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Functional Data Methods for Understanding Human Physiolog-
ical System Responses to Exercise

Nicholas Joseph Coronato

(ABSTRACT)

Physiological response to physical exercise through analysis of cardiopulmonary mea-

surements has been shown to be predictive of a variety of diseases. Nonetheless, the

clinical use of exercise testing remains limited because interpretation of test results

requires experience and specialized training. Additionally, the type and duration of

the exercise testing most effective for prediction of fitness and disease remains con-

troversial. This research examines the use of advanced machine learning methods

to understand physiological mechanisms and to predict exercise test completion in a

protocol consisting of multiple exercise bouts. Cardiopulmonary signals of 81 healthy

children were captured breath-by-breath during these exercise bouts. We explored

machine learning strategies to model the relationship between the physiological time

series, the participant’s demographic variables, and the binary outcome variable in-

dicating whether the participant completed the test. The best performing model,

a generalized spectral additive model with functional and scalar covariates, achieved

93.6% classification accuracy and an F1 score of 93.5%. Additionally, functional anal-

ysis of variance testing showed that participants in the ‘quit’ and ‘not-quit’ groups

have significantly different functional means in three signals: heart rate, oxygen up-

take rate, and carbon dioxide uptake rate. Overall, these results show the capability

of functional data analysis to identify key differences in the exercise-induced responses

of participants in multiple bout exercise testing.
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Chapter 1

Introduction

The human cardiovascular and associated systems are dynamic and highly interre-

lated. The measurements resulting from exercise stress testing have been shown to

be predictive of a variety of diseases and fitness levels (Schaefer et al. 2020, Guazzi,

Raimondo, et al. 2007, Flynn et al. 2009, Myers et al. 2014, Mirizzi et al. 2016, Baril

2018, Hearn et al. 2018, Bazoukis et al. 2021). Standard exercise testing procedures,

commonly applied for diagnostic purposes, produce outputs that must be interpreted

by trained practitioners with an understanding of the underlying physiology and ki-

netics of the system, as well as an ability to interpret multiple time series (Neder et al.

2021). We are motivated to investigate alternative types of exercise test in order to

assess their utility for predicting health outcomes. The duration and design of gold-

standard “ramp” style exercise tests may not be optimal to identify cardiovascular

signal patterns for clinical diagnosis. This is especially controversial in the case of

pediatric patients, where the traditional cardiopulmonary tests may fail to mimic the

nature physical activity patterns of children (Gilliam et al. 1981, Bailey et al. 1995,

Bar-Yoseph et al. 2022, Armstrong 2019).

By applying machine learning techniques to multiple bout exercise testing, we

seek to lay the foundation for quicker and more consistent interpretation of patterns

in physiological time series that may eventually aid researchers in caring for their

patient. Our work with functional data analysis shows that it may be a highly useful
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method for clustering patients into groups of interest based on their exercise-induced

cardiovascular signals. We propose that functional data analysis is particularly useful

in the multiple bout exercise scenario, where repeated on-transient and off-transient

patterns of the response variable are highly non-linear but especially informative.

After presenting the relevant background for this area of research in Section 1.1

and our research questions in Section 1.2, we describe the sample data set (2.1) and

three exploratory data mining techniques (2.2.1-2.2.3) before arriving at Functional

Data Analysis in Section 2.2.4.

1.1 Background

1.1.1 Exercise Testing Data

Exercise testing for diagnostic purposes is conducted by measuring physiological re-

sponses during graded physical exercise. Typically this is done by measuring gas

exchange and cardiac condition in order to score the performance of coordinated hu-

man biological subsystems. Cardiopulmonary Exercise Testing (CPET or CPX) is

the most common and widely used exercise test. CPET specifically measures respon-

siveness of the pulmonary, cardiovascular, neuropsychological, skeletal muscular, and

hematopoietic systems. Since about the 1920s, V̇ O2peak has been considered the most

widely used biomarker for aerobic fitness, and it is most commonly measured through

CPET protocols as the “gold-standard” (Armstrong 2019). CPET has the advantage

of being low-risk and non-invasive (Bartels and Prince 2021). The entire test lasts

40-60 minutes but includes only approximately ten minutes of exercise. Assessments

during CPET are generally applicable to patients of all backgrounds and fitness ability
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levels. Exercise can be conducted on either a treadmill or stationary cycle ergometer,

each with their own advantages (“ATS/ACCP Statement on Cardiopulmonary Ex-

ercise Testing” 2003). The choice of exercise modality is typically driven by (1) the

principle of specificity (i.e. a runner should be tested on a treadmill and cyclist on a

cycle ergometer) or (2) safety considerations (the stationary cycle ergometer presents

a lower fall risk). Typically, an initial rest phase is followed by a warm-up period and

then a “ramp” protocol, in which work rate is gradually increased until the patient

reaches volitional fatigue or test termination criteria are met (Liguori et al. 2021).

Figure 1.1: A child performs CPET on a cycle ergometer. (Dan M. Cooper, R. Bar-
Yoseph, et al. 2019)

Through continuous electrocardiogram and other measurements, the relevant out-

put data commonly recorded through CPET are: lung function through flow volume

loops; blood pressure; oxygen consumption during exercise (V̇ O2max); ventilatory
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anaerobic threshold (VAT); heart performance; ventilation (VE), carbon dioxide vol-

ume (V CO2), blood gas measurement, and various slopes such as the oxygen uptake

efficiency slope (OUES - VE/V̇ O2) and VE/V̇ CO2. Lactate and end tidal volumes

such as PETCO2 and PETO2 are also reported (Cardiopulmonary Exercise Test-

ing (CPET) 2017). The data is described in a 9-panel report (Fig. 1.2) which can

be leveraged for clinical diagnosis of cardiopulmonary abnormalities (Sietsema et al.

2020).

Figure 1.2: Traditional nine-panel plot. This format emanates from Wasserman and
colleagues and is by far the most common. The 9-panel format allows 15 variables to
be plotted on 9 graphs. (Older 2013)

Armed with the ability to analyze CPET reports, medical professionals or schol-

ars should be able to definitively diagnose – or predict – these abnormalities. The

subsequent therapy or rehabilitation program would then be more appropriately tar-

geted at improving the precise symptoms and weaknesses in each individual patient.
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Research suggests that prescription of rehabilitation exercise programs is inadequate

with just the analysis of cardiopulmonary signals from a resting patient. More high

quality predictive data is produced with exercise stress testing as compared to resting

physiology; physical exertion induces more useful physiologic signals. Therefore, ef-

fective implementation of CPET in cardiac rehabilitation and intervention programs

can help optimize patient health outcomes (Guazzi, Bandera, et al. 2017). How-

ever, there exist numerous limitations to CPET interpretation and it is reportedly

underutilized as a clinical tool (Neder et al. 2021).

