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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Significance of Myocardial Infarction

Over one million people experience a heart attack each year in the US. The development of numer-

ous treatments for acute myocardial infarction (MI), such as the use of thrombolytics and stenting,

have pushed the survival rate of patients that experience MI to 95%. Despite this high survival

rate, post-infarction scar tissue decreases cardiac function, producing long-term health impacts in

survivors. As a result, research has turned towards investigating the formation and maturation of

infarct scar [1]. However, one of the biggest obstacles to understanding and perturbing scar for-

mation is the lack of relevant models. In vivo models are time-consuming, expensive, and often

difficult to control between subjects making them less ideal for exploratory research. On the other

hand, in vitro models which are easier to standardize and may require fewer resources, often fail

to recapitulate the dynamics and complexity of infarct healing [2]. Computational models, which

are fast, inexpensive, highly controlled, and offer tunable complexity, are uniquely positioned to

fill the gap in models of scar formation. Therefore, the following research seeks to advance our

understanding of scar formation and ability to assess treatments which address MI scar, by building

an efficient and flexible computational model incorporating the most up to date experimental data

on infarct scar collagen alignment.

1.2 Background

1.2.1 Myocardial Infarction In Vivo

Myocardial infarction occurs when the blood supply to a part of the heart is obstructed, starving

myocytes of oxygen, and eventually causing their death. This kick starts the inflammatory phase

of infarct healing, lasting approximately one week, where cell death signals inflammatory cells to
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enter the infarct where they resorb necrotic material and form granulation tissue which temporarily

maintains the infarct’s structural integrity [3]. Immune cells involved in this acute response also re-

lease a host of cytokines, chemokines, growth factors, and hormones [4]. Resident fibroblasts in the

surrounding tissue respond to these inflammatory signaling molecules by migrating into the infarct

where they begin the fibrotic phase of healing. Once inside, fibroblasts proliferate and differentiate

into various fibroblast sub-types, the most abundant of which being myofibroblasts marked by in-

creased expression of α-smooth muscle actin. These myofibroblasts begin aggressively depositing

extracellular matrix (ECM) to form scar tissue over the next few weeks [5]. After infarct scar col-

lagen density stabilizes, the final remodeling phase of healing can begin. During this months-long

phase, myofibroblast populations recede slightly and begin to cross-link collagens and incorporate

them into fibrils [6].

At the organ level, acute infarction divides the heart into two mechanically distinct regions:

actively contracting healthy myocardium and passively stretching non-contractile infarcted tissue.

This loss of contractile tissue results in significantly reduced pump function [7]. Within seconds

to minutes after MI, myocyte contractility, heart rate, and arterial resistance change to help return

cardiac output and blood pressure to baseline. Over time, the demand that these compensation

mechanisms put on the heart cause it to undergo remodeling. This remodeling often leads to ec-

centric hypertrophy, a form of heart failure characterized by a progressive thinning and dilation of

one or more of the chambers of the heart. Current systemic treatments for MI induced heart failure,

such as beta-adrenergic blockers and angiotensin-converting enzyme inhibitors, work to modulate

the body’s response to decreased cardiac function and are an important part of treatments to pre-

vent and delay heart failure [8, 9]. However, these treatments address the body’s compensation

mechanisms for mechanical dysfunction rather than the cause, the infarct itself.

1.2.2 Infarct Mechanics and Matrix Alignment

Fibroblasts create and remodel ECM via production and reorganization of collagen. Fibroblasts

have an elongated morphology and deposit collagen fibrils parallel to their major axis [10, 11].
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Thus, the alignment of fibroblasts drives the alignment of the ECM they form. Our group has

shown that in infarct scar, fibroblasts on average align in the direction of the greatest stretch.

The wall of the heart is stretched in both the circumferential and longitudinal directions by the

pressure within the heart cavity. The balance of these two stretches, which varies across the heart,

determines the direction of the greatest stretch and therefore the infarct alignment. For example,

infarcts near the equator of the left ventricle (LV) are aligned to match primarily circumferential

stretches, whereas infarcts near the apex of the LV are aligned randomly due to equal stretches in

both directions [12]. Our research group has also shown that scar collagen orientation impacts the

function of the heart after MI [13].

1.2.3 Agent-Based Model of Infarct Healing

Agent-based models (ABMs) provide a unique platform to investigate the orientation of infarct

collagen during scar formation. ABMs have been used in the literature for many years to model

similar biological phenomena including wound healing [14], tumor growth [15], and developmen-

tal processes like structural patterning [16]. One of the primary benefits of ABMs, is that can be

built, tuned, and validated using existing data. For example, agent parameters and interactions

are built from information obtained from in vitro and ex vivo experiments about how a particular

cell type behaves and the characteristics of their environment. Once built, these models can be

validated with in vivo data.

Our group previously built an ABM simulating MI scar formation [17]. Briefly, this ABM

simulates fibroblasts as circular agents in a 2D environment representing a mid-wall section of the

LV. During model initiation, fibroblast agents are seeded with a random alignment and location

throughout the simulation space. The model updates every thirty minutes of simulated time al-

lowing each agent individually to migrate; undergo apoptosis or mitosis; and deposit, degrade, and

rotate collagen fibers according to external cues. These external factors include the structural align-

ment of the collagen and other matrix components, mechanical stretch created by the beating of the

heart, and chemokines produced by the necrotic infarcted tissue and the body’s immune response.
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To simulate infarction, all agents within a central radius of the simulation space are deleted, and the

mechanical and chemokine cues in and surrounding the infarct are altered to reflect the presence

of a non-contractile and inflamed infarcted area.

This infarct healing ABM can match data from several infarct studies our group has conducted.

The weights of the mechanical and chemokine cues were tuned to fit the mean vector length

(MVL), mean vector angle (MVA), and area fraction of scar collagen from cryoinfarcts created

at the apex and equator of the LV in adult rats at three weeks post-infarction [12]. The model

predicted that longitudinal loading would produce longitudinally aligned collagen at six weeks

after infarction. Our group confirmed this finding, by creating longitudinally loaded infarcts via

directional reinforcement with a Dacron patch. While the ABM’s predicted collagen alignment

matched that of the patched infarcts at six weeks, it failed to capture the aligned longitudinal col-

lagen seen at one, two, and three weeks post infarction [13]. Additionally, further inspection of

infarcts in rats revealed that, under biaxial loading conditions, while average collagen alignment

across many infarcts is essentially uniform, within individual infarcts average collagen alignment

is in a seemingly random direction. Locally, within smaller subsections of the infarct, collagen is

highly aligned[18]. The infarct ABM has not been able to generate the random average alignment

or the local heterogeneous collagen alignment in biaxially loaded infarcts.

Besides, the model simulates a scaled down infarct about 200 microns in diameter with only

hundreds of agents. A single six week simulation takes almost an hour to run on a standard laptop

computer. As the simulation space and the number of agents increases, so does the solving time.

Therefore, it would be extremely computationally expensive to simulate whole infarcts, which are

on the scale of millimeters to centimeters and contain millions to billions of cells (dependent on

the animal model), using the current ABM framework.

1.2.4 Objectives

This thesis seeks to overcome these predictive and computational obstacles providing a more use-

ful tool for the understanding of scar formation and exploration of therapies for MI by doing the

4



following. In chapter 2 we will transfer the infarct ABM to an object-oriented programming plat-

form and incorporate a discrete migration scheme (as opposed to the continuous scheme utilized in

the existing model) to improve the computational efficiency and flexibility of the model. In chapter

3 we will develop a computationally efficient method of simulating diffusing signaling molecules

compatible with an ABM framework. In chapter 4 we will match early collagen alignment of the

ABM to experimental data by evaluating new and existing model features. Finally, In chapter 5 we

will determine if modifying cell-cell interactions in the ABM can produce alignment heterogeneity

consistent with what we see in biaxially loaded infarcts.
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CHAPTER 2

TRANSFER OF THE ROUILLARD INFARCT ABM TO REPAST

2.1 Introduction

Agent-based models (ABMs) of infarct healing have helped us to better understand how infarct

scar is created and what factors contribute most to its characteristics. However, further devel-

opment of the infarct healing ABM published by Rouillard et al. in 2012 has been slow due to

structural difficulties with the model [17]. This ABM is written in a single MATLAB script that is

over 1000 lines with many long nested for loops. This structure encourages mistakes when editing

and makes debugging difficult. Additionally, to take advantage of the matrix computation power

of MATLAB, the lion’s share of the data is stored as vectors or matrices. This format results in

a number of complex indexing schemes where referencing is difficult to understand. This com-

plexity is particularly true for agent-associated values, which are stored separately from the actual

agents and retrieved using an agent id index, which makes adding and removing agents from the

simulation computationally and conceptually cumbersome.

The simplest approach to make the code more user-friendly would be to restructure it in MAT-

LAB by moving well-defined agent behaviors and model initiation actions to separate functions

and use data structures to attach information to agents. Unfortunately, this would do little to solve

the obstacle of the model’s computation time. A single six week infarct healing model runs in just

under an hour on a standard desktop computer. While this may not seem very long, when you

consider that the model already simulates a scaled-down infarct with only a few hundred agents

and that multiple model runs must be averaged to eliminate stochastic effects, one hour is quite a

long time. Therefore, improving the computational efficiency of the model is a significant factor

in the building of subsequent iterations of the model.

One option to improve the usability and speed of the model is to move it to a more appro-
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priate software platform. Repast Simphony is a java-based modeling toolkit widely used in the

ABM community. It is already designed to separate model initiation from the objects in the model,

namely the environment and the agents. Because Repast is written in java, an object-oriented lan-

guage, it compiles code and stores data for object-oriented programs, such as ABMs, in a much

more efficient and customizable manner. Plus it already includes a wealth of ABM focused func-

tions. One of Repast’s most useful features is the graphical user interface (GUI) (pictured in

Figure 2.1) which allows the user to input all of the model parameters, visualize the simulation

in real-time, and start and stop the model easily. Repast also has a built-in framework for batch

running models which has a similar interface. Here, the user can set parameters as constant across

all model runs, as a range of numbers, as a random integer, or as a space-separated list. The batch

Figure 2.1: Repast graphical user interface with parameter specification tab and simulation visual-
ization with agents (blue dots) before the infarct has been introduced
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runner automatically makes all possible unique combinations of the parameters and runs each in a

temporary directory. After all the models have been executed, predefined output file patterns are

moved to a previously determined directory. Running models as a batch not only simplifies the

process of running multiple models with a specific pattern but also saves time, because the simu-

lation visualizations are not generated and the user can parallelize the models by adding local and

remote hosts.

