

Abstract

Recent years have witnessed rapid development in graph-based machine learning (ML)
in various high-impact domains (e.g., healthcare, recommendation, and security), especially
those powered by effective graph neural networks (GNNs). Currently, the mainstream graph
ML methods are based on statistical learning, e.g., utilizing the statistical correlations between
node features, graph structure, and labels for node classification. However, statistical learning
has been widely criticized for only capturing the superficial relations between variables in the
data system, and consequently, rendering the lack of trustworthiness in real-world applications.
For example, ML models often make biased predictions toward underrepresented groups.
Besides, these ML models often lack explanation for humans. Therefore, it is crucial to
understand the causality in the data system and the learning process. Causal inference is the
discipline that aims to investigate the causality inside a system, for example, to identify and
estimate the causal effect of a certain treatment (e.g., wearing a face mask) on an important
outcome (e.g., COVID-19 infection). Involving the concepts and philosophy of causal
inference into ML methods is often considered as a significant component of human-level
intelligence and can serve as the foundation of artificial intelligence (AI). However, most
traditional causal inference studies rely on strong assumptions and focus on independent and
identically distributed (i.i.d.) data. Thus, most of them cannot be directly grafted on graphs.
Therefore, causal inference on graphs is still faced with many unique barriers in effectiveness.

Fortunately, the interplay between causal inference and graph ML has the potential to
bring mutual benefit to each other. In this thesis, we will present the challenges and our
research contributions for bridging the gap between causal inference and graph ML. Our
research aims to unleash the mutual benefit in these two areas, mainly including two key
research perspectives: Q1) How to leverage graph ML methods to facilitate causal inference
in effectiveness? Q2) How to leverage causality to facilitate graph ML models in model
trustworthiness (e.g., model fairness and explanation)? Correspondingly, we introduce the
background, challenges, and related work in Part I. In Part II, we introduce our detailed
research problems and methodologies for causal inference on graph data powered by graph
ML technologies (Q1). In Part III, we present our work in causality-involved trustworthy
graph ML methods (Q2). In Part IV, we further introduce future research directions on causal
machine learning, trustworthy AI, and graph mining, providing insights that manifest in
real-world scenarios to facilitate future high-stakes applications.

ii

Acknowledgements

This thesis and my whole research journey would not have been possible without the help
and support of many people. I would like to express my sincere gratitude to my advisors Dr.
Jundong Li and Dr. Aidong Zhang, for their invaluable guidance, support, and encouragement
throughout my research work and academic life. Their expertise and insights have been
essential in shaping my ideas and refining my work.

Also, I would like to thank other members of my thesis committee Dr. Yangfeng Ji, Dr.
Hongning Wang, Dr. Emre Kiciman, Dr. Anil Vullikanti, and Dr. Sheng Li, for their time
and input in reviewing my work and providing valuable feedback that helped me improve the
quality of my research.

I am grateful to my mentors and collaborators in my summer internships at Microsoft
Research (MSR). I have been incredibly fortunate to have the opportunity to work with and
learn from Dr. Emre Kiciman and Dr. Sergii Babkin in Summer 2022, and Dr. Mengting
Wan, Dr. Longqi Yang, Dr. Brent Hecht, and Dr. Jaime Teevan in Summer 2021.

My appreciation also goes out to my collaborators Dr. Ruocheng Guo, Dr. Chen Chen, Dr.
Dezhi Hong, Dr. Daniel Mietchen, Dr. Saumitra Mishra, Yushun Dong, Song Wang, Zheng
Huang, Yaochen Zhu, who provided an inclusive and collaborative research environment that
enabled me to grow both professionally and personally.

I am incredibly grateful to my family and friends, who provided unwavering support and
encouragement throughout my academic journey.

Finally, I would like to acknowledge the funding agencies National Science Foundation
(NSF), J.P. Morgan Chase, and the Department of Computer Science at University of Virginia,
whose financial support made my research possible.

Thank you all for your contributions to my academic and personal growth.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures ix

List of Tables xii

Part I. Background 1

Chapter 1 Introduction 2
1.1 Graphs and Graph Machine Learning . 2

1.1.1 What is Graph Machine Learning? . 2
1.1.2 Limitations of Graph Machine Learning . 2

1.2 Causal Inference and Graph. 3
1.2.1 What is Causal Inference? . 3
1.2.2 Causal Inference on Graphs . 5

1.3 Research Goal, Challenges, and Contributions . 5

Chapter 2 Related Work 7
2.1 Causal Inference . 7

2.1.1 Causal Inference on i.i.d. Data . 7
2.1.2 Causal Inference on Graphs . 8

2.2 Trustworthy Graph Learning and Causality . 9

Part II. Improve Causal Inference on Graph Data with Graph Learning Techniques 11

Chapter 3 Overview of Part II 12

Chapter 4 Causal Effect Estimation with Hidden Confounders on Dynamic
Graphs 13

4.1 Problem Definition . 15
4.2 Proposed Method . 16

4.2.1 Confounder Representation Learning . 17
iv

CONTENTS v

4.2.2 Outcome and Treatment Prediction . 18
4.2.3 Representation Balancing . 18
4.2.4 Loss Function . 19

4.3 Experimental Evaluation . 19
4.3.1 Datasets and Simulation . 19

4.3.1.1 Datasets . 19
4.3.1.2 Simulation. 21

4.3.2 Evaluation Metrics . 22
4.3.3 Experiment Settings . 22
4.3.4 ITE Estimation Performance under Varying Influence from Historical

Information . 23
4.3.5 ITE Estimation Performance under Varying Influence from Network

Structure . 24
4.3.6 The Impact of Representation Balancing . 24
4.3.7 Ablation Study . 25

4.4 Real-world Application . 26
4.4.1 Motivation: Assessing the Impact of Covid-19 Related Policies 26
4.4.2 Dataset Collections and Related Policies . 27
4.4.3 Formulating Policy Assessment as a Causal Effect Estimation Problem. . . 27
4.4.4 Causal Assessment of COVID-19 Policies . 29

Chapter 5 Causal Effect Estimation under Interference on Hypergraphs 32
5.1 Problem Definition . 33
5.2 Proposed Method . 34

5.2.1 Confounder Representation Learning . 34
5.2.2 Interference Modeling . 35
5.2.3 Outcome Prediction . 36

5.3 Experimental Evaluation . 37
5.3.1 Datasets and Simulation . 37

5.3.1.1 Simulation . 37
5.3.1.2 Datasets . 38

5.3.2 Experiment Settings . 39
5.3.3 ITE Estimation Performance . 40
5.3.4 Ablation Study . 40
5.3.5 A Closer Look at High-Order Interference . 43
5.3.6 Sensitivity Analysis . 43

Chapter 6 Causal Effect Estimation under Entangled Treatments 45
6.1 Problem Definition . 46

vi CONTENTS

6.2 Assumptions . 48
6.3 Proposed Method . 48

6.3.1 Overall Pipeline . 48
6.3.2 Node Representation Learning . 49
6.3.3 Entangled Treatment Modeling . 50
6.3.4 Outcome Prediction . 51

6.4 Experimental Evaluation. 51
6.4.1 Datasets and Simulation . 52

6.4.1.1 Simulation . 52
6.4.1.2 Datasets . 54

6.4.2 Performance of Different Methods . 54
6.4.3 Performance under Different Levels of Treatment Entanglement and

Confounders . 56
6.4.4 Case Study on Real-world Hospital Data . 57

Part III. Improve Graph Machine Learning with Causality 59

Chapter 7 Overview of Part III 60

Chapter 8 Counterfactual Fairness in Node Representation Learning 61
8.1 Problem Definition . 63
8.2 Proposed Method . 65

8.2.1 Subgraph Generation . 65
8.2.2 Counterfactual Data Augmentation . 66
8.2.3 Fair Representation Learning . 68

8.3 Experimental Evaluation . 69
8.3.1 Datasets . 70
8.3.2 Experiment Settings . 72
8.3.3 Prediction Performance and Fairness . 73
8.3.4 Ablation Study . 74

Chapter 9 Counterfactual Explanation for Graph Machine Learning Models 75
9.1 Problem Definition . 77
9.2 Proposed Method . 78

9.2.1 CLEAR-VAE: Backbone of Graph Generative Counterfactual Explanations 78
9.2.2 CLEAR: Improving the Causality in Counterfactual Explanations 80

9.3 Experimental Evaluation . 82
9.3.1 Datasets and Simulation . 83
9.3.2 Performance of Different Methods . 83

CONTENTS vii

9.3.3 Ablation Study . 85
9.3.4 Explainability through CFEs . 85

Part IV. Summary and Future Work 87

Chapter 10 Summary and Future Work 88

References 89

Appendix A Details for Chapter 4 104
A1 Proof of Theory . 104
A2 More Experiments for DNDC . 105

A2.1 Hyperparameter Study . 105
A3 Data and Analysis for Covid-19 Related Information . 106

A3.1 Observational Data . 106
A3.2 Preliminary Data Analysis . 108

Appendix B Details for Chapter 5 112
B1 More Experimental Results . 112

B1.1 ITE Estimation Performance under Different Settings on All the Datasets . 112
B1.2 Case Studies . 112

B2 Details of Experimental Settings . 113

Appendix C Details of Chapter 6 116
C1 Analysis . 116
C2 Details of Experiments . 117

C2.1 Baseline Settings . 117
C2.2 Experiment Settings . 117
C2.3 Dataset Details . 118

Appendix D Details for Chapter 9 119
D1 Theory . 119
D2 Reproducibility . 119

D2.1 Details of Model Implementation . 120
D2.1.1 Details of the Prediction Model . 120
D2.1.2 Details of CLEAR . 120

D2.2 Details of Experiment Setup . 121
D2.2.1 Baseline Settings . 121
D2.2.2 Datasets . 122
D2.2.3 Experiment Settings . 124

D3 More Experimental Results . 124

viii CONTENTS

D3.1 Ablation Study . 124
D3.2 Case Study . 124
D3.3 Parameter Study . 126

D4 Further Discussion . 126

List of Figures

1.1 An overview of my research work. 3
4.1 Causal graph for the studied problem. At time t, we use X

t, At, Zt, Ct, Yt to
denote the features of observational data, relations among observational data,
representations of hidden confounders, treatment assignment, and outcomes,
respectively. The hidden confounders Zt+1 at t+ 1 causally affect the treatment
assignment Ct+1 and the outcome Y

t+1 at that time. To infer Zt+1, we can
leverage the networked observational data Xt+1 and A

t+1 at t+ 1, previous hidden
counfounders Zt, and treatment assignment Ct. The black arrows represent causal
relations. 14

4.2 An illustration of the framework DNDC. 17
4.3 Performance comparison between DNDC and baselines under different settings of

historical information influence. 23
4.4 Performance comparison between DNDC and baselines under different settings of

network structure influence. 24
4.5 Representation distributions with or without gradient reverse layer. 25
4.6 Ablation study for different variants of DNDC. 26
4.7 Causal graph of the COVID-19 problem. 29
4.8 Causal effect estimation of different policy types at different time periods over year

2020. The three columns correspond to the policy categories of social distancing
(SD), reopening (RO), and mask requirements (MA). The two rows correspond to
the estimated causal effects on the number of confirmed cases and the number of
death cases, respectively. 30

4.9 Causal effect estimation of different policy types on the outbreak dynamics in
different counties. The red, yellow and green bars correspond to the policy
categories of social distancing, reopening, and mask requirement, respectively. 30

5.1 Hypergraph, ordinary graph, and interferences. (a) An example of a hypergraph;
(b) An ordinary graph projected from this hypergraph; (c) Interferences with node
u1 from its neighbors on the hypergraph. 33

5.2 An illustration of HyperSCI, including three components: confounder
representation learning, interference modeling, and outcome prediction. 34

ix

x LIST OF FIGURES

5.3 An illustration of the hypergraph module in HyperSCI. Here node v1 (highlighted
in yellow) is taken as an example. 34

5.4 ITE estimation performance under different values of � in linear setting on
GoodReads. 41

5.5 Ablation studies of different variants of our framework HyperSCI. Results (mean
and standard error) are reported under the linear setting but similar patterns can be
found under the quadratic setting and on all datasets. 42

5.6 ITE estimation performance of HyperSCI/ HyperSCI-G on hypergraphs with
hyperedge size no more than k. 42

5.7 ITE estimation performance (mean and standard error) of the proposed framework
HyperSCI under different parameters or model structures on GoodReads dataset. 43

6.1 The causal graph of the studied problem of entangled treatments in a static setting
(A) and in a dynamic setting (B). The observable variables are shown in white
while the unobserved ones are shown in grey. 46

6.2 The proposed framework NEAT. It contains three components: node representation
learning, entangled treatment modeling, and outcome prediction. 49

6.3 Treatment effect estimation performance under different levels of treatment
entanglement on Random dataset. 56

6.4 Treatment effect estimation performance under different levels of hidden
confounders on Random dataset. 56

8.1 Causal models generally used in existing works (M 0) and in this work (M). We
use Si, Xi, Yi to denote the sensitive attribute, features, and label of any node i,
and Ai,j 2 {0, 1} denotes the edge between node pair (i, j). Each arrow denotes a
causal relation. The dashed lines denote the causal relations that the existing works
do not consider. 62

8.2 An illustration of the proposed framework GEAR. 65
9.1 An example of CFE on graphs. 75
9.2 An example of causality in CFE. 77
9.3 An illustration of the proposed framework CLEAR. 78
9.4 Ablation studies for CLEAR. 85
9.5 Explainability through CFEs on Community dataset. 86
A.1

p
✏PEHE with different values of learning rate µ, embedding size dz, � and �. 105

A.2 Geolocation of the selected counties in our corpus. 107
A.3 Proportion of counties with policy types in each category over the course of 2020.110
A.4 Illustrations reflecting interactions between the selected counties and other counties:

(a) bivariate correlation between the confirmed case number series in different
counties, (b) bivariate correlation between keyword popularity in different counties,
(c) geographic distance between counties, and (d) mobility flow volume between

LIST OF FIGURES xi

counties. The counties in each row of (a) are ranked by the bivariate correlation of
the confirmed case number in an ascending order, and all the results are averaged
over every 10 percentile of counties. Each row in (b), (c) and (d) follows the same
order of the counties as in (a). 111

B.1 (a) Heatmap: the difference between ITE estimations with hypergraph and with
projected ordinary graph on GoodReads. Nodes are divided into 6⇥ 6 grids w.r.t.
their number of neighbors |Ni| and the homophily of treatment assignment r(i).
(b) Case studies of representative books. 113

B.2 Comparison of the performance of ITE estimation under different settings on
Contact dataset. 114

B.3 Comparison of the performance of ITE estimation under different settings on
GoodRead dataset. 114

B.4 Comparison of the performance of ITE estimation under different settings on
Microsoft dataset. 115

D.1 Ablation studies on the IMDB-M dataset. 125
D.2 Case study. 125
D.3 Parameter studies on Ogbg-molhiv regarding batch size and representation

dimension. 125

List of Tables

4.1 Detailed statistics of the datasets. 20

4.2 Performance comparison with different representation balancing methods. 25

4.3 Examples of detailed policies about selected policy types in each category (including
the states that enacted them). The three parts correspond to the categories of social
distancing, reopening, and mask requirement, respectively. 28

5.1 ITE estimation performance. “CT", “GR" and “MS" refer to Contact, GoodReads,
and Microsoft Teams datasets, respectively. 41

6.1 Detailed statistics of the datasets. 54

6.2 Performance of treatment effect estimation for different methods. 55

6.3 Estimated treatment effect of roommate number on MRSA infection in different
populations of patients. 57

6.4 Estimated treatment effect of hospital unit type on MRSA infection. 57

8.1 Detailed statistics of the datasets. 69

8.2 Comparison of the performance of node representation learning methods with respect
to prediction and fairness. 70

8.3 Comparison of the performance of different variants of GEAR. 72

9.1 The performance (mean ± standard deviation over ten repeated executions) of
different methods of CFEs on graphs. The best results are in bold, and the runner-up
results are underlined. 84

D.1Performance of the prediction model on the test data of the three datasets. 120

D.2Detailed statistics of the datasets. 122

xii

Part I

Background

CHAPTER 1

Introduction

1.1 Graphs and Graph Machine Learning

1.1.1 What is Graph Machine Learning?

In the past few decades, graphs (i.e., networks) have been a widespread and essential technique
for modeling a variety of real-world systems that are composed of interconnected units, such
as road networks [1], social networks [2], professional networks [3], economic networks
[4], and molecular graphs [5]. In many high-impact domains, there has been a significant
advancement in graph-based machine learning (ML), which has emerged as an effective tool
for uncovering patterns and structures in these complex data and has shown promising results
in various tasks, including node classification [6], link prediction [7], graph classification
[8], community detection [9], and graph clustering [10]. Especially, in recent years, a large
number of powerful graph neural networks (GNNs) have emerged to facilitate these graph
ML tasks. Representative GNNs include graph convolutional network [11], graph variational
autoencoder [12], graph attention network [13], graph transformer [14], and so on.

1.1.2 Limitations of Graph Machine Learning

Despite the success achieved by graph ML models, many of them still often make unreliable
or incorrect predictions or decisions, which can have serious consequences in real-world
important applications such as healthcare, finance, and criminal justice. Therefore, it is
essential to address these issues by ensuring that the models are transparent, fair, and reliable,
and that they adhere to ethical and legal standards, i.e., improve the trustworthiness of graph
ML models.

What is a trustworthy graph machine learning model? Although there has not been
a unified and formal definition for model trustworthiness, in general, a trustworthy graph
machine learning model is one that not only produces accurate and reliable predictions, but
also exhibits transparency and interpretability. It should be free from biases and demonstrate

2

1.2 CAUSAL INFERENCE AND GRAPH 3

consistent performance across different datasets and scenarios. Additionally, it should be
able to provide explanations for its predictions, allowing for easy verification and evaluation
of its performance. This type of model should also abide by ethical and fairness standards
to ensure that its predictions do not discriminate against certain individuals or groups. Ul-
timately, a trustworthy graph machine learning model should inspire confidence and trust
in its predictions. Trustworthiness plays an increasingly important role in many high-stakes
decision-making processes, such as medical diagnoses, financial predictions, and legal judg-
ments. In these scenarios, the decisions made by the models can have significant consequences
for individuals and society.

The current mainstream graph ML methods primarily rely on learning from statistical cor-
relations. More specifically, they utilize the statistical correlations between node features,
graph structures, and labels to perform different tasks. However, statistical correlations have
been widely criticized for only capturing the superficial relations between variables in the
data system, and consequently, often rendering the lack of trustworthiness in many real-world
applications. Therefore, incorporating causality instead of simple statistical correlations into
graph ML is important for improving model trustworthiness.

Causal
Inference
treatment

outcome

Graph
Machine
Learning

Hidden
Confounders

Network
Interference

Explainability

Fairness

Improve the trustworthiness
of graph machine learning

Improve the efficiency and
effectiveness of causal inference

Network
Dynamics

Node Feature &
Graph Structure

High-order
Interference

Inefficiency

Infeasible
Randomized
Experiments

Biases through
Graph

Biases through
Causal Relations

Optimization
Generalization

Causality• Epidemiology
• Recommendation
• ……

Applications

• Trustworthy Machine Learning
• AI for Social Good
• Graph Generation
• ……

Applications

• Health Care
• Education

FIGURE 1.1. An overview of my research work.

1.2 Causal Inference and Graph

1.2.1 What is Causal Inference?

Causal inference [15] is a discipline that investigates the causality within a system, enabling
estimation of the causal effect of a specific cause or also known as treatment (e.g., wearing
a face mask) on an outcome (e.g., COVID-19 infection). Incorporating the concepts and

4 1 INTRODUCTION

philosophy of causal inference into ML methods is considered a crucial component of human-
level cognition and can serve as the foundation of artificial intelligence (AI). For example, to
evaluate the impact of a face mask requirement policy on mitigating the spread of COVID-19,
it is necessary to assess the causal effect of this policy rather than relying solely on correlations.
Classical causal inference theory is built upon two main frameworks: Pearl’s structural causal
model (SCM) [15] and Rubin’s potential outcome framework [16]. Here we introduce some
important concepts for causal inference:

DEFINITION 1. (Structural Causal Model) A structural causal model (SCM) [15] is denoted
by a triple (U, V, F): U is a set of exogenous variables, and V is a set of endogenous
variables. The structural equations F ={F1, ..., F|V |} determine the value for each Vi2V

with Vi=Fi(PAi, Ui), here PAi✓V \Vi denotes the “parents" of Vi, and Ui✓U .

DEFINITION 2. (Treatment and outcome) In causal inference, a treatment is an intervention
or an action assigned to each unit, and an outcome is a variable of interest which is causally
influenced by the treatment. Usually, a treatment is a binary variable with value as 1 or 0,
and the outcome Y 2 R.

DEFINITION 3. (Potential outcome) Potential outcome refers to the hypothetical outcome of a
unit (e.g., an individual or an instance) under a certain treatment assignment. It assumes that
each unit has a potential outcome for each possible treatment option, but only one of these
potential outcomes can be observed in reality, depending on the actual treatment received.
For unit i with treatment 1 or 0, we denote its corresponding potential outcomes as Yi(1) and
Yi(0), respectively. The subscript (·)i can be omitted if it does not refer to any specific unit.

DEFINITION 4. (Treatment effect) Treatment effect, or also known as causal effect of a specific
treatment on an outcome is the impact of manipulating the treatment on the outcome for one
of a group of units.

• (Individual treatment effect) For one single unit i, the individual treatment effect
(ITE) is formally defined as the difference between the two potential outcomes:

⌧i = Yi(1)� Yi(0). (1.1)

• (Conditional average treatment effect) Conditional average treatment effect (CATE)
is the average causal effect of a treatment for a specific subgroup of units with a
particular set of observed characteristics X = x:

⌧(x) = E[Y (1)� Y (0)|X = x]. (1.2)

• (Average treatment effect) Average treatment effect (ATE) is the average causal effect
of a treatment for all the units:

⌧ATE = E[Y (1)� Y (0)]. (1.3)

1.3 RESEARCH GOAL, CHALLENGES, AND CONTRIBUTIONS 5

In the past, causal effect estimation relied on experimental design or randomized controlled
trials (RCTs) [17, 18] that involve manipulating a treatment variable and observing its impact
on the outcome. However, in many cases, conducting experiments may be impractical or
unethical [18], and researchers must rely on observational data. In treatment effect estimation
from observational data, confounder is one of the major challenges. Confounders are variables
that causally influence both the treatment and the outcome, which lead to non-causal associ-
ations between the treatment and the outcome. Therefore, the presence of confounders can
often bring confounding biases for treatment effect estimates. To obtain unbiased and reliable
estimates of treatment effects, it is essential to mitigate confounding biases by appropriately
adjusting for confounders in the analysis. Researchers and practitioners must be aware of the
potential presence of confounders in their datasets and take appropriate measures to minimize
their impact on the results of the analysis.

1.2.2 Causal Inference on Graphs

Causal inference on graphs is a crucial area of research with many real-world applications
and has recently attracted a lot of attention. For instance, it can help in understanding the
impact of social and economic policies on individuals with connections. It can also be used to
evaluate the effectiveness of medical treatments and interventions in a system with relational
information (e.g., physical contact network). To address the aforementioned issues of graph
machine learning, it is essential to incorporate causality into the learning process. However,
traditional causal inference studies [15, 19] often rely on strong assumptions and focus on
independent and identically distributed (i.i.d.) data. In this context, causal inference on graphs
encounters many challenges in terms of effectiveness, creating a gap between causal inference
and graph machine learning. Despite this, if looking at it from a different perspective, the
graph structure can also provide additional clues and benefits for causal learning.

1.3 Research Goal, Challenges, and Contributions

The primary goal of my research is to bridge the gap between causal inference and graph
ML, aiming to unleash the mutual benefit from each other. This dissertation mainly
includes two directions: 1) facilitate causal inference on graph data with graph ML
methods; 2) facilitate graph ML models by leveraging causal inference. Fig. 1.1 shows an
overview of my research work. Representative research questions in this area include: How to
leverage the graph structure among units for causal inference when randomized experiments
are infeasible? How to handle the interference between connected units? How to improve the

6 1 INTRODUCTION

trustworthiness (e.g., fairness, explainability) of graph ML models from a causal view? To
answer these questions, we need to address the following fundamental challenges:

• (C1): Hidden confounders - Classical causal inference methods are based on the
unconfoundedness assumption (a.k.a. strong ignorability assumption) [20], which
assumes that hidden confounders (unobserved variables that influence both treatment
and outcome) do not exist. However, in the real world, hidden confounders widely
exist and are often time-varying together with data dynamics [21]. This phenomenon
can cause serious confounding biases in causal effect estimation, thus it necessitates
sophisticated tools to mitigate the influence of hidden confounders.

• (C2): Network interference and entanglement - Traditional causal inference methods
assume that different units do not interfere or entangle with each other. These
assumptions are often impractical in real-world graphs, where interference and
entanglement are ubiquitous among connected units [22]. Conventional causal
inference methods are often insufficient or inefficient to characterize such relations.

• (C3): Fairness - The predictions of ML models are often biased towards certain
demographic groups w.r.t. sensitive attributes (e.g., age, gender, religion, disability)
[23]. In graphs, such biases can also be induced by one’s neighboring nodes, as well
as the causal relations between variables. These make existing fair ML algorithms
incapable of mitigating such biases without consideration of graph connections and
causality.

• (C4): Explainability - Most graph ML models are opaque and lack explainability. Al-
though preliminary studies [24, 25] have explored to generate explanations for graph
ML models, most of these methods are still limited in optimization, generalization,
and especially, consistency with the underlying causality.

My research work mainly covers different aspects of the aforementioned two directions by
tackling the challenges (C1, C2, C3, and C4). Specifically, we study the following topics and
develop corresponding principled algorithms: (1) Graph ML for causal inference, including
a) causal effect estimation under hidden confounders; and b) causal effect estimation under
interference; and c) causal effect estimation under treatment entanglement; (2) Causality for
Graph ML, including d) counterfactual fairness in graph node representation learning; and
e) counterfactual explanation for graph ML models. Furthermore, we investigate real-world
downstream applications such as epidemiology.

CHAPTER 2

Related Work

In recent years, there have been continuously increasing attention in the research domains
relevant to this dissertation. In this section, we review the related work including the following
main categories: causal inference (including i.i.d. data and graph data), trustworthy graph
learning and causality.

2.1 Causal Inference

2.1.1 Causal Inference on i.i.d. Data

Causal inference is a field of study that focuses on understanding the causal relationships
between variables in a system and identifying how changes to one variable can affect another.
Two main categories of causal inference are causal discovery (i.e., analyzing data to infer the
underlying causal structure of the system), which can be represented as a directed acyclic
graph (DAG) [15] and causal effect estimation (i.e., quantifying the effect of a treatment on
an outcome). Causal inference plays a critical role in numerous fields, such as economics,
medicine, and engineering.

Causal discovery. Many traditional methods of causal discovery rely on graph-based models,
such as Bayesian networks or causal Bayesian networks, which aim to capture the depend-
encies between variables in the data. In recent years, there has been increasing interest
in developing more scalable and efficient algorithms for causal discovery. These include
constraint-based methods [26, 27] that utilize statistical tests to identify causal relationships
between variables, and score-based methods [28] that use optimization techniques to identify
the most likely causal structure given the data. Additionally, there has been a growing trend
towards combining causal discovery with machine learning methods, such as deep neural net-
works, to learn causal representations from high-dimensional data [29]. These developments
in causal discovery have the potential to advance many fields, including medicine, economics,
and social sciences, by enabling more accurate and effective decision-making based on causal
relationships.

7

8 2 RELATED WORK

Causal effect estimation. Causal effect estimation is another important area in causal
inference that has attracted considerable attention from researchers. Common approaches
for causal effect estimation include propensity score matching or weighting [30, 31] and
distribution balance of confounding variables between the treatment and control groups [32,
33]. Other methods include regression adjustment, instrumental variable estimation [34, 35],
difference-in-differences estimation [36], and so on. Recently, more researchers develop deep
learning-based approaches [37, 38] for causal effect estimation, which aim to learn complex
non-linear relationships between variables and achieve better performance. Several studies
[39, 40] have also investigated the use of reinforcement learning and counterfactual reasoning
for causal effect estimation. Despite significant progress in this area, there are still many
challenges and limitations, such as the curse of dimensionality and the potential for bias in
model selection. Besides, most of existing causal inference studies are limited in i.i.d. data
and cannot handle other data types such as graphs.

2.1.2 Causal Inference on Graphs

Causal effect estimation on graphs. There have been many efforts made for causal effect
estimation on graph data in recent years. A line of works leverage graph structure as a proxy
for hidden confounders. Among them, Guo et al. design a network deconfounder (NetDeconf)
[41] for individual treatment effect (ITE) estimation on graphs. Network deconfounder
is implemented based on a graph convoluntion network (GCN) [11]. Another work [42]
proposes a minimax game based ITE estimator (IGNITE) which enables ITE estimation on
graph data at both individual level and group level. Chu et al. [43] develop a graph infomax
adversarial learning model (GIAL) for treatment effect estimation on graph observational data.
GIAL identifies the patterns of hidden confounders by fully leveraging the graph information
and recognizing the imbalance in graph structure. Another group of studies [44, 45, 46, 47,
48] focuses on treatment effect estimation under network interference. Many of these studies
also rely on (graph) neural network techniques. Besides, different from traditional causal
inference with binary treatment assignments, a few recent explorations [49, 50] study the
problem of treatment effect estimation with graph-structured treatments.

Causal discovery with graphs. Apart from causal effect estimation on graphs, another
important research category in causal inference is causal discovery [51, 52], which targets
on identifying the causal relationships between variables and recovering the underlying
causal model. Traditional causal discovery approaches include 1) conditional independence
constraint-based methods such as PC algorithm [26] and Fast Causal Inference (FCI) [27], and
2) score-based methods such as Greedy Equivalence Search (GES) [28]. Noticeably, graphical
models have been widely used to represent causal relationships among variables, where the

2.2 TRUSTWORTHY GRAPH LEARNING AND CAUSALITY 9

graph structure represents the dependencies among variables and the edge direction indicates
the causal relationship. With the recent progress in GNNs and the natural connection between
graphs and causal structure, more cutting-edge studies have utilized GNNs to facilitate causal
discovery [53, 54, 55, 56].

2.2 Trustworthy Graph Learning and Causality

Trustworthy graph learning. Graph learning has become an increasingly popular area of
research due to its effectiveness in modeling complex relationships between data points in
a variety of applications. However, with the growing use of graph learning in high-stakes
decision-making processes, there is a growing need for trustworthy models that are reliable,
transparent, and fair. In recent years, researchers have begun to explore to improve the
trustworthiness of graph learning models.

In general, these works can be summarized in the following main groups:

• Generalization: a large number of studies aim to improve the generalization of
graph ML models [57], i.e., improving the model ability to accurately predict
outcomes for unseen data. These studies include different branches such as graph
data augmentation [58, 59], graph invariant learning [60, 61], graph disentangled
learning [62, 63], graph adversarial training [64, 65], self-supervised graph learning
[66, 67], and causality-based graph learning [68, 69, 70].

• Fairness: many existing graph algorithms lack consideration for fairness and tend
to exhibit biases against certain demographic populations. It has been shown that
these biases are ubiquitous and easily amplified by graph structure [71]. Fairness
of graph learning models can be defined in different ways, including group fairness
[72, 73, 74], individual fairness [75, 76, 77], degree-related fairness [78, 79], and
application-specific fairness [80, 81, 82].

• Explanation: Explanation in graph ML aims to provide human-interpretable reasons
or justifications for a model’s predictions. Especially, when ML models become
increasingly complex and are used in high-stakes applications, the need for model
explanation has become more pressing. Recently, a large number of efforts have been
made for explanation in graph ML models [83], including two main groups: model-
level explanations [84] and instance-level explanations. Instance-level methods
include gradients or features-based approaches [85, 86], perturbation-based methods
[24, 87, 88, 89], decomposition methods [90, 91], and surrogate methods [92, 93].

10 2 RELATED WORK

Causality in trustworthy graph learning. Causality plays a crucial role in graph learning.
Unlike other methods, causality-based techniques enable us to gain a deeper understanding of
the complex causal relationships between variables and their effects on each other. Merely
observing correlations between variables may lead to incorrect assumptions and erroneous
conclusions. Therefore, incorporating causality into graph learning is critical for obtaining
accurate insights and making trustworthy decisions. In recent years, there has been a surge
of research aimed at enhancing traditional graph learning with causality-based approaches.
Among them, a lot of research works improve the generalization of graph ML models [70,
94, 61, 95] by capturing the causal features in graph data and mitigating the effects of
biases introduced by spurious correlations. Moreover, numerous studies [96, 97, 98, 99]
are dedicated to enhancing the explainability of graph ML models through a causal lens.
Additionally, as there is growing concerns about the fairness of AI towards underrepresented
groups, there has been a surge of interest in promoting fairness in graph learning by examining
the causal relations between sensitive attributes (e.g., gender) and other variables [100, 101].

Part II

Improve Causal Inference on Graph Data with
Graph Learning Techniques

CHAPTER 3

Overview of Part II

In Part II, we present our work on utilizing machine learning techniques to the problem of
causal inference on graph data. Specifically, we focus on addressing the aforementioned mul-
tifaceted challenges (hidden confounders, network interference, and treatment entanglement)
in this area.

In Chapter 4, we handle the issue of hidden confounders in a dynamic environment by
designing a novel approach that leverages the graph structure to infer and control for these
confounders. In this way, the confounding biases in treatment effect estimation can be
effectively eliminated. We also demonstrate how this method can be applied to real-world
problems, such as the assessment of COVID-19 policies.

In Chapter 5, we address the challenge of network interference, even on complicated graphs
such as hypergraphs, where we consider the treatment effect estimation problem when high-
order interference exists. In this case, causal effects could be propagated through group
interactions. This study has a wide spectrum of applications in those scenarios with group
connections (i.e., connections among more than two units), such as mass gatherings, team
projects, and living communities.

In Chapter 6, we address the challenge of treatment entanglement, where treatments are
entangled together through network connections. This scenario is ubiquitous in real-world
graphs such as room sharing and information dissemination. We investigate this problem
from different angles.

By developing solutions for these challenges, we aim to contribute to the development of
effective causal inference methods for graph data, and enhance their practical applicability in
real-world network-related scenarios.

12

CHAPTER 4

Causal Effect Estimation with Hidden Confounders on Dynamic Graphs

As aforementioned, traditional methods for causal effect estimation [37, 102, 103] often
heavily rely on the strong ignorability assumption, also known as the unconfoundedness
assumption [20], which assumes the absence of unobserved confounders. Unfortunately, this
assumption is often unrealistic in real-world applications. For instance, when estimating the
effect of taking medication on an individual’s health, their socioeconomic status could be a
hidden confounder that affects both their health and medication choice, yet it is not typically
observed. This can lead to biased causal effect estimates. In recent years, various techniques
[38, 104] have been proposed to relax the strong ignorability assumption by incorporating
latent confounders. However, these approaches require the ability to extract latent confounders
from observational data features using neural networks or factor models.

However, the role of network structures in deconfounding has been often overlooked in
traditional literature, with few studies [41] recognizing its importance and leveraging it
for treatment effect estimation. However, the graph topology among units is prevalent in
various types of observational data, such as social networks of people, electrical grids of
power stations, and spatial networks of geometric objects. Moreover, in situations where
confounders are difficult to measure, an alternative approach is to capture their patterns and
control their impact by leveraging the network structure. In the previous example, a patient’s
social network patterns may indicate their socioeconomic status. An early exploration utilizes
this fact and proposes a method called network deconfounder [41], which uses the network
structure and the observed node features to minimize confounding bias in treatment effect
estimation. Here, the graph structure and observed features act as proxies for the hidden
confounders.