1.1.2 Beyond CPET

Though CPET has long been the global standard, some researchers have been inves-

tigating more appropriate ways to capture health and fitness information in pediatric

patients. (Gilliam et al. 1981; Bailey et al. 1995; Bar-Yoseph et al. 2022) propose

that an alternative to CPET could be more suitable for younger patient populations.

Among other key differences, it has been noted that gas exchange and ventilatory

signals tend to show greater variation in children than adults (Potter et al. 1999).

The present study utilizes a protocol termed “Multiple Brief Exercise Bouts” (MBEB)

which follows the reasoning that natural patterns of physical activity in children are

characterized by relatively short bursts (seconds to minutes) of exercise at various

intensities interspersed with rest. By observing the same gas exchange and frequency

variables as CPET over a more appropriate fitness test protocol, we hope to glean

important physiological insights about square wave exercise cardiovascular dynamics

in pediatric populations.
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1.2 Research Questions

a. RQ1: Can we use machine learning techniques to accurately predict which

individuals will quit exercise based solely on FDA of their cardio-respiratory

signals? Can we make this prediction with reasonable accuracy after only four

exercise bouts?

b. RQ2: To what extent do the machine learning techniques use gender, matura-

tional status, and body mass to predict the physiological responses of children

during multiple brief exercise bouts (MBEB)?
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Chapter 2

Methods

2.1 Sample Data Set Description

The data used throughout this study includes demographic descriptors of 81 healthy

children who participated in the MBEB protocol on a cycle ergometer at both high-

and low-intensity workloads. All participants were screened and determined to be

healthy based on interviews to identify any congenital or chronic diseases and con-

ditions that would impair physiological responses to exercise. Extremely physically

active participants (e.g., those considered to be elite athletes involved in routine

intensive exercise training) were also excluded. The primary demographics under

investigation were the participant’s gender, maturational status (i.e. puberty level),

and body mass. After an initial ramp test to determine individual anaerobic thresh-

olds, the work rate was calculated for each participant as: low-intensity work rate,

80% of the lactate/anaerobic threshold (LAT); and high-intensity work rate, above

the LAT and approximately equivalent to 80% of V̇ O2peak.

Participants were assigned into the following eight groups: early pubertal females

at 1) low work intensity MBEB and 2) high work intensity; early pubertal males at

3) low work intensity and 4) high work intensity; late pubertal females at 5) low work

intensity and 6) high work intensity; and late pubertal males at 7) low work intensity

and 8) high work intensity. The 81 children were described as:
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• 17 early puberty females

• 25 late puberty females

• 20 early puberty males

• 19 late puberty males

The participants were asked to try to complete ten consecutive bouts of exercise.

In this research, the MBEB protocol consisted of 2-minutes of constant work rate

exercise at the individualized intensity (known as a square wave modality). Between

exercise bouts, participants were instructed to rest for 1 minute, during which time

they were asked to confirm their willingness to continue with the next bout. Mea-

surements were taken breath-by-breath for each of the standard CPET signals. The

protocol was approved by the UC Irvine Institutional Review Board. Informed con-

sent was obtained from legally authorized guardians and, where appropriate, assent

from the participants themselves.

After time-interpolation to achieve second-by-second data for every participant,

the final set included 266,416 discrete observations of all demographic, frequency,

and gas exchange variables. Participants were labeled ‘quit = 0’ if they successfully

completed ten bouts at high intensity, and ‘1’ if they quit during the course of MBEB

(prior to bout 10 completion). Of the full participant set, 42 were labelled as ‘non-

quitter’ and 39 were labelled as ‘quitter’.

As a visual introduction to the data, Fig. 2.1 is a plot of the time series data for

heart rate for all participants. See appendix A for the observations of other response

variables.
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Figure 2.1: Ten bouts of Heart Rate, originally observed breath-by-breath and time
interpolated to a second-by-second representation. Each participant’s observations
are shown with a unique color.

2.2 Data Analysis

The following sections describe four distinct approaches to answering our research

questions with the given data. The first three approaches (section 2.2.1-2.2.3) pro-

vided key insight into the interacting variables and the dynamics of the cardiovascular

system. Ultimately, they failed to address our research goals, but are described here

to highlight their role in the research process. We found much greater utility by em-

ploying a method called functional data analysis, which is detailed in section 2.2.4.

2.2.1 Mixed Effects Multilevel Modeling (MLM)

As part of exploratory data analysis, we proposed that multilevel regression model-

ing (MLM) of mixed effects is a highly suitable approach for this class of hierarchical
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analytical problems (Bar-Yoseph et al. 2022). According to Hox’s textbook on the

subject, “multilevel models are designed to analyze variables from different levels

simultaneously, using a statistical model that properly includes the various depen-

dencies” (Hox, Moerbeek, and van de Schoot 2017).

The MBEB data set used in this study can certainly be viewed as hierarchi-

cal; three explanatory variables (gender, maturational status, and consecutive bout

number) exist at all levels of exercise intensity, and one single outcome variable

(a physiological response) is measured repeatedly for each subject. Initial analysis

revealed high levels of intra-class correlation, with clustering of individuals within

puberty and gender groups and variables measured at two separate exercise intensi-

ties (treatments). Table 2.1 depicts the multi-level structure when considering the

average response in each of the first five exercise bouts as a repeated measure.

Table 2.1: Multilevel Diagram in Table Format for the MBEB Study

Sub-index Level Variables
I (2) Treatment Work Intensity (High/Low)
J (4) Population Group Gender (Female/Male)

Puberty Status (Early/Late)
K (5) Child Bout number

(repeated measure)

Cross-level investigations were required to address our research hypotheses. The

purpose for using a linear mixed effects model in this study was to effectively capture

linear trends of the physiological responses from bout-to-bout, while allowing for

between-subject variation through random slopes and intercepts.

Response variables were aggregated as the average measurement in each particular

bout (Bout 1 through Bout 5). Through post-hoc statistical testing of the estimated
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marginal means, we identified some differences between gender and puberty groups

by the slope of their average physiological responses across exercise bouts. This

linear univariate approach required us to create a separate model structure for each

physiological variable and each phase of the exercise bout (HRon, HRoff , RRon,

RRoff , etc.). We started by considering all possible combinations of the multi-level

variables and their interactions, and iteratively removed variables that did not show

statistical significance. As a result of this step-wise modeling process, each final

model was fit with a unique combination of main and interaction effects; significance

level of the coefficients were inconsistent across models. Fig. 2.2 is a table showing

an example of the mixed effects model coefficients for heart rate. Fig. 2.3 is the

corresponding plot of estimated predicted values for the heart rate mixed model.

