

 Real-Time University of Virginia Bus Routes Display
System

Dan Tran (Computer Engineering), Kelly Zhou (Computer Engineering, Electrical Engineering),
Zayda Deese (Computer Engineering, Electrical Engineering), Robel Woldegyorgis (Computer

Engineering), and Anthony Nosal (Electrical Engineering)

Creating a user-friendly visual of the University of Virginia’s bus lines and corresponding routes
via a physical display to allow for easy access for bus riders.

 2024

1

Table of Contents

Statement of Work…………..…………..…………..…………..…………..…..………..……….2

Abstract…………..…………..…………..…………..…………..………..…………..…………..4

Background…………..…………..………………..…………..……..………………..…………..4

Project Description…………..…………..………………..…………..……..……………..……...6

Test Plan………………………………………………………………………………………….10

Physical Constraints…………..…………..………………..…………..……..………………… 12

Societal Impact…………..…………..………………..…………..……..……………….………13

External Standards………….…………..………………..…………..……..……...…………….15

Deliverables……………………...………………………………………………………..……..17

Intellectual Property Issues………..………………..…………..……..…………………..……..19

Timeline…………..…………..………………..…………..……..………….…………...……...21

Costs…………………..…………..………………..…………..……..………………………….26

Final Results…………..…………..………………..…………..……..…………...…………….27

Engineering Insights …..…………..………………..…………..……..………..……………….28

Future Work..…………..…………..………………..…………..……..…………..…………….30

References ……………..…………..………………..…………..……..…………..…………….32

Appendix………..………………………………………………………………………………..36

2

Statement of Work

​ Dan: Tested initial TransLoc application program interface (API) to ensure that it would

be fit to use before deciding initial project. Wrote all software regarding using TransLoc

RESTful API to get real-time data of each bus including their vehicle ID, latitude, longitude, and

bus color, and formatted so that data could be used. Wrote software to map the buses' latitude

and longitude to spots on light-emitting diode (LED) strips. Wrote code to create a list of tuples

containing buses and the number of stops away they are from the closest bus stop. Wrote final

software that utilized real-time and saved bus data, passing on information to STM32 via

universal asynchronous receiver/transmitter (UART), and relaying data to the LED strip. Setup

both Raspberry Pis and installed proper dependencies to ensure the software would work as

expected. Gathered and saved data to use as testing data. Tested running Raspberry Pi and giving

data to LED strips, ensuring that bus location and color were working as expected. Worked on

full integration testing and helped with integration troubleshooting.

​ Robel: Completed the 7-seg and LED indicator portion of the two different iterations of

the PCB schematic and layout. Worked on code and breadboarding of the LED driver as the

initial plan and pivoted to develop the plan and connection of direct wiring of the 7-seg and LED

indicator. Searched and found LED strips and encasing being used for the display. Helped solder

the STM32 header connector to the PCB as well as testing flex PCB. Repurposed an acrylic to be

used for our project and ordered the display back encasing. Explored options to get map printed

and added the layout spacing of the 7-seg and indicator LED on the map. Completed the final

assembly of the display including the encasing, 7-seg, and indicator LED with team members.

Assisted with final testing and integration of the display.

3

​ Zayda: Initially set up STM32. Physically mapped out 432 LEDs along the routes on the

board. Translated those LEDs to a virtual map to retrieve and store the longitude and latitude of

each LED in relation to the map in a CSV file. Wrote Python code to find the closest bus, where

the function takes in parameters of Dan's tuple code and outputs a string in the format of 8 bytes

(e.g. (CLR, #)) to return the closest bus's color and number of stops to its destination. Wrote C

code to control the LED indicator using a timer and PWM generation signals. Configured

necessary GPIOs and wrote code to control the 7-segment to display digits 0-9. Configured

UART and its correct parameters on the STM32 (Rx) and the Raspberry Pi (Tx). Wrote C code

to successfully transmit data, where the STM32 receives the 8-byte format mentioned earlier

from the Raspberry Pi. Wrote C code and tested to integrate the UART logic code, 7-segment

controller, and LED indicator controller. Helped with full system integration and testing.

​ Anthony: Designed Circuit Schematics and PCBs and ordered each iteration. Researched

and ordered necessary components, and soldered the PCB. Assisted Kelly in soldering LED

strips that were sandwiched on the board. Assisted in repurposing old acrylic panels to be used in

our project, and had posters printed at the A-school. 3D printed RPi encasing and assisted with

final assembly (drilling boards, fastening screws).

Kelly: Did the original circuit layout and tracing for the firsts PCB. Attached the LED

strips to the board and made adjustments where necessary. Did most of the soldering for the LED

strips, and debugged the strips when necessary. Worked with Anthony to create a test plan and

performed fully comprehensive testing of the PCB, verifying that the correct voltages and signals

were being sent to where it was expected. Worked closely with Anthony to figure out and pivot

when necessary, mostly surrounding the original flex PCB design as well as power concerns.

Helped Zayda debug the LED indicator to ensure the correct colors were being displayed. Went

4

to Lowe’s with/without group members and helped assemble the final display board. Helped

perform full integration testing.

Abstract

This project is a real-time bus tracking system that displays the location of each

University of Virginia (UVA) Transit bus on a map using LEDs. Our goal is to make the bus

system more accessible and readable by allowing riders to view real-time bus locations on a map

using LEDs, eliminating the need to rely on the TransLoc App for updates. The project leverages

Wi-Fi connectivity and utilizes a Raspberry Pi and STM32 microcontroller to collect, process,

and transmit location data of UVA University Transit Service (UTS) buses to LEDs on a display

board. We directly interface with the TransLoc API to obtain the location data, which we use by

connecting a Raspberry Pi to the university's Wi-Fi network. The information is then processed

by the Raspberry Pi, which controls LED strips to display the bus locations in real time. In the

meantime, bus stop data is sent from the Raspberry Pi to the STM32, which is connected to an

LED indicator and a 7-segment display that shows how many stops away an incoming bus is.

Everything is powered using a 120V wall outlet that is converted to DC and stepped down

appropriately.

Background

The project was designed to provide a more efficient alternative to TransLoc, the

third-party mobile app, that UVA uses to provide information about the UVA UTS bus routes and

stops to active users. Based on personal experience and feedback from others, the app does not

effectively allow viewing live bus route information due to its poor user interface. Our project

provides a more visually appealing and user-friendly tool, and it also addresses the issue of

5

accessibility. With the physical board, bus riders would not need to pull out their phones to check

the application, and visitors can save time by not having to download the app.

