated by Enterobacteriaceae. Infants 560 
with high direct bilirubin levels have statistically higher relative abundance of Enterobacteriaceae (p < 561 
0.05). B) There are three known genera within the family Enterobacteriaceae that do not align with the 562 
statistical trend at the family level. C) However, there are several Enterobacteriaceae with unknown 563 
genera in our study. Within this unknown group we see the driving signal for the significant difference at 564 
the family level (p < 0.05). D) Finally, at the species level, we have one significantly different microbe, 565 
Veillonella dispar. Within these data we were unable to identify any predictive potential for the diagnosis 566 
of PNAC.  567 

The stool metabolome contains valuable biomarkers for infants at risk of PNAC 568 

Among the 19 infants in our cohort who developed PNAC (Figure 3.3A), there were nine for 569 

which we were able to collect stool samples from before they were diagnosed with PNAC. These infants 570 

represent our most valuable case study individuals for identifying the biomarkers that are early 571 

predictors of PNAC. These samples were of particular interest because they provide us with a glimpse 572 

into the metabolites that might have the greatest predictive potential for diagnosing PNAC before the 573 
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gold standard clinical metric. We first identified over 100 statistically different metabolites when 574 

comparing the disease group to the control group (p < 0.05). We then utilized the case study samples to 575 

identify biomarkers with predictive potential for classifying infants at risk of developing PNAC. For 576 

metabolites that were found to be more abundant in PNAC samples, we selected only those that had 577 

scaled intensities in greater than 90% of the case study samples above the median value of the PNAC 578 

distribution (Figure 3.3B). This provided us with a subset of metabolites that represent those which have 579 

the greatest potential to be early predictors for the risk of developing PNAC (Table 3.1). For the 580 

metabolites that negatively correlated with disease, we selected PNAC biomarkers by identifying those 581 

with scaled intensities in greater than 90% of all the case study samples falling below the median value 582 

of the disease distribution. 583 
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 584 

Figure 3.3: Metabolomics data and predictive biomarker selection. 585 

A) There are 60 infants in this study; 19 were diagnosed with PNAC. We collected 200 fecal samples with 586 
accompanied metadata. The samples from each infant are plotted on an individual plot. The clinical 587 
direct bilirubin threshold, used to diagnose PNAC, is displayed with a dashed gray line on each panel. 588 
There are 6 cholestatic infants for which we were able to collect fecal samples before direct bilirubin 589 
levels were above the diagnostic threshold of 1 mg/dL. The samples that were collected before the direct 590 
bilirubin level increased above the diagnostic threshold are particularly important for identifying 591 
metabolites that are predictive of the development of PNAC before the current clinical metric. The nine 592 
samples for which the direct bilirubin levels were below the clinical threshold were used in this study as 593 
case study samples for filtering statistically significant metabolites to identify biomarkers with the 594 
greatest predictive potential. B) The y-axis displays the scaled intensity for each metabolite. We 595 
performed Mann Whitney U tests to assess statistical significance of each metabolite between the 596 
samples with direct bilirubin below the clinical threshold and above. The case study samples were 597 
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excluded from the statistical analysis and plotted as dashed blue lines across the boxplots. We selected 598 
biomarkers based on statistical significance (p < 0.05) and consistency among the case study samples.  599 

We identified a total of 28 metabolites that are positively correlated with an increase in direct 600 

bilirubin levels (Table 3.1) and 29 metabolites that are negatively correlated with an increase in direct 601 

bilirubin levels (Figure S3.1). The biomarkers elevated in PNAC samples provide a glimpse into the 602 

pathophysiology that may be governing the disease. Although these biomarkers have predictive value 603 

based on the six case study infants, they require additional validation that can only be provided via a 604 

more rigorous targeted metabolomics study.  605 

Table 3.1: Biomarkers positively correlated with PNAC. 606 

We identified 28 biomarkers that are statistically significantly elevated in samples with an associated 607 
direct bilirubin level greater than 1 mg/dL, while all six case study samples have values that are above 608 



30 | P a g e  
 

the median value of the elevated group. The total set of biomarkers is displayed with their associated p-609 
values. 610 

 611 

While individual biomarkers are useful, a comparison of metabolites based on general 612 

classifications provides a measure of uniqueness for each of the biomarkers. For example, there are 613 

1000 known metabolites detected across all samples in this study with a total of 19 sphingomyelin 614 

metabolites. We determined that 18 of the 19 known sphingomyelin metabolites are biomarkers for 615 

high direct bilirubin levels in the blood. Aside from sphingomyelin metabolites, we classified the PNAC 616 

biomarkers into nine other groups (Table 3.2). There are several other classifications of membrane lipids 617 

that are at greater abundance in PNAC samples indicating a general dysregulation of lipid metabolism in 618 

the liver of GI tract. Several primary and secondary bile acids were identified to be lacking in PNAC 619 

samples, validating well-known pathophysiology. Long-chain carnitines are also lacking in PNAC samples.  620 
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Table 3.2: All Biomarkers determined.  621 

We classified each biomarker into 10 groups. Among all of the sphingomyelin molecules in the known set 622 
of metabolites detected, we identified 95% of them to have biomarker potential for early prediction of 623 
PNAC. 624 

 625 

The biomarkers presented in Table 3.1, Table 3.2, and Figure S3.1 are directly applicable to the 626 

clinical setting. They have the potential to help diagnose the development of PNAC before any clinical 627 

markers of cholestasis, as opposed to diagnosing the disease after liver damage has already occurred. 628 

Three of the biomarkers have particularly high correlation with direct bilirubin levels while being present 629 

at exceptionally high levels in the first samples regardless of direct bilirubin levels (Figure 3.4). These 630 

characteristics are ideal for predictive biomarkers that will provide early detection of infants at risk for 631 

developing PNAC.  632 
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 633 

Figure 3.4: Biomarkers correlated with direct bilirubin while maintaining predictive potential. 634 

We identified three biomarkers demonstrating particularly high correlation with direct bilirubin levels, 635 
except for the notable difference of being at high abundance in the first stool sample collected from each 636 
of the infants. We restricted this analysis to the infants that have some recovery from PNAC with reduced 637 
direct bilirubin levels. 638 

Predicting PNAC before elevated direct bilirubin levels is of particular interest because bilirubin in 639 

the blood indicates that impaired bile flow has already occurred. Ideally, identifying the infants at greatest 640 

risk of developing PNAC would provide clinicians with a tool to prevent PNAC through known 641 

interventions. Additionally, determining infants at low risk of developing PNAC would allow for those 642 

infants to continue receiving the standard care regimen. Birth weight and birth percentile (adjusted for 643 

gestational age) are the most important predictors of infants at risk of developing PNAC (Figure 3.5A). 644 

When including metabolic biomarkers, we are able to achieve greater than 75% overall predictive 645 

accuracy with 5-fold cross-validation when classifying samples as control or PNAC (Figure 3.5B). The top 646 

five biomarkers determined to be the most predictive are all sphingomyelins and make up 50% of the top 647 

20 most predictive biomarkers. Birth percentile and birth weight again demonstrate their predictive utility 648 

while accounting for the metabolic biomarkers. Other important biomarkers in these random forest 649 

models include several long-chain carnitines and bile acids (Table S3.1). 650 
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 651 

Figure 3.5: Random forest machine learning with five-fold cross-validation. 652 

A) We performed feature reduction random forest machine learning to determine the minimal set of 653 
clinical metrics that provide the greatest predictive potential in our cohort. The optimal random forest 654 
consists of 2 clinical metrics and has an average 5-fold cross-validation overall accuracy of 57%. Birth 655 
weight percentile adjusted by gestational age and birth weight each contribute significantly to this model. 656 
B) When we include the 58 biomarkers that we identified to have predictive potential, we are able to 657 
generate a set of random forest models with greater than 75% cross-validation accuracy on average. The 658 
second set of models also demonstrates that the two previously identified clinical variables maintain 659 
predictive potential when in the context of the stool biomarkers. These models utilize all of the 660 
metabolomics samples in this study and classify samples as high or low bilirubin levels, therefore they do 661 
not predict if an infant will develop PNAC from the first stool sample collected. 662 

With predictive potential demonstrated using 5-fold cross-validation with a set of random forest 663 

machine learning models, we next calculated the classification accuracy within our cohort using simple 664 

criteria that would be possible to implement in the clinic. The ideal implementation of these biomarkers 665 

in the clinic would be a simple point-of-care diagnostic that provides the medical teams with additional 666 

information about an infant’s GI health. This ideal scenario requires basic thresholds to be applied to a 667 

small set of metabolites that are present in the stool in the first weeks of life. Additionally, low birth weight 668 

and birth percentile both provide valuable information about PNAC risk in our cohort, while existing as 669 

well-known variables associated with PNAC. In a clinical setting clinical metrics recorded at birth are 670 

valuable to categorizing infants into risk-level groups. In our cohort, infants born greater than 40th 671 
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percentile and greater than 1.1kg were at significantly lower risk for developing PNAC. We placed all other 672 

infants in a high-risk group for the following analysis of biomarkers that may provide the most robust 673 

discriminatory accuracy between infants that will or will not develop PNAC (Figure 3.6). We found that 674 

the 12 best biomarkers, selected from our complete set of 57, are all sphingomyelin metabolites. Each of 675 

these metabolites has a classification accuracy of the infants in our study between 79-88%. It is essential 676 

to note that the reported accuracies require proper validation via an independent dataset. However, 677 

accurate classification within our cohort while maintaining high correlation with direct bilirubin levels in 678 

the blood over time provides a high level of confidence that these biomarkers hold potential for robust 679 

prediction of infants that are at risk of developing PNAC.  680 
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 681 

Figure 3.6: Biomarkers with the strongest discriminatory accuracy. 682 

This analysis includes only the infants that fall outside of the low risk group identified in Figure 3.1 with a 683 
birth weight percentile above 40% and birth weight above 1.1 kg. Additionally, we reduced the number of 684 
stool samples to only include the first sample for each infant. There are 12 metabolites from our complete 685 
set of 57 that demonstrate particularly accurate discriminatory potential within our cohort. These 686 
metabolites range from being 88% to 79% accurate at classifying the infants in our cohort based on only 687 
the first fecal sample that was collected for each infant. Although these accuracies are not properly 688 
validated with independent data, they demonstrate that there are several metabolites present in NICU 689 
stool samples that have predictive capabilities. All 12 of these metabolites are various types of 690 
sphingomyelin. 691 
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Although there are 12 metabolites that each are able to individually discriminate between the 692 

disease and control groups in our cohort, it is important to guard against overfitting and assess a more 693 

robust strategy that may be implemented in the NICU. To improve the robustness of this calculation, we 694 

assessed the accuracy of classification when using all 12 metabolites simultaneously with an ensemble 695 

approach. A majority-vote ensemble classifier for our cohort provides an overall accuracy of 85% which 696 

demonstrates consistency in the alignment across the 12 metabolites identified to be the optimal 697 

candidates for a rigorous follow-up validation study (Figure 3.7).  698 
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 699 

Figure 3.7: The 12 best biomarkers show high agreement across our cohort. 700 

There is one infant in particular that contributes the majority of false negatives across all 12 metabolites. 701 
Among the infants we see only false positive classifications when using an ensemble majority vote across 702 
the 12 metabolites. There were 4 false positives based on majority vote and 1 false negative resulting in 703 
an overall accuracy of 85%. 704 

3.4 Discussion 705 

Parenteral nutrition associated cholestasis is a common disease that is in part the result of a 706 

clinical intervention required for infant survival. Advancements in precision medicine in the NICU may 707 
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allow medical teams to improve treatment plans and ultimately health outcomes. A key challenge in the 708 

NICU is the lack of access to frequent blood samples to run consistent diagnostic tests. We hypothesized 709 

that infant stools, currently treated as waste, have significantly diagnostic potential in the NICU. Our key 710 

findings in this study were threefold. We found that basic clinical variables that are recorded at birth 711 

provide discriminatory potential for classifying NICU infants based on their risk level. Secondly, there is a 712 

measurable difference between infants with and without PNAC in the gastrointestinal microbiota. 713 

Finally, we found that there are 57 metabolites present in stool samples that have predictive value in 714 

identifying infants at increased risk of developing PNAC. Several of the biomarkers identified, specifically 715 

a reduction in bile acids in PNAC infants, were validated based on known pathophysiology. Notably, 716 

there were 12 sphingomyelin lipids that demonstrated significant predictive value in our cohort and are 717 

the most promising metabolites to move forward with for future validation of a diagnostic test. 718 

This prospective study was limited by the size of our cohort. With a specific focus on Intralipid, 719 

there were few infants that were not switched to a different lipid emulsion to improve health outcomes 720 

after developing PNAC. This limitation contributed to the lack of robust validation of the predictive 721 

modeling and thus requiring future studies to explore governing mechanisms and a more accurate 722 

calculation of predictive accuracy. 723 

Precision medicine in the NICU has profound potential due the regimented control of the infants’ 724 

nutritional intakes and treatment adherence. Our results demonstrate that clinical variables recorded at 725 

birth along with frequent testing for biomarkers in the stool would provide an accurate and effective 726 

method for measuring an infant’s tolerance for the standard PN lipid emulsion. We have proposed a set 727 

of simple diagnostic criteria for classifying infants based on their expected risk level for developing 728 