The mixed effects modeling technique was useful for statistical inference but re-

quired too many separate models and effect interactions to draw useful conclusions.

The restrictive nature of linear mixed effects models required us to simplify the re-

sponse variable to an average value per bout; the true wave-like shape of an MBEB

time series was lost in this process. Also, this method could not help us address our

ultimate research goal: to determine if or when an individual would quit the MBEB

event.
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Figure 2.2: Example table of coefficient estimates for the mixed effects multilevel
model that was fit to the bout average heart rate responses. This linear model is
fit to each participant’s average on-transient (left) and off-transient (right) heart
rate response. ‘Tanner’ is the shorthand for ‘Tanner score,’ which describes the
participant’s puberty level. Note that the models for exercise and rest periods include
different combinations of main and interaction effects and therefore have separate fit
statistics (R2).
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Figure 2.3: The estimated predicted values provide a representation of the linear
relationship between time and the response variable (here, average HR). The slopes
of these lines can be interpreted by considering the interaction of gender, puberty
level, and work intensity. As expected, there is a positive linear trend as the exercise
test proceeds through five bouts while the participants do not experience sufficient
time to recover their HR. Unsurprisingly, this slope is more pronounced on the high-
intensity MBEB test. Note that the shaded areas represent confidence intervals for
the predictions, which are consistently overlapping.
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2.2.2 Estimating the Time Constant (τ)

A second approach was to estimate the time constant (τ) of the exponential equation

that could best fit the data during on-transient (exercise) and off-transient (rest) pe-

riods. The simplest equation commonly used to describe heart rate and gas exchange

kinetics for on-transient exercise is:

Yt,on = YBL + A(1− e(t−TD)/τ ) (2.1)

where Yt is the response variable, YBL is the baseline (starting point) of that

variable, A is the maximum value (amplitude), t is the observation time, TD is a

time delay, and τ is the time constant that generally describes the ‘shape’ of the

curve. An inverse of this equation is used to describe the off-transient process:

Yt,off = YEX + A(1− e(t−TD)/τ ) (2.2)

where YEX is the response variable’s value at the end of exercise (beginning of

off-transient phase).

These functions were fit to each on- and off-transient phase of the available data.

The time constant was estimated by iterative nonlinear least squares optimization.

This time constant τ was averaged per individual, then became the variable of inter-

est across exercise bouts, and we attempted to reveal differences between gender or

puberty subgroups.

This area of research brought us to a better understanding of the various car-

diovascular dynamics at play during MBEB but did not give sufficient insight as to
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whether we could predict who would quit exercise before completing ten bouts. Ad-

ditionally, though it worked reasonably well for heart rate and gas exchange metrics,

this method was deemed to be an oversimplification of the dynamic processes for

several response variables. In the current understanding of oxygen uptake kinetics, a

time delay is incorporated for three distinct phases of exercise onset: phase 1, phase

2, and a phenomenon known as the ‘slow component’ (Stirling, M. Zakynthinaki, and

Saltin 2005). This requires a more complex version of equations 2.1 and 2.2. Recent

literature has proposed a set of nonlinear ordinary differential equations that enable

more accurate estimation of instantaneous physiologic measurements (M. S. Zakyn-

thinaki 2015, Mazzoleni et al. 2016). More research is required to evaluate these

approaches in the case of MBEB-type exercise.

2.2.3 Signal Entropy for Classification

The third technique was to explore the variability in each participant’s time series

as an indicator of their respective fitness levels. Entropy, annotated by H(X) in

the literature, is a measure of uncertainty of a random variable X. In a time series

setting, it is the rate of information production (human breathing or heart rate,

for example.) Physiologic or biological systems provide abundant opportunity for

the study of entropy and time series volatility. (Costa and Ary L Goldberger 2002)

posited that entropy increases with the degree of disorder and is at a maximum with

completely random systems; furthermore, a lower degree of biological entropy can be

associated with “diseased” physiologic signals.

Another concept which surfaces throughout the literature is that physiological

systems (such as the human cardiovascular system) have multiple measures of entropy
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that describe their ability to adapt to stress. When comparing healthy individuals

to diseased or aging patients, studies generally agree that the greatest amount of

generalized entropy exists amongst healthy individuals. This is indicative of the

theory that, as humans age and become less “healthy,” their systems lose robustness

and cannot readily adapt (Costa and Ary L Goldberger 2002; Peng, Costa, and Ary L.

Goldberger 2009). By analyzing “loss of complexity” as a feature, we could improve

our diagnostic approaches for a wide class of diseases.

Acknowledging the complexity and inter-related nature of human biological sys-

tems, we understand that MBEB data is highly dimensional when considering the co-

variates at work during exercise. We investigated the predictive capability of entropy

by reducing each MBEB time series to a single value of sample entropy (SampEn) for

each signal that describes the trajectory’s overall variability. For participants in this

study, SampEn was calculated for three physiological response variables (HR, RR,

V̇ O2). Using the SampEn values from each participant and four demographic vari-

ables (gender, puberty level, body mass, and lean body mass), we attempted principal

component analysis and other feature reduction techniques with logistic regression.

Our goal was again to predict whether an individual would be correctly classified as a

quitter, given their demographics and the SampEn values of their MBEB time series.

This procedure was inconclusive beyond the suggestion of which features appeared

most important to classification (see Fig. 2.4). Fig. 2.5 shows a projection of the

entropy data into two dimensions (the first two principal components). The ‘quit’ and

‘not-quit’ participant groups were virtually indistinguishable. We used entropy scores

in a logistic regression procedure with elastic net regularization and cross-validation to

predict the output class ‘quit’ or ‘non-quit.’ This regression performed at a maximum

accuracy rate below 80% (see the bottom of Table 3.1 for results). We found this
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predictive performance to be well below our best functional data models (described

in Chapter 3), which consistently achieved accuracy scores above 90%. More research

is required to understand the role of entropy in repeated exercise bout time series.