Despite the fact that the graph topology can serve as a source of proxies for hidden con-
founders, most existing studies [41, 105] overwhelmingly assume that the observational graph
data and the hidden confounders are static. In fact, all variables are naturally dynamic in many
real-world occasions. In the previous example, patients’ socioeconomic status and social
network can be varying over time. Another example is, when estimating the treatment effect
of wearing a face mask on COVID-19 infection, the residents’ vigilance may be a hidden

13

14 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

Timet t+1

X t+1X t C t

A t

Z t

Y t

C t+1

Z t+1

A t+1 Y t+1

FIGURE 4.1. Causal graph for the studied problem. At time t, we use Xt, At,
Z

t, Ct, Yt to denote the features of observational data, relations among obser-
vational data, representations of hidden confounders, treatment assignment,
and outcomes, respectively. The hidden confounders Zt+1 at t + 1 causally
affect the treatment assignment Ct+1 and the outcome Y

t+1 at that time. To
infer Zt+1, we can leverage the networked observational data X

t+1 and A
t+1

at t+ 1, previous hidden counfounders Zt, and treatment assignment Ct. The
black arrows represent causal relations.

confounder that cannot be explicitly measured, but it may be reflected in residents’ mobility
network. Noticeably, as time goes on, the mobility network, the face mask practice, the
COVID-19 infection risk, and the residents’ vigilance are all time-varying at different time
periods. In this case, the residents’ vigilance can be influenced by the situation in previous
time periods. For example, the recent number of death cases would affect people’s vigilance
in next a few days. In these scenarios, it is important to study the problem of deconfounding
with observational graph data in a time-varying environment.

For this problem, we propose a dynamic graph neural network-based framework DNDC
[21] to estimate causal effects under a dynamic networked environment. Generally, DNDC
learns representations of confounders at each time period by encoding the dynamic graph
data (including the current graph and historical information) into the representation space.
DNDC systematically models the evolution patterns of different data modalities for unbiased
ITE estimation. Specifically, DNDC uses a recurrent neural network (RNN) [106, 107] to
capture the temporal information, and adopts a graph convolutional network (GCN) [11]
based module to handle the relational information. ITE estimation in a dynamic network has
a wide range of applications, such as epidemiology, economics, and recommendation across
different time periods.

4.1 PROBLEM DEFINITION 15

4.1 Problem Definition

Suppose a dataset with time-evolving networked observational data across T different time
periods is given, denoted by {X

t
,A

t
,C

t
,Y

t
}
T
t=1. Here, units (instances) are connected as

nodes in a dynamic network, and (·)t denotes the t-th time period. Xt = {x
t
1, ...,x

t
nt} stands

for the node attributes (features) at time period t. xt
i represents the node features of the i-th

instance (e.g., features of each person), nt is the number of nodes, and A
t is the adjacency

matrix of the network (e.g., people’s contact network). For simplicity, the network is assumed
to be undirected and unweighted, but this work can be naturally extended to more general
cases such as directed and weighted networks. At time period t, the treatment for these
n
t nodes is denoted by C

t = {c
t
1, ..., c

t
nt}, where c

t
i is either 1 or 0 (e.g., if a person wears

face mask or not). The observed outcome of all instances at time period t is denoted by
Y

t = {y
t
1, ..., y

t
nt} (e.g., COVID-19 infection). Z

t = {z
t
1, ..., z

t
nt} stands for the hidden

confounders (e.g., people’s vigilance). The superscript (·)<t denotes the historical data before
time period t. For example, all the node features before time period t can be referred to
as X<t = {X

1
,X

2
, ...,X

t�1
}, and C

<t
,A

<t are defined similarly. Ht = {X
<t
,A

<t
,C

<t
}

denotes all the historical data before time period t. The causal graph in this problem is shown
in Fig. 4.1.

This work is based on the widely-adopted potential outcome framework [20, 108]. The
potential outcome of the i-th node under treatment c at time period t is denoted by y

t
c,i 2 R,

which is the outcome that would occur if instance i had received treatment c at time period t.
We represent the potential outcomes of all instances at time period t by Y

t
1 = {y

t
1,1, ..., y

t
1,nt}

and Y
t
0 = {y

t
0,1, ..., y

t
0,nt}, corresponding to treatment 1 and 0, respectively. Then the

individual treatment effect (ITE) on time-varying observational graph data can be defined as:

⌧
t
i = ⌧

t(xt
i,H

t
,A

t) = E[yt1,i � y
t
0,i|x

t
i,H

t
,A

t]. (4.1)

Based on the above definition of ITE, the average treatment effect (ATE) at time period t is
defined as ⌧ tATE = 1

nt

Pnt

i=1 ⌧
t
i .

The studied problem of learning ITE with dynamic observational graph data is defined as
follows:

DEFINITION 5. (Learning ITE on Dynamic Observational Graph Data). Given the dynamic
observational graph data {X

t
,A

t
,C

t
,Y

t
}
T
t=1 across T different time periods, the goal is to

estimate the ITE ⌧
t
i for each instance i at each time period t.

Most existing works [37, 102, 103] rely on the strong ignorability assumption [109], assuming
that observed features can contain all the confounders, i.e., no hidden confounders exist. The
formal definition of this assumption is as follows:

16 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

DEFINITION 6. (Strong Ignorability Assumption). Given an instance’s observed features, the
potential outcomes of this instance are independent of its treatment assignment: yt1,i, yt0,i ??
c
t
i|x

t
i.

However, this assumption is often untenable due to the existence of hidden confounders
in many real-world scenarios [110]. Our method relaxes this assumption as there exist
hidden confounders Zt at each time stamp t which causally influence the treatment Ct and the
potential outcomes (Yt

1 and Y
t
0). Conditioning on Z

t, the treatment assignment is randomized,
i.e., yt1,i, yt0,i ?? c

t
i|z

t
i. We aim to learn the representations of hidden confounders for unibased

ITE estimation based on the following relaxed assumption regrading hidden confounders:

ASSUMPTION 1. (Existence of Hidden Confounders) (i) The hidden confounders may not
be accessible, but we assume that the instance features and network structures are both
correlated with hidden confounders, and can be considered as proxy variables for hidden
confounders. (ii) Hidden confounders at each time stamp can be influenced by historical
information, such as the hidden confounders and treatment assignment in previous time
stamps.

Based on the above assumption, we now show the identification result of this problem. For
simplicity, we drop the instance index i for notations zt,xt

, y
t
, c

t:

THEOREM 1. (Identification of ITE) If we recover p(zt|xt
,H

t
,A

t) and p(yt|zt, ct), then the
proposed DNDC can recover the ITE under the causal graph in Fig. 4.1.

The detailed proof is in Appendix A.

4.2 Proposed Method

We propose a framework DNDC [21] for ITE estimation in dynamic networked data. The over-
all structure of DNDC, as shown in Fig. 4.2, is composed of three key elements: confounder
representation learning, potential outcome and treatment prediction, and representation balan-
cing. The DNDC model captures hidden confounders over time by mapping current networked
observational data and historical information into a latent representation space. The learned
representations are then used for predicting potential outcomes and treatments. To ensure the
balance between the representations of hidden confounders in the treatment group and the
control group, an adversarial learning-based balancing technique is developed.

4.2 PROPOSED METHOD 17

Time

!"#t
!$#

!%#

!&#
'(#)"

*#

1. Confounder Representation Learning

(+

("

(#
……

'(#

attention
layer

,#
graph

embedding

×
×P

2. Prediction

gradient reversal
layer

-.#

-,#

?
?

?
?

P

×P
×

×

potential outcome
prediction

treatment
prediction

ITE
estimation3. Representation

Balancing

GRU layer

!"#/"
!$#/"

!%#/"

!&#/"
'(#

*#/"

1. Confounder Representation Learning

(+

("

(#/"
……

'(#/"

attention
layer

,#/"
graph

embedding

×

×P gradient reversal
layer

-.#/"

-,#/"

?
?

?
?

P

×P
P

P

potential outcome
prediction

treatment
prediction

3. Representation
Balancing

GRU layer

2. Prediction

ITE
estimation

t+1

FIGURE 4.2. An illustration of the framework DNDC.

4.2.1 Confounder Representation Learning

As the hidden confounders are related to node features, graph structure, as well as the
historical information, DNDC leverages all of them in confounder representation learning.
More specifically, to well handle the graph data, graph convolutional networks (GCNs) [11]
are used in this process:

z
t
i = g(([Xt

, H̃
t�1])i,A

t) = Â
tReLU((Ât[Xt

, H̃
t�1])iU0)U1, (4.2)

where g(·) is a learnable transformation function parameterized by GCNs. In the above
equation, two GCN layers (with parameters U0 and U1, respectively) are stacked to capture
the non-linear dependency between the hidden confounders and the input, but the framework
itself does not have any restriction regarding the number of GCN layers. To leverage the
data in previous time periods, a historical embedding H̃

t�1
2 Rnt⇥dh is learned to encode

the historical information before time period t, including previous hidden confounders and
treatment assignment. dh is the dimension of historical embedding. Here, [·, ·] stands for
the concatenation operation and (·)i represents the i-th row of the matrix. zti 2 Rdz denotes
the representation of confounders for instance i at time period t, dz is the dimension of
confounder representation. Ât is the normalized adjacency matrix computed from A

t with
the renormalization trick [11].

To enable the historical embedding to characterize the evolution patterns of dynamic net-
worked data, a gated recurrent unit (GRU) [111] based memory unit is used. Specifically, in

18 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

the GRU, the current information (Zt, Xt, Ct) and previous hidden state H
t�1 are embedded

into a new hidden state H
t
2 Rnt⇥dh : Ht = GRU(Ht�1

, [Zt
,X

t
,C

t]). An attention mechan-
ism [112, 113] among different hidden states of GRU is adopted to model the importance of
the historical influence from different time periods. For any node with hidden state h

t
2 Rdh

at time period t, the attention weight ↵t,s that models the importance of the hidden states of
GRU from time period s on those of time period t (s < t) can be calculated with different
attention score functions (e.g., bilinear [112] function or the scaled dot product [113] func-
tion) on h

t and h
s. Then h̃

t = MLP([ht
,
Pt�1

s=1 ↵t,sh
s]), and they form a matrix H̃

t with all
instances.

4.2.2 Outcome and Treatment Prediction

Based on the learned confounder representations, DNDC predicts the potential outcomes with
two learnable functions f1, f0 : Rdz �! R, corresponding to the two cases when treatment is 1
or 0, i.e.,

ŷ
t
1,i = f1(z

t
i), ŷ

t
0,i = f0(z

t
i). (4.3)

For each instance i, both of its factual outcome y
t
F,i and counterfactual outcome y

t
CF,i (unob-

served outcome with the treatment different from reality) are predicted. The loss function of
the potential outcome prediction is formulated as:

Ly = Et2[T],i2[nt][(ŷ
t
F,i � y

t
F,i)

2]. (4.4)

To better learn the confounder representations, DNDC also uses treatment as supervision. The
loss function of treatment prediction is:

Lc = �Et2[T],i2[nt][(c
t
i log(ŝ

t
i) + (1� c

t
i) log(1� ŝ

t
i))]. (4.5)

The treatment predictor takes confounder representations as input. It is implemented with
an MLP module and a softmax layer. ŝ

t
i is the output of the softmax layer, which can

be considered as the prediction of propensity score for instance i at time period t: ŝ
t
i =

softmax(MLP(zti)).

4.2.3 Representation Balancing

It has been shown in previous literature [37] that minimizing the discrepancy between the
confounder representation distribution of the treatment group and that of the control group can
benefit causal effect estimation. DNDC uses a gradient reversal layer [114] for representation
balancing. The gradient reversal layer does not change the input during forward-propagation,
but during back-propagation, it reverses the gradient by multiplying it by a negative scalar.

4.3 EXPERIMENTAL EVALUATION 19

In this way, the gradient reversal layer can (1) train the treatment predictor by minimizing
the treatment prediction loss Lc; and (2) enable representation balancing via maximizing Lc

w.r.t. the model parameters of the confounder representation learning.

To show how the proposed adversarial learning based balancing method works in the training
process, we write the gradient updates that happen while minimizing Eq. (4.7) as:

✓z ✓z � µ(
@Ly

@✓z
� !

@�Lc

@✓z
+ 2�✓z),

✓c ✓c � µ(
@�Lc

@✓c
+ 2�✓c),

✓y ✓y � µ(
@Ly

@✓y
+ 2�✓y),

(4.6)

where ✓z, ✓c, and ✓y are the model parameters of the hidden confounder representation learning,
the treatment prediction, and the potential outcome prediction, respectively. When updating
✓z, the gradient backpropagated from the treatment predictor is reversed by multiplying
with a negative constant �!. The positive real scalar µ stands for the learning rate of the
optimization process.

4.2.4 Loss Function

The overall loss function is formulated as follows:

L {{x
t
i, y

t
i , c

t
i}

nt

1 ,A
t
}
T
1 =Ly + �Lc + �||⇥||

2
, (4.7)

where ⇥ is the set of parameters in this framework, and ||⇥||
2 is a regularization term. �, � are

the hyperparameters to control the weight for treatment prediction and model regularization,
respectively.

4.3 Experimental Evaluation

4.3.1 Datasets and Simulation

4.3.1.1 Datasets

The datasets used in the experiments are based on three real-world attributed networks, Flickr,
BlogCatalog, and PeerRead. The key statistics of these datasets are shown in Table 4.1,
including the number of instances, links, features, and time stamps, as well as the ratio of the
treated instances, and the average ATE and its standard deviation over 10 experiments.

20 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

TABLE 4.1. Detailed statistics of the datasets.

Dataset Flickr BlogCatalog PeerRead

of instances 7, 575 5, 196 6, 867 ⇠ 7, 601
of links 236, 582 170, 626 11, 819

⇠ 240, 374 ⇠ 173, 524 ⇠ 13, 684
of features 12, 047 8, 189 1, 087
of time stamps 25 20 17
ratio (%) of treated 48.72± 1.42 46.52± 1.58 56.52± 3.36
Avg ATE ± STD 14.35± 21.10 20.45± 16.63 60.12± 83.57

Flickr. Flickr1 is an image and video based social network, where each node represents a user
and each edge stands for the friendship between two users. At each time stamp, we randomly
inject/remove 0.1 ⇠ 1.0% edges, and perturb 0.1% node features (based on the noises sampled
from N(0, 0.012)), yielding a dynamic network across 25 time stamps. The features are a
list of tags showing users’ interest. We train a 50-topic LDA model [115] on the features
and select the top-25 most frequent words from each topic to create hidden confounding. We
create a semi-synthetic dataset with the following assumptions: (1) Treatment. A user has
more viewers from either mobile devices (treated) or desktops (controlled). (2) Outcome. A
user receives some reviews from the viewers of her posts. (2) Confounders. Viewers of a
user have their preferences of devices which are influenced by the topics of the user’s posts.
These topics of users causally influence both the devices chosen by their viewers and the
reviews they get. (4) Historical influence. The topics of a user’s posts can be influenced by
her previously observed treatment (more viewers from mobile devices or desktops) and the
social network, e.g., if a user finds more viewers of her posts are from mobile devices, then
she may consider to post more about the topics (e.g., sports) that are preferred by users on
mobile devices. To study the ITE of peoples’ device preference on the reviews, we simulate
the confounders, treatment assignments, and outcome. The detailed simulation process is
described in Section 4.3.1.2.

BlogCatalog. BlogCatalog2 is a social network website where bloggers can share their
blogs, where each node represents a blogger and each edge stands for a social relationship
between two bloggers. The node features are the bag-of-word representations of the blogger’s
blogs. As this dataset is also a static data, we follow the same process as Flickr to generate a
time-evolving attributed network across 20 different time stamps. We further simulate the
treatment assignment, confounders, and outcome in the same way as Flickr.

1https://www.flickr.com/
2https://www.blogcatalog.com/

4.3 EXPERIMENTAL EVALUATION 21

PeerRead. PeerRead3 is a dataset of computer scientific peer reviews for papers, and has been
used in previous research of causal inference [116]. This dataset contains a real-world dynamic
network of coauthor relations over time. We select 17 time stamps of dynamic network which
contains 6867 ⇠ 7601 authors. In this dataset, each node refers to an author, and each edge
represents their co-author relationship. The features are the bag-of-word representations
of their paper titles and abstracts. The confounders are their research areas. The treatment
is whether the authors’ papers contain buzzy words in their titles and abstracts, which are
words in a preset dictionary {"deep", "neural", "network", "model"}. The
outcome denotes the citation numbers of authors. To study the ITE of buzzy words on the
authors’ citation, we use the real-world treatment, and simulate the confounders and potential
outcomes in the same way as Flickr.

4.3.1.2 Simulation

We incorporate the effect of historical influence (as a p-order autoregressive term [117]) and
network information to simulate the confounders zt

i at time stamp t as:

zt
i = (

1
P3

k=1 �k

)(�1
t
i + �2

X

u2N(i)

f(xt
u) + �3f(x

t
i)) + ✏

t
, (4.8)

t
i,j =

1

p

pX

r=1

↵r,jz
t�r
i,j +

pX

r=1

�rc
t�r
i

!
, (4.9)

where zt
i denotes the hidden confounders of instance i at time stamp t. t

i denotes the
historical information. zti,j and t

i,j represents the j-th dimension of zt
i and t

i , respectively.
N(i) denotes the neighboring nodes of node i. The function f(·) maps the bag-of-words
features of instances to their LDA topics [115]. Here, we train an LDA model with 50

topics with the whole training corpus. The parameters �1,�2, and �3 control the impact of
historical information, current network structure, and current features on the confounders.
In the experiments, we set �1 = 0.3,�2 = 0.3,�3 = 0.3 by default. ✏t ⇠ N (0, 0.0012) is
the random noise, ↵r,j ⇠ N (1� (r/p), (1/p)2) controls the impact of historical information
from the previous p time stamps, where p is set to 3 by default, �r ⇠ N (0, 0.022) controls the
impact of previous treatment assignment.

To synthesize the observed treatment assignment, we select two points r0 and r1 in the LDA
topic space as the centroids for the treated and controlled groups. We simulate the treatment
as follows:

c
t
i ⇠ Bernoulli(

exp(pti,1)

exp(pti,0) + exp(pti,1)
), (4.10)

3https://github.com/allenai/PeerRead

22 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

p
t
i,0 = r

0

0z
t
i , p

t
i,1 = r

0

1z
t
i . (4.11)

Then we synthesize the potential outcomes as below by setting c = 1 or c = 0:

y
t
c,i = S(pti,0 + c · p

t
i,1) + ⌘

t (4.12)

where S is a scaling factor, and is specified as S = 20. ⌘t ⇠ N (0, 0.52) is a random noise
term.

4.3.2 Evaluation Metrics

We adopt two widely used evaluation metrics – Rooted Precision in Estimation of Heterogen-
eous Effect (PEHE) [102] and Mean Absolute Error (ATE) [118] to measure the quality of
the estimated individual treatment effects at different time stamps:

q
✏
t
PEHE =

s
1

nt

X

i2[nt]

(⌧̂ ti � ⌧
t
i)

2. (4.13)

✏
t
ATE = |

1

nt

X

i2[nt]

⌧̂i
t
�

1

nt

X

i2[nt]

⌧
t
i |. (4.14)

In our experiments, we take the average performance over all time stamps for evaluation. We
denote them by

p
✏PEHE and ✏ATE , respectively.

4.3.3 Experiment Settings

Baselines. To investigate the effectiveness of our framework in learning ITEs from time-
evolving networked observational data, we compare our framework with multiple state-of-
the-art methods:

• Causal Forest (CF) [103]. Based on the strong ignorability assumption [109], CF
learns ITE as an extension of Breiman’s random forest [119]. We set the number of
trees as 100.

• Bayesian Additive Regression Trees (BART) [102]. BART is a Bayesian regression
tree based ensemble model that is widely used in learning ITE. It is also based on
the strong ignorability assumption.

• Counterfactual Regression (CFR) [37]. CFR also learns representation for the
confounders based on the strong ignorability assumption. Balancing techniques
including Wasserstein-1 distance and maximum mean discrepancy are adopted and
we refer these two variants as CFR-Wass and CFR-MMD.

4.3 EXPERIMENTAL EVALUATION 23
� ��� ��� ��� �

͏�

�
��

��
��

��
�

&͉3(+(�RQ�)OLFNU
&)
%$57
&)5�:DVV
&)5�00'

&(9$(
1HW'HFRQI
'1'&

� ��� ��� ��� �

͏�
�

�
�

��

͉$7(�RQ�)OLFNU

� ��� ��� ��� �

͏�

�
��

��
��

��
�

&͉3(+(�RQ�%ORJ&DWDORJ

� ��� ��� ��� �

͏�

�
�

��
��

��

͉$7(�RQ�%ORJ&DWDORJ

FIGURE 4.3. Performance comparison between DNDC and baselines under
different settings of historical information influence.

• Causal Effect Variational Autoencoder (CEVAE) [38]. CEVAE is a deep latent-
variable model for learning ITE, which learns representations of confounders as
Gaussian distributions through propagating information from original features, ob-
served treatments, and factual outcomes.

• Network Deconfounder (NetDeconf) [120]. NetDconf relaxes the strong ignorabil-
ity assumption by assuming that the hidden confounders of observational data can
be controlled with auxiliary relational information among data.

Setup. All the aforementioned baselines are designed for static data and thus we run these
algorithms at each time stamp independently. On the other hand, only our proposed DNDC
can well capture the temporal dependency for ITE estimation. The data instances (nodes)
are randomly split into 60-20-20% of training/validation/test data. We evaluate the average
p
✏PEHE and ✏ATE over all the time stamps. All the results are reported with mean and

standard deviation over 10-time repeated executions. Unless otherwise specified, we set
our learning rate as 5e � 4, dh = 64, dz = 64, � = 1.0, � = 0.01, and we use Adam as
our optimizer. For all the baselines based on confounder representation learning such as
CEVAE and NetDeconf, we also set the dimension of the learnt representation as dz, same
as our proposed method. As described in Section 4.3.1.2, in the experiments, we use three
hyperparameters �1, �2, and �3 to control the influence of the historical information, current
network structure, and current feature information on the current confounders, respectively.

4.3.4 ITE Estimation Performance under Varying Influence from
Historical Information

To investigate the performance of DNDC under different levels of influence from historical
information on confounders, an experiment is designed with varying �1 together with fixed
�2 and �3. Fig. 4.3 shows the comparison of the ITE estimation performance between DNDC
and other baselines. Generally speaking, we observe that DNDC consistently outperforms all
the baselines with lower

p
✏PEHE and ✏ATE . When �1 = 0, the historical information has no

24 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS
� ��� ��� ��� �

͏�

�
��

��
��

��
�

&͉3(+(�RQ�)OLFNU
&)
%$57
&)5�:DVV
&)5�00'

&(9$(
1HW'HFRQI
'1'&

� ��� ��� ��� �

͏�
�

�
��

��
��

͉$7(�RQ�)OLFNU

� ��� ��� ��� �

͏�

�
��

��
��

��
�

&͉3(+(�RQ�%ORJ&DWDORJ

� ��� ��� ��� �

͏�

�
�

��
��

��

͉$7(�RQ�%ORJ&DWDORJ

FIGURE 4.4. Performance comparison between DNDC and baselines under
different settings of network structure influence.

impact on the current confounders. In this case, DNDC and NetDeconf [41] achieve the best
performance due to their capability of utilizing the network structure. When �1 increases, the
current ITE estimation relies more on historical information, while other baselines without
consideration of historical information fail in this scenario. But DNDC is stably better as it
can leverage historical data.

4.3.5 ITE Estimation Performance under Varying Influence from
Network Structure

To evaluate DNDC in leveraging the relational information in graphs, an experiment with
different values of �2 but fixed values of �1 and �3 is conducted. As shown in Fig. 4.4,
when �2 = 0, the hidden confounders are independent of the graph structure, in this case,
NetDeconf loses its superiority over other baselines. But DNDC can still achieve better ITE
estimation by capturing the historical influence on the hidden confounders at the current time
period. When �2 increases, the confounder representation learning component in DNDC
captures the confounders buried in the graph structure, and achieves better ITE estimation
performance.

4.3.6 The Impact of Representation Balancing

To evaluate the impact of the proposed adversarial learning based representation balancing
method, we compare the performance of our balancing method with other two commonly
used representation balancing methods: Wasserstein-1 (Wass) distance [121] and maximum
mean discrepancy (MMD) [37]. Table 4.2 shows the results of ITE estimation performance
with these different representation balancing techniques and our method consistently outper-
forms other baselines. Fig. 4.5 shows a specific example of the representation distributions
with/without the gradient reverse layer. We observe that with the gradient reverse layer, the
representation distributions of treated and control group become closer.

4.3 EXPERIMENTAL EVALUATION 25

TABLE 4.2. Performance comparison with different representation balan-
cing methods.

Dataset Wass MMD Gradient Reverse

Flickr
p
✏PEHE 9.125± 1.566 9.531± 1.573 8.131± 1.342

✏ATE 1.839± 0.368 1.952± 0.433 1.413± 0.351

BlogCatalog
p
✏PEHE 16.115± 2.857 17.035± 4.243 15.132± 2.542

✏ATE 4.815± 1.367 5.250± 1.345 3.414± 1.272

PeerRead
p
✏PEHE 49.062± 4.452 49.643± 4.834 47.716± 4.014

✏ATE 5.482± 1.347 5.648± 1.617 4.451± 1.379

80 60 40 20 0 20 40 60 80
60
40
20
0

20
40
60
80

(A) No balancing

80 60 40 20 0 20 40 60 80
60
40
20
0

20
40
60
80

(B) With balancing

FIGURE 4.5. Representation distributions with or without gradient re-
verse layer.

4.3.7 Ablation Study

To further investigate the impact of different components of DNDC, we conduct ablation
study by comparing DNDC against the following variants: (1) No GRU: This variant omits the
GRU and attention layers, which means that no historical information is utilized in learning
the confounders. As this variant does not benefit from the memory of previous time stamps,
we denote it by DNDC-NM. (2) No GCNs: In this variant, we replace the GCN layers with a
simple MLP. We denote this variant by DNDC-NG. (3) No balancing: This variant does not
use any representation balancing techniques and is denoted by DNDC-NB. Fig. 4.6 reports the
ITE estimation performance of different variants of our proposed framework. We can see that
DNDC-NM and DNDC-NG cannot render satisfactory performance as they cannot leverage
historical information or network structure for learning representations of hidden confounders.
The performance of DNDC-NB is degraded by the imbalance of distributions between the
treated and the control group, while DNDC performs better with balancing method because
the distribution balancing helps mitigate the confounding bias. In short, all three components
contribute to the superior performance of DNDC.

26 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

'1
'&

�1
0

'1
'&

�1
*

'1
'&

�1
%

'1
'&

���
���
���
���
����
����
����
����
����

&͉3(+(
͉$7(

(A) Flickr

'1
'&

�1
0

'1
'&

�1
*

'1
'&

�1
%

'1
'&

�

�

��

��

��

��

��
&͉3(+(
͉$7(

(B) BlogCatalog

'1
'&

�1
0

'1
'&

�1
*

'1
'&

�1
%

'1
'&

�
��
��
��
��
��
��
��
��
��

&͉3(+(
͉$7(

(C) PeerRead

FIGURE 4.6. Ablation study for different variants of DNDC.

4.4 Real-world Application

4.4.1 Motivation: Assessing the Impact of Covid-19 Related Policies

The coronavirus disease 2019 (COVID-19) has seriously affected different aspects of human
life [122, 123, 124, 125, 126, 127, 128]. To mitigate its spread, decision-makers and public
authorities have issued various policies [129, 130, 131, 132, 133, 134, 135]. Correspondingly,
a natural question to ask is: which policy is more effective to mitigate the spread of COVID-19
in a given context? Various studies such as correlation analysis [136, 137] address this
question from a statistical perspective. Such studies can only capture the statistical (but may
not be causal) dependencies between the policies and the spread of COVID-19. Yet answering
this question from a causal perspective is essential, as it can provide guidance to policymakers
for addressing other pandemics or even further waves of the current one [138, 139, 140].
However, the gold standard of causal effect estimation, i.e., a randomized controlled trial
(RCT) [141] is not applicable under pandemic circumstances due to ethical and practical
issues [142]. Hence, the causal impact of different policies on the COVID-19 outbreak
dynamics (e.g., the numbers of confirmed cases) is expected to be directly assessed with the
observational data.

We assess the causal impact of different COVID-19 policies on the outbreak dynamics with
observational data. Specifically, we study this problem: given a specific time period, what is
the causal effect of COVID-19 policies (treatments) on the outbreak dynamics (outcomes)
in each county (unit/instance)? In this problem, the vigilance of residents can be a hidden
confounder, and if handled improperly, we may incorrectly take the statistical correlations
between the presence of these policies and the outbreak dynamics as causal relations.

To remedy these issues, we adopt a weaker form of the unconfoundedness assumption [143],
which enables us to capture the unobserved confounders from the proxy variables for them, i.e.,
the variables which have dependencies with the unobserved confounders. For example, certain
confounders such as residents’ vigilance in a county can be inferred from the popularity of web

4.4 REAL-WORLD APPLICATION 27

searches about COVID-19 related keywords on Google. Intuitively, the more vigilant people
are, the more frequently they will search COVID-19 terms. Besides, residents’ vigilance
can also be inferred from the relational information among different counties, such as a
county-to-county distance network or mobility flow network. One potential reason is that
neighboring counties tend to have more interactions and similar cultures, thus, their residents
will have similar levels of vigilance. Historical information, such as the adopted policies and
the spread of COVID-19 at earlier time periods may also influence the current confounders
such as residents’ vigilance. With such proxy variables, the confounders can be captured, and
thus an unbiased causal effect estimation becomes possible.

4.4.2 Dataset Collections and Related Policies

We integrate data from several different data sources, including 391 counties in the United
States. We consider our selected counties representative as they cover different states with
different political ideologies. For treatments, as shown in Table 4.3, we collect COVID-19
related policies that have been enacted by different counties in the United States throughout
2020; for outcomes, we use the numbers of confirmed cases and death cases of different
counties throughout 2020. To control the influence of unobserved confounders, we also
collect data regarding the covariates of different counties and their relations. In particular,
two types of networks (distance network and mobility network) among counties are used in
our study as proxies for hidden confounders. More details can be found in Appendix A3.

4.4.3 Formulating Policy Assessment as a Causal Effect Estimation
Problem

We consider the COVID-19 related policy types in n counties across T time periods. Different
counties are described by the same set of covariates (i.e., features) over time, and we denote
them by X

t = {x
t
i}

n
i=1, where x

t
i represents the covariates of the i-th county at time period t

(e.g., in Albemarle county, VA, residents’ search popularity of COVID-19 related keywords
on Google throughout March, 2020). We represent the adjacency matrix of the network
(e.g., the distance network) at time period t as At

2 Rn⇥n, where A
t
ij is the weight of edge

i! j in A
t, and A

t
ij = 0 if there does not exist such edge. We assume that the edge weight

can reflect the similarity between counties. For each policy type, we use P
t = {p

t
i}

n
i=1 to

denote whether policies of this type are in effect in these n counties at time period t, where
p
t
i is either 1 (treated) or 0 (not treated, i.e., controlled), corresponding to whether the policy

type is in effect in the i-th county or not. At each time period, the treated counties form
the treatment group, while the controlled counties form the control group. Here, we denote

28 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS

TABLE 4.3. Examples of detailed policies about selected policy types in each
category (including the states that enacted them). The three parts correspond
to the categories of social distancing, reopening, and mask requirement, re-
spectively.

Top policy types Example policies
State of emergency Limit in-person gatherings (VA)
Nursing homes Limit visits to hospitals (OH)
Food and drink Outdoor dining, and delivery only (RI)
Childcare (K-12) Close public schools (VI)
Gatherings Gatherings limited to 10 people (OH)
Phase 2 Reopen lodging establishments (NM)
Entertainment Some businesses may reopen (ND)
Outdoor and recreation Contact sport practices to reopen (OH)
Personal care Health care may reopen (ND)
Food and drink Reopen on-site dining (TN)
Any mask requirement Face covering required in public (IN)
Public facing businesses Facing businesses require masks (WI)
Food and drink Restaurants require face masks (MP)
Phase 3 Outdoor venues require masks (ID)
Phase 2 Mandate masks in K-12 schools (UT)

a specific manifestation of outbreak dynamics (such as the number of confirmed cases) at
time period t as Yt = {y

t
i}

n
i=1, which are also referred to as observed outcomes. The history

of covariates before time period t is denoted by X̄
t = (X1

,X
2
, ...,X

t�1), and the history
of treatments P̄t and network structures Āt are defined similarly. Then, we denote all the
historical observational data before time period t as H̄t = {X̄

t
, Ā

t
, P̄

t
, Ȳ

t
}.

We frame the causal assessment of COVID-19 related policies as a causal effect estimation
problem from time-varying observational data. Our goal is to investigate to what extent a
cause (i.e., treatment, e.g., a policy in effect) would causally affect an outcome (e.g., the
number of confirmed cases) for each instance (e.g., a county) at different time periods. To
estimate the causal effect of a policy on the outbreak dynamics at time period t, we should
compare the potential outcomes of the outbreak dynamics in each county if this policy had/had
not been in effect during time period t. Generally, the potential outcome [108, 20] means the
outcome that would be realized if the instance got treated/controlled, e.g., “In March, what
would the number of confirmed cases be in Albemarle county, VA, if the mask requirement
policy had/had not been in effect during that time period?". We denote the potential outcomes
of all counties if the policy had/had not been in effect at time period t by Y

t
1 = {y

t
1,i}

n
i=1

and Y
t
0 = {y

t
0,i}

n
i=1. In our setting, the potential outcome y

t
p,i is the outcome that would be

4.4 REAL-WORLD APPLICATION 29

t

X t+1X t P t

A t

Z t

Y t

P t+1

Z t+1

A t+1 Y t+1

t+1

FIGURE 4.7. Causal graph of the COVID-19 problem.

realized if the i-th instance is under treatment p at time period t. Then the individual treatment
effect (ITE) [20] for each instance at time period t is defined as the difference between the
potential outcome if the instance gets treated and the potential outcome if it gets controlled at
that time period. In our problem, the ITE of each policy on the outbreak dynamics in each
county at time period t is the difference between two potential outcomes:

⌧
t
i = E[yt1,i � y

t
0,i|x

t
i,A

t
, H̄

t]. (4.15)

Then the average treatment effect (ATE) at time period t is computed as the average of ITEs
over all counties:

⌧
t
ATE = Ei2[n][⌧

t
i]. (4.16)

Inspired by the previous work on causal effect estimation from time-evolving data [21], we
design a causal graph for our studied problem as shown in Fig. 4.7, where each arrow means
a causal relationship. We denote the time-varying (unobserved) confounders (e.g., residents’
vigilance) by Z

t = {z
t
i}

n
i=1.

4.4.4 Causal Assessment of COVID-19 Policies

We estimate the causal effects of different policies on the outbreak dynamics at different
time periods in 2020. Based on our estimation of their average treatment effects (ATEs),
Table 4.3 shows the information about the top-5 most impactful policy types in each policy
category with a certain goal. Some policy types may contain policies in different categories.
For example, in Table 4.3, for the category Reopening, policy type “Phase 2" covers the
reopening-related policies like “Reopen lodging establishments". For category Mask, “Phase
2" covers mask-related policies like “Mandate masks in schools”. Fig. 4.8 summarizes our
estimation of the ATEs of these policy types. Each column in Fig. 4.8 corresponds to a
category: social distancing, reopening, and mask requirement. The first and second rows

30 4 CAUSAL EFFECT ESTIMATION WITH HIDDEN CONFOUNDERS ON DYNAMIC GRAPHS
��
��
�

��
��
�

��
��
�

��
��
�

��
��
�í�

��
�í�
��
�í�
��
�í�
��
�í�
��
�

�

&
DX
VD
O�H
II
HF
W

6WDWH�RI�HPHUJHQF\
1XUVLQJ�KRPHV
)RRG�DQG�GULQN

&KLOGFDUH��.����
*DWKHULQJV

(A) SD, confirmed cases.

