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ABSTRACT 

There is a growing body of data from game theory and industrial organization 

experiments that reveals systematic deviations from Nash equilibrium behavior. In this 

thesis, the perfectly rational decision-making embodied in Nash equilibrium is 

generalized to allow for endogenously determined decision errors. Firms choose among 

strategies based on their expected payoffs, but make decision errors based on a 

probabilistic or quanta! choice model. Such errors may either be due to mistakes or to 

unobserved random variations in payoff functions. For a given error distribution a 

quanta! response equilibrium is a fixed point in choice probabilities. Closed-form 

solutions for equilibrium price distributions with endogenous errors are derived for 

models of price competition. Numerical methods are used to examine more complex 

market models. This thesis establishes differences in the qualitative properties of Nash 

and quanta! response equilibria in models of price competition. 

This thesis consists of two parts. In the first part, chapters 3 and 4, a parametric 

class of quanta! response functions is derived from a model of multiplicative random 

errors. This "power function" decision rule is used to derive the equilibrium price 

distribution with endogenous errors in a simple model of price competition. The 

power-function quanta! response equilibrium is appealing since it thereby accounts for 

systematic deviations from the Bertrand-Nash equilibrium. 



The second part of this thesis, chapters 5 and 6, applies the quanta! response 

equilibrium to a series of increasingly complex models, with step-function demand and 

supply structures, of the type used in market experiments. In some of these models, the 

price distribution in a quanta! response equilibrium is affected by changes in structural 

variables although the Nash equilibrium remains unaltered. It is also shown that the 

quanta! response equilibrium stochastically dominates the Nash equilibrium in mixed

strategies in a model with market power and increasing costs. The Nash and quanta! 

response equilibria differ in a model with market power and constant costs. In other 

models, however, it is shown that the Nash and quanta! response equilibria are identical. 

This is the case in a (first-price) all-pay auction presented in chapter 6. 
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CHAPTER 1 

INTRODUCTION 

This thesis generalizes the standard Nash equilibrium analysis of Bertrand-Nash 

competition to allow for endogenously determined choice errors. In this model, players 

make decision errors based on a probabilistic or quantal choice model, and understand 

other players do so as well. The first part of this thesis derives a parametric class of 

quantal response functions from a model with multiplicative errors. The second part of 

the thesis investigates the use of the quantal response equilibrium in models of price 

competition. 

Although the Nash equilibrium is widely used in economic theory, there is some 

dissatisfaction with this concept. One criticism is that rationality is less restrictive than 

the Nash equilibrium implies. In general, there are many more strategies that may be 

considered rational choices, according to some beliefs, than merely those choices 

described as Nash equilibrium strategies (Bernheim (1984) and Pearce (1984)). An 

opposite criticism finds the Nash equilibrium concept to be too unrestrictive because it 

allows for behavior that is intuitively unreasonable. The literature on refinements, 

beginning with Selten (1975), has developed a series of proposed rules for eliminating 

such implausible equilibria. Articles on refinements typically begin with examples 
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having several Nash equilibria, some of which are intuitively implausible because, for 

instance, they are based on strategies that can be interpreted as noncredible threats.' 

Some economists have therefore proposed that an analysis of learning and adjustment is 

the most useful way to proceed. The literature on the topic of evolutionary game theory 

consistently adopts this assumption, going back at least to Alchian' s (1950) seminal paper 

and to Simon's (1957) work on bounded rationality. 2 There is also much recent work 

on naive (non-strategic) learning models, showing behavior that converges to a Nash 

equilibrium. 3 

Most theorists are uneasy about models of limited rationality, in part because of 

the looseness and the multiplicity of possible approaches. Yet data from laboratory 

games with human subjects provide empirical regularities that can guide theoretical work 

on learning and adjustment. As a first approximation, evidence from game experiments 

tends to conform to Nash equilibrium predictions (Davis and Holt, 1993, chapter 2). 

However, some features of the data from market experiments have been difficult to

explain in this way. Systematic deviations from rational behavior have been observed 

1 For further discussion of related issues, see Kohl berg and Mertens (1986) and Kreps 
and ·wilson (1982). 

2 This literature is characterized by individuals who make choices based on rules of 
thumb or who have some very rigid method of choice. 

3 See Kalai and Lehrer (1991) and the references therein. Brandts and Holt (1992), 
(1993), show .that adaptive behavior in laboratory games can result in equilibrium 
patterns that are ruled out by almost all standard refinements of the sequential Nash 
equilibrium. 
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in experiments with the Nash equilibrium at the boundary of the set of feasible decisions, 

e.g., in ultimatum and public goods games.4 For instance, in a 1-dollar ultimatum 

bargaining game, the sender proposes a split which the receiver must either accept or 

reject. A rejection results in earnings of O for both players. For this game, a subgame 

perfect Nash outcome is 1 penny for the receiver and 99 cents for the sender. Yet the 

actual outcomes of experimental ultimatum games are not nearly so asymmetric. 

The ultimatum game can be given a simple market interpretation, with a single 

seller proposing a price that the buyer must either accept or reject. In market games 

with multiple price-setting sellers, however, the Nash equilibrium may involve 

randomization if sellers' production capacities are limited. Experimental data seem to 

track the qualitative features of Nash equilibria in such games, but prices are often much 

higher than the equilibrium predictions (Davis and Holt, 1994). 

In order to sort out the reasons for the observed departures from the Nash 

prediction, a useful positive theory of behavior in games could begin by qualifying the 

assumption that individuals are perfect maximizers of their own money payoffs. Several 

authors have relaxed the perfect rationality assumption in experimental games: Brown 

and Rosentahl (1990), Camerer and Weigelt (1988), Mckelvey and Palfrey (1992, 1993), 

Banks et al. (1994), Brandts and Holt (1992), and Palfrey and Rosenthal (1991, 1992). 

4 See Davis and Holt (1993), chapters 5 and 6. One way to move the Nash equilibrium 
away from the boundary in these games is suggested by Palfrey and Prisbrey (1993) and 

Prisbrey (1994). 
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One way is to introduce decision error, i.e. in choosing their strategies players make 

mistakes. Players 'tremble' and therefore every strategy (even a dominated strategy) is 

played with a strictly positive probability. In the case of vanishingly small strategy 

errors, this approach was originally used to rule out unintuitive criteria in, especially, 

extensive form games (Selten, 1975). 

As a first step, it is useful to distinguish two sources of deviations from the Nash 

equilibria as calculated from expected money payoffs. First, systematic deviations may 

be due to the importance of neglected factors, such as altruism, envy, fairness, etc. 

These factors are likely to be more important in bargaining and public goods games than 

in impersonal market situations. Second, nonsystematic or random "errors" can follow 

from mistakes in recording decisions, from time constraints as in chess games, or from 

random errors in evaluating small differences in expected payoffs. Experimental 

evidence suggests that nonsystematic errors can occur in strategic situations (McKelvey 

and Palfrey, 1993) and also in simpler individual decision-making tasks (Anderson, 

1994). 

This thesis investigates the quanta! response equilibrium in models of price 

competition in which boundedly rational players interact. In contrast to the classical 

conception of rationality that is based on unlimited capacity, boundedly rational players 

are limited by their own computational ability. Boundedly rational players have been 

most commonly characterized by either the random choice or the random utility version 

of discrete choice theory. McKelvey and Palfrey (1993) used the discrete choice 
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framework to analyze the strategic interaction of multiple individuals. They proposed 

a game theoretic equilibrium concept, the quanta! response equilibrium. In this model, 

players make choice errors based on a quanta! or discrete choice model, and assume 

other players do so as well. The added complexity in applying the quanta! response 

approach to game theory - as opposed to individual decision making - is that the choice 

probabilities of the players have an important interactive component, since they are 

determined simultaneously in equilibrium. 