Figure 2.4: Feature importance plot generated by the BORUTA package in R, which
employs recursive feature elimination. The HR entropy appeared important for classi-
fication, but entropy of RR and V̇ O2 were far less predictive. One potential explana-
tion is that heart rate measurements are generally not very noisy, thus the variability
captured by SampEn is more informative to the underlying physiology. ‘Tanner’
refers to the Tanner scoring method (puberty status); the abbreviation ‘lbm’ stands
for lean body mass.
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Figure 2.5: The polygons in this plot show the clustering of ‘quitters’ (blue) and ‘non-
quitters’ (red) when projecting seven sample entropy and demographic features into
the first two principal components. The two classes are virtually indistinguishable.
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2.2.4 Functional Data Analysis

There is at least one common issue with each of the above data mining techniques for

resolving our research questions. None of the proposed procedures provided conclusive

evidence as to whether signals derived from MBEB can aid with fitness prediction or

discovering differences between puberty and gender groups. Additionally, we seek to

produce easily interpretable and physiologically sound results for medical providers.

Therefore, we propose Functional Data Analysis (FDA), which is the focus for the

remainder of this paper.

FDA is a highly flexible technique which can deal with non-independent and

correlated repeated measures. The functional nature of CPET-derived observations

encourages us to assume that the data are realizations of stochastic processes in

continuous time. FDA’s prominence has grown simultaneously with the emergence of

electronic devices that accurately capture a continuous stream of physiological data;

FDA can help leverage that data towards meaningful empirical conclusions.

A 2013 systematic review (Ullah and Finch 2013) provides a useful introduction

to contemporary applications of functional data (FD). This type of analysis has been

applied in a variety of time series experiments, particularly those with a biomedi-

cal context; FDA has proven powerful in analysis of human growth curves (James O.

Ramsay and Silverman 2010), gait analysis (Røislien et al. 2009), fetal heart rate mon-

itoring (Ratcliffe, Heller, and Leader 2002; Ratcliffe, Leader, and Heller 2002), and

prediction of maximal oxygen consumption during exercise (Matabuena, Francisco-

Fernández, and Cao 2017). Additionally, (Matabuena, Vidal, et al. 2019) proposed

FDA to reduce predictive error in the estimation of maximum heart rate by avoid-

ing the problems of high dimensionality and collinearity. A ramp exercise protocol
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was used in that research, and the authors called for exploration into the predictive

capacity of FDA with square wave exercise modalities.

When implementing FDA, data observations do not need to be equally spaced

and missing observations are handled relatively well. Exceptionally noisy signals

(such as respiratory rate in our data) benefit from the smoothing procedure, which

is the key first step in FDA. The functional data (FD) itself can be more visually

informative than the set of finite discrete observations and allows us to draw modeling

and prediction information by applying multivariate statistical concepts. (J. O.

Ramsay and Dalzell 1991) present several practical reasons for considering FD:

1. smoothing procedures can yield functional representations of a finite set of

observations;

2. it is more natural to think through modeling problems in a functional form;

and

3. the objectives of an analysis can be functional in nature, as would be the case

if finite data were used to estimate an entire function, its derivatives, or the

values of other functionals.

The time series measurements of our MBEB experiment are discrete and some-

times noisy observations of a continuous and dynamic process, therefore FDA seems

highly appropriate. After transforming the breath-by-breath or second-by-second

time series into a collection of smooth FD curves, we can apply supervised or unsu-

pervised machine learning techniques to answer both research questions.
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Data Conversion Procedure

The first step of functional data analysis was to convert the raw time series into

functional data objects by choosing the appropriate basis transform and smoothing

parameters. To address RQ2(b), we included only high-intensity test results for the

first 720 seconds of MBEB. The purpose was to analyze only the first four bouts of

MBEB, as all 81 participants completed a minimum of four bouts. All data mining

and classification modeling was performed in Rstudio (Version 1.4.1103). FDA was

conducted in R using the ‘fda’ package (version 5.5.0) (J. O. Ramsay, Graves, and

Hooker 2021) and the ‘fda.usc’ package (version 2.0.2) (M. F. Febrero-Bande et al.

2020; M. Febrero-Bande and de la Fuente 2012).

The four variables of interest for our research question were heart rate (HR)

(beats per minute), respiratory rate (RR) (breaths per minute), oxygen uptake rate

(V̇ O2) (mL/min), and carbon dioxide uptake rate (V̇ CO2) (mL/min). The data was

organized such that each of these response variables constituted its own independent

time series. Through exploratory analysis, we determined that each of these signals

has a distinct pattern characterized by variation and noise. Sample representations

of each signal type are presented in Fig. 2.6. Plots of the full data set are available

in Appendix A.
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(a) Heart Rate (b) Respiratory Rate

(c) Oxygen Uptake Rate (d) Carbon Dioxide Uptake Rate

Figure 2.6: One participant’s second-by-second signals for the full MBEB session.
In general, Heart Rate (a) was the signal that contained the least noise in our data
set; individual exercise bouts are very easily discerned. Respiratory Rate (b) was the
signal that contained the most within- and between-subject variation in our data set;
individual exercise bouts are difficult to discern.
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A B-spline basis representation was determined to provide an excellent fit to each

of the four time series. The splines were generated using 725 total basis elements of

6th order B-splines, with internal knots corresponding to the start- and stop-exercise

time points. The smoothing procedure was controlled by a roughness penalty, which

resulted in reasonably smooth functions without wild variations in the approximating

function. Penalized smoothing was done by applying harmonic acceleration operators

to the functional data and searching across values of λ (smoothing parameter) until

an acceptable generalized cross-validation (GCV) error level and degrees-of-freedom

(DoF) were reached in the smoothed estimate. In other words, each of the response

curve sets were deemed appropriately smooth for this particular application. This

process is introduced in Chapter 5 of (J. O. Ramsay, Hooker, and Graves 2009). Fig.

2.7 explains this procedure visually.

Three individuals were removed due to irregularities in their time series (likely

the result of error during data collection). This left 78 sample curves for analysis.

The final ratio of quitters to non-quitters was 39:39.

After transforming the discrete observations to FD objects, we considered the

crucial step of curve registration. Registration is important because it allows us to

align the curves (by time warping or otherwise) and remove phase variation while

maintaining the amplitude variation (Kokoszka and Reimherr 2021). In other words,

we transform the ‘clock time’ of our functional data to a standardized ‘system time’.