PNAC. The clinical and metabolic variable we identify in this study could be developed into a simple 729 

point-of-care diagnostic test to provide NICU clinicians with an additional tool for early identification to 730 
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catalyze intervention for infants at risk for PNAC. The early identification of PNAC before elevated direct 731 

bilirubin levels in the blood would allow NICU medical teams to take early action to limit the occurrence 732 

of liver damage in this vulnerable population. The most likely course of action would involve switching 733 

an infant at risk of PNAC to a hepatoprotective lipid emulsion. This precise diagnostic plan would allow 734 

medical teams to proactively optimize for infant health outcomes, while also helping the NICU to 735 

account for other competing objectives, such as cost. Additionally, frequent monitoring of the stool may 736 

enable clinicians to confidently optimize caloric nutrition with PN for infants at low risk of developing 737 

PNAC, a known enhancer of health outcomes.  738 

Sphingomyelin in the stool appears to be the most predictive signature for the risk of PNAC. This 739 

lipid plays a role in inflammatory signaling in the GI tract, tight junction maintenance, and the 740 

metabolism of nutrients present in the GI tract (91,92). Additionally, there are several known 741 

connections with GI diseases such as ulcerative colitis and GI hyperpermeability (91,93). Finally, there 742 

are also connections to the GI microbiota. Sphingomyelin has been shown to play a role in the 743 

physiology of how probiotics interact with the intestinal lining (45).  744 

The diagnostic potential that resides in biological samples that are currently treated as waste in 745 

the NICU is immense. Our results demonstrate that stool samples contain measurable biomarkers that 746 

are predictive of disease. In the NICU there is a constant need for more information to help treat and 747 

take care of premature infants. Stool and urine represent two additional sources of valuable information 748 

that have previously been out of reach due to the complexity of identifying effective biomarkers for 749 

disease. However, with the advent of advanced metabolomics and systems biology, there is a new 750 

opportunity to advance diagnostic procedures in the NICU past blood tests and monitoring of vitals. 751 

PNAC is only one of many devastating diseases in the NICU that may, someday, be diagnosed using stool 752 

samples. 753 
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3.5 Methods 754 

Sample collection and processing: 755 

After informed consent from parents, infants in the NICU were enrolled before 5 days of life in a 756 

longitudinal microbiome study (Western IRB approval# 20210065). Serial stool samples were collected 757 

from infants in the NICU up to twice weekly and flash frozen at - 80 °C. Infants were monitored for the 758 

development of cholestasis (direct bilirubin >1mg/dL), and the cause of cholestasis was noted as 759 

assessed by the treating physicians. Clinical data was collected including gestational age, birth weight, 760 

antibiotic use, infections and length of time on PN.  761 

To prepare feces for metabolomic analysis, frozen samples were lyophilized and then 762 

resuspended at a 50:1 (50 µL deionized water for every 1 mg of feces weight) ratio for homogenization 763 

as previously described (94). The homogenates were subjected to automated biochemical extraction 764 

and analysis by liquid chromatography and high-resolution tandem mass spectrometry (LC-MS/MS) on 765 

Metabolon’s Global Platform, as previously described (95–97). Raw data were extracted, peak-766 

identified, and processed by Metabolon using proprietary software (94,98,99). In brief, metabolites - 767 

were identified by comparison to library entries of purified standards or recurrent unknown entities. 768 

Metabolon maintains a dynamic and proprietary biochemical reference library of more than 4,500 769 

known metabolites (based on authenticated standards) and more than 2,000 novel metabolites (without 770 

an identified chemical structure); each library entry contains the retention time/index (RI), mass to 771 

charge ratio (m/z), and spectral data (including MS/MS fragmentation). Biochemical identifications are 772 

based on three criteria: retention index within a narrow RI window of the proposed identification, 773 

accurate mass match to the library ± 10 ppm, and the MS/MS forward and reverse scores between the 774 

experimental data and authentic standards. The MS/MS scores are based on a comparison of the ions 775 

present in the experimental spectrum to the ions present in the library spectrum. Three types of 776 

controls were included: a pool of small portions of each experimental sample serving as a technical 777 
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replicate throughout the platform run; extracted water samples (process blanks); and a cocktail of 778 

standards spiked into every analyzed sample allowing instrument performance monitoring. 779 

327 serial stool samples underwent 16S rRNA gene sequencing at Ubiome or the Inova core 780 

research lab. Samples were sequenced using NextGen sequencing technology with 150 base pair paired 781 

end reads.  782 

Metabolomics Data 783 

Metabolon pre-processed the LC-MS data to identify metabolites present in our samples. 784 

Additionally, they normalized the raw ion intensity data by scale to set the median of each metabolites 785 

equal to 1. All missing values are imputed with the minimum scaled intensity value. 786 

Statistical analysis: 787 

We analyzed the clinical metadata for each infant enrolled in the study as well as the 788 

metabolomics data for each of the fecal samples. 789 

We performed Mann Whitney U tests for all comparisons in this study. All distributions were 790 

confirmed to be non-normal using the Shapiro-Wilk test. Stool metabolites significantly associated with 791 

later development or protection from PNAC were assessed using Mann Whitney U Tests and random 792 

forest machine learning. 793 

Data processing and Machine Learning: 794 

We utilized QIIME and DADA2 to process the 16S data. We processed the metabolomics data 795 

using Python and jupyter notebooks. We generated the machine learning models using Scikit Learn in 796 

Python. All python scripts and data are available upon request.  797 
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3.6 Supplement 798 

 799 

Figure S3.1. We identified the metabolites that are statistically significantly elevated in samples with an 800 
associated direct bilirubin level less than 1 mg/dL, while all six case study samples have values that are below 801 
the median value of the elevated group. A) The values of the six case study samples are displayed with the blue 802 
dashed lines. We have displayed three representative metabolites from the total set found. B) The total set of 803 
potentially protective metabolites are displayed with their associated p-values. The 6 case study samples are 804 
not included in either group when performing the Wilcoxon rank sum test for each metabolite. 805 

  806 
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 814 

4.1 Abstract 815 

Genome-scale metabolic network reconstructions (GENREs) are valuable tools for understanding 816 

microbial community metabolism. The process of automatically generating GENREs includes identifying 817 

metabolic reactions supported by sufficient genomic evidence to generate a draft metabolic network. 818 

The draft GENRE is then gapfilled with additional reactions in order to recapitulate specific growth 819 

phenotypes as indicated with associated experimental data. Previous methods have implemented 820 

absolute mapping thresholds for the reaction automatically included in draft GENREs; however, there is 821 

growing evidence that integrating annotation evidence in a continuous form can improve model 822 

accuracy. There is a need for flexibility in the structure of GENREs to better account for uncertainty in 823 

biological data, unknown regulatory mechanisms, and context specificity associated with data inputs. To 824 

address this issue, we present a novel method that provides a framework for quantifying combined 825 

genomic, biochemical, and phenotypic evidence for each biochemical reaction during automated GENRE 826 

construction. Our method, Constraint-based Analysis Yielding reaction Usage across metabolic Networks 827 

(CANYUNs), generates accurate GENREs with a quantitative metric for the cumulative evidence for each 828 

reaction included in the network. The structure of a CANYUN GENRE allows for the simultaneous 829 

integration of three data inputs while maintaining all supporting evidence for biochemical reactions that 830 

may be active in an organism. CANYUNs is designed to maximize the utility of experimental and 831 
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annotation datasets and to ultimately assist in the curation of the reference datasets used for the 832 

automatic reconstruction of metabolic networks. We validated CANYUNs by generating an E. coli K-12 833 

model and compared it to the manually curated reconstruction iML1515. Finally, we demonstrated the 834 

use of CANYUNs to build a model by generating an E. coli Nissle CANYUN GENRE using novel phenotypic 835 

data that we collected. This method may address key challenges for the procedural construction of 836 

metabolic networks by leveraging uncertainty and redundancy in biological data. 837 

  838 
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4.2 Introduction 839 

Complex microbial communities play an important role in human physiology (100–104). Genome-840 

scale metabolic network reconstructions (GENREs) have been shown to precisely model the functional 841 

capabilities of microbes and their interactions in communities (24,56). A GENRE is a constraint-based 842 

mathematical model structured to combine various forms or biological data to gain an improved 843 

mechanistic understanding of metabolism (105). This form of modeling explicitly accounts for 844 

biochemical thermodynamics and stoichiometry to represent the physical constraints that govern 845 

cellular metabolism. Methods used to generate GENREs are progressively being automated to reduce 846 

time and resource requirements with the goal of modeling the vast number of unique species and 847 

strains that reside in human associated microbiota (106–109). However, there remains a need for 848 

advancements in the procedural generation of GENREs to improve utilization of uncertainty in the 849 

source biological data.  850 

The foundational data that procedurally generated GENREs are built upon is a universal 851 

biochemical reaction network with associated reference genetic annotation data for sequence-to-852 

reaction mapping. When building an organism specific GENRE, a genome is annotated with precise 853 

biochemical reactions. The annotation process typically involves a threshold of sequence alignment that 854 

is used to determine if a sequence is similar enough to the reference sequence to justify annotation with 855 

the associated biochemical function (110). The data used to build GENREs is incomplete and subject to 856 

uncertainty, necessitating gapfilling of the metabolic network generated via genetic data alone. 857 

Gapfilling is the process of adding biochemical reactions with low or no evidence to a GENRE based on 858 

functional phenotypic growth data and the cellular biomass requirements. The resulting accuracy of the 859 

curated GENRE is then calculated by how well it recapitulates the phenotypic growth data utilized for 860 

training. There are additional methods for further assessment of model quality involving other data 861 

types, such as gene essentiality data, and separate validation data (111). Recent methods have 862 
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demonstrated that utilizing gene annotation alignment scores in a continuous way can help to improve 863 

gapfilling results (107,112). 864 

A curated GENRE consists of a set of reactions that have biological evidence suggesting that they 865 

are catalyzed by the organism. When a GENRE is procedurally generated the remaining error is 866 

commonly dominated by false growth calls; this indicates that these models over-predict the metabolic 867 

capabilities of an organism. Additionally, annotation alignment scores, universal biochemical network 868 

source data, and annotation reference data are all often left out from published GENREs (113,114). 869 

Without the source sequence-to-reaction data used to generate a GENRE, the reactions that are 870 

included in the curated GENRE lack explicit indication of what type of biological evidence was used to 871 

justify inclusion.  872 

Phenotypic growth data used for gapfilling is not treated the same as context specific data is 873 

treated when used to contextualize a GENRE. For example, transcriptomics data can be used to gain 874 

insight into how metabolic flux may occur in an unknown growth condition (54,115). Phenotypic growth 875 

data provides a similar type of context specific data compared to transcriptomic data, yet it is utilized 876 

build a metabolic network rather than contextualize the existing universal metabolic network. From a 877 

biological point of view, it is an over simplification of an organism specific metabolic network to ignore 878 

the existence of gene regulation during the GENRE building process (116). The practice of including all 879 

genetic data in the functional GENRE and then gapfilling remaining essential reactions with phenotypic 880 

data results in an over-constrained assessment of the biological system under investigation (107). There 881 

is a need for additional flexibility in the structure of GENREs to better account for uncertainty in 882 

biological data, unknown regulatory mechanisms, and context specificity associated with data inputs.  883 

In this study, we present a novel method for contextualizing a manually curated universal 884 

metabolic network through the simultaneous integration of genetic annotation data, and phenotypic 885 
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growth data. Our method, Constraint-based Analysis Yielding reaction Usage across metabolic Networks 886 

(CANYUNs), procedurally generates a GENRE by explicitly quantifying the combined biological evidence 887 

for the inclusion of reactions in the resulting network. CANYUNs utilizes a continuous weighting for each 888 

reaction in a curated universal metabolic network to quantify the evidence provided by the biological 889 

data that is used during the reconstruction process. Rather than gapfilling a draft network by leveraging 890 

phenotypic data, CANYUNs determines the reactions required for computational growth in each known 891 

growth condition separately to quantify the cumulative evidence for each reaction. The cumulative 892 

evidence generated for each reaction during the CANYUNs training process is subsequently used to 893 

determine the reactions that are included in the final GENRE. The resulting CANYUNs model consists of 894 

the universal metabolic network and associated reference annotations, organism specific genetic 895 

alignment scores, phenotypic growth data, and certainty values associated with each reaction included 896 

in the curated network. 897 

4.3 Results 898 

Constraint-based Analysis Yielding reaction Usage across metabolic Networks (CANYUNs) 899 

The model training process in CANYUNs is designed to capture and quantify the cumulative 900 

experimental and genomic evidence for the inclusion of biochemical reactions in a procedurally 901 

generated GENRE. CANYUNs simultaneously utilizes phenotypic growth data, genomic annotation 902 

evidence, and universal biochemical network data making it distinct from existing reconstruction 903 

methods that first reconstruct a draft metabolic network using genomic data and then gapfill additional 904 

reactions to match model predictions with phenotypic experimental data. CANYUNs maintains a direct 905 

connection with all annotation evidence used during model building to help facilitate future model 906 

curation.  907 

We built a curated universal biochemical network by combining the reactions from the CarveMe 908 

universal network (107) and reactions from the manually curated E. coli K-12 model, iML1515 (117). 909 
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When metabolite formulas did not match, we used the iML1515 formulas to maximize the number of 910 

mass-balanced reactions in the final universal network. For additional curation, we used an optimization 911 

method to check the network for generation of free-mass (see Methods). In short, we created 912 

intracellular sink reactions for each intracellular metabolite in the network and closed all exchange 913 

reactions to ensure the network did not have access to any extracellular metabolites. We then 914 

maximized the sum of flux through all sink reactions to identify any metabolites produced due to mass-915 

imbalanced reactions or mass-generating loops. We curated the universal network by manually 916 

removing reactions that were contributing to free-mass generation. The reactions removed during this 917 

process fell into two categories: reactions that were mass-imbalanced, and reactions that were 918 

biologically infeasible due to missing energy metabolites. Using this optimization-based method, we 919 

were able to more rigorously identify free-mass generation in the network compared to simply checking 920 

each reaction for mass-balance.  921 

We utilized BLASTp to align the genome of the target organism with reference sequences in the 922 