To illustrate the effects of choice errors in a market model, consider the quanta! 

response equilibrium for a simple Bertrand game with zero production cost and two price 

choices. In this game, each seller simultaneously chooses between a high price PH, and 

a low price PL. The combination of prices determines payoffs as shown in the table 

below, where seller 1 's payoff is listed to the left in each cell. The profits from 

defection, -ird, exceed those from cooperation, -ire, which in turn exceed the profit -irn from 

the Nash equilibrium: -ird > -ire > -irn > 0. The only Nash equilibrium outcome is 

(7rn,7rJ. 
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Seller 2 

PH P
L 

Seller 1 PH 7rc , 1rc 
0 ' 7rd

P
L 7rd' 0 7rn, 7T'n 

Next, consider the effects of decision errors in this price game. A particularly 

simple approach to modeling such errors is based on the random choice framework 

initiated by Luce (1959). 5 If the expected payoff of decision i is ui � 0, then under the 

Luce model, with two decisions, the probability of choosing i is 

(1) 
Pr ( choose i) = 

u
,.

i = 1, 2. 

These choice probabilities reflect boundedly rational behavior in the sense that a player 

does not always choose the decision with the higher payoff. Let CJ denote the probability 

that seller 2 chooses the cooperative decision PH. Given this probability, seller 1 's 

expected payoff is uH = CJ7rc for decision PH and uL = CJ7rd + (1-CJ)1r
0 

for decision PL. 

Using the Luce choice function (1), player 1 will choose decision Pi with probability 

5 The Luce model is explained in detail in the next chapter. 



(2) Pr ( choose P
H

) =

7 

(j1fc + (j1fd + (1 -(j) 7rn

The equilibrium consistency requirement is that choice probabilities correspond to beliefs. 

In particular, the right side of equation (2) must equal (j, which provides an equation that 

can be solved for (j: 6 

(3) 
7r - 7r C n (j = -----

Clearly, the probability (j that a seller chooses the high "cooperative" price PH is 

positively related to the gain from cooperation, ( 1rc-1r J, and negatively related to the 

payoff from defection, 1rd. Since PL is a dominant strategy in the Nash game without 

errors as long as 1rd > 1rc, (j can be interpreted as the probability of making an error. 

This thesis investigates the quantal response equilibrium in markets in which 

sellers post prices simultaneously. The laboratory implementation of this model is 

commonly called a "posted offer auction." The posted offer institution is interesting 

because laboratory data suggest that prices deviate from Bertrand-Nash predictions in a 

systematic manner. Although this thesis has implications for experimental data, it mainly 

focuses on differences in the qualitative properties of Nash and quantal response 

equilibria. 

Chapter 2 first describes models of individual decision making and proceeds to 

introduce the quanta! response equilibrium. In chapter 3, a parametric class of quanta! 

response functions is derived from a model with multiplicative random errors. This 

6 Note that the Nash equilibrium condition, (j=O, does not satisfy (3). 
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functional form is a useful method of modeling decision errors in markets with posted 

prices. The power function derivation also provides a convenient parameterization. At 

one extreme, individuals choose randomly, independent of expected payoffs. At the 

other extreme, individuals always choose the decision with the highest expected payoff. 

The power function decision rule is used in chapter 4 to derive the equilibrium price 

distribution in a simple duopoly model. 

The second part of this thesis applies the approach derived in the first part. 

Chapter 5 examines the consequences of market structure for equilibrium price 

distributions. In this chapter, the quanta! response equilibrium is computed for a series 

of price-setting models, each type reflecting designs actually used in market experiments. 

In some of these models, the price distribution in a quanta! response equilibrium is 

affected by changes in structural variables although the Nash equilibrium remains 

unaltered. Chapter 6 compares the Nash and the quantal response equilibrium for 

discrete and continuous bid choices in a (first-price) all-pay auction model. In this 

model, each firm submits a bid for a prize. All firms forfeit their bids, but the firm 

submitting the highest bid wins the prize. Two particular parametric classes of quantal 

response functions, the logit and the power function, are used to show how the quantal 

response equilibrium of the all-pay auction can be computed. 



CHAPTER 2 

PROBABILISTIC THEORIES OF CHOICE 

2.1 INTRODUCTION 

The first part of this chapter describes several models of individual decision 

making. Anderson, de Palma, and Thisse ( 1992) distinguish two interpretations of 

discrete choice theories. In the first interpretation the utility is constant but the decision 

rule is random (Luce, 1959; Tversky, 1972a). By contrast, the second interpretation 

assumes that utility is random while the decision rule is constant (Thurstone, 1927; 

McFadden, 1984). These approaches are formulated for individual decisions where the 

probability of ma.king a decision is a function of the expected payoffs of all possible 

decisions. The quanta! response equilibrium, presented at the end of this chapter, analyzes 

such behavior in an interactive environment. This equilibrium concept has its origins in 

discrete choice response models. However, the quanta! response equilibrium requires the 

expected payoffs themselves to be functions of the discrete choice probabilities, while the 

decision maker's expected payoffs in standard discrete choice models are exogenous. 
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2.2 INDIVIDUAL DECISION THEORIES OF CHOICE 

When confronted with the same alternatives. under similar conditions. individuals 

do not consistently make the same choice. Some explanations for such behavior include 

learning, changes in taste over time. and saturation. However, even when the effect of 

such factors is minimal, the lack of consistency persists. To account for this observed 

choice behavior, some theorists have proposed that individual choice is the result of a 

random process. Probabilistic theories of choice can be divided into two basic types: 

constant utility models and random utility models. 

Constant utility models assume that each alternative has a scale value or fixed 

"utility". Therefore. the probability of choosing one alternative over an other is a function 

of the distance between the "utilities" derived from the two alternatives. Under this 

interpretation. the decision problem is viewed as a discrimination problem where the 

individual is trying to determine which alternative would yield higher scale value. The 

greater the distance between the scale values, the easier for the individual to differentiate 

among alternatives (Luce, 1959; Tversky, 1972a). By contrast, random utility models 

assume that the individual always chooses the alternative that has the highest utility, but 

the difference is that the utilities themselves are random variables rather than constants 

(Thurstone. 1927; McFadden, 1984). The actual choice mechanism is basically 

deterministic for the individual, but the utility of each alternative is random from the point 

of view of the modeler. 
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THE LUCE MODEL 

Luce (1959) has proposed a constant utility model based on the notion that 

individual choice behavior can be modeled by a random process. 1 Luce assumes that 

choice probabilities satisfy a simple. but powerful, axiom that serves as a cornerstone of 

the model. To illustrate the Luce choice axiom, consider the following setup. Assume 

that all the choice probabilities are neither O nor 1. Let U be a finite set of alternatives 

and define J to be any subset of U that contains a given alternative i. Also. let Pr(J;U) 

be the probability of choosing an element of J when the set of feasible choices is U. 

Luce· s choice axiom states that the probability of choosing a particular alternative from 

the entire set U, equals the probability that the alternative will be in the subset J, 

multiplied by the probability of choosing some alternative from J: 

(1) Pr(i; U)  = Pr(i;J) Pr(J; U) for i El, JcU. 

The Luce choice axiom in (1) implies that irrelevant alternatives outside of J can be 

deleted from any choice without affecting the ratios of choice probabilities between two 

alternatives in the subset J. Hence this implies independence of irrelevant alternatives. 