(Marron et al. 2015) presents the definitive foundation for the necessity of registration

in misaligned data sets. For our data set, automated continuous registration resulted

in minimal phase shifting, as the original time series were nearly perfectly aligned by

nature of the testing protocol; exercise bouts began and terminated near the same

moment in time for all participants. We measured the proportion of total variation
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Figure 2.7: Example estimation of the smoothing parameter λ. An appropriate level
of smoothing was determined by visual inspection of the relationship between GCV
and DoF in the smoothed model, after applying a harmonic acceleration operator
that penalizes departures from a shifted sine. This procedure is explained in depth
in (J. O. Ramsay, Hooker, and Graves 2009). This figure shows a minimal GCV
when the model contains 350 DoF, which corresponds to a λ near 200. Thus, 200 was
chosen as the smoothing penalty for the set of HR curves, and the fit was validated
after visual inspection of the smoothness (see Fig. 2.8). This process was repeated
for RR, V̇ O2, and V̇ CO2.

due to phase variation (MSEphase/MSEtotal) as 9%. The registered curves (with

phase variance removed) were utilized for all subsequent analysis.

Fig. 2.8 depicts the smoothed and registered heart rate FD objects as an example.

Plots of the RR, V̇ O2, and V̇ CO2 functions are available in Appendix B.
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Figure 2.8: Four bouts of Heart Rate (one of the four MBEB signals) after converting
the discrete time series to 78 smoothed and continuously registered functional data
objects. Each participant’s time series is represented as an individually colored func-
tion. The smoothing procedure was controlled by a roughness penalty, which resulted
in reasonably smooth functions without wild variations in the approximating func-
tion. In other words, the curves were deemed appropriately smooth for this particular
application. The FD was then continuously registered to remove phase variation.

Functional t-Tests

To address Research Question 2a (RQ2a), we investigated the null hypothesis (H0)

that there exists no statistically significant difference in the functional means of par-

ticipants in contrasting sub-groups. To test for differences between gender groups, we

sampled 11 each of males and females at the early-puberty level, to which we applied

permutation t-Tests on their functional means. To test for differences between puberty

groups, we compared 11 samples of early puberty males vs. late puberty males. For
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time periods where the t-statistic exceeded the critical value (0.05), we could reject

(H0). Interestingly, this procedure revealed distinct puberty and gender differences

throughout the time series of V̇ O2 and V̇ CO2, but no such significant mean func-

tional difference existed for HR and RR. Fig. 2.9 and 2.10 highlight one result of this

experiment.

(a) Early pubertal females (b) Early pubertal males

Figure 2.9: A sample of 11 early pubertal females’ (a) and 11 early pubertal males (b)
V̇ O2 functional data. The purpose of creating these random samples was to conduct
statistical testing on the functional means of two sub-groups; in this example, we hold
puberty level constant to test the effects of gender on the response variable, V̇ O2.
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Figure 2.10: Visual output of the functional permutation t-test between Early- and
Late-puberty males. This particular chart shows that, for V̇ O2, a statistically signifi-
cant difference in the means exists between our random sample of early puberty males
and late puberty males. The t-statistic is calculated to be greater than the critical
value across the entire time interval. This could signify a fundamental difference in
the physiology between puberty groups when holding gender status constant.
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Outlier Detection

Functional depth is a measure of centrality for a given curve within a group of tra-

jectories. (Febrero, Galeano, and González-Manteiga 2008). Several approaches are

covered in the literature, and we chose to explore one of these methods. Fraiman

and Muniz introduced functional data depth in 2001, which allows for the ranking

of distributed functional curves by their Fraiman-Muniz (FM) depth (Fraiman and

Muniz 2001). This center-outward ranking of FD curves can be interpreted as the

degree of “outlyingness” for a particular curve of interest.

Outliers may occur in a functional dataset by gross errors such as measurement

mistakes, but often times they are not the result of gross error but perhaps indicate a

noteworthy difference in patterns from the rest of the curves. In other words, outliers

in our dataset could be considered curves that are not compatible with the assumption

that the entire FD set is drawn from the same stochastic process. The outliers appear

dissimilar in either their overall shape or their distance from the expected central

function of the sample at some or all intervals of interest. The outlier detection

algorithm used here weighs the data according to depth after a bootstrap smoothing

function is applied to the relevant curves.

By assigning depth scores to our functional data, we could identify (and remove)

outlier participants. Outliers in this sense would be those whose overall time series

deviates furthest from the centrality measure – whether it be the mean, median, mode,

or otherwise. This could be beneficial in classifying new data, allowing researchers to

determine how well a particular participant’s signal curve fits with the known central

function in our existing MBEB dataset. Additionally, we could infer that a newly

introduced trajectory with relatively high depth will be classified accurately given the
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model structures presented in this research.

For the results presented in this paper, outlier curves were visually inspected but

not removed from the classification models. Fig. 2.11 is the visual output of one

outlier detection procedure.

Figure 2.11: Example of outlier curves in the heart rate functional data set. The two
curves (bold red) were identified as potential outliers based on their low Fraiman-
Muniz depth ranking amongst the 78 participants.

Supervised Functional Classification

Research Question 2 called for investigation into FDA’s ability to discriminate be-

tween classes of quitters and non-quitters. We applied various classification models

to the FD object set. The goal was to find a classifier with the minimum error rate.

Our first approach was to predict ‘quit’ status from combinations of the demographic

and functional data covariates. Demographic variables were gender (binary), puberty
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level (binary), and body mass (continuous).

The flexible nature of FDA allowed us to test seven unique classification models:

generalized spectral additive models (GSAM), linear discriminant analysis (LDA),

recursive partitioning and regression trees (RPART), RandomForest (RF), support

vector machines (SVM), neural network (NNet), and k-Nearest Neighbors (KNN).

Tuning parameters were optimized for each classifier/response variable combination;

for example, the number of k-neighbors that produced the lowest error was accepted

as the final parameter. The probability value for binary discriminant (i.e. classi-

fication threshold) was optimized within each GSAM model; we searched across a

range between 0.3 and 0.8, and the threshold which produced the highest F1 score

was selected. Ten-fold cross-validation was built into each classification model.

Functional representation of HR alone was the first FD covariate we tested: quit =

s(HR[0,720]) where HR[0,720] is the smoothed HR function over the first four bouts. The

function s(·) denotes an additive effect over the variable. After this approach proved

fruitful on the cleanest physiological signal, we applied the classifiers to RR, V̇ O2,

and V̇ CO2 FD objects with the same model parameters. This allowed us to compute

model performance and compare the results side-by-side. Overall model accuracy

was calculated as the number of correct classifications divided by the total number of

attempts. The F1 score was computed as (2∗(precision∗recall)/(precision+recall)).

Finally, we combined all demographic and functional covariates for HR, RR, V̇ O2,

and V̇ CO2 into a ‘full’ multivariate model and tested the classification rate. The

dteailed structure of each model is described in Appendix C.