CarveMe sequence-to-reaction dataset. We used the sequence alignment bitscores for E. coli K-12 genes 923 

and the CarveMe dataset to then generate reaction bitscores using the published method (107). We 924 

subsequently used a step-wise linear transformation to convert the reaction bitscores to reaction 925 

weights that fall between -1 and 1 to use during linear optimization and flux balance analysis. We 926 

developed a novel formulation of flux balance analysis called, Data Guided Flux Balance Analysis (dgFBA) 927 

specifically for CANYUNs. This optimization equation minimizes the sum of flux through all reactions 928 

with low or no genetic evidence while simultaneously maximizing the sum of flux through all reactions 929 

with substantial genetic evidence. The degree to which a reaction is minimized or maximized is linearly 930 

determined by the reaction weights. During a dgFBA optimization, flux is required through the biomass 931 

reaction to represent growth. Importantly, dgFBA allowed us to determine the flux-carrying reactions 932 

(FCRs) in each experimental growth condition by setting the exchange reactions to represent the specific 933 
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growth media conditions. By tracking the flux-carrying reactions for each growth condition, we were 934 

able to then calculate the ratio of growth conditions in which a reaction carries flux and determine 935 

reaction Certainty Values (CVs) for each FCR indicating confidence in the presence of each biochemical 936 

function in the target organism. 937 

In the final stage, all flux-carrying reactions across the experimental growth conditions are used 938 

to generate an organism-specific CANYUNs model (Figure 4.1A). The resulting network is processed 939 

further by selectively removing a single reaction, or a small set of reactions, to further improve the 940 

overall accuracy of the model and adjust the type of error remaining. For validation of CANYUNs, we 941 

generated an automatic GENRE for E. coli K-12 leveraging phenotypic nutrient utilization data obtained 942 

from EcoCyc and compared it to iML1515 (117–119).  943 

 944 

Figure 4.1:The CANYUNs pipeline integrates genomic, phenotypic, and biochemical data to 945 
quantitatively identify reactions that are likely catalyzed by an organism.  946 

A) Genomic annotation data and phenotypic growth data for a specific organism are used to influence 947 
the flux distribution through a curated universal biochemical network to build an organism-specific 948 
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metabolic network model. Parallel growth simulations using Data Guided Flux Balance Analysis for each 949 
known experimental growth condition allows for a model building process that is not influenced by the 950 
order in which growth conditions are integrated. This process allows for the explicit quantification of 951 
Reaction Certainty Values, determined by the ratio of times a reaction carries flux across all of the 952 
condition-specific solutions to the total number of conditions. B) The universal biochemical network used 953 
in this study consists of reactions from the CarveMe dataset as well as novel reactions added from the 954 
manually curated E. coli metabolic network, iML1515. C) The phenotypic data used in this study includes 955 
Biolog minimal media growth data from ~275 different conditions. D) The sequence to reaction dataset 956 
used to calculate reaction annotation evidence consists of over 4,000 reactions with 1 to 800 sequences 957 
associated with each reaction. E) The distribution of reaction bitscores for E. coli K-12 shows that there 958 
are reactions in the universal network with high evidence that are not included in iML1515. There are 959 
also many reactions with low evidence that are not included in iML1515, as expected. The annotation 960 
evidence generated for E. coli K-12 shows that there are 1,460 reactions in the universal biochemical 961 
network that have no genetic evidence associated with them, 260 of these reactions are in iML1515 and 962 
1,200 of them are not. 963 

Data Guided Flux Balance Analysis 964 

The reaction bitscores for E. coli K-12 were calculated directly from BLASTp sequence alignment 965 

bitscores using a previously published method (107). One third of reactions in the universal network 966 

have a bit score of 0 and the rest range from 1 to 2,500 (Figure 4.2A). A typical bitscore threshold for 967 

assigning a reference enzymatic metabolic function to the query sequence(s) is between 200 and 500 968 

(120–122). The level of confidence in a functional call increases with the value of the bitscore, yet small 969 

changes in a sequence can result in large functional changes. Bitscores below the threshold also 970 

contribute information about the protein in question, values that are just shy of the threshold may still 971 

have the same function as the reference protein; however, scores that fall far short of the threshold 972 

suggest that the protein in question does not have the function of the reference.  973 

We designed dgFBA to account for some of the uncertainty inherent in setting a threshold for 974 

assigning function to a given protein by utilizing reaction weights that are a function of the reaction 975 

bitscores. The reaction weights influence the reactions that carry flux in the optimization solution. 976 

Genomic annotation data must be transformed to a range of values that are compatible with dgFBA. The 977 

transformation function used in this study is graphically displayed in Figure 4.2B. This function can be 978 

adjusted based on the user’s preferences. In this study we selected a bitscore threshold of 500 based on 979 
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a sensitivity analysis that demonstrated that model accuracy was insensitive to values between 200 and 980 

500 (Figure 4.2B).  981 

FCRs in a dgFBA solution are a result of complex interactions among the reaction weight values, 982 

media condition, and flux demands (i.e. biomass). Flux is maximized through reactions with a bitscore 983 

above 500 and minimized through reactions below 500. However, the degree of maximization and 984 

minimization depend upon the value of the bitscore. The low evidence reactions that are included in the 985 

final flux solution are likely essential for flux through biomass and can be thought of as gapfilled 986 

reactions that maintain their genomic annotation evidence (Figure 4.2E and 4.2F). Utilizing the reaction 987 

bitscores in this way allows for additional flexibility with reactions near to the bitscore threshold of 500 988 

where the reaction weight is equal to zero. Reactions with weights near to zero are much less impacted 989 

by the dgFBA objective function and therefore are influenced far greater by thermodynamic 990 

requirements.  991 

 992 

Figure 4.2: Data Guided Flux Balance Analysis. 993 
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A) Distribution of reaction bitscores for E. coli K-12. B) This is a visual representation of the 994 
transformation function for calculating the reaction weights based on reaction bitscores. The reaction 995 
bitscore of 500 is an important value because it corresponds with zero in the weight space. C) 996 
Distribution of the calculated weights for forward reactions. D) The distribution of weights for reverse 997 
reactions shows that there are far fewer reactions that allow flux in both directions or only in the reverse 998 
direction. E) Data Guided Flux Balance Analysis optimization problem. Reactions with a positive weight 999 
are maximized and reactions with a negative weight are minimized proportional to the value of the 1000 
weight. F) Toy network example demonstrating the flux-carrying reactions that would result from the 1001 
pictured annotation evidence distribution and media inputs. 1002 

Data Guided Flux Balance Analysis can be compared to parsimonious enzyme usage flux balance 1003 

analysis (pFBA) to demonstrate how flux through the network changes with additional layers of 1004 

information. The objective of pFBA is to uniformly minimize the sum of flux across all reactions, while 1005 

maintaining flux through the biomass reaction (123). Since dgFBA maximizes the weighted flux through 1006 

reactions with genetic evidence the flux distribution is consistently different from the pFBA flux 1007 

distribution. However, the two optimization problems remain similar because the majority of reactions 1008 

in the universal network do not have genetic evidence and are thus minimized in a dgFBA problem, just 1009 

as they are in a pFBA problem. We compared dgFBA to pFBA to quantify how much impact the genetic 1010 

data has on the flux distribution for each solution. We generated a separate pFBA and dgFBA flux 1011 

solution for each known E. coli K-12 growth condition. We used two metrics to verify that dgFBA results 1012 

in more reactions carrying flux, while also increasing the number of reactions that have associated 1013 

annotation evidence (Figure 4.3A and 4.3B). We found that across all 199 growth conditions, the 1014 

average number of FCRs for dgFBA was 305, which was 45 reactions greater than the average for pFBA 1015 

solutions. We expected dgFBA to identify less parsimonious solutions than pFBA due to the influence 1016 

imparted on the solution from the annotation evidence. It is important to note that the number of FCRs 1017 

for the dgFBA solution in a single condition was always greater than the number of FCRs in the 1018 

corresponding pFBA solution by at least 10 FCRs. A second important verification was to ensure that 1019 

dgFBA also identifies solutions that contain a greater proportion of FCRs that have associated 1020 

annotation evidence. We found that the average number of FCRs with annotation evidence greater than 1021 
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or equal to our reaction bitscore threshold of 500 in dgFBA solutions was nearly 20% greater than the 1022 

pFBA solutions.  1023 

 1024 

Figure 4.3: Data Guided Flux Balance Analysis breaks parsimony and identifies fewer unique reactions 1025 
required for simulated growth on all experimental growth conditions.  1026 

A) The number of FCRs in each growth condition is visualized for parallel pFBA and dgFBA to quantify the 1027 
degree to which dgFBA breaks parsimony. B) The number of reactions with bitscores above 500 that 1028 
carry flux in a dgFBA solution is greater than the number in a pFBA solution. C) The cumulative number of 1029 
unique FCRs identified by dgFBA is fewer than pFBA. The complete range in number of unique FCRs is 1030 
indicated by the shaded regions. 1031 

To assess FCRs across all of the known growth conditions, we generated rarefaction curves each 1032 

consisting of 10,000 samples to measure the full distribution of unique permutations of growth 1033 

conditions that could be used to generate a GENRE. The x-axis displays the number of growth conditions 1034 

used to calculate the total number of unique FCRs found (Figure 4.3C). The shaded regions show the 1035 

minimum and maximum values sampled for each number of conditions included. The small range 1036 
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between the minimum and maximum indicates that there is minimal advantage to optimizing for the 1037 

minimum number of growth conditions that provide the maximum training value. Each individual 1038 

growth condition adds unique reactions to the cumulative set of unique FCRs. However, the asymptotic 1039 

shape of the average curves indicates that the total number of valuable unique minimal growth 1040 

conditions may not be far beyond 200 conditions. The number of unique FCRs identified by dgFBA across 1041 

all growth conditions is fewer than pFBA, indicating that there is a core set of FCRs with genetic evidence 1042 

that dgFBA preferentially identifies over pFBA (Figure 4.3C). These data indicate that dgFBA performs as 1043 

intended, reactions with genetic evidence preferentially carry flux even when there is a more 1044 

parsimonious path which results in a diversion of flux away from extraneous reactions that are more 1045 

parsimonious but lack sufficient genetic evidence. 1046 

Certainty Values Determine the Reactions Included in a CANYUN GENRE for E. coli K-12 1047 

The CANYUNs pipeline involves generating a dgFBA solution for each of the known growth 1048 

conditions using the curated universal metabolic network. During the process of recording the FCRs for 1049 

each condition, the directionality of each flux value is used to specifically determine the cumulative 1050 

evidence for each reaction specific to direction. We proceeded to calculate a reaction certainty value for 1051 

each reaction in the universal metabolic network based on the set of FCRs from each growth condition. 1052 

The Certainty Value (CV) for a reaction is the ratio of the number of times the reaction carries flux in a 1053 

growth condition over the total number of known growth conditions. A CV indicates the cumulative 1054 

experimental evidence for the presence of the biochemical function in an organism-specific metabolic 1055 

network. Using the E. coli K-12 genome and phenome, we calculated 690 reactions with CVs greater 1056 

than zero in the forward direction (Figure 4.4A), and 127 reactions with CVs greater than zero in the 1057 

reverse direction (Figure 4.4B). There are 45 reactions common to the two sets of reaction CVs (Figure 1058 

4.4C).  1059 
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We built an E. coli K-12 specific GENRE that consists of the reactions identified to have CVs 1060 

greater than zero, including only the reaction directionalities specifically with CVs. Reversible reactions 1061 

that receive a CV above zero in only one direction were set to only allow flux in that direction. We 1062 

simulated growth in each of the known growth conditions using the resulting cumulative model to 1063 

determine the baseline performance of the model. The draft metabolic reconstruction, at this point, had 1064 

an overall accuracy of 80% with a strong bias toward false positive growth calls (Figure 4.4D). To 1065 

improve the model accuracy, we calculated the conditionally essential reactions for each of the 1066 

conditions predicted to allow for growth, including false growth predictions. A comparison across the 1067 

sets of conditionally essential reactions revealed reactions that, when removed, would provide a net 1068 

benefit for improving the overall accuracy of the adjusted model. We identified that with the removal of 1069 

a single reaction, RuBisCO, the number of false positives was reduced by 38 conditions and the number 1070 

of true positives was only decreased by 7 conditions. RuBisCO was manually selected for removal 1071 

because it had the maximum net benefit of 31 conditions and the least annotation evidence. All of the 1072 

other candidate reactions for removal are plotted based on their net benefit to accuracy from removal 1073 

versus their annotation evidence (Figure 4.4E). This process could be repeated for further alteration of 1074 

the model. Although RuBisCO is an obvious reaction that should not have been included in the universal 1075 

metabolic network before generating reaction CVs, this result demonstrates that there are reactions 1076 

that may require manual removal from the universal metabolic network based on additional biological 1077 

knowledge aside from there being no annotation evidence or contribution to mass-generating loops. 1078 