To see this, consider the equations in (2): 

(2) Pr( I; U) = Pr( I ;J) Pr(J;U) 

Pr(2; U) =Pr(2;J) Pr(J; U) 

Dividing one probability from the other. one obtains the constant ratio rule: 

1 Anderson. de Palma. and Thisse ( 1992) discuss in detail the Luce model. 



(3) 
Pr( 1; U) Pr( 1 ;J) = _...;..____;_ 
Pr(2; U) Pr(2;1) 

Since J can be { 1,2}, equation (3) can also be expressed as 

(4) 
Pr(l ; U) _ Pr(l ; { 1,2 } ) 
Pr(2;U) Pr(2;{1,2}) 

12 

The above rule corresponds to a version of the property known as independence of 

irrelevant alternatives. 2 

An important consequence of the Luce choice axiom is the existence of a scale 

value for each alternative, such that the probability of choosing that alternative equals its 

scale value divided by the sum of scale values for all alternatives. Such a scale value is 

based on the independence of irrelevant alternatives property as it is shown next. Because 

the summation over all j of PrU; U) equals 1, 

(5) 
Pr( i; U )  = Pr( i; U )

L Pr(}; U) 

j 

=-----

L 
PrU; U )

1 Pr(i; U )

Alternatively, the constant ratio rule (3) can be used to express (5): 

(6) 

1 Pr(i; U) = ----

L 
PrU; U )

J Pr(i ; U)

=------

L 
P

rU_
; 
{�,}.})

1 Pr( z ; { z ,J } ) 

Now let y be an arbitrary element from the set U and define the scale value of a given 

: Luce (1959) shows that the constant ratio rule in (3) is equivalent to the choice axiom 
in (I).
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alternative i, v,: 

(7) v. = Pr(i; {y,i) ) = Pr(i; U)
1 Pr(y;{y,i)) Pr(y;U)'

where the final equation follows from (3 ). By applying the constant ratio rule again, 

equation (7) implies: 

(8) 2'..!_ = Pr( 1 ; U)Pr( y; U) = Pr( 1 ; U) = Pr(l; { 1 , 2})

v2 Pr( y;U)Pr(2;U) Pr(2;U) Pr(2;{1,2})

From equations (7) and (8), we have the following result: 

1 1 V 

Pr(i; U) 
= l =

---

(9) 
L 

Pr(j'.{i.'
J_}) 
:E3- LVJ

1 Pr( z;{z ,j)) J vi 
j 

Thus, if the Luce choice axiom is satisfied, the choice probabilities can expressed as 

proportions of scale values, as in (9). With two alternatives, (9) becomes 

(10) 
v 1 Pr ( 1 ; { l , 2 } ) = --

v 1 + v2 

Clearly, from (10) the probability of choosing alternative 1 increases according to the 

scale value associated with it, but decreases with the scale value associated with decision 

2. Thus the Luce model implies boundedly rational behavior in the sense that a player

does not always choose the decision with the highest scale value. Block and Marshack 

( 1960) show that an equivalence between the Luce model and the multinomial logit model 



14 

exits. To see this, let xi
=ln vi and rewrite (10) as (e')/(ex1 + e2).

Note that (7) is unique up to multiplication by a positive constant. To see this, 

let z be another arbitrary element from the set U. Hence, the new scale value is given as 

(11) • Pr( i ; { z , i} ) 
V. 

= _ _:__:____;___;_ 
1 Pr( z , {::: ; i} ) 

Using equation (6) and the definition of v,, we have 

(12) v.* = Pr( i; U)  = Pr(y; U)Pr(i; U) = Pr(y; U)v. = Av ,
1 Pr( z; U) Pr( z; U )Pr( y; U) Pr( z; U) 1 1 

where A is a constant. 

One criticism of the probabitistic choice rule in (9) (and thus of independence of 

irrelevant alternatives) is that it may not hold true in situations where the choice is divided 

in some manner. To illustrate this criticism, Debreu ( 1960) offered the following example. 

Assume that the choice set contains three elements: a recording of the Debussy quartet, 

D; a recording of a Beethoven symphony conducted by f. Br; and a recording of the same 

symphony conducted by k, Bk. Let U be the entire recording music menu and J be the 

subset containing the Beethoven recordings, i.e., Br and Bk . Suppose that a subject selects 

Br with probability 1/2, when presented with {Bk,Br}, so that these alternatives have the 

same scale values, i.e., v8, 
= v8,. Further, when the subject is confronted with either {D, 

Bk} or {D, Br}, D is selected with probability 3/5. From ( l  0), the probability 3/5 implies 

v0 = (3/2)v8 , 
= (3/2)v8,. According to the Luce model with these scale values, when 

presented with {D, Br, Bk}, D must be chosen with probability 3/7. Thus when making 
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a decision between D and Br, the subject would rather have Debussy. However, when 

choosing between D. Br, and Bk, while being indifferent between Br and B
k
, the subject 

is more likely to choose one of the Beethoven recordings. Debreu concluded that the 

Luce choice axiom is only appropriate when the choice sets have equally dissimilar 

alternatives. Another possible explanation of subjects' incorrect choices is that they are 

due to mistakes in recording decisions. so the addition of "irrelevant" choice alternatives 

can affect choice probabilities. 

THE TVERSKY MODEL 

Tversky ( 1972a) and others have argued that the restrictions imposed by the 

independence of irrelevant alternatives property of the Luce model are very unappealing 

in many applications. One alternative is the elimination-by-aspects model proposed by 

Tversky. This model can be interpreted as the result of a choice process in which each 

"alternative" choice is characterized by a finite number of "aspects". The characteristics 

or aspects are taken as desirable features from the point of view of a given individual. 

Each aspect has a positive "utility" value. The decision maker picks an aspect using a 

Luce-like ratio-of-utility-values rule and then restricts further attention to alternatives that 

possess the aspect selected. Then another aspect is selected, etc. In each stage the 

individual samples from the remaining aspects, eliminating alternatives that fail to have 

the sampled aspect. The selection of aspects is random. �ut the elimination of alternatives 

which lack the selected aspect is deterministic. 
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To illustrate this model, suppose there are four aspects, I through IV, with (utility)

values v1.v 11 ,vrn and Vrv. which are assumed to be strictly positive. 3 The utility values can

differ across aspects. since some aspects may be more important than others to the

decision makers. Assume that the choice set U contains the same elements, {D,Bf,Bd.

These alternatives, along with their associated aspects are assumed to be as follows:

I II III IV 

D V
I 0 V

m 
Vrv

Bf 0 V
u V

m vlV

Bk V 
l V

u 0 Viv

The fourth aspect that is common to all choices does not enter in the decision 

process and hence is eliminated from the table above, as indicated by the grey shading. 

It follows from the payoff table structure that D would be chosen if aspect I is selected 

first (which rules out B f) and aspect III is selected second (which rules out Bk). Similarly, 

D would be also chosen if aspect III were selected first and aspect I were selected second 

Thus the probability of choosing alternative D is calculated as follows: 

3 This is a modified example from Tversky ( 1972b ). 281-84. 
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Pr(D, {D, Br, Bd) = Pr( I chosen as the 1st aspect)*Pr( III chosen as the 2nd aspect) 

+ Pr( II chosen as the 1st aspect)*O

+ Pr( III chosen as the 1st aspect)*Pr( I chosen as the 2nd aspect).

The probability that aspect I is selected first is assumed to be a ratio of v
1 to the 

sum of the utilities for all three options: v/(v,+vu+vm). The probability that III is selected 

second is a ratio of Vm to the sum of the utilities for the remaining two 

options:vu/(vu+vm). It follows from this logic that the probability of choosing D is 

(13) 

Pr( D; {D,B
f'
Bk}) =

An interesting feature of this model is that it is capable of addressing Debreu' s 

critique. Clearly, in Debreu·s example the two Beethoven recordings share more aspects 

in common than either shares with the Debussy recording. This is illustrated in the simple 

example below: 

I II 

D VI 0 

Br 0 Vu

Bk 0 Vu 
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Let v1 
= 3 and Vu = 2. Notice that in a pairwise comparison between D and Bk . 

D is chosen if aspect I is selected first, with occurs with probability v/(v
1 

+ vu) = 3/5.

In choosing between D, Bk, and Bf, the probability of choosing D is again 3/5 since the 

only way that D is to be chosen is for aspect I to be selected first, which happens with 

probability v/(v1 
+ vu). In the Luce model. the probability of choosing D is the ratio of 

v1 to the sum of the utilities for all three options: v/(v
1 
+ vu + v

111
) = 3/7. Hence the 

Tversky model predicts a higher probability of choosing the alternative D from {D,B
f
,Bk} 

than in the Luce model. This higher probability is more consistent with the preference 

for D in the choice between D and Bf or between D and Bk. 