The final step in answering RQ2 was to conduct one-way functional analysis of

variance (FANOVA) over our 78 independent samples. The purpose was to empirically

determine whether ‘quitters’ and ‘non-quitters’ display differences in their functional
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means. The HR, RR, V̇ O2, and V̇ CO2 data were bootstrap resampled 500 times,

plotted, and analyzed. A p-value ≤ 0.05 was considered significant to reject the null

hypothesis (H0) of equality of mean functions between participants labelled ‘quit’ and

‘not quit.’



32

Chapter 3

Results

The first section of this chapter describes the results of our classification technique

using FDA on four physiological signals. Section 2 presents the results of FANOVA.

3.1 Classification using FDA

The results of the ten best performing models for our physiological response variables

are presented in Table 3.1. All models performed better when the continuous variable

‘body mass’ was omitted. The GSAM structure generally performed best among the

tested classifiers. The highest F1 score (93.5%) for classifying quitters and non-

quitters was achieved using smoothed functional data and demographic covariates

as predictors in a GSAM. Providing functional data alone (with no demographic

covariates) resulted in a maximum classification F1 score of 91.1%. In Table 3.1, the

bottom row contains the maximum performance achieved using sample entropy as a

predictor variable with elastic net logistic regression; this is provided for purposes of

comparison.

After testing each individual cardiovascular signal, we constructed a ’full’ model.

This model used all functional data of HR, RR, V̇ O2, and V̇ CO2 together, along with

gender, puberty level, and body mass. The results are shown in Table 3.2. The ‘Full

GSAM’ model performed best (F1 score 93.5%, accuracy 93.6%).
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Table 3.1: Individual Classification Model Performance

Model Accuracy (%) F1 Score (%)
V̇ O2 GSAM + Covariates 93.6 93.5

V̇ O2 GSAM 91.0 91.1
V̇ CO2 GSAM 87.2 87.5

V̇ CO2 GSAM + Covariates 87.2 86.8
V̇ O2 NNet 84.6 83.8

HR GSAM + Covariates 82.1 82.1
HR GSAM 78.2 80.5
HR SVM 79.5 80.0

V̇ CO2 NNet 80.8 80.0
HR LDA 79.5 79.5

Logistic Regression with entropy values 72.2 73.7

Table 3.2: Full Classification Model Performance

Model Accuracy (%) F1 Score (%)
Full GSAM 93.6 93.5
Full LDA 87.2 87.2

Full RPART 83.3 84.0
Full SVM 77.0 78.0
Full NNet 70.5 72.3
Full KNN 65.4 69.0

Full RandomForest 66.7 66.7
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3.2 Functional Analysis of Variance

The statistic of interest for drawing conclusions from FANOVA was the probability of

a true difference in functional means over the bootstrapped observations. A p-value

≤ 0.05 indicated that we could reject (H0) and conclude that a significant difference

in functional means was present.

Fig. 3.1 is the visual depiction of heart rate functional means for quitters and non-

quitters and compares the estimated HR curves after bootstrap resampling. Detailed

FANOVA results for RR, V̇ O2, and V̇ CO2 are included in Appendix D. Table 3.3

shows the resulting p-values and conclusions from FANOVA. To summarize, we found

that children in the ‘quit’ and ‘not-quit’ groups have significantly different functional

means for three signals: heart rate, oxygen uptake rate, and carbon dioxide uptake

rate. Each of these variables display higher mean functions across the four bouts for

those who ultimately quit the MBEB session.

Table 3.3: FANOVA Results

Response Variable p-value Conclusion
Heart Rate 0.000 S.S. difference in means

Respiratory Rate 0.186 not S.S. difference in means
V̇ O2 0.000 S.S. difference in means
V̇ CO2 0.000 S.S. difference in means
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Figure 3.1: Comparison of functional means for the Heart Rate signal [X(t)] during
the first four exercise bouts. Participants who quit exercise during MBEB are labelled
as ’1’ and colored green. The red line depicts the functional mean for non-quitters.
The black line indicates the mean trajectory for all 78 participants. The plot on the
right shows Heart Rate curves for MBEB quitters (green) and non-quitters (red) with
500 bootstrap resamples. The black line represents the bootstrapped mean function.
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Chapter 4

Discussion

4.1 Physiological Implications

The differences that we found between gender and puberty subgroups are generally

in agreement with historical findings. There is evidence, for example, that healthy,

early pubertal children have substantially faster HR and V̇ CO2 exercise responses

than healthy late-pubertal or adult individuals (Baraldi et al. 1991; Dan M. Cooper,

Kaplan, et al. 1987). V̇ O2 kinetics appear to be less dependent on puberty status,

but children typically have higher oxygen uptake per work performed than do late

pubertal or adult individuals (Zanconato, D. M. Cooper, and Armon 1991; Armon

et al. 1991). These differences were identified via t-test after our second-by-second

observations were transformed into functional data. Statistically significant functional

differences between males and females were more difficult to discern in our data set

and require further study. Additional analysis is also necessary to confirm that the

conclusions in this research are valid for the low-intensity exercise setting.
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4.2 Functional Data Analysis as a Strategy for Pro-

cessing Exercise Time Series

Recall that RQ1 asked about FDA’s applicability in the exercise data environment.

Based on model performance alone, FDA seems to be a highly useful systematic

strategy for processing exercise-induced physiological signals. By transforming the

raw data into appropriately smoothed functions, the standard multivariate statis-

tical approaches are quite useful for understanding the underlying physiology and

highlighting differences between population subgroups. In addition to the promising

predictive capability we presented here, the general benefits of FDA were apparent.

As exercise response signals are inherently noisy and non-linear, exploration of the

data as smoothed functions was instrumental in our statistical analysis.

Many conventional statistical techniques are useful for “ramp” style exercise time

series, as the on- and off-transient structure does not exist; participants exercise at a

progressively increasing work rate until exhaustion. However, these methods struggle

to capture the patterns when considering multiple repeated exercise intervals which

are found in MBEB. In comparison to FDA, other statistical procedures are more

sensitive to the assumption of independence between repeated measurements. (In

particular, cardiovascular time series observations are highly dependent on previous

measurements by the nature of the underlying processes.) Additionally, some tech-

niques fail to utilize all information present in the response variable during repeated

bouts; for example, the multi-level models described in Section 2.2.1 are only use-

ful if we simplify the time series into average values of each bout. Whereas FDA

consistently resulted in accuracy and F1 greater than 90%, the other classification

technique using signal entropy (section 2.2.3) was not able to predict the ‘quit’ group
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with an accuracy better than 80%; this may be explained by a loss of information

when converting from the raw signal.