However, CANYUNs allowed for rapid identification of reactions that may be improperly included during 1079 

the process of procedural generation of a CANYUN GENRE.  1080 
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 1081 

Figure 4.4: E. coli K-12 CANYUNs model generation and draft processing.  1082 

A) Ranked scatter plot of forward reaction Certainty Values. B) Reverse reaction Certainty Values. C) 1083 
Certainty values for reversible reactions that carry flux in both directions. D) Initial accuracy of CANYUNs 1084 
model before processing. E) Conditionally essential reactions allow for the user to identify reactions that 1085 
can be selectively removed from the resulting model that improve the overall predictive accuracy. The 1086 
net benefit refers to the number of false positives that will be correct minus the number of true positives 1087 
lost due to removing a given reaction. RuBisCO is the forward reaction in the top left corner of the plot 1088 
with maximum net benefit and minimum genetic evidence. 1089 
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CANYUNs more accurately recapitulates phenotypic data 1090 

The final E. coli K-12 model from the CANYUNs pipeline can be compared with two automatically 1091 

generated models using CarveMe and the manually curated model iML1515 to benchmark and validate 1092 

its performance. Using the same input biochemical and genetic data as the CANYUNs model, we 1093 

generated a CarveMe model without using phenotypic data to establish how subsequent gapfilling 1094 

impacts the model accuracy (Figure 4.5A). The gapfilled CarveMe model that we generated had an 1095 

overall accuracy of 76%, a 24% improvement over the untrained model (Figure 4.5B). The training 1096 

process results in nearly all of the false negative predictions being corrected, as can be expected. The 1097 

manually curated reconstruction, iML1515, was not specifically curated for all of the known growth 1098 

conditions used to train the CarveMe model and the CANYUN model, but it remains a valuable point of 1099 

comparison as the best representation of E. coli K-12 metabolism that is currently available. Our E. coli 1100 

K-12 CANYUNs model shows the highest overall accuracy, while maintaining a balance in type 1 and type 1101 

2 error. The distinction between false positives and false negatives is notable because false negatives 1102 

represent an opportunity to selectively add an organism-specific reaction to the universal model that 1103 

directly corrects the issue. However, correcting false positive errors involves finding reactions to remove 1104 

or adjust that result in minimal negative impacts to the rest of the model. CANYUNs provides a method 1105 

for selectively adjusting the balance of error based on user preferences during the construction of the 1106 

GENRE.  1107 
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 1108 

Figure 4.5: The E. coli CANYUNs Model performs better than iML1515 and CarveMe when simulating 1109 
growth on all known phenotypic data.  1110 

A) The CarveMe model without gapfilling has a base accuracy of 52%. B) The CarveMe model we trained 1111 
using all of the phenotypic data performs with an accuracy of 76%. However, there is a strong bias 1112 
toward false positive predictions. C) The manually curated E. coli K-12 model, iML1515, was not trained 1113 
using all of the growth conditions. However, it performs with 75% accuracy while maintaining a relatively 1114 
even split between false positive predictions and false negative predictions. D) The CANYUNs model we 1115 
generated performs with 92% accuracy. The increased accuracy is primarily due to an improvement in 1116 
true negative prediction rate. 1117 

CANYUNs more accurately identifies the reactions present in iML1515 1118 

It is possible to generate a CANYUNs model using pFBA instead of dgFBA; in this case no genetic 1119 

data incorporated to influence the flux distribution of the solution for each growth condition. The most 1120 

parsimonious solution is determined for each condition. In doing so, we are able to establish a more 1121 

precise understanding of how the inclusion of genetic annotation evidence impacts the discovery of 1122 

reactions when compared to the manually curated E. coli K-12 model, iML1515. We did not expect the 1123 

CANYUNs reactions to align perfectly with iML1515 since the manual curation process did not include all 1124 

of the growth conditions used to train the CANYUNs model. However, since the sequence-to-reaction 1125 
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dataset used to generate annotation evidence does not include all of the sequences used to build 1126 

iML1515, we were able to track the FCRs that CANYUNs identifies without annotation evidence, yet are 1127 

confirmed to be E. coli K-12 reactions by the iML1515 model. The ‘Likely additions’ category (Figure 4.6A 1128 

and 4.6B) represents a set of reactions from the CANYUNs model with genetic annotation evidence 1129 

(bitscore above 500) that are not present in iML1515 and cannot be validated using this comparison, but 1130 

they may represent reactions that could be added to iML1515 to improve alignment with the 1131 

phenotypic data. We demonstrate that the dgFBA CANYUNs model has 12% greater alignment with 1132 

iML1515 at the reaction level, compared to the pFBA CANYUNs model (Figure 4.6C). The discovery 1133 

accuracy is calculated as the number of FCRs that are identified by CANYUNs while lacking sufficient 1134 

annotation evidence yet that were included in the iML1515 model. The dgFBA CANYUN model has a 1135 

discovery accuracy of 62%, 24% greater than the pFBA CANYUN model. CANYUNs accurately identifies 1136 

reactions that should be included in the E. coli K-12 metabolic network validated by the most recent 1137 

manually curated reconstruction, iML1515.  1138 
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 1139 

Figure 4.6: CANYUNs reaction certainty values accurately identify reactions found in iML1515.  1140 

The manually curated metabolic network, iML1515, provides a point of comparison to determine if 1141 
CANYUNs accurately identifies reactions that should be included in a final model. A) By comparing our 1142 
CANYUNs model with iML1515, we were able to place reactions into four categories. FCRs with genetic 1143 
evidence and in iML1515 (confirmed), FCRs without genetic evidence in iML1515 (true discovered), FCRs 1144 
with genetic evidence not in iML1515 (likely additions), and FCRs without genetic evidence and not in 1145 
iML1515 (false discovered). The total amount of genetic evidence that is used to generate a CANYUNs 1146 
model influences the accuracy of the FCRs. B) When we use pFBA instead of dgFBA in the CANYUNs 1147 
pipeline, there are far more reactions that lack genetic evidence and are not in iML1515. C) The percent 1148 
overlap of FCRs with reactions present in iML1515 increases from 62% when no genetic evidence is used 1149 
(pFBA) to 76% overlap when all of the available genetic evidence is used. 1150 

A further analysis of the reaction CVs demonstrates that the accuracy of reaction inclusion in a 1151 

CANYUN GENRE correlates positively with the magnitude of the reaction CV. The percent overlap with 1152 

iML1515 improves rapidly when the bottom 30 reactions with the lowest certainty values are ignored. 1153 

Overall, dgFBA provides a noticeable benefit over pFBA; however, there is a set of about 50 core 1154 

reactions that are accurately identified with both optimization methods. We found that dgFBA strongly 1155 

outperforms pFBA and CarveMe when evaluating the discovery accuracy. The performance of CANYUNs 1156 

is in part explained by the reduced total number of discovered reactions compared to CarveMe. That 1157 
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number represents a significant advancement when considering the process of manually validating the 1158 

reactions with insufficient annotation evidence by searching for the appropriate gene-protein rule to 1159 

add to the sequence-to-reaction dataset.  1160 

 1161 

Figure 4.7: Reaction Certainty Values correlate with accurate reaction inclusion and comparison with 1162 
CarveMe.  1163 

A) The percentage of reactions identified by CANYUNs that align with the iML1515 model correlates with 1164 
the associated certainty value. All reactions with a certainty value greater than or equal to 0.99 have a 1165 
94% chance of being in the iML1515 model. B) The accuracy of discovered reactions, confirmed by 1166 
iML1515, increases with the certainty values assigned using CANYUNs. C) Although the accuracy of the 1167 
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discovered reactions increases with the certainty value, there is a significant drop in the number of 1168 
reactions with the increase. 1169 

CANYUN GENRE for the probiotic strain: E. coli Nissle 1170 

We built a novel model of the E. coli Nissle metabolic network to demonstrate the application of 1171 

CANYUNs and to provide an example representation of a CANYUN GENRE with all accompanying source 1172 

data. Although Nissle has significant clinical relevance and is similar to E. coli K-12, there are no 1173 

published Nissle metabolic network reconstructions that currently exist and are freely available. Nissle is 1174 

a probiotic strain that has demonstrated measurable impacts on colonization resistance against human 1175 

gastrointestinal pathogens (124–126). Additionally, it is important to note that several studies 1176 

demonstrate that the metabolism of Nissle is phenotypically different from K-12. We generated novel 1177 

phenotypic growth data for E. coli Nissle using Biolog Phenotype MicroArray 96-well growth plates. We 1178 

performed growth assays for the carbon source plates, PM1 and PM2A, in both aerobic and anaerobic 1179 

growth conditions. We found that the metabolic consumption profile of Nissle is 9% different from K-12 1180 

(Figure 4.8A and S2). There are 25 media conditions in which Nissle and K-12 do not align out of a total 1181 

of 285. Nissle is able to grow in 16 conditions in which K-12 is not, in the other 9 conditions K-12 grows 1182 

with Nissle does not. All inconclusive results for K-12 were treated as no growth conditions. Data for K-1183 

12 anaerobic growth in the PM2A plate does not exist on Ecocyc. All data is displayed in the Supplement 1184 

(Figure S4.1 & S4.2 and Table S4.1).  1185 

We generated a CANYUN GENRE using the same input data discussed in Figure 4.1, although 1186 

with the Nissle specific annotation evidence and our set of phenotypic growth experiments. The final 1187 

model that we generated had an overall accuracy of 92%, with no false positive error. There are 18 false 1188 

negative conditions that could be fixed by adding organism-specific reactions to the model. There were 1189 

481 reactions that received CVs and had high genetic evidence, indicating that they are likely to be 1190 

actively catalyzed by Nissle during exponential growth. Additionally, in the process of building the Nissle 1191 

model, we identified 114 reactions that have low genetic evidence, yet were included in the model with 1192 
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CVs greater than zero. There were an additional 5 spontaneous reactions included. We assessed CVs 1193 

associated with the 114 low evidence reactions to determine their rank of importance for future 1194 

curation of the datasets used to generate this model. There were 34 reactions within the set that have 1195 

no reference sequences and thus have unknown genetic evidence (Figure 4.8D). Finally, there were 80 1196 

reactions that had both low genetic evidence and CVs greater than zero (Figure 4.8E). The reactions with 1197 

bitscores closer to 500 and high CVs have a high cumulative evidence indicating that they should be 1198 

assessed further to determine the appropriate reference sequences that should be added to the dataset 1199 

used to generate this model.  1200 

 1201 

Figure 4.8: E. coli Nissle Model. 1202 

A) Phenotypic data used to build the model. B) The final accuracy of the model is 92% with no false 1203 
positive predictions. C) Model reaction classes. The sequence-to-reaction dataset used to generate 1204 
genetic evidence bitscores includes 3,017 reactions with associated sequences. D) Reactions that receive 1205 
certainty values, but do not have reaction bitscores. E) Reactions with Certainty Values and low bitscores 1206 
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(below 500). There are 80 reactions represented on this plot. Reactions with a high certainty value and a 1207 
bitscore above 200 are likely candidates for additions to the sequence-to-reaction database. 1208 

4.4 Discussion 1209 

Introduced here is a procedural reconstruction method for the generation of CANYUN GENREs 1210 

that accurately recapitulate phenotypic training data and select appropriate reactions to represent the 1211 

biochemical capabilities of a target organism. CANYUNs leverages a novel form of FBA, dgFBA, to direct 1212 

flux through the universal metabolic network during model building and curation resulting in a GENRE 1213 

that is structural different from manually curated GENREs. Cumulative evidence for inclusion of a given 1214 

reaction in a CANYUN GENRE is explicitly quantify during the reconstruction process. Existing methods 1215 

rely heavily on genetic data to estimate the metabolic capabilities of an organism. CANYUNs fills a 1216 

separate niche, it produces procedurally generated GENREs that include functional data such as 1217 

phenotypic growth data as an integral step in the curation protocol. Maintaining a strong connection 1218 

with all source data allows CANYUNs to guard against information loss that can occur. Most importantly, 1219 

a core objective of CANYUNs is to leverage the uncertainty innate to the biological data used during the 1220 

reconstruction process to generate a GENRE built upon continuous data inputs. This aspect of CANYUN 1221 

GENREs differs from the presence of absence of reactions in other GENREs. The structure of CANYUN 1222 

GENREs allows for the uncertainty across biological data to be managed via redundancy. Each type of 1223 

data provides various benefits while mitigating associated error. 1224 

There is an existing paradigm in the field of constraint-based modeling: a GENRE can be either a 1225 

reconstruction of a model depending upon the context in which it is utilized. CANYUNs formalizes a 1226 

structure that highlights the important differences between a reconstruction and a model. Through this 1227 

lens, a CANYUN GENRE can be viewed as a reconstruction when assessing all of the evidence that is 1228 

utilized to identify organism specific reactions. A CANYUN GENRE can be viewed as a model when 1229 

utilizing only the reactions that acquire CVs. The conceptual framework underlying this distinction is 1230 
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grounded in the idea that phenotypic growth data should be utilized to contextualize the genetic and 1231 

biochemical data, rather than determine the absolute inclusion or exclusion of reactions from a GENRE. 1232 