THE RANDOM UTILITY APPROACH 

The Tversky model is one way of accounting for similarities among alternatives. 

Another approach is the multinomial probit model, in which the residuals in the random 

utility-model have a multivariate normal distribution. This model was first proposed by 

Thurstone (1927). This model was constructed in order to explain the fluctuations in the 

psychological evaluation of objects. Thurstone provides a theory for converting the 

proportion of times one alternative is judged greater than another into a measure of the 

subjective difference between them. The model assumes that in each comparison of 

alternatives, a judgment is made as to which alternative is preferred. Such comparisons 

are replicated independently, and the proportion of judgments between the two alternatives 
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is determined. The model further assumes that when an individual chooses between the 

two alternatives -- e.g, a judgement about which one is greater -- each alternative causes 

a subjective experience of some degree of intensity. Thus, the individual's response 

reflects which alternative gives rise to the highest subjective experience. However, in 

independent replications, an alternative does not necessarily cause the same intensity of 

subjective experience. Rather there is a normal distribution of such "discriminal 

processes". as Thurstone calls them. reflecting their relative probability of occurrence on 

any one trial. To illustrate Thurstone's model, consider the case of two alternatives. 

Assume that a subject's utility derived from alternatives I and 2 can be written as 

where v 1 - v2 is the measurable psychological distance and thee; are the residual random 

elements. Now consider the probability that the first alternative will be chosen: 

Pr( choose 1 ) = Pr(v 1 + e1 >v
2 

+ e
1
) 

= Pr(v 1 - v
2 

> e2 - e1 ) 

= H(v 1 - v
2
) , 

where H(*) denotes a cumulative distribution. If the errors are identically, independently, 

and normally distributed, then the probability that an individual chooses alternative 1 can 
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be expressed in terms of a probit decision rule. The above expression is analogous to 

Thurstone · s law of comparative judgment. 

Fallowing Thurstone, McFadden ( 1984) assumed that utility is a random function. 

However, McFadden's interpretation of discrete choice theory is conceptually very 

different from the previous theories. Under his framework, the decision-makers are 

rational in the sense that they make choices that maximize their perceived utility. From 

the econometrician's point of view, "errors" result from unobserved characteristics 

influencing an individual's choice. For example, the vi scale or utility discussed earlier 

could represent the observed parts of an individual's utility. It follows that the optimal 

decision may also depend on random unobserved utility elements or on latent variables 

such as idiosyncratic preferences or specific tastes for a given choice. The distribution 

of the random payoff elements determines the form of the probabilistic choice function 

( e.g., logit. pro bit). 

Mcfadden (1984) shows that if the errors, ej, are identically, independently, and 

log Weibull distributed, then the probability that an individual chooses alternative 1 can 

be expressed in terms of the following logistic function. Luce and Suppes (1965) attribute 

this result to an unpublished paper by Holman and Marley. The appendix at the end of 

this chapter provides the derivation. 

(14) Pr( choose 1 ) = 

As 1/1. goes to oo in equation (14 ), it can be shown that the variance of the error terms 
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tends to infinity. Thus the individual will choose between decisions 1 and 2 with equal 

probability. regardless of the expected payoffs. as can be seen from the limiting case of 

(14) with A=O. The error variance, 1/11. goes to O as ). goes to oo, and therefore, it follows

from ( 14) that the probability of choosing the option with the higher expected payoff goes 

to 1. 

In the Luce and McFadden-Thurstone models, the probability of choosing one 

alternative over another is expressed as an increasing function of the difference between 

their scale values in the Luce model and utility under the McFadden-Thurstone approach. 

It is also possible to interpret the random residuals as being caused by decision errors. 

Under the decision error interpretation, these choice probabilities reflect boundedly 

rational behavior, in the sense that an individual does not always choose the decision with 

the highest utility. These choice probabilities reflect a tendency toward utility 

maximization because a non-optimal choice is less likely when the difference in the 

underlying utilities is large. The next section incorporates the framework into an 

equilibrium analysis. 

2.3 THE QUANT AL RESPONSE EQUILIBRJUM 

The idea of a quantal response equilibrium was used in chapter 1 to model 

decision errors in a market game. Unlike a Nash equilibrium, where players use best 

responses to others' strategies, quantal responses are stochastic best responses. In 

particular. players are more likely to choose better strategies than worse strategies, but do 
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not play a best response with probability one. The idea has its origins in statistical limited 

dependent variable models such as discrete choice (in economics and psychology) and 

stimulus/response models in biology. The added complexity in applying the quantal 

response approach to game theory -- in contrast to individual choice -- is that the choice 

probabilities of the players have an important interactive component, since they are 

simultaneously determined in equilibrium. 

In a quantal response equilibrium, a player's beliefs about others' actions will 

determine the player's own expected payoffs. which in turn determine the player's choice 

probabilities via a quantal response function. The model is closed by requiring the choice 

probabilities to be consistent with the initial beliefs. The circuit may be summarized as 

follows: 

E�EIJEr 

� 

f' RORIBILITY CHOI Cl\ ) E\PElTED I' I \OFfc; 

'�/ 

Formally, Mckelvey and Palfrey's (1993) quantal response equilibrium is a fixed point in 

choice probabilities. Define 7t as the set of all possible combinations of the expected 

payoffs for all players in a finite normal form game. Let cS be the Cartesian product of 

the mixed strategies for all players, and let p be an element of cS, i.e., p specifies a 

particular mixed strategy for each player. Denote a vector of all expected payoffs as e(p). 



Thus, e(p) maps a particular array of mixed strategies, p, into a vector of players' 

expected payoffs, n. A discrete choice function cr maps expected payoffs into a mixed 

strategy for a single player. The function cr is assumed to be continuous and 

monotonically increasing in the payoffs. Let T" represent the resulting mapping from the 

set of all possible combinations of players' expected payoffs to their choice probabilities, 

T0

: 1t�8. To summarize, e(p) : 8�1t maps mixed strategy probabilities to expected 

payoffs, and T0 

: 1t�8 maps expected payoffs to mixed strategy probabilities. 

The equilibrium is a fixed point: 

DEFINITION. A Quantal Response Equilibrium is a p such that p = T0(e(p)). 

The Brouwer fixed point theorem implies the existence of such an equilibrium, 

smce T0

( e(p)) is a continuous function that maps a compact set 8 into itself. This result 

is due to McKelvey and Palfrey (1993). 
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2.4 CONCLUSIONS 

All the models presented in the first part of this chapter try to account for the 

randomness in observed choice behavior. The models of McFadden and Thurstone share 

the property that the probability of choosing a particular alternative over another is 

expressed as an increasing function of the difference between their utilities. To see this, 

note that in these models there exists a distribution function F such that Pr(x; { x,y}) = 

F[� - u,J. This property is useful because it allows to test hypotheses about individual 

choice behavior when variability is apparent in the data. 

A drawback of the Luce model is the independence-of-irrelevant-alternatives 

property. As Debreu ( 1960) pointed out, this property leads to inconsistencies in some 

choice situations. The Tversky model is one way to account for the unintuitive 

implications of the independence-of-irrelevant alternatives property.4 In the Tversky 

model each alternative is described by a set of aspects, and at each stage of the selection 

process an aspect is selected from the ones included in the available alternatives, with a 

probability that is proportional to its value. The Tversky model has not found many 

applications in economics since this model is very restrictive. For example, as the choice 

set increases the probability of choosing an alternative becomes computationally 

4 Another approach is the nested logit. Under this framework choice is modeled in a two 
stage-nested process. A detailed discussion of this model is found in Anderson, de Palma, 

and Thisse (1992). 
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infeasible. 5 Another problem with the Tversky model is that the aspects are binary in 

nature. However, many economic problems often require the aspects to be treated as 

continuous random variables, e.g., quantity, price and quality. The Tversky model is a 

"myopic" model in the sense that it assumes that all errors are made in the aspect selection 

and none in the choice of alternatives. This model could be of interest in situations that 

require the comparison spectrum to be multidimensional. 