Our project was inspired by the New York City (NYC) Live Subway Tracker product [1].

This product provides live data on trains arriving at NYC stations. A key difference in our

project is the use of multiple controllers: an STM32 NUCLEO-G071RB and a Raspberry Pi 4

Model B, while the NYC tracker uses only an ESP32. In our setup, the Raspberry Pi handles

receiving data, controlling the LEDs, and transferring the right information to control the

7-segment display and the bus indicator LED. The Raspberry Pi obtains the bus status

information by connecting to the TransLoc RESTful API server, sending requests, and receiving

responses wirelessly through Wi-Fi. Another distinction lies in our design of the live tracker.

Unlike the NYC product, which integrates LEDs directly onto the printed circuit board (PCB),

our project opts not to use the PCB as the main base for storing the LEDs. Instead, the LEDs are

arranged behind a printed map backboard and a custom PCB is used to power our whole system

and create the connection between the STM32, the 7-segment, and the indicator LED.

A previous project tracked Duluth buses using a similar interactive-light-up map design

[2]. In that setup, the map was traced on paper and mounted on cardboard, with holes cut to place

LED lights at intersections with bus stops along the tracked routes. The project utilized a

Raspberry Pi 2 B+ for live code updates and to run the display, whereas our project uses a

Raspberry Pi 4. Additionally, we are introducing a feature that displays the number of stops away

a bus is from the reference stop onto the display. This will be achieved using a 7-segment display

and an indicator LED.

This project draws on a range of concepts from our UVA coursework, which provided us

with the skills to design and implement both hardware and software components into a fully

6

integrated system. The printed circuit board calculations and design were informed by

knowledge from the fundamentals (FUN) series, while software development for requesting bus

data from the TransLoc API and programming the LEDs drew on lessons from the Software

Engineering and Computer Networks classes. Configuring the microcontrollers for

communication protocols, like UART, was supported by what we learned in courses such as

Introduction to Embedded Computer Systems and Advanced Computer Systems. Additionally,

the system’s power design was influenced by the studies in Power and Electromagnetic Energy

Conversion classes. Even in areas where we may not have all the knowledge, the foundational

principles from these courses enabled us to effectively research and find the precise information

needed to overcome challenges.

Project Description

This project aims to have a readable and easy-to-follow bus status information visual

display of the four UVA UTS bus lines: silver, gold, green, and orange. To do so, bus status

information is pulled from the TransLoc API server every five seconds. By frequently fetching

all bus data, accurate information is displayed on the physical map. After, the Raspberry Pi sends

the bus status information to the LED strips using the LED’s data line. The LED strips are

programmed so that all four bus colors are displayed on the physical map, allowing riders to

easily gather bus information.

The LED strip is laid on a map to cover all bus lines during the weekday academic hours,

making it easy to follow each bus on its respective routes. At the same time, the STM32

programs an LED indicator, which distinguishes the color of the bus, and a 7-segment display to

show how far out the buses are from the nearest bus stop to where the physical bus board is

7

located. A PCB was designed to manage power received from an outlet. The block diagram

below, Figure 1, shows at a high level the different components of the system described above

and how they work together. The PCB schematic can be seen in Figure 2 and the PCB layout can

be seen in Figure 3, below.

Figure 1. Block Diagram of the UTS Visual Display System

​ Figure 2. Printed Circuit Board (PCB) Schematic

8

 Figure 3. PCB Layout

When considering the core components of the final design, it was important to note the

performance objectives and specifications of the final design. To begin, we will address the traits

of the Raspberry Pi 4 [3] that was used. The Raspberry Pi needed to have Wi-Fi connectivity, a

sufficient amount of computing power, and RAM storage to have the final design work as

expected. The model being used has a dual-band wireless local area network (LAN) [4], which

was crucial for allowing us to create the requests to the TransLoc API server–allowing us to

obtain real-time bus data. The Raspberry Pi has 8GB of RAM, which was more than enough

temporary storage to run the code needed. It also comes equipped with a 1.4GHz 64-bit

quad-core processor, being able to withstand the constant, real-time updating required to run the

software. The Raspberry Pi runs with an operating system [5] that enables fast computational

capabilities allowing management of different programming capabilities. In addition to all the

9

Raspberry Pi use-specific capabilities, access to an extensive library and documented resources

including the user guidebook [6] made it the optimal option.

Next, we will address the performance objectives and specifications for the STM32

NUCLEO-G071RB. Since the STM32 is connected to the Raspberry Pi 4, 7-segment display,

and the LED indicator, there had to be a plentiful amount of general-purpose input/output

(GPIO) pins on the microcontroller. Thus, the STM32 comes equipped with 64 GPIO pins that

were used to fulfill those needs. The WS2812B RGB LED strips were used to light up the

display for our performance objectives, specifications, and budget constraints. The LED strips

provide 144 LEDs over a meter in length, which allows users to have a more accurate and

comprehensible experience when understanding how the buses are moving on the display board.

The LEDs swiftly activate with its 800 Kbps speed, which allows for high-speed sending of data.

In addition, the LEDs provide a strong source of lighting with the WS2812B [7] SMD LEDs.

Additionally, a 7-segment visual display such as the 4166 seven-segment display [8] is

used to display bus status information aiding the user to see how many stops away a certain bus

is from the reference bus stop. Another crucial aspect that is used in conjunction with the

7-segment display is the LED indicator that shows which bus line the 7-segment is referring to.

To power the project, we used a wall outlet plug, going from 120V AC to 12V DC. The

decision to use a wall outlet as opposed to a battery was based on the prospective location of

where the project would sit. With the project being displayed inside a building, the wall outlet

ensures that it can be continuously powered during university hours without the need for

someone to replace the battery every some period of time. From the converted 12V DC, the

power travels along the PCB to a buck converter–to step the voltage down to 5V. The buck

converter routes to the STM microcontroller which requires 1.7V to 3.6V [9], and 3V matches

10

this range. The LED strips are connected to the PCB to provide power to the strips. Bypass

capacitors are placed throughout the system to reduce noise from the power supply as suggested

by IEEE [10]. In addition, fuses are added to each power line and bypass capacitors to protect all

the components from overcurrent. This ensures that in the event of too much current present, the

fuse will blow rather than the component, protecting expensive elements such as the STM

microcontroller. By using all of these components, we created a project with a final design that

meets the specifications and performance objectives of stakeholders and bus riders.