Additional computational benefits may be achieved by discretizing the agent locations in the

ABM. This would allow static environmental parameters, such as the chemokine and mechanical

cues, to be pre-calculated by location and stored in a lookup table. Finally, reducing the spatial

resolution of the collagen data will also provide computational savings, however, it is unclear what

losses in the predictive power of the model this might cause.

Therefore, the goals of this chapter are to transfer the Rouillard 2012 ABM to Repast Sym-

phony; improve the model’s usability by breaking the code down into relevant classes and methods;

discretize the fibroblast agent locations to improve the computation speed; incorporate a flexible

spatial scale, allowing users to prioritize the speed or resolution of their output; and validate this

new ABM against the previous ABM.

2.2 Methods

2.2.1 Code Reorganization in Repast

The infarct ABM was constructed in Repast Symphony 2.6 using three classes. The woundABM-

BuilderSim class builds the context for the model, adds the initial fibroblast agents, and terminates

the model after the desired simulation time has been achieved.

The woundABMContextSim class uses scheduled methods (blocks of code that are run at a

certain tick or interval of ticks during the model execution) to build the environment that the fi-

broblast agents exist in. This environment consists of several grid value layers. Grid value layers

are data storage objects provided by a built-in Repast class, which allow data of any type to be

stored and accessed by coordinates. Structural information is stored in lists of grid value layers.
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Thirty-six separate layers represent the oriented collagen fibers stored in five-degree angle bins

from negative ninety degrees to ninety degrees. Fibrin is stored in the same way. Because cell

migration is discrete in this implementation of the ABM, the mechanical and chemokine cues are

now calculated for each location in the simulation space and stored in individual grid value layers.

In addition to creating and managing the model environment, the woundABMContextSim class

also calculates and writes output data.

The cellAgentSim class is used to create and run the behaviors of all of the fibroblast agents

in the model. The cellAgentSim constructor (the portion of the class that creates the cell agent

objects) imbues each fibroblast agent with a set of modifiable parameters including apoptosisTime

(lifetime of the agent), apoptosisAge (age of the agent), mitosisTime (ticks between replication

cycles); mitosisAge (ticks since the last replication event); depositionTime (ticks required to de-

posit collagen); depositionCounter (ticks since the previous deposition event); degradationTime

(ticks required to degrade collagen); degradationCounter (ticks since the degradation event); an-

gleSelection (angle of orientation of the agent); pastMigration (record of whether the agent moved

during the last tick). These parameters, which the agents carry around with them, inform the agent

decision tree carried out in the step method of the cellAgentSim class which is scheduled to run at

each 0.5 tick (once every thirty minutes of simulation time). The agent decision tree is shown in

Figure 2.2. Interested readers can find the code for the step method in Appendix Listing A.1.

2.2.2 Discretizing Migration

Aside from structural differences, the Repast ABM is functionally identical to its predecessor

except in one aspect: the fibroblast agents do not move in a continuous space. Instead, the agents

move between the center points of a discrete grid. This grid is the same size as the grid value layers

which store the environmental data. This migration is the default for Repast, so no additional

modifications to the code were necessary to implement it.
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Figure 2.2: Agent decision tree run for each fibroblast agent at each 0.5 tick in the model. Start
and end points (blue), if statements (gray).

2.2.3 Flexible Spatial Resolution

This ABM also permits the user to specify the spatial discretization (grid size), allowing the user to

prioritize computational efficiency or high spatial resolution. To do this, a user-specified variable

called gridUnitSize was added to the model to replace all instances where the 2.5X2.5 µm grid was

included in a calculation. Other parameters in the model which were related to grid size were made

a function of the gridUnitSize parameter.

2.3 Results

All Repast ABM variants discussed in this chapter were run with the parameter values in Ta-

ble 2.1 entered into the Repast GUI. The continuous ABM written in MATLAB and the discrete

ABM written in Repast were both run with three different infarct loading conditions: circumfer-

ential, longitudinal, and biaxial. All ABM results were averaged across four model runs to reduce

stochastic effects. Figure 2.3 compares the continuous ABM to the discrete ABM. A 2.5X2.5 µm

grid size was used in the discrete model to ensure a reasonable comparison to the continuous ABM

which stores collagen on the same sized grid. The discrete ABM was also run with two additional
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grid sizes (10X10 µm and 5X5 µm). Figure 2.4 shows the effect of grid size on the discrete ABM.

The average computation time for each ABM variant is shown in Figure 2.5.

parameter value parameter value
Sample Width (µm) 480 Degradation Time (h) 0.5
Sample Height (µm) 480 Deposition Time (h) 0.5

Initial Fiber Distribution Circumferential Apoptosis Time (h) 240
Deposition Type Aligned Total Simulation Time (h) 1009

Persistence Cue Weight 0.333 Time to Mitosis (h) 240
Structural Cue Weight 0.167 Time step (h) 0.5

Mechanical Cue Weight 0.167 Initial Cell Count 576
Chemokine Cue Weight 0.167 Initial Collagen (%) 3.0

Table 2.1: Input parameters for the Repast GUI to create a standard model run.

Experimental measures of collagen MVL (measure of strength of alignment that ranges from 0

for randomly oriented collagen to 1 for perfectly aligned collagen), MVA (direction of alignment),

and area fraction are also displayed in Figure 2.3 and Figure 2.4 for reference. Data for circumfer-

entially loaded infarcts was taken from circular cryoinfarcts located at the equator of the LV, where

strains are primarily in the circumferential direction. Data for biaxially loaded infarcts was taken

from circular cryoinfarcts located at the apex of the LV, where strains are approximately equal

in both directions [12]. Data for longitudinally loaded infarcts was taken from infarcts surgically

reinforced in the circumferential direction, creating a longitudinally loaded infarct [13]. It should

be noted that the model collagen area fraction was originally fit to data from coronary ligation

induced rat infarcts at three weeks. These particular infarcts showed lower collagen area fraction

than cryoinfarcts and patched infarcts. While we do not intend to address this discrepancy in this

text, we chose to use the most consistent and up to date data.
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Figure 2.3: Continuous (solid line) and discrete (dashed line) infarct ABM implementations with
circumferential (red), longitudinal (green), and biaxial (blue) loading conditions plotted with ex-
perimental data (error bars).
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Figure 2.4: Discrete infarct ABM with 10X10 µm (dotted), 5X5 µm (dash-dotted), and 2.5X2.5 µm
(dashed) grid sizes and circumferential (red), longitudinal (green), and biaxial (blue) loading con-
ditions plotted with experimental data (error bars).

13



Figure 2.5: Computation time of continuous ABM implemented in MATLAB and various grid
sizes of the discrete ABM implemented in Repast (numbers in um).

2.4 Discussion and Conclusions

Figure 2.6: Tightest packing allowed by continuous
migration and discrete migration on a 2.5X2.5 µm grid

In each panel of Figure 2.3 we can see

good agreement between the two ABMs

on cell and collagen MVL and MVA in

all three loading conditions. It should be

noted that what appears to be oscillatory

MVA in the longitudinally loaded infarcts,

actually only represents a slight shift in the

collagen alignment which appears oscilla-

tory because a collagen fiber aligned at 90

degrees is the same as a collagen fiber aligned at -90 degrees. The cell fraction of the discrete

ABM is marginally depressed compared to that of the continuous ABM. This is due to the reduced

packing factor imposed on the fibroblast agents by the discrete grid as shown in Figure 2.6.

The collagen fraction in the discrete model is greater than that of the continuous model. This

difference has to do with the total area of collagen-containing grids each fibroblast agent has ac-

cess to. In the continuous ABM the agents move over the discrete collagen grid. This varies the

total area of grid space which they have access to, in this case between twelve and fourteen grids
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(examples can be seen in the first three panels of Figure 2.7). The grid space accessible to a cell is

important because the amount of collagen deposited by a single cell is constant. Therefore, when

the collagen deposition is spread out over a larger grid space, the amount of collagen which can

be deposited into a single grid during a single deposition event decreases. This reduces the maxi-

mum amount of collagen which can accumulate in each grid, and also across the whole simulation

space. We also see this effect in the collagen fraction of different grid sizes of the discrete model in

Figure 2.4. The 5X5 µm grid size produces the lowest collagen fraction because it has the highest

cell grid coverage. The 10X10 µm grid size produces a higher collagen fraction because it has a

lower cell grid coverage. Finally, the 2.5X2.5 µm grid size produces the highest collagen fraction

because it has the lowest cell grid coverage. The slight variations in the collagen MVL and MVA

may be attributed to the aforementioned differences in collagen fraction.

Figure 2.7: Agent grid coverage for continuous and discrete migration schemes

We can see additional effects of the grid size on the Repast model in Figure 2.4. Cell fraction

plateaus at a higher level for a 5X5 µm grid and even higher for a 10X10 µm grid although the

packing factor remains the same. This phenomenon is a result of how grid size affects the proba-

bility of a mitosis event occurring. As grid size increases, the number of grids that a cell occupies

decreases, increasing the probability that enough adjacent grids are available for it to replicate.

Figure 2.8 gives a simple example of this phenomenon which is also consistent with other findings

in the literature [19].

In total, the results show that our discrete implementation of the infarct healing ABM in Repast
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Figure 2.8: Replication scenarios for each grid size. All of these simulation areas have the same
agent density, however, only the 10X10 µm grid allows two additional agents to be added through
replication. Clearly, the probability of new agents being successfully added to the simulation
decreases as the grid size gets smaller

is sufficiently similar to the original continuous version in MATLAB. The discrete implementation

at a comparable spatial scale offers an approximately 50% reduction in computation time from the

continuous implementation. Furthermore, the flexible spatial scale offered by the discrete ABM al-

lows additional computational savings useful for efficient exploratory modeling while maintaining

a good fit to experimental data.

This model is available for download through the Cardiac Biomechanics Group GitHub at

https://github.com/cardiacbiomechanicsgroup/RepastABM. To access this specific version, check

out the validatedDiscreteABM commit.
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CHAPTER 3

AN IMAGE PROCESSING APPROACH TO MODELING DIFFUSION

3.1 Introduction

Cell signaling mediated by the diffusion of cytokines and other molecules may be useful or neces-

sary in future variants of the infarct ABM, especially as we consider adding additional cell types

like macrophages. However, solving the partial differential equations (PDEs) that govern diffusion

in such multi-cell problems can be particularly challenging within the framework of an ABM.