The Luce, logit and pro bit models are all closely related. McFadden's logit model 

is a special case of the Luce model in which the v
i in equation (14) of this chapter are a 

transformation of the scale values. Thurstone · s model is similar to McFadden's model, 

except that the error terms are normally rather then log Weibull distributed. The resulting 

pro bit model has been applied to situations with small numbers of alternatives because the 

computations involve evaluating multiple integrals. The logit model has been used as an 

alternative to the probit model because the logistic distribution and the cumulative normal 

distribution do not differ greatly and often both deliver similar results. 

The last part of this chapter presented the quanta! response equilibrium. This 

equilibrium concept is a method of modeling decision errors in an interactive decision 

environment which uses the basis borrowed from the work in discrete choice theory of 

Luce, McFadden and Thustone. In the quanta! response equilibrium, a player"s beliefs 

5 To counter this problem, Tversky and Sattah (1979) specialized the elimination-by

aspects model to a situation where the alternatives are given in a tree structure. Although 

this model involves fewer parameters than the Tversky's model, it has not found many 

empirical applications. 
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about others· actions will determine the player's own expected payoffs, which in tum 

determine the player· s choice probabilities via a quantal response function. The model 

is closed by requiring the choice probabilities to be consistent with the initial beliefs. 

In the remainder of this thesis we use two specialized versions of the quantal response 

equilibrium, one based on the logit function and the other based on a "power function" 

to be derived on the next chapter. 



2.5 APPENDIX 

DERIVATION OF THE BINOMIAL LOGIT MODEL 

(15) 

Assume that a subject's utility derived from alternative i can be written as 

V * = v  + £ . 
I I I 
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In this expre5sion the modeler is unable to predict the subject's choice, since e, cannot be 

observed. The obse.rvable part of the utility is v j, while e, captures the unmeasured 

aspects of utility. When there are two alternatives, the probability of choosing I is given 

by 

(16) Pr ( choose 1 ) = Pr( £ 1 + v
1 
- v

2 > £2 ).

Let the cumulative distribution function of the error term, H(e), be6

(17) H(E) 
-i.e 

= e-e 

The corresponding density, h(e), is 

(18) 

e E( - oo, oo) 

For a given realization e 
I 
of the error term, it follows from (18) that alternative I will be 

chosen with probability H(e
1 

+ v, - v2). Thus the probability of choosing alternative I 

6 The distribution function

H(E) = e-e
-).e 

e E( - oo, oo) 

is called the Type I extreme-value distribution, or log Weibull distribution, by Johnson 
and Kotz ( 1970,p.272). 



is obtained by integrating H(t: 1 
+ v

1 
- v

2) over all possible values of c;: 

(19) 

Let ,: = e-i.£, so d,: = -Ae-4' and define y
1 

= e;.,, . y
2 

= e;_''. Ast: goes from -oo to oo, 

,: goes from oo to 0, so equation ( 19) becomes 

0 -,( Y2) 

Pr ( choose 1 ) = J(-dt)e-'e Yi
00 

oo -r: [ Y2]
= J e-, .e Yi dt 

0 

00 -,(y, +y2) 

= J e Yi dt 

= 

= 

0 

-r:[y, +y2] 
00 

Y1 [e Y1 
] I 

Y1 +Y2 o 

Y1 

Y1 +y2 
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where the second equality follows from a reversal of the limits of integration. Notice 

from the definitions of y
1 

and Y2 that 



AV! 
e 

Pr ( choose I ) = ---

,\v1 
,\v2 

which is the logit formulation. 

e + e
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CHAPTER 3 

THE POWER-FUNCTION QUANT AL RESPONSE EQUILIBRIUM 

3.1 INTRODUCTION 

The Luce framework, as discussed in the previous chapter, provides a rather rigid 

relationship between the underlying utilities and the choice probabilities of the individuals. 

Recall that the Luce model choice probabilities are given as ratios of expected payoffs: 

(1) Pr( choose i ) = for i = 1,2. 

The above expression can be parameterized m a more general form that permits an 

arbitrary degree of bounded rationality, with, fully rational individuals at one extreme. At 

the other extreme, there is absolutely no connection between expected payoffs and choice 

probabilities. The power-function quanta! response equilibrium derived in this chapter 

generalizes equation ( 1) by having each expected payoff raised to a power. This functional 

form turns out to be a useful way to model decision errors in models of price competition 

since it often leads to tractable solutions and comparative statics results. The power

function quanta! response equilibrium is based on random utility maximization with 

multiplicative error terms. In the power-function quanta! response equilibrium, each 

player's quanta! response function will have a power parameter which, when equal to 1, 
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yields the Luce model. The parameter, however, can take on any value between O and 

oo. The logistic quanta! response equilibrium is another specialized version of the quanta! 

response equilibrium which will be also used in subsequent chapters. The logistic 

equilibrium is based on random utility maximization with additive error terms. 

This chapter is organized as follows: Section 3 .2 introduces the power function 

model. Section 3.3 compares the power-function and the logit formulations. Section 3.4 

derives the power-function model from a random-utility framework. Section 3.5 compares 

the equilibrium properties of the power-function and the logistic quanta! response 

equilibrium in a simple market game with two possible price choices. 

3.2 THE POWER-FUNCTION MODEL 

For simplicity in exposition assume that a single decision maker must choose 

between two alternatives, 1 and 2. The corresponding expected payoffs, 1t 1 and 1t2, are 

assumed to be strictly positive. Under the power function model, the probability of 

choosing alternative 1 is given by: 

(2) 
7t le 

Pr( choose I ) = --
1
--

1t 1c + 7t /c 

I 2 

where the ratio of expected payoffs is raised to a power A. In (2), A is a nonnegative 

parameter that measures the degree of rationality of the individuals. As A goes to 0, the 

individual chooses each decision with equal probability, regardless of expected payoffs. 

As A goes to oo, the decision with the highest expected payoff is selected with probability 
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1. 

The model in (2) can be used to examme decisions errors in an equilibrium 

framework. The power-function quanta! response equilibrium is a specific version of the 

quanta! response equilibrium that uses equation (2) to determine behavior in an interactive 

environment. Before derivirig the power function (2) in a random utility model, it is 

useful to compare the power function with the more standard logit response function. 

3.3 A COMPARISON OF THE LOGISTIC AND THE POWER FUNCTION MODELS 

This section examines some properties of two parametric versions of the quanta! 

response equilibrium. These two versions are the logit: 

(3) i = L 2, 

with 11.>0, and the power function: 

(4) Pr( choose i ) = . i=l.2, 

with A > 0 and 7t
i 
> 0. The logit odds ratio is written as 

(5) 
Pr ( choose 1 ) 

Pr ( choose 2 ) 

where the probability ratio for the logit is a function of the expected payoff difference. 



Similarly, the power function odds ratio is giving by 

(6) Pr ( choose l ) 

= [�] '· Pr ( choose 2 ) 1t
2 

........ 

.) .) 

where the probability ratio for the power function is a function of the expected payoff 

ratio. 

Notice that the logit and the power function decision rules satisfy the 

independence-of-irrelevant alternatives property discussed in chapter 2. That is, irrelevant 

alternatives other than 1 and 2 can be deleted from any choice without affecting the ratios 

of choice probabilities between the alternatives 1 and 2. 