Test Plan

To address the test plan for the project, the project is composed of both hardware and

software elements with four main subsystems: the TransLoc API, the LED strips, the 7-segment

display and corresponding LED indicator, and the overall hardware of the project including the

PCB. We ensured everything worked as expected through an organized testing plan. Regarding

the usage of the TransLoc API, we verified that the data pulled from the API via computer can

also be pulled from the Raspberry Pi and sent to the STM microcontroller. Following this, we

checked the accuracy of the data. This was done by comparing the bus locations using the

TransLoc mobile application. At any point, if the test failed, the software team went back and

debugged their code before proceeding to the next step of the testing process.

The second subsystem, LED strips, had a similar process. Firstly, we checked if we could

light up one specific LED, ultimately leading to all LEDs. This ensured that we could program

each individual LED, which ties into the next step of connecting it to the TransLoc API. Once

the LEDs were verified that they could be independently programmed, we used the data gathered

from the TransLoc API to light up the LEDs. Similarly to the first software subsystem, if at any

11

point, the program did not pass testing, then the software team revisited the program and

debugged it until the test passed.

The third subsystem is the 7-segment display and corresponding LED indicator. For the

7-segment display, we wanted to be able to display digits 0-9 correctly using the STM32. For the

single LED, we programmed the color to green, gold, orange, and silver - the colors of the bus

lines. Once both were established, we then connected it to the API. This was verified by

checking if the bus line and number of stops away were correct, in other words, if the LED

indicator was the right color and if the 7-segment display showed the expected number.

Lastly, the hardware subsystem first designed the initial schematic layout. After this, the

power supply of the project was tested, ensuring the correct voltages for the buck converters.

This was tested first because if the power did not work correctly, then the project cannot

correctly be powered, ultimately leading to a failed project. After ensuring that the correct power

was sent to their respective components, the individual elements were connected to the circuit

and tested. With the verified power supply and individual components, the full PCB was ready

for testing. Likewise, for the two software subsystems, the hardware team redesigned the

schematic if they failed any part of the testing steps.

Once all four subsystems were tested for functionality and accuracy, the overall system as

a whole was tested, ultimately verifying the integration of the software and hardware

components. A high-level diagram is shown below in Figure 4, depicting the flow of our test

plan for the system.

12

Figure 4. Test Plan Diagram

Physical Constraints

 In terms of part availability, the project heavily relied on using LED strips for the

different routes, making it critical to find an LED strip that was budget-friendly and available to

order such as the one selected. It was also important to order more LED strips than what was

needed for backups–in case of any accidental damages or errors. Given that a power outlet was

used to power the LEDs, it was crucial to make sure the components used in our PCB such as the

buck converter were in stock and within budget constraints.

The PCB was the only component that needed to be manufactured and no physical

constraints were expected for the scope of our project. However, we had to keep in mind the cost

of the PCB, the components used, and how many PCBs needed to be ordered for the first and

revised order. This was critical to prevent ordering excessive parts while also ensuring the

availability of a backup at the same time. Ensuring the prototype had fixed cost constraints, the

budget was significant for our revised and final PCB as there could have been additional costs.

Another constraint was simulating the power consumption for the LEDs given the vast number

13

of LEDs in the project. We were more reliable in analyzing and calculating the power drawn for

the LED connections. Meaning, we expected to spend more time on the analytical calculations of

LED power consumption than the simulation. Additionally, the final display needed to look

user-friendly and clean, making us attentive on the materials used for the final board.

Societal Impact

The implementation of a real-time bus tracking system at UVA has significant societal

implications for various stakeholders, including students, university staff, and the broader

community. The proposed system aims to enhance the accessibility and usability of public

transportation on campus by providing a physical display of bus routes and locations.

As previously mentioned, UVA UTS relies on the TransLoc mobile application to provide

riders with information on bus routes and locations. However, the app's user interface is often

criticized for being difficult to navigate, which can hinder effective communication of real-time

bus data. By introducing a physical display system, riders can access bus information more

intuitively without needing to interact with their phones. This shift could lead to increased

satisfaction among users and potentially higher ridership, as accessing public transport could

become more convenient.

Currently, UVA pays $16,440 per year [11] for TransLoc’s services. The designed

physical board is a cost-effective alternative to communicate bus route and location information

effectively, with each design costing less than $500 to produce. Due to the design's low cost, it

has the potential to be adopted by UVA UTS, which would possibly shift funding from the

TransLoc mobile application to this new physical display system. By reallocating finances from

one product to another, the introduction of the physical display design would hurt TransLoc’s

14

revenue, potentially hurting the employees who maintain the application. Despite this potential

shift, it is unlikely that UVA UTS will completely abandon the TransLoc app; instead, they may

require additional funding to support both systems.

By sponsoring both systems, UVA UTS would require more funding to sponsor both the

mobile app and the physical display. The budget would need to encapsulate both the creation of

the displays as well as the maintenance that may be required for them in the future. With an

increase in the demanded budget, UVA would likely be pulling money away from other

processes and organizations for its accommodation. This change in budget allocation could

indirectly harm university clubs, outsourced services, and students who depend on university

funding, creating social and economic challenges for these groups. Also, the anticipated increase

in ridership due to improved access to bus information could necessitate larger buses to

accommodate more passengers, leading to additional expenditures for the university.

By sponsoring both TransLoc’s mobile application and physical display board, students

are likely to thrive in their quality of life. Easier access to bus information can save time and

energy, facilitating visits with friends, trips to local shops, or easier commutes on and off

campus. This would help increase the welfare of many of the students by opening up the idea of

using the bus to those who may have not previously thought about it. Additionally, this increased

accessibility may encourage more students to use public transportation instead of personal

vehicles, contributing to reduced greenhouse gas emissions in the community.

In terms of obligations we, as creators of the physical display, have a significant

responsibility to ensure that the system provides accurate and timely information to its users.

This obligation is both ethical and practical, as students and other community members will

likely depend on this system for their daily transportation needs. Our primary duty is to deliver

15

reliable and real-time bus information through the physical display system. Many students and

staff may rely on this system to plan their commutes efficiently. Failing to provide accurate data

could lead to missed classes, appointments, or other important commitments, thus negatively

impacting users' daily lives. Meeting stakeholder expectations is vital for the project's success.