Analytical solutions for diffusion are impractical given the geometric complexity and evolu-

tionary nature of the problems we solve using the ABM. Numerical solutions, such as the fi-

nite element method (FEM) and finite difference method (FDM), can provide solutions to these

PDEs. Unfortunately, most software packages designed to implement ABMs do not contain built-

in FEMs, which are difficult to construct by hand. FDMs are much easier to implement, but require

small time steps (fractions of a second) to generate a stable solution at a cellular spatial scale (tens

of microns), making them computationally expensive. Therefore, the goal of this research is to

establish a computationally efficient and easily implemented numerical method based on image

processing techniques for approximating the diffusion of molecules using multiple sources and

sinks.

3.2 Methods

This chapter will explore numerical solutions to two-dimensional dynamic diffusion equations of

the following form,

dC

dt
= D∇2C − kdegC + kgen (3.1)

17



where C is the concentration, D is the diffusion rate, kdeg is the degradation rate and, and kgen

is the generation rate. Assuming that D is constant, then the diffusion segment of the equation

(dC/dt = D∇2C) is both linear and shift-invariant. Therefore, the transfer function of this system

is equal to its impulse response, which is given by the analytic solution of a point source of a

singular quantity of substance (M = 1) diffusing in an infinite two-dimensional plane [20].

C =
M

4πDt
exp

(
− r2

4Dt

)
(3.2)

WhereM is the amount of substance diffusing, t is the time, and r is the radial distance from the

source. An impulse response filter (IRF) can be generated from this analytic solution by sampling

on a grid centered about the point source. IRFs may be calculated for any value of time (∆t) and

at any spatial scale (∆x, ∆y). When an IRF is convolved with a concentration profile, the result

approximates that profile after diffusing over the time period of ∆t.

Ct+∆t [x, y] = Ct [x, y] ∗ IRF∆t [x, y] (3.3)

Convolution with an IRF can be performed iteratively to obtain the approximate concentration

profile after multiple time steps. Degradation and generation can be incorporated between con-

volutions via addition and subtraction, as shown in Figure 3.1. Computation was performed in

MATLAB R2018b (see Appendix Listing B.1 for code examples of the IRF method and FDM).

Mean absolute difference (MAD) was used to assess the accuracy of the concentration profiles gen-

erated by the IRF method and the FDM. The solution given by the MATLAB PDE solver (which

implements an FEM) was used as the gold standard solution.

3.3 Results

All three methods were used to determine the concentration profile of four representative bio-

chemicals (D = 1000, 100, 10, and 1 µm2/s) being constantly generated (kgen = 0.01 nmol/s) from

randomly sized and located circular areas centered in a 1x1cm plane (∆x = ∆y = 20 µm), and
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Figure 3.1: IRF method diagram (from left to right): blank concentration profile is input, genera-
tion from a cluster of cells is added, uniform degradation is subtracted, diffusion is calculated by
convolution with an impulse response filter, and the concentration after ∆t is output.

Figure 3.2: Mean absolute difference of the FDM (blue) and IRF method (red) compared to the
FEM. The IRF method solution with the lowest MAD and the FDM solution with the highest ∆t
for each diffusion constant (D = 1000, 100, 10, and 1) are denoted by markers (2, ∗, ◦, and �,
respectively).

uniformly degraded (kdeg = 0.001/s). The FDM and IRF method were both implemented over a

range of ∆t (0.1-900 s), for a total simulated time of one hour (ttotal = 3600 s). The MADs of both

methods compared to the FEM for each diffusion coefficient and value of ∆t that generated stable

solutions are shown in Figure 3.2.

We can see that the MAD of the FDM is dependant on D, but independent of ∆t (creating the

horizontal blue lines). However, the MAD of of the IRF is dependant on D and ∆t. This produces

the curved red lines which increase exponentially towards the right side of the graph. This behavior

is a result of the increased ability of the filter to capture the diffusion as ∆t increases and the
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increasing accuracy of the degradation and generation as ∆t decreases. We would like to note, that

we would expect the MAD of solutions with a diffusion coefficient of D=1000 to increase in an

exponential manner at higher values of ∆t, matching the trend seen for lower diffusion coefficients.

The range of ∆t which produce stable solutions in the FDM is lower for higher values of D.

In other words, as the diffusion coefficient increases, spreading the chemical mass faster, the time

step used in the calculation must decrease to accurately approximate the diffusion profile. This

is why the blue lines lengthen and D decreases. We see the opposite effect for the IRF. The red

lines cover a shorter range of ∆t as D increases. The range of stable solutions for the IRF start at

different values of ∆t because the filter has difficulty capturing steep diffusion profiles. Therefore,

the IRF method produces unstable solutions for small diffusion coefficients with relatively short

time steps.

Figure 3.3: (top) MAD for marked solutions from Figure 3.2. (bottom) Computation time for
marked solutions. The ∆t for each solution is displayed above the corresponding bar.
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The solutions from each method with the lowest MAD (most accurate) or highest ∆t (most

efficient, where multiple solutions had the same MAD) are denoted by markers in Figure 3.2; their

MAD and computational efficiency are compared in Figure 3.3.

In the top of Figure 3.3, we see that for the FDM the MAD of the best solution for each diffusion

constant goes down as D increases. However the bottom panel shows that computation time for

the best FDM solutions increases as the Diffusion coefficient increases and the maximum allow

step size (to remain stable) is forces to get smaller. The MAD of the IRF method’s best solutions

for each diffusion coefficient are not related to D alone. Furthermore, the computation time for the

best IRF solutions does not appear to be directly related to ∆t either.

3.4 Discussion

The results show that there are significant benefits to using the IRF method over the traditional

FDM. For each diffusion coefficient tested, the IRF method was able to produce valid solutions

in about an order of magnitude less time than the most computationally efficient FDM solution.

Furthermore, the IRF method resulted in solutions with reduced mean absolute difference for all

diffusion coefficients, with the exception of D = 1000 µm2/s. This last result is due to a difference

between the boundary conditions of the different models. Both the FDM and FEM have a no-flux

boundary condition, as opposed to the IRF method, which allows flux at the boundary because it

is constructed from the analytic solution of a point source in an infinite 2-D plane. This difference

in boundary conditions was not apparent for the other values of D because they were not high

enough to transport sufficient chemical mass to the boundaries. This limitation can be offset in

practice by padding the simulation mesh with additional elements beyond the region of interest

and/or specifying appropriate consumption rates at the border nodes.

Also of note is that the relationships between ∆t, D, and computation time are different for the

FDM and IRF method. The computation time for the FDM is directly related to ∆t. For a given

ttotal, as ∆t decreases, the number of iterations performed increases, driving up the computation

time. The computation time of the IRF method is related to the product of D and ∆t. As D ∗
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∆t increases, the filter extent must increase to capture the spread of the diffusion. As filter size

increases, the computation time for an individual iteration of the method also increases. This

relationship accounts for the results in Figure 3.3, where the IRF method solution for D = 1000

has a higher computation time than that of D = 100 and D = 10, despite the fact that the latter two

have lower ∆t than the former.

Overall, the iterative impulse response filter method introduced in this chapter appears to be

a useful tool for generating accurate concentration profiles of diffusing molecules with relatively

large time steps, facilitating computationally efficient implementation even within larger models

where built-in PDE solvers are not available.

The research was presented at the Summer Biomechanics, Bioengineering, and Biotransport

Conference, June 17-20, 2020.
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CHAPTER 4

IMPROVING MODEL PREDICTIONS OF EARLY COLLAGEN REMODELING

4.1 Introduction

The original infarct healing ABM published by our group in 2012 [17], matched the measured

collagen content in healing rat infarcts at one, two, three, and six weeks. The collagen alignment

predicted by the model was first evaluated against the most similar experimental data available at

the time: cryoinfarct scar harvested at three weeks. We replicated the infarct size, shape, and loca-

tion (loading condition) of different cryoinfarcts, and were able to match the collagen alignment at

three weeks. The model was also able explain some aspects of the transmural distribution of scar

collagen alignment reported in pig infarcts at three weeks. However, for biaxially loaded infarcts

the ABM predicted a slow transition from the highly aligned collagen structure present before in-

farction to the uniformly aligned structure seen in the data at three weeks. This was not consistent

with earlier findings, which showed that scars from ligation-induced infarcts in rats (which are

biaxially loaded during healing) are mechanically and structurally isotropic as early as one week.

[21].

Additionally, when a longitudinal loading condition was prescribed in the original infarct

ABM, the model predicted that a longitudinally aligned collagen matrix would develop. Caggiano

et al. directly tested this prediction experimentally by sewing a Dacron patch, which allowed strain

only in the longitudinal direction, onto the epicardium of adult rats immediately following infarc-

tion via coronary ligation. The six-week collagen alignment of these patched infarcts matched that

predicted by the ABM. However, the ABM predicted that collagen at the mid-wall would initially

align with the circumferentially oriented matrix that survived the initial infarction, then gradually

switch to longitudinal alignment over several weeks as fibroblasts deposited new longitudinally

oriented collagen. Instead, the experiments clearly showed that collagen was already strongly
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aligned in the longitudinal direction at one week, and maintained that alignment as it continued to

accumulate through six weeks (Figure 4.1) [13]. These discrepancies suggest that our understand-

ing of what guides collagen alignment in the early stages of healing is flawed, which is important

because novel therapies such as polymer injection are designed to be deployed during this early

phase of healing [22].

Figure 4.1: Mean vector length of longitudinally loaded infarct simulations under normal assump-
tions (dashed line) and with initial collagen removed from the wound area (solid line). Error bars
show data collected from patched infarcts.

Note. Reprinted from “Surgical reinforcement alters collagen alignment and turnover in healing
myocardial infarcts”, by Caggiano, L. R., 2018, American Journal of Physiology-Heart and Cir-
culatory Physiology, 315, p. H1047.

In the same study, Caggiano et al. attempted to remedy this discrepancy by testing the assump-

tion that the initial structure, including collagen and non-collagen components, was completely

disrupted during infarction. The rational behind removing the collagen, was to prevent the fibrob-

lasts from having to remodel or overwhelm the pre-existing 2-3% area fraction of circumferentially

aligned collagen during the first week of healing. Similarly, the non-collagen components, which

were intended to represent the physical constraints imposed by dead myocytes before they are re-

sorbed and other aligned matrix components, were removed to prevent the initial structural cue

(which would otherwise be circumferentially aligned), from conflicting with the longitudinal me-

chanical cue. While eliminating the pre-existing structure improved the fit of the model at the two
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and three week time points, the model still failed to replicate the high longitudinal alignment seen

in patched animals at one week.