SENSITIVITY TO THE ERROR RATE 

In what follows, it is shown that as the error rate, 10., decreases, the probability 

of choosing the best alternative increases for both specifications. 1 Taking the partial 

derivative of the logit odds ratio with respect to A, we obtain: 

(7) 
a 

Pr ( choose 1 ) 

Pr ( choose 2 ) 
_ ( ) 

le (11
1 
- 11, ) 

- 7t I -7t2 . e ' 

Similarly, the partial derivative of the power-function with respect to A yields 

For 7t1 > 1t2 , an increase in A increases the odds ratio in both formulations. From (8), the

1 In a product differentiation context, Perloff. J. and Salop, S. ( 1986) interpret error as a 
price "mistake". 
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a 

Pr ( choose I ) 

Pr ( choose 2 ) 
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probability that an individual chooses the alternative that yields the highest expected 

payoff, 7t
1
, goes to 1 as A goes to oo. On the other hand, if 1t 1=1t2 , the logit and the power 

function odds ratios become 1 irrespective of, .. 

Next we examine how choice probabilities are affected by payoff transformations. 

This is done because in designing and evaluating experiments it is important to determine 

how salient payoffs affect individual decisions. 

ADDITIVE CONSTANT 

Consider the effect of adding a fixed constant 't to all payoffs, e.g a lump-sum 

subsidy or a fixed cost. Notice from equation (9) that the additive constant -r does nof 

change the logit odds ratio: 

(9) 
Pr ( choose 1 ) 

Pr ( choose 2 ) 

), ((11, +t) - (11, + t)) 
e 

. 

' 

A similar argument shows that 't affects the power-function choice probabilities: 

(10) Pr ( choose 1 ) 

Pr ( choose 2 ) 

Without loss of generality, assume that 1t 1 > 1t2• The partial derivative of the 

power-function odds ratio with respect to 't is given by 



(11) 
a 

Pr ( choose I 

Pr ( choose 2 

adr: 

It follows from (11) that an increase in t decreases the power-function odds ratio. 

To summarize: 

Proposition 1 
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Adding a constant T to each payoff does affect the power-function odds ratio but has no 

effect on the logit odds ratio. Furthermore, an increase in T decreases the power-function 

odds ratio. 

AfULTIPLICATIVE CONSTANT 

Consider the effect of multiplying all payoffs by a constant t, e.g. t could 

correspond to one minus the marginal tax rate. Notice from (12) that multiplying each 

payoff by a constant t changes the logit odds ratio as follows 

(12) Pr ( choose I ) = /t (11, -1t,J . 

Pr ( choose 2 ) 

Given 1t1 > 7t:., , an increase int increases the logit odds ratio as it is shown in (13):

(13) 
a 

Pr ( choose I ) 

Pr ( choose 2 ) 1( ) ).t(11,-11,) 
" 1t1-1t2 .e · · 

However, the power-function choice probabilities remain unchanged. 
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To summarize: 

Proposition 2 

The multiplication of each payoff by a nonzero constant increases the lo git odds ratio but 

has no effect on the power-function odds ratio. Furthermore. an increase in T increases 

the logit odds ratio. 

In this section, it was shown that the probability of choosing alternative 1 over 

alterative 2 is an increasing function of the d�fjerence between the expected payoff values 

in the logit formulation, while it is an increasing function of the ratio of expected payoffs 

in the power function formulation. Another result is that adding a constant to each payoff 

does not affect the logit odds ratio but it does affect the power-function odds ratio. 

Lastly, when each payoff is multiplied by a constant, the logit odds ratio increases but the 

power-function odds ratio remains unaffected. In the next section, we discuss the random

utility foundations of the power function model. 

3.4 A RANDOM-UTILITY DERIVATION OF THE POWER-FUNCTION MODEL 

The power function model in (2) can be derived from the random utility 

maximization approach with multiplicative errors. There are many ways to model the 

stochastic behavior of the error term in the payoff function. Previous research has focused 

on either normally or log Weibull distributed errors, which yield the probit and logit 
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To summarize: 

Proposition 2 

The multiplication of each payoff by a nonzero constant increases the logit odds ratio but 

has no effect on the power-function odds ratio. Furthermore, an increase in T increases 

the logit odds ratio. 

In this section, it was shown that the probability of choosing alternative I over 

alterative 2 is an increasing function of the difference between the expected payoff values 

in the logit formulation, while it is an increasing function of the ratio of expected payoffs 

in the power function formulation. Another result is that addin& a constant to each payoff 

does not affect the logit odds ratio but it does affect the power-function odds ratio. 

Lastly, when each payoff is multiplied by a constant, the logit odds ratio increases but the 

power-function odds ratio remains unaffected. In the next section, we discuss the random

utility foundations of the power function model. 

3.4 A RANDOM-UTILITY DERIVATION OF THE POWER-FUNCTION MODEL 

The power function model in (2) can be derived from the random utility 

maximization approach with multiplicative errors. There are many ways to model the 

stochastic behavior of the error term in the payoff function. Previous research has focused 

on either normally or log Weibull distributed errors, which yield the probit and logit 
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decision rules respectively. 2 The power function decision rule can be derived from 

random utility expressed as a product: U 1=1t;K,, where K; is an identical and independently 

distributed multiplicative error term known to a player. and 7t; is a nonnegative expected 

payoff. With two alternatives, the probability that a player selects decision 1 is 

(14) 

Making a logarithmic transformation, we have 

(15) Pr ( choose 1 ) = Pr ( In 7t
1 
+ ln K

1 
> In n

2 
+ In K2)

Let G(*) denote the distribution of K, such that 3 

(16) K E[O,oo) , A > 0 .

Define a transformation of the error term: t: = In K or K = ec. Substitute ec for K in ( 16) 

to obtain the distribution function: 

(17) H(E) 
- .l.e 

= e-e

which is a log Weibull distribution with parameter A. When an additive random utility 

error, t:, is log Weibull distributed, Luce and Suppes (1967) have shown that the standard 

2 There are a number of other papers that use explicit models of the error structure. Logit 
and probit specifications of the errors in the analysis of experimental data are common 
Palfrey and Rosenthal (1991 ), Palfrey and Prisbrey (1992), Stahl and Wilson (1993 ), 

Anderson ( 1994 ), and Harless and Camerer ( 1994 ). Zauner ( 1994) uses a Harsanyi ( 1973) 
equilibrium model with independent normal errors to explain data from a centipede game 

reported by McKelvey and Palfrey ( 1992). 

3 In the analysis that follows. the i subscript is dropped from the error terms since the 

errors are i.i.d. 
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logit decision rule is derived from ( 1 7), as shown in chapter 2. Since the logarithmic 

transformation of the multiplicative error in ( 17) is additive in the logarithm of 7t;, the 

relevant probabilistic choice function is the logit formulation with the expected payoff, 

v 1 , replaced by log 7t;. Hence

(18) h,. }..!og1t
1
. = 7t ;._

e 
=

e i , 

and the logistic choice rule in equation ( 3) reduces to the power function rule in equation 

( 4) of this chapter.

To summarize: 

Proposition 3 

ff the payoff jimction is random and multiplicative, 1r,K, with the error terms identically 

and independently distributed as G( K) = e-r•ir", the probabilistic choice function is the 

power function: Pr( choose i) = ( 1r /' / I: ( 1r/. 

3.5 A BERTRAND DUOPOLY EXAMPLE 

In this section we examine the properties of the power-function and logit 

approaches in a simple market game with two possible price choices. Consider the 

symmetric Bertrand game in the table below. In this game, each seller simultaneously 

chooses between a high price PH , and a low price P
L
. The combination of prices
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determines payoffs as shown in the table below, where seller 1 · s payoff is listed to the 

left in each cell. The profits from defection, rrJ , exceed those from cooperation, rrc, which 

in tum exceed those from the Nash equilibrium: rr
d 

> rr
c > rr" >O. The Nash equilibrium 

Seller 2 

Seller I 

Denote by cr denote the probability that seller 2 chooses the cooperative decision 

P
H
. Given this probability, seller 1 's expected payoff is uH = crrr

c 
for decision P

H and u
H 

= crrr
d 

+ (1-cr )rr" for decision P
L
. Then in a lo git quanta! response equilibrium we have 

(19) CJ = 

where (19) is a one's seller's stochastic "best reply" to the other seller·s price strategy. 
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The probability of choosing PL is 

(20) 1 - a = 

It follows from ( 19) and (20) that the odds ratio is 

(21) 

(1- a)

Note that the Nash equilibrium condition, cr=O, does not satisfy (21 ). In order to 

determine the effect of A in the endogenous probability cr, take the logarithm of both sides 

of (21) to obtain: 

(22) log a - log (1 - a) = A ( a 1t c - a 1t d - (l - a) 1t n )

Then take the total derivative of (22). After arranging some terms we have 

Dividing through by the differential dA and rearranging, one obtains the derivative 

(24) 

da 

d).. 