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�
��
�
��
�
��
��
��
��
��
��
��
�

&
DX
VD
O�H
II
HF
W

3KDVH��
(QWHUWDLQPHQW
2XWGRRU�DQG�UHFUHDWLRQ

3HUVRQDO�FDUH
)RRG�DQG�GULQN

(B) RO, confirmed cases.

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�í�
��
�í�
��
�í�
��
�í�
��
�í�
��
�í�
��
�í�
��
�í�
��

�

&
DX
VD
O�H
II
HF
W

$Q\�PDVN�UHTXLUHPHQW
3XEOLF�IDFLQJ�EXVLQHVVHV
)RRG�DQG�GULQN

3KDVH��
3KDVH��

(C) MA, confirmed cases.

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�í�
�
í�
�
í�
�
í�
�
í�
�
í�
�

�
&
DX
VD
O�H
II
HF
W

(D) SD, death cases.

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

�
��

��
��

��
��

��
��

��
&
DX
VD
O�H
II
HF
W

(E) RO, death cases.

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�í�
��
í�
��
í�
��
í�
��

í�
�
í�
�
í�
�

�

&
DX
VD
O�H
II
HF
W

(F) MA, death cases.

FIGURE 4.8. Causal effect estimation of different policy types at different
time periods over year 2020. The three columns correspond to the policy
categories of social distancing (SD), reopening (RO), and mask requirements
(MA). The two rows correspond to the estimated causal effects on the number
of confirmed cases and the number of death cases, respectively.

/LY
LQ
JV
WR
Q�
1<

)D
XT
XL
HU
�9
$

0
XV
NL
QJ
XP
�2
+

(U
DW
K�
7;

:
RR
G�
2+

7U
LQ
LW\
�&
$

7L
RJ
D�
1<

6D
UD
WR
JD
�1
<

)D
\H
WWH
�:
9

+H
UQ
DQ
GR
�)
/

ಜ�
�
ಜ�
�
ಜ�
�

�
��

&D
XV
DO
�H
IIH
FW

(A) Confirmed cases.

/LY
LQ
JV
WR
Q�
1<

)D
XT
XL
HU
�9
$

0
XV
NL
QJ
XP
�2
+

(U
DW
K�
7;

:
RR
G�
2+

7U
LQ
LW\
�&
$

7L
RJ
D�
1<

6D
UD
WR
JD
�1
<

)D
\H
WWH
�:
9

+H
UQ
DQ
GR
�)
/

ಜ�
��
�ಜ�
��
�ಜ�
��
�ಜ�
��
�ಜ�
��
��
��
��
��
��
��
�

&D
XV
DO
�H
IIH
FW

6WDWH�RI�HPHUJHQF\
1XUVLQJ�KRPHV
)RRG�DQG�GULQN
&KLOGFDUH��.����
*DWKHULQJV

3KDVH��
(QWHUWDLQPHQW
2XWGRRU�DQG�UHFUHDWLRQ
3HUVRQDO�FDUH
)RRG�DQG�GULQN

$Q\�PDVN�UHTXLUHPHQW
3XEOLF�IDFLQJ�EXVLQHVVHV
)RRG�DQG�GULQN
3KDVH��
3KDVH��

(B) Death cases.

FIGURE 4.9. Causal effect estimation of different policy types on the outbreak
dynamics in different counties. The red, yellow and green bars correspond to
the policy categories of social distancing, reopening, and mask requirement,
respectively.

show the estimated ATEs of these policy types on the number of confirmed cases and death
cases, respectively. We have the following observations from Fig. 4.8:

At the macro-level, the policy types regarding social distancing and mask requirement have
negative causal effects on both the number of confirmed cases and death cases, while the
policy types about reopening have positive causal effects. These negative values of causal
effect indicate that the corresponding policy types causally help reduce the spread of COVID-
19, while the policy types with positive causal effects may have a contrary effect because they
increase the risk of infection. These observations appear intuitively plausible and are also
consistent with existing literature regarding COVID-19 related policies [130, 144].

4.4 REAL-WORLD APPLICATION 31

At the micro-level, we zoom into the most impactful policy types in each category. In the
category of social distancing, the policy types “Gatherings” and “Food and drink” seem to
have the strongest effects. From the detailed description of these policies, they powerfully
prohibit the number of individuals in multiple activities, especially in high-risk places such
as restaurants. In the category of reopening, the estimated effects of policy types “Personal
care” and “Food and Drink” indicate that reopening public places such as personal care center
and restaurants heavily increase the risk of COVID-19 infection. In the category of mask
requirement, “Phrase 2” and “Any mask requirement” are most impactful as they mandate
face masks usage in many public spaces.

Generally, above observations are consistent for different outcomes including the number
of confirmed/death cases, as well as for different time periods. Besides, we observe that the
policies can have stronger effects when the the pandemic becomes more severe, such as during
the outbreak at the end of 2020. In conclusion, above observations reveal the importance of
in-time policies to limit close contact (within about 6 feet) among people in different aspects,
e.g., distance, frequency and certain body parts (e.g., face) during the spread of respiratory
pandemics like COVID-19.

Furthermore, we zoom into the county-level, and assess the ITEs of different policy types on
the outbreak dynamics in each county. In Fig 4.9, we randomly select 10 counties as examples
and show the estimated ITEs of different policy types in each of them. To compare different
counties, each result is calculated from the original ITEs (as defined in Eq. 4.15) averaged
over all the time periods, and then is normalized by the number of confirmed cases in the
corresponding county at the last time period. From Fig. 4.9, we observe that the ITEs of the
three categories of policies in each county generally have similar patterns as their ATEs over
all counties, i.e., the “social distancing” and “mask requirement” policies are beneficial for
controlling the spread of COVID-19, while the “reopening” policies have increased the risk.
Besides, the policies have a stronger impact in high-risk locations such as California, New
York, and Florida.

CHAPTER 5

Causal Effect Estimation under Interference on Hypergraphs

Classic causal effect estimation is based on the Stable Unit Treatment Value (SUTVA)
assumption that there is no interference (i.e., spillover effect) among different units, requiring
that the treatment of one unit does not impact the outcome of another unit. However, this
assumption can be unrealistic in real-world scenarios, especially in interconnected systems
like graphs. For instance, an individual’s risk of COVID-19 infection can be affected by
the face covering practices of others in their contact network. Failure to account for these
interdependencies can lead to flawed estimations of causal effects.

Recently, there have been many efforts aiming to tackle the problem of causal effect estimation
under interference. Most existing studies addressing this problem [44, 45, 46, 145, 47, 146,
147, 148] assume the interference only occurs between pairs of units on ordinary graphs (as
shown in Fig. 5.1(b)). While the conventional pairwise interactions in graphs are widely-
used and applicable to a variety of settings, such as person-to-person physical contact or
social networks, they fall short in capturing the intricacies of group interactions, where each
interaction can involve more than just two individuals [149, 150, 151]. Hypergraphs can be
introduced to address this limitation. Unlike ordinary edges which connect only two nodes, a
hyperedge can connect an arbitrary number of nodes (as shown in Fig. 5.1(a)), reflecting the
nature of group interactions. Consider a hypergraph example that individuals are connected
via in-person social events, each mass gathering event can be represented as a hyperedge. In a
hypergraph, high-order interference may exist. For instance, in a gathering event represented
by a hyperedge, an individual’s risk of COVID-19 infection can be influenced not only by
direct first-order interference from others within the event, but also by indirect high-order
interference resulting from the interactions among attendees, as shown in Fig. 5.1(c). It is
important to handle the high-order interference that exists on hypergraphs.

To address this challenge, we propose a framework HyperSCI [22] for treatment effect es-
timation under high-order interference in hypergraphs. At its core, this framework controls
for confounders and models high-order interference through representation learning. Hyper-
SCI leverages a hypergraph neural network to effectively capture the interference patterns
by learning interference representations and using an attention mechanism to model the

32

5.1 PROBLEM DEFINITION 33

𝑢4

𝑢5
𝑢1

𝑢2

𝑢3
𝑢4

𝑢5𝑢1𝑢2

𝑢3
(a). Hypergraph (b). Ordinary graph

1
2

3
4

5

1

2,4

2,3

3,4

4,5

1

2,3,4

1st-order 2nd-order 3rd-order
(c). First, second, and third-order interferences with u1.

FIGURE 5.1. Hypergraph, ordinary graph, and interferences. (a) An example
of a hypergraph; (b) An ordinary graph projected from this hypergraph; (c)
Interferences with node u1 from its neighbors on the hypergraph.

relative importance of each unit within each hyperedge. These hypergraph neural network
technologies equip HyperSCI with both high accuracy and computational efficiency.

5.1 Problem Definition

DEFINITION 7. (Hypergraph) A hypergraph H = {V , E} consists of a set of n nodes
V = {vi}

n
i=1 and a set of m hyperedges E = {ek}

m
k=1. Each hyperedge can connect any

number of nodes.

In the studied problem, the given observational data is denoted by {X,H,T,Y}. Here,
X = {xi}

n
i=1, T = {ti}

n
i=1 and Y = {yi}

n
i=1 represent node features, treatment assignments,

and observed outcomes, respectively. H = {hi,e} 2 Rn⇥m is an incidence matrix for
hypergraph H. Here, hi,e = 1 if node i is in hyperedge e, otherwise hi,e = 0. The treatment
assignment for each node is binary (i.e., ti 2 {0, 1}).

DEFINITION 8. (Potential outcome) The potential outcome [152] of the unit i (denoted
by y

1
i or y

0
i) is defined as the outcome which would be realized for unit i under treatment

ti = 1 or ti = 0. These potential outcomes can be obtained via a transformation function
Y

Ti

i = �Y (Ti, Xi, T�i, X�i, H). Here, �Y is a (non-deterministic) function, i.e., ytii =

�Y (ti,xi,T�i,X�i,H), where (·)�i denotes all other nodes on H except i.

34 5 CAUSAL EFFECT ESTIMATION UNDER INTERFERENCE ON HYPERGRAPHS

Hypergraph module

!" !#
×

P
P

!#

!$
!%×

!$!"
!#

!$

!%
P ×

!&"

!&#

Hypergraph
Convolution

$#
$%
$$
$"

Hyperedge
representation

%# MLP

Confounder Representation Learning

'(#

Interference Modeling

%%
%$
%"

!#
!%
!$
!"

Concat (!), $))

Outcome Prediction

Representation balancing

Node (treated)

Hyperedge
Node features
Confounder
representation
Interference
representation

%"
%#

%$

%%
P

×
×

P

P
× Node (control)

!"
!#

!$

!%
P

Hypergraph
module

$#
$%
$$
$"

Representation balancing

&'#

&'+

Attention

×
P

×

P

P

×
×

!#

P

×
$#

P

P

×

!#
!"

!$

!%
!$

×Interference
representation

(),,"

(),,#

FIGURE 5.2. An illustration of HyperSCI, including three components: con-
founder representation learning, interference modeling, and outcome predic-
tion.

Hypergraph module

!" !#
×

P
P

!#

!$
!%×

!$!"
!#

!$

!%
P ×

!&"

!&#

Hypergraph
Convolution

$#
$%
$$
$"

Hyperedge
representation

%# MLP

Confounder Representation Learning

'(#

Interference Modeling

%%
%$
%"

!#
!%
!$
!"

Concat (!), $))

Outcome Prediction

Representation balancing

Node (treated)

Hyperedge
Node features
Confounder
representation
Interference
representation

%"
%#

%$

%%
P

×
×

P

P
× Node (control)

!"
!#

!$

!%
P

Hypergraph
module

$#
$%
$$
$"

Representation balancing

&'#

&'+

Attention

×
P

×

P

P

×
×

!#

P

×
$#

P

P

×

!#
!"

!$

!%
!$

×Interference
representation

(),,"

(),,#

FIGURE 5.3. An illustration of the hypergraph module in HyperSCI. Here
node v1 (highlighted in yellow) is taken as an example.

This work aims to estimate ITE in a hypergraph. Based on the above definition, the ITE in the
studied problem is defined as follows:

DEFINITION 9. For each node i on the hypergraph H, the individual treatment effect (ITE)
is defined by the difference between potential outcomes corresponding to ti = 1 and ti = 0:

⌧(xi,T�i,X�i,H) = E[Y 1
i � Y

0
i |Xi = xi, T�i = T�i, X�i = X�i, H = H]

= E[�Y (1,xi,T�i,X�i,H)� �Y (0,xi,T�i,X�i,H)].
(5.1)

5.2 Proposed Method

We propose the framework HyperSCI [22] to address the studied problem. As shown in Fig.
5.2, this framework mainly contains three components: confounder representation learning,
interference modeling, and outcome prediction.

5.2.1 Confounder Representation Learning

HyperSCI learns representations of confounders by mapping the node features xi into a latent
space with a multilayer perceptron (MLP) module, i.e., zi = MLP(xi). The confounder

5.2 PROPOSED METHOD 35

representations for all the nodes are denoted by Z = {zi}
n
i=1. Similar as [37], a Wasserstein-

1 distance [153] based representation balancing method is used to minimize the distance
between the representation distributions of the treatment group and control group.

5.2.2 Interference Modeling

An interference modeling module is developed to model the high-order interference among
nodes in the hypergraph. More specifically, a function (·) is learned via a hypergraph
neural network module to obtain the interference representations (pi) for each node i, i.e.,
pi = (Z,H,T�i, ti). The illustration of this module is shown in Fig. 5.3. This module is
implemented based on a hypergraph convolutional network [149, 151] as well as a hypergraph
attention mechanism [149, 154, 155].

To learn the interference representations for each node, the treatment and confounder repres-
entations are propagated through the hypergraph structure. A vanilla Laplacian matrix for the
given hypergraph H can be calculated as:

L = D
�1/2

HB
�1
H
>
D
�1/2

, (5.2)

where D 2 Rn⇥n is a diagonal matrix in which each element stands for the node degree (i.e.,Pm
e=1 hi,e). B 2 Rm⇥m is a diagonal matrix in which each element corresponds to the size of

each hyperedge (
Pn

i=1 hi,e). The hypergraph convolution operation is defined as:

P
(l+1) = LeakyReLU

�
LP

(l)
W

(l+1)
�
, (5.3)

where P
(l) denotes the representations in the l-th layer of the hypergraph module. The input

of the first layer is the confounder representation masked by the treatment assignment, i.e.,
p
(0)
i = ti ⇤ zi. Here, ⇤ is element-wise multiplication. W(l+1)

2 Rd(l)⇥d(l+1) represents the
parameter matrix in the (l+1)-th layer of the hypergraph module, where d(l) and d

(l+1) are the
dimensionality of the l-th layer and (l+1)-th layer, respectively.

While the hypergraph convolution layer allows for interference modeling through hyperedges,
it lacks flexibility to consider the varying significance of interference on different nodes via
different hyperedges. To address this, a hypergraph attention mechanism [149, 155, 154] is
utilized to capture the intrinsic relationship between nodes and hyperedges. Specifically, the
attention weights are learned for each node and its corresponding hyperedges, which allows
for a better understanding of how certain individuals, such as those participating in group
events, may have a greater influence on or be influenced by others in these groups within the
context of a hypergraph, as seen in the COVID-19 example. More specifically, the attention

36 5 CAUSAL EFFECT ESTIMATION UNDER INTERFERENCE ON HYPERGRAPHS

score between a node i and a hyperedge e is calculated as:

↵i,e =
exp(�(sim(ziWa, zeWa)))P

k2Ei exp(�(sim(ziWa, zkWa)))
, (5.4)

where �(·) is an activation function, Ei is the set of hyperedges which contain the node i. ze
is the representation for each hyperedge e, obtained by aggregating across the representations
of its associated nodes. Wa denotes a parameter matrix to compute the node-hyperedge
attention. sim(·) denotes a similarity function, which can be implemented as follows:

sim(xi,xj) = a
>[xi,xj]. (5.5)

Here, a is a weight vector, [·, ·] is a concatenation operation. The attention scores are
used to model the different significance of interference. More specifically, the original
incidence matrix H of the hypergraph in Eq. 5.2 is replaced with an attention-involved matrix
H̃ = {h̃i,e}, where h̃i,e = ↵i,ehi,e.

5.2.3 Outcome Prediction

Based on the confounder representations and the interference representations, the potential
outcomes are predicted by:

ŷ
1
i = f1([zi,pi]), ŷ

0
i = f0([zi,pi]), (5.6)

where f1(·) and f0(·) are learnable functions which are trained to predict potential outcomes
for treatment assignment 1 and 0, respectively. The ITE for each node i is then estimated by:
⌧̂i = ŷ

1
i � ŷ

0
i . The prediction for the observed outcome is obtained by ŷi = ŷ

ti
i . The final loss

function for HyperSCI is:

L =
nX

i=1

(yi � ŷi)
2 + ↵Lb + �k⇥k

2
, (5.7)

where the first term is the outcome prediction loss, which can be implemented by standard
mean squared error. Lb is the representation balancing loss, as introduced in Section 4.2.3. ⇥
denotes all the model parameters. ↵ and � are hyperparameters that control the weights for
representation balancing and model regularization, respectively.

5.3 EXPERIMENTAL EVALUATION 37

5.3 Experimental Evaluation

5.3.1 Datasets and Simulation

5.3.1.1 Simulation

We obtain the semi-synthetic data based on two publicly available hypergraph datasets
(Contact [156, 157], Goodreads [158, 159]) and one large-scale proprietary web application
dataset (Microsoft Teams). We do not account for the temporal information of each hyperedge
in our experiments and leave this as a future research direction instead. In all three datasets,
we discard extremely large hyperedges and keep those with no more than 50 nodes only. 1

Outcome Simulation. Given the treatment allocations T, node features X, and the hypergraph
structure H, the potential outcome of an individual i can be simulated via

yi = fy,0(xi) +

individual treatment effect (ITE)z }| {
�ft(ti,xi)+ �fs(T,X,H)| {z }

hypergraph spillover effect

+ ✏yi , (5.8)

where fy,0(xi) describes the outcome of instance i when ti = 0 and without network inter-
ference, ft(·) calculates the ITE of each instance, fs(·) calculates the spillover effect, and
✏yi denotes the random noise from a Gaussian distribution N (0, 1). We specify fy,0(xi) as a
linear transformation of xi:

fy,0 = w0xi, (5.9)

where w0 ⇠ N (0, I),w0 2 Rd. Then we control the individual treatment effect (ft(ti,xi))
and the hypergraph spillover effect (fs(T,X,H)) under two different settings:

(1) Linear.

ft(ti,xi) =

(
w1xi + ✏ if ti = 1

0 if ti = 0
(5.10)

Here w1 2 Rd, and each element in w1 follows a Gaussian distribution. We generate
fs as:

fs(T,X,H) =
1

|Ei|

X

e2Ei

�
0(

1

|Ne|

X

j2Ne

tj ⇥ ft(tj,xj)). (5.11)

Here, �0(·) is a function on the aggregation over each hyperedge e that contains
node i. Ne is the set of nodes in hyperedge e. We implement �0(·) with an identity
function by default.

1Note hyperedges with large size of nodes are usually less meaningful [157].

38 5 CAUSAL EFFECT ESTIMATION UNDER INTERFERENCE ON HYPERGRAPHS

(2) Quadratic.

ft(ti,xi) =

(
x
>
i Wtxi + ✏ if ti = 1

0 if ti = 0
(5.12)

Here Wt 2 Rd⇥d, and each element in Wt follows a Gaussian distribution. We
generate fs as:

fs(T,X,H) =
1

|Ei|

X

e2Ei

�
0(

1

|Ne|
2
(Te ⇤Xe)Wt(Te ⇤Xe)

>). (5.13)

Here Xe and Te are the feature matrix and treatment assignment of nodes contained
in hyperedge e, respectively. Here ⇤ denotes element-wise multiplication.

5.3.1.2 Datasets

We follow the above process to generate potential outcomes on all three datasets. Additional
details about each dataset are provided as the follows.

Contact. This dataset collects interactions recorded by wearable sensors among students at a
high school [156, 157], and includes 327 nodes and 7,818 hyperedges. Each node represents
a person, and each hyperedge stands for a group of individuals are in close physical proximity
to each other. This contact hypergraph data allows us to simulate a hypothetical question:
“how does one’s face covering practice (treatment) causally affect their infection risk of
an infectious disease (outcome)?”. In each group contact, one may bring the virus to the
surrounding environment, and thus affect other people’s infection risk. Due to the lack of
detailed information about each individual, apart from the potential outcome, we also generate
the treatment (ti) and the covariates (xi) as the follows:

xi ⇠ N (0, I), ti ⇠ Bernoulli(Sigmoid(xivt)), (5.14)

where I is an d⇥ d identity matrix, here we set d = 50. vt is a d-dimensional vector where
each element inside follows a Gaussian distribution. Eventually about 50% ⇠ 60% of the
nodes are treated (ti = 1) in our experiments.

GoodReads. This dataset collects book information from the book review website GoodReads2,
including the book title, authors, descriptions, reviews, and ratings [158, 159]. We take each
book in the Children category as an instance. The bag-of-words of the book descriptions
are used as the covariates of each book. Each hyperedge corresponds to each author and all
books sharing the same author are in the same hyperedge. The real-world book ratings are
considered as treatment assignments: for each node i, we define ti = 1 if the rating score
is larger than 3 and ti = 0 otherwise. We aim to study the causal effect of the rating score

2https://www.goodreads.com/

5.3 EXPERIMENTAL EVALUATION 39

on the sales of each book. The ratings of each author’s books can establish this author’s
overall reputation, and thus influence the sales of other books from the same author. The final
processed dataset includes 57,031 nodes (where 40% are treated) and 12,709 hyperedges.
Note each book may have more than one author, and each author may have published multiple
books.

Microsoft Teams. We sampled 91,391 anonymized employees of a multinational technology
company and collected their aggregated telemetry data on Microsoft Teams3. Microsoft
Teams is a workplace communication platform where users are allowed to create a group
space (i.e., “team” or “channel”) to enable public communication within each group. We are
interested in how a user’s usage of these group spaces causally affects their productivity. We
process the treatment assignment into binary values by taking it as 1 if the employee has sent
out at least one message in any of these group spaces during the first week of March, 2021;
otherwise the treatment is assigned as 0. Each group space can be regarded as a hyperedge,
where information can be shared via group discussions thus one’s activeness on this platform
may affect other individuals’ outcomes in the same group. Employee demographics (e.g.,
office location, job description, work experience) were leveraged as the covariates.

5.3.2 Experiment Settings

Baselines. To investigate the effectiveness of our framework, we compare it with multiple
state-of-the-art ITE estimation baselines. These baselines can be divided into the following
categories:

• No graph. We compare the estimation results with traditional methods which
do not consider graph data and spillover effects. These methods include outcome
regression which is implemented by linear regression (LR), counterfactual regression
(CFR [37]), causal effect variational autoencoder (CEVAE [38]). By comparing the
proposed framework to these methods, we evaluate the effectiveness of modeling
interference for ITE estimation.

• No spillover effect in ordinary graphs. Although assuming no spillover effect
exists, the network deconfounder (Netdeconf) [41] captures latent confounders for
ITE estimation by utilizing the network structure among instances.

• Spillover effect in ordinary graphs. We compare our framework with other ITE
estimation baselines which can handle the pairwise spillover effect on ordinary
graphs: a node representation learning based method [47] estimates ITE under
network interference, including two variants: (a) GNN + HSIC, which is based

3https://www.microsoft.com/en-us/microsoft-teams

40 5 CAUSAL EFFECT ESTIMATION UNDER INTERFERENCE ON HYPERGRAPHS

on graph neural network [160] and Hilbert Schmidt independence criterion (HSIC)
[161], and (b) GCN + HSIC, which is based on GCN [162]. To utilize the baselines
which handle ordinary graphs, we project the original hypergraph H to an ordinary
graph G = {V , E

p
} by setting (vi, vj) 2 E

p if vi and vj are contained in at least one
common hyperedge in H. By comparing HyperSCI to the above baselines, we are
able to evaluate the benefits of modeling high-order interferences on the original
hypergraph.

Setup. We randomly partition all datasets into 60%-20%-20% training/validation/test splits.
All the results are averaged over ten repeated executions. Unless otherwise specified, we set
the hyperparameters as ↵ = 0.001, � = 1.0, � = 1.0, � = 0.01, the dimension for confounder
representation and interference representation both as 64. We use ReLU as the activation
function, and use an Adam optimizer. By default, the interference modeling component
contains one hypergraph convolutional layer.

5.3.3 ITE Estimation Performance

The performance of ITE estimation in hypergraph is shown in Table 5.1. From this table,
we observe that HyperSCI outperforms all the baselines under different settings of outcome
simulation function (in both linear and quadratic cases). As for the reasons, HyperSCI can
leverage the structure information in hypergraph to model the high-order interference. In this
way, it mitigates the influence of spillover effect on ITE estimation performance. Among
baselines, some of them consider the pairwise network interference (GCN-HSIC and GNN-
HSIC [47]), or use the graph structure to infer the hidden confounders in the ITE estimation
problem (Netdeconf [41]). These methods perform better than those baselines (LR, CEVAE
[38], CFR [37]) which cannot handle graph information. Furthermore, in the simulation, the
hyperparameter � controls the level of hypergraph spillover effect in the outcome simulation.
The ITE estimation results under different values of � are shown in Fig. 5.4. When � increases,
the outcome is more strongly affected by interference, and larger performance gains can
be observed from HyperSCI compared with the baselines. More details of experiments are
shown in Appendix B.

5.3.4 Ablation Study

To investigate the effectiveness of different components in the proposed framework, we con-
duct ablation studies by considering the following variants: 1) we apply the proposed model
HyperSCI on the projected graph (in a hypergraph structure) (denoted as HyperSCI-P); 2) we
replace the hypergraph neural network module with a graph neural network module with the

5.3 EXPERIMENTAL EVALUATION 41

TABLE 5.1. ITE estimation performance. “CT", “GR" and “MS" refer to
Contact, GoodReads, and Microsoft Teams datasets, respectively.

Linear QuadraticData Method p
✏PEHE ✏ATE

p
✏PEHE ✏ATE

CT LR 25.41 ±0.04 9.11 ±0.09 38.22 ±0.77 20.28 ±0.38

CEVAE 22.88 ±1.07 8.29 ±0.69 35.28 ±0.75 18.22 ±0.76

CFR 24.04 ±0.75 7.17 ±0.43 32.24 ±1.01 17.28 ±0.75

Netdeconf 10.22 ±0.47 4.29 ±0.13 21.23 ±0.72 11.39 ±0.74

GNN-HSIC 7.42 ±0.39 2.06 ±0.03 16.28 ±0.24 7.28 ±0.39

GCN-HSIC 7.28 ±0.44 2.08 ±0.04 14.23 ±0.20 6.27 ±0.15

HyperSCI 3.45 ±0.27 1.39 ±0.03 9.20 ±0.09 2.24 ±0.07

GR LR 23.01 ±0.04 13.42 ±0.12 48.56 ±1.02 31.19 ±0.47

CEVAE 22.69 ±0.03 12.49 ±0.06 45.21 ±3.10 29.22 ±0.44

CFR 20.30 ±0.03 13.21 ±0.09 41.72 ±0.72 26.28 ±0.43

Netdeconf 18.39 ±0.19 12.20 ±0.03 35.18 ±0.78 21.20 ±0.76

GNN-HSIC 17.20 ±0.23 12.18 ±0.13 27.22 ±0.78 16.87 ±0.47

GCN-HSIC 16.01 ±0.20 12.06 ±0.15 25.42 ±0.76 16.28 ±0.76

HyperSCI 15.68 ±0.21 11.81 ±0.15 19.23 ±0.44 13.33 ±0.27

MS LR 22.80 ±0.64 21.41± 0.74 414.17 ±3.94 192.80 ±2.97

CEVAE 19.36 ±0.80 8.63 ±0.78 315.01 ±2.53 188.47 ±4.27

CFR 25.23 ±0.01 18.28 ±0.02 392.56 ±4.33 189.75 ±4.80

Netdeconf 11.11 ±0.01 9.22 ±0.03 241.02 ±2.32 147.29 ±1.04

GNN-HSIC 9.38 ±0.44 6.91 ±0.38 114.28 ±3.62 81.21 ±2.53

GCN-HSIC 8.27 ±0.41 6.60 ±0.48 109.57 ±3.85 77.75 ±3.93

HyperSCI 5.13 ±0.56 4.46 ±0.61 81.08 ±0.37 74.41 ±0.42

͆ ��� ͆ ��� ͆ ����
��
��
��
��
���
���

&
͉ 3
(+
(

/5
&(9$(
&)5
1HWGHFRQI

*11�+6,&
*&1�+6,&
+\SHU6&,�

͆ ��� ͆ ��� ͆ ����
�
��
��
��
��
��
��
��
��

͉ $
7(

(a).
p
✏PEHE (b). ✏ATE

FIGURE 5.4. ITE estimation performance under different values of � in linear
setting on GoodReads.

same number of layers, and then apply it on the projected graph (in an original graph structure)
(HyperSCI-G). Notice that although both evaluated on the projected graph, HyperSCI-G

42 5 CAUSAL EFFECT ESTIMATION UNDER INTERFERENCE ON HYPERGRAPHS

+\SHU6
&,�3

+\SHU6
&,�*
+\SHU6

&,�1%+\SHU6
&,

��

��

��

��

��
&
͉ 3
(+
(

(A) GoodReads,
p
✏PEHE

+\SHU6
&,�3

+\SHU6
&,�*
+\SHU6

&,�1%+\SHU6
&,��

��
��
��
��
��

͉ $
7(

(B) GoodReads, ✏ATE

+\SHU6
&,�3

+\SHU6
&,�*
+\SHU6

&,�1%+\SHU6
&,

�
��
��
��
��
��

&
͉ 3
(+
(

(C) Contact,
p
✏PEHE

+\SHU6
&,�3

+\SHU6
&,�*
+\SHU6

&,�1%+\SHU6
&,�

�
�
�
�
�

͉ $
7(

(D) Contact, ✏ATE

FIGURE 5.5. Ablation studies of different variants of our framework Hyper-
SCI. Results (mean and standard error) are reported under the linear setting but
similar patterns can be found under the quadratic setting and on all datasets.

�� �� �� ��
N

��

��

��

&
͉ 3
(+
(

+\SHU6&,��&͉3(+(
+\SHU6&,�*��&͉3(+(
+\SHU6&,��͉$7(
+\SHU6&,�*��͉$7(

��
��
��
��
��
��
��

͉ $
7(

(A) GoodReads, Linear

�� �� �� ��
N

��

��

&
͉ 3
(+
(

��
��
��
��
��
��
��
��
��

͉ $
7(

(B) GoodReads, Quadratic

FIGURE 5.6. ITE estimation performance of HyperSCI/ HyperSCI-G on
hypergraphs with hyperedge size no more than k.

handles ordinary graphs with its graph neural network module, while HyperSCI-P handles hy-
pergraphs with its hypergraph neural network module; 3) we remove the balancing techniques
in the framework (HyperSCI-NB). The ITE estimation results are reported in Fig. 5.5, where
we notice significant performance gaps between HyperSCI-P/HyperSCI-G and HyperSCI,
which imply the effectiveness of modeling the high-order relationships on hypergraphs. We
also observe the ITE estimation performance degrades after removing the representation bal-
ancing modules, which indicates the effectiveness of the representation balancing techniques
on mitigating the biases of ITE estimations.

5.3 EXPERIMENTAL EVALUATION 43

������ ����� ���� ���
ͅ

��

��

��

��

&
͉ 3
(+
(

&͉3(+(
͉$7(

��
��
��
��
��

͉ $
7(

(A) Balancing weight

�� �� �� ���
G

��

��

��

&
͉ 3
(+
(

��
��
��
��
��

͉ $
7(

(B) Representation dimension

� � � �
��RI�DWWHQWLRQ�KHDG

��

��

��

&
͉ 3
(+
(

��
��
��
��
��

͉ $
7(

(C) # of attention head

������ ����� ���� ���
͏

��

��

��

&
͉ 3
(+
(

��
��
��
��
��

͉ $
7(

(D) Regularization weight

FIGURE 5.7. ITE estimation performance (mean and standard error) of the
proposed framework HyperSCI under different parameters or model structures
on GoodReads dataset.

5.3.5 A Closer Look at High-Order Interference

In addition to the overall ITE estimation performance, we take a closer look at high-order
interference. We investigate how the proposed framework responds to hyperedges with
difference sizes. More specifically, we remove the hyperedges with size larger than k, denote
the modified hypergraph as H(k), and vary the value of k. In Fig 5.6, we compare the ITE
estimation performance of the proposed framework HyperSCI with its variant on the projected
ordinary graph HyperSCI-G. We observe that: 1) When k = 2 (hyperedge size 2), the
performance of HyperSCI-G is close to HyperSCI. Because when k = 2, graph convolution
can be regarded as a special case of hypergraph convolution with small differences in the
graph Laplacian matrix (as illustrated in [149]). Empirically this leads to a minor performance
difference between HyperSCI-G and HyperSCI; 2) When k increases, the performance of ITE
estimation from both methods are gradually improved, but such an improvement becomes
less significant when k is larger. Besides, we notice HyperSCI consistently outperforms
HyperSCI-G and such a difference becomes larger as k increases, indicating its efficacy on
modeling high-order interference especially on large hyperedges.

5.3.6 Sensitivity Analysis

To evaluate the robustness of the proposed framework, we present the ITE estimation per-
formance of HyperSCI under different settings of model hyper-parameters in Fig. 5.7. More
specifically, we vary the value of the balancing weight from {0.0001, 0.001, 0.01, 0.1}, and

44 5 CAUSAL EFFECT ESTIMATION UNDER INTERFERENCE ON HYPERGRAPHS

vary the representation dimension from {16, 32, 64, 128}. We also vary the number of at-
tention head from {1, 2, 3, 4}, then change the parameter of regularization weight from
{0.0001, 0.001, 0.01, 0.1}. As can be observed, our framework is generally robust to different
hyper-parameter settings, but proper fine-tuning of these hyper-parameters is still beneficial
for the ITE estimation performance.

CHAPTER 6

Causal Effect Estimation under Entangled Treatments

In causal effect estimation, the treatment assignment mechanism plays a key role as it
determines the patterns of missing counterfactuals — the fundamental challenge of causal
inference. Most existing observational studies for causal effect learning assume that the
treatment is assigned individually for each unit. However, in many occasions, the treatments
are pairwisely assigned for units which are connected in graph, i.e., the treatments of different
units are entangled [163]. For example, in the causal question “What is the causal effect of
close contact (treatment) on the spread of MRSA (outcome) in a room-sharing network?", the
in-room contact in a room-sharing network is often not individually applied to each person.
Instead, it is often happens between a pair of people. Neglecting the entangled treatments
can impede the causal effect estimation. In this work, we study the problem of causal effect
estimation with treatment entangled in a graph.

Despite a few explorations [163, 164] for entangled treatments, this problem still remains
challenging due to the following challenges: 1) As discussed in [163], treatment entanglement
increases the risk of misspecification of treatment effect estimator. If the entanglement through
the graph is not considered, causal effect estimators tend to incorrectly attribute the observed
treatment assignments to each unit’s individual properties, and thus degrade the performance
of causal effect estimation. To handle this entanglement problem, existing works [163, 164]
assume that the treatment assignment is determined by a pre-determined function over the
graph (e.g., the treatment can be the node degree on graph). However, in many occasions, this
function is unknown. 2) Existing works [163, 164] rely on the unconfoundedness assumption
[20] (or its weaker version) that there do not exist unobserved confounders. However, hidden
confounders often exist in the real world and could lead to confounding biases. For example,
a patient’s behavior habits are hidden confounders which influence their physical contact
and MRSA infection risk. 3) Existing works are often limited to a static setting. However,
the graph, treatment, outcome, and unit covariates are naturally dynamic in many real-world
scenarios. For example, the patient data is evolving over time; the causal association across
different timestamps also brings more difficulties in learning causal effects.