By accepting that an organism specific GENRE is simply a contextualized version of the underlying 1233 

universal metabolic network, there is additional flexibility that can be leveraged for future curation of 1234 

the GENRE with additional biological data or expansion of the source data. This concept is the core 1235 

difference between CANYUN GENREs and other GENREs generated using existing methods.  1236 

The technical characteristics that make a CANYUN GENRE unique from other methods revolve 1237 

around a consistent connection to source data and management of associated uncertainty in the source 1238 

data. CANYUN GENREs are structured to facilitate future curation by ensuring that all source data is an 1239 

integral part of the model. As seen in Figure 4.8C, a CANYUN GENRE consists of four classifications of 1240 

reactions: Universal biochemical reactions, reactions with GE and no CV, reactions with GE and a CV, and 1241 

reactions with a CV and no GE. Each class of reaction has an associated continuous spectrum that 1242 

indicates how much evidence has contributed to the reaction being in that class. Universal biochemical 1243 

reactions have a spectrum of reference sequences (Figure 4.1D). Reactions with only GE have the 1244 

reaction bitscore which is positioned on a continuous spectrum. Reactions with only a CV have the 1245 

magnitude of the CV that represents the cumulative phenotypic and biochemical evidence associated 1246 

with the reaction. Finally, reactions with a CV and GE have the most complex array of associated 1247 

evidence including: genetic, phenotypic, and biochemical.  1248 

Procedural generation methods benefit from existing manually curated GENREs via their 1249 

contribution to the universal biochemical network and the associated sequence-to-reaction reference 1250 

dataset. Manually curated versions of foundational data provide the base on which procedural 1251 

generation methods can be built upon. It has been shown that, procedurally generated GENREs benefit 1252 

from manually curated data inputs (107). For example, ensuring that all reactions in the universal 1253 

biochemical network are mass-balanced and that there are no mass-generating loops in the network 1254 
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eliminates the need for further thermodynamic-based curation of the resulting GENREs (107,127). The 1255 

high specificity required for the annotation of metabolic enzymatic function with accompanying 1256 

thermodynamic and stoichiometric directionality is relatively unique to GENREs and thus a limiting 1257 

factor in the building process. Reaction directionality is a simple, yet important aspect of curating 1258 

GENREs. Often sequence annotation databases do not include specific information about reaction 1259 

directionality. Directionality can become particularly important when a reaction is thermodynamically 1260 

unfavorable in a certain direction. Improper directionality assignments can lead to free mass-generation 1261 

and improper assignment of catalytic function. Our method provides a way to quantify reaction 1262 

evidence specific to directionality by calculating CVs specific to the direction of the flux through 1263 

reactions. This level of specificity provides more control over the model’s behavior.  1264 

Genetic data is the base on which GENREs are built, yet not all genetic information is required to 1265 

represent the metabolic network for an organism. Due to gene regulation and other aspects of 1266 

metabolic control theory that are exceptionally challenging to incorporate into a GENRE, it is important 1267 

to keep in mind that genetic data, with all associated uncertainties, is simply an imperfect lens through 1268 

which an organism specific model can begin to take shape. Functional phenotypic data, when paired 1269 

with a stoichiometrically accurate universal metabolic network, provides information for contextualizing 1270 

the underlying genetic data. This conceptual framework provides the flexibility required for passively 1271 

allowing unknown gene regulation across differing growth conditions to influence the building process. 1272 

The core assumption in this conceptual model is that thermodynamic efficiency, both stoichiometric and 1273 

enzymatic, is the primary governing objective at the cellular level. This is technically achieved during the 1274 

prediction of growth by utilizing only the reactions with CVs for flux balance analysis. All other reactions 1275 

with genetic evidence alone did not demonstrate their activity during the training of the model and are 1276 

thus not active for growth predictions.  1277 
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A core focus of this study was the need for better curation of source data used for procedurally 1278 

generated GENREs. Curation of these datasets is far more useful for future model generation, opposed 1279 

to the curation of specific models. The curation of specific models, separate from the source datasets, 1280 

can result in thermodynamic inconsistences among models that make it difficult to simulate metabolic 1281 

interactions. This method lays the groundwork for data-driven expansion of the sequence-to-reaction 1282 

dataset by quantifying phenotypic evidence for the inclusion of sequences slightly below the functional 1283 

bitscore threshold (in this study 500). With enough phenotypic data from an array of organisms, it would 1284 

be possible to conservatively expand the reference dataset to propagate well-defined functional 1285 

annotations to many more sequences and thus expand the ability to generate accurate models across a 1286 

wide array of organisms. Additionally, CANYUN GENREs optimize for false negative predictions, thus 1287 

specifically identifying areas of the universal biochemical network that need manual additions. Moving 1288 

forward, CANYUNs may provide an additional starting point for analyses that provide more predictive 1289 

capabilities. Nevertheless, CANYUNs provides solutions for several challenges in expanding genome-1290 

scale metabolic network reconstructions to model the vast array of microbes that exist in human 1291 

associated microbial communities.  1292 

4.5 Methods 1293 

Universal metabolic network curation: 1294 

We started with the CarveMe universal model and added any new reactions from iML1515 to a 1295 

universal metabolic network. Any metabolites with multiple formulas were altered to maintain only the 1296 

metabolite formula used in the iML1515 model. Metabolites with multiple formulas that are not in the 1297 

iML1515 model were adjusted based on stoichiometric consistency across all reactions. The final 1298 

universal metabolic network is available on Github.  1299 

We utilized the following optimization problem to determine if the universal metabolic network 1300 

contained any thermodynamically infeasible mass generation. The problem maximizes flux through a set 1301 
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of sink reactions that allow flux to leave the system from within the cellular or periplasm compartment. 1302 

No metabolites are allowed to enter the system through exchange reactions. This algorithm provides an 1303 

output of all reactions that are able to carry flux when no external metabolites are provided. The 1304 

simultaneous maximization of flux through all sink reactions allows for a thorough evaluation of all 1305 

possible mass generating loops.  1306 

𝐹𝑟𝑒𝑒 𝑚𝑎𝑠𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑒𝑐𝑘 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚  1307 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒:∑𝑣𝑠𝑛𝑘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   1308 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 1309 

𝑺 ⋅ 𝑣 = 0 1310 

𝐿𝐵⃑⃑⃑⃑  ⃑ ≤ 𝑣 ≤ 𝑈𝐵⃑⃑ ⃑⃑  ⃑ 1311 

0⃑ ≤ 𝑣𝑠𝑛𝑘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ≤ 1000⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   1312 

0⃑ ≤ 𝑣𝑒𝑥⃑⃑⃑⃑⃑⃑ ≤ 0⃑  1313 

𝑣𝑠𝑛𝑘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = 𝑆𝑖𝑛𝑘 𝑟𝑥𝑛 𝑓𝑙𝑢𝑥 𝑣𝑒𝑐𝑡𝑜𝑟  1314 

𝑺 = 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥  1315 

𝑣 = intracellular flux vector  1316 

𝐿𝐵⃑⃑⃑⃑  ⃑ = 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟  1317 

𝑈𝐵⃑⃑ ⃑⃑  ⃑ = 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟  1318 

𝑣𝑒𝑥⃑⃑⃑⃑⃑⃑ = 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑥𝑛 𝑓𝑙𝑢𝑥 𝑣𝑒𝑐𝑡𝑜𝑟  1319 

 1320 

CANYUNs Reconstruction Building Process: 1321 

We utilized the sequence-to-reaction database provided in the CarveMe publication. We aligned 1322 

the unknown protein sequence fasta file with Diamond to calculate sequence alignment bitscores for 1323 

each protein. We then calculated reaction bitscores for each reaction in the universal biochemical 1324 

network utilizing the CarveMe method. For the CANYUN GENRE construction, the superset of all flux-1325 

carrying reactions determined using dgFBA for each of the know growth conditions are utilized to build a 1326 

draft network reconstruction. The draft network reconstruction is processed to determine all of the 1327 
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conditionally essential reactions for each of the draft model growth predictions (true and false 1328 

positives). The reactions that are conditionally essential for more false positives than true positives are 1329 

reactions that can be used to improve predictive accuracy. The reaction with the most leverage to 1330 

improve model predictions is removed from the CANYUNs GENRE to create the final model. The model 1331 

building process requires roughly 20 minutes from start to finish on an Intel Xeon processor with 4 1332 

cores. 1333 

CarveMe Model Generation: 1334 

We utilized CarveMe in a Windows 10 command line to generate a base model without 1335 

gapfilling and a gapfilled model with all known growth conditions. All default parameters were used.  1336 

E. coli Nissle Data Collection and Model Generation: 1337 

We cultured E. coli Nissle in Biolog plates using a TECAN microplate reader. Optical density 1338 

measurements were performed using a 600 nanometer wavelength. We used Biolog PM1 and PM2A 1339 

plates. The cultures were started with an overnight culture in M9 4% glucose medium at 37 degrees 1340 

Celsius from a single colony selection off an LB agar plate. The cells were centrifuged and washed with 1341 

PBS three times and finally resuspended and diluted into the base Biolog inoculation fluid. The resulting 1342 

OD of the Biolog inoculation fluid, after dilution, was calculated to be 0.01 OD.  1343 

We acquired the Nissle genome from EMBL. With this genome we implemented CANYUNs to 1344 

calculate CVs and build an organism specific GENRE.  1345 

Code and Availability: 1346 

We utilized Python and Cobrapy for all aspects of this project. All code and data used is available on 1347 

Github at github.com/Tjmoutinho/CANYUNs 1348 

 1349 

http://www.github.com/Tjmoutinho/CANYUNs
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4.6 Supplement 1350 

 1351 

Figure S4.1: E. coli Nissle PM1 Biolog Growth Data. There are 70 aerobic growth conditions and 34 anaerobic growth conditions.  1352 
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 1353 

Figure S4.2: E. coli Nissle PM2A Biolog Growth Data. There are 22 aerobic growth conditions and 9 anaerobic growth conditions.  1354 

 1355 
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Supplemental Table 4.1: Difference in E. coli Nissle growth compared to E. coli K12. Anaerobic data for K-12 growth in Biolog plate PM2A was 1356 

not available on EcoCyc.  1357 

Index Metabolite Name Biolog Plate and Well # Culture Environment E. coli K-12 Growth E. coli Nissle Growth 

1 Dulcitol PM1 – A12 Aerobic No Growth Growth 

2 L-Glutamic acid PM1 – B12 Aerobic No Growth Growth 

3 Glucuronamide PM1 – H7  Aerobic No Growth Growth 

4 N-Acetyl-D- Galactosamine PM2A – B1 Aerobic No Growth Growth 

5 D-Raffinose PM2A – D1 Aerobic No Growth Growth 

6 Salicin PM2A – D2 Aerobic No Growth Growth 

7 L-Alaninamide PM2A – G2 Aerobic No Growth Growth 

8 D-Lactitol PM2A – C3 Aerobic No Growth Growth 

9 L-Sorbose PM2A – D4 Aerobic No Growth Growth 

10 D-Arabinose PM2A – B5 Aerobic No Growth Growth 

11 D-Tagatose PM2A – D6 Aerobic No Growth Growth 

12 Arbutin PM2A – B8 Aerobic No Growth Growth 

13 β- Hydroxybutyric acid PM2A – E8 Aerobic No Growth Growth 

14 2-Deoxy- D-Ribose PM2A – B9 Aerobic No Growth Growth 

15 Laminarin PM2A – A10 Aerobic No Growth Growth 

16 M-Tartaric acid  PM1 – E2 Aerobic Growth No Growth 

17 D-Fructose- 6-Phosphate PM1 – E4 Aerobic Growth No Growth 

18 Acetoacetic acid PM1 – G7 Aerobic Growth No Growth 

19 α- Ketobutyric acid PM1 – D7 Aerobic Growth No Growth 

20 α- Hydroxybutyric acid PM1 – E7 Aerobic Growth No Growth 

21 5-Keto-D- Gluconic acid PM2 – E12 Aerobic Growth No Growth 

22 D-Serine PM1 – B1 Anaerobic Growth No Growth 

23 D-Saccharic acid PM1 – A4 Anaerobic Growth No Growth 

24 L-Galactonic acid-γ- Lactone PM1 – H9 Anaerobic Growth No Growth 

25 Methylpyruvate PM1 – G10 Anaerobic Growth No Growth 

1358 
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Chapter 5 Novel co-culture plate enables growth dynamic-based 1359 

assessment of contact-independent microbial interactions  1360 

 1361 

Thomas J. Moutinho Jr.1, John C. Panagides1, Matthew B. Biggs1, Gregory L. Medlock1, Glynis L. Kolling1, 1362 
Jason A. Papin1 1363 

1. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA 1364 

 1365 

Published in PLOS One; 2017 1366 

 1367 

5.1 Abstract 1368 

Interactions between microbes are central to the dynamics of microbial communities. 1369 