= 

a (1t -n) - (1-cr)1t 
C d n 

Since 7td > 7tc - 1t0, the sign of (24) is positive. Then as A increases, errors decrease and 

people play more like conventional Nash players. 



The probability of choosing PL is 

(20) 1 - (J = 

A01tc A(a1td + (l-a)1t ) 
e + e n 

It follows from (19) and (20) that the odds ratio is 

(21) 
__ a __ = e A( Oltc -art

d 
- (l-a)1tn)

(1-cr) 
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Note that the Nash equilibrium condition, cr=O, does not satisfy (21 ). In order to 

determine the effect of A in the endogenous probability cr, take the logarithm of both sides 

of (21) to obtain: 

(22) log cr - log (1 -a) = A ( a 1t 
c 
-a 1t d -( 1 -CJ) 7t n )

Then take the total derivative of (22). After arranging some terms we have 

Dividing through by the differential d'A. and rearranging, one obtains the derivative 

(24) 

do 

d).. 

a(1t
c

-1t) -(l-0)1tn 
= 

Since 7td > 7tc - 7tn, the sign of (24) is positive. Then as A increases, errors decrease and 

people play more like conventional Nash players. 
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Next we examine the equilibrium power-function odds ratio. Notice from (25) that 

the Nash equilibrium ( cr=O) satisfies the power-function quantal response equilibrium. 

Assuming cr:;i:0. we have 

(25) -(-1-�-cr-) = ( l}.. + (1-a)1tn

Taking the logarithm of both sides of (25) results in the following equation 

(26) log a -log( 1 - cr) = A [ log ( a 1t) - log( a 1t d + ( 1 -cr) 1t n ) J .

The implicit derivative of cr with respect to A in equation (26) yields 

(27) 

da 

d).. 

= 

Notice that the numerator of (27) is negative since log( cr1t
c) < log( cr1tct + ( l-cr)1t

n
), or 

equivalently. cr(1tct-1tc) > -(l-cr)1tn . A sufficient condition for the sign of equation (27) to 

be negative is that A < 1. In this case, the probability of cooperation again decreases. 

This example shows that the power function and the logit can yield different 

comparative statics results. For example. the Nash equilibrium ( cr=O) is a quanta! 

response equilibrium for the power function but not for the logit. By comparing the Nash 

and quanta! response equilibrium. it is interesting to note that the quanta! response 

equilibrium always assigns positive probability to both p�e price strategies. Furthermore, 

as "A increases the probability of choosing the cooperative, high-price decision also 
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increases in a logistic quantal response equilibrium. Accordingly. the model is able to 

account for systematic deviations from Bertrand-Nash equilibrium. The analysis of the 

Bertrand model also suggests that a sufficient amount of decision error can actually make 

individuals better off since it increases the probability of choosing the cooperative, high

price decision. 

In the market model to be examined in the next chapter, the quanta! response 

equilibrium is much more difficult to compute since the range of feasible price choice 

decisions is assumed to be continuous and the number of firms is allowed to exceed 2. 

However. the intuition gained from the Bertrand model with two price choices will be 

useful in analyzing a more complex market structure. 



CHAPTER 4 

THE QUANTAL RESPONSE EQUILIBRIUM IN A DUOPOLY MODEL OF 

PRICE COMPETITION 

This chapter applies the quanta! response equilibrium to a Bertrand duopoly game 

with a continuum of price choices. A closed-form solution for equilibrium price 

distribution with endogenous errors is derived using the power function choice model. 

The chapter concludes with a summary of the methodology to be used in subsequent 

chapters. 

4.1 THE MODEL 

Assume a homogeneous-product duopoly with zero cost. Each seller supplies one 

unit to the market, and the buyer demands one unit inelastically for all prices less or equal 

to one. The Nash equilibrium for this game is for both sellers to charge the competitive 

price of zero. This price is a unique Nash equilibrium since a unilateral price increase 

results in no sale, and therefore, does not yield higher earnings for either seller. 

Now, consider the quanta! response equilibrium for the Bertrand model. To avoid 

a cumbersome analysis of demand division when prices are equal, the price p will be 

treated as a continuous variable. Let F(p) denote the continuous distribution of the other 
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seller's price, i.e, F(p) is the probability that the other seller·s price is less than p. A

seller who chooses price p sells one unit with probability 1 - F(p), and earns p on that

unit. Thus the profit to a seller as a function of p is given by

(1) n(p) = p [ 1 -F (p) ] .

4.2 THE EQUILIBRIUM PRICE DISTRIBUTION

The price choices were discrete in the market game analyzed in the previous

chapter. In that analysis, the probabilities were proportional to expected payoffs raised

to a power. In the present market context. the continuous power function rule implies that

the choice probability density must satisfy (2), where the density is proportional to

expected profit raised to a power A:

(2) 
f (p) = _(_p...c,_[ 1_-_F_(p_) ..;:.._] )_.,_ _

I 
i.. 

!(x[l-F(x)] )) dx

Let µ denote the denominator of the right hand side of (2), which 1s a constant

independent of p. Thus

(3) f(p) = p-,_ [ 1 -F (p) r
µ

Equation ( 3) is a nonlinear differential equation that can be used to determine the

distribution, F(p ). The main result of this chapter is given in the next proposition:



Proposition 1 

The price density 

(4) f( p) 
), ..-1 . r ' I i-1 A) 

== - p '· l I - p ,. + - ' l-1. 

For AE[O, 1), equation (4) is a power-function quanta! response equilibrium. 

Proof 

Notice that equation (3) can be expressed as 

(5) f(p) == P A

[ I - F (p) r µ 
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Integrating both sides of equation (5) from a nonnegative Pa to some p* > Pa, we have

(6) ,f· f(p) 
' dp = 'j p'· dp .

P,[1-F(p)] P,µ 

Making a change of variables on the left hand side of the above integral and defining c 

= F(p) and de = f(p )dp, this becomes 

(7) 
F(pl•) de 

(1- c? 
F p,) 

p' 

f 
p'· -dp.

P, µ 

Note that the lower bound of the power-function price distribution must be zero because 

negative prices produce no profits, which contradicts the power function quantal response 

equilibrium in (2). Thus if p = 0, c = F(O) = 0. As p goes from Oto p·, c goes from 0 

to F(p*). Assuming ).:;t:I, equation (7) can be integrated: 



(8) 

equation (8) also yields 

(9) 

[} - C ] I - i. 

1-A

F(p •) 

[l-F(p)] 1 -A 

+ _1_ =
1-A 1-A

p";.•J p• I 
µ(A+l) o 

p).+1
----0 
µ(A+ 1) 

Simplifying the notation, we obtain 

(10) 

or equivalently. 