Users expect a seamless experience that enhances their ability to navigate campus efficiently. By

providing a user-friendly interface and reliable data, we can foster trust and satisfaction among

our stakeholders, which is essential for the long-term adoption and success of the system.

Overall, our commitment to providing accurate and timely bus information is an ethical

obligation and a strategic necessity to ensure user satisfaction. By prioritizing these aspects in

our design and implementation processes, we can maximize the societal benefits of the real-time

physical bus tracking display for the community.

External Standards

The standards and regulations we must meet are the following:

●​ FCC Part 15 Regulations

●​ IEEE 802.11 Standards

●​ NEMA 250 Standards

●​ NFPA 70 Standards

●​ IPC Standards

The FCC Part 15 regulations deal with unlicensed RF devices. The devices must not

cause harmful interference to licensed communications services and must comply with the

emission limits and technical requirements[12]. The Raspberry Pi 4 that was used is compliant

16

with this regulation [13]. Likewise, the Raspberry Pi follows the IEEE 802.11 standard [14]

which defines the technical specifications for wireless local area networks [15].

NEMA 250 defines the requirements for enclosures designed to protect electrical

equipment against environmental conditions. The standard specifies various types of enclosures

that provide protection against dust, dirt, water, ice, and corrosive elements, which is essential

for maintaining the safety and functionality of electrical systems in different environments [16].

Our project will follow the standards for a NEMA 1 device, as it is planned to be used indoors.

The enclosure for our device will primarily serve to prevent accidental contact with live parts.

NFPA 70 provides guidelines and requirements for the safe installation, operation, and

maintenance of electrical systems [17]. The specific guidelines we will need to follow are:

●​ Minimum wiring gauge sizes

●​ Overcurrent Protection (fuses)

●​ Bonding and grounding of electrical systems.

The IPC standardizes the design, manufacture, and assembly requirements for

electronics, specifically focusing on PCBs and electronics manufacturing. The specific standards

we must comply with are:

●​ IPC-2221 Design Standards: Appropriate trace widths, clearances, and via sizes. Layer

stack-ups and material choices that align with IPC guidelines. Thermal and mechanical

considerations to avoid issues like warping or delamination [18].

●​ IPC-D-325 Documentation Requirements: Design files must be clear and complete to

avoid errors during manufacturing [19].

17

●​ IPC-6012 (Manufacturing Certified): The PCB manufacturer we choose needs to be

certified. Additionally, we will define our project as using a class 1 PCB as they are

designed for general-purpose consumer electronics and non-critical applications [20].

Deliverables

By the end of the semester, we produced a software and hardware design that prioritizes

the user’s experience along with how they will interface with the product. As a broad overview

of how the product functions, it uses a Raspberry Pi to enable close to real-time data collection

using code software. By gathering and feeding this data into LED strips and an STM32, specific

LEDs light up on the physical display corresponding to their latitude and longitude location as

well as the bus line. As for the data fed into the STM32, additional software will be run on it to

correctly configure the 7-segment display and LED indicator when necessary. This display is

powered by an outlet whose PCB design focuses on handling and controlling the voltage that is

being fed into the display.

For a more in-depth overview of the software, it creates a GET request to the RESTful

TransLoc API. This code runs on a Raspberry Pi 4, which has wireless connection capabilities

and sufficient computing power to handle the constant updating that occurs. Using the data from

the GET request along with the software created to parse the data, we obtain a bus’s latitude,

longitude, vehicle ID, and vehicle color. The latitude and longitude give us the bus’s current

position, the vehicle ID is used to determine whether the bus is active, and the vehicle color

determines what color to light the LED on the board. Thus, using this information, we created a

mapping function that takes in a bus’s latitude and longitude and determines which pin to light

up. After determining which LED to light up along with its corresponding color, we used GPIO

18

pins and the data bus on the LED strips to effectively display the bus locations. Additionally, the

software determines a list of the number of stops away all buses are from the closest bus stop for

each line, and gives the STM32 a single bus line along with a corresponding number of stops

away a bus is from the closest stop. The embedded software uses UART to interact between the

Raspberry Pi and the STM32, where the STM32 communicates to the 7-segment display as well

as the corresponding LED indicator using GPIO pins.

To provide a higher-level explanation of the hardware, a PCB was designed to mount the

STM32, as well as the buck converter to manage the supply voltages needed for each device. To

power the board, we used a power supply to convert a wall outlet 120V AC to 12V DC, which is

connected to the PCB using a standard barrel jack. We then used a buck converter to step the

voltage down to 5V for the Raspberry Pi, the LED strips, and STM32. The VCC lines connecting

to each component were fused appropriately in case of any short circuits.

To dive deeper into what the user interface and user experience looks like, the user

interface is a board with a map of the UVA Academic Bus System map along with LEDs at

specific points along all routes. The display only shows bus routes that have academic routes

during academic hours, so it displays: Silver Line from 7:30 am to 8:00 pm, Gold Line from 5:00

am to 6:00 pm, Green Line from 7:30 am to 6:00 pm, and Orange Line from 7:30 am to 6:00 pm.

We have LEDs that cover all the academic routes and are placed on top of the bus map as

previously described. As for understanding the user experience, we have the display board

placed and plugged into one of the UVA engineering buildings.

To describe how prototyping for the design worked, we focused on integrating the core

components and putting less of a focus on the user interface. We ensured that the Raspberry Pi

could run independently and feed information into the LED strips and the STM32. After we

19

ensured that we could control all the LED strips from the Raspberry Pi and that information

being passed to the STM32 via UART was being received. Test data was obtained by saving data

from the TransLoc PublicAPI over 10-20 minutes during academic hours when the desired routes

were running.

When taking into consideration the design along with the budget allocated for the project,

we believed that most of our expenditures would be from the PCB, Raspberry Pi, STM32, and

LED strips. Although these were considered the main purchases for our team, all of them

together cost less than a fifth of the overall budget allocated. Since the items listed were the core

components of our design, we had more freedom in terms of scaling the design and improving it

along the process. Another thing we purchased with our budget is the large board to place the

LEDs and the UVA Academic Route map on, the encasing material, and anything needed

additionally for handling the charging of the PCB.