Understanding these interactions is essential for the characterization of communities, yet 1370 

challenging to accomplish in practice. There are limited available tools for characterizing 1371 

diffusion-mediated, contact-independent microbial interactions. A practical and widely 1372 

implemented technique in such characterization involves the simultaneous co-culture of distinct 1373 

bacterial species and subsequent analysis of relative abundance in the total population. However, 1374 

distinguishing between species can be logistically challenging. In this paper, we present a low-1375 

cost, vertical membrane, co-culture plate to quantify contact-independent interactions between 1376 

distinct bacterial populations in co-culture via real-time optical density measurements. These 1377 

measurements can be used to facilitate the analysis of the interaction between microbes that are 1378 

physically separated by a semipermeable membrane yet able to exchange diffusible molecules. 1379 

We show that diffusion across the membrane occurs at a sufficient rate to enable effective 1380 

interaction between physically separate cultures. Two bacterial species commonly found in the 1381 

cystic fibrotic lung, Pseudomonas aeruginosa and Burkholderia cenocepacia, were co-cultured 1382 

to demonstrate how this plate may be implemented to study microbial interactions. We have 1383 



74 | P a g e  
 

demonstrated that this novel co-culture device is able to reliably generate real-time 1384 

measurements of optical density data that can be used to characterize interactions between 1385 

microbial species.  1386 
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5.2 Introduction 1387 

There exists an extensive amount of interaction among microorganisms in microbial communities 1388 

(128–130). An improved understanding of these interactions and their governing mechanisms in a 1389 

physiologically relevant context will enable more informed treatment of polymicrobial infections and 1390 

more precise modulation of microbial communities (131–133). Interactions between microbes are 1391 

characterized using a variety of methods (134). Many interactions that take place within microbial 1392 

communities are due to diffusible molecules such as cross-fed metabolites, quorum sensing molecules, 1393 

and antimicrobial compounds (135,136). For example, muricholic acid, a microbe derived secondary bile 1394 

acid inhibits Clostridium difficile taurocholic acid-mediated spore germination (137). Interactions 1395 

mediated via diffusible molecules generally do not require the physical interaction of cells and are thus 1396 

contact-independent (138–141). These interactions are challenging to characterize with existing 1397 

approaches (139).  1398 

Common co-culture techniques include well mixed co-cultures (142), conditioned media exchange 1399 

(143), agar plate colony assays (144,145), and membrane divided co-culture such as Corning ® Transwell 1400 

® co-culture plates (146). Each of these methods are limited in their ability to phenotypically 1401 

characterize the growth dynamics of the microbes in co-culture. In a mixed co-culture it is challenging to 1402 

measure the individual growth curves of the two species using high-throughput techniques. It is possible 1403 

to use qPCR techniques to determine the relative abundance of each species; however, this is a 1404 

technically and logistically challenging experimental technique requiring the development of specific 1405 

primers for each species (147,148). Conditioned media exchange experiments are limited to 1406 

unidirectional interactions which do not capture the dynamic response of cells to changing conditions 1407 

(143). The Corning ® Transwell ® culture plates keep cells physically separate while allowing for contact-1408 

independent interactions, yet the horizontal membrane does not allow for the collection of optical 1409 

density based continuous growth curve data for each culture.  1410 
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Since the advent of semipermeable membrane-divided co-culture tools (149,150), to the best of 1411 

our knowledge, this concept has never been interfaced with automated plate reader technology for the 1412 

high-throughput continuous quantification of optical density-based phenotypic assessment of 1413 

interacting cultures. Optical density of liquid bacterial cultures has been used for a multitude of 1414 

phenotypic studies that aim to determine the relative changes in cellular growth subject to various 1415 

environmental conditions (151–156). We present a novel co-culture plate with a vertically oriented 1416 

membrane that maintains physical separation of two liquid cultures, yet allows for real-time contact-1417 

independent interactions across the membrane. The vertically oriented membrane allows for the co-1418 

culture plate to interface with a standard 96-well plate reader that is able to continuously monitor the 1419 

optical density of both cultures on either side of the membrane. This culture tool is a simple, 1420 

convenient, and inexpensive method for generating individual growth curves of two batch bacterial 1421 

cultures as they interact across a membrane.  1422 

5.3 Materials and Methods 1423 

Strain Information 1424 

We used Escherichia coli (K12), Pseudomonas aeruginosa (PA14), and Burkholderia cenocepacia 1425 

(K56-2) in this study.  1426 

Media Preparation 1427 

Lysogeny broth – Miller (LB) medium: tryptone (10g/L), yeast extract (5g/L), NaCL (10g/L), pH 1428 

was adjusted to 7.0 with NaOH. In several experiments the LB media was diluted with 1x Dulbecco’s 1429 

Phosphate Buffered Saline (DPBS) (Gibco by Life Technologies). This dilution is indicated throughout the 1430 

paper as the percentage of LB that is in the diluted media.  1431 

Sterilization Procedures 1432 

Before each experiment all parts of the co-culture plate were steam autoclaved at 121°C, 1433 

100kPa, for 60 minutes. The polycarbonate membranes (IsoporeTM Membrane Filter, 0.1 µm VCTP; EDM 1434 
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Millipore) were prepared by soaking in 70% ethanol for 10 minutes. For further description and 1435 

rationale, see the Supplement. In a biosafety cabinet, the ethanol-soaked membranes were clamped 1436 

between the wells and the assembly was left for 10 minutes to allow the ethanol to evaporate. For plate 1437 

assembly protocol and visual aids, see the Supplement.  1438 

Counting of Colony Forming Units (CFUs) 1439 

CFUs were counted as previously reported (157). Briefly, a serial dilution down to 10-7 for each 1440 

of the original cultures was prepared, 10 mL of each dilution was dripped onto LB agar plates and left to 1441 

dry for roughly 10 minutes. The CFU plates were then incubated for the appropriate amount of time for 1442 

visible colony growth. Colonies were then manually counted. Reported counts were done in 1443 

quadruplicate (n=4).  1444 

Growth Curve Collection and Processing 1445 

Each well of the co-culture plate was loaded with 2 mL of media. Where appropriate, wells were 1446 

inoculated at a calculated OD600 of 0.0005 with the bacterial strain specified. The co-culture plate was 1447 

then placed into a Tecan Infinite M200 Pro, incubated at 37°C, shaken linearly at 3mm 450 rpm, and OD 1448 

measurements were recorded at 600 nm every 5 minutes. All of the experiments were conducted in 1449 

triplicate with biological replicates. The data from each experiment was exported as an Excel file and 1450 

processed in MATLAB (R2014b; Mathworks). The growth curve plots consist of the average (bold line) 1451 

displayed with the maximum and minimum values (as shaded regions around the average line). All 1452 

growth experiments were conducted in triplicate. The MATLAB scripts used for all data processing are in 1453 

the Supplemental Data.  1454 

Scanning Electron Microscopy (SEM) 1455 

Following an E. coli experiment with the co-culture plate, the polycarbonate membranes were 1456 

fixed for 30 minutes with glutaraldehyde (2% by vol.). Followed by three 5-minute rinse steps in 1x 1457 

DPBS. Samples were then dehydrated using increasing concentrations of ethanol, 10 minutes each in 30, 1458 



78 | P a g e  
 

50, 70, 80, 90, 100, 100% (ethanol in water). The membranes were further dehydrated for 10 minutes in 1459 

HMDS (hexamethyldisilazane; Sigma). Finally, the membranes were stuck to SEM stubs with adhesive 1460 

carbon strips using the Phenom starter kit (Ted Pella, Redding, CA, USA) and sputter coated with gold 1461 

using a SCD005 sputter coater (Bal-tec, Los Angeles, CA, USA). The final samples were imaged using a 1462 

Sigma VP HD Field-emission SEM (Zeiss, Pleasanton, CA, USA) at 10,000x magnification through the 1463 

University of Virginia Advanced Microscopy Facility. 1464 

Device Design and Machining 1465 

All of the parts for the co-culture plate were designed in SolidWorks 2015; all of these files can be 1466 

found in the Supplemental. The files were exported as STL files and G-code was written for CNC 1467 

machining. The aluminum parts were cut using a waterjet cutter and the holes were tapped by hand. 1468 

The polypropylene wells were started using a waterjet cutter and finished using a milling machine. The 1469 

polycarbonate was also cut using the waterjet cutter. All parts are designed to be able to be CNC 1470 

machined without the use of a waterjet cutter. The silicone gaskets were made using a laser cutter 1471 

(Universal laser Systems X-660 with a 50 watt CO2 laser). For a detailed list of the parts please refer to 1472 

the Supplement.  1473 

5.4 Results 1474 

Design and Description 1475 

The vertical membrane co-culture plate consists of eight co-culture chambers, each chamber is 1476 

composed of two wells separated by a membrane that is replaced before each experiment. Each well is 1477 

designed to hold 2 mL of culture and this 4 mL of total liquid in each chamber. All of the materials used 1478 

for the body of the plate can be sterilized via autoclave. The outer dimensions and wells on the plate 1479 

line up with the dimensions and wells of a standard Corning ® 96-well plate, allowing it to interface with 1480 

any plate reader designed to read 96-well plates. Each of the co-culture wells lines up with two wells on 1481 
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a 96-well plate, allowing for an internal technical replicate to be collected for each well to reduce noise 1482 

(Figure 5.1A). 1483 

The well walls are machined polypropylene, bolted to a machined aluminum base. Clamped 1484 

between the polypropylene wells and aluminum base are clear polycarbonate pieces acting as the 1485 

bottom of the wells. A silicone gasket creates a liquid tight seal on the bottom edge of the wells. 1486 

Additional silicone gaskets are adhered to the side ports in the well walls to create a seal against the 1487 

membrane which is clamped between the wells. The location of the membrane is indicated in Figure 1488 

5.1B. Any type of membrane can be used in this plate; this point is discussed in the Materials and 1489 

Methods section.  1490 

The base of the plate is composed of three separate parts. Each of the wells is first clamped 1491 

onto the three base parts and these parts are subsequently clamped together horizontally after the 1492 

membranes are in place. The dual clamping design allows for adequate force to be applied to create 1493 

water tight seals both against the bottom of the wells and the sides where the membranes are placed. 1494 

For further description of the design and machining of the plate, refer to the Supplement. Additionally, a 1495 

video of the assembly process is provided, see the Availability section below.  1496 
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 1497 

Figure 5.1. Co-culture plate design. 1498 

The co-culture plate consists of eight individual co-culture chambers. Each chamber consists of two wells 1499 
that are able to hold liquid cultures that are physically separated by a semi-permeable membrane that 1500 
allows for diffusion-mediated interactions. A representative isometric mechanical drawing of a single co-1501 
culture chamber is shown in (A), note it is composed of two wells. For a better view of the chamber, a 1502 
cross-sectional view of it is shown in (B); the semi-permeable membrane is labelled. The co-culture plate 1503 
composed of eight co-culture chambers has the same profile as a standard 96-well plate. Each well on 1504 
the co-culture plate aligns with two wells of a 96-well plate and the culture volume is 2 mL per well (4 mL 1505 
total per chamber) (C). An SEM image captures E. coli cells fixed on the surface of a polycarbonate 1506 
membrane with 0.1 µm pores (D); the scale bar is 2 µm. 1507 

Validation 1508 

The co-culture plate was evaluated for basic functions to guide the interpretation of the data 1509 

generated using this novel platform. First, we explored whether the rate of metabolite diffusion across 1510 

the membrane would influence growth dynamics of a culture. Second, we confirmed that the 1511 

membrane was a sufficient barrier to maintain physical isolation between wells. Finally, we 1512 

A B 

C D 

Membrane 



81 | P a g e  
 

characterized interactions of a microbe with itself across the membrane, as a control for later multi-1513 

species co-cultures. 1514 

We characterized the impact that diffusion of metabolites across the membrane might have on 1515 

growth characteristics. It was composed of four concentrations of two conditions, ‘pre-mixed’ and 1516 

‘gradient’ (Figure 5.2). The ‘pre-mixed’ condition is inoculated on one side of the membrane and has 1517 

equal concentrations of LB (diluted with DPBS) on either side. The ‘gradient’ condition is also inoculated 1518 

on one side of the membrane, but starts with all of the LB on the opposite side. Therefore, for growth to 1519 

occur on the DPBS-inoculated side, the LB must diffuse across the membrane. The total quantity of LB 1520 

provided between each condition was held constant. These two conditions were assayed at four 1521 

different concentrations to demonstrate the observed behavior at various concentration gradients 1522 

across the membrane, ranges of maximum optical density, and resulting population densities. We 1523 

observe that there are only slight differences between the paired conditions at all four concentrations. 1524 

These results indicate that the essential metabolites in LB are able to diffuse across the membrane at a 1525 

sufficiently rapid rate to allow E. coli to grow similarly to the control case.  1526 

 1527 

Figure 5.2: Real-time diffusion of metabolites across a membrane. 1528 
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One side of each co-culture chamber was inoculated with E. coli, as seen in the pictorial legend on the 1529 
right, each box represents a chamber with a black dashed line representing the membrane. The terms 1530 
‘pre-mixed’ and ‘gradient’ describe the initial media conditions. The gradient condition was loaded with 1531 
LB on one side and 1x DPBS on the other. The pre-mixed condition was loaded with LB that was diluted in 1532 
half with DPBS to simulate complete diffusion of LB across the membrane. These two conditions were 1533 
tested with four initial concentrations of LB, 25%, 50%, 75%, and 100%, all diluted using 1x DPBS. The 1534 
final pre-mixed concentration of the medium for each well was 12.5%, 25%, 37.5%, and 50% LB. This 1535 
experiment was cultured as described in the methods for 24 hours. This experiment was conducted in 1536 
triplicate (n = 3).  1537 