Removal of the collagen and non-collagen structural components, was not only intended to

improve the results, but also reflected a genuine question as to the state of the structure after in-

farction and before fibroblast invasion. Previously we had assumed that the structure was acutely

unchanged by infarction. However, it may be reasonable to assume that some percentage of the

preexisting aligned collagen is disrupted by the inflammation, edema, early white blood cell inva-

sion, etc. Furthermore, the contact guidance cues, and even the physical boundaries, offered by the

myocytes in the infarct are likely to be disrupted to some extent during necrosis.

Another realistic change to model’s assumptions about the initial infarct structure, alternative to

removing the structure entirely, is to simulate the non-collagen structure with a uniform alignment.

This may be a more realistic representation of the disrupted structure following infarction.

Adding new assumptions may also make the model more biologically relevant and change the

collagen alignment time course. Previously, the MVL (a measure of alignment) of the structure

was used to scale the strength of the structural cue on fibroblast alignment. In other words, a

uniformly aligned structure would not contribute to the alignment of agents but a perfectly aligned

structure would contribute maximally to the alignment of agents. However, under this scheme a

perfectly aligned structure with 1% collagen area fraction would contribute just as much to the

alignment of agents as a perfectly aligned structure with 30% collagen area fraction.

One other feature of the model that has been brought into question, is the use of collagen

rotation by fibroblasts. While collagen rotation has been shown to contribute to matrix alignment

in unloaded collagen gels as they compact [23], its existence in vivo has yet to be confirmed.

Furthermore, without the use of collagen rotation, the current model is unable to produce aligned

collagen in any loading condition. This suggests that other factors contributing the alignment of

fibroblasts, particularly the mechanical cue, may need to be reevaluated.

The overall goal of this chapter is to evaluate the biological relevance of structure related fea-

tures in the infarct healing ABM developed in chapter 2 by removing or changing said features
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- alone or in combination - and observing the affect on early collagen alignment under different

loading scenarios.

4.2 Methods

The following model changes are activated or suppressed by individual toggles added to the GUI.

These toggles open corresponding if gates in the model which route to newly written code chunks

that produce the desired effect of the toggle.

When the wound collagen toggle is turned on, the collagen grid value layers in the model are

initialized normally. When the wound collagen toggle is turned off, the grids within all 36 collagen

layers corresponding to locations within the wound area are populated by zeros.

When the non-collagen toggle is turned on, the non-collagen grid value layers in the model are

initialized normally. When the non-collagen toggle is turned off, the non-collagen grid value layer

is populated with zeros.

To vary the orientation of the non collagen structure, a non-collagen distribution parameter was

added to the GUI. This parameter determines the distribution type (circumferential, longitudinal, or

uniform) given to a new, non-collagen specific, distribution vector in the method which populates

the structural grid value layers. This method can be found in Appendix Listing C.1.

When the scale structural cue toggle is on, the collagen from all 36 layers beneath the cell is to-

taled up and normalized by the maximum possible collagen that could exist in that area. This value

is then used to scale the structural cue (WS) when various orientation cues are integrated to direct

overall cell behavior. When the scale structural cue toggle is off, the structural cue normalization

factor is set to 1.

Listing 4.1: Scale structural cue gate and calculations in the guidanceCue method

// Calculate structural guidance cue normalization factors based on

maximum values

double Ms = 1;

if (scaleStructuralCue == true) {
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final GridValueLayer colTotal = (GridValueLayer)

woundabmspace.getValueLayer("Collagen Sum");

final GridValueLayer nonColTotal = (GridValueLayer)

woundabmspace.getValueLayer("Non Collagen Sum");

final List<GridPoint> coveredSites = cellCoverage(x, y);

double colSum = 0;

double nonColSum = 0;

for (GridPoint site : coveredSites ) {

final int siteX = site.getX();

final int siteY = site.getY();

colSum = colSum+colTotal.get(siteX, siteY);

nonColSum = nonColSum+nonColTotal.get(siteX, siteY);

}

Ms = colSum/(kColGenMax/kColDegMax);

}

When the collagen rotation toggle is turned on, the collagen rotation method is run as a part of

the agent behaviors during the step method. When the collagen rotation toggle is turned off, the

rotation method is skipped during execution of the step method.

Listing 4.2: Collagen rotation gate in the step method

// Check for rotation, degradation, deposition

if (colRotation == true) {

collagenRotation(siteX, siteY, chemokine, collagenLayers);

}

collagenDeposition(siteX, siteY, chemokine, collagenLayers,

depositionTime);

matrixDegradation(siteX, siteY, chemokine, collagenLayers,

nonColLayers, degradationTime);
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Mean vector length MVL (measure of strength of alignment that ranges from 0 for randomly

oriented collagen to 1 for perfectly aligned collagen) is calculated using the following equation,

where collagenx is the mean x component of all the collagen in the wound and collageny is the

mean y component of all the collagen in the wound.

MV L =
√
collagen2

x + collagen2
y

4.3 Results

All of the following exploratory models were conducted on a 10X10 µm grid. The best fitting

version of the model was also averaged across four model runs to reduce stochastic effects. The

full model results including the cell and collagen alignment and area faction time courses is shown

in Figure 4.6.

First, all of the individual feature changes were run separately in the ABM. Circumferential,

longitudinal, and biaxial loading conditions were simulated for all cases to ensure that model

changes that improved fits to our data from longitudinally loaded infarcts did not simultaneously

degrade our ability to fit prior three-week data from circumferentially and biaxially loaded infarcts.

The time courses of predicted strength of alignment for these models are shown in Figure 4.2.

Removing the initial non-collagen structure reduces the influence of the original structure on

cell behavior. In the longitudinal loading condition, the switch to longitudinal orientation occurs

more quickly but the shape of the curve remains similar. The circumferential and biaxial loading

conditions show decreased collagen alignment at earlier time points, but appear to still reach the

same steady state value towards week six.

Setting the initial alignment of the non-collagen structure to be uniform, had a similar affect

to removing the non-collagen structure entirely. However, the overall alignment across all loading

conditions and time points is lower with a uniform distribution of non-collagen than without the

non-collagen structure.

Eliminating the initial collagen allowed the mean collagen direction to be gradually determined
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(a) No Non Collagen

(b) Uniform Non Collagen

(c) No Initial Collagen

(d) Scale Ws
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(e) No Rotation

Figure 4.2: Collagen mean vector length of the standard (solid line) and modified (dashed line)
ABM with experimental data (error bars). Circumferential (red), longitudinal (green), and biaxial
(blue) results shown.

by deposition rather than switching from an initial to a final orientation, so that the MVL curve rises

monotonically to a steady state rather than dipping and then rising again. While the alignment of

all loading conditions is low during the first 2 weeks of simulation, the alignment after two weeks

is virtually unchanged.

Scaling the structural cue in proportion to the content of the structure increases the effect of all

the other cues at early time-points. Particularly, the cell’s persistence which is already weighted

higher than the other guidance cues. Because the initial structure is circumferentially aligned, cells

will invade slightly faster from the left and right sides of the infarct, creating the bump in alignment

we see in the circumferential and biaxial loading cases. Heightened persistence smooths and slows

changes in all of the loading conditions. Regardless, all models appear to still reach the same

steady state value toward week six.

Removing collagen rotation slowed changes to the collagen structure and drastically reduced

overall alignment in all loading conditions and all model variants.

No individual change to the model was sufficient to produce high alignment in longitudinally

loaded infarcts and uniform in biaxially loaded infarcts at week one. Even so, only one of the

changes (No Rotation) pushes the circumferential and biaxial simulations outside of the error bars

of the data, so any of the other variants could be considered equally successful in terms of their

predictive capability when compared to the original model.

Next, all the possible combinations of two (Table 4.1), three, and four (Table 4.2) of these
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changes were simulated (MVL results are shown in Appendix Figure D.1, Figure D.2, and Fig-

ure D.3). Combinations including both the removal of the initial non-collagen structure and a uni-

form initial non-collagen structure were omitted because of their incompatibility. Model change

combinations were assessed visually. Two promising combinations were selected for further re-

view based on their potential to fit the MVL time course for all of the loading conditions.
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No Non Collagen Figure 4.2a X Figure D.1a Figure D.1b Figure D.1c
Uniform Non Collagen X Figure 4.2b Figure D.1d Figure D.1e Figure D.1f

No Initial Collagen X X Figure 4.2c Figure D.1h Figure D.1g
Scale Ws X X X Figure 4.2d Figure D.1i

No Rotation X X X X Figure 4.2e

Table 4.1: First and second order change combinations. X’s indicate redundant or incompatible
change combinations.

No Non Collagen + No Initial Collagen + Scale Ws Figure 4.3
No Non Collagen + No Initial Collagen + No Rotation Figure D.2b
No Non Collagen + Scale Ws + No Rotation Figure D.2c
Uniform Non Collagen + No Initial Collagen + Scale Ws Figure D.2d
Uniform Non Collagen + No Initial Collagen + No Rotation Figure D.2e
Uniform Non Collagen + Scale Ws + No Rotation Figure D.2f
No Initial Collagen + Scale Ws + No Rotation Figure D.2g
No Non Collagen + No Initial Collagen + Scale Ws + No Rotation Figure 4.4
Uniform Non Collagen + No Initial Collagen + Scale Ws + No Rotation Figure D.3b

Table 4.2: Second and third order change combinations.

The only change combination that was able reach the week one error bars for longitudinal

loading was the model with no non-collagen, no initial collagen, and a scaled structural cue. This

version also produces uniform collagen in the first week of biaxially loaded simulations and main-

tains a good fit to the three week data in the circumferential loading scenario. The MVL time

courses for this model are shown in Figure 4.3.
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Figure 4.3: Collagen mean vector length of the ABM with no non-collagen, no initial collagen and
a scaled structural cue (dashed line) plotted with standard results (solid line) and experimental data
(error bars). Circumferential (red), longitudinal (green), and biaxial (blue) results shown.

One other combination of changes showed promising results. The model with no non-collagen,

no initial collagen, a scaled structural cue, and no rotation did not match any of the data for cir-

cumferential or longitudinal infarcts. However, while the alignment for these loading scenarios

was low across the entire time course, the overall trend of alignment (Figure 4.5) looked as if it

would fit the data nicely if the cells were made to respond more highly to the direction of stretch.