Intellectual Property Issues

​ In exploring the patentability of our project, it is important to analyze existing patents

with similar features and noticeable relevance. Claims within patents are categorized as

independent and dependent, where independent claims broadly define the main features of the

product and dependent claims build upon these by adding specific details. By examining the

different claims in patents relating to LED systems, live data visualization, and route mapping,

we learned the extent our project aligns with prior inventions to gain insight into the potential

patentability for our project.

One patent related to our technical project is titled “LED strips bussing system and

process” [21]. It describes a system for connecting multiple single-color LED strips in parallel

20

without requiring insulation between adjacent copper solder pads. The independent claim

outlines a system comprising LED strips with positive and negative branches, isolated solder

pads at predetermined locations, conductive materials connecting the branches in parallel, and an

external DC voltage power source. Dependent claims add details such as the use of uninsulated

wires to establish parallel connections and the inclusion of additional strips. This patent is

relevant to our project, which involves assembling LED strips to create a visual display

mimicking bus routes. Like the patent, our project uses parallel connections and customizable

strip lengths, but it specifically uses LED strips with a physical map and real-time bus data.

While the general method of connecting LED strips in parallel is used, the application of our

project - cutting, arranging, and soldering LED strips for real-time bus data - offers novel

features that may be patentable.

​ The patent titled “Road map display system with indications of a vehicle position and

destination” [22] describes a system for dynamically displaying a vehicle’s position and

destination on a road map. Its independent claim outlines a system consisting of a map memory

for storing road map data, sensors to detect travel distance and direction, an arithmetic unit to

calculate coordinates, a coordinate transformation mechanism for aligning map data with the

vehicle’s direction, and a visual display for presenting the data. Dependent claims add specificity,

such as the ability to select specific portions of the map, adjust the map scale dynamically, and

recalibrate in real time to correct errors. Both our project and the patent involve real-time

visualization of positional data. However, the patented system dynamically adjusts an electronic

display, and our project integrates LED strips with a physical map, providing a simpler, less

costly, and unique approach to visualizing live bus routes. While the general concept of

21

displaying real-time positional data is not new, the specific implementation of it within our

project could potentially lead to patentability.

​ Another patent to consider is the titled “Large Scale LED Display System” [23], which

outlines a robust system for distributing data to large-scale LED displays composed of multiple

panels. Its independent claim describes a system where display panels are connected to multiple

data hubs, ensuring reliable data distribution and redundancy. Dependent claims add details, such

as a central controller managing pixel distribution and the ability to detect transmit transmission

failures and switch to other data paths. This patent relates to our project in its emphasis on

real-time data distribution to LED displays. While both systems involve LEDs and data

transmission, our project is tailored to displaying live bus information on a physical map using

LED strips. The assembly of LED strips along mapped bus routes and the visualization of

real-time transit data differentiate our implementation from the LED panel approach described in

the patent. While the patent focuses on reliability and redundancy for large-scale displays, our

project centers on a specific application of LED strips for visualizing public transit. As a result,

our project with its specific application and physical assembly may be novel and potentially

patentable.

Timeline

At the very start of the project, the main deliverables were laid out and discussed, leading

to the creation of the Gantt chart, shown below in Figures 5-9. After solidifying the project idea,

1.5 weeks were dedicated to researching the topic: identifying the stakeholders and customers,

investigating prior works, selecting a microcontroller, and discussing requirements and

22

constraints. This research period also included a discussion on parts to order for the project,

which continued throughout the timeline when needed.

Once the details of the project were cemented, members worked on the project proposal,

which was split up to evenly distribute the workload per person where the member assigned to

each section of the proposal is shown in Figure 5 below. The deadline was set for September 18,

2024, which was two days before the due date shown on the class page, allowing for enough

buffer time for revisions or in the case tasks took longer than expected.

Figure 5. Week 1-Week 3.5

The next major event after the proposal was the Poster Session. Similarly to the proposal,

the sections of the poster were also split up among team members shown below in Figure 4. The

deadline for the poster was set for September 27, 2024, a week before the actual poster session.

Once the poster had been turned in and finalized, the initial start of the project took place. Here

the team split into two main groups: software and hardware. The hardware team, Anthony,

Robel, and Kelly, did the calculations, simulations, and prototyping surrounding the hardware of

23

the project. Simultaneously, the software team, Zayda and Dan, worked on developing the code

and testing it with the microcontrollers. While in the development phase, both the hardware and

software teams worked on creating their respective testing plans, which were used following the

midterm design review (marking the halfway point). All of this information can be seen below in

Figure 6.

Figure 6. Week 3.5 - Week 6

​ Following the halfway point, most of the time was used in finalizing the project: ordering

the PCB, making revisions when necessary, putting the components together, ensuring seamless

integration between the microcontrollers and PCB, and testing everything. From weeks 7 through

9, the software team continued software development, focusing on the LEDs. After the LEDs

were confirmed to work as expected, they switched to focusing on the 7-segment display. All

throughout this time, rigorous software, hardware, and integration testing was being performed

as shown in Figure 7.

24

Figure 7. Week 7-Week 11

The last three weeks were spent meeting the final deliverable requirements and ensuring they

worked through rigorous testing. Additionally, the assembly of the board began on week 12 and

went on until the beginning of week 14. As integration testing between the software and

hardware began to come to an end, ensuring that the product worked as expected, we began

putting all final components into the final board. Once all components were placed into the

board, a final integration test was done to ensure all components were working as expected.

While doing this, time was allotted to write the final report and to create the final video.

Following this schedule gave us sufficient time to complete the final design, work on the final

report, and create the final project video before the demo as shown in Figure 8. Lastly, with

everything turned in, the demo was rehearsed as a group to prepare for the Capstone Demo on

December 9, 2024.

25

Figure 8. Week 12-Week 15

​ A color-coded legend of different combinations of people as well as individual

contributions can be seen below in Figure 9.

Figure 9. Legend for Gantt Chart

26

Costs

To produce our display we purchased $390 worth of parts, the main expenditures being

the Raspberry Pi’s, the PCB iterations, and LEDs. Much of our budget was spent prototyping and

testing as we had an extra PCB iteration as well as an extra Raspberry Pi that was not used in the

final assembly. Additionally, we did not use the flex PCB that we ordered. The actual value of

the parts that made it to the final board was roughly $240, which was lower than we anticipated

as we were able to reuse parts from previous capstone classes as well as an acrylic panel that was

no longer being used. A similar acrylic panel could be purchased online for around $20 without

shipping, and it is difficult to tell how much of an impact on the budget reusing electronic

components had since it consisted of many small cheaper components. A detailed table of our

costs is located in Appendix A.