45

46 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

𝑈!

𝑋𝑖

𝐴

𝑌𝑖

𝑇!

(A) Static

𝐴!"#

𝑈!"

𝐴"

𝑌!"

𝑇!"

𝑋!"

𝑈$!"#

𝑋$!"# 𝑌$!"#

𝑇$!"#

(B) Dynamic

FIGURE 6.1. The causal graph of the studied problem of entangled treatments
in a static setting (A) and in a dynamic setting (B). The observable variables
are shown in white while the unobserved ones are shown in grey.

To address the aforementioned challenges, we propose a novel framework NEAT to estimate
causal effects under Network EntAngled Treatments. Specifically: 1) To handle the entangled
treatment, for each node, we explicitly leverage its relevant graph topology to model the
unknown treatment assignment with a learnable neural network module. 2) To tackle the
hidden confounders, we take the graph structure w.r.t. each node as an instrumental variable
(IV) [35]. IV has been widely used as an effective tool to eliminate the biases brought by
hidden confounders in causal effect estimation. In the previous example, the room-sharing
network is a valid IV if it is assumed to be independent of the patient’s behavior habits, and
its influence on the MRSA infection is fully mediated by the physical contact. A valid IV
can provide randomization for the estimation of the causal effect of interest, and lead to an
unbiased causal effect estimation even with hidden confounders. 3) To learn causal effects
in a dynamic setting, we generalize the setting and develop our framework to handle the
entangled treatment across multiple timestamps.

6.1 Problem Definition

The observational data is denoted by {X,A,T,Y}
1,...,P , which corresponds to the node fea-

tures, graph adjacency matrices, treatment assignments, and observed outcomes, respectively,
in P timestamps. We use (·)p to denote the data in the p-th timestamp. When we focus
on a static setting, or a single timestamp, we drop this superscript for notation simplicity.
We assume there are N units with dx covariates, with X

p = {X
p
i }i2[N], and for each unit

i, Xi 2 Rdx . The graph structure connecting these units at each timestamp is an N ⇥ N

binary matrix A
p = {A

p
i,j}i,j2[N], where A

p
i,j = 1 when there is an edge from node i to

node j, otherwise A
p
i,j = 0. The treatment is T

p = {T
p
i }i2[N]. In most studies, treatment

is assumed to be a binary value, but in this work, we allow it to be a dt-size vector (e.g., a
vector that describes patients’ close contact patterns). The observed outcomes are denoted

6.1 PROBLEM DEFINITION 47

by Y
p = {Y

p
i }i2[N]. For each unit i at timestamp p, Y p

i 2 R. In this section, we use bold
letters (e.g., Xp) to denote variables for all units, and use unbold letters (e.g., Xp

i) to denote
variables for a single unit. For simplicity, we use the same notation for both variables and
data. The causal graph for this study is shown in Fig. 6.1; in this case, not all the confounders
can be directly observed or measured, thus they can often lead to biased treatment effect
estimation. The hidden confounders are denoted by U

p = {Ui}
p
i2[N]. This work is based on

the well-known Neyman-Rubin potential outcome framework [19]. We denote the potential
outcomes under treatment T = t as Yp(t) = {Yi(t)}

p
i2[N]. The entangled treatment is defined

as follows:

DEFINITION 10. (Entangled treatment) The treatment here can be a function T (·) over the
graph structure, the observed features, and the hidden confounders:

T = T (A, X, U). (6.1)

In a dynamic setting, the treatment is also a function over historical information

T
p = T (Ap

, X
p
,M

p
, U

p). (6.2)

DEFINITION 11. (Individual treatment effect under entangled treatments) Consider a baseline
treatment as T = t0, for a treatment T = t, the treatment effect conditioned on covariates X
in a static setting is defined as:

⌧(X) = E[Yi(t)� Yi(t0)|X]. (6.3)

In a dynamic setting, we denote the historical information before timestamp p as M
p =

{X,A,T,Y}
1,...,p�1. When estimate causal effects at timestamp p, only the data no later

than timestamp p can be used. We define the treatment effect at timestamp p as:

⌧(Xp
,M

p) = E[Y p
i (t)� Y

p
i (t0)|X

p
,M

p]. (6.4)

Similar as [165], we define the treatment effect for each unit i at timestamp p as ⌧ pi =

⌧(Xp
i ,M

p).

The studied problem in this work is then formally defined as:

DEFINITION 12. (Causal effect estimation under entangled treatments) Given the observa-
tional data {X,A,T,Y}

1,...,P , we aim to estimate the treatment effect ⌧(Xp
,M

p) for each
unit at each timestamp p with treatments entangled in the graph.

48 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

6.2 Assumptions

An implicit assumption of this work is that the graph information of each node i can be
represented as a variable Ai, and its samples in observational data are sufficient for us to
capture the patterns it influences the treatment assignment. Similarly, we denote the historical
information regarding unit i before timestamp p as Mp

i .

We assume that the outcome is generated by treatment, features, historical information, and
hidden confounders as follows:

Y
p = Y(T p

, X
p
,M

p) + g(Up), (6.5)

where Y and g are (nonlinear) functions. We assume E[g(Up)] = 0.

In this work, we take the graph structure as an instrumental variable (IV) for IV analysis. The
following assumptions make the graph structure as a valid IV.

ASSUMPTION 2. (Relevance) Given X
p
,M

p for any random unit, the treatment is relevant to
the graph structure, i.e., Ap

6?? T
p
|X

p
,M

p.

ASSUMPTION 3. (Exclusion restriction) For any random unit, the causal effect of Ap on Y
p

is fully mediated by T
p, i.e., Y p(T,A) = Y

p(T,A0), 8A 6= A
0. Here, Y p(T,A) denotes the

potential outcome for treatment T and graph A at timestamp p.

ASSUMPTION 4. (Instrumental unconfoundedness) There is no unblocked backdoor path
from A

p to Y
p, i.e., Ap

?? Y
p(A)|Xp

,M
p for any random unit. Here, Y p(A) denotes the

potential outcome for graph A at timestamp p.

6.3 Proposed Method

In this section, we introduce the proposed framework NEAT. Fig. 6.2 shows an illustration
of the proposed framework. Specifically, this framework contains three modules: node
representation learning, entangled treatment modeling, and outcome prediction.

6.3.1 Overall Pipeline

The whole framework is designed in a classical two-stage IV study pipeline [166, 35].
Generally, in this pipeline, the first stage predicts the treatment with IVs, and the second stage
estimates the potential outcomes based on the treatment predicted by the first stage. The key
behind this design is that, as the IVs are unconfounded, the predicted treatment from the first

6.3 PROPOSED METHOD 49

Node
Node features

Representation Learning
Input Graph

Edge

Treatment Modeling

Outcome Prediction

!!
Historical
information!! "! RNN#! $!"#

%!

Node
representations
Historical
information
Treatment
Outcome

Φ

&#!

"
&%!

#

!!

Historical
information
!!

Historical
information
!!

Time

Stage 1

Stage 2

loss
(&#!, #!)

loss
(&%!, %!)

""# "$#
"%#

"&#
"'#

"(#

")#

Features Representation

Predicted
treatment "#"

FIGURE 6.2. The proposed framework NEAT. It contains three components:
node representation learning, entangled treatment modeling, and outcome
prediction.

stage can provide more randomization, and thus it can help mitigate the confounding bias
brought by hidden confounders.

In our framework NEAT, in the first stage, we train a treatment modeling module to predict
treatment assignment for each node at each timestamp. In this module, we leverage the graph
structure as IVs, and use them to capture the patterns of entangled treatment in the graph.
Simultaneously, we learn a representation for each node to encode its properties, including its
current features and historical information. In the second stage, we predict potential outcomes
based on the original node features, the learned node representations, and the predicted
treatment. In this two-stage IV framework, the biases brought by hidden confounders can
then be effectively eliminated.

6.3.2 Node Representation Learning

In the real world, the treatment effects are often different for nodes with different properties.
For example, the close contact may influence patients with different ages differently. To
model such heterogeneity, we capture the properties of each node through node representation
learning. For each node i, we learn a representation Zi to encode its properties based on its

50 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

node features Xi:
Zi = �(Xi). (6.6)

Here, �(·) is implemented by a neural network module with learnable parameters.

Dynamic setting. In a time-evolving environment, as illustrated in Fig. 6.1 (b), the current
properties of each node can be influenced by the historical data in previous timestamps. To
capture the time-evolving properties and model the causal mechanism in a dynamic setting, for
each node i, we embed the historical information before each timestamp p into a representation
M

p
i with a recurrent neural network (RNN) [111, 167]. MP

i is then incorporated into Z
p
i . At

each timestamp, we update the historical embedding as:

M
p
i = RNN(Mp�1

i , T
p�1
i , Y

p�1
i , Z

p�1
i , X

p�1
i). (6.7)

Here, we learn the representation for each node i at timestamp p with a transformation
function �(·):

Z
p
i = �(Mp

i , X
p
i). (6.8)

6.3.3 Entangled Treatment Modeling

The treatment function T (·) in Eq. (6.1) or Eq. (6.2) is often not pre-determined. To better
estimate treatment effects from observational data, we capture the treatment assignment
patterns by training a module F (·) to model the conditional distribution of treatment T p

i given
A

p
, X

p
i ,M

p
i . The treatment modeling module is trained in the first stage together with node

representation learning:

T̂
p
i = F (Ap

, X
p
i ,M

p
i) = f(Ap

,�(Mp
i , X

p
i)). (6.9)

Treatment Entanglement. As the treatments of different units are entangled through the
graph structure, to effectively capture the patterns of treatment assignment, we explicitly
leverage the graph structure in the treatment modeling module. Specifically, we design this
module f(·) based on graph neural networks (GNNs) [11, 13]. Here we use one-layer graph
convoluntional network (GCN) [11] to predict the treatment as follows:

T̂
p
i = �(Âp([Xp

,Z
p])W0), (6.10)

where �(·) is an activation function such as Softmax. Âp is the normalized adjacency matrix
calculated from the graph A

p beforehand with the renormalization trick [11]. Here [·, ·] stands
for a concatenation operation. W0 denotes the parameters in GCNs.

6.4 EXPERIMENTAL EVALUATION 51

Loss for treatment modeling. The loss for treatment prediction is denoted by Lt. Generally,
Lt is defined as:

Lt =
PX

p=1

NX

i=1

lt(T̂
p
i , T

p
i) =

PX

p=1

NX

i=1

lt(F (Ap
, X

p
i ,M

p
i), T

p
i), (6.11)

where lt(·) is a loss term to measure the prediction error of treatment modeling. Noticeably, in
this work, we do not restrict the data type of treatment. To handle different types of treatment,
we design a different implementation for this module. More specifically, for discrete scalar
treatments (e.g., whether a patient has frequent close contact), we implement treatment
prediction f(·) as a classification model with the cross-entropy loss function; for continuous
and high-dimensional treatments (e.g., a vector which describes the patient’s contact patterns)
we implement it as a prediction task with mean square error (MSE) loss.

6.3.4 Outcome Prediction

We train an outcome prediction module in the second stage, which predicts Y
p
i based on

M
p
i , X

p
i and T̂

p
i with a learnable function H(·):

Ŷ
p
i =

Z
H(T̂ p

i ,M
p
i , X

p
i)dF (T̂ p

i |A
p
, X

p
i ,M

p
i). (6.12)

We denote the loss function for outcome prediction by:

Ly =
PX

p=1

NX

i=1

ly(Ŷ
p
i , Y

p
i), (6.13)

where ly(·) is a loss function (e.g., MSE) to measure the prediction error of the outcome. For
each node i, the potential outcome w.r.t. treatment T = t is predicted by Ŷi(t) = H(t,Mi, Xi).
We thereby estimate the treatment effect for each node i as:

⌧̂i = Ŷi(t)� Ŷi(t0). (6.14)

6.4 Experimental Evaluation

We validate the effectiveness of our proposed method with the following research questions:
RQ1: How does the proposed framework perform under treatment entanglement compared
with baselines? RQ2: How does the proposed framework perform under different levels of
treatment entanglement and hidden confounders?

52 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

Baselines. 1) Individual units. These methods are based on the assumption that different
units are independent, including S-Learner (SL) [168], causal forest (CF) [103], and counter-
factual regression (CFR) [37]. 2) Network deconfounding. We use network deconfounder
(NetDeconf) [41] and dynamic network deconfounder (DNDC) [21]. 3) DeepIV. This method
[35] uses instrumental variables to mitigate the confounding biases. For each node i, we take
the i-th row in the adjacency matrix as its IV.

Evaluation Metrics. We still adopt the two metrics introduced before: Rooted Precision in
Estimation of Heterogeneous Effect (PEHE) [102] and Mean Absolute Error (ATE) [118] at
each timestamp p. For all the experiments, we calculate the average values of these metrics
over all timestamps.

6.4.1 Datasets and Simulation

In our experiment, we use four datasets with dynamic graph data, including synthetic, semi-
synthetic, and real-world data. As it is notoriously hard to obtain the true causal models
and counterfactuals from real world, on the first three datasets, we follow a regular practice
to evaluate our method on data with simulated causal models. Nevertheless, we encourage
our simulation to be as close to reality as possible, thus our synthetic and semi-synthetic
datasets are based on graphs which are generated by real-world relational information and
node features. Based on these graph data, we simulate the time-varying hidden confounders,
treatment, and outcome in the following way:

6.4.1.1 Simulation

We describe the way we simulate the hidden confounders, observed node features, treatment,
and potential outcomes as follows:

Hidden confounders. In a static setting, we simulate the hidden confounders as:

Ui ⇠ N (0, µI). (6.15)

Here, I denotes an identity matrix of size du (i.e., the dimension of hidden confounders). We
set µ = 20 by default.

Features. If the node features are available in the dataset, we directly use them. Otherwise,
we simulate them by:

Xi = (Ui) + ✏x, (6.16)

where (·) is a function Rdu ! Rdx . Here, dx and du are the dimension of node features and
hidden confounders, respectively. ✏x is a noise vector in Gaussian distribution.

6.4 EXPERIMENTAL EVALUATION 53

Treatment. We simulate the treatment with function T :

Ti = BI((1� �)⇥>t,xXi + �
1

|Ni|

X

j2Ni

(⇥>t,xXj) +⇥
>
t,uUi + ✏t), (6.17)

where⇥t,x,⇥t,u are parameter vectors with dimension dx and du, respectively. Each parameter
in ⇥t,⇤ is in Gaussian distribution N (0, 0.52). Ni is the set of neighbors of node i in the
graph. We use only one-hop neighbors by default. � 2 [0, 1] is the parameter that controls the
strength of treatment entanglement, i.e., the larger � is set, the stronger the graph influences
the treatment assignments. BI(·) is a function that maps the input to a binary value. A
regular implementation is to transform the input to a probability using a Sigmoid function,
and then sample the output with Bernoulli distribution. Noticeably, we do not restrict the
treatment to be a binary value. Continuous treatment can be simulated without the BI(·)
function; and high-dimensional treatment with dimension dt can be simulated by replacing
the parameter vector ⇥t,x with a parameter matrix ⇥t,x with dimension dx ⇥ dt (similarly for
⇥t,u). ✏t ⇠ N (0, 0.012) is a random Gaussian noise.

Potential outcome. We simulate the potential outcomes as follows:

Yi(t) = t ·⇥>y Xi +⇥
>
0 Xi + �⇥>uUi + ✏y, (6.18)

where ⇥y and ⇥0 are parameter vectors of dimension dx, and ⇥u is of dimension du. � � 0

is a parameter that controls the strength of the hidden confounder. ✏y ⇠ N (0, 0.12) is a noise.

Dynamic setting. In a dynamic setting, we simulate the historical data over time as:

M
p
i =

RX

r=1

(W r
uU

R�r
i +W

r
xX

R�r
i +W

r
t T

R�r
i +W

r
yY

R�r
i), (6.19)

U
p
i = u(M

p
i) + ✏u (6.20)

where R is the number of previous timestamps which influence the current one. We set R = 3

by default. Generally, the historical information at each timestamp encodes the previous
hidden confounders, node features, treatments, and outcomes. Parameters W r

u , W r
x , W r

t , and
W

r
y control these four types of influence from timestamp R� r. We generate time-varying

hidden confounders with a transformation over the historical information. Here, u(·) is a
linear transformation function. ✏u ⇠ N (0, I) is a Gaussian noise. We use the same way as Eq.
(6.16) to simulate features. The treatments and outcomes are also generated similarly as above
description in Eq. (6.17) and Eq. (6.18), but the historical information M

p
i is incorporated by

concatenating it with X
p
i as input.

54 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

TABLE 6.1. Detailed statistics of the datasets.

Dataset Random Transaction Social MRSA

of nodes 30, 000 186, 509 52, 406 11, 044

of edges 208, 193 61, 572 107, 394 31, 403

of features 32 21 16 8

of timestamps 12 15 10 13

6.4.1.2 Datasets

We further introduce more details about each dataset. More details of data statistics are shown
in Table 6.1, including the number of nodes, edges, features, and timestamps. More details
can be found in Appendix C.

Random graph. This dataset contains synthetic graphs generated by the Erdös-Rényi (E-R)
model [169] at each timestamp. We use NetworkX [170] to generate these graphs. Based on
these graphs, we simulate other variables as described in Section 6.4.1.1.

Real-world graphs. We use two real-world dynamic graphs with each node representing a
real person and each edge representing a certain type of connection between them. Based on
the type of connection, these two datasets are referred as Transaction and Social, respectively.
We use the covariates of people in these datasets as node features, and simulate the treatments
and outcomes as described in Section 6.4.1.1.

MRSA. This dataset contains real-world hospital data for studying Methicillin-resistant
Staphylococcus aureus (MRSA) infection. We construct a dynamic graph for the room-
sharing relations between patients. At each timestamp, each node is a patient, and an edge
exists between a pair of patients if and only if they have shared at least one room during this
timestamp. The patient information such as medicine usage and length of stay are taken as
node features. We investigate the causal effect of the number of in-room contacts (treatment)
on MRSA infection test results (outcome). We consider there exist hidden confounders such
as patients’ behavior habits. In this dataset, we do not use any simulated data, and do not
evaluate our causal effect estimation based on simulated counterfactuals. Instead, we use the
domain knowledge regarding MRSA to confirm our findings.

6.4.2 Performance of Different Methods

To demonstrate the effectiveness of the proposed method, in Table 6.2, we show the treatment
effect estimation performance of our method and the baselines in both static and dynamic

6.4 EXPERIMENTAL EVALUATION 55

TABLE 6.2. Performance of treatment effect estimation for different methods.

Static

Method Random Transaction Social
p
✏PEHE ✏ATE

p
✏PEHE ✏ATE

p
✏PEHE ✏ATE

SL 67.2 ±3.0 7.3 ±0.5 40.9 ±1.4 7.1 ±0.3 48.3 ±2.5 9.2 ±0.7

CF 33.7 ±2.1 7.0 ±0.2 30.9 ±1.8 6.9 ±0.3 23.6 ±1.1 5.9 ±0.4

CFR 28.1 ±2.4 6.3 ±0.5 34.4 ±2.3 5.6 ±0.9 27.3 ±2.0 5.2 ±0.5

NetDeconf 35.6 ±3.0 6.2 ±0.3 28.6 ±2.0 5.8 ±0.7 30.5 ±2.7 6.3 ±0.4

DNDC 32.9 ±2.4 6.8 ±0.3 29.8 ±2.2 6.0 ±0.5 33.2 ±3.1 6.6 ±0.7

DeepIV 31.0 ±2.3 5.9 ±0.4 26.7 ±1.9 5.4 ±0.6 21.4 ±1.6 5.1 ±0.3

NEAT 22.4 ±1.8 5.2 ±0.3 18.8 ±1.4 4.6 ±0.4 17.9 ±1.2 4.1 ±0.5

Dynamic

Method Random Transaction Social
p
✏PEHE ✏ATE

p
✏PEHE ✏ATE

p
✏PEHE ✏ATE

SL 69.4 ±3.1 7.7 ±0.4 55.8 ±1.8 8.4 ±0.6 45.3 ±1.4 6.5 ±0.3

CF 36.2 ±2.4 7.4 ±0.6 39.6 ±1.2 6.2 ±0.4 31.4 ±1.0 5.8 ±0.4

CFR 33.3 ±2.7 6.7 ±0.4 30.0 ±2.6 5.9 ±0.4 27.7 ±2.2 6.0 ±0.5

NetDeconf 34.0 ±2.5 6.8 ±0.7 29.4 ±1.5 6.1 ±0.5 32.9 ±2.2 5.8 ±0.8

DNDC 29.9 ±2.2 6.2 ±0.4 28.9 ±1.8 5.7 ±0.5 35.8 ±3.0 6.4 ±0.7

DeepIV 32.2 ±3.1 5.8 ±0.5 30.2 ±1.9 5.8 ±0.4 24.1 ±1.8 5.6 ±0.6

NEAT 20.1 ±1.4 5.0 ±0.2 22.5 ±1.0 5.3 ±0.3 18.2 ±1.6 5.0 ±0.4

settings. We observe that in both settings, the proposed method NEAT outperforms other
baselines in different metrics. We attribute the improvement to two key factors: 1) We
explicitly incorporate the graph structure to model the treatment assignment. During this
process, we can better utilize the observational data for treatment effect estimation. Among
the baselines, SL, CF, and CFR do not consider the graph which connects different units;
NetDeconf and DNDC can leverage graph structure, but they use the graph as a proxy to
infer the hidden confounders. These methods, however, do not fit in well in the problem
setting studied in this work. 2) We utilize the graph structure as an instrumental variable
to eliminate the confounding biases. Among the baselines, SL, CF, and CFR are based on
the unconfoundedness assumption; NetDeconf and DNDC assume the hidden confounders
can be inferred from the graph structure. These assumptions cannot be satisfied in our
datasets. DeepIV also takes the graph information as an instrumental variable to handle
hidden confounders, but its performance is impeded due to the lack of proper techniques to
handle graph data.

56 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

͏ ��� ͏ ��� ͏ ����
��
��
��
��
���
���

&
͉ 3
(+
(

6/HDUQHU
&)
&)5

1HWGHFRQI
'1'&

'HHS,9
1($7

(A)
p
✏PEHE

͏ ��� ͏ ��� ͏ ����

�

�

�

��

��

͉ $
7(

(B) ✏ATE

FIGURE 6.3. Treatment effect estimation performance under different levels
of treatment entanglement on Random dataset.

͆ ��� ͆ ��� ͆ ����
��
��
��
��
���
���

&
͉ 3
(+
(

6/HDUQHU
&)
&)5

1HWGHFRQI
'1'&

'HHS,9
1($7

(A)
p
✏PEHE

͆ ��� ͆ ��� ͆ ����
�
�
�
��
��
��

͉ $
7(

(B) ✏ATE

FIGURE 6.4. Treatment effect estimation performance under different levels
of hidden confounders on Random dataset.

6.4.3 Performance under Different Levels of Treatment Entanglement
and Confounders

To evaluate our method more comprehensively, we test it under different levels of treatment
entanglement. In simulation, we control the treatment entanglement with parameter �: the
larger � is set, the stronger the treatment assignment of each node is entangled with neighbors.
Fig. 6.3 shows the causal effect estimation performance when we set � as different values.
Generally, we observe more obvious performance gain when � is larger. This observation
indicates that our method can well handle the entangled treatments by leveraging the graph
structure. We only show the results on the Random dataset, but similar observations can also
be found on other datasets.

We also evaluate our method under different levels of hidden confounders. In Fig. 6.4, we
show the results when we change the strength of hidden confounders. Specifically, we change
the strength by multiplying the hidden confounders in simulation with the parameter � � 0.
From Fig. 6.4, it can be observed that compared with baselines, our method is more robust
with hidden confounders. This is because we effectively utilize the graph as an instrumental
variable to mitigate confounding biases.

6.4 EXPERIMENTAL EVALUATION 57

TABLE 6.3. Estimated treatment effect of roommate number on MRSA infec-
tion in different populations of patients.

Population T=0 T=1 T=2

All 0 0.025± 0.002 0.082± 0.004
General Surgery 0 0.016± 0.002 0.058± 0.003
Intensive Care 0 0.033± 0.003 0.119± 0.005
Gerontology 0 0.024± 0.002 0.082± 0.004

TABLE 6.4. Estimated treatment effect of hospital unit type on MRSA infec-
tion.

Hospital Unit Type Estimated ATE

General Surgery 0 (baseline)
Intensive Care 0.135± 0.002
Gerontology 0.138± 0.004

Transitional Care �0.042± 0.006
Internal Medicine 0.000± 0.002

Cardiology 0.072± 0.004
Orthopedic Surgery 0.000± 0.001

Gastroenterology 0.000± 0.001
Hematology and Oncology �0.083± 0.005

6.4.4 Case Study on Real-world Hospital Data

Methicillin-resistant Staphylococcus aureus (MRSA) is a difficult-to-treat pathogen (owing
to multi-drug resistance) that is known to spread efficiently within hospitals via contact.
One important avenue of hospitalized patient-to-patient MRSA transmission is thought to be
through contamination of hospital room surfaces and equipment [171]. In addition, patients
may be more or less susceptible to acquiring MRSA given individual factors [172], and
MRSA transmission rates may vary according to particular hospital units [173].

The MRSA dataset contains observational data including patient covariates, room-sharing
information, and MRSA test record from a real-world hospital. We construct a room-sharing
network, in which an edge connects two patients (nodes) if and only if they have appeared
in at least one same room simultaneously. We use our method to investigate the following
causal questions: (1) How does the number of in-room contacts causally influence the MRSA
infection risk? (2) How do other treatments, such as the type of hospital unit (e.g. Cardiology,
Internal Medicine, etc.) causally influence the MRSA infection risk? As the ground-truth

58 6 CAUSAL EFFECT ESTIMATION UNDER ENTANGLED TREATMENTS

causal model is unknown, it is infeasible to evaluate our method on this dataset with the
aforementioned metrics. Instead, we show some case studies and verify our key findings with
domain knowledge.

For the first question, we map the number of in-room contacts into three levels of treatment.
Here, treatments 0, 1, 2 represent the roommate number from low to high. We take T = 0 as
the control group, and calculate the treatment effect for T = 1 and T = 2 by comparing the
estimated potential outcomes of them with the case of T = 0, respectively. Table 6.3 shows
the estimated averaged treatment effect (ATE) of roommate number on MRSA infection
over all the patients, and also shows the estimated conditional averaged treatment effect
(CATE) conditioned on each subpopulation of patients in a specific group of rooms. From
the results, we observe that: 1) In general, the increase in roommate number could result
in an increase in MRSA infection risk. This observation holds in the whole population and
different subpopulations. As MRSA is contagious through physical contact, this observation
is consistent with domain knowledge. 2) The CATE of roommate number on MRSA infection
is the strongest in Intensive Care and Gerontology. In Intensive Care, it is frequent for patients
to share devices such as ventilators, which leads to a more severe risk of infection when the
number of in-room contacts increases. Besides, most patients in Gerontology rooms are older
adults with comorbidities associated with MRSA susceptibility (i.e., age >79, prior nursing
home residence, antibiotic exposure, dementia, stroke, or diabetes), which brings a higher
risk for acquiring MRSA from the environment with more physical contact [174].

For the second question, we take the hospital unit type as treatment, and show the estimated
ATE of each hospital unit type on MRSA infection in Table 6.4. Here, we take General
Surgery as the baseline treatment (control group). From Table 6.4, we observe that staying in
Intensive Care and Gerontology rooms increases the MRSA infection risk most obviously.
The reason might lie in the properties of these units (equipment sharing in the intensive care
units, and more MRSA carriers in Gerontology). We also observe a relatively low treatment
effect among beds in Transitional Care and Hematology/Oncology units. Most of these rooms
are private (as opposed to other semi-private or 2-patient shared rooms), and may lead to less
infection risk.

Part III

Improve Graph Machine Learning with Causality

CHAPTER 7

Overview of Part III

In Part III, we introduce our work in another direction: leveraging causality to facilitate graph
machine learning in trustworthiness. We cover different aspects of trustworthiness in different
chapters.

In Chapter 8, we investigate the fairness problem in graph learning methods. Specifically, we
focus on counterfactual fairness, which measures fairness by comparing the model prediction
for the same individual node with different values of sensitive features on the graph. We
discuss the key difference between counterfactual fairness on i.i.d. data and graphs, and
then propose a novel notion of graph counterfactual fairness. On top of that, we develop
a framework which promotes graph counterfactual fairness and maintains good prediction
performance simultaneously.

In Chapter 9, we study the explanation problem for black-box graph prediction models.
Specifically, we focus on counterfactual explanation, which explains the given model by
providing counterfactuals (i.e., a graph which is slightly different from the input but can
achieve a different output). We tackle a series of challenges in this task, and develop a
generative counterfactual explanation approach, which can be efficiently optimized and
provide causality-consistent counterfactual explanations for input graphs.

In this part, we promote trustworthy graph machine learning from different views, and improve
the potential of graph ML in a wider range of high-stakes applications.

60

CHAPTER 8

Counterfactual Fairness in Node Representation Learning

Representation learning on graphs aims to map nodes into a latent embedding space. These
node representations are often used to power downstream predictive tasks, and have become
the new state-of-the-art in multiple real-world applications [175, 162, 13, 176]. However,
these node representation learning approaches may overlook potential biases buried in the
graph data, thus introducing algorithmic biases against subpopulations defined by certain
sensitive attributes such as race, gender, and age. Consequently this may raise ethical and
societal concerns, especially in high-stakes decision-making scenarios such as ranking of job
applicants [177] and credit scoring [178]. For example, it would become a serious ethical
issue if a bank’s decision on the loan application was affected by the applicant’s and their
close contacts’ race information.

To tackle the above problem, several approaches were proposed to assess and address the
fairness of node representation learning on graphs. The majority of these methods aim to
learn node representations which can elicit statistically fair predictions across the population
[72, 100, 179, 180]. In addition, the concept of counterfactual fairness has been extended
to graph-structured data recently [100, 181]. Different from the previous statistical notions,
counterfactual fairness extends Pearl’s causal structural models [110] and aims to encourage
the predictions made from different versions of the same individual (a.k.a. counterfactuals) to
be equal. For example, the prediction for one’s loan application being approved should be the
same regardless this applicant being Black or White.

This work falls under the umbrella of counterfactual fairness but focuses on addressing two
critical limitations of existing studies [100, 181] of counterfactual fairness on graphs: 1) biases
induced by one’s neighboring nodes and 2) biases induced by the causal relations from
the sensitive attributes to other features as well as the graph structure. We follow the
previous loan application example to explain these limitations in details: i) As illustrated in
Fig. 8.1(a), existing studies mostly focus on mitigating the causal influence from the sensitive
attribute (race information Si) of the i-th applicant on the prediction of the label (loan approval
decision Yi), but neglect the fact that the race information of the applicant’s social contacts
(Sj) can also causally affect the fairness of the prediction (as labeled using red dashed edges

61

62 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING!'

!'
(race)

!(
(race)

#'
(address)

%'
(loan

approval)

#(
(address)

)',(
(social
relation)

%(
(loan

approval)

(A) M 0

!'
(race)

!(
(race)

#'
(address)

%'
(loan

approval)

#(
(address)

)',(
(social
relation)

%(
(loan

approval)

(B) M

FIGURE 8.1. Causal models generally used in existing works (M 0) and in
this work (M). We use Si, Xi, Yi to denote the sensitive attribute, features,
and label of any node i, and Ai,j 2 {0, 1} denotes the edge between node pair
(i, j). Each arrow denotes a causal relation. The dashed lines denote the causal
relations that the existing works do not consider.

in Fig. 8.1(b)). ii) On the other hand, existing methods may implicitly assume the sensitive
attribute (Si) has no causal effect on other variables such as node features (Xi) and the graph
structure (Ai,j) so that they can safely simplify the counterfactual data generation mechanism
as by just flipping the sensitive attribute values. However, we question the applicability of
this assumption since such causal effect is ubiquitous in real-world scenarios. For example,
one’s race can causally influence their social relations as well as the residential neighborhood
they live in (as labeled using green dashed edges in Fig. 8.1(b)).1

We argue that biases in model predictions can be induced by the aforementioned pathways.
We propose a more comprehensive fairness notion on graphs – graph counterfactual fairness,
which considers the potential biases regarding the sensitive attributes of each node and its
neighboring nodes, as well as the biases led by the causal effect from sensitive attributes on
other variables. With this notion, learning node representations towards graph counterfactual
fairness is still challenging. It is because the causal relations among variables (as showed
in Fig. 8.1(b)) are often required to obtain the counterfactuals, but these causal relations are
often unknown in practice. Manually constructing the entire causal model requires extensive
domain knowledge and human efforts, especially for large-scale graph data.

To address the above challenge, we propose a novel framework to learn Graph countErfactually
fAir node Representations (GEAR). GEAR aims to learn node representations towards graph
counterfactual fairness, and maintain high performance for downstream tasks such as node
classification. Specifically, for each node, we minimize the discrepancy between the repres-
entations learned from the original data and the augmented counterfactuals with different
sensitive attribute values.

1There may also exist causal relations between non-sensitive features and the graph structure, although we
do not show them in Fig.8.1 for simplicity of illustration.

8.1 PROBLEM DEFINITION 63

8.1 Problem Definition

Notations. Given a graph G = {V , E ,X}, where V is the set of nodes, E is the set of edges,
X = {xi}

n
i=1 denotes the node features (n = |V|), and xi 2 Rd represents the features of

node i. A 2 Rn⇥n denotes the adjacency matrix of the graph G, where Ai,j = 1 if edge i! j

exists, otherwise Ai,j = 0. Without loss of generalization, we assume G is undirected and
unweighted, but this work can be naturally extended to directed or weighted settings. Each
node i has a sensitive attribute si 2 {0, 1} (we assume one single, binary sensitive attribute for
simplicity, but our model can also be easily extended to multivariate or continuous sensitive
attributes). S = {si}

n
i=1, and si is included in xi. We denote the non-sensitive features as

X
¬s = {x

¬s
1 , ...,x

¬s
n }, where x

¬s
i = xi\si.

Traditional node representation learning methods train an encoder �(·) : Rn⇥d
⇥ Rn⇥n

!

Rn⇥d0 to map each node to a latent representation. The learned representations for the n

nodes are denoted by Z = {zi}
n
i=1, where zi = (�(X,A))i, zi 2 Rd0 for any node i, and d

0

is the dimensionality of node representations. These representations can be used in various
downstream tasks like node classification [182], link prediction [183], and graph classification
[184]. f(·) denotes the downstream classifier/predictor. In the node classification task, let yi
denote the true label of the node i, f(·) takes the representation zi as input, and outputs the
predicted label ŷi.

Counterfactual fairness. Counterfactual fairness [185] is a fairness notion based on Pearl’s
structural causal model [110]. A causal model consists of a causal graph and structural
equations. A causal graph is a directed acyclic graph (DAG), where each node represents a
variable, and each directed edge represents a causal relationship. Structural equations describe
these causal relations among variables. For variables Y, S, the value of the counterfactual
"what would Y have been if S had been set to s?" is denoted by YS s. Based on a given
causal model, a predictor Ŷ = f(X) is counterfactually fair [185] if under any features
X = x and sensitive attribute S = s,

P (ŶS s = y|X = x, S = s) = P (ŶS s0 = y|X = x, S = s), (8.1)

for all y and s
0
6= s. Here ŶS s = f(XS s, s) denotes the prediction made on the counter-

factual when S had been set to s. Intuitively, it aims to minimize the difference between
predictions made on each individual and its counterfactuals with different sensitive attribute
values. Ideally, the counterfactuals should be generated based on the ground truth causal
model. Different from the statistical fairness notions such as equality of opportunity (EO)
[186, 187] and demographic parity (DP) [188], counterfactual fairness aims to eliminate the
biases led by the causal effect from the sensitive attribute on the observed variables used for
model training. However, most existing works of counterfactual fairness focus on i.i.d. data.