The data for Figure 5.2 was generated in triplicate such that there were 24 individual co-culture 1538 

chambers inoculated on one side of the membrane only. Of these 24 individual cases, the optical density 1539 

of the negative control side was measured to test that the membrane serves as a sufficient barrier to E. 1540 

coli crossing from one well to the other. We never observed E. coli contamination from one well to 1541 

another, therefore the design of the plate and size of the pores in the membrane (Figure 5.1D) are 1542 

sufficient to maintain complete physical separation between the two sides of each chamber and yet 1543 

allow for the exchange of nutrients and small molecules to support growth without a notable defect in 1544 

the associated growth dynamics for the conditions we tested. Pictures of the plate can be seen with co-1545 

cultures at the end point in the Supplemental (Figure S5.2).  1546 

One potential application for this co-culture plate is the characterization of growth dynamics for 1547 

two different species on either side of the membrane. To determine the basic characteristics of co-1548 

culture between competing cultures, we cultured E. coli in isolation on one side of the chamber for one 1549 

condition and two E. coli populations were cultured in adjacent wells separated by the membrane and 1550 

thus competing for nutrients (Figure 5.3). Both of these conditions were assessed at 50% LB (diluted 1551 

with 1x DPBS) and 100% LB. The condition in which E. coli is isolated on just one side of the co-culture 1552 

chamber acts as a reference point compared to the case in which two E. coli populations are competing. 1553 

For the condition in which E. coli is competing and cultured with 100% LB, the growth characteristics are 1554 

similar to those observed when E. coli is isolated and cultured in 50% LB. These data indicate that the 1555 

isolated and competing conditions with a certain microbe and media condition can act as an 1556 
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approximation for the hypothetical case in which two different species in co-culture on either side are in 1557 

complete metabolic competition with each other. In this context, complete metabolic competition 1558 

means that the cultures on either side have the same metabolic requirements, this is only the case when 1559 

the same species are on both sides of the membrane. The growth curve representing complete 1560 

metabolic competition can be used in tandem with the isolated condition in which there is no metabolic 1561 

competition for a phenotypic assessment of interactions between two different species in co-culture 1562 

across the membrane.  1563 

 1564 

Figure 5.3. Comparison of isolated versus competing cultures. 1565 

(A) The green (100% LB) and red (50% LB) lines are the isolated culture condition that have E. coli 1566 
cultured on only one side of the membrane with blank media on the other. The OD for the side of the well 1567 
that is not inoculated is plotted in black (it maintains the original OD; there is no growth, as expected). In 1568 
this condition, E. coli has access to all of the nutrients on both sides of the membrane, but cell growth is 1569 
physically constrained to one side. The blue (100% LB) and purple (50% LB) dashed lines are the 1570 
competing culture condition that have E. coli cultured on both sides of the membrane. For the competing 1571 
cultures, the growth curves from both sides are plotted individually. In this condition, each E. coli 1572 
population must compete for the available nutrients. The maximum and minimum values of the 1573 
generated growth curves, conducted in triplicate, are displayed as shaded regions around the plotted 1574 
averages. (B) The biomass produced is approximated by the CFU count of each culture. The CFU counts 1575 
for the isolated condition as displayed are divided in half to compare to the competing condition, 1576 
discussed further in the text. These data are the result of four experiments. The boxplot whiskers 1577 
represent +/- 2.7σ from the mean. 1578 



84 | P a g e  
 

A follow up experiment was conducted to determine if the same number of CFUs, from both 1579 

sides of the membrane, are produced in the competing versus the isolated conditions. Samples were 1580 

taken from the 50% LB isolated and competing conditions at 10 hours into incubation. The 50% LB 1581 

condition was chosen to limit the impact of OD non-linearity and inhibition of growth due to spatial 1582 

restrictions and prioritize nutrient depletion as the major limiting factor on biomass production. The 1583 

bacteria were diluted, plated, and CFUs were counted (Figure 5.3B). The CFU counts for the isolated 1584 

condition were divided in half to adequately compare to one side of the competing condition. This was 1585 

done because all of the biomass in the insolated case is located on one side whereas the biomass is split 1586 

evenly on either side in the competing condition. It can be seen that the same total number of CFUs are 1587 

present in both the competing and the isolated conditions from Figure 5.3A. The equivalence between 1588 

the two conditions in this boxplot indicates that the same number of viable cells are produced in the 1589 

two different conditions.  1590 

Co-culture of Multiple Species 1591 

Infection with P. aeruginosa (PA) is pervasive in cystic fibrosis patients (158). Co-infection with 1592 

B. cenocepacia (BC) can lead to increased mortality rates (159). These pathogens have been shown to 1593 

interact in cystic fibrosis infections (160). We used the co-culture plate to determine the growth 1594 

characteristics when PA and BC in which media, nutrients, and small molecules are shared. The 1595 

condition in which a microbe is competing with itself across the membrane is an approximation of 1596 

complete metabolic competition. The competing and isolated conditions, as defined in Figure 5.3, can 1597 

be used as points of reference when assessing the impact another species has on a culture. In this case, 1598 

we can see that when PA and BC are co-cultured, BC growth is negatively impacted by the presence of 1599 

PA (dashed purple), more so than when it is competing with itself (dashed red). However, it appears that 1600 

PA is unaffected by the present of BC (solid purple vs. solid blue).  1601 
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  1602 

Figure 5.4. Growth curves of P. aeruginosa (PA) and B. cenocepacia (BC) in co-culture. 1603 

The culture conditions can be seen in the legend on the right side of this figure. All wells are started with 1604 
100% LB. The purple lines are gathered from the co-culture of PA and BC. The isolated PA and BC cultures 1605 
are the solid blue and red lines respectively. The black lines are controls from the side of the wells that 1606 
were not inoculated for the isolated PA and BC cultures. The black line slightly increases (Blank 1) as a 1607 
result of pyoverdine (produced by PA) that partially absorbs at 600 nm. This result is discussed further in 1608 
the Supplement (Figure S5.3). The growth curves from each of the two competing PA and BC cultures 1609 
(dashed blue and red lines respectively) are nearly identical (similar to blue and purple in Figure 5.3) and 1610 
thus are averaged to simplify the plot. The growth of BC (dashed purple) is negatively impacted when in 1611 
co-culture with PA (solid purple).  1612 

 1613 

5.5 Discussion 1614 

In this study, we present a novel tool to enable dynamic growth measurements of individual 1615 

species interacting in co-culture. Mixed co-culture studies rely on a number of methods for 1616 

differentiating between specific species when a semi-permeable barrier is not utilized. When applied to 1617 

mixed co-culture experiments, CFU assays require that populations can be discriminated based on 1618 

colony morphology (161). Similarly, flow cytometry based counting assays require discrimination by 1619 

cellular morphology (162). Neither of these assays can be used to study co-cultures of morphologically 1620 

similar populations. Species-specific qPCR assays can be used when genomic sequences are available 1621 
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(147,163,164). However, manual sampling requires sufficient volume for DNA extraction and therefore 1622 

greatly constrains possible experimental designs. This requirement of large culture volumes is a 1623 

limitation shared by all methods that require periodic manual or automated sampling of the culture. 1624 

Additionally, RT-qPCR assays must be developed for each species in a co-culture study while limiting 1625 

nonspecific amplification. Species-specific delivery or expression of fluorescent markers are used to 1626 

discriminate between microbes (161), but several experiments are required during the design of each 1627 

marker to ensure specificity and stability of the marker. Additionally, genetic alteration of the microbes 1628 

of interest may be undesirable. While most of these methods can be used in a broader context than 1629 

batch co-culture in a liquid medium, the experimental design and optimization required for them limits 1630 

throughput relative to the co-culture plate presented here.  1631 

As presented, this novel co-culture plate is able to maintain physical separation of two interacting 1632 

cultures, while allowing for diffusion mediated interactions. Metabolites across the membrane appear 1633 

to diffuse across at a sufficiently high rate to not be a limiting factor for growth dynamics. We are able 1634 

to use the plate to investigate the co-culture of two different species with the use of self-competing 1635 

controls and isolated culture controls. These controls can be used as a reference for the experimental 1636 

condition of two species interacting across the membrane.  1637 

A particular strength of this co-culture plate is the ability to measure optical density data in real-1638 

time. This high temporal resolution captures complex growth dynamics that might not be observed with 1639 

methods that require manual sampling of the culture. Separating the microbial cultures with a 1640 

membrane eliminates the need to differentiate the individual species in co-culture. Furthermore, no 1641 

genetic tools are required in order to screen microbes in this co-culture plate. One possible use of this 1642 

device could be to co-culture a single species in one well with a complex community in the other well. 1643 

Although it is not developed here, the wells on the co-culture plate have an adequate volume of media 1644 

to allow for additional multi-omics analyses to be conducted on the cultures at the end point of the 1645 
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experiment. Such analyses might involve the evaluation of concentration gradients of metabolites across 1646 

the membrane, or to conduct transcriptomics of cells that are interacting with each other. Furthermore, 1647 

this novel tool makes it exceptionally simple to generate phenotypic data on the dynamic interactions 1648 

between two microbial species. The setup for such an experiment (e.g. Figure 5.4) requires less than two 1649 

hours (See Supplement).  1650 

Although the proposed co-culture plate, in its current form, accommodates only one complete 1651 

two species interaction experiment, throughput can be improved in two ways. Parallelized experiments 1652 

using additional co-culture plates in conjunction with miniaturized plate readers (165) allows for the 1653 

collection of endpoint metabolomics samples. As for experiments that do not require such culture 1654 

volumes, the current co-culture plate design could be scaled down to a format with a greater number of 1655 

smaller wells. This redesign would be optimized for rapid assays to identify biologically interesting pairs. 1656 

Additional limitations of the proposed co-culture plate include the restriction to batch culture 1657 

experiments, and the lack of being able to assess contact-dependent interactions due to physical 1658 

separation with the membrane.  1659 

We have presented a novel co-culture plate that utilizes a vertical membrane to maintain physical 1660 

separation between two cultures, yet allows for contact-independent interactions. This culture plate 1661 

allows for high-throughput and high-resolution phenotypic assessment of microbial interactions. As well 1662 

as interfacing with currently available plate readers, thus allowing for the rapid generation of optical 1663 

density growth curves.  1664 

Availability 1665 

The parts list, technical drawings, experimental data, and code are all available in the Supplement and 1666 

Supplemental Data. Supplemental Data is located at: https://github.com/csbl/CoculturePlate  1667 

https://github.com/csbl/CoculturePlate
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5.6 Supplement 1678 

Parts List 1679 

The parts list for one complete co-culture plate: 1680 

1. (8) 25 mm EMD Millipore 0.1 µm Isopore polycarbonate membranes (Fisher) 1681 

2. (1) Polypropylene Stock (1/2” thickness machined to size) (McMaster-Carr, Part No. 8782K73) 1682 

3. (48) 0-80, 9/16" Fully Threaded 18-8 Stainless Steel Socket Cap Screw (McMaster-Carr) 1683 

4. (64) No. 0, 0.062" ID, 0.156" OD 18-8 Stainless Steel Flat Washer (McMaster-Carr) 1684 

5. (12) 1-64, 3/8" 18-8 Stainless Steel Socket Head Screw (McMaster-Carr) 1685 

6. (12) 1-64, 3/16” 18-8 Stainless Steel Button Head Screw (McMaster-Carr) 1686 

7. Food-Grade High-Temperature Silicone Sheet (60A) with Acrylic Adhesive Back (custom laser cut 1687 

gaskets) (McMaster-Carr, Part No. 86045K67) 1688 

8. Smooth Finish, 0.02", Transparent, Impact-Resistant Polycarbonate Sheet (cut to size with 1689 

waterjet) (McMaster-Carr, Part No. 85585K17) 1690 

9. (1) Breathe-Easy ® membrane, sterile (Sigma Aldrich)  1691 

 1692 

 1693 

Figure S5.1. Co-culture plate parts and tools used for one complete plate. 1694 
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 1695 

Detailed Description of Co-culture Plate Design 1696 

Throughout this technical description, the term 'chamber' will refer to an entity consisting of 1697 

two 'wells' separated by a semipermeable membrane. Thus, the fully assembled device houses 8 co-1698 

culture chambers each consisting of 2 individual wells for a total of 16 wells on the device. The 1699 

disassembled device consists of 3 major parts: an 8-well central part and two 4-well side parts. Each 1700 

sided part is secured to the central part by 3 stainless steel 1-64, 3/16" 18-8 stainless steel screws for a 1701 

total of 6 horizontal screws (see video for visualization). The base components of the central and side 1702 

parts are made of machined aluminum. Each well is made of polypropylene. All discussed parts can be 1703 

autoclaved and cleaned with 70% ethanol.  1704 

During assembly, silicone gaskets are secured via acrylic adhesive around the longitudinal face 1705 

of each well which uniformly clamp the polycarbonate membrane and to a clear polycarbonate well-1706 

bottoms (windows) which are placed under each well to provide a transparent bottom surface of each 1707 

well for transmission based spectrophotometry. The vertically-oriented membrane is situated between 1708 