FDA allows for similar handling of sparse datasets and those in which the exercise

perturbance intervals of the given protocol are not so cleanly aligned. (Matabuena,

Vidal, et al. 2019) argues that FDA’s ability to reduce predictive error could be

beneficial for clinical practitioners and exercise prescription, especially in settings

where a maximal stress test is not feasible. We validated the shorter-duration exercise

test as a viable alternative. FDA is useful even when the exercise and rest durations

are inconsistent between participants.

Our results show that the FDA technique provides highly interpretable results

for the clinician. Clear patterns emerge after transforming the noisy, non-linear dis-

crete observations into smooth functions. An appropriate amount of signal noise and

phase variation are reduced in the process, and the interpretation of these functions is

straightforward. Additionally, we contributed a method of data representation that

does not require substantial understanding of “black box” machine learning tech-

niques. This benefits the clinician as an end-user of our functional data processing

and allows for a wide variety of follow-on analyses (see Chapter 5). As an exam-

ple, suppose we were interested in the trajectory differences between healthy patients

and those with a chronic disease (instead of predicting which participants quit exer-

cise). The graphical depictions of sub-group mean functions (Fig. 3.1 and Appendix

D) can aid a clinician with determining whether a patient’s trajectory more closely

aligns with that of a healthy or non-healthy subject.

We presented a number of conclusions about our sample data set to address RQ2.

One-way functional ANOVA answered our statistical hypotheses about equivalence

of means in the two groups; this was a robust test of functional variance across the
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exercise test. We found that children who quit during MBEB were characterized

by a statistically significant higher functional mean heart rate, V̇ O2, and V̇ CO2 as

compared to non-quitters across the four bouts.

Our models included gender, maturational status, and body mass as scalar co-

variates alongside functional MBEB signals to predict which children would quit

exercise voluntarily. Oxygen uptake, carbon dioxide uptake, and heart rate were

especially informative signals for predicting quitters based on the first four exercise

bouts. Incorporating gender and puberty level was beneficial for several models. The

top performing model (‘V̇ O2 GSAM + Covariates’) classified quitters with 93.5% F1

score; by adding the demographic features to the functional covariate, we improved

the classification rate by several points. We also showed the ability to sample from

subgroups and conduct permutation t-tests of the functional means, testing for differ-

ences between gender and maturational status. This particular comparative method

is more challenging with discrete data, as evidenced by our difficulties in implement-

ing MLMs (section 2.2.1) and estimating time constant changes across bouts (2.2.2).

These modeling techniques require more careful consideration of the confounding and

interaction effects of demographic variables.

To assess our methodology, we compared the performance to separate baseline

studies of functional data in the field of medicine. In 2002, fetal heart rates were

studied to predict the risk categories of infants at birth (Ratcliffe, Heller, and Leader

2002). This research achieved 94% correct predictions using logistic regression, but

the parameter estimates were based on the same data on which predictions were made.

The first paper to utilize FDA in the prediction of maximal heart rate during exercise

was published in 2019 (Matabuena, Vidal, et al. 2019). This study employed machine

learning for “ramp”-style exercise, and measured the utility of FDA by comparing
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predictive error of several models. Functional regression produced a root mean square

error that was lower than each of the non-functional regression methods. The accuracy

reported in that paper is not directly comparable to our functional classification

metrics, but conclusively demonstrated FDA’s efficacy for processing cardiovascular

signals.
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Chapter 5

Future Work

FDA is currently a very active research topic. With the FDA approach being val-

idated on this small sample of youth during MBEB, there is plenty of opportunity

for further research. First, there exist other important frequency and gas exchange

variables as output from CPET and MBEB; work output (watts), minute ventilation

(V̇ E), respiratory quotient (RQ), and the ratio of V̇ E to V̇ CO2 (V̇ E/V̇ CO2 slope)

could be handled with FDA and may prove useful for diagnostic purposes. Specific

cardiovascular conditions may be identified by transforming all 15 time series depicted

in the 9-panel plot (Fig. 1.2) into functional objects. Furthermore, some physiological

signals are correlated with body mass; it would be interesting and prudent to test

theories about the dynamics of gas exchange variables while specifically accounting

for (i.e. normalizing by) body mass or lean body mass.

The binary classification methods used here assume that whether or not a child

quits an exercise test is an appropriate proxy for his or her physical fitness. Though

outside our scope, there are undoubtedly other factors at play when a child makes

the decision to quit during intense exercise.

In conversion from discrete to functional data, the selection of smoothing param-

eters and basis representation are subjective. A complex B-spline basis was chosen for

this dataset due to the popularity and flexible nature of splines as well as the ability

to capture the on- and off-transient signal patterns that resulted from MBEB. Other
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basis transformations should be investigated for their goodness of fit on a given data

set. The R packages used in this research are capable of creating Fourier expansions,

regression splines, and kernel smoothing bases (among others). The classic multi-

variate procedure of principal component analysis can be useful in the initial step of

converting data to functional form and producing a reasonable summary of the data

(J. O. Ramsay, Hooker, and Graves 2009). Regression analysis of the functional

principal components themselves should be investigated further. FDA provides for

functional clustering if the researcher is interested in non-supervised assignment of

signal curves into similar groups. Functional regression with a functional response is

also possible, whereby one could model the expected functional response of a physio-

logical signal from the known function of another signal (Beyaztas and Shang 2020).

A reasonable implementation would be to estimate gas exchange variable functions

from the participant’s observed work output time series.

Classification was conducted with the full set of 78 functional curves and the

corresponding demographic variables. Outlier analysis revealed that some curves may

not fit well with the population’s distribution, thereby possibly reducing classification

accuracy. Machine learning models may benefit from fine-tuning the outlier detection

procedure and removing a percentile of low-depth curves.

Additionally, we hope to validate our methodology with other population groups,

such as pediatric patients with chronic diseases or obesity, or a group of young adults.

Our participant pool, while homogeneous and reflective of the local community at

the site, was not representative of the population as a whole and further studies will

be necessary to gauge the effect of racial, ethnic, and other social determinants on

exercise responses as children grow and develop. The data analyzed in this paper may

be useful as a baseline to which we can compare the signals of diseased individuals. If
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new data is converted to functional form with the parameters used here, it would be

possible to measure the relative depth score of the new curves. One might infer that

the new curves would perform well in quitter prediction if the functions demonstrate

high depth scores (i.e. they are not outliers from the data utilized in this research).