Figure 4.4: Collagen mean vector length of the ABM with no non-collagen, no initial collagen,
a scaled structural cue, and no rotation (dashed line) plotted with standard results (solid line)
and experimental data (error bars). Circumferential (red), longitudinal (green), and biaxial (blue)
results shown.

To test this theory, the mechanical cue of the model with no non-collagen, no initial collagen,

a scaled structural cue, and no rotation was adjusted to better fit the early collagen alignment

time-course. Mechanical cues from 0.2 to 0.9 at intervals of 0.1 were simulated. The three best

mechanical cue weights are shown in Figure 4.5.

This version of the model, with mechanical cue weight (Wm) set to 0.6, was able to fit the

circumferential alignment at three weeks, produce uniform alignment in the biaxial loading con-
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Figure 4.5: Collagen mean vector length of the ABM with no non-collagen, no initial collagen,
a scaled structural cue, and no rotation with various mechanical cue weights (dashed, dotted, and
dash-dotted) plotted with standard results (solid line) and experimental data (error bars). Circum-
ferential (red), longitudinal (green), and biaxial (blue) results shown.

dition by week one, and fit within the error bars of all the time points for the longitudinal loading

condition. It is in this latter accomplishment that this version of the ABM outperforms the other

promising, but more conservative, set of changes. The version with no non-collagen, no initial

collagen, and a scaled structural cue does not fall within the error bars of the longitudinal data at

weeks two and three.

Therefore, the model with no non-collagen, no initial collagen, a scaled structural cue, and

no rotation with a mechanical cue weight of 0.6 provides the best fit to the data across all time

points and loading conditions. Comprehensive results for this version of the model are shown in

Figure 4.6. Here, we can see that cell MVL is markedly higher in loading conditions with a strong

mechanical cue. Cell and collagen MVA are consistent with previous results for the longitudinal

and circumferential loading conditions and random for the biaxial loading condition. Collagen

fraction is lower during the first two to three weeks of collagen accumulation due to the removal

of the initial collagen matrix, but fits the week one collagen fraction from patched infarcts and still

approaches the same final value. Cell fraction remains unchanged.
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Figure 4.6: The best fitting combination of changes (No Non Collagen + No Initial Collagen +
Scale Ws + No Rotation) to the ABM with a tuned mechanical cue weight (Wm=0.6) (dashed)
compared to the standard model (solid) and experimental data (error bars). Circumferential (red),
longitudinal (green), and biaxial (blue) results shown.
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4.4 Discussion and Conclusions

Some combinations of modifications we considered were able to better match our new data on

the time course of collagen alignment during longitudinal loading while still fitting data used to

validate the original ABM. The three key changes that improved the match to the data were elim-

inating initial structure (both collagen and non-collagen components), scaling structural guidance

in proportion with collagen content, and eliminating rotation.

It has been found that pro-inflammatory cytokines, including Tumor Necrosis Factor-α and IL-

1β, released after MI enhance matrix metalloproteinase (MMP) expression and activity promoting

degradation of collagen and other matrix proteins which further enhance the inflammatory cascade

[24] [25]. This biologically supports our findings that removing the initial structure from the model

is necessary to generate highly aligned collagen at early time points.

Fibroblasts interact with matrix proteins through surface proteins, usually integrins [26]. There-

fore, it makes sense that the as the amount of matrix surrounding a cell increases, the integrins on

the cell’s surface are more likely to bind to matrix components, allowing the cell to better sense its

structural surroundings. This was the rational we employed in scaling the structural cue magnitude

proportional to the collagen content. Because the structural cue is less aligned than the mechan-

ical cue, as collagen is deposited the structural cue increases in magnitude. This causes the cell

alignment to drop creating the plateau in longitudinal MVL time course which continues through

week six. This subtle sift in cue weighting is obscured when collagen rotation is allowed because

the initial collagen, which is more weakly aligned, is remodeled before there is enough content for

it stabilize and slightly lower the later collagen alignment.

The simulations with no collagen rotation clearly show that the model was reliant on rotation

in order to produce aligned collagen. Considering that there is currently no in vivo data supporting

the rotation of collagen fibers by fibroblasts, removing this feature of the model and attempting to

fit the data through, other, more biologically relevant means, was important.

Even with all of these biologically plausible modifications in collagen turnover and structural
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guidance cues, the relative weight of the mechanical cue on cell orientation had to be changed in

order to fit the data. The original ABM conservatively set the mechanical cue weight equal to the

structural cue weight (which was fitted to published measurements of fibroblast behavior). Now

that we have data from additional loading conditions [13] we can actually fit the mechanical cue

weight. Increasing the mechanical cue weight to almost four times it’s original value, seems dras-

tic. However, we had already established in previous research that collagen alignment is ultimately

determined by mechanics [17], therefore is makes sense that the mechanical cue weight would be

higher than the other cues.

The natural result of increasing the mechanical cue weight by so much, is that the average cell

angle is much more highly aligned than we have seen in previous versions of the model. However,

this is also consistent with cell alignment data that our group has collected, which shows that

infarct fibroblasts are aligned with a similar strength to local and global collagen alignment [18].

This finding reinforces our decision to increase the weight of the mechanical cue.

While circumferential and biaxial alignment time courses in Figure 4.6 look fairly different

than before, they still fit the experimental data well. In fact, the trends in the biaxial simulations

show promise for better fitting the biaxial data. Namely, the removal of the initial non-collagen

and collagen structures, has allowed the collagen to align in a random direction consistent with

what we have seen for whole biaxially loaded infarcts.

As a bonus, these model modifications also simplify the model setup and agent behaviors and

have a positive effect on computational efficiency.

To conclude, this chapter details the review of various changes to assumptions in the infarct

ABM. By removing the initial wound collagen and non-collagen, scaling the structural cue strength

to the content of the structure, removing rotation of collagen fibers by fibroblast agents, and tuning

the mechanical cue weight, we were able to match the collagen alignment time course of longi-

tudinally loaded infarcts while maintaining a good fit to circumferentially and biaxially loaded

infarcts.

This model is available for download through the Cardiac Biomechanics Group GitHub at
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https://github.com/cardiacbiomechanicsgroup/RepastABM. To access this specific version, check

out the collagenAlignmentTimeCourseTuning commit.
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CHAPTER 5

COLLISION GUIDANCE AND COLLAGEN ORIENTATION HETEROGENEITY

5.1 Introduction

In the previous chapter we focused on fitting our infarct ABM to new data in patched longitudi-

nally loaded infarcts. The changes we made in chapter 4 also improved the match to the predicted

average orientation of ligation-induced biaxial infarcts as well. Previously, the ABM predicted that

these infarcts would slowly transition from the circumferentially aligned collagen matrix present

before infarction to a virtually uniform matrix with an overall preference for the circumferen-

tial direction over a period of six weeks. Removing the initial structure, both collagen and non-

collagen elements, allowed biaxial loading simulations to develop uniformly aligned and spatially

heterogeneous collagen scar with random average alignment as early as one week after infarction

(Figure 5.1). This matches what we see in apical (biaxially loaded) rat infarcts much better than

before.

Figure 5.1: Collagen alignment direction differs between identical biaxial simulations.

While biaxial loading leads to low alignment of collagen in a random preferred direction across

whole infarcts, local alignment of infarct sub-regions is quite high and persists over time [18].

We can see an example of this in Figure 5.2 which shows the global and local alignment of an

apical infarct stained for collagen with picrosirius red. Quantification of the collagen heterogeneity
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revealed that the relative alignment of two fibers is related to their distance from one another.

So far, the Rouillard infarct ABM [17] has only been able to produce early heterogeneity under

somewhat tenuous assumptions. Richardson et al. found that increasing the distance at which

cells can sense or deposit collagen in the ABM, produced locally aligned collagen after one week

of remodeling. However, the authors concluded that collagen deposition and sensing distances

required to produce heterogeneity are not biologically realistic based on our current understanding

of fibrillogenesis or structural sensing, respectively [18].

Understanding what drives these heterogeneous alignment patterns could provide insight for

developing new methods to control scar alignment. Additionally, the emergence of such patterns

are important to characterize because they may be mechanically disadvantageous and pose an on-

going threat to regenerative therapies, which require aligned tissue in order to generate functional,

aligned myocytes [27].

Figure 5.2: Mid-wall apical rat infarct section stained for collagen (picrosirius red). (left) Whole
infarct histology shows low global alignment, (middle) sub-regions of aligned collagen, (right)
fiber-fiber alignment verses distance quantifies regional heterogeneity.

Note. Adapted from “Emergence of Collagen Orientation Heterogeneity in Healing Infarcts and
an Agent-Based Model”, by Richardson, W. J., 2016, Biophysical Journal, 110, p. 2268.

Collision guidance, a phenomenon where cells become more aligned after running into one

another, has been proposed as means of alignment. Recently, Park et al. found that different

degrees of matrix alignment, from highly aligned across large tissue sections, to heterogeneously

aligned across smaller tissue sections, to uniformly aligned, could be produced in vitro and in silico
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with high, medium, and low levels of collision guidance, respectively [28].

Figure 5.3: Three cell collision guidance interaction examples with representative CIL (contact
inhibition of locomotion) angles.

Note. Adapted from “Extracellular matrix anisotropy is determined by TFAP2C-dependent regu-
lation of cell collisions”, by Park, D., 2019, Nature Materials, 19, p. 231.

Well defined cellular mechanisms make a compelling case for the biological relevance of colli-

sion guidance mediated alignment. The transcription factor TFAP2C regulates cell collision guid-

ance by controlling the expression of RND3 which downregulates actomyosin activity at cell-cell

collision zones causing shifts in cell orientation. Without TFAP2C, cell collision guidance is dis-

rupted, leading to uniform matrix generation [28].

Therefore, the goal of this chapter is to establish whether or not collision guidance, within
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the framework of the infarct ABM developed in chapters 2 and 4, can produce a tunable level of

heterogeneity in biaxially loaded infarcts.

5.2 Methods

Collision guidance is implemented as a part of the migration method in the ABM. This separates

it from the mechanical, chemical, and structural cues, allowing it only to change the cell’s current

orientation without affecting the balance or weighting of the other alignment cues. The collision

guidance formula (adapated from [28]) used in this chapter is shown below.