When accounting for producing 10000 units of this project, there are a couple of things to

take into consideration. With bulk purchases, many manufacturers give a discounted rate. This is

especially true with sellers like Digikey, where we purchase many of our hardware components.

For example, the inductor used for the power supply costs $3.43 for one inductor, but $2.04 per

unit when purchasing the highest bulk order. Additionally, our PCB manufacturer (JLCPCB)

offers bulk discounts on large PCB orders, which would bring our unit cost per PCB down from

$7.41 to $0.45 each. We were fortunate enough to have a lot of equipment already available

without having to use our budget. Although we had access to a lot of equipment, it is not nearly

enough to make 10000 units so we’d have to include items like hex nuts, jumper wires, a clear

acrylic board, and shunts for production.

Another thing to consider is with 10000 units to be made, many of our processes can be

automated to produce as many units in the least possible amount of time and resources. Some of

27

these processes include soldering components onto the PCB, drilling into the board, soldering

LED strips, and overall assembly. Automating these tasks would further decrease the unit cost of

each display, and would decrease turnaround time as well. A detailed table of large-scale

manufacturing costs is also located in Appendix A.

​

Final Results

To briefly explain the final prototype, we used a Raspberry Pi 4 to pull data from the

TransLoc API server, running software on it to relay active buses as well as their respective

locations onto three WS2812B LED strips. Each LED strip covers a portion of the UVA

academic bus map so that all buses can be accurately displayed. The Raspberry Pi 4 also

communicated to the STM32 via UART to provide data to the 7-segment display, which tells

riders how many stops away a certain bus is from the reference stop, and an LED indicator,

which tells riders which bus is the number of stops away. The PCB design will power the LED

strips and the STM32 by downstepping power from an outlet using a buck converter.

The features that remained the same as described in the initial proposal were the

Raspberry Pi pulling data from the TransLoc database and using software to have it provide data

to the STM32 to pass on values to the 7-segment display. Additionally, using the PCB to power

the LED strips and the STM32 by down-stepping power from the outlet remained the same.

The differences between the final product and what was described in the proposal were

how the LED strips were going to receive the bus route data information, how the Raspberry Pi

was going to communicate to the STM32, and the type of Raspberry Pi that was used. In the

original proposal, we were planning on having the STM32 relay information to the LED strips,

but after the midterm design review, we were advised that interrupting the pushing of data to the

28

LED strips while it is relaying information to the LED strips may cause damage to the strips, so

to solve this problem, we decided to switch giving the data to the LED strip from the STM32 to

having the Raspberry Pi transmit it through GPIO pins. Next, the Raspberry Pi was originally

going to use SPI to communicate data from the Raspberry Pi to the STM32, but given the

amount of documentation online for using UART and the fact that we only needed the STM32 to

receive and not transfer information, we decided to switch from SPI to UART instead. Lastly, we

transitioned from using a Raspberry Pi 3B+ to a Raspberry Pi 4. Originally, we purchased the

Raspberry Pi 4 as a backup alternative in case we required more memory for the device, but the

actual reason for the swap was that the Raspberry Pi 3B+ crashed and was not able to be

powered on afterward. The reason why the Raspberry Pi 3B+ stopped working is still unknown,

but since we had the Raspberry Pi 4 just in case, we transitioned to the Raspberry Pi 4.

The overall results of the final project were as expected. The project successfully

integrates the PCB, microcontrollers, and LED layout to provide reliable and accurate live data

for the four academic bus routes. Based on our expectations listed in the project proposal, listed

in Appendix B, our final product meets full integration and functionality requirements. All the

hardware components are integrated and operate correctly. Real-time tracking for all four

academic bus routes was successfully implemented as well as the data delay was kept within 20

seconds. This was proven by standing near the referenced bus stop and confirming that the

correct bus stopped at its destination as well as it lined up with what was showcased on our

visual display. In addition, we provided an intuitive and clear user interface that was supported

by the clean assembly of our final project.

Engineering Insights

29

​ The project has been incredibly enlightening in terms of understanding the full scope of

what it means to be an engineer. It has demonstrated that both technical skills and soft skills are

essential for completing an engineering project.

​ On the technical side, the hardware team became proficient with industry-standard PCB

design software, Altium, enabling them to create a collaborative PCB design while applying their

knowledge of circuits. This experience has equipped them with the skills necessary to design

circuits and PCBs in their future careers. The embedded software team gained significant

insights into using a Raspberry Pi and its interaction with header pins. By integrating this new

knowledge with their existing understanding of UART communication, they were able to

facilitate effective communication between the Raspberry Pi and the STM32 microcontroller.

​ In terms of soft skills and lessons learned, adaptability emerged as a crucial aspect of the

engineering process. Engineering projects often encounter unforeseen challenges, making it

essential to pivot directions effectively. The ability to remain flexible and open to change is vital

in overcoming these obstacles. Additionally, managing time and resources efficiently was critical

due to constraints such as budget and deadlines. Effective communication within the team was

paramount in discussing ideas and resolving issues collaboratively, ensuring that all members

were aligned with project goals. Working on this project also highlighted the importance of

maintaining high morale and motivation throughout the process. Celebrating small successes and

supporting each other during challenging times helped keep the team motivated and focused on

achieving their objectives.

For future Capstone students, our advice would be to embrace flexibility and be prepared

to adapt plans as new challenges arise. Prioritize clear communication within your team to

prevent misunderstandings and streamline problem-solving. Manage your time wisely by

30

developing a realistic timeline and adhering to it as much as possible. Leverage each team

member's strengths by assigning tasks accordingly to maximize efficiency. Lastly, maintain a

positive attitude by celebrating achievements, no matter how small, and supporting one another

through challenges. Overall, this project was a comprehensive learning experience that

reinforced the importance of both technical expertise and interpersonal skills in engineering.