64 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING

Existing notion of counterfactual fairness on graph. Recent works [100, 181] have
extended counterfactual fairness to graphs. Given a graph X = X, A = A, these works
consider that an encoder �(·) satisfies counterfactual fairness if for any node i:

(�(XSi=0, A))i = (�(XSi=1, A))i, (8.2)

where XSi=0 and XSi=1 denote the node features after setting Si as 0 and 1, respectively,
while everything else does not change2. This notion considers fairness as minimizing the
discrepancy between the representations of each node with different values of its sensitive
attribute (while everything else is fixed). This notion has the following limitations: 1) it
does not consider the potential biases led by the causal effect from the sensitive attribute of
other nodes in the graph on the prediction of each node; 2) it implicitly assumes that the
sensitive attribute has no causal effect on other features or the graph structure. In a nutshell,
this fairness notion is more limited than the general counterfactual fairness notion.

Graph counterfactual fairness. To address the above limitations, in this work, we propose a
novel fairness notion on graphs:

DEFINITION 13. (Graph counterfactual fairness). An encoder �(·) satisfies graph counter-
factual fairness if for any node i:

P ((Zi)S s0 |X = X, A = A) = P ((Zi)S s00 |X = X, A = A), (8.3)

for all s0 6= s
00, where s

0
, s
00
2 {0, 1}n are arbitrary sensitive attribute values of all nodes,

Zi = (�(X,A))i denotes the node representations for node i. In other words, given a
graph X = X, A = A, �(·) should minimize the distribution discrepancy between the
representations (�(XS s0 , AS s0))i and (�(XS s00 , AS s00))i for any node i.

Intuitively, this notion encourages the representations learned from the original graph and
counterfactuals to be equal. The counterfactuals correspond to different cases when the
sensitive attribute of the n nodes had been set to any values. For notation simplicity, in the
following sections, we use XS s0 to denote a specific value of the counterfactual “what would
the node features have been if the sensitive attribute of the n nodes had been set by s

0, given
the original data, i.e., node features X and graph structure A?". We also use notation AS s0

in a similar way.

In our work, we aim to develop a framework which learns node representations on graph
towards graph counterfactual fairness, and maintains a good prediction performance simultan-
eously.

2In this section, we use italicized uppercase letters (e.g., Si, X,A) to denote random variables, and use
italicized lowercase letters (e.g., si), non-italicized bold lowercase/uppercase letters (e.g., xi and X) to denote
specific realization of scalars or vectors/matrices, respectively.

8.2 PROPOSED METHOD 65

Node

Central node
Non-sensitive
features
Sensitive
features
Node
representations

Counterfactual Data Augmentation

Fair Representation Learning
Self-perturbation Neighbor-perturbation

…

Encoder Encoder

!" !"

Original

Encoder

!" SiameseSiamese network

#$%('(, ()Prediction loss (,)Fairness loss(,)

Input Graph
Fairness constraint S′

Encoder Decoder

Original Counterfactual

Encoder
Aggregate

Subgraph

FIGURE 8.2. An illustration of the proposed framework GEAR.

8.2 Proposed Method

In this section, we propose a novel framework GEAR which aims to learn node representations
for graph counterfactual fairness. As the illustration shown in Fig. 8.2, GEAR mainly includes
three key components: 1) subgraph generation; 2) counterfactual data augmentation; 3)
fair representation learning. In subgraph generation, GEAR extracts a context subgraph for
each node, which contains the local graph structure including the node itself (central node)
and its nearest neighbors with respect to precomputed importance scores. In counterfactual
data augmentation, we generate counterfactuals in which the sensitive attribute of nodes
in these subgraphs had been perturbed. Based on the augmented counterfactuals, the fair
representation learning component leverages Siamese networks [189] to minimize the distance
between the representations learned from the original data and the counterfactuals w.r.t. the
same node.

8.2.1 Subgraph Generation

True causal models for graph data are often difficult to be completely obtained, especially
for large-scale graphs. Based on a common observation [190, 191] that each node is mostly
influenced by its nearest neighbors, we extract a subgraph G

(i) with node features X(i) and
adjacency matrix A

(i) for each node i. This subgraph extracts the context information of the
central node i on G, i.e., the subgraph of G which only contains the top k neighbors of node

66 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING

i (including itself). These top-k neighbors are usually within several hops from the central
node. Specifically, for each node i on the graph, we generate its context subgraph G

(i) with a
subgraph generator Sub(·). Based on these context subgraphs, we learn the representations for
their corresponding central nodes. This is based on a commonly used assumption [190] that
each node has a low dependency with the nodes outside its context subgraph. Therefore, each
subgraph is expected to be informative enough with respect to the graph structure relative to
the central node for high-quality representation learning and counterfactual data augmentation
afterwards.

Inspired by recent subgraph based node representation learning methods [191, 192], we first
compute the importance scores for every node pair with personalized pagerank algorithm
[193]. The importance scores can be calculated as: R = ↵(I� (1� ↵)Ā), where R is the
importance score matrix, and each entry Ri,j describes how important node j is for node
i, and Ri,: denotes the importance score vector for node i. ↵ is a parameter in the range of
[0, 1], I is the identity matrix. Ā = AD

�1 denotes the column-normalized adjacency matrix,
where D is the corresponding diagonal matrix with Di,i =

P
j Ai,j . We compute R in a

preprocessing stage before model training for efficiency. With the importance scores, we
use a TOP(·) operation to select the top-k important nodes V (i) for each central node i, then
formulate the context subgraph G

(i) as follows:

G
(i) = {V

(i)
, E

(i)
,X

(i)
} = {A

(i)
,X

(i)
}, (8.4)

V
(i) = TOP(Ri,:, k), (8.5)

A
(i) = AV(i),V(i) , X

(i) = XV(i),:, (8.6)

where the symbol : means all the indices. The above subgraph generation process (Eq. (8.4)
to (8.6)) is defined as G(i) = Sub(i,G, k). Then the generated subgraphs are fed into encoders
to learn representations of the central nodes.

8.2.2 Counterfactual Data Augmentation

To achieve graph counterfactual fairness, we pretrain a counterfactual data augmentation
module before node representation learning. Here we consider a relatively simple but general
causal model (as shown in Fig. 8.1(b)) to generate counterfactuals for each subgraph. Based
on common observations [185], we assume that the sensitive attribute (e.g., race) is exogenous,
i.e., it has no parent variables in the causal graph, and it would causally influence the other
node features, the graph structure, and the labels. Based on the causal model we assume,
once we intervene on the sensitive attribute, we need to model how the other variables change
accordingly. To achieve this goal, we use a graph variational auto-encoder (GraphVAE) [12]
based module, which takes each context subgraph as input and encodes each node in the

8.2 PROPOSED METHOD 67

subgraph into a latent embedding hi, then a decoder reconstructs the original subgraph with
the latent embeddings H = {h1, ...,hk} and the sensitive attribute values of the k nodes in
this subgraph. The reconstruction loss Lr is as follows (we leave out the superscript (·)(i) for
notation simplicity):

Lr = Eq(H|X,A)[� log(p(X,A|H,S))] + KL[q(H|X,A)kp(H)], (8.7)

where p(H) is a standard Normal prior distribution. We sample the embeddings H from
q(H|X,A).

As the sensitive attribute is assumed to be exogenous, we can mitigate the causal effect from
the sensitive attribute on the embeddings by removing the statistical dependency between
them. To achieve this target, we use an adversarial learning method to learn embeddings
which are invariant to different sensitive attribute values of each node and their neighbors.
Specifically, we use a discriminator here to predict the summary of neighboring sensitive
attribute values. Here we take the summary s̃i as the mean aggregation over all the nodes in the
subgraph G

(i), i.e., s̃i = 1
|V(i)|

P
j2V(i) sj . We divide the summary into B ranges to formulate

it as a multivariate classification task for the discriminator D(·). We use a fairness constraint
as follows: Ld =

P
b2[B] E[log(D(H, b))], where the discriminator D(H, b) predicts the

probability of whether the summary of sensitive attribute values is in range b. Based on
the theoretic analysis in [194, 72], Ld is a regularizer to minimize the mutual information
between the summary of sensitive attribute values and the embeddings. The final loss of the
counterfactual data augmentation is: La = Lr + �Ld, where � is a hyperparameter for the
weight of fairness constraint. We use alternating stochastic gradient descent for optimization:
1) we minimize La by fixing the discriminator and updating parameters in other parts; 2) we
minimize �La with respect to the discriminator while other parts fixed. To achieve graph
counterfactual fairness, we expect the embeddings H can capture the latent variables which
are informative of the input subgraph but not causally influenced by the sensitive attribute
of the nodes in the subgraph. We pretrain the counterfactual data augmentation module to
better disentangle different components of the framework. If more prior knowledge of the
causal model is provided, we can incorporate it in counterfactual data augmentation, e.g.,
directly generate counterfactuals with a given causal model, and do not need to change other
components in the framework.

Based on the above techniques, we conduct perturbations on the original subgraphs and obtain
different types of counterfactuals. For each context subgraph G

(i), we generate two kinds of
perturbations on it, including self-perturbation on the sensitive attribute of the central node,
and neighbor-perturbation on the sensitive attribute of other nodes in the subgraph.

68 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING

Self-perturbation. In the subgraph G
(i), we take its node embeddings, flip the sensitive

attribute value of the central node si, then feed the embeddings and the perturbed sensitive
attribute into the decoder of the pretrained counterfactual data augmentation module, and
take the reconstructed subgraph as the corresponding counterfactual. The set containing the
subgraphs after self-perturbation is denoted by Ḡ

(i) = {G
(i)
Si 1�si}.

Neighbor-perturbation. Similarly, in the subgraph G
(i), we randomly perturb the sensitive

attribute values of any nodes except the central node, i.e., the nodes in the set V (i)
¬i . After

such perturbation, we generate a set of counterfactuals G(i) = {G
(i)

S
(i)
¬i
 SMP(S

(i)
¬i

)
}, where SMP(·)

randomly samples specific values of the sensitive attribute out of the value space {0, 1}|V(i)|�1.
We use a parameter C to denote the number of SMP(·) operations in neighbor-perturbation.

8.2.3 Fair Representation Learning

Based on the above counterfactual data augmentation, we learn fair representations which
are expected to elicit the same predicted label across different counterfactuals w.r.t. the same
node. To achieve this goal, we leverage Siamese networks [189] to encode the three kinds of
subgraphs: original subgraphs G(i), counterfactual subgraphs Ḡ(i) and G

(i) for each central
node i. For graph counterfactual fairness, we expect to learn the same representations for
each central node from the three kinds of subgraphs. We train a subgraph encoder �(·) to
generate the representations zi, z̄i, zi for each central node i on these three kinds of subgraphs,
respectively. Then we minimize the distance between the central node representations learned
from the original subgraph and from the counterfactuals. We formulate the loss for graph
counterfactual fairness as:

Lf =
1

|V|

X
i2V

((1� �s)d(zi, z̄i) + �sd(zi, zi)), (8.8)

where d(·) is a distance metric such as cosine distance. �s 2 [0, 1] is a hyperparameter
which controls the weight of neighbor-perturbation. From the original subgraph and the
counterfactuals, we obtain the node representations in the following way:

zi = (�(X(i)
,A

(i)))i, (8.9)

z̄i = AGG({(�(X(i)
Si 1�si ,A

(i)
Si 1�si))i}), (8.10)

zi = AGG({(�(X(i)

S
(i)
¬i
 SMP(S

(i)
¬i

)
,A

(i)

S
(i)
¬i
 SMP(S

(i)
¬i

)
))i}), (8.11)

where �(·) : Rk⇥d
⇥ Rk⇥k

! Rk⇥d0 takes each subgraph as input, and embeds each node on
the input subgraph into a latent representation. We take the representations of each central
node i learned from the original data as zi, and we use Z = {zi}

n
i=1 for downstream tasks.

For the sampled counterfactual subgraphs in Ḡ
(i) and G

(i), we use an aggregator (e.g., mean

8.3 EXPERIMENTAL EVALUATION 69

TABLE 8.1. Detailed statistics of the datasets.

Dataset Synthetic Bail Credit

|V| 2, 000 18, 876 30, 000
|E| 4, 120 311, 870 137, 377
Feature dimension 26 18 13
Average degree 5.120 34.044 10.158
of intra-group edges 2, 379 162, 821 120, 750
of inter-group edges 1, 741 149, 049 16, 627

aggregator) AGG(·) to aggregate the representations of each central node i, and obtain the final
representations z̄i and zi.

To encode useful information of node features and graph structure into the representations,
we use labels as supervision. We use the task of node classification as an example, but
our framework can be naturally extended to other kinds of tasks on graph data such as link
prediction. We denote the class labels as Y = {y1, ..., yn} for the n nodes. The prediction
loss can be formulated as:

Lp =
1

n

X
i2[n]

l(f(zi), yi), (8.12)

where l(·) is the loss function (e.g., cross-entropy) which measures the prediction error, f(·)
makes predictions for downstream tasks with the representations, i.e., ŷi = f(zi). Finally, the
overall loss function for fair representation learning is:

L = Lp + �Lf + µk✓k
2
, (8.13)

where ✓ is the set of model parameters, � and µ are hyperparameters controlling the weight of
the graph counterfactual fairness constraint, and L2 norm regularization, respectively.

8.3 Experimental Evaluation

We evaluate the proposed method on both synthetic and real-world graphs. The detailed
statistics of these datasets are shown in Table 8.1, including the number of nodes, the number
of edges, the dimension of features, the average degree, and the number of intra-group and
inter-group edges with respect to the sensitive attribute.

70 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING

TABLE 8.2. Comparison of the performance of node representation learning
methods with respect to prediction and fairness.

Dataset Method
Prediction Performance Fairness

Accuracy (") F1-score (") 4EO (#) 4DP (#) �CF (#) R2 (#)
Synthetic GCN 0.686± 0.015 0.687± 0.020 0.050± 0.030 0.060± 0.033 0.101± 0.030 0.085± 0.050

GraphSAGE 0.712± 0.012 0.714± 0.021 0.049± 0.036 0.053± 0.042 0.172± 0.056 0.011± 0.011

GIN 0.682± 0.021 0.691± 0.022 0.077± 0.053 0.081± 0.055 0.301± 0.080 0.011± 0.009

C-ENC 0.665± 0.023 0.671± 0.031 0.030± 0.024 0.048± 0.026 0.633± 0.013 0.085± 0.016

FairGNN 0.668± 0.020 0.672± 0.026 0.025± 0.021 0.042± 0.033 0.678± 0.014 0.091± 0.021

NIFTY-GCN 0.618± 0.035 0.640± 0.037 0.172± 0.110 0.199± 0.106 0.208± 0.090 0.105± 0.081

NIFTY-SAGE 0.664± 0.041 0.682± 0.073 0.031± 0.027 0.048± 0.027 0.147± 0.071 0.008± 0.005

GEAR 0.718± 0.018 0.724± 0.022 0.052± 0.038 0.064± 0.038 0.002± 0.002 0.007± 0.006

Bail GCN 0.838± 0.017 0.782± 0.023 0.023± 0.019 0.075± 0.014 0.132± 0.059 0.075± 0.028

GraphSAGE 0.854± 0.026 0.804± 0.032 0.039± 0.022 0.086± 0.039 0.088± 0.047 0.069± 0.011

GIN 0.731± 0.058 0.656± 0.084 0.041± 0.023 0.065± 0.034 0.143± 0.069 0.047± 0.036

C-ENC 0.842± 0.047 0.792± 0.014 0.038± 0.022 0.069± 0.020 0.040± 0.025 0.078± 0.024

FairGNN 0.835± 0.024 0.784± 0.021 0.046± 0.013 0.074± 0.026 0.042± 0.032 0.086± 0.016

NIFTY-GCN 0.752± 0.065 0.669± 0.050 0.019± 0.015 0.036± 0.022 0.031± 0.017 0.025± 0.018

NIFTY-SAGE 0.823± 0.048 0.723± 0.103 0.014± 0.006 0.047± 0.015 0.013± 0.011 0.044± 0.020

GEAR 0.852± 0.026 0.800± 0.031 0.019± 0.023 0.058± 0.017 0.003± 0.002 0.038± 0.012

Credit GCN 0.698± 0.028 0.794± 0.027 0.087± 0.035 0.108± 0.031 0.042± 0.029 0.022± 0.014

GraphSAGE 0.739± 0.009 0.821± 0.008 0.094± 0.033 0.109± 0.030 0.062± 0.036 0.014± 0.004

GIN 0.713± 0.018 0.805± 0.016 0.121± 0.042 0.130± 0.037 0.123± 0.060 0.025± 0.012

C-ENC 0.695± 0.011 0.786± 0.012 0.098± 0.025 0.104± 0.042 0.100± 0.024 0.048± 0.012

FairGNN 0.683± 0.053 0.780± 0.042 0.175± 0.035 0.187± 0.036 0.105± 0.053 0.056± 0.018

NIFTY-GCN 0.697± 0.007 0.792± 0.007 0.097± 0.024 0.106± 0.021 0.004± 0.004 0.017± 0.003

NIFTY-SAGE 0.751± 0.023 0.833± 0.020 0.075± 0.021 0.094± 0.019 0.004± 0.003 0.011± 0.003

GEAR 0.755± 0.011 0.835± 0.008 0.086± 0.018 0.104± 0.013 0.001± 0.001 0.010± 0.003

8.3.1 Datasets

A synthetic dataset and two real-world datasets are used in the experiments. In the synthetic
dataset, we create a causal model with which we can fully manipulate the data generation pro-
cess. More specifically, in this synthetic dataset, we generate the features, latent embeddings,
graph structure, and labels as below:

Si ⇠ Bernoulli(p), Zi ⇠ N (0, I), Xi = S(Zi) + Siv, (8.14)

P (Ai,j = 1)=�(cos(Zi, Zj) + a1(Si = Sj)), Yi = B(wZi + ws

P
j2Ni

Sj

|Ni|
), (8.15)

where we sample the sensitive attribute with Bernoulli distribution, where p = 0.4 is the
probability of Si = 1. We sample latent embeddings Zi 2 Rdz from a Gaussian distribution,
where dz = 50. Zi influences the node features and the graph structure for each node i, and
S(·) denotes a sampling operation which randomly selects d = 25 dimensions out of the latent
embeddings to form the observed features Xi. v 2 Rd

,v ⇠ N (0, I) controls the influence of
the sensitive attribute on other features. We simulate the probability of each edge (i, j) based
on the cosine similarity between Zi and Zj , as well as whether their sensitive attribute values
are equal. Here 1(·) is an indicator function which outputs 1 when the input statement is true

8.3 EXPERIMENTAL EVALUATION 71

and 0 otherwise. We set parameter a = 0.01. Then we sum up the above similarity between
(Zi, Zj) and the indicator function’s output of (Si = Sj), and map it into a range of [0, 1] with
a Sigmoid function �(·) to compute the link probability between (i, j). w 2 Rdz contains
parameters sampled from Normal distribution. We average each node’s and their one-hop
neighbors’ sensitive attribute values and use it into label generation with weight ws = 0.5. In
B(·), we map Yi into a binary value. Specifically, we first compute the mean value of Yi over
all nodes, and set Yi = 1 if it is larger than the mean value, otherwise Yi = 0.

As for the real-world graphs, we use: 1) Bail [100]: This graph contains the data of defendants
who got released on bail at the U.S state courts. In this graph, each node represents a
defendant, each edge between a pair of nodes represents their similarity of criminal records
and demographics. We use the defendants’ race as the sensitive attribute. The task is to
classify defendants into bail (not tend to commit a violent crime if released) or no bail. 2)
Credit defaulter [100]: This graph contains people’s default payment information. In this
graph, each node represents an individual, each edge between a pair of nodes represents the
similarity of their spending and payment patterns. We use their age as the sensitive attribute,
and the task is to predict that their default ways of payment is credit card or not.

To evaluate the graph counterfactual fairness of the proposed method, we need to generate
the ground-truth counterfactuals with the perturbations on different nodes’ sensitive attribute.
On the synthetic dataset, the counterfactuals can be generated based on the predefined causal
model. On the real-world graphs, the ground-truth causal models are unknown, so we use a
simple causal model and fit the observed data, and use the learned parameters in the fitted
causal model to generate the counterfactuals for the whole graph. More specifically, we
first use a Naïve Bayes model to learn P (Xi|Si), and then update the counterfactual features
by (xi)Si 1�si = E[Xi|Si = 1 � si] � E[Xi|Si = si] + xi. We use (·)CF to denote any
counterfactuals. Then we generate the counterfactual graph edge for each (i, j) based on the
following rules:

P (ACF
i,j = 1) = �(cos(XCF

i \S
CF
i , X

CF
j \S

CF
j) + �1(SCF

i , S
CF
j)), (8.16)

where cos(·) is cosine similarity. We use �(·) to map its input into a range [0, 1] to compute
the link probability for any node pairs in the counterfactual graph. We fit the data with
this causal model and learn the parameter �. For evaluation, we use the counterfactual data
generated by the causal model and learned parameters.

As discussed in [195], there might be multiple possible causal models in the real-world data,
so we have tried different causal models to fit the real-world data. Due to the space limit, we
only show the results based on the causal model as described above, but the observations over
all the experiments are generally consistent.

72 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING

TABLE 8.3. Comparison of the performance of different variants of GEAR.

Dataset Method
Prediction Performance Fairness

Accuracy (") F1-score (") 4EO (#) 4DP (#) �CF (#) R2 (#)
Synthetic -NS 0.722± 0.023 0.726± 0.025 0.061± 0.044 0.071± 0.024 0.005± 0.002 0.011± 0.006

-NN 0.725± 0.026 0.727± 0.016 0.066± 0.048 0.086± 0.033 0.008± 0.004 0.016± 0.005

-NP 0.729± 0.022 0.727± 0.027 0.094± 0.051 0.116± 0.063 0.012± 0.005 0.023± 0.018

-NC 0.720± 0.019 0.725± 0.018 0.058± 0.042 0.069± 0.028 0.006± 0.003 0.012± 0.004

GEAR 0.718± 0.018 0.724± 0.022 0.052± 0.038 0.064± 0.038 0.002± 0.002 0.007± 0.006

Bail -NS 0.854± 0.020 0.802± 0.014 0.027± 0.024 0.066± 0.020 0.014± 0.007 0.056± 0.018

-NN 0.855± 0.024 0.804± 0.024 0.032± 0.027 0.068± 0.023 0.022± 0.009 0.058± 0.016

-NP 0.860± 0.022 0.804± 0.031 0.041± 0.028 0.073± 0.028 0.027± 0.010 0.064± 0.019

-NC 0.853± 0.024 0.801± 0.019 0.025± 0.027 0.064± 0.014 0.007± 0.004 0.053± 0.014

GEAR 0.852± 0.026 0.800± 0.031 0.019± 0.023 0.058± 0.017 0.003± 0.002 0.049± 0.012

Credit -NS 0.749± 0.014 0.831± 0.024 0.089± 0.018 0.109± 0.038 0.016± 0.027 0.012± 0.005

-NN 0.751± 0.012 0.832± 0.018 0.092± 0.034 0.114± 0.043 0.020± 0.047 0.013± 0.004

-NP 0.753± 0.018 0.836± 0.017 0.099± 0.043 0.122± 0.049 0.028± 0.054 0.016± 0.007

-NC 0.749± 0.015 0.830± 0.011 0.088± 0.012 0.106± 0.011 0.004± 0.002 0.013± 0.004

GEAR 0.755± 0.011 0.835± 0.008 0.086± 0.018 0.104± 0.013 0.001± 0.001 0.010± 0.003

8.3.2 Experiment Settings

Metrics. We evaluate the proposed framework with respect to two aspects: prediction
performance and fairness. To evaluate the prediction performance, we use the widely-
used node classification metrics: accuracy and F1-score. To measure the fairness of the
representations, we first use two metrics which are commonly used in statistical fairness:
4SP = |P (Ŷi|Si = 0) � P (Ŷi|Si = 1)|, and 4EO = |P (Ŷi|Yi = 1, Si = 0) � P (Ŷi|Yi =

1, Si = 1)|.

To evaluate graph counterfactual fairness, we design a metric �CF :

�CF = |P ((Ŷi)S s0 |X = X, A = A)� P ((Ŷi)S s00 |X = X, A = A)|, (8.17)

where s
0
, s
00
2 {0, 1}n are arbitrary values of sensitive attribute of all nodes. As there are

too many different counterfactuals (e.g., there are 2n cases for a graph with n nodes), it is
difficult to evaluate the difference of predictions under all these counterfactuals. Therefore,
we evaluate the graph counterfactual fairness of the proposed model in the following way:
on each dataset, we control the rate of sensitive subgroup population and randomly perturb
the sensitive attribute of all nodes. More specifically, we randomly select 0%, 50%, 100%

nodes, and set their sensitive attribute values to be 1, while set the sensitive attribute of
other nodes to be 0. With such perturbations, we generate counterfactual data for the whole
graph with different ratios of sensitive subgroup, based on the causal model described in
Section 8.3.1. Intuitively, these perturbations implicitly control the distribution of the sensitive
attribute in each node’s neighborhood, and we take the averaged ratio of nodes which flip their
predicted labels as an estimation for �CF . Besides, we also compute the R-square R

2(Ŷi, S̃i)

to measure how well a linear regression predictor for Ŷi can be explained by the summary of

8.3 EXPERIMENTAL EVALUATION 73

the neighboring sensitive attribute values for any node i. Here we use the mean aggregator
over the sensitive attribute values of all one-hop neighbors and each node i itself to compute
the sensitive attribute summary S̃i. This R-square metric can reflect the statistical dependency
between Ŷi and S̃i.

Baselines. We compare the proposed framework with several state-of-the-art node representa-
tion learning methods. We divide them into two categories: 1) node representation learning
methods without fairness constraints: these methods only aim to encode useful information
from the input graph and improve the prediction performance in downstream tasks. We use
graph convoluntional network (GCN) [162], GraphSAGE [190], and Graph Isomorphism
Network (GIN) [176] as baselines; 2) fair representation learning methods on graphs: these
methods target on learning fair node representation on graphs. Among them, C-ENC [72] and
FairGNN [179] enforces fairness with an adversarial discriminator to predict the sensitive
attribute; NIFTY [100] enforces fairness by maximizing the similarity of representations
learned from the original graph and their augmented counterfactual graphs, where the sensitive
attribute values of all nodes are flipped, while other parts remain unchanged. We use two vari-
ants of it with GCN or GraphSAGE encoders, denoted by NIFTY-GCN and NIFTY-SAGE,
respectively.

8.3.3 Prediction Performance and Fairness

The performance of prediction and fairness is shown in Table 8.2. The best results are shown
in bold, and the runner-up results are underlined. Generally speaking, we have the following
observations: 1) The proposed model GEAR shows comparable prediction performance
with the state-of-the-art node representation learning methods, and it outperforms all the
fair node representation learning methods in prediction; 2) The proposed model outperforms
all the other fair node representation learning methods in �CF and R

2. These two fairness
metrics explicitly consider the causal/statistical relation between the neighboring sensitive
attribute and the model prediction, thus this observation validates the effectiveness of our
framework in mitigating the biases from neighbors. Besides, GEAR also performs well in
other fairness metrics 4EO and 4DP . The baseline NIFTY also has good performance in
graph counterfactual fairness, because NIFTY also generates counterfactuals during training.
Although NIFTY does not explicitly consider the causal effect from neighbors’ sensitive
attributes on each node, its counterfactuals still implicitly promote graph counterfactual
fairness. However, our method still outperforms all these fairness methods mainly for two
reasons: a) GEAR generates multiple versions of counterfactuals with self-perturbation and
neighbor-perturbation. It has better coverage of the space of possible counterfactuals, while
NIFTY only generates one counterfactual by flipping all nodes’ sensitive attribute values, here

74 8 COUNTERFACTUAL FAIRNESS IN NODE REPRESENTATION LEARNING

the influence from the neighbors’ sensitive attribute may counteract with each other; b) GEAR
generates counterfactuals which include changes in both features and graph structure after
modifying the sensitive attribute, rather than simply changing the sensitive attribute. More
specifically, the counterfactual augmentation component in GEAR removes biases caused by
misusing the descendants of the sensitive attribute in node representation learning.

8.3.4 Ablation Study

In the ablation study, we compare different variants of GEAR to verify the effectiveness of
different components. We first remove self-perturbations, and denote this variant as GEAR-
NS. Next, we remove neighbor-perturbations, denoted by GEAR-NN. We then remove all
the perturbations, and denote this variant as GEAR-NP. We remove the counterfactual data
augmentation module, just flip the sensitive attribute values, and denote this variant as GEAR-
NC. The model performance of these variants is shown in Table 8.3. We observe that all
the variants perform worse than GEAR with respect to fairness. These results validate the
effectiveness of different components in GEAR for learning fair node representations.

CHAPTER 9

Counterfactual Explanation for Graph Machine Learning Models

Motivation. To facilitate explainability in opaque ML models, explainable artificial intelli-
gence (XAI) has recently attracted significant attention. A special class of XAI – counter-
factual explanation (CFE) [196] promotes model explainability by answering the question:
“how should the input features X be slightly perturbed to new features X 0 to obtain a desired
label for a specific instance?". The original instance whose prediction needs to be explained
is called an explainee instance, and the generated instances after perturbation are referred to
as “counterfactual explanations". Different from traditional CFE studies [196, 197, 198, 199]
on tabular or image data, recently, CFE on graphs is also an emerging field in many domains
with graph structure data such as molecular analysis [200] and professional networking [201].

Graph ML
model !

(#)
!(#) = 0

(#'()
!(#'() = 1

Different
predicted labels

Original

Counterfactual
explanation

×

√Graph ML
model !

Counterfactual
explanation generator *

Same prediction
model

Team
culture

Grant
application

of
collaborations

(#)Original

Counterfactual#+'(

Counterfactual#,'(
Causality

CausalityGraph ML
model !

(#)
!(#) = 0

(#'()

!(#'() = 1

Different
predicted labels

Original

Counterfactual

×

√Graph ML
model !

Counterfactual
explanation generator *

Same prediction
model

Graph ML
model !

(#)
!(#) = 0

(#'()

!(#'() = 1

Different
predicted labels

Original

Counterfactual

×

√Graph ML
model !

Counterfactual
explanation generator *

Same prediction
model

FIGURE 9.1. An example of CFE on graphs.

For example, consider a grant application
prediction [202] model with each input in-
stance as a graph representing a research
team’s collaboration network, where each
node represents a team member, and each
edge signifies a collaboration relationship
between them. Team leaders can improve
their teams for next application by changing
the original graph according to the counter-
factual with a desired predicted label (applic-
ation being granted). If the counterfactual is

more dense than the original, the team leader may then encourage more team collaborations.
Generally, CFE promotes human interpretation through the comparison between X and X

0.
To this end, we investigate the problem of generating counterfactual explanations on graphs.
As shown in Fig. 9.1, given a prediction model f on graphs, for a graph instance G, we aim
to generate counterfactuals (e.g., GCF) which are slightly different from G w.r.t. their node
features or graph structures to elicit a desired model prediction. Specifically, we focus on
graph-level prediction without any assumptions of the prediction model type and its model
access, i.e., f can be a black box with unknown structure.

75

76 9 COUNTERFACTUAL EXPLANATION FOR GRAPH MACHINE LEARNING MODELS

Recently, a few studies [25, 200, 203, 204, 24, 205] explore to extend CFEs into graphs.
However, this problem still remains a daunting task due to the following key challenges:
1) Optimization: Different from traditional data, the space of perturbation operations on
graphs (e.g., add/remove nodes/edges) is discrete, disorganized, and vast, which brings
difficulties for optimization in CFE generation. Most existing methods [200, 204] search
for graph counterfactuals by enumerating all the possible perturbation operations on the
current graph. However, such enumeration on graphs is of high complexity, and it is also
challenging to solve an optimization problem in such a complex search space. Few graph CFE
methods which enable gradient-based optimization either rely on domain knowledge [200]
or assumptions [203] about the prediction model to facilitate optimization. However, these
knowledge and assumptions limit their applications in different scenarios. 2) Generalization:
The discrete and disorganized nature of graphs also brings challenges for the generalization
of CFE methods on unseen graphs, as it is hard to sequentialize the process of graph CFE
generation and then generalize it. Most existing CFE methods on graphs [25, 24] solve an
optimization problem for each explainee graph separately. These methods, however, cannot
be generalized to new graphs. 3) Causality: It is challenging to generate counterfactuals that
are consistent with the underlying causality. Specifically, causal relations may exist among
different node features and the graph structure. In the aforementioned example, for each
team, after establishing more collaborations, the team culture may be causally influenced.
Incorporating causality can generate more realistic and feasible counterfactuals [198], but most
existing CFE methods either cannot handle causality, or require too much prior knowledge
about the causal relations in data.

To address the aforementioned challenges, in this work, we propose a novel framework —
generative CounterfactuaL ExplAnation geneRator for graphs (CLEAR). At a high level,
CLEAR is a generative, model-agnostic CFE generation framework for graph prediction
models. For any explainee graph instance, CLEAR aims to generate counterfactuals with slight
perturbations on the explainee graph to elicit a desired predicted label, and the counterfactuals
are encouraged to be in line with the underlying causality. More specifically, to facilitate the
optimization of the CFE generator, we map each graph into a latent representation space, and
output the counterfactuals as a probabilistic fully-connected graph with node features and
graph structure similar as the explainee graph. In this way, the framework is differentiable and
enables gradient-based optimization. To promote the generalization of the CFE generator on
unseen graphs, we propose a generative way to construct the counterfactuals. After training
the CFE generator, it can be efficiently deployed to generate (multiple) counterfactuals on
unseen graphs, rather than retraining from scratch. To generate more realistic counterfactuals
without explicit prior knowledge of the causal relations, inspired by the recent progress in
nonlinear independent component analysis (ICA) [206] and its connection with causality [15],

9.1 PROBLEM DEFINITION 77

we make an exploration to promote causality in counterfactuals by leveraging an auxiliary
variable to better identify the latent causal relations.

9.1 Problem Definition

Preliminaries. A graph G = (X,A) is specified with its node feature X and adjacency
matrix A. We have a graph prediction model f : G ! Y , where G and Y represent the
space of graphs and labels, respectively. In this work, we assume that we can access the
prediction of f for any input graph, but we do not assume the access to any knowledge of the
prediction model itself. For a graph G 2 G, we denote the output of the prediction model as
Y = f(G). A counterfactual GCF = (XCF

, A
CF) is expected to be similar as the original

explainee graph G, but the predicted label for GCF made by f (i.e., Y CF = f(GCF)) should
be different from f(G). With a desired label Y ⇤ (here Y

⇤
6= Y), the counterfactual GCF is

considered to be valid if and only if Y ⇤ = Y
CF .

Suppose we have a set of graphs sampled from the space G, and different graphs may
have different numbers of nodes and edges. A counterfactual explanation generator can
generate counterfactuals for any input graph G w.r.t. its desired predicted label Y ⇤. As
aforementioned, most existing CFE methods on graphs have limitations in three aspects:
optimization, generalization, and causality. Next, we provide more background on causality.
The causal relations between different variables (e.g., node features, degree, etc.) in the data
can be described with a structural causal model (SCM):

DEFINITION 14. (Causality in CFE) For an explainee graph G, a counterfactual GCF satisfies
causality if the change from G to G

CF is consistent with the underlying structural causal
model.