θi(t+ 1) = tan−1

(
Yi
Xi

)

Xi =
w1Xpi + δciw2Xci

w1 + δciw2

, Yi =
w1Ypi + δciw2Yci
w1 + δciw2

Xpi = cos(θi(t) + η), Ypi = sin(θi(t) + η)

Xci = δci

Ni∑
j=1

cos(θj(t)

Ni

, Yci = δci

Ni∑
j=1

sin(θj(t)

Ni

δci =

 1, Ni 6= 0

0, Ni = 0

Where θi is the angle of the migratory cell, η is a Gaussian distributed random variable with

mean 0 and variance Var(η) which simulates a persistent random walk, θj is the angle of a non-

migratory cell involved in the collision, Ni is the number of non-migratory cell involved in the

collision, and t is the time in ticks. This equation ultimately adds a weighted fraction of the

stationary cell orientation vector/s to the colliding cell orientation vector, which brings the colliding

cell into closer alignment with the stationary cell/s.

A parameter called collisionGuidance was also added to the model GUI. When collisionGuid-

ance is given a value greater than zero and less than or equal to one, a new if gate in the migration
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method is opened. Once opened, if any cell attempts to migrate and encounters one or more cells

during that attempt, the angles of all cells involved are added to the collision guidance calculation

and the migratory cell’s angle is updated based on the results. The value of the collisionGuidance

parameter is also used in the collision guidance calculation as w2, the weight of the cell angles

being collided with. Because our model incorporates a persistent random walk when calculating

the cell angle based on the structural, mechanical, and chemokine cues, the value of η was set to 0.

The full migration method, with collision guidance implemented, is listed in appendix Listing E.1.

Regional heterogeneity was assessed by calculating the dot product of each grid’s collagen ori-

entation vector with every other grid’s collagen orientation vector and plotting those dot products

versus the distance between each pair of vectors.

5.3 Results

The ABM was run with a biaxial loading condition, 10X10 µm grid size, and various levels of

collision guidance (w2=0.05, 0.1, 0.2, 0.4, 0.8). A representative collagen angle heat map at six

weeks of simulation for each level of collision guidance is shown in Figure 5.4. Fiber-fiber align-

ment quantification was performed to determine whether locally aligned areas of collagen were

present or varied with the level of collision guidance. To reduce noise, multiple models were run

for each condition and aggregated into one alignment distance quantification.

Figure 5.4 shows circumferentially aligned collagen outside the infarct and heterogeneous col-

lagen alignment within the infarct for all values of collisionGuidance. Aligned sub-regions of

collagen are not visually apparent in any of the heat maps.

Fiber-fiber alignment (Figure 5.5) is low when fibers are close together, or moderately far apart.

Fiber-fiber alignment is high when the distance between them is greatest. This is an artifact of the

board zone of the infarct, in which fibroblasts are always aligned perpendicular to the edge.

Fiber-fiber alignment quantification was also was performed at two weeks to determine if het-

erogeneity was transient (Figure 5.6). Fiber-fiber alignment did not vary with fiber-fiber distance

at week two. Alignment at the boarder zone has only just begun to form.
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Figure 5.4: Collagen angle heat maps of biaxially loaded infarct simulations with various levels
of collision guidance. Circumferentially aligned collagen (red), longitudinally aligned collagen
(green).

5.4 Discussion and Conclusions

Visual and mathematical quantification of collagen alignment confirms that collagen patches in

near proximity are not more likely to be aligned similarly. Therefore, collision guidance alone was

not able to create locally aligned areas of collagen in biaxially loaded infarct simulations at early

or late time points.

The most likely reason that we were not able to generate alignment using collision guidance,

is that our model contains a separate cell angle calculation factoring other guidance cues in. Al-

though our implementation of collision guidance modifies this guidance cue calculation by directly

changing the persistent angle of the cell, the computation of a new cell angle with influence from

other cues, obscures any effect of collision guidance.
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Figure 5.5: 6 week fiber-fiber alignment vs fiber-fiber distance of biaxially loaded infarct simula-
tions with various levels of collision guidance

Figure 5.6: 2 week fiber-fiber alignment vs fiber-fiber distance of biaxially loaded infarct simula-
tions with various levels of collision guidance

Another possible reason that we are unable to create local alignment, is that collision guidance

only comes into play when cell density is high enough to cause collisions. Because our model
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no longer includes collagen rotation, and cell density does not peak until week one, a collagen

structure without the influence of collision guidance may develop fully enough to prevent local

alignment via collision guidance later on.

Peripheral invasion of the infarct, further limits the effects of collision guidance at early time-

points because cells are moving collectively at the same rate towards the center of the infarct, rather

than against one another. Incorporating transmural migration of fibroblasts into the infarct might

cause more collisions earlier between cells invading from the epicardium and infarct boarder. By

entering the infarct with an alignment perpendicular to the simulation plane, transmurally migrat-

ing cells may also be able to produce local alignment without the aid of collision guidance.

This model is available for download through the Cardiac Biomechanics Group GitHub at

https://github.com/cardiacbiomechanicsgroup/RepastABM. To access this specific version, check

out the collisionGuidanceAdded commit.

45

https://github.com/cardiacbiomechanicsgroup/RepastABM


CHAPTER 6

CONCLUSION AND DIRECTIONS FOR FUTURE WORK

6.1 Conclusion

This research outlines how we built a more computationally efficient ABM of infarct healing which

predicts new and previously unmatched infarct data.

In chapter two, we showed that our new infarct healing ABM with discrete migration is not

only more computationally efficient than the previous versions, but also fits experimental data just

as well, even with lower spatial resolution.

In chapter three we developed a novel image processing based numerical method for calculat-

ing the diffusion profiles of signaling molecules suitable for implementation in an ABM frame-

work and stable at a spatial and temporal scale similar to that of our ABM. We also showed that

this method was more computationally efficient and similarly accurate to solutions generated by

traditional methods.

Chapter four improves the ability of the model to match a wider range of experimental data

by re-examining the biological plausibility of multiple features of the ABM as originally formu-

lated. Here, we concluded that previous version of the ABM relied heavily on collagen rotation to

produce collagen alignment, despite the fact that large rotations of collagen fibers seem unlikely

to occur in dense, mechanically loaded infarcts in vivo. By removing rotation and increasing the

influence of the mechanical cue on the cell alignment, were able to match new data on the time

course of collagen alignment in longitudinally loaded infarcts without sacrificing the ability to

match other data used for validation of the original ABM. The changes introduced in this chap-

ter also produced higher cell alignments, consistent with previous studies relating matrix and cell

alignment.

Finally, in chapter 5 we determined that collision guidance alone was not sufficient to produce
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locally aligned regions of collagen in biaxially loaded infarcts. We also discussed some features

of the model which might be changed to produce the patterns of heterogeneity seen in biaxially

loaded infarct with, or without, the inclusion of collision guidance.

In conclusion, in this work we created a computationally efficient and flexible infarct healing

ABM and an associated diffusion method that better matches the full range of available data on

collagen alignment in variously loaded healing infarcts than our previously published models.

6.2 Directions for Future Work

Based on this work, further research should be considered in the following areas.

6.2.1 Multiresolution Agent-Based Model

ABMs, including the one discussed in this text, are typically constructed on a single discrete grid.

However, different biologic processes involved in infarct healing operate on different spatial scales,

limiting the ability of ABMs to efficiently and accurately represent them all on a single grid.

For instance, collagen fiber alignment in healing scar varies at a scale of 100-200 microns [18],

while migration occurs on the scale of microns per hour. There is currently no methodology for

representing multiple processes on separate scales within one ABM despite the potential benefits

to accuracy and efficiency.

6.2.2 Coupling to a Finite Element Model

Finite-element models FEMs have been used extensively in the study of cardiac biomechanics to

determine how mechanical forces are distributed throughout the heart during the cardiac cycle.

These models have also been adapted to simulate infarction [29] and treatments like injectable

biomaterials [22] and reinforcing patches [30]. Unfortunately, such models only offer us discrete

snapshots of these disease states. In other words, they tell us the strains that the tissue undergoes,

but not how the tissue responds to those strains. Recently, FEMs have been extended to included

volumetric strain-based growth laws, giving elements the ability to geometrically respond to me-
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chanical loading over time [31]. However, these growth laws are incapable of capturing how strains

cause structural remodeling which changes the material properties of elements. FEMs operate op-

timally (in that they predict strain reliably and represent complex organic geometry well, while

also being stable and efficient) at larger scales (elements on the order of mm2 − cm2). FEMs also

follow a continuum assumption, in which each element is made of a continuous substance as op-

posed to individual constituent parts. Spatial scale and continuum assumption together, mean that

FEMs are unable to simulate the creation of heterogeneity, which is produced through stochastic

processes at the cellular level.

ABMs and FEMs are suited to coupling for the purpose of investigating structural-mechanical

feedback. Our group has already coupled an ABM and FEM to investigate this feedback phenom-

ena. However, only collagen content (which was used to determine tissue stiffness in an isotropic

material model) was fed from the ABM to the FEM [32]. Creating a similar coupled model with

structural-mechanical feedback which includes collagen alignment and distribution information

may help us to predict the collagen properties of infarct scar treated with various spatially targeted

therapies.

6.2.3 Simulating Non-Invasive Therapies Using the Agent-Based Model

Our recent patch reinforcement study showed that scars with longitudinally aligned collagen fibers

could be created [13], and other studies from our group have shown that anisotropic infarct scar

that is selectively stiff in the longitudinal direction improves pump function [12] [30]. However,

this method of aligning collagen is invasive, and is not a treatment which can be adjusted over time

as the heart changes. “Less invasive” methods for aligning collagen have been studied widely in

orthopedic medicine, primarily for the purpose of tendon repair. Magnetic fields have been used

to direct fibroblast alignment in vitro, resulting in aligned collagen production [33]. Electric fields

have been noted to direct cell alignment. Lui et al. created aligned fibroblast cultures with biphasic

pulse direct current electric fields [34]. Similar electrical stimulation has even been proven to be

possible in a large animal model of MI. While this study did not characterize collagen orientation,
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they did note significant reduction in ventricular dilation in pigs with MI who received infarct pulse

electrical stimulation therapy [35]. Ultrasound stimulation, perhaps the most studied in tendon

fibroblasts, also produces changes in fibroblast behavior and collagen production. Fu et al. noted

that ultrasound stimulation increases collagen alignment in injured tendons when administered at

early time points. Ultrasound stimulation also significantly increases fibroblast collagen synthesis

and proliferation when administered in acute models of tendon injury both in vitro [36] and in vivo

[37].