A natural extension of FDA is forecasting via stochastic methods, which seems

highly relevant to exercise testing. By converting discrete data to functional data, we

have transitioned to a continuous space where the functions themselves can be tested

in terms of their forecasting error on unseen observations at future time intervals.

This has been used in the context of mortality rate and pollution rate prediction

(see chapter 8 of Kokoszka and Reimherr 2021). Forecasting models could be used

to predict a patient’s output in future bouts for any of the measured variables, to

include work rate (watts). If feasible, this could mean that MBEB data sets are useful

in assessing fitness with only four exercise bouts (or fewer). It should be explored

further to determine if there is a minimum number of consecutive exercise bouts that

can be transformed to FD and used effectively for fitness classification. This would

be of great value in the medical community, especially for fitness testing in symptom-

limited patients who are unable to maintain continuous exercise for more than a few

brief bouts.
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Appendix A

Raw Data Plots

The figures below are the second-by-second observations of our four variables of in-

terest: HR, RR, V̇ O2, and V̇ CO2.

Figure A.1: Ten bouts of Heart Rate, originally observed breath-by-breath and time
interpolated to a second-by-second representation. Each participant’s observations
are shown with a unique color.
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Figure A.2: Ten bouts of Respiratory Rate, originally observed breath-by-breath and
time interpolated to a second-by-second representation. Each participant’s observa-
tions are shown with a unique color.

Figure A.3: Ten bouts of O2 Uptake Rate, originally observed breath-by-breath and
time interpolated to a second-by-second representation. Each participant’s observa-
tions are shown with a unique color.
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Figure A.4: Ten bouts of CO2 Uptake Rate, originally observed breath-by-breath and
time interpolated to a second-by-second representation. Each participant’s observa-
tions are shown with a unique color.
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Appendix B

Smoothed & Registered Functional

Data Plots

The figures below are the functional data representations of our four variables of

interest: HR, RR, V̇ O2, and V̇ CO2.

Figure B.1: Four bouts of Heart Rate after converting the discrete time series to 78
smoothed and continuously registered functional data objects.
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Figure B.2: Four bouts of Respiratory Rate after converting the discrete time series
to 78 smoothed and continuously registered functional data objects.

Figure B.3: Four bouts of O2 uptake rate after converting the discrete time series to
78 smoothed and continuously registered functional data objects.



57

Figure B.4: Four bouts of CO2 uptake rate after converting the discrete time series
to 78 smoothed and continuously registered functional data objects.
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Appendix C

Classification Model Descriptions

This appendix details the structure of each classification model. Models were built

with consistent parameters to allow for performance comparison. Note that the indi-

vidual models use only functional data from one physiological signal, and the mul-

tivariate models use functional data coefficients from all four signals. Also, the full

multivariate models include BodyMass as a third demographic scalar variable.

Classification was performed in the R package ‘fda.usc’. Wrapper versions of the

following packages were called within the ‘fda.usc’ functions:

• RPART: rpart package
• RandomForest: randomForest package
• SVM: e1071 package
• LDA: MASS package
• Neural Network: nnet package

The binary class ‘quit’ (1 or 0) was predicted with the following covariates (X[0,720]

represents the response variable and the function s(·) denotes an additive effect over

the variable):

• GSAM: s(X[0,720])

– equal weights (1) were used for all observations in GSAM models
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– The probability value for binary discriminant (i.e. classification threshold)

was optimized within each GSAM model; we searched across a range be-

tween 0.3 and 0.8, and the threshold which produced the highest F1 score

was selected.

• GSAM + Covariates: s(X[0,720]) + Gender + PubertyLevel ( + BodyMass for

the full model)

• RPART: s(X[0,720]) + Gender + PubertyLevel ( + BodyMass for the full

model)

– the value of prior probabilities was set to the default for rpart

• K-Nearest Neighbors: X[0,720] + Gender + PubertyLevel ( + BodyMass for

the full model)

– the k number of nearest neighbors was chosen based on trial and error, to

determine which k resulted in the lowest classification error. Therefore, k

varies between 12 and 14 among the models.

• RandomForest: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full

model)

– we used the default value for the number of trees to grow (500) and the

number of variables available for splitting at each tree node (square root

of total number of variables)

• Support Vector Machines: X[0,720] + Gender + PubertyLevel ( + BodyMass

for the full model)
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– default values were used for the C parameter (1) and γ parameter (1/data

dimension) in the radial basis function kernel

• Linear Discriminant Analysis: X[0,720] +Gender + PubertyLevel ( +BodyMass

for the full multivariate model)

– the important parameter was the prior probabilities of class membership;

with our balanced data, we used the class proportions for the training set

• Neural Network: X[0,720] + Gender + PubertyLevel ( + BodyMass for the full

model)

– we used the default value for weights (1) in the neural net



61

Appendix D

FANOVA Results

Functional ANOVA results for the HR, RR, V̇ O2, and V̇ CO2 guided the investigation

of the null hypothesis. For p-values ≤ 0.05, we reject the null hypothesis and conclude

that there is a statistically significant difference in the functional means for quitters

and non-quitters.

Figure D.1: Comparison of functional means for the Heart Rate signal during the
first four exercise bouts. The reported p-value = 0.000. Participants who quit
exercise during MBEB are labelled as ‘1’ and colored green. The red line depicts the
functional mean for non-quitters. The black line indicates the mean trajectory for all
78 participants.
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Figure D.2: Comparison of functional means for the RR signal during the first four
exercise bouts. The reported p-value = 0.186. Participants who quit exercise during
MBEB are labelled as ‘1’ and colored green. The red line depicts the functional mean
for non-quitters. The black line indicates the mean trajectory for all 78 participants.
Notice that there is substantial overlap between the two groups’ signals; quitters and
non-quitters have virtually indistinguishable respiratory rate trajectories.
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Figure D.3: Comparison of functional means for the V̇ O2 signal during the first four
exercise bouts. The reported p-value = 0.000. Participants who quit exercise during
MBEB are labelled as ‘1’ and colored green. The red line depicts the functional mean
for non-quitters. The black line indicates the mean trajectory for all 78 participants.
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Figure D.4: Comparison of functional means for the V̇ CO2 signal during the first four
exercise bouts. The reported p-value = 0.000. Participants who quit exercise during
MBEB are labelled as ‘1’ and colored green. The red line depicts the functional mean
for non-quitters. The black line indicates the mean trajectory for all 78 participants.
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