Graph ML
model !

(#)
!(#) = 0

(#'()
!(#'() = 1

Different
predicted labels

Original

Counterfactual
explanation

×

√Graph ML
model !

Counterfactual
explanation generator *

Same prediction
model

Team
culture

Grant
application

of
collaborations

(#)Original

Counterfactual#+'(

Counterfactual#,'(
Causality

CausalityGraph ML
model !

(#)
!(#) = 0

(#'()

!(#'() = 1

Different
predicted labels

Original

Counterfactual

×

√Graph ML
model !

Counterfactual
explanation generator *

Same prediction
model

Graph ML
model !

(#)
!(#) = 0

(#'()

!(#'() = 1

Different
predicted labels

Original

Counterfactual

×

√Graph ML
model !

Counterfactual
explanation generator *

Same prediction
model

FIGURE 9.2. An example of causality in CFE.

Example: In the aforementioned grant ap-
plication example, for a research team that
has been rejected for an application before
(as the graph G in Fig. 9.2), to get the next
application approved, a valid counterfactual
may suggest this team to improve the num-
ber of collaborations between team members.
Based on real-world observations, we as-
sume that an additional causal relation exists:
the number of team collaborations causally

affects the team culture. For example, for the same team, if more collaborations had been

78 9 COUNTERFACTUAL EXPLANATION FOR GRAPH MACHINE LEARNING MODELS

!

Original graph (#)

%∗

Auxiliary
variable S

(
%∗

Counterfactual (#34)

Node features

5
5(#)= %

5
%34 = 5(#34)Counterfactual prediction loss (%∗, %34)

Similarity loss (#, #34)

Graph representations

Nodes
Inserted nodes
Deleted nodes

Perturbed node features

KL(8 ∥ :)

%∗

Encoder Decoder

Black box

Sampling

Black box

8 :

Inserted edges
Edges

Deleted edges

FIGURE 9.3. An illustration of the proposed framework CLEAR.

established, then the team culture should have been improved in terms of better member
engagement and respect for diversity. The SCM is illustrated in Fig. 9.2, where we leave out
the exogenous variables for simplicity. Although the team culture usually does not affect the
result of the grant application, the counterfactuals with team culture changed correspondingly
when the number of collaborations changes are more consistent with the ground-truth SCM.
G

CF
2 in Fig. 9.2 shows an example of such counterfactuals. In contrast, if a counterfactual

improves a team’s number of collaborations alone without improving the team culture (see
G

CF
1 in Fig. 9.2), then it violates the causality. As discussed in [198], traditional CFE methods

often optimize on a single instance, and are prone to perturb different features independently,
thus they often fail to satisfy the causality.

9.2 Proposed Method

In this section, we describe a novel generative framework — CLEAR, which addresses the
problem of counterfactual explanation generation for graphs. First, we introduce its backbone
CLEAR-VAE to enable optimization on graphs and generalization on unseen graph instances.
This backbone is based on a graph variational auto-encoder (VAE) [207] mechanism. On top
of CLEAR-VAE, we then promote the causality of CFEs with an auxiliary variable.

9.2.1 CLEAR-VAE: Backbone of Graph Generative Counterfactual
Explanations

Different from most existing methods [25, 24] for CFE generation on graphs which focus
on a single graph instance, CLEAR is based on a generative backbone CLEAR-VAE which
can efficiently generate CFEs for different graphs after training, even for the graphs that do

9.2 PROPOSED METHOD 79

not appear in the training data. As shown in Fig. 9.3, CLEAR-VAE follows a traditional
graph VAE [207] architecture with an encoder and a decoder. The encoder maps each original
graph G = (X,A) into a latent space as a representation Z, then the decoder generates a
counterfactual GCF based on the latent representation Z. Following the VAE mechanism
as in [207, 208] and its recent application in CFE generation for tabular data [198, 209],
the optimization objective is based on the evidence lower bound (ELBO), which is a lower
bound for the log likelihood lnP (GCF

|Y
⇤
, G). Here, P (GCF

|Y
⇤
, G) is the probability of the

generated counterfactual GCF conditioned on an input explainee graph G and a desired label
Y
⇤. The ELBO for CLEAR-VAE can be derived as follows:

lnP (GCF
|Y
⇤
, G) � EQ[lnP (GCF

|Z, Y
⇤
, G)]� KL(Q(Z|G, Y

⇤)kP (Z|G, Y
⇤)), (9.1)

where Q refers to the approximate posterior distribution Q(Z|G, Y
⇤), and KL(·||·) means the

Kullback-Leibler (KL) divergence. The first term P (GCF
|Z, Y

⇤
, G) denotes the probability

of the generated counterfactual conditioned on the representation Z and the desired label
Y
⇤. Due to the lack of ground-truth counterfactuals, it is hard to directly optimize this term.

But inspired by [198], maximizing this term can be considered as generating valid graph
counterfactuals w.r.t. the desired label Y ⇤, thus we replace this term with �EQ[d(G,G

CF) +

↵ · l(f(GCF), Y ⇤)], where d(·, ·) is a similarity loss, which is a distance metric to measure
the difference between G and G

CF , l(·) is the counterfactual prediction loss to measure the
difference between the predicted label f(GCF) and the desired label Y ⇤. In summary, these
two terms encourage the model to output counterfactuals that are similar to the input graph
but elicit the desired predicted label. ↵ is a hyperparameter to control the weight of the
counterfactual prediction loss. Overall, the loss function of CLEAR-VAE is:

L = EQ[d(G,G
CF) + ↵ · l(f(GCF), Y ⇤)] + KL(Q(Z|G, Y

⇤)kP (Z|G, Y
⇤)). (9.2)

Encoder. In the encoder, the input includes node features X and graph structure A of the
explainee graph G, as well as the desired label Y ⇤, the output is latent representation Z. The
encoder learns the distribution Q(Z|G, Y

⇤). We use a Gaussian distribution P (Z|G, Y
⇤) =

N (µz(Y ⇤), diag(�2
z(Y

⇤))) as prior, and enforce the learned distribution Q(Z|G, Y
⇤) to be

close to the prior by minimizing their KL divergence. Here, µz(Y ⇤) and diag(�2
z(Y

⇤)) are
mean and diagonal covariance of the prior distribution learned by a neural network module. Z
is sampled from the learned distribution Q(Z|G, Y

⇤) with the widely-used reparameterization
trick [208].

Decoder. In the decoder, the input includes Z and Y
⇤, while the output is the counterfactual

G
CF = (XCF

, A
CF). Different counterfactuals can be generated for one explainee graph by

sampling Z from Q(Z|G, Y
⇤) for multiple times. The adjacency matrix is often discrete, and

80 9 COUNTERFACTUAL EXPLANATION FOR GRAPH MACHINE LEARNING MODELS

typically assumed to include only binary values (A(i,j) = 1 if edge from node i to node j

exists, otherwise A(i,j) = 0). To facilitate optimization, inspired by recent graph generative
models [25, 207], our decoder outputs a probabilistic adjacency matrix Â

CF with elements in
range [0, 1], and then generates a binary adjacency matrix A

CF by sampling from Bernoulli
distribution with probabilities in Â

CF . We calculate the similarity loss in Eq. (9.2) as:

d(G,G
CF) = dA(A, Â

CF) + � · dX(X,X
CF), (9.3)

where dA and dX are metrics to measure the distance between two graphs w.r.t. their graph
structures and node features, respectively. � controls the weight for the similarity loss w.r.t.
node features. More details of model implementation are in Appendix D.

9.2.2 CLEAR: Improving the Causality in Counterfactual Explanations

To further incorporate the causality in the generated CFEs, most existing studies [198, 210,
211] leverage certain prior knowledge (e.g., a given path diagram which depicts the causal
relations among variables) of the SCM. However, it is often difficult to obtain sufficient prior
knowledge of the SCM in real-world data, especially for graph data. In this work, we do not
assume the access to the prior knowledge of SCM, and only assume that the observational
data is available. However, the key challenge, as shown in [210], is that it is impossible to
identify the ground-truth SCM from observational data without additional assumptions w.r.t.
the structural equations and the exogenous variables, because different SCMs may result in
the same observed data distribution. Considering that different SCMs can generate different
counterfactuals, the identifiability of SCM is an obstacle of promoting causality in CFE.
Fortunately, enlightened by recent progress in nonlinear independent component analysis
(ICA) [206, 212], we make an initial exploration to promote causality in CFE by improving
the identifiability of the latent variables in our CFE generator with the help of an auxiliary
observed variable. This CFE generator is denoted by CLEAR.

In nonlinear independent component analysis (ICA) [206, 212, 213, 214], it is assumed that
the observed data, e.g., X , is generated from a smooth and invertible nonlinear transformation
of independent latent variables (referred to as sources) Z. Identifying the sources and the
transformation are the key goals in nonlinear ICA. Similarly, traditional VAE models also
assume that the observed features X are generated by a set of latent variables Z. However,
traditional VAEs cannot be directly used for nonlinear ICA as they lack identifiability, i.e.,
we can find different Z that lead to the same observed data distribution p(X). Recent studies
[206] have shown that the identifiability of VAE models can be improved with an auxiliary
observed variable S (e.g., a time index or class label), which enables us to use VAE for
nonlinear ICA problem. As discussed in [213, 214], a SCM can be considered as a nonlinear

9.2 PROPOSED METHOD 81

ICA model if the exogenous variables in the SCM are considered as the sources in nonlinear
ICA. Similar connections can be built between the structural equations in SCM and the
transformations in ICA. Such connections shed light on improving the identifiability of the
underlying SCM without much explicit prior knowledge of the SCM.

With this idea, based on the backbone CLEAR-VAE, improves the causality in counterfactuals
by promoting identifiability with an observed auxiliary variable S. Intuitively, we expect the
graph VAE can capture the exogenous variables of the SCM in its representations Z, and
approximate the data generation process from the exogenous variables to the observed data,
which is consistent with the SCM. Here, for each graph, the auxiliary variable S can provide
additional information for CLEAR to better identify the exogenous variables in the SCM,
and thus can elicit counterfactuals with better causality. To achieve this goal, following the
previous work of nonlinear ICA [206, 212], we make the following assumption:

ASSUMPTION 5. We assume that the prior on the latent variables P (Z|S) is conditionally
factorial.

With this assumption, the original data can be stratified by different values of S, and each
separated data stratum can be considered to be generated by the ground-truth SCM under
certain constraints (e.g., the range of values that the exogenous variables can take). When
the constraints become more restricted, the space of possible SCMs that can generate the
same data distribution in each data stratum shrinks. In this way, the identification of the
ground-truth SCM can be easier if we leverage the auxiliary variable S. Here, with the
auxiliary variable S, we infer the ELBO of CLEAR:

THEOREM 2. The evidence lower bound (ELBO) to optimize the framework CLEAR is:

lnP (GCF
|S, Y

⇤
, G) � EQ[lnP (GCF

|Z, S, Y
⇤
, G)]�KL(Q(Z|G,S, Y

⇤)kP (Z|G,S, Y
⇤)).

(9.4)

The detailed proof is shown in Appendix D.

Loss function of CLEAR. Based on the above ELBO, the final loss function of CLEAR is:

L = EQ[d(G,G
CF) + ↵ · l(f(GCF), Y ⇤)] + KL(Q(Z|G,S, Y

⇤)kP (Z|G,S, Y
⇤)). (9.5)

Encoder and Decoder. The encoder takes the input G, S, and Y
⇤, and outputs Z as the latent

representation. We use a Gaussian prior P (Z|G,S, Y
⇤) = N (µz(S, Y ⇤), diag(�2

Z(S, Y
⇤))

with its mean and diagonal covariance learned by neural network, and we encourage the
learned approximate posterior Q(Z|G,S, Y

⇤) to approach the prior by minimizing their KL
divergence. Similar to the backbone CLEAR-VAE, the decoder takes the inputs Z and Y

⇤ to

82 9 COUNTERFACTUAL EXPLANATION FOR GRAPH MACHINE LEARNING MODELS

generate one or multiple counterfactuals GCF for each explainee graph. More implementation
details are in Appendix D.

9.3 Experimental Evaluation

In our experiments, we will answer the following research questions: RQ1: How does
CLEAR perform compared to state-of-the-art baselines? RQ2: How do different components
in CLEAR contribute to the performance? RQ3: How can the generated CFEs promote model
explainability? RQ4: How does CLEAR perform under different settings of hyperparameters?

Baselines. We use the following baselines for comparison: 1) Random: For each explainee
graph, it randomly perturbs the graph structure for at most T steps.2) EG-IST: For each
explainee graph, it randomly inserts edges into it for at most T steps. 3) EG-RM: For
each explainee graph, it randomly removes edges for at most T steps. 4) GNNExplainer:
GNNExplainer [24] is proposed to identify the most important subgraphs for prediction. We
apply it for CFE generation by removing the important subgraphs identified by GNNExplainer.
5) CF-GNNExplainer: CF-GNNExplainer [25] is proposed for generating counterfactual ego
networks in node classification tasks. We adapt CF-GNNExplainer for graph classification. 6)
MEG: MEG [200] is a reinforcement learning based CFE generation method.

Evaluation Metrics. We use the following metrics in evaluation:

1) Validity: the proportion of counterfactuals which obtain the desired labels.

Validity =
1

N

X
i2[N]

1

NCF

X
j2[NCF]

|1(f(GCF
(i,j)) = y⇤i)|, (9.6)

where N is the number of graph instances, NCF is the number of counterfactuals generated
for each graph. G

CF
(i,j) = (XCF

(i,j),A
CF
(i,j)) denotes the j-th counterfactual generated for the

i-th graph instance. Here, y⇤i is the realization of Y ⇤ for the i-th graph. 1(·) is an indicator
function which outputs 1 when the input condition is true, otherwise it outputs 0.

2) Proximity: the similarity between the generated counterfactuals and the input graph.

ProximityX=
1

N

X

i2[N]

1

NCF

X

j2[NCF]

simX(X(i),X
CF
(i,j)), ProximityA=

1

N

X

i2[N]

1

NCF

X

j2[NCF]

simA(A(i),A
CF
(i,j)),

(9.7)
where we use cosine similarity for simX(·), and accuracy for simA(·).

3) Causality: Similarly as [198], we measure the causality by reporting the ratio of counter-
factuals which satisfy the causal constraints corresponding to R.

4) Time: the average time cost (seconds) of generating a counterfactual for a single graph.

9.3 EXPERIMENTAL EVALUATION 83

9.3.1 Datasets and Simulation

We evaluate our method on three datasets, including a synthetic dataset and two datasets
with real-world graphs. (1) Community. This dataset contains synthetic graphs generated
by the Erdös-Rényi (E-R) model [215]. In this dataset, each graph consists of two 10-node
communities. The label Y is determined by the average node degree in the first community
(denoted by deg1(A)). According to the causal model (in Appendix D), when deg1(A)

increases (decreases), the average node degree in the second community deg2(A) should
decrease (increase) correspondingly. We take this causal relation deg1(A)! deg2(A) as our
causal relation of interest, and denote it as R. Correspondingly, we define a causal constraint
for later evaluation of causality: “(deg1(A

CF) > deg1(A))) (deg2(A
CF) < deg2(A))” OR

“(deg1(A
CF) < deg1(A))) (deg2(A

CF) > deg2(A))”. (2) Ogbg-molhiv. In this dataset,
each graph stands for a molecule, where each node represents an atom, and each edge is a
chemical bond. As the ground-truth causal model is unavailable, we simulate the label Y
and causal relation of interest R. (3) IMDB-M. This dataset contains movie collaboration
networks from IMDB. In each graph, each node represents an actor or an actress, and each
edge represents the collaboration between two actors or actresses in the same movie. Similarly
as the above datasets, we simulate the label Y and causal relation of interest R, and define
causal constraints corresponding to R. It is worth mentioning that the causal relation of
interest R in the three datasets covers different types of causal relations respectively: i) causal
relations between variables in graph structure A; ii) between variables in node features X; iii)
between variables in A and in X . Thereby we comprehensively evaluate the performance of
CLEAR in leveraging different modalities (node features and graph structure) of graphs to fit
in different types of causal relations. More details about datasets are in Appendix D.

9.3.2 Performance of Different Methods

To evaluate our framework CLEAR, we compare its CFE generation performance against the
state-of-the-art baselines. From the results in Table 9.1, we summarize the main observations
as follows:

• Validity and proximity. Our framework CLEAR achieves good performance in
validity and proximity. This observation validates the effectiveness of our method in
achieving the basic target of CFE generation. a) In validity, CLEAR obviously out-
performs all baselines on most datasets. Random, EG-IST, and EG-RM perform the
worst due to their random nature; GNNExplainer can only remove edges and nodes,
which also limits its validity; CF-GNNExplainer and MEG perform well as their
optimization is designed for CFE generation; b) In ProximityA, CLEAR outperforms

84 9 COUNTERFACTUAL EXPLANATION FOR GRAPH MACHINE LEARNING MODELS

TABLE 9.1. The performance (mean ± standard deviation over ten repeated
executions) of different methods of CFEs on graphs. The best results are in
bold, and the runner-up results are underlined.

Datasets Methods Validity (") ProximityX (") ProximityA (") Causality (") Time (#)

Community

Random 0.53± 0.05 N/A 0.77± 0.02 0.52± 0.06 0.20± 0.01

EG-IST 0.53± 0.05 N/A 0.66± 0.03 0.13± 0.06 0.27± 0.03

EG-RMV 0.55± 0.04 N/A 0.85± 0.01 0.03± 0.02 0.15± 0.01

GNNExplainer 0.52± 0.06 N/A 0.71± 0.01 0.05± 0.00 2.87± 0.08

CF-GNNExplainer 0.90± 0.04 N/A 0.72± 0.00 0.14± 0.02 25.14± 1.22

MEG 0.88± 0.04 N/A 0.71± 0.01 0.10± 0.03 27.29± 1.32

CLEAR(ours) 0.94± 0.02 0.91± 0.01 0.77± 0.00 0.65± 0.03 0.01± 0.01

Ogbg-molhiv

Random 0.48± 0.09 N/A 0.87± 0.02 0.46± 0.1 0.17± 0.02

EG-IST 0.48± 0.09 N/A 0.83± 0.03 0.46± 0.09 0.19± 0.04

EG-RM 0.483± 0.09 N/A 0.96± 0.01 0.47± 0.09 0.17± 0.04

GNNExplainer 0.50± 0.01 N/A 0.92± 0.00 0.48± 0.10 2.78± 0.10

CF-GNNExplainer 0.54± 0.02 N/A 0.92± 0.01 0.49± 0.02 27.93± 1.20

MEG 0.49± 0.03 N/A 0.93± 0.01 0.50± 0.10 22.39± 2.20

CLEAR(ours) 0.98± 0.01 0.92± 0.02 0.95± 0.01 0.64± 0.02 0.01± 0.00

IMDB-M

Random 0.50± 0.04 N/A 0.67± 0.01 0.43± 0.08 0.19± 0.01

EG-IST 0.56± 0.12 N/A 0.67± 0.06 0.45± 0.07 0.16± 0.03

EG-RM 0.45± 0.11 N/A 0.75± 0.03 0.53± 0.08 0.18± 0.02

GNNExplainer 0.43± 0.10 N/A 0.62± 0.02 0.50± 0.02 2.46± 0.50

CF-GNNExplainer 0.95± 0.02 N/A 0.74± 0.02 0.51± 0.02 22.21± 1.42

MEG 0.90± 0.02 N/A 0.72± 0.02 0.51± 0.02 24.12± 1.08

CLEAR(ours) 0.96± 0.01 0.99± 0.00 0.75± 0.01 0.73± 0.01 0.01± 0.00

all non-random baselines. EG-RM performs the best in ProximityA because most
graphs are very sparse, thus only removing edges can change the graph relatively
less than other methods. As the baselines either cannot perturb node features, or
their perturbation approach on node features cannot fit well in our setting, we do not
compare ProximityX with them.

• Time. CLEAR significantly outperforms all baselines in time efficiency. Most
of the baselines generate CFEs in an iterative way, and MEG needs to enumerate
all perturbations at each step. GNNExplainer and CF-GNNExplainer optimize on
every single instance, which limits their generalization. All the above reasons erode
their time efficiency. While in our framework, the generative mechanism enables
efficient CFE generation and generalization on unseen graphs, thus brings substantial
improvement in time efficiency.

• Causality. CLEAR dramatically outperforms all baselines in causality. We contrib-
ute the superiority of our framework w.r.t. causality in two key factors: a) different
from some baselines (e.g., GNNExplainer) optimized on each single graph, our
framework can better capture the causal relations among different variables in data
by leveraging the data distribution of the training set; b) our framework utilizes

9.3 EXPERIMENTAL EVALUATION 85

9DOLGL
W\
3UR[LP

LW\;
3UR[LP

LW\$&DXVD
OLW\

���
���
���
���
���
���
���
���

3H
UI
RU
P
DQ
FH

�1&
�13$

�13;
�13

�9$(
&/($5

(A) Community

9DOLGL
W\
3UR[LP

LW\;
3UR[LP

LW\$&DXVD
OLW\

���
���
���
���
���
���
���
���

3H
UI
RU
P
DQ
FH

�1&
�13$

�13;
�13

�9$(
&/($5

(B) Ogbg-molhiv

FIGURE 9.4. Ablation studies for CLEAR.

the auxiliary variable to better identify the underlying causal model and promote
causality.

9.3.3 Ablation Study

To evaluate the effectiveness of different components in CLEAR, we conduct an ablation study
with the following variants: 1) CLEAR-NC. In this variant, we remove the counterfactual
prediction loss; 2) CLEAR-NPA, we remove the similarity loss w.r.t. graph structure; 3)
CLEAR-NPX, we remove the similarity loss w.r.t. node features; 4) CLEAR-NP, we remove
all the similarity loss; 5) CLEAR-VAE, the backbone of our framework. As shown in Fig. 9.4,
we have the following observations: 1) The validity of CLEAR-NC degrades dramatically
due to the lack of counterfactual prediction loss; 2) The performance w.r.t. proximity is
worse in CLEAR-NPA, CLEAR-NPX, and CLEAR-NP as the similarity loss is removed.
Besides, removing the similarity loss can also hurt the performance of causality when the
variables in the causal relation of interest R are involved. For example, in Community,
CLEAR-NPA performs much worse in causality (as R in Community involves node degree
in graph structure), while in Ogbg-molhiv, the performance in causality of CLEAR-NPX is
eroded (as R on Ogbg-molhiv involves node features); 3) The performance w.r.t. causality
is impeded in CLEAR-VAE. This observation validates the effectiveness of the auxiliary
variable for promoting causality. Similar observations can also be found in the ablation study
on the IMDB-M dataset, which is shown in Appendix D.

9.3.4 Explainability through CFEs

To investigate how CFE on graphs promote model explainability, we take a closer look in
the generated counterfactuals. Due to the space limit, we only show our investigation on the
Community dataset. Fig. 9.5(a) shows the distribution of two variables: the average node
degree in the first community and in the second community in the original dataset, i.e., deg1(A)

86 9 COUNTERFACTUAL EXPLANATION FOR GRAPH MACHINE LEARNING MODELS

(A) Original data (B) CFEs from CLEAR-VAE (C) CFEs from CLEAR

FIGURE 9.5. Explainability through CFEs on Community dataset.

and deg2(A). Fig. 9.5(b) shows the distribution of these two variables in counterfactuals
generated by CLEAR-VAE. We observe that these counterfactuals are distributed close to
the decision boundary, i.e., deg1(A) = ADG1, where ADG1 is a constant around 2. This is
because the counterfactuals are enforced to change their predicted labels with perturbation
as slight as possible. Fig. 9.5(c) shows the distribution of these two variables deg1(A) and
deg2(A) in counterfactuals generated by CLEAR. Different colors denote different values
of the auxiliary variable S. Notice that based on the causal model (in Appendix D), the
exogenous variables are distributed in a narrow range when the value of S is fixed, thus the
same color also indicates similar values of exogenous variables. We observe that compared
with the color distribution in Fig. 9.5(b), the color distribution in Fig. 9.5(c) is more consistent
with Fig. 9.5(a). This indicates that compared with CLEAR-VAE, CLEAR can better capture
the values of exogenous variables, and thus the counterfactuals generated by CLEAR are more
consistent with the underlying causal model. To better illustrate the explainability provided by
CFE, we further conduct case studies to compare the original graphs and their counterfactuals
in Appendix D.

Part IV

Summary and Future Work

CHAPTER 10

Summary and Future Work

In this dissertation, we investigate the interplay between causal inference and graph machine
learning, mainly including two directions: leveraging graph ML to facilitate causal inference,
and leveraging causal inference for trustworthy graph ML. Based on the prior work in these
directions, we focus on different research topics: 1) causal inference on dynamic graphs with
hidden confounders; 2) causal inference on hypergraph with interference; 3) causal inference
under entangled treatments; 4) counterfactual fairness for node representation learning, and
5) counterfactual explanation for graph ML models. We introduce the motivation, problem
definition, proposed method, and evaluation results for each topic. These studies have made
contributions toward improving the fields of causal inference and graph learning, thereby
enhancing their potential for real-world applications.

In the future, we can further explore these areas and extend to a wider range of research.
Beyond my current study on graph ML and causal inference [21, 22, 216], a bigger picture
behind is causality-based graph mining, which aims to identify the underlying causal relations
buried in various types of graph data, and use them to facilitate future graph mining. Besides,
most of my studies focus on a subarea of graph ML and causal effect estimation [21, 22]. In
a higher level, there remain various interesting research topics in bridging the gap between
causal inference and machine learning, including multiple types of data (e.g., natural language,
video, and images) from different sources. The interdisciplinary study of causal inference
and machine learning has been widely considered as a major milestone in AI, as it allows AI
models to make accurate predictions based on causal relations rather than just correlations. In
general, the combination of causal inference and machine learning sheds light on capturing
the essential foundation of human cognition and artificial intelligence. I believe it would
continuously provide guidance to next-generation AI, covering various applications (e.g.,
bio-medicine, recommender system, epidemiological study, economic analysis, and human-
involved AI). Continuous progress in these areas can make a vital contribution to building
trustworthy machine learning algorithms. Applying them to different tasks can have a
significant positive impact on future human life in reality.

88

References

[1] Feng Xie and David Levinson. ‘Measuring the structure of road networks’. In: Geo-
graphical analysis 39.3 (2007), pp. 336–356.

[2] J Clyde Mitchell. ‘Social networks’. In: Annual review of anthropology 3.1 (1974),
pp. 279–299.

[3] Maurice A Hitchcock et al. ‘Professional networks: the influence of colleagues on the
academic success of faculty.’ In: Academic Medicine: Journal of the Association of
American Medical Colleges 70.12 (1995), pp. 1108–1116.

[4] Frank Schweitzer et al. ‘Economic networks: The new challenges’. In: science
325.5939 (2009), pp. 422–425.

[5] Wolfgang Huber et al. ‘Graphs in molecular biology’. In: BMC bioinformatics 8.6
(2007), pp. 1–14.

[6] Yu Rong et al. ‘Dropedge: Towards deep graph convolutional networks on node
classification’. In: arXiv preprint (2019).

[7] Linyuan Lü and Tao Zhou. ‘Link prediction in complex networks: A survey’. In:
Physica A: statistical mechanics and its applications 390.6 (2011), pp. 1150–1170.

[8] Muhan Zhang et al. ‘An end-to-end deep learning architecture for graph classification’.
In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[9] Santo Fortunato. ‘Community detection in graphs’. In: Physics reports 486.3-5 (2010),
pp. 75–174.

[10] Satu Elisa Schaeffer. ‘Graph clustering’. In: Computer science review 1.1 (2007),
pp. 27–64.

[11] Thomas N Kipf and Max Welling. ‘Semi-supervised classification with graph convo-
lutional networks’. In: International Conference on Learning Representations. 2017.

[12] Thomas N Kipf and Max Welling. ‘Variational graph auto-encoders’. In: arXiv preprint
(2016).

[13] Petar Veličković et al. ‘Graph attention networks’. In: ICLR (2018).
[14] Seongjun Yun et al. ‘Graph transformer networks’. In: Advances in neural information

processing systems 32 (2019).
[15] Judea Pearl. Causality. Cambridge university press, 2009.

89

90 REFERENCES

[16] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and
biomedical sciences. 2015.

[17] Harald O Stolberg, Geoffrey Norman and Isabelle Trop. ‘Randomized controlled
trials’. In: AJR Am J Roentgenol 183.6 (2004), pp. 1539–44.

[18] Cory E Goldstein et al. ‘Ethical issues in pragmatic randomized controlled trials:
a review of the recent literature identifies gaps in ethical argumentation’. In: BMC
Medical Ethics (2018).

[19] Donald B Rubin. ‘Causal inference using potential outcomes: Design, modeling, de-
cisions’. In: Journal of the American Statistical Association 100.469 (2005), pp. 322–
331.

[20] Donald B Rubin. ‘Bayesian inference for causal effects’. In: Handbook of Statistics
25 (2005).

[21] Jing Ma et al. ‘Deconfounding with Networked Observational Data in a Dynamic
Environment’. In: ACM International Conference on Web Search and Data Mining.
2021.

[22] Jing Ma et al. ‘Learning Causal Effects on Hypergraphs’. In: ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 2022.

[23] Yushun Dong et al. ‘Fairness in Graph Mining: A Survey’. In: arXiv preprint (2022).
[24] Rex Ying et al. ‘Gnnexplainer: Generating explanations for graph neural networks’.

In: NeurIPS (2019).
[25] Ana Lucic et al. ‘CF-GNNExplainer: Counterfactual Explanations for Graph Neural

Networks’. In: arXiv preprint (2021).
[26] Peter Spirtes et al. Causation, prediction, and search. MIT press, 2000.
[27] Pater Spirtes et al. ‘Constructing Bayesian network models of gene expression net-

works from microarray data’. In: (2000).
[28] David Maxwell Chickering. ‘Optimal structure identification with greedy search’. In:

Journal of machine learning research 3.Nov (2002), pp. 507–554.
[29] Xun Zheng et al. ‘Dags with no tears: Continuous optimization for structure learning’.

In: Advances in neural information processing systems 31 (2018).
[30] Peter C Austin. ‘An introduction to propensity score methods for reducing the effects

of confounding in observational studies’. In: Multivariate Behavioral Research (2011).
[31] Xing Sam Gu and Paul R Rosenbaum. ‘Comparison of multivariate matching methods:

Structures, distances, and algorithms’. In: Journal of Computational and Graphical
Statistics 2.4 (1993), pp. 405–420.

[32] Keisuke Hirano, Guido W Imbens and Geert Ridder. ‘Efficient estimation of average
treatment effects using the estimated propensity score’. In: Econometrica 71.4 (2003),
pp. 1161–1189.

REFERENCES 91

[33] Kosuke Imai and Marc Ratkovic. ‘Covariate balancing propensity score’. In: Journal
of the Royal Statistical Society: Series B: Statistical Methodology (2014), pp. 243–
263.

[34] Joshua D Angrist, Guido W Imbens and Donald B Rubin. ‘Identification of causal ef-
fects using instrumental variables’. In: Journal of the American statistical Association
(1996).

[35] Jason Hartford et al. ‘Deep IV: A flexible approach for counterfactual prediction’. In:
International Conference on Machine Learning. PMLR. 2017, pp. 1414–1423.

[36] Andrew Goodman-Bacon. ‘Difference-in-differences with variation in treatment tim-
ing’. In: Journal of Econometrics 225.2 (2021), pp. 254–277.

[37] Uri Shalit, Fredrik D Johansson and David Sontag. ‘Estimating individual treatment ef-
fect: generalization bounds and algorithms’. In: International Conference on Machine
Learning. 2017.

[38] Christos Louizos et al. ‘Causal effect inference with deep latent-variable models’. In:
Advances in Neural Information Processing Systems. 2017.

[39] Ishita Dasgupta et al. ‘Causal reasoning from meta-reinforcement learning’. In: arXiv
preprint (2019).

[40] Samuel J Gershman. ‘Reinforcement learning and causal models’. In: The Oxford
handbook of causal reasoning 1 (2017), p. 295.

[41] Ruocheng Guo, Jundong Li and Huan Liu. ‘Learning individual causal effects from
networked observational data’. In: International Conference on Web Search and Data
Mining. 2020.

[42] Ruocheng Guo et al. ‘IGNITE: A Minimax Game Toward Learning Individual Treat-
ment Effects from Networked Observational Data’. In: International Joint Conference
on Artificial Intelligence. 2020.

[43] Zhixuan Chu, Stephen L Rathbun and Sheng Li. ‘Graph Infomax Adversarial Learn-
ing for Treatment Effect Estimation with Networked Observational Data’. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 2021.

[44] Peter M Aronow and Cyrus Samii. ‘Estimating average causal effects under general
interference, with application to a social network experiment’. In: The Annals of
Applied Statistics (2017).

[45] Guillaume Basse and Avi Feller. ‘Analyzing two-stage experiments in the presence of
interference’. In: Journal of the American Statistical Association (2018).

[46] Kosuke Imai, Zhichao Jiang and Anup Malani. ‘Causal inference with interference and
noncompliance in two-stage randomized experiments’. In: Journal of the American
Statistical Association (2020).

92 REFERENCES

[47] Yunpu Ma and Volker Tresp. ‘Causal Inference under Networked Interference and
Intervention Policy Enhancement’. In: International Conference on Artificial Intelli-
gence and Statistics. 2021.

[48] Vineeth Rakesh et al. ‘Linked causal variational autoencoder for inferring paired
spillover effects’. In: International Conference on Information and Knowledge Man-
agement. 2018.

[49] Shonosuke Harada and Hisashi Kashima. ‘Graphite: Estimating individual effects of
graph-structured treatments’. In: Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management. 2021, pp. 659–668.

[50] Jean Kaddour et al. ‘Causal effect inference for structured treatments’. In: Advances
in Neural Information Processing Systems 34 (2021), pp. 24841–24854.

[51] Clark Glymour, Kun Zhang and Peter Spirtes. ‘Review of causal discovery methods
based on graphical models’. In: Frontiers in genetics 10 (2019), p. 524.

[52] Peter Spirtes and Kun Zhang. ‘Causal discovery and inference: concepts and recent
methodological advances’. In: Applied informatics. Vol. 3. 1. SpringerOpen. 2016,
pp. 1–28.

[53] Yunzhu Li et al. ‘Causal discovery in physical systems from videos’. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 9180–9192.

[54] Sindy Löwe et al. ‘Amortized causal discovery: Learning to infer causal graphs from
time-series data’. In: Conference on Causal Learning and Reasoning. PMLR. 2022,
pp. 509–525.

[55] Dongjie Wang et al. ‘Hierarchical Graph Neural Networks for Causal Discovery and
Root Cause Localization’. In: arXiv preprint (2023).

[56] Yue Yu et al. ‘Dag-gnn: Dag structure learning with graph neural networks’. In:
International Conference on Machine Learning. 2019.

[57] Haoyang Li et al. ‘Out-of-distribution generalization on graphs: A survey’. In: arXiv
preprint (2022).

[58] Tong Zhao et al. ‘Data augmentation for graph neural networks’. In: Proceedings of
the aaai conference on artificial intelligence. Vol. 35. 12. 2021, pp. 11015–11023.

[59] Yuning You et al. ‘Graph contrastive learning with augmentations’. In: Advances in
neural information processing systems 33 (2020), pp. 5812–5823.

[60] Haoyang Li et al. ‘Learning invariant graph representations for out-of-distribution
generalization’. In: Advances in Neural Information Processing Systems. 2022.

[61] Ying-Xin Wu et al. ‘Discovering invariant rationales for graph neural networks’. In:
arXiv preprint (2022).