Future Work

​ To enhance and expand upon the current project, future iterations could consider

incorporating all UVA bus routes, rather than limiting the design to only the weekday academic

routes. By including evening and weekend routes, the physical display board could serve a

broader audience and provide more comprehensive coverage of UVA's transit system. During

discussions with UVA UTS, it was suggested that having access to this information in various

locations, such as libraries, could greatly benefit students who study late at the library and need

reliable transportation information to return home safely. This expansion would significantly

increase the utility of the system. Implementing this feature would require updating the design to

accommodate additional route data, which may involve technical challenges such as increased

data processing and display capabilities. Moreover, future teams should be aware of potential

difficulties that were not initially anticipated. Additionally, maintaining the hardware's durability

and reliability in various environmental conditions is crucial for consistent performance. Advice

for future teams includes being prepared for unexpected technical hurdles and having a flexible

approach to problem-solving. It's important to plan for scalability to accommodate potential

expansions like additional routes or more complex displays. Teams should also prioritize

thorough testing to ensure that any new features integrate seamlessly with existing systems. By

31

addressing these areas, future projects can build upon the foundation laid by this project,

enhancing its functionality and impact on the university community.

32

References

[1] New York City Subway - Traintrackr - Live LED Maps.

https://www.traintrackr.io/product/mta3. [Accessed 18 Sept. 2024].

[2] Tracking Duluth Buses with an Interactive Light-up Map | ChandlerSwift.Com.

https://chandlerswift.com/projects/bus-tracker. [Accessed 18 Sept. 2024].

[3] Raspberry Pi Foundation, “Raspberry Pi 4 B Product Brief,” Raspberry Pi, 2018. [Online].

Available: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf. [Accessed:

Sep. 20, 2024].

[4] V. Mihalopoulos, “The Raspberry Pi 4 Ultimate Review,” yodeck, 2019. [Online]. Available:

https://www.yodeck.com/news/the-raspberry-pi-4-ultimate-review. [Accessed: Sep. 20, 2024].

[5] Raspberry Pi, “SC0339L,” Digi-Key, 2024. [Online]. Available:

https://www.digikey.com/en/products/detail/raspberry-pi/SC0339L/12339165?s=N4IgTCBcDaI

MoGEAMBmFBOAMiAugXyA. [Accessed: Sep. 20, 2024].

[6] S. Monk, Programming the Raspberry Pi: Getting Started with Python, 2nd ed. New York, NY,

USA: McGraw-Hill Education, 2015. [Online]. Available:

https://books.google.com/books?hl=en&lr=&id=WHPhDAAAQBAJ&oi=fnd&pg=PA1&dq=ras

pberry+pi+3%2B&ots=cI9UZhybnQ&sig=QwFyiSRe6mrug-9yXjmRSyvEVUA#v=onepage&q

=raspberry%20pi%203%2B&f=false. [Accessed: Sep. 20, 2024].

https://www.jeffgeerling.com/blog/2018/raspberry-pi-3-b-review-and-performance-comparison
https://www.digikey.com/en/products/detail/raspberry-pi/SC0339L/12339165?s=N4IgTCBcDaIMoGEAMBmFBOAMiAugXyA
https://www.digikey.com/en/products/detail/raspberry-pi/SC0339L/12339165?s=N4IgTCBcDaIMoGEAMBmFBOAMiAugXyA
https://www.digikey.com/en/products/detail/raspberry-pi/SC0339L/12339165?s=N4IgTCBcDaIMoGEAMBmFBOAMiAugXyA
https://books.google.com/books?hl=en&lr=&id=WHPhDAAAQBAJ&oi=fnd&pg=PA1&dq=raspberry+pi+3%2B&ots=cI9UZhybnQ&sig=QwFyiSRe6mrug-9yXjmRSyvEVUA#v=onepage&q=raspberry%20pi%203%2B&f=false
https://books.google.com/books?hl=en&lr=&id=WHPhDAAAQBAJ&oi=fnd&pg=PA1&dq=raspberry+pi+3%2B&ots=cI9UZhybnQ&sig=QwFyiSRe6mrug-9yXjmRSyvEVUA#v=onepage&q=raspberry%20pi%203%2B&f=false
https://books.google.com/books?hl=en&lr=&id=WHPhDAAAQBAJ&oi=fnd&pg=PA1&dq=raspberry+pi+3%2B&ots=cI9UZhybnQ&sig=QwFyiSRe6mrug-9yXjmRSyvEVUA#v=onepage&q=raspberry%20pi%203%2B&f=false
https://books.google.com/books?hl=en&lr=&id=WHPhDAAAQBAJ&oi=fnd&pg=PA1&dq=raspberry+pi+3%2B&ots=cI9UZhybnQ&sig=QwFyiSRe6mrug-9yXjmRSyvEVUA#v=onepage&q=raspberry%20pi%203%2B&f=false

33

[7] Adafruit Industries, “WS2812B Intelligent Control LED Datasheet,” Adafruit, 2013.

[Online]. Available: https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf. [Accessed: Sep. 20,

2024].

[8] Gearbox Labs, “Part 4-Digit 7-Segment Display,” Digi-Key, 2024. [Online]. Available:

https://www.digikey.com/en/products/detail/gearbox-labs/PART-4-DIGIT-7-SEGMENT-DISPLA

Y/16161106. [Accessed: Sep. 20, 2024].

[9]STMicroelectronics, “STM32G071x(8, B) Datasheet ,” Nov. 2018. Accessed: Sep. 18, 2024.

[Online]. Available:

https://www.digikey.pl/htmldatasheets/production/3540770/0/0/1/stm32g071gbu6.html.

[Accessed: Sep. 19, 2024].

[10] R. T. Fizesan, D. Pitica, and L. Man, “Power integrity analysis and bypass capacitor

selection using FDM on a printed circuit board,” May 2009, doi:

https://doi.org/10.1109/isse.2009.5207051. [Accessed: Sep. 19, 2024].

[11] University of Virginia Health System, "UPG Prices of Provider Services," July 2021.

[Online]. Available: https://uvahealth.com/sites/default/files/2021-07/upg.prices.july2021.pdf.

[Accessed: 27-Nov-2024].

https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
https://www.digikey.com/en/products/detail/gearbox-labs/PART-4-DIGIT-7-SEGMENT-DISPLAY/16161106
https://www.digikey.com/en/products/detail/gearbox-labs/PART-4-DIGIT-7-SEGMENT-DISPLAY/16161106
https://www.digikey.com/en/products/detail/gearbox-labs/PART-4-DIGIT-7-SEGMENT-DISPLAY/16161106

34

[12] 47 CFR Part 15 - Radio Frequency Devices," Electronic Code of Federal Regulations

(eCFR). Available: https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15.

[Accessed: Sep. 16, 2024].