Now that the infarct ABM has been streamlined and moved to a more flexible platform, it is

feasible to incorporate new cell alignment cues, including those mentioned above, to investigate

new treatments which address infarct scar collagen alignment.
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APPENDIX A

KEY METHODS IN THE REPAST ABM

Listing A.1: Step Method: details the behaviors of each fibroblast agent at each tick of the model

@ScheduledMethod(start = 0.5, interval = 0.5, priority = 1)

public void step() {

final woundABMContextSim woundABMSpace = (woundABMContextSim)

ContextUtils.getContext(this);

final Grid<?> grid = (Grid<?>) woundABMSpace.getProjection("Cell

Grid");

final GridValueLayer chemokine = (GridValueLayer)

woundABMSpace.getValueLayer("Chemokine");

final GridPoint pt = grid.getLocation(this);

final double effectiveChemokine = (chemokine.get(pt.getX(),

pt.getY()) - concMin)/(concMax - concMin);

// Define chemokine dependent mitosis to ensure cells are always

coming from the outside of wound

this.mitosisTime = effectiveChemokine * (gMitosisTime -

apoptosisTime) + apoptosisTime;

// Define chemokine dependent migration to speed up wound closure

this.cellSpeed = effectiveChemokine * (cellSpeedMax - cellSpeedMin)

+ cellSpeedMin;

// Get location

final int x = pt.getX();
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final int y = pt.getY();

// Check for mitosis

if (mitosisAge >= mitosisTime) {

mitosisAge = randomClock(); // Quiescent cell sets mitosis age to

random number

mitose(woundABMSpace, grid, x, y);

} else {

// Update cell orientation

guidanceCue(woundABMSpace, x, y);

// Check for migration

if (migrationDistance >= gridUnitSize) {

final int grids = (int)

Math.floor(migrationDistance/gridUnitSize);

this.migrationDistance = migrationDistance - gridUnitSize *

grids;

migrate(grid, x, y, grids);

}

// Get grids covered by the cell

List<GridPoint> coveredSites = cellCoverage(x, y);

// Deposit, degrade, and rotate collagen in the grids beneath the

cell

for (GridPoint site : coveredSites) {
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// Get site x and y coordinates

final int siteX = site.getX();

final int siteY = site.getY();

// Retrieve structural value layers

final ArrayList<GridValueLayer> collagenLayers =

(ArrayList<GridValueLayer>)woundABMSpace.

GridValueLayerList();

final ArrayList<GridValueLayer> nonColLayers =

(ArrayList<GridValueLayer>)woundABMSpace.

nonColGridValueLayerList();

// Check for rotation, degradation, deposition

collagenRotation(siteX, siteY, chemokine, collagenLayers);

collagenDeposition(siteX, siteY, chemokine, collagenLayers,

depositionTime);

matrixDegradation(siteX, siteY, chemokine, collagenLayers,

nonColLayers, degradationTime);

}

}

// Check for apoptosis

if (apoptosisAge >= apoptosisTime) {

woundABMSpace.remove(this);

}

// Increment the counters

apoptosisAge = apoptosisAge + timeStep;

mitosisAge = mitosisAge + timeStep;
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migrationDistance = migrationDistance + cellSpeed * timeStep;

}
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APPENDIX B

DIFFUSION IN A 2D PLANE, AN IMPLEMENTATION OF THE IRF METHOD IN

MATLAB

Listing B.1: caption

% Units: s, um, nM

% Author: Arlynn C Baker

% Created: 2020/01/06

% Modified: 2020/11/06

close all; clear; clc;

% Descretization specifications

ds = 20; % um

dt = [0.5,5,30,120,400,900];

%[0.1,0.5,1,2.5,5,10,20,30,50,80,120,150,180,300,400,600,900}

tEnd = 3600;% s

% Diffusion, produciton, and consumption parameters

D = [10,1]; % umˆ2/s % Note: 0.16 in J Phys after geometric adjustment

[1000,100,10,1]

kGen = 0.01; % nM/s

kDeg = 0.001; % 1/s

% Define space and create generation and degradation maps

x = -5000:ds:5000;
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y = x;

% Plot styles

plot_irf = [’rs’;’r*’;’ro’;’rd’];

plot_fdm = [’bs’;’b*’;’bo’;’bd’];

% Preallocate

md_irf_min = zeros(1,length(D));

tElapsed_irf_min = zeros(1,length(D));

dt_irf_min = zeros(1,length(D));

md_fdm_min = zeros(1,length(D));

tElapsed_fdm_min = zeros(1,length(D));

dt_fdm_min = zeros(1,length(D));

for i = 1:length(D)

input = zeros(length(x),length(y));

[genLocs,solution] = getInput(x,y,i);

% Calculate diffusion profiles with various time steps and

calculate the mean differnce from the FE solution.

C_irf = zeros(length(x),length(y),length(dt)); C_fdm =

zeros(length(x),length(y),length(dt));

tElapsed_irf = zeros(1,length(dt)); tElapsed_fdm =

zeros(1,length(dt));

md_irf = zeros(1,length(dt)); md_fdm = zeros(1,length(dt));

irf = cell(1,length(dt));

b_irf = 0; b_fdm = 0;

md_irf_min(i) = 100;

for j = length(dt):-1:1
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if b_irf == 0

[C_irf(:, :, j), irf{j}, tElapsed_irf(j)] =

IterativeIRFDiffusion(input, dt(j), ds, D(i), kGen, genLocs,

kDeg, tEnd);

md_irf(j) = mean(mean(abs(C_irf(:, :, j) - solution)));

end

if isnan(C_irf(:, :, j))

b_irf = j;

end

if md_irf(j)<md_irf_min(i)

md_irf_min(i) = md_irf(j);

tElapsed_irf_min(i) = tElapsed_irf(j);

dt_irf_min(i) = dt(j);

end

end

for j = 1:length(dt)

if b_fdm == 0

[C_fdm(:, :, j), tElapsed_fdm(j)] =

FiniteDifferenceDiffusion(input, dt(j), ds, D(i), kGen,

genLocs, kDeg, tEnd);

md_fdm(j) = mean(mean(abs(C_fdm(:, :, j) - solution)));

end

if min(min(C_fdm(:, :, j)))<= 0

b_fdm = j;

end

end

% Correct ill conditioned solutions
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[md_irf, tElapsed_irf, dt_irf] = trimIllConditioned(md_irf,

tElapsed_irf, dt, C_irf, 10);

[md_fdm, tElapsed_fdm, dt_fdm] = trimIllConditioned(md_fdm,

tElapsed_fdm, dt, C_fdm, 10);

md_fdm_min(i) = md_fdm(end);

tElapsed_fdm_min(i) = tElapsed_fdm(end);

dt_fdm_min(i) = dt_fdm(end);

% Plot model acuuracy by dt

figure(1); hold on;

plot(dt_irf, md_irf, ’r-’, dt_fdm, md_fdm, ’b-’);

% plot(dt_irf_min, md_irf_min, plot_irf(i, :), dt_fdm(end),

md_fdm(end), plot_fdm(i, :));

% Plot model efficency by dt

figure(2); hold on;

plot(dt_irf, tElapsed_irf, ’r-’, dt_fdm, tElapsed_fdm, ’b-’);

% plot(dt_irf_min, tElapsed_irf_min, plot_irf(i, :), dt_fdm(end),

tElapsed_fdm(end), plot_fdm(i, :));

end

% Format plots

figure(1); set(gca, ’XScale’, ’log’);

legend(’IRF 1000’, ’FDM 1000’, ’IRF 100’, ’FDM 100’, ’IRF 10’, ’FDM

10’, ’IRF 1’, ’FDM 1’);

ylabel(’MAD (nM)’); xlabel(’\Deltat (s)’);

figure(2); set(gca, ’YScale’, ’log’, ’XScale’, ’log’);

legend(’IRF 1000’, ’FDM 1000’, ’IRF 100’, ’FDM 100’, ’IRF 10’, ’FDM

10’, ’IRF 1’, ’FDM 1’);

58



ylabel(’Computation Time (s)’); xlabel(’\Deltat (s)’);

function [md, tElapsed, dt] = trimIllConditioned(md, tElapsed, dt, C,

maxC)

nans = find(isnan(md));

negs = find(min(min(C))<0);

maxs = find(max(max(C)) >= maxC);

zs = find(max(max(C)) == 0);

remove = flip(unique([nans’;negs;maxs;zs]));

for k = 1:length(remove)

md(remove(k)) = [];

tElapsed(remove(k)) = [];

dt(remove(k)) = [];

end

end

function [input, solution] = getInput(x,y,inputNum)

% Get map of production and consumption from PDE toolkit geometry files

if inputNum == 1

load(’ConcPDE_Rand1X1cm_D1000.mat’,’p’,’t’,’u’,’gd’);

elseif inputNum == 2

load(’ConcPDE_Rand1X1cm_D100.mat’,’p’,’t’,’u’,’gd’);

elseif inputNum == 3

load(’ConcPDE_Rand1X1cm_D10.mat’,’p’,’t’,’u’,’gd’);

elseif inputNum == 4

load(’ConcPDE_Rand1X1cm_D1.mat’,’p’,’t’,’u’,’gd’);

else

load(’ChemoConcPDE_Random.mat’,’p’,’t’,’u’,’gd’);

end

59



solution = tri2grid(p,t,u,x,y);

[˜,h] = size(gd);

edge = 0;

gList = [];

for q = 1:h

if gd(1,q) == 1

edge = edge + 1;

gList(1:3,edge) = gd(2:4,q);

end

end

input = zeros(length(x),length(y));

for r = 1:length(y)

for n = 1:length(x)

for w = 1:edge

if sqrt((x(n) - gList(1,w))ˆ2 + (y(r) - gList(2,w))ˆ2)<=

gList(3,w)

input(r,n) = 1;

end

end

end

end

end
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APPENDIX C

INITIALIZE STRUCTURAL LAYER BINS METHOD

Listing C.1: initializeStructuralLayerBins: initialize the collagen and non collagen angle bin grid

value layers

@ScheduledMethod(start = 0, priority = 1)

public void initializeStructuralLayerBins() {

// Set distribution across all bins based on fiber distribution type

double[] colDistrib;

if (initialColDist.equals("Circumferential")) { // (rho = 0.75;

Theta = 0)

colDistrib = new double[] {.000043, .000079, .000174, .000377,

.000782, .001542, .002885, .005124, .008638, .013821, .020988,

.03025, .041382, .053729, .06621, .07744, .085965, .090574,

.090574, .085965, .07744, .06621, .053729, .041382, .03025,

.020988, .013821, .008638, .005124, .002885, .001542, .000782,

.000377, .000174, .000079, .000043};