[62] Jianxin Ma et al. ‘Disentangled graph convolutional networks’. In: International
conference on machine learning. PMLR. 2019, pp. 4212–4221.

REFERENCES 93

[63] Yanbei Liu et al. ‘Independence promoted graph disentangled networks’. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 4916–
4923.

[64] Man Wu et al. ‘Domain-adversarial graph neural networks for text classification’. In:
2019 IEEE International Conference on Data Mining (ICDM). IEEE. 2019, pp. 648–
657.

[65] Fuli Feng et al. ‘Graph adversarial training: Dynamically regularizing based on graph
structure’. In: IEEE Transactions on Knowledge and Data Engineering 33.6 (2019),
pp. 2493–2504.

[66] Weihua Hu et al. ‘Strategies for pre-training graph neural networks’. In: arXiv preprint
(2019).

[67] Hongrui Liu et al. ‘Confidence may cheat: Self-training on graph neural networks
under distribution shift’. In: Proceedings of the ACM Web Conference 2022. 2022,
pp. 1248–1258.

[68] Shaohua Fan et al. ‘Generalizing graph neural networks on out-of-distribution graphs’.
In: arXiv preprint (2021).

[69] Yongduo Sui et al. ‘Causal attention for interpretable and generalizable graph clas-
sification’. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 2022, pp. 1696–1705.

[70] Beatrice Bevilacqua, Yangze Zhou and Bruno Ribeiro. ‘Size-invariant graph repres-
entations for graph classification extrapolations’. In: International Conference on
Machine Learning. PMLR. 2021, pp. 837–851.

[71] Yushun Dong et al. ‘Fairness in graph mining: A survey’. In: IEEE Transactions on
Knowledge and Data Engineering (2023).

[72] Avishek Bose and William Hamilton. ‘Compositional fairness constraints for graph em-
beddings’. In: International Conference on Machine Learning. PMLR. 2019, pp. 715–
724.

[73] Xu Zhang et al. ‘A Multi-view Confidence-calibrated Framework for Fair and Stable
Graph Representation Learning’. In: 2021 IEEE International Conference on Data
Mining (ICDM). IEEE. 2021, pp. 1493–1498.

[74] Maarten Buyl and Tijl De Bie. ‘Debayes: a bayesian method for debiasing network em-
beddings’. In: International Conference on Machine Learning. PMLR. 2020, pp. 1220–
1229.

[75] Yushun Dong et al. ‘Individual fairness for graph neural networks: A ranking based
approach’. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2021, pp. 300–310.

94 REFERENCES

[76] Wei Fan et al. ‘Fair graph auto-encoder for unbiased graph representations with wasser-
stein distance’. In: 2021 IEEE International Conference on Data Mining (ICDM).
IEEE. 2021, pp. 1054–1059.

[77] Preethi Lahoti, Krishna P Gummadi and Gerhard Weikum. ‘Operationalizing indi-
vidual fairness with pairwise fair representations’. In: arXiv preprint (2019).

[78] Xianfeng Tang et al. ‘Investigating and mitigating degree-related biases in graph
convoltuional networks’. In: Proceedings of the 29th ACM International Conference
on Information & Knowledge Management. 2020, pp. 1435–1444.

[79] Jian Kang et al. ‘Rawlsgcn: Towards rawlsian difference principle on graph convolu-
tional network’. In: Proceedings of the ACM Web Conference 2022. 2022, pp. 1214–
1225.

[80] Himan Abdollahpouri, Robin Burke and Bamshad Mobasher. ‘Controlling popularity
bias in learning-to-rank recommendation’. In: Proceedings of the eleventh ACM
conference on recommender systems. 2017, pp. 42–46.

[81] Toshihiro Kamishima et al. ‘Efficiency Improvement of Neutrality-Enhanced Recom-
mendation.’ In: Decisions@ RecSys. Citeseer. 2013, pp. 1–8.

[82] Mengting Wan et al. ‘Addressing marketing bias in product recommendations’. In:
Proceedings of the 13th international conference on web search and data mining.
2020, pp. 618–626.

[83] Hao Yuan et al. ‘Explainability in graph neural networks: A taxonomic survey’. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[84] Hao Yuan et al. ‘Xgnn: Towards model-level explanations of graph neural networks’.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2020, pp. 430–438.

[85] Federico Baldassarre and Hossein Azizpour. ‘Explainability techniques for graph
convolutional networks’. In: arXiv preprint (2019).

[86] Phillip E Pope et al. ‘Explainability methods for graph convolutional neural net-
works’. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 10772–10781.

[87] Dongsheng Luo et al. ‘Parameterized explainer for graph neural network’. In: Ad-
vances in neural information processing systems 33 (2020), pp. 19620–19631.

[88] Thorben Funke, Megha Khosla and Avishek Anand. ‘Hard masking for explaining
graph neural networks’. In: (2021).

[89] Xiang Wang et al. ‘Causal screening to interpret graph neural networks’. In: (2021).
[90] Robert Schwarzenberg et al. ‘Layerwise relevance visualization in convolutional text

graph classifiers’. In: arXiv preprint (2019).

REFERENCES 95

[91] Thomas Schnake et al. ‘Higher-order explanations of graph neural networks via
relevant walks’. In: IEEE transactions on pattern analysis and machine intelligence
44.11 (2021), pp. 7581–7596.

[92] Qiang Huang et al. ‘Graphlime: Local interpretable model explanations for graph
neural networks’. In: IEEE Transactions on Knowledge and Data Engineering (2022).

[93] Minh Vu and My T Thai. ‘Pgm-explainer: Probabilistic graphical model explanations
for graph neural networks’. In: Advances in neural information processing systems 33
(2020), pp. 12225–12235.

[94] Yongduo Sui et al. ‘Deconfounded training for graph neural networks’. In: arXiv
preprint (2021).

[95] Tao Zhang, Hao-Ran Shan and Max A Little. ‘Causal GraphSAGE: A robust graph
method for classification based on causal sampling’. In: Pattern Recognition 128
(2022), p. 108696.

[96] Wanyu Lin, Hao Lan and Baochun Li. ‘Generative causal explanations for graph
neural networks’. In: International Conference on Machine Learning. PMLR. 2021,
pp. 6666–6679.

[97] Jing Ma et al. ‘CLEAR: Generative Counterfactual Explanations on Graphs’. In:
Neural Information Processing Systems. 2022.

[98] Chaveevan Pechsiri and Rapepun Piriyakul. ‘Explanation knowledge graph construc-
tion through causality extraction from texts’. In: Journal of computer science and
technology 25.5 (2010), pp. 1055–1070.

[99] Xiang Wang et al. ‘Reinforced causal explainer for graph neural networks’. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

[100] Chirag Agarwal, Himabindu Lakkaraju and Marinka Zitnik. ‘Towards a unified frame-
work for fair and stable graph representation learning’. In: Uncertainty in Artificial
Intelligence. 2021, pp. 2114–2124.

[101] Jing Ma et al. ‘Learning fair node representations with graph counterfactual fairness’.
In: Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining. 2022.

[102] Jennifer L Hill. ‘Bayesian nonparametric modeling for causal inference’. In: Journal
of Computational and Graphical Statistics 20.1 (2011).

[103] Stefan Wager and Susan Athey. ‘Estimation and inference of heterogeneous treatment
effects using random forests’. In: Journal of the American Statistical Association
113.523 (2018).

[104] Yixin Wang and David M Blei. ‘The blessings of multiple causes’. In: arXiv preprint
(2018).

[105] Ruocheng Guo et al. ‘Ignite: A minimax game toward learning individual treatment
effects from networked observational data’. In: Proceedings of the Twenty-Ninth

96 REFERENCES

International Conference on International Joint Conferences on Artificial Intelligence.
2021, pp. 4534–4540.

[106] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long short-term memory’. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[107] Larry R Medsker and LC Jain. ‘Recurrent neural networks’. In: Design and Applica-
tions (2001).

[108] Jersey Neyman. ‘Sur les applications de la théorie des probabilités aux experiences
agricoles: Essai des principes’. In: Roczniki Nauk Rolniczych 10 (1923).

[109] Paul R Rosenbaum and Donald B Rubin. ‘The central role of the propensity score in
observational studies for causal effects’. In: Biometrika (1983).

[110] Judea Pearl et al. ‘Causal inference in statistics: an overview’. In: Statistics surveys
(2009).

[111] Kyunghyun Cho et al. ‘Learning phrase representations using RNN encoder-decoder
for statistical machine translation’. In: arXiv preprint (2014).

[112] Minh-Thang Luong, Hieu Pham and Christopher D Manning. ‘Effective approaches
to attention-based neural machine translation’. In: arXiv preprint (2015).

[113] Ashish Vaswani et al. ‘Attention is all you need’. In: Advances in Neural Information
Processing Systems. 2017.

[114] Yaroslav Ganin et al. ‘Domain-adversarial training of neural networks’. In: The Journal
of Machine Learning Research 17.1 (2016).

[115] Jonathan K Pritchard, Matthew Stephens and Peter Donnelly. ‘Inference of population
structure using multilocus genotype data’. In: Genetics 155.2 (2000).

[116] Victor Veitch, Dhanya Sridhar and David M Blei. ‘Using text embeddings for causal
inference’. In: arXiv preprint (2019).

[117] Terence C Mills and Terence C Mills. Time series techniques for economists. 1991.
[118] Cort J Willmott and Kenji Matsuura. ‘Advantages of the mean absolute error (MAE)

over the root mean square error (RMSE) in assessing average model performance’. In:
Climate Research 30.1 (2005).

[119] Leo Breiman. ‘Random forests’. In: Machine Learning 45.1 (2001).
[120] Ruocheng Guo, Jundong Li and Huan Liu. ‘Learning individual causal effects from

networked observational data’. In: ACM International Conference on Web Search and
Data Mining. 2020.

[121] Ludger Rüschendorf. ‘The Wasserstein distance and approximation theorems’. In:
Probability Theory and Related Fields 70.1 (1985).

[122] Sijia Li et al. ‘The impact of COVID-19 epidemic declaration on psychological con-
sequences: a study on active Weibo users’. In: International journal of environmental
research and public health (2020).

REFERENCES 97

[123] John L Romano. ‘Politics of Prevention: Reflections From the COVID-19 Pandemic’.
In: Journal of Prevention and Health Promotion (2020).

[124] John Daniel. ‘Education and the COVID-19 pandemic’. In: Prospects (2020).
[125] Betty Pfefferbaum and Carol S North. ‘Mental health and the Covid-19 pandemic’. In:

New England Journal of Medicine (2020).
[126] Shabir Ahmad Lone and Aijaz Ahmad. ‘COVID-19 pandemic–an African perspective’.

In: Emerging microbes & infections (2020).
[127] M Mofijur et al. ‘Impact of COVID-19 on the social, economic, environmental and

energy domains: Lessons learnt from a global pandemic’. In: Sustainable production
and consumption (2021).

[128] Mirko Manchia et al. ‘The impact of the prolonged COVID-19 pandemic on stress
resilience and mental health: A critical review across waves’. In: European Neuropsy-
chopharmacology (2022).

[129] Thomas Hale et al. ‘A global panel database of pandemic policies (Oxford COVID-19
Government Response Tracker)’. In: Nature Human Behaviour (2021).

[130] Solomon Hsiang et al. ‘The effect of large-scale anti-contagion policies on the COVID-
19 pandemic’. In: Nature (2020).

[131] Kavita Shah Arora, Jaclyn T Mauch and Kelly Smith Gibson. ‘Labor and delivery
visitor policies during the COVID-19 pandemic: balancing risks and benefits’. In:
Jama (2020).

[132] Andrea Galimberti et al. ‘Rethinking urban and food policies to improve citizens
safety after COVID-19 pandemic’. In: Frontiers in Nutrition (2020).

[133] Fernando A Wilson and Jim P Stimpson. ‘US policies increase vulnerability of
immigrant communities to the COVID-19 pandemic’. In: Annals of global health
(2020).

[134] Edward Kong and Daniel Prinz. ‘Disentangling policy effects using proxy data: Which
shutdown policies affected unemployment during the COVID-19 pandemic?’ In:
Journal of Public Economics (2020).

[135] Daniel T Halperin et al. ‘Revisiting COVID-19 policies: 10 evidence-based recom-
mendations for where to go from here’. In: BMC public health (2021).

[136] Aaron Miller et al. ‘Correlation between universal BCG vaccination policy and reduced
mortality for COVID-19’. In: MedRxiv (2020).

[137] Jiwei Jia et al. ‘Modeling the control of COVID-19: impact of policy interventions
and meteorological factors’. In: arXiv preprint (2020).

[138] Zeynep Ertem, Ozgur M Araz and Mayteé Cruz-Aponte. ‘A decision analytic approach
for social distancing policies during early stages of COVID-19 pandemic’. In: Decision
Support Systems (2021).

98 REFERENCES

[139] Andrea Riccardo Migone. ‘The influence of national policy characteristics on COVID-
19 containment policies: A comparative analysis’. In: Policy Design and Practice
(2020).

[140] Bert George et al. ‘A guide to benchmarking COVID-19 performance data’. In: Public
Administration Review (2020).

[141] Thomas C Chalmers et al. ‘A method for assessing the quality of a randomized control
trial’. In: Controlled clinical trials (1981).

[142] Clement Adebamowo et al. ‘Randomised controlled trials for Ebola: practical and
ethical issues’. In: The Lancet (2014).

[143] Alberto Abadie. ‘Semiparametric difference-in-differences estimators’. In: The Review
of Economic Studies (2005).

[144] Timo Mitze, Reinhold Kosfeld, Johannes Rode et al. ‘Face masks considerably reduce
Covid-19 cases in Germany-A synthetic control method approach’. In: (2020).

[145] Ron Kohavi et al. ‘Online controlled experiments at large scale’. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 2013.

[146] Eric J Tchetgen Tchetgen and Tyler J VanderWeele. ‘On causal inference in the
presence of interference’. In: Statistical methods in medical research (2012).

[147] Johan Ugander et al. ‘Graph cluster randomization: Network exposure to multiple
universes’. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2013.

[148] Yuan Yuan, Kristen Altenburger and Farshad Kooti. ‘Causal Network Motifs: Identi-
fying Heterogeneous Spillover Effects in A/B Tests’. In: the Web Conference. 2021.

[149] Song Bai, Feihu Zhang and Philip HS Torr. ‘Hypergraph convolution and hypergraph
attention’. In: Pattern Recognition 110 (2021), p. 107637.

[150] Yifan Feng et al. ‘Hypergraph neural networks’. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 33. 01. 2019, pp. 3558–3565.

[151] Naganand Yadati et al. ‘Hypergcn: Hypergraph convolutional networks for semi-
supervised classification’. In: arXiv preprint 22 (2018).

[152] Donald B Rubin. ‘Randomization analysis of experimental data: The Fisher random-
ization test comment’. In: Journal of the American Statistical Association 75.371
(1980), pp. 591–593.

[153] Cédric Villani et al. Optimal transport: old and new. Vol. 338. Springer, 2009.
[154] Ruochi Zhang, Yuesong Zou and Jian Ma. ‘Hyper-SAGNN: a self-attention based

graph neural network for hypergraphs’. In: arXiv preprint (2019).
[155] Kaize Ding et al. ‘Be more with less: Hypergraph attention networks for inductive

text classification’. In: arXiv preprint (2020).

REFERENCES 99

[156] Rossana Mastrandrea, Julie Fournet and Alain Barrat. ‘Contact patterns in a high
school: a comparison between data collected using wearable sensors, contact diaries
and friendship surveys’. In: PloS one 10.9 (2015), e0136497.

[157] Austin R Benson et al. ‘Simplicial closure and higher-order link prediction’. In:
Proceedings of the National Academy of Sciences 115.48 (2018), E11221–E11230.

[158] Mengting Wan and Julian McAuley. ‘Item recommendation on monotonic behavior
chains’. In: Proceedings of the 12th ACM conference on recommender systems. 2018,
pp. 86–94.

[159] Mengting Wan et al. ‘Fine-Grained Spoiler Detection from Large-Scale Review
Corpora’. In: Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics. 2019, pp. 2605–2610.

[160] Christopher Morris et al. ‘Weisfeiler and leman go neural: Higher-order graph neural
networks’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.
01. 2019, pp. 4602–4609.

[161] Arthur Gretton et al. ‘Measuring statistical dependence with Hilbert-Schmidt norms’.
In: International conference on algorithmic learning theory. Springer. 2005, pp. 63–
77.

[162] Thomas N Kipf and Max Welling. ‘Semi-supervised classification with graph convo-
lutional networks’. In: arXiv preprint (2016).

[163] Panos Toulis, Alexander Volfovsky and Edoardo M Airoldi. ‘Propensity score method-
ology in the presence of network entanglement between treatments’. In: arXiv preprint
(2018).

[164] Panos Toulis, Alexander Volfovsky and Edoardo M Airoldi. ‘Estimating causal effects
when treatments are entangled by network dynamics’. In: (2021).

[165] Uri Shalit, Fredrik D Johansson and David Sontag. ‘Estimating individual treatment ef-
fect: generalization bounds and algorithms’. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 3076–3085.

[166] Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empir-
icist’s companion. Princeton university press, 2009.

[167] Hojjat Salehinejad et al. ‘Recent advances in recurrent neural networks’. In: arXiv
preprint (2017).

[168] Sören R Künzel et al. ‘Metalearners for estimating heterogeneous treatment effects
using machine learning’. In: Proceedings of the national academy of sciences 116.10
(2019), pp. 4156–4165.

[169] Paul Erdős, Alfréd Rényi et al. ‘On the evolution of random graphs’. In: Publ. Math.
Inst. Hung. Acad. Sci (1960).

100 REFERENCES

[170] Aric Hagberg, Pieter Swart and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

[171] Carlene A Muto et al. ‘SHEA guideline for preventing nosocomial transmission of
multidrug-resistant strains of Staphylococcus aureus and enterococcus’. In: Infection
Control & Hospital Epidemiology 24.5 (2003), pp. 362–386.

[172] Erica S Shenoy et al. ‘Natural history of colonization with methicillin-resistant Staphyl-
ococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE): a systematic
review’. In: BMC infectious diseases 14.1 (2014), pp. 1–13.

[173] Jan Ohst et al. ‘The network positions of methicillin resistant Staphylococcus aureus
affected units in a regional healthcare system’. In: EPJ Data Science 3 (2014), pp. 1–
15.

[174] Andrew F Shorr et al. ‘A risk score for identifying methicillin-resistant Staphylococcus
aureus in patients presenting to the hospital with pneumonia’. In: BMC infectious
diseases 13.1 (2013), pp. 1–7.

[175] Zonghan Wu et al. ‘A comprehensive survey on graph neural networks’. In: IEEE
transactions on neural networks and learning systems 32.1 (2020), pp. 4–24.

[176] Keyulu Xu et al. ‘How Powerful are Graph Neural Networks?’ In: ICLR. 2018.
[177] Ninareh Mehrabi et al. ‘A survey on bias and fairness in machine learning’. In: ACM

CSUR (2021).
[178] Harjit Singh Sekhon, Sanjit Kumar Roy and James Devlin. ‘Perceptions of fairness in

financial services: an analysis of distribution channels’. In: International Journal of
Bank Marketing (2016).

[179] Enyan Dai and Suhang Wang. ‘FairGNN: Eliminating the Discrimination in Graph
Neural Networks with Limited Sensitive Attribute Information’. In: arXiv preprint
(2020).

[180] Peizhao Li et al. ‘On dyadic fairness: Exploring and mitigating bias in graph connec-
tions’. In: ICLR. 2020.

[181] Chirag Agarwal, Marinka Zitnik and Himabindu Lakkaraju. ‘Towards a Rigorous
Theoretical Analysis and Evaluation of GNN Explanations’. In: arXiv preprint (2021).

[182] Smriti Bhagat, Graham Cormode and S Muthukrishnan. ‘Node classification in social
networks’. In: Social network data analytics. 2011, pp. 115–148.

[183] David Liben-Nowell and Jon Kleinberg. ‘The link-prediction problem for social
networks’. In: JASIST (2007).

[184] Rex Ying et al. ‘Hierarchical graph representation learning with differentiable pooling’.
In: NeurIPS. 2018.

[185] Matt J Kusner et al. ‘Counterfactual Fairness’. In: Advances in Neural Information
Processing Systems (2017).

REFERENCES 101

[186] Moritz Hardt, Eric Price and Nati Srebro. ‘Equality of opportunity in supervised
learning’. In: NeurIPS. 2016.

[187] Muhammad Bilal Zafar et al. ‘Fairness beyond disparate treatment & disparate impact:
Learning classification without disparate mistreatment’. In: WWW. 2017.

[188] Rich Zemel et al. ‘Learning fair representations’. In: ICML. 2013.
[189] Jane Bromley et al. ‘Signature verification using a “siamese” time delay neural

network’. In: International Journal of Pattern Recognition and Artificial Intelligence
(1993).

[190] William L Hamilton, Rex Ying and Jure Leskovec. ‘Inductive representation learning
on large graphs’. In: NeurIPS. 2017.

[191] Yizhu Jiao et al. ‘Sub-graph contrast for scalable self-supervised graph representation
learning’. In: IEEE ICDM. 2020.

[192] Jiawei Zhang et al. ‘Graph-bert: Only attention is needed for learning graph represent-
ations’. In: arXiv preprint (2020).

[193] Glen Jeh and Jennifer Widom. ‘Scaling personalized web search’. In: IW3C2. 2003.
[194] Yuhang Song et al. ‘Novel human-object interaction detection via adversarial domain

generalization’. In: arXiv preprint (2020).
[195] Chris Russell et al. ‘When worlds collide: integrating different counterfactual assump-

tions in fairness’. In: NeurIPS. 2017.
[196] Sandra Wachter, Brent Mittelstadt and Chris Russell. ‘Counterfactual explanations

without opening the black box: Automated decisions and the GDPR’. In: Harv. JL &
Tech. (2017).

[197] Sahil Verma, John Dickerson and Keegan Hines. ‘Counterfactual explanations for
machine learning: A review’. In: arXiv preprint (2020).

[198] Divyat Mahajan, Chenhao Tan and Amit Sharma. ‘Preserving causal constraints
in counterfactual explanations for machine learning classifiers’. In: arXiv preprint
(2019).

[199] Saumitra Mishra et al. ‘A Survey on the Robustness of Feature Importance and
Counterfactual Explanations’. In: arXiv preprint (2021).

[200] Danilo Numeroso and Davide Bacciu. ‘MEG: Generating Molecular Counterfactual
Explanations for Deep Graph Networks’. In: arXiv preprint (2021).

[201] Hans-Georg Wolff and Klaus Moser. ‘Effects of networking on career success: a
longitudinal study.’ In: Journal of applied psychology 94.1 (2009), p. 196.

[202] URL: https://www.kaggle.com/c/unimelb.
[203] Mohit Bajaj et al. ‘Robust counterfactual explanations on graph neural networks’. In:

NeurIPS (2021).

https://www.kaggle.com/c/unimelb

102 REFERENCES

[204] Carlo Abrate and Francesco Bonchi. ‘Counterfactual graphs for explainable classifica-
tion of brain networks’. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 2021, pp. 2495–2504.

[205] Hao Yuan et al. ‘Explainability in graph neural networks: A taxonomic survey’. In:
arXiv preprint (2020).

[206] Ilyes Khemakhem et al. ‘Variational autoencoders and nonlinear ica: A unifying
framework’. In: 2020.

[207] Martin Simonovsky and Nikos Komodakis. ‘Graphvae: Towards generation of small
graphs using variational autoencoders’. In: ICANN. 2018.

[208] Diederik P Kingma and Max Welling. ‘Auto-encoding variational bayes’. In: arXiv
preprint (2013).

[209] Martin Pawelczyk, Klaus Broelemann and Gjergji Kasneci. ‘Learning model-agnostic
counterfactual explanations for tabular data’. In: WWW. 2020.

[210] Amir-Hossein Karimi et al. ‘Algorithmic recourse under imperfect causal knowledge:
a probabilistic approach’. In: arXiv preprint (2020).

[211] Amir-Hossein Karimi, Bernhard Schölkopf and Isabel Valera. ‘Algorithmic recourse:
from counterfactual explanations to interventions’. In: ACM FAccT. 2021.

[212] Aapo Hyvarinen, Hiroaki Sasaki and Richard Turner. ‘Nonlinear ICA using auxiliary
variables and generalized contrastive learning’. In: AISTATS. 2019.

[213] Shohei Shimizu et al. ‘A linear non-Gaussian acyclic model for causal discovery.’ In:
Journal of Machine Learning Research (2006).

[214] Ricardo Pio Monti, Kun Zhang and Aapo Hyvärinen. ‘Causal discovery with general
non-linear relationships using non-linear ica’. In: Uncertainty in Artificial Intelligence.
2020.

[215] P Erdős and A Rényi. ‘On random graphs I. Publicationes Mathematicae (Debrecen)’.
In: (1959).

[216] Jing Ma and Jundong Li. ‘Learning causality with graphs’. In: AI Magazine 43.4
(2022), pp. 365–375.

[217] Yuhao Kang et al. ‘Multiscale Dynamic Human Mobility Flow Dataset in the U.S.
during the COVID-19 Epidemic’. In: Scientific Data (2020).

[218] Samuel A Assefa et al. ‘Generating synthetic data in finance: opportunities, challenges
and pitfalls’. In: Proceedings of the First ACM International Conference on AI in
Finance. 2020, pp. 1–8.

[219] Daniel Borrajo, Manuela Veloso and Sameena Shah. ‘Simulating and classifying
behavior in adversarial environments based on action-state traces: An application to
money laundering’. In: Proceedings of the First ACM International Conference on AI
in Finance. 2020, pp. 1–8.

REFERENCES 103

[220] Manlio De Domenico et al. ‘The anatomy of a scientific rumor’. In: Scientific reports
3.1 (2013), pp. 1–9.

[221] Zhenqin Wu et al. ‘MoleculeNet: a benchmark for molecular machine learning’. In:
Chemical science (2018).

[222] Greg Landrum et al. ‘RDKit: Open-source cheminformatics’. In: (2006).
[223] Berk Ustun, Alexander Spangher and Yang Liu. ‘Actionable recourse in linear classi-

fication’. In: ACM FAccT. 2019.
[224] Riccardo Guidotti et al. ‘Local rule-based explanations of black box decision systems’.

In: arXiv preprint (2018).
[225] Ramaravind K Mothilal, Amit Sharma and Chenhao Tan. ‘Explaining machine learn-

ing classifiers through diverse counterfactual explanations’. In: ACM FAccT. 2020.
[226] Amit Dhurandhar et al. ‘Explanations based on the missing: Towards contrastive

explanations with pertinent negatives’. In: arXiv preprint (2018).

APPENDIX A

Details for Chapter 4

A1 Proof of Theory

Before the formal proof of Theorem 1, as there are some common assumptions used in most
works as well as ours for ITE estimation, we first present them under our setting:

ASSUMPTION 6. (Consistency). If the treatment history is Ct, then the observed outcome
Y
t equals to the potential outcome under treatment Ct.

ASSUMPTION 7. (Positivity). If the probability p(zt) 6= 0, then the probability of any
treatment assignment ct at time stamp t is in the range of (0, 1), i.e., 0 < p(ct|zt) < 1.

ASSUMPTION 8. (SUTVA). The potential outcomes for any instance are not influenced by the
treatment assignment of other instances, and, for each instance, there are no different forms
or versions of each treatment level, which lead to different potential outcomes.

In most existing works, the identification of ITE is based on above three assumptions, along
with the strong ignorability assumption. In this work, we relax the strong ignorability
assumption and allow the existence of the hidden confounders which could be captured from
the time-evolving networked observational data. Based on above premise, we study on the
identification of ITE in such data:

Theorem 1. (Identification of ITE) If we recover p(zt|xt
,H

t
,A

t), p(yt|zt, ct), then the
proposed DNDC can recover the ITE under the causal graph in Fig. 4.1.

104

A2 MORE EXPERIMENTS FOR DNDC 105

ORJ��͐

í�
í�

í�
í�

G]
��
��
��
���
���

���

���

���

����

����

���

���

���

���

���

���

���

(A) µ and dz

͆

���
���

���
��� ORJ

��͇

í�
í�

í�
í�

����
����
����
����
����
����

���

���

���

���

���

���

���

(B) � and �

FIGURE A.1.
p
✏PEHE with different values of learning rate µ, embedding

size dz, � and �.

PROOF. Under these above assumptions, we can prove the identification of ITE:

⌧
t (i)
= Ey[y

t
1 � y

t
0|x

t
,H

t
,A

t] (A.1)
(ii)
= Ez[Ey[y

t
1 � y

t
0|x

t
, z

t
,H

t
,A

t]|xt
,H

t
,A

t] (A.2)
(iii)
= Ez[Ey[y

t
1 � y

t
0|z

t]|xt
,H

t
,A

t] (A.3)
(iv)
= Ez[Ey[y

t
1|z

t
, c

t = 1]� Ey[y
t
0|z

t
, c

t = 0]|xt
,H

t
,A

t] (A.4)
(v)
= Ez[Ey[y

t
F |z

t
, c

t = 1]� Ey[y
t
F |z

t
, c

t = 0]|xt
,H

t
,A

t], (A.5)

where ⌧ t = ⌧
t(xt

,H
t
,A

t), we drop the instance index i for simplification. The equation
(i) is the definition of ITE in our setting, equation (ii) is a straightforward expectation over
p(zt|xt

,H
t
,A

t), equation (iii) can be inferred from the structure of the causal graph shown
in Fig. 4.1, and the SUTVA assumption is implicitly used in the causal graph, equation (iv) is
based on the assumption that zt contains all the hidden confounders, as well as the positivity
assumption, and equation (v) can be inferred from the consistency assumption. Thus, if
our framework can correctly model p(zt|xt

,H
t
,A

t) and p(yt|zt, ct), then the ITEs can be
identified under the causal graph in Fig. 4.1. ⇤

A2 More Experiments for DNDC

A2.1 Hyperparameter Study

To investigate how the values of model hyperparameters affect the performance of DNDC,
we assess its performance under different hyperparameter settings, including the learn-
ing rate µ 2 {10�5, 10�4, 10�3, 10�2}, representation dimension dz 2 {16, 32, 64, 128},
� 2 {0.5, 1.0, 1.5, 2.0}, and � 2 {10�4, 10�3, 10�2, 10�1}. Leaving out all the similar ob-
servations, we only show the ITE estimation performance

p
✏PEHE with different values of

106 A DETAILS FOR CHAPTER 4

learning rates µ, embedding size dz, � and � on Flickr in Fig. A.1, where we observe that,
the model achieves the best performance when µ is around 10�4, dz 2 [32, 64], � = 1.0 and
� = 0.01. Similar observations can be observed on other datasets, as well as ✏ATE . Generally
speaking, our model is not very sensitive to the model parameters in a wide range.

A3 Data and Analysis for Covid-19 Related Information

In this section, we describe how we prepare data for assessing the causal impact of COVID-19
related policies on outbreak dynamics. Some preliminary data analyses are also presented to
show the potential capability of capturing the (unobserved) confounders.

A3.1 Observational Data

In general, two basic types of information are indispensable in the causal inference study, i.e.,
treatment and outcome. Specifically, for treatment, we collect COVID-19 related policies that
have been enacted by different counties in the United States throughout 2020; for outcome, we
use the numbers of confirmed cases and death cases of different counties throughout 2020. To
control the influence of unobserved confounders, we also collect data regarding the covariates
of different counties and their relations. In particular, two types of networks among counties
are used in our study. In total, after filtering the counties without sufficient data, our data
corpus includes 391 counties in the United States. The locations of these selected counties in
our corpus are shown in Fig. A.2. We then introduce how we collect and preprocess the data
as follows.

Treatment — COVID-19 related policies. We collect the COVID-19 related policies that
are in force in the USA throughout 2020 from the Department of Health & Human Services1.
A total number of 60 policy types are included, along with descriptions and start/end dates.
The collected policies include both state-level and county-level ones. For state-level policies,
we assume that the policy applies to all counties in the state; for county-level policies, they are
considered as only applying to the corresponding county. In order to better analyze the effect
of these policies, we perform the following preprocessing: (1) Policy filtering. We remove the
policy types that are adopted in less than 10% of the counties in our corpus, as we do not have
sufficient observational data with respect to them. (2) Policy categorization. Based on the goal
and some key element of each policy, we group them into three categories: reduce contacts
through social distancing (henceforth referred to as social distancing), minimize damage to
the economy through reopening (reopening), and reduce airborne transmission through mask

1https://catalog.data.gov/dataset/covid-19-state-and-county-policy-orders

A3 DATA AND ANALYSIS FOR COVID-19 RELATED INFORMATION 107
3/10/2021 127.0.0.1�50�71

127.0.0.1�50�71 1/1

0 - 1
< 0

CoXnWieV inclXded for daWa anal\ViV
Flag

3/10/2021 127.0.0.1�50�71

127.0.0.1�50�71 1/1

0 - 1
< 0

CoXnWieV inclXded for daWa anal\ViV
Flag

Selected counties
Unselected counties

FIGURE A.2. Geolocation of the selected counties in our corpus.

requirements (mask requirements). For each category, Fig. A.3 shows the top-10 policy types
adopted by the largest number of counties, and the proportion of counties adopting them
throughout 2020.

Outcome — numbers of confirmed and death cases. The daily numbers of confirmed and
death cases are collected across these 391 counties from Johns Hopkins Coronavirus Resource
Center2 from January to December, 2020. In our experiments, we regard these numbers as
outcomes of each county.

Covariates — popularity of keywords on Google. Unobserved confounders which causally
affect the policies and outbreak dynamics are hard to capture. Hence, we use some proxy
variables such as covariates of counties to infer these confounders. More specifically, we
consider the web search of COVID-19 related keywords (e.g., coronavirus, mask, quarantine,
etc.) by residents in these counties as covariates. We collect such web search data from
Google Trends3. In this process, we first select a set of COVID-19 related keywords, and then
obtain their popularity score based on the corresponding proportion in the total searches in
each county from Google Trend. A higher popularity score implies that a larger proportion in
this county has a high vigilance of COVID-19. In total, 19 different keywords are selected,
and we obtain a 19-dimensional covariate vector for each county on each day from February
to December 2020.

Networks — distance network and mobility flow network. Previous works [120, 42] have
shown that network structure among instances can reflect some unobserved confounders.

2https://coronavirus.jhu.edu/map.html
3https://trends.google.com/trends/?geo=US

108 A DETAILS FOR CHAPTER 4

Therefore, in this work, two networks including the geographical distance network and mobil-
ity flow network among the selected 391 counties are collected as another kind of proxies
for confounders. 1) Geographical distance network. Geographical distance network among
counties can be utilized to capture confounders. Intuitively, counties that are geographic-
ally closer are more likely to have similar confounders [120] such as residents’ vigilance,
because they tend to have similar cultural background and social climate. We construct a
weighted network among the 391 counties based on the geographical distance from County
Distance Database4, where nodes represent counties, and edge weights are calculated from
the corresponding distances between county pairs. Specifically, we select the county pairs
with distance less than a threshold ⌧ = 100 kilometers, and set the weight as 1/d(i, j) for
the edge between the i-th and j-th counties with distance d(i, j). 2) Mobility flow network.
The mobility flow network among counties can also be adopted to capture confounders, as
counties with large mobility flow are more likely to have similar confounders [120, 42]
(such as residents’ vigilance) as they have more communications. We construct an temporal
mobility flow network with weighted edges among the 391 counties based on COVID19
USFlows [217], which tracks anonymous GPS pings based on mobile applications. In this
temporal network, the total daily volume of mobility flow is aggregated at different scales
(e.g., census tract, county, and state) w.r.t. the timeline spanning from February to December
in 2020. Each node denotes a county, and the weight of each edge is calculated from the
mobility flow volume between the corresponding pair of counties. Specifically, we set the
weight as log flow(i,j)

maxi,j log flow(i,j) for the edge between the i-th and j-th counties with mobility flow
flow(i, j).