2 gaskets and secured in place when the side parts are secured to the central part. This design of the co-1709 

culture plate results in a slightly variable dimension along the short edge of the plate due to the 1710 

horizontal clamping mechanism and variability in the compression of the silicone gaskets between the 1711 

wells. This variation in the plate width does impact the alignment of the wells because the reading 1712 

locations of the wells for a 96-well plate are within the perimeter of the co-culture plate wells. 1713 

Disassembly allows for replacement of the gaskets, when necessary, and facilitates the application of 1714 

semipermeable membranes between the wells. Every part of the device is reusable with the exception 1715 

of the polycarbonate membranes which need to be replaced with every use.  1716 

A video demonstrating the assembly of the co-culture plate is located at: 1717 

https://www.youtube.com/watch?v=ic3vFLgMHLo  1718 

https://www.youtube.com/watch?v=ic3vFLgMHLo
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Detailed Description of Co-culture Plate Machining 1719 

All of the SolidWorks parts and assembly files are provided in the Supplemental and at: 1720 

https://github.com/csbl/CoculturePlate  1721 

Detailed Co-culture Plate Culture Protocol 1722 

Please find a complete protocol for sterilization, assembly, and plate loading below: 1723 

I. STERILIZATION 1724 

Before each experiment: 1725 

1. Assemble plate by applying all gaskets and bolts to hold wells and well bottoms in place.  1726 

2. Assure that the vertical bolts holding the polypropylene wells to the aluminum baseplate are 1727 

loose, to ensure the polypropylene does not deform in autoclave due to applied tension. Steam 1728 

autoclave the central and side parts at 121°C for 60 minutes in separate autoclave bags with the 1729 

gaskets facing away from each other to eliminate the possibility of the gaskets adhering to each 1730 

other during the autoclaving process (the non-adhesive sides of cleaned silicone will adhere due 1731 

to strong Van der Waal forces if autoclaved while in contact with each other). 1732 

3. Tools and bolts can be cleaned with 70% ethanol.  1733 

4. With clean scissors, trim approximately 4 mm from the bottom of 8 circular 25 mm membranes 1734 

and place in a sterile shallow dish of 70% ethanol for 10 minutes prior to use. The flat edge of 1735 

the membrane will eventually be positioned along bottom edge of the well (See video). 1736 

a. Warning: avoid touching the central portion of the membrane to avoid damaging the 1737 

area essential for allowing diffusion. 1738 

b. Membranes were ethanol-sterilized as opposed to autoclaved because autoclaving 1739 

reduces the passive diffusion through the membrane and surface hydrophobicity. Data 1740 

not shown. 1741 

II. ASSEMBLY 1742 

Under biosafety hood: 1743 

1. Allow to cool and remove parts from autoclave packaging. Using proper sterile technique, 1744 

uniformly tighten vertical bolts around wells to create seal with bottom gaskets. Ensure each 1745 

part is placed on a sterile surface (such as the inside surface of the autoclave bag after the 1746 

plastic covering has been removed).  1747 

2. Using tweezers, remove membranes from ethanol dish and place on side gaskets such that the 1748 

straight cut edge aligns with the bottom of the well. 1749 

3. Carefully align and clamp side part on with 1-64, 3/8" 18-8 stainless steel socket head cap 1750 

machine screws (6 total for both sides). Repeat with the other side. 1751 

4. Notice that the membranes extend above the height of the device, these will interfere with the 1752 

Breathe-Easy membrane. Using the tweezers to apply slight tension to the membranes, use a 1753 

scalpel to trim the membranes to be flush with the tops of the wells. This will allow the Breathe-1754 

Easy membrane to be secured to the top face of the device with minimal discontinuities. Inspect 1755 

membranes and gaskets for any deformity and adjust if necessary. 1756 

https://github.com/csbl/CoculturePlate
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5. Let ethanol evaporate from membranes (approximately 10 minutes) and proceed to plate 1757 

loading. 1758 

III. LOADING 1759 

The ideal volume for each well is 2 mL to prevent contact with the Breathe-Easy membrane and 1760 

formation of bubbles. Wells can then be inoculated with cell according to standard microbiology 1761 

protocols. The Breathe-Easy membrane then stuck to the top surface avoiding wrinkles. The membrane 1762 

is slit using a scalpel blade for each well to avoid suctioning of the membrane and contact with the 1763 

below culture. Care must be taken to ensure no cross-contamination occurs as a result of making the 1764 

slits. The blade can be clean with 70% ethanol when necessary between wells. The co-culture plate can 1765 

then be placed in a standard 96 well plate reader. The total setup time for an experiment take 1766 

approximately 2 hours accounting for autoclave time.  1767 

Growth in the Co-culture plate 1768 

 1769 

Figure S5.2. Endpoint image of co-culture plate after representative experiment from Figure 5.2. Note 1770 
that the lower wells are all void of bacterial growth, while the well on the other side of the membrane is 1771 
inoculated with an active culture of E. coli. Sterility of the wells is maintained by the membranes.  1772 

 1773 
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 1774 

Figure S5.3. Co-culture of P. aeruginosa and B. Cenocepacia. Well 1a is PA, 1b is BC, 5a and 5b are a 1775 
technical replicate of that, these are the experimental co-cultures. Wells 3a and 3b are the isolated 1776 
condition of PA, 7a and 7b are the competing condition. Wells 4a and 4b are the isolated condition of BC, 1777 
8a and 8b are the competing condition. Wells 2a, 2b, 6a, and 6b are the isolated and competing 1778 
conditions for PA and BC mixed, these data are not presented in the manuscript. P. aeruginosa shows 1779 
clear production of pyoverdine (green pigment) in the chambers it’s cultured in. The production of 1780 
pyoverdine has been previously reported (166). 1781 

 1782 

  1783 
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Chapter 6  Contributions, Future work, and Discussion 1784 

Here I discuss each of the unique contributions I have made during my dissertation and the 1785 

future work that will occur or as already occurred resulting from my efforts.  1786 

6.1 Contributions and Future Work 1787 

Chapter 2 and 3: Aim 1 1788 

In my first aim, I identified the top 12 metabolites that have the greatest potential to diagnose 1789 

infants that are at risk of developing PNAC. These metabolites are readily measurable in the infant stool 1790 

and will likely be identifiable via existing detection technologies that can be implemented at the point of 1791 

care. The future progress of this aim may ultimately result in a diagnostic test that is used in the NICU to 1792 

improve infant health outcomes. In a broader context, the concept behind this type of diagnostic test is 1793 

a, surprisingly, novel technique that is not currently utilized in the NICU. There are no common 1794 

diagnostic techniques that are currently used in the NICU that rely on testing stool samples. However, 1795 

the NICU may be one of the best areas of medicine to implement this type of technology because the 1796 

nutritional inputs for infants are tightly regulated, thus providing additional information that can be 1797 

utilized when analyzing waste products.  1798 

Chapter 4: Aim 2  1799 

In my second aim, I developed a method (CANYUNs) that allows for the efficient procedural 1800 

generation of GENREs. This method emphasizes the difference between a metabolic network 1801 

reconstruction and context specific predictive models that can be established based on an organism 1802 

specific network and the biological evidence that is available.  1803 

The next step in this line of work is to generate additional data to further extend the CANYUNs 1804 

concept. Currently, CANYUNs is capable of quantifying uncertainty in reaction selection for network 1805 

building when utilizing genomic data. However, transcriptomics and metabolomics data also offer a 1806 

great deal more information about the reactions that may be active in a given growth condition. I have 1807 
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already generating paired metabolomics and transcriptomics data for E. coli Nissle growing anaerobic in 1808 

9 distinct minimal media growth conditions. Each carbon source present in the media conditions is 1809 

present in the mucus layer of the human GI tract. These data will allow for the extension of CANYUNs to 1810 

incorporate two additional data types that are exceptionally important for understanding metabolism. 1811 

All cultures were anaerobic to increase the overall mass of carbon that results as fermentation 1812 

byproducts, opposed to carbon dioxide.  1813 

Chapter 5: Aim 3  1814 

In my third aim, I designed and developed an experimental tool for the pairwise co-culture of 1815 

bacterial liquid cultures. This device provides a unique method for co-culturing bacteria to investigate 1816 

the contact-independent interactions that occur between two different types of bacteria. We validated 1817 

and demonstrated the value of this device.  1818 

Following the publication of this work, I went on to redesign the plate to make several 1819 

improvements (Figure 6.1). The primary improvement I made was to reduce the number of parts 1820 

required for the manufacturing of the device. Furthermore, we applied for a provisional patent 1821 

application through the UVA licensing and venture group (LVG).  1822 
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 1823 

Figure 6.1: Version 2 of the Co-culture Plate. 1824 

The second version of the co-culture plate has fewer parts and requires much less time to build, clean, 1825 
and assemble.  1826 

6.2 Concluding Dissertation Discussion 1827 

My dissertation has centered around my passion for developing tools that solve unique, yet 1828 

important, problems. Diagnosing diseases in the NICU by utilizing waste materials, rather than limited 1829 

blood samples, is a type of diagnostic technology that has yet to reach the clinic. The procedural 1830 

generation of GENREs when using CANYUNs results in structurally unique metabolic networks that are 1831 

designed to accelerate the field toward the generation of more accurate community modeling. Finally, 1832 

the co-culture plate is a completely novel experimental tool that provides the research with unique data 1833 

for studying microbial interactions, a much-needed data type for understanding microbial community 1834 

dynamics. All three of my aims focus on the development of tools that will improve our understanding 1835 

of human associated microbiomes.  1836 

Engineering tools: My philosophy as an engineer 1837 

Engineers create solutions for problems, often times the solution takes the form of a tool. 1838 

Typically, the best way to solve a problem involves identifying the root cause and finding an optimal way 1839 
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to resolve it. During the optimization process there are often times competing constraints and 1840 

objectives that need to be considered. Effectively, this means that developing tools is an iterative 1841 

process of design and testing providing engineers with necessary information to solve a problem.  1842 

Computational modeling has become an absolutely essential aspect of engineering. Through the 1843 

use of computational power, engineers today are able to perform complex calculations that were never 1844 

even dreamt of before computers were conceptualized. As student, I am able to access computational 1845 

modeling tools that allow me to model and simulate the fluid dynamics of mechanic systems as complex 1846 

as jets that consist of millions of individual parts. Just as we are able to model complex mechanical 1847 

systems interacting with the external environment, I dream of the day when we will be able to apply 1848 

computational modeling to complex biological systems with enough accuracy to be applied on an 1849 

individual level in the clinic.  1850 

Pushing GENREs toward the clinic 1851 

Systems biology and specifically quantitative computational modeling are two tools that are 1852 

beginning to demonstrate their utility in the medical field. Human physiology is complex and is 1853 

increasingly demanding more sophisticated tools to continue progress toward eradicating diseases. An 1854 

important path to engaging more engineers in the development of medical treatments and technology 1855 

is, in part, developing computational modeling tools to predict how biological systems behave.  1856 

GENREs are tools that will provide direct utility in the clinic for diagnosing complex diseases. 1857 

Metabolism is one of the most foundational aspects of life; the study of how metabolites are 1858 

enzymatically broken down and then utilized for the building blocks of life. The study of prokaryotic 1859 

organisms is a logical starting point for designing GENRE tools and methods because the governing 1860 

objectives of single cellular life is far simpler than mammalian cells. It is often enough to assume that a 1861 

bacterial population is metabolizing a nutrient source in order to maximize growth, the production of 1862 
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cellular biomass. The complexity of studying bacteria comes from trying to understand how they are 1863 

behaving as an ecosystem in the context of human health. There is beauty in the fact that the most 1864 

genetically complex ‘organ’ in the human body may also be the access point through which GENREs and 1865 

systems biology are introduced to clinical medicine.  1866 

An Ode to Systems Biology 1867 

I think it is fitting to end this dissertation by exploring why the concept of systems biology has 1868 

captured my attention for the past 5 years. As a biomedical engineer with a deep interest in the GI 1869 

microbiome, I identified that the field of systems biology encompasses many existing tools that have 1870 

been designed to turn complex biological data into interpretable knowledge about biology. There 1871 

appear two distinct phases of biology that have dominated the field through history. First the 1872 

characterization of organisms that have evolved across the ecosystems of the globe, and second the 1873 

study of biological mechanisms through reductionism. The application of advanced mathematics such as 1874 

optimization, graph theory, and machine learning have connected the two foci of biology. We are now 1875 

able to leverage all of the known foundational biological information that was painstakingly collected via 1876 

reductionist techniques to better understand the governing mechanisms of complex biological systems. 1877 

These techniques, when paired with high-throughput data collection, are a fruitful path forward for 1878 

solving some of the greatest evolutionary challenges the humanity has faced for millennia. I feel 1879 

fortunate to have happened upon constraints-based computational modeling. Within systems biology, 1880 

the logical framework that I have established for this area of study seems to be a powerful way of 1881 

viewing biology in general. Evolution is functionally an optimization problem; there is great potential 1882 

and utility in trying to understand the constraints and objectives that govern the evolution of organisms.  1883 

6.3 Publications 1884 

Moutinho TJ Jr, Papin JA, Powers DA, Levy S, Baveja R, Hefner I, Mohamed M, Abdelghani A, Baker R, 1885 

Moore SR, Hourigan SK. Stool metabolome early predictors of infants who will develop parenteral 1886 
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