} else if (initialColDist.equals("Longitudinal")) { // (rho = 0.75;

Theta = 90)

colDistrib = new double[] {.0912, .0865, .0778, .0664, .0537,

.0412, .0300, .0207, .0136, .0084, .0050, .0028, .0015, .0007,

.0004, .0002, .0001, .0000, .0000, .0001, .0002, .0004, .0007,

.0015, .0028, .0050, .0084, .0136, .0207, .0300, .0412, .0537,

.0664, .0778, .0865, .0912};

} else { // Uniform
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colDistrib = new double [] {.027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778};

}

// Set distribution across all bins based on fiber distribution type

double[] nonColDistrib;

if (initialNonColDist.equals("Circumferential")) { // (rho = 0.75;

Theta = 0)

nonColDistrib = new double[] {.000043, .000079, .000174, .000377,

.000782, .001542, .002885, .005124, .008638, .013821, .020988,

.03025, .041382, .053729, .06621, .07744, .085965, .090574,

.090574, .085965, .07744, .06621, .053729, .041382, .03025,

.020988, .013821, .008638, .005124, .002885, .001542, .000782,

.000377, .000174, .000079, .000043};

} else if (initialNonColDist.equals("Longitudinal")) { // (rho =

0.75; Theta = 90)

nonColDistrib = new double[] {.0912, .0865, .0778, .0664, .0537,

.0412, .0300, .0207, .0136, .0084, .0050, .0028, .0015, .0007,

.0004, .0002, .0001, .0000, .0000, .0001, .0002, .0004, .0007,

.0015, .0028, .0050, .0084, .0136, .0207, .0300, .0412, .0537,

.0664, .0778, .0865, .0912};

} else { // Uniform

nonColDistrib = new double [] {.027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,
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.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778, .027778, .027778, .027778,

.027778, .027778, .027778, .027778};

}

// Scale fiber content (from 2.5) to grid size

double scalingFactor = Math.pow(gridUnitSize/2.5,2);

// Set each grid value layer

ArrayList<GridValueLayer> collagenLayers =

(ArrayList<GridValueLayer>) GridValueLayerList();

ArrayList<GridValueLayer> nonColLayers = (ArrayList<GridValueLayer>)

nonColGridValueLayerList();

int binNum = collagenLayers.size();

double woundGridNum = (double) (woundRadius/gridUnitSize);

double wCenter = gridWidth/2;

double hCenter = gridHeight/2;

for (int y = 0; y < gridHeight; y++) {

for (int x = 0; x < gridWidth; x++) {

if (includeNonCol == true) {

if (Math.sqrt(Math.pow((x - wCenter), 2) + Math.pow((y -

hCenter), 2)) <= woundGridNum) {

for (int i = 0; i < binNum; i++) {

collagenLayers.get(i).set(0, x, y);

}

} else {

for (int i = 0; i < binNum; i++) {

nonColLayers.get(i).set(25 * 36 * scalingFactor *

nonColDistrib[i], x, y);
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}

}

} else {

for (int i = 0; i < binNum; i++) {

nonColLayers.get(i).set(0, x, y);

}

}

if (includeWoundCollagen == true) {

for (int i = 0; i < binNum; i++) {

collagenLayers.get(i).set(scalePercent * 36 * scalingFactor

* colDistrib[i], x, y);

}

} else {

if (Math.sqrt(Math.pow((x - wCenter), 2) + Math.pow((y -

hCenter), 2)) <= woundGridNum) {

for (int i = 0; i < binNum; i++) {

collagenLayers.get(i).set(0, x, y);

}

} else {

for (int i = 0; i < binNum; i++) {

collagenLayers.get(i).set(scalePercent * 36 *

scalingFactor * colDistrib[i], x, y);

}

}

}

}

}

}
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APPENDIX D

ADDITIONAL COMBINATIONS OF MODEL CHANGES

(a) Remove Non Collagen + No Initial Collagen

(b) Remove Non Collagen + Scale Structural Cue

(c) Remove Non Collagen + No Collagen Rotation
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(d) Uniform Non Collagen + No Initial Collagen

(e) Uniform Non Collagen + Scale Structural Cue

(f) Uniform Non Collagen + No Collagen Rotation

(g) No Initial Collagen + No Collagen Rotation
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(h) No Initial Collagen + Scale Structural Cue

(i) Scale Structural Cue + No Collagen Rotation

Figure D.1: Second order model change combinations: Collagen mean vector length of the stan-
dard (solid line) and modified (dashed line) ABM with experimental data (error bars). Circumfer-
ential (red), longitudinal (green), and biaxial (blue) results shown.
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(a) Remove Non Collagen + No Initial Collagen + Scale Structural Cue

(b) Remove Non Collagen + No Initial Collagen + No Collagen Rotation

(c) Remove Non Collagen + Scale Structural Cue + No Collagen Rotation

(d) Uniform Non Collagen + No Initial Collagen + Scale Structural Cue
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(e) Uniform Non Collagen + No Initial Collagen + No Collagen Rotation

(f) Uniform Non Collagen + Scale Structural Cue + No Collagen Rotation

(g) No Initial Collagen + Scale Structural Cue + No Collagen Rotation

Figure D.2: Third order model change combinations: Collagen mean vector length of the standard
(solid line) and modified (dashed line) ABM with experimental data (error bars). Circumferential
(red), longitudinal (green), and biaxial (blue) results shown.
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(a) Remove Non Collagen + No Initial Collagen + Scale Structural Cue + No Collagen Rotation

(b) Uniform Non Collagen + No Initial Collagen + Scale Structural Cue + No Collagen Rotation

Figure D.3: Fourth order model change combinations: Collagen mean vector length of the standard
(solid line) and modified (dashed line) ABM with experimental data (error bars). Circumferential
(red), longitudinal (green), and biaxial (blue) results shown.
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APPENDIX E

COLLISION GUIDANCE IMPLEMENTED WITHING THE MIGRATION METHOD

Listing E.1: Migration Method

// Migration method

@SuppressWarnings({ "rawtypes", "unchecked" })

private void migrate(Grid grid, int x, int y, int extent) {

// Retrieve and correct cell angle

double angle = this.angleSelection;

if (angle < 0) {

angle = angle + 360.0;

}

// Search for a migration site starting from farthest to nearest

final int[] angleWindow = new int[] {45,30,18,15,13,11,10,9,8,7};

while (extent > 0) {

// Get list of sites within extent and the angle window that are

available for migration

// Note: final List<GridPoint> emptySites = getMigrationSite(grid,

x, y, extent, angle);

double smallestAngle = 360;

int siteX = -1;

int siteY = -1;
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// Iterate through potential sites

List<GridPoint> emptySites = new ArrayList<GridPoint>();

for (int i = -extent; i <= extent; i++) {

int xCoor = x + i;

for (int j = -extent; j <= extent; j++) {

int yCoor = y + j;

// Check if the site is within the radial distance

final double dist = Math.sqrt(Math.pow(xCoor - x,2) +

Math.pow(yCoor - y,2));

if ((dist <= extent && dist > extent - 1) || extent == 1) {

// Correct out of range site angles

double siteAngle = Math.toDegrees(Math.atan2(yCoor - y,

xCoor - x));

if (siteAngle < 0) {

siteAngle = siteAngle + 360.0;

}

if (angle > 270 && siteAngle == 0) {

siteAngle = 360;

}

// Check if the site is the closest site within the angle

window

final double siteAngleDiff = Math.abs(siteAngle - angle);

if (siteAngleDiff <=angleWindow[extent - 1] &&

siteAngleDiff <= smallestAngle) {

// Wrapped space
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if (xCoor < 0) {

xCoor = xCoor + gridWidth;

} else if (xCoor >= gridWidth) {

xCoor = xCoor - gridWidth;

}

if (yCoor < 0) {

yCoor = yCoor + gridHeight;

} else if (yCoor >= gridHeight) {

yCoor = yCoor - gridHeight;

}

// Record site

smallestAngle = siteAngleDiff;

siteX = xCoor;

siteY = yCoor;

}

}

}

}

// Check if an appropriate site has been identified

if (siteX == -1 || siteY == -1) {

// Check if the appropriate site’s surrounding area is free

} else if (!grid.getObjectsAt(siteX, siteY).iterator().hasNext()) {

if (extent < gridDiameter) {

if (findNumNeighbor(grid, siteX, siteY) <= 1) {

emptySites.add(new GridPoint(siteX, siteY));
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}

} else {

if (findNumNeighbor(grid, siteX, siteY) < 1) {

emptySites.add(new GridPoint(siteX, siteY));

}

}

}

if (!emptySites.isEmpty()) {

// Select a random migration site from the list of those

available to move to

final int migrationSiteIdx =

RandomHelper.nextIntFromTo(0,(emptySites.size() - 1));

final GridPoint migrationSite =

emptySites.get(migrationSiteIdx);

final int desiredX = migrationSite.getX();

final int desiredY = migrationSite.getY();

// Move to new location

grid.moveTo(this, desiredX, desiredY);

this.pastMigration = 1;

extent = 0;

// Abort move if no sites are free

} else if (extent == 1) {

this.pastMigration = 0;

this.migrationDistance = 0;

// Implement collision guidance

double angleRad = Math.toRadians(angle);

List<Object> neighbors = findNeighbors(grid, siteX, siteY);
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if (neighbors.size() >= 1) { // Note: count collisions

woundABMContextSim.addCollision();

}

if (collisionGuidance > 0 && collisionGuidance <= 1) {

double Xci = 0;

double Yci = 0;

for (Object obj:neighbors) {

double thetaj =

Math.toRadians(((CellAgentSim)obj).angleSelection);

if (Math.abs(thetaj - angleRad)%Math.PI < Math.PI/2) {

} else {

thetaj = thetaj + Math.PI/2;

}

Xci = Xci + Math.cos(thetaj);

Yci = Yci + Math.sin(thetaj);

}

double Xpi = Math.cos(angleRad);

double Ypi = Math.sin(angleRad);

double w1 = (1 - collisionGuidance);

double w2 = collisionGuidance;

double Xi = (w1 * Xpi + w2 * Xci)/(w1 + w2);

double Yi = (w1 * Ypi + w2 * Yci)/(w1 + w2);

double thetai = Math.atan2(Yi,Xi);

this.angleSelection = Math.toDegrees(thetai);

}

}

// Reduce search distance
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extent = extent - 1;

}

}
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