A3.2 Preliminary Data Analysis

To explore whether the covariates and networks have the potential to capture the (unobserved)
confounders, we conduct preliminary data analysis to explore their dependencies with COVID-
19 outbreak dynamics (i.e., the number of confirmed/death cases). Due to the space limit,
we only show the analysis on the cumulative confirmed cases number of ten counties from
Virginia (VA) and Massachusetts (MA) as examples. Similar observations can also be found
in other counties, as well as the number of death cases.

Relations between covariates and outbreak dynamics. As proxy variables of unobserved
confounders, covariates of counties could have dependencies with the COVID-19 outbreak
dynamics (outcome). For example, counties with relatively higher similarity of covariates may
also have higher similarity in the number of confirmed cases. If such dependencies exist, it
implies that the covariates of counties could be potentially helpful in capturing the unobserved

4https://www.nber.org/research/data/county-distance-database

A3 DATA AND ANALYSIS FOR COVID-19 RELATED INFORMATION 109

confounders. In this regard, we explore whether such dependency exists in our collected
covariates of counties, i.e., popularity of COVID-19 related search keywords of counties on
Google US. We first compute the bivariate correlation between the daily cumulative confirmed
case number series of the chosen counties and all 391 counties in 2020. Then for each of the
ten counties, we rank its bivariate correlation values with the 391 counties in an ascending
order. The average bivariate correlation value over every 10 percentile of the ranking is
reported in Fig. (A.4a). Due to space constraints, we explain the process here only for one of
the 19 keywords we used, "social distance". Similar observations can also be drawn based
on other keywords. For each county, we represent the daily popularity of "social distance"
on Google US as a time series spanning from February to December 2020. The bivariate
correlation between counties based on their daily popularity is then calculated. Following the
same ranking order in each row of Fig. (A.4a), we report the average bivariate correlation
value of their daily popularity over every 10 percentile in Fig. (A.4b) in exponential scale.
The results implies that most county pairs with higher bivariate correlation w.r.t. outbreak
dynamics tend to have higher keyword popularity similarity. This reveals that our collected
covariates have the potential to help capture the confounders.

Relations between networks and outbreak dynamics. Networks could also have dependen-
cies with COVID-19 outbreak dynamics, e.g., county pairs with relatively shorter distance or
larger mobility flow volume may also have higher similarity in the number of confirmed cases.
Similar to the relationship between covariates and outbreak dynamics, such dependencies
imply the potential utility of networks in capturing the confounders. Consequently, here we
explore whether such dependencies exist in networks among counties. Following the same
ranking order in each row of Fig. (A.4a), we also report the corresponding value of their
distance and mobility flow (aggregated between Feb. and Dec. in 2020) averaged over every
10 percentile (in log scale) in Fig. (A.4c) and Fig. (A.4d), respectively. We have the following
conclusions: 1) most county pairs with relatively lower bivariate correlation w.r.t. the outbreak
dynamics are more likely to have larger distance than those with high correlation; 2) most
county pairs with relatively higher bivariate correlation w.r.t. the outbreak dynamics tend
to have larger human mobility flow volume between them. These imply the potential of the
collected networks to capture the confounders.

110 A DETAILS FOR CHAPTER 4

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
����

���
���

���
���

���
3U
RS
RU
WLR
Q�
RI
�F
RX
QW
LH
V�Z

LWK
�S
RO
LF
\

6WDWH�RI�HPHUJHQF\
*\PV
$OORZ�WHOHKHDOWK
1XUVLQJ�KRPHV

1RQ�HVVHQWLDO�EXVLQHVVHV
)RRG�DQG�GULQN
&KLOGFDUH��.����

*DWKHULQJV
(QWHUWDLQPHQW
2XWGRRU�DQG�UHFUHDWLRQ

(A) Social distancing

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
����

���
���

���
���

���
3U
RS
RU
WLR
Q�
RI
�F
RX
QW
LH
V�Z

LWK
�S
RO
LF
\

3KDVH��
(QWHUWDLQPHQW
2XWGRRU�DQG�UHFUHDWLRQ
&KLOGFDUH��.����

3HUVRQDO�FDUH
1RQ�HVVHQWLDO�EXVLQHVVHV
)RRG�DQG�GULQN

1HZ�SKDVH
+RXVHV�RI�ZRUVKLS
3KDVH��

(B) Reopening

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
����

���
���

���
���

���
3U
RS
RU
WLR
Q�
RI
�F
RX
QW
LH
V�Z

LWK
�S
RO
LF
\

3XEOLF�IDFLQJ�EXVLQHVVHV
$Q\�PDVN�UHTXLUHPHQW
(QWHUWDLQPHQW
)RRG�DQG�GULQN

3KDVH��
2XWGRRU�DQG�UHFUHDWLRQ
1RQ�HVVHQWLDO�EXVLQHVVHV

3KDVH��
*\PV
7UDYHO

(C) Mask requirement

FIGURE A.3. Proportion of counties with policy types in each category over
the course of 2020.

A3 DATA AND ANALYSIS FOR COVID-19 RELATED INFORMATION 111

Plymouth,MA

Norfolk,MA

Suffolk,MA

Worcester,MA

Hampshire,MA

Bristol,MA

Ranking percentage
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Albemarle,VA

Augusta,VA

Fairfax,VA

Pulaski,VA

(A) Correlation between confirmed case num-
bers in different counties.

Ranking percentage
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2.6

2.4

2.2

2

1.8

(B) Correlation between keyword popularity
in different counties.

Ranking percentage
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.6×103

1.4×103

1.2×103

1.2×103

2×103

4×103

6×103

8×103

(C) Geographical distance
between counties.

Ranking percentage
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

14

12

10

8

6

(D) Mobility flow volume
between counties.

FIGURE A.4. Illustrations reflecting interactions between the selected
counties and other counties: (a) bivariate correlation between the confirmed
case number series in different counties, (b) bivariate correlation between
keyword popularity in different counties, (c) geographic distance between
counties, and (d) mobility flow volume between counties. The counties in each
row of (a) are ranked by the bivariate correlation of the confirmed case number
in an ascending order, and all the results are averaged over every 10 percentile
of counties. Each row in (b), (c) and (d) follows the same order of the counties
as in (a).

APPENDIX B

Details for Chapter 5

B1 More Experimental Results

B1.1 ITE Estimation Performance under Different Settings on All the
Datasets

In this section, we show the ITE estimation performance under different settings (including
the linear and quadratic settings with � among {1.0, 3.0, 5.0}) on all the datasets in Fig. B.2,
Fig. B.3, and Fig. B.4. We can observe that the proposed HyperSCI consistently outperforms
the baselines under different settings on all the datasets. The superiority of our framework
against baselines becomes more obvious when � is larger (i.e., the interference is stronger),
because our framework can better handle the interference in the hypergraph.

B1.2 Case Studies

We further conduct case studies to investigate how the proposed method acts on individuals in
responding to their neighboring nodes (i.e., the size of one’s neighborhood and the homophily
of treatment assignments within one’s neighborhood). The neighborhood of i is defined as
the set of nodes which are connected with i via any hyperedges, i.e., Ni =

S
e2Ei{j 2 Ne}.

The homophily of treatment assignment is defined as the ratio of neighboring nodes which
share the same treatment assignment as oneself, i.e., r(i) =

P
j2Ni

1(tj=ti)

|Ni| . In Fig. B.1a, we
show the difference between the ITE estimation results made with the original hypergraph
and with the projected graph, w.r.t. Ni and r(i). Overall, we see larger divergences on
individuals with a larger neighborhood size but less agreement with their neighbors in terms
of treatment assignments. In Fig. B.1b, we further showcase the insights by presenting several
representative children books on the GoodReads dataset. For example, the author of “Peter
Pan” had not published many works but these books all received good rating scores, leading
to a “consistent" reputation of the author. Therefore, the outcome of the book “Peter Pan”
is less impacted by the high-order interference among its neighbors. On the other hand, the

112

B2 DETAILS OF EXPERIMENTAL SETTINGS 113

high rating score of the book “Oddhopper Opera” differs from most of its neighbors, leading
to a mixed reputation of the author. In this case, the potential outcome is more likely to be
affected by the high-order interference on the hypergraph.

(A) Heatmap (B) Case studies

FIGURE B.1. (a) Heatmap: the difference between ITE estimations with
hypergraph and with projected ordinary graph on GoodReads. Nodes are
divided into 6⇥6 grids w.r.t. their number of neighbors |Ni| and the homophily
of treatment assignment r(i). (b) Case studies of representative books.

B2 Details of Experimental Settings

All the experiments are conducted under the following environment:

• Operating system: Ubuntu 18.04
• GPU memory: 16GB
• Pytorch 1.9.0, Cuda ToolKit 11.1, cuDNN 8.0.5

Baseline parameter settings. For the baselines CEVAE, CFR, Netdeconf, GNN-HSIC,
and GCN-HSIC, we set the representation dimension as 32, 32, 100, 64, respectively. The
numbers of training epochs for these baselines are set as 500. The number of samples in
CEVAE in training is set as 5 by default.

114 B DETAILS FOR CHAPTER 5

(A) Linear,
p
✏PEHE , CT (B) Linear, ✏ATE , CT

(C) Quadratic,
p
✏PEHE , CT (D) Quadratic, ✏ATE , CT

FIGURE B.2. Comparison of the performance of ITE estimation under differ-
ent settings on Contact dataset.

(A) Linear,
p
✏PEHE , GR (B) Linear, ✏ATE , GR

(C) Quadratic,
p
✏PEHE , GR (D) Quadratic, ✏ATE , GR

FIGURE B.3. Comparison of the performance of ITE estimation under differ-
ent settings on GoodRead dataset.

B2 DETAILS OF EXPERIMENTAL SETTINGS 115

(A) Linear,
p
✏PEHE , MS (B) Linear, ✏ATE , MS

(C) Quadratic,
p
✏PEHE , MS (D) Quadratic, ✏ATE , MS

FIGURE B.4. Comparison of the performance of ITE estimation under differ-
ent settings on Microsoft dataset.

APPENDIX C

Details of Chapter 6

C1 Analysis

In this section, we provide detailed analysis of the proposed method NEAT. Again, the
outcome generation function defined in Eq. (6.5) is:

Y
p = Y(T p

, X
p
,M

p) + g(Up). (C.1)

Inspired by [35], a counterfactual prediction function is defined as:

H(T p
, X

p
,M

p) = Y(T p
, X

p
,M

p) + E[g(Up)|Xp
,M

p]. (C.2)

Here, H(T p
, X

p
,M

p) is what we aim to estimate. As the hidden confounders Up cannot be
observed, it is difficult for classical methods to directly fit this function from observational
data. Fortunately, based on the assumptions mentioned in Section 6.2, we have:

E[Y p
|X

p
,M

p
, A

p] = E[Y(T p
, X

p
,M

p) + g(Up)|Xp
,M

p
, A

p]

= E[Y(T p
, X

p
,M

p)|Xp
,M

p
, A

p]

+ E[g(Up)|Xp
,M

p
, A

p]

= E[Y(T p
, X

p
,M

p)|Xp
,M

p
, A

p]

+ E[g(Up)|Xp
,M

p]

=

Z
Y(T p

, X
p
,M

p)dF(T p
|X

p
,M

p
, A

p)

+

Z
E[g(Up)|Xp

,M
p]dF(T p

|X
p
,M

p
, A

p)

=

Z
H(T p

, X
p
,M

p)dF(T p
|X

p
,M

p
, A

p),

(C.3)

where F(T p
|X

p
,M

p
, A

p) is the conditional distribution of treatment. Here, H can be
estimated with an inverse problem based on observable functions E[Y p

|X
p
,M

p
, A

p] and
F(T p

|X
p
,M

p
, A

p). In our two-stage IV analysis, the first stage estimates F(T p
|X

p
,M

p
, A

p),
and the second stage estimates H(T p

, X
p
,M

p).
116

C2 DETAILS OF EXPERIMENTS 117

C2 Details of Experiments

In this section, we introduce more details of experiment setup for reproducibility of the
experimental results.

C2.1 Baseline Settings

We use the implementation released in the EconML package1 for S-Learner, causal forest,
and DeepIV. Here are more details for settings of each baseline:

• S-Learner: We use linear regression as the estimator in S-Learner.
• Causal forest: We set the number of trees as 100, the minimum number of samples

required to be at a leaf node as 10. The maximum depth of the tree as 10.
• Counterfactual regression: The number of epochs is set as 500, the learning rate is
0.001, batch size is 4000, representation dimension is 25. We choose Wasserstein-1
distance [37] for representation balancing.

• NetDeconf: We set the number of epochs as 500, learning rate as 0.005, representa-
tion dimension as 32, representation balancing weight as 0.5.

• DNDC: We set the number of epochs as 800, learning rate as 0.001, representation
dimension as 32.

• DeepIV: We use the default parameter setting in the EconML package.

C2.2 Experiment Settings

All the experiments in this work are conducted in the following environment:

• Ubuntu 18.04
• Python 3.6
• Scikit-learn 1.0.1
• Scipy 1.6.2
• Pytorch 1.10.1
• Pytorch-geometric 1.7.0
• Networkx 2.5.1
• Numpy 1.19.2
• Cuda 10.1

1https://github.com/microsoft/EconML

118 C DETAILS OF CHAPTER 6

C2.3 Dataset Details

Transaction. This dataset is collected from the anti-money laundering (AML) financial system
[218, 219] which provides transaction records between users over time. At each timestamp, we
construct a transaction network to represent the transactions occurring inside this timestamp.
In the transaction network, each user is represented by a node, and a transaction is an edge
between users. We use the user profiles such as location as their covariates.

Social. This dataset contains a real-world social network of people at different timestamps
based on tracking from smart devices [220]. Each node represents a user, and each edge
represents a friendship between two users.

APPENDIX D

Details for Chapter 9

D1 Theory

Theorem 2. The evidence lower bound (ELBO) to optimize the framework CLEAR is:

lnP (GCF
|S, Y

⇤
, G) � EQ[lnP (GCF

|Z, S, Y
⇤
, G)]� KL(Q(Z|G,S, Y

⇤)kP (Z|G,S, Y
⇤)).

(D.1)

PROOF.
lnP (GCF

|S, Y
⇤
, G)

= ln

Z

Z

P (GCF
, Z|S, Y

⇤
, G)dZ

= ln

Z

Z

Q(Z|G,S, Y
⇤)
P (GCF

, Z|S, Y
⇤
, G)

Q(Z|G,S, Y ⇤)
dZ

�

Z

Z

Q(Z|G,S, Y
⇤) ln

P (GCF
, Z|S, Y

⇤
, G)

Q(Z|G,S, Y ⇤)
dZ

=EQ[ln
P (GCF

, Z|S, Y
⇤
, G)

Q(Z|G,S, Y ⇤)
]

=EQ[ln
P (GCF

|Z, S, Y
⇤
, G) · P (Z|G,S, Y

⇤)

Q(Z|G,S, Y ⇤)
]

=EQ[lnP (GCF
|Z, S, Y

⇤
, G)]� EQ[ln

Q(Z|G,S, Y
⇤)

P (Z|G,S, Y ⇤)
]

=EQ[lnP (GCF
|Z, S, Y

⇤
, G)]� KL(Q(Z|G,S, Y

⇤)kP (Z|G,S, Y
⇤)).

(D.2)

⇤

D2 Reproducibility

In this section, we provide more details of model implementation and experiment setup for
reproducibility of the experimental results.

119

120 D DETAILS FOR CHAPTER 9

D2.1 Details of Model Implementation

D2.1.1 Details of the Prediction Model

The prediction model f is implemented with a graph neural network based model. Specifically,
this prediction model includes the following components:

• Three layers of graph convolutional network (GCN) [162] with learnable node
masks.

• Two graph pooling layers with mean pooling and max pooling, respectively.
• A two-layer multilayer perceptron (MLP) with batch normalization and ReLU

activation function.

The prediction model uses negative log likelihood loss. The representation dimension is set as
32. We use Adam optimizer, set the learning rate as 0.001, weight decay as 1e�5, the training
epochs as 600, dropout rate as 0.1, and batch size as 500. As shown in Table D.1, we observe
that the prediction model f achieves high performance of graph classification on all datasets.

TABLE D.1. Performance of the prediction model on the test data of the three
datasets.

Dataset Community Ogbg-molhiv IMDB-M

Accuracy 0.949± 0.006 0.897± 0.004 0.995± 0.002
AUC-ROC 0.993± 0.002 0.997± 0.002 1.000± 0.001
F1-score 0.947± 0.005 0.906± 0.004 0.994± 0.003

D2.1.2 Details of CLEAR

CLEAR is designed in a general way, which can be adaptable to different graph representation
learning modules and different techniques in graph generative models. Specifically, in our
implementation, we apply a graph convolution [162] based module as the encoder, and use
a multilayer perceptron (MLP) as the decoder. We also use MLPs to learn the mean and
covariance of the prior distribution of the latent variables. We choose the pairwise distance
using L2 norm to implement dX(·), and use cross entropy loss to implement dA(·). We
implement the counterfactual prediction loss with the negative log likelihood loss. Following
[207], we assume that the maximum number of nodes in the graph is k, and use a graph
matching technique to align the input graph and counterfactuals. The detailed implementation
contains the following components:

D2 REPRODUCIBILITY 121

• Prior distribution: Two different two-layer MLPs are used to learn the mean and
covariance of the prior distribution P (Z|G,S, Y

⇤), respectively.
• Encoder: The encoder contains a single-layer graph convolutional network, a graph

pooling layer with mean pooling, and two linear layers with batch normalization
and ReLU activation function to learn the mean and covariance of the approximate
posterior distribution Q(Z|G,S, Y

⇤).
• Decoder: The decoder uses two three-layer MLPs to output the node features and

graph structure of the counterfactual GCF , respectively. These MLPs use batch
normalization, and take ReLU as activation function in the middle layers. At the
last layer of decoder, the MLP which generates the graph structure uses Sigmoid as
activation function to output a probabilistic adjancency matrix Â

CF with elements in
range [0, 1].

Inspired by [207], we use a graph matching technique to align the input graph and coun-
terfactuals. Specifically, we learn a graph matching matrix M = {0, 1}k⇥n to match the
generated counterfactual with the original explainee graph. Here, n is the number of nodes
in the original graph, and M(i,j) = 1 if and only if node i is in G

CF and node j is in G, and
M(i,j) = 0 otherwise.

D2.2 Details of Experiment Setup

D2.2.1 Baseline Settings

Here we introduce more details of baseline setting:

• Random: For each explainee graph, it randomly perturbs the graph structure for at
most T = 150 steps. In each step, at most one edge can be inserted or removed. We
stop the process if the perturbed graph can achieve a desired predicted label.

• GNNExplainer: For each graph, GNNExplainer [24] outputs an edge mask which
estimates the importance of different edges in model prediction. In CFE generation,
we set a threshold 0.5 and remove edges with edge mask weight smaller than the
threshold. Although GNNExplainer can also identify important node features in a
similar way, when we apply GNNExplainer for CFE generation, the perturbation on
node features cannot be designed as straightforwardly as the perturbation on graph
structure, thus we did not involve perturbation on node features in GNNExplainer.

• CF-GNNExplainer: CF-GNNExplainer [25] is originally proposed for node clas-
sification tasks, and it only focuses on the perturbations on the graph structure.
Originally, for each explainee node, it takes its neighborhood subgraph as input. To
apply it on graph classification tasks, we use the graph instance as the neighborhood

122 D DETAILS FOR CHAPTER 9

TABLE D.2. Detailed statistics of the datasets.

Dataset Community Ogbg-molhiv IMDB-M

of graphs 10, 000 31, 957 1, 160
Avg # of nodes 20 20.8 9.4
Avg # of edges 45.0 22.4 32.8
Max # of nodes 20 30 15
of classes 2 2 2
Feature dimension 16 11 2
Avg node degree 2.24 1.07 3.4

subgraph, and assign the graph label as the label for all nodes in the graph. We set
the number of iterations to generate counterfactuals for each graph as 150.

• MEG: MEG [200] is specifically proposed for molecular prediction tasks. This
model explicitly incorporates domain knowledge in chemistry. The CFE generator is
developed based on reinforcement learning, and it designs the reward based on the
prediction on the counterfactual, as well as the similarity between the original graph
and the counterfactual. In each step, MEG enumerates all possible perturbations
(e.g., adding an atom) which are valid w.r.t. chemistry rules to form an action set.
We apply it to general graphs by removing the constraints of domain knowledge,
and enumerating the perturbations as: 1) adding or removing a node; 2) adding or
removing an edge; 3) staying the same. We set the number of action steps as 150.

D2.2.2 Datasets

For each dataset, we filter out the graphs with the number of nodes larger than a threshold k.
The setting of k (i.e., max # of nodes) can be found in Table D.2. As some of the baselines
need to be optimized separately for each graph, we compare the performance of all methods
on a small set of test data with 20 graphs for evaluation in RQ1. For other RQs, we evaluate
our framework on the whole test data.

1. Community. We first generate a synthetic dataset in which we can fully control the data
generation process. In this dataset, each graph consists of two 10-node communities generated
using the Erdös-Rényi (E-R) model [215] with edge rate p1 and p2, respectively. Specifically,
we simulate the data with the following causal model:

S ⇠ Uniform({0, ..., 9}), p1 = U1 ⇠ Uniform([0, 1]),

U2⇠Uniform([�S + b, �(S + 1) + b]), p2=max{0,min{1,�0.15p1 + U2}},

X ⇠ N (0, I), Y ⇠ Bernoulli(Sigmoid(deg1(A)� ADG1 + ✏y)). (D.3)

D2 REPRODUCIBILITY 123

U1 and U2 are two exogenous variables associated with p1 and p2, respectively. Notice that
p2 is determined by p1 and U2. Here, the auxiliary variable S provides help to infer the
value of exogenous variables (specifically, U2 in this case). We set � = 0.085, b = 0.15. p1
and p2 thereby generate the graph structure inside the two communities, respectively. We
also randomly add few edges between these two communities. The edges connecting two
communties are randomly generated with an edge rate of 0.05. In this way, the adjacency
matrix A of each graph is simulated. deg1(A) (determined by p1) denotes the average node
degree in the first community of each graph A. Label generation: The label Y is determined
by deg1(A) together with a Gaussian noise ✏y ⇠ N (0, 0.012). ADG1 is a constant, which
is the average value of deg1(A) over all graphs. Causality: To elicit a different predicted
label, deg1(A) in the counterfactual is supposed to be perturbed, while other variables can
remain the same. But considering that with the above causal model, when deg1(A) increases
(decreases), the average node degree in the second community deg2(A) (determined by p2)
should decrease (increase) correspondingly. We take this causal relation deg1(A)! deg2(A)

as our causal relation of interest, and denote it as R. Correspondingly, we define a causal
constraint for evaluation of causality: “(deg1(A

CF) > deg1(A))) (deg2(A
CF) < deg2(A))”

OR “(deg1(A
CF) < deg1(A))) (deg2(A

CF) > deg2(A))”.

2. Ogbg-molhiv. Ogbg-molhiv is adopted from the MoleculeNet [221] datasets. All molecules
are preprocessed with RDKit [222]. The original node features are 9-dimensional, containing
atom features such as atomic number, formal charge and chirality. In this dataset, each graph
stands for a molecule, where each node represents an atom, and each edge is a chemical bond.
As the ground-truth causal model is unavailable, we simulate the label and causal relation of
interest as follows: Label generation: Y ⇠ Bernoulli(Sigmoid(X1 � AVGx1)), where X1 is
the average value of a synthetic node feature over all nodes in each graph. This node feature
is generated for each node from distribution Uniform(0, 1). AVGx1 means the average value
of X1 over all graphs. Causality: We also add a causal relation of interest R between X1

and another synthetic node feature X2: X2 = U2 + 0.5X1. Here U2 is simulated in a similar
way as the Community dataset. Correspondingly, we have the following causal constraint:
“(XCF

1 > X1)) (XCF
2 > X2)” OR “(XCF

1 < X1)) (XCF
2 < X2)”.

3. IMDB-M. This dataset contains movie collaboration networks from IMDB. In each
graph, each node represents an actor or an actress, and each edge represents the collab-
oration between two actors or actresses in the same movie. Similarly as the above data-
sets, we simulate the label and causal relation of interest as follows: Label generation:
Y ⇠ Bernoulli(Sigmoid(deg(A)� ADG + ✏y). deg(A) is the average node degree in graph
with adjacency matrix A. ADG is the average value of deg(A) over all graphs. Causality: We
also add a causal relation of interest R from the average node degree to a synthetic node feature:

124 D DETAILS FOR CHAPTER 9

X1 = U1+0.5deg(A)/ADG, where U1 ⇠ Uniform[0.1S, 0.1S+0.1], S ⇠ Uniform{0, ..., 9}.
We denote the causal relation deg(A)! X1 as R, and define an associated causal constraint:
“(deg(ACF) > deg(A))) (XCF

1 > X1)” OR “(deg(ACF) < deg1(A))) (XCF
1 < X1)”.

D2.2.3 Experiment Settings

All the experiments are conducted in the following environment:

• Python 3.6
• Pytorch 1.10.1
• Pytorch-geometric 1.7.0
• Scikit-learn 1.0.1
• Scipy 1.6.2
• Networkx 2.5.1
• Numpy 1.19.2
• Cuda 10.1

In all the experiments of counterfactual explanation, each dataset is randomly split into
60%/20%/20% training/validation/test set. Unless otherwise specified, we set the hyperpara-
meters as ↵ = 5.0 and � = 10.0. The batch size is 500, and the representation dimension
is 32. The graph prediction models trained on all the above datasets perform well in label
prediction (AUC-ROC score over 95% and F1 score over 90% on test data). We use NetworkX
[170] to generate synthetic graphs. In our CFE generator CLEAR, the learning rate is 0.001,
the number of epochs is 1,000. All the experimental results are averaged over ten repeated
executions. The implementation is based on Pytorch. We use the Adam optimizer for model
optimization.

D3 More Experimental Results

D3.1 Ablation Study

Fig. D.1 shows the results of ablation studies on the IMDB-M dataset. The observations are
generally consistent with the observations on other two datasets as described in Section 4.6.

D3.2 Case Study

To better illustrate the explainability provided by CFE, we further conduct case studies to
compare the original graphs and their counterfactuals. In the Community dataset, Fig. D.2

D3 MORE EXPERIMENTAL RESULTS 125

9DOLG
LW\
3UR[LP

LW\;
3UR[LP

LW\$&DXVD
OLW\

���
���
���
���
���
���
���
���

3
HU
IR
UP
DQ
FH

�1&
�13$

�13;
�13

�9$(
&/($5

FIGURE D.1. Ablation studies on
the IMDB-M dataset.

FIGURE D.2. Case study.

��� ��� ��� ����
EDWFK�VL]H

����

����

����

9
DO
LG
LW\

9DOLGLW\
3UR[LPLW\; ���

���
���
���
���
���

3U
R[
LP
LW\
;

(A) Batch size

� �� �� ��
UHSUHVHQWDWLRQ�GLPHQVLRQ

����

����

����

9
DO
LG
LW\

9DOLGLW\
3UR[LPLW\; ���

���
���
���
���
���

3U
R[
LP
LW\
;

(B) Representation dimension

FIGURE D.3. Parameter studies on Ogbg-molhiv regarding batch size and
representation dimension.

shows the change from original graphs to their counterfactuals w.r.t. the average node degree
in the first community and in the second community, i.e., deg1(A) and deg2(A). Here, Fig.
D.2 has the same x-axis and y-axis as Fig. 9.5. In Fig. D.2, we randomly select 6 graphs and
show them in different shapes of markers. The colors denote their values of S with the same
colorbar in Fig. 9.5(a-c). In Fig. D.2, we connect the pairs (original, counterfactual generated
by CLEAR) with solid lines, and connect the pairs (original, counterfactual generated by
CLEAR-VAE) with dashed lines. We have the following observations: 1) Compared with the
input graph, the counterfactuals generated by CLEAR-VAE and CLEAR both make the correct
perturbations to achieve the desired label (moving the variable deg1(A) across the decision
boundary at around deg1(A) = 2); 2) The counterfactuals generated by CLEAR better match
the causality than CLEAR-VAE in two aspects: a) Qualitatively, the counterfactuals generated
by CLEAR better satisfy the causal constraints introduced in the dataset description, i.e.,
deg2(A) increases (decreases) when deg1(A) decreases (increases); 2) Quantitatively, the
changes from original graphs to their counterfactuals fit in well with the associated structural
equations (deg1(A), U2)! deg2(A). Notice that in counterfactuals, deg1(A) changes but U2

is supposed to maintain its original value.

126 D DETAILS FOR CHAPTER 9

D3.3 Parameter Study

Here, we conduct further parameter study with respect to the batch size and representation
dimension. Specifically, we vary the batch size from range {100, 500, 1000, 2000}, and the
representation dimension from range {8, 16, 32, 64}. From the results shown in Fig. D.3,
we observe that the performance of CLEAR under different settings of these parameters is
generally stable. This observation further validates the robustness of our framework.

D4 Further Discussion

CFEs in Other Tasks on Graphs. In this work, we mainly focus on the task of graph
classification, but it is worth noting that the proposed framework CLEAR can also be used for
counterfactual explanations in other tasks such as node classification. More specifically, in a
node classification task, CLEAR can generate CFEs for nodes with the same loss function
in Eq. (9.5). But differently, the encoder here learns node representations instead of graph
representations at the bottleneck layer. Besides, in this case, Y ⇤ is a vector which contains the
desired labels for all the training nodes on graph G, and S is the vector of auxiliary variables
for all the training nodes. Notice that in a graph, nodes are often not independent. To obtain
a valid counterfactual for an explainee node, not only can we change the explainee node’s
own features and adjacent edges, but we can also change other nodes’ features or any other
part of the graph structure. Therefore, the decoder still needs to generate a graph G

CF as a
counterfactual (but this process can be more efficient, as in many scenarios, we only need to
generate counterfactuals for each node’s neighboring subgraph instead of the whole graph).
Similarly, our framework can also be extended to generate CFEs for graphs in other tasks,
such as link prediction.

Limitation, Future Work, and Negative Societal Impacts. In this work, we mainly focus
on promoting optimization, generalization, and causality in counterfactual explanations on
graphs, while other important targets (e.g., actionability [223], sparsity [224], diversity
[225], and data manifold closeness [226]) in traditional counterfactual explanations could
be considered in graph data in the future. Noticeably, the definition and evaluation metrics
with respect to these targets should be specifically tailored for graphs, rather than directly
employed in the same way as other types of data. Besides, in terms of causality, another
interesting direction is incorporating different levels of prior knowledge and assumptions
regarding the underlying causal model into CFE generation on graphs, and quantifying the
influence of different levels of prior knowledge and assumptions on the CFE performance.
Currently, we have not found any negative societal impact regarding this work.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Part I. Background
	Chapter 1. Introduction
	1.1. Graphs and Graph Machine Learning
	1.1.1. What is Graph Machine Learning?
	1.1.2. Limitations of Graph Machine Learning

	1.2. Causal Inference and Graph
	1.2.1. What is Causal Inference?
	1.2.2. Causal Inference on Graphs

	1.3. Research Goal, Challenges, and Contributions

	Chapter 2. Related Work
	2.1. Causal Inference
	2.1.1. Causal Inference on i.i.d. Data
	2.1.2. Causal Inference on Graphs

	2.2. Trustworthy Graph Learning and Causality

	Part II. Improve Causal Inference on Graph Data with Graph Learning Techniques
	Chapter 3. Overview of Part II
	Chapter 4. Causal Effect Estimation with Hidden Confounders on Dynamic Graphs
	4.1. Problem Definition
	4.2. Proposed Method
	4.2.1. Confounder Representation Learning
	4.2.2. Outcome and Treatment Prediction
	4.2.3. Representation Balancing
	4.2.4. Loss Function

	4.3. Experimental Evaluation
	4.3.1. Datasets and Simulation
	4.3.2. Evaluation Metrics
	4.3.3. Experiment Settings
	4.3.4. ITE Estimation Performance under Varying Influence from Historical Information
	4.3.5. ITE Estimation Performance under Varying Influence from Network Structure
	4.3.6. The Impact of Representation Balancing
	4.3.7. Ablation Study

	4.4. Real-world Application
	4.4.1. Motivation: Assessing the Impact of Covid-19 Related Policies
	4.4.2. Dataset Collections and Related Policies
	4.4.3. Formulating Policy Assessment as a Causal Effect Estimation Problem
	4.4.4. Causal Assessment of COVID-19 Policies

	Chapter 5. Causal Effect Estimation under Interference on Hypergraphs
	5.1. Problem Definition
	5.2. Proposed Method
	5.2.1. Confounder Representation Learning
	5.2.2. Interference Modeling
	5.2.3. Outcome Prediction

	5.3. Experimental Evaluation
	5.3.1. Datasets and Simulation
	5.3.2. Experiment Settings
	5.3.3. ITE Estimation Performance
	5.3.4. Ablation Study
	5.3.5. A Closer Look at High-Order Interference
	5.3.6. Sensitivity Analysis

	Chapter 6. Causal Effect Estimation under Entangled Treatments
	6.1. Problem Definition
	6.2. Assumptions
	6.3. Proposed Method
	6.3.1. Overall Pipeline
	6.3.2. Node Representation Learning
	6.3.3. Entangled Treatment Modeling
	6.3.4. Outcome Prediction

	6.4. Experimental Evaluation
	6.4.1. Datasets and Simulation
	6.4.2. Performance of Different Methods
	6.4.3. Performance under Different Levels of Treatment Entanglement and Confounders
	6.4.4. Case Study on Real-world Hospital Data

	Part III. Improve Graph Machine Learning with Causality
	Chapter 7. Overview of Part III
	Chapter 8. Counterfactual Fairness in Node Representation Learning
	8.1. Problem Definition
	8.2. Proposed Method
	8.2.1. Subgraph Generation
	8.2.2. Counterfactual Data Augmentation
	8.2.3. Fair Representation Learning

	8.3. Experimental Evaluation
	8.3.1. Datasets
	8.3.2. Experiment Settings
	8.3.3. Prediction Performance and Fairness
	8.3.4. Ablation Study

	Chapter 9. Counterfactual Explanation for Graph Machine Learning Models
	9.1. Problem Definition
	9.2. Proposed Method
	9.2.1. CLEAR-VAE: Backbone of Graph Generative Counterfactual Explanations
	9.2.2. CLEAR: Improving the Causality in Counterfactual Explanations

	9.3. Experimental Evaluation
	9.3.1. Datasets and Simulation
	9.3.2. Performance of Different Methods
	9.3.3. Ablation Study
	9.3.4. Explainability through CFEs

	Part IV. Summary and Future Work
	Chapter 10. Summary and Future Work
	References
	Appendix A. Details for Chapter 4
	A1. Proof of Theory
	A2. More Experiments for DNDC
	A2.1. Hyperparameter Study

	A3. Data and Analysis for Covid-19 Related Information
	A3.1. Observational Data
	A3.2. Preliminary Data Analysis

	Appendix B. Details for Chapter 5
	B1. More Experimental Results
	B1.1. ITE Estimation Performance under Different Settings on All the Datasets
	B1.2. Case Studies

	B2. Details of Experimental Settings

	Appendix C. Details of Chapter 6
	C1. Analysis
	C2. Details of Experiments
	C2.1. Baseline Settings
	C2.2. Experiment Settings
	C2.3. Dataset Details

	Appendix D. Details for Chapter 9
	D1. Theory
	D2. Reproducibility
	D2.1. Details of Model Implementation
	D2.2. Details of Experiment Setup

	D3. More Experimental Results
	D3.1. Ablation Study
	D3.2. Case Study
	D3.3. Parameter Study

	D4. Further Discussion