[13] FCC ID 2ABCB-RPI4: Raspberry Pi 4, FCC ID.io. Available: https://fccid.io/2ABCB-RPI4.

[Accessed: Sep. 16, 2024].

​

[14]Raspberry Pi 4 Model B," Raspberry Pi. Available:

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ [Accessed: Sep. 16, 2024].

[15] The Evolution of Wi-Fi Technology and Standards," IEEE Standards Association.

Available:

https://standards.ieee.org/beyond-standards/the-evolution-of-wi-fi-technology-and-standards/

[Accessed: Sep. 16, 2024].

[16] ANSI/NEMA 250-2020 Contents and Scope," NEMA Standards Document Library.

Available:https://www.nema.org/docs/default-source/standards-document-library/ansi_nema_250

-2020-contents-and-scope76f809d7-afad-4aa1-80cd-e1d09b60f2e5.pdf?sfvrsn=cb4086bd_3

 [Accessed: Sep. 16, 2024].

[17] NFPA 70 Chapter 3: Wiring Methods and Materials," UpCodes. Available:

https://up.codes/viewer/virginia/nfpa-70-2020/chapter/3/wiring-methods-and-materials#4

[Accessed: Sep. 16, 2024].

35

[18] IPC-2221A: Generic Standard on Printed Board Design, IPC. Available:

https://www.ipc.org/TOC/IPC-2221A.pdf. [Accessed: Sep. 16, 2024].

[19]IPC-D-325A: Documentation Requirements for Printed Boards, Assemblies, and Support

Drawings, IPC. Available: https://www.ipc.org/TOC/IPC-D-325A.pdf. [Accessed: Sep. 16,

2024].

[20]2023 IPC Class 1 Products," Cadence PCB Design Blog. Available:

https://resources.pcb.cadence.com/blog/2023-ipc-class-1-products [Accessed: Sep. 16, 2024].

[21] “US10663154B2 - LED strips bussing system and process - Google Patents,” Google.com,

Sep. 13, 2019. https://patents.google.com/patent/US10663154B2/en (accessed Dec. 05, 2024).

[22] “US8558755B2 - Large scale LED display system - Google Patents,” Google.com, Dec. 11,

2007. https://patents.google.com/patent/US8558755B2/en (accessed Dec. 05, 2024).

[23]“US Patent for Road map display system with indications of a vehicle position and

destination Patent (Patent # 4,543,572 issued September 24, 1985) - Justia Patents Search,”

Justia.com, Apr. 29, 1982. https://patents.justia.com/patent/4543572 (accessed Dec. 05, 2024).

‌

36

‌Appendix

Appendix A. Purchased Items and Cost, Mass Production Costs.

Item Cost

PCB Order 1 (2 PCBS + shipping and tax) $45.78

PCB Order 2 (2 PCBS + shipping and tax) $51.68

Raspberry Pi 3B+ $35.00

Raspberry Pi 4B $85.97

STM32 $11.04

SD Card $12.57

LED Strips $38.97

Buck Converter Circuit $5.30

Hardware (Nuts, Bolts, and spacers) $8.19

Fuses $5.00

Backboards $17.96

LED Driver $18.99

7 Segment Display $2.60

RGB LEDs $6.00

Power Supply $15.00

Electrical Box $10.00

Posters $6.00

Total $390.33

Table 1: Purchased Items and Costs

37

Table 2: Mass Production Costs

Item Name Qty Req'd
Per Unit Price
for Prototype
USD

Cost for
Prototype Price
USD

Per 10000
Units Price
USD

Cost for 10000
Units Price USD

STM32
Microcontroller 1 11.04 11.04 11.04 110400

LED Strips 3 12.99 38.97 12.99 129900

7-segment
Display 1 1.31 1.31 0.37573 3757.3

Buck Converter 1 1.75 1.75 1.33 13300

Inductor 1 3.43 3.43 2.04377 20437.7

Schottky Diode 1 0.96 0.96 0.26982 2698.2

Barrel
Connector 1 0.52 0.52 0.2652 2652

STM connector 2 2.05 4.1 1.209 12090

LED/7-seg
connector 1 0.62 0.62 0.325 3250

LED Indicator 1 1.15 1.15 1.15 11500

Carriage Bolts 6 0.51 3.06 0.51 5100

Washers 6 0.16 0.96 0.16 1600

Nylon spacers 6 0.695 4.17 0.695 6950

Hex Nuts 6 0 0 0.15 1500

Acrylic Panel 1 0 0 21.995 219950

Backboard 1 8.98 8.98 8.98 89800

Shunts 5 0 0 0.02117 211.7

Header pins
(10 POS) 2 0.13 0.26 0.05922 592.2

Jumper wires 23 0 0 1.95 16017.86

Raspberry Pi 4 1 75 85 75 750000

Map print 1 6 6 0.39 3900

SD card 1 12.57 12.57 8.8 88000

Fuses 4 0.87 3.56 0.54 5400

Power Supply 1 11.75 11.75 7.89 78900

PCB 1 7.41 7.41 0.45 4551.3

38

 Appendix B. Rubric for Degrees of Success.

Rubric for Degrees of Success:

●​ Full Integration and Functionality (A Grade)

○​ All hardware components (PCB, microcontrollers, LEDs, 7-segment display, and

power supplies) are integrated and operate seamlessly.

○​ Real-time tracking for all four academic bus routes is successfully implemented,

with the option to view all routes together or individually (if applicable).

○​ Data delay is kept within 20 seconds, providing a highly responsive system.

○​ The user interface is intuitive, clear, and easy to interpret, ensuring a positive user

experience.

●​ Partial Integration and Functionality (B Grade)

○​ The system integrates the hardware components but with minor issues affecting

one or more routes.

○​ Real-time tracking is implemented, but with a delay of up to 30 seconds.

○​ At least one bus route fails to track, affecting the overall reliability of the system.

○​ The visual display provides information but may be difficult for users to interpret

quickly or accurately.

●​ Minimal Functionality (C Grade)

○​ The system integrates some hardware components, but significant issues prevent

most or all bus routes from being tracked.

○​ Real-time tracking is largely unreliable, with delays exceeding 30 seconds, or no

real-time data being received.

○​ Several or all bus routes fail to track, severely limiting the system’s reliability.

39

○​ The visual display is unclear or non-functional, making it difficult for users to

interpret any information provided.