(11) 

[l-F(p)]1-;. = 1 - (1-A) p A•I 

µ(l +A) 

1- F (p) = [1- (1-A) p A•IJ �

µ( 1 +A) 

The price probability function is given by 

(12) F (p) = 1 - [ 1 - (1 -A) p 1. • 1] � .
µ(1 +A) 
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where µ is a constant to be determined. Note that the lower boundary condition, F(O)=O, 

is satisfied. The other boundary condition, F(p)=l. in turn implies thatµ = (1-1.)/(1 +A) 

> 0. Thus replacingµ in (12), one obtains the power function cumulative probability and 

the corresponding density: 

(13) 
F(p) = 1 - [1-p A •l]':-X .·

The corresponding price choice probability is 
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(14) 

It follows from (13) and from the definition of µ that the density in (14) satisfies the 

equilibrium condition in (2). As A--),0, f(p)--),1, and the distribution of prices becomes 

the uniform distribution. Recall that the Nash equilibrium price is zero in this Bertrand 

model. The quanta! response equilibrium in ( 13) therefore, produces systematic departures 

from the Nash equilibrium with p>O, even though the expected value of the error term is 

0. The proposition below shows that the power function equilibrium price distribution,

f(p). captures the extent to which a player's behavior deviates from the Nash equilibrium 

zero price outcome. To summarize: 

Proposition 2 

As the error rate decreases, A - 1, the power function cumulative probability converges 

to the Nash equilibrium: F(p) - 1 for all p > 0. 

Proof 

We need to show that, for any p value, [ I - p( J+).) ] 1 ,i.1,. in equation (13) vanishes as A-), 1.

Consider A < I and notice that p( 1 
�:i_) > p2 for all pE(O, I), so I - p( H> < I - p2 < I. Hence 

[I-p< 1+,.l] 111·,. < [ I - p2 ]"1_,._ Since I - p2 < I and the exponent, 111-A, goes to oo as A --),

1. it follows that [ I - p(Hl ] 1 J-). converges to 0. Therefore F(p )--), 1.

Now consider A ;::::: 1. The power-function quanta! response equilibrium condition 



48 

in equation (2) implies that a quantal response equilibrium is the degenerate distribution 

F(p) = 1 for p ::::: 0. 

For purpose of comparison with the Nash equilibrium. it is useful to illustrate 

proposition 2 in terms of a graph showing the relationship between the power-function 

quantal response equilibrium predictions and prices. In Figure 1 the power-function 

quantal response equilibrium distribution is measured along the vertical axis while the 

horizontal axis represent prices. The figure shows that as the error rate, 1 /)., goes to 0 

the mass of probability is concentrated in the range of prices between O and .1. The 

density is close to zero for all prices above . 1. 

The baseline Bertrand pricing game shown above is appealing because it delivers 

an explicit quantal response solution. The next chapters, however, show that the 

assumptions of a continuous price distribution and a power-function are not essential for 

a solution. Numeric methods are used in subsequent chapters for more complex 

examples, which involve different cost and demand structures. 



FIGURE 4.1 
-- ------- ----- ---------------- -- ·--- ---------------------------- ------� 

F(P) 
_2 -------� 

-_ __:-____ -..•.•..••... ···• :i:-�: ! T i !£ f :::::; :S :5 � 
4 

1 

0.8 

0.6 

0.4 

0.2 

o�

-� �------ ------

---------·-------' 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

PRICES 



50 

4.3 CONCLUSIONS 

This chapter used the power-function quantal response equilibria to model decision 

errors in a Bertrand duopoly model with continuous price choices. It is shown that a 

sufficient degree of errors is needed in order to break away from the Nash equilibrium. 

The calculation of the quantal response equilibria for this Bertrand game is more involved 

than the one presented for the model in the previous chapter. First, an explicit solution 

for the nonlinear differential equation in the price distribution in equation (2) must be 

derived. Given this solution, one uses the appropriate boundary conditions to obtain the 

support of the equilibrium price distribution. The power-function equilibrium price 

distribution derived in this chapter is appealing since it leads to a comparative statics 

result for the error-rate parameter. In chapter 5 this approach is used to examine the 

effects of market structure on the endogenous equilibrium price distributions. In addition, 

the methodoly derived in this chapter permits analysis of other models like the all-pay 

auction to be presented in chapter 6. 



CHAPTER 5 

QUANTAL RESPONSE EQUILIBRIA FOR POSTED-OFFER AUCTION 

MARKETS 

5 .1 INTRODUCTION 

The Bertrand model describes competition among a group of price-setting sellers. 

The laboratory implementation of the Bertrand model is a posted-offer auction. In this 

institution, sellers submit prices simultaneously and then randomly designated buyers 

purchase at the posted prices. The Bertrand-Nash equilibrium will differ from the 

competitive equilibrium when sellers set prices above the competitive level. In such 

situations, experimental evidence indicates that competitive equilibrium pncmg, 

Edgeworth cycles in prices and mixed-strategy Nash equilibrium are not completely 

consistent with experimental data (Brown-Kruse et al., 1993). Brown-Kruse et al. report 

(1993) that average seller price decreases over time for the first 20 periods of the 

experiment. However, with the exception of two experiments. prices do not converge to 

the competitive equilibrium over time. Observed pricing does not conform to Edgeworth 

cycle theory although experiments exhibit upward and downward price swings of the sort 

predicted by the Edgeworth cycle theory. Also observed pricing is not consistent with 

the mixed-strategy Nash equilibrium distribution. Average prices tend to exceed 
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predicted mixed-strategy Nash equilibrium prices although price dispersion for aggregate 

data is similar to the dispersion predicted by the mixed-strategy Nash equilibrium (Holt 

and Davis, 1994 and Brown-Kruse et al., 1993). Another empirical feature of 

experimental models of price competition is that market models that share identical Nash 

equilibrium often exhibit different average prices. In particular, market models with an 

increasing costs exhibit higher average prices than market models with constant costs 

(Holt and Davis, 1990). Certain factors have been associated with systematic price 

deviations from Bertrand-Nash equilibrium in posted offer markets: cost structure, low 

excess supply at prices above the competitive price, small numbers of sellers, and market 

power (Davis and ·williams, 1990, Wellford et al., 1990, and Davis and Holt, 1994, 

Brown-Kruse et al., 1993). 

This chapter uses the quantal response equilibrium to model behavior in posted 

offer markets. The objective is to derive testable propositions about the effects of 

changes in market structure such as cost structure, market power and seller concentration 

on equilibrium price distributions. In the rest of this chapter, we study two particular 

parametric classes of quantal response functions: the logit and the power function. As 

shown in chapter 3, these functional forms differ in the error structure. In contrast to 

the logit, the power function turns out to be computationally convenient for a wide class 

of posted-offer markets. Consequently, the log it equilibrium is not computed for all the 

market designs to be presented in this chapter. 
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The chapter is structured as follows: In sections 5 .1 and 5 .2, the quantal response 

equilibrium is calculated for posted offer markets with severe capacity constraint that 

have one or more cost steps. In these designs, the competitive equilibrium price is the 

Nash equilibrium. An interesting feature of some of these models is that the quanta! 

response equilibrium proves to be sensitive to changes in the cost and demand parameters 

that do not affect the Bertrand-Nash equilibrium. Sections 5.3 and 5.4 use the quantal 

response equilibrium to investigate the effects of market power on equilibrium prices. 

The Nash equilibrium in these markets involves mixed strategies. Specifically, section 

5.3 examines a model with market power and constant marginal cost. In this model, we 

show that the Nash equilibrium in mixed-strategies and quanta! response equilibria differ. 

However, this is not true in general. as it will be shown in the next chapter. Section 5.4 

analyses the Nash and quanta! response equilibria for continuous and for discrete price 

choices in a market power model with increasing costs. Section 5. 5 investigates the 

effects of seller concentration on the quanta! response equilibrium price distribution. 

This chapter ends with a summary of the main conclusions. 

A BASIC MODEL WITH NO MARKET POWER 

We begin with a review of the duopoly model from chapter 4, shown in figure 

5a. Figures 5b and 5c are used in later games. Sellers' units are indicated on the market 

supply curve by designations. S l  and S2. for sellers 1 and 2 respectively. It is assumed 

that sellers choose prices simultaneously and share demand in the event of a tie. A well-
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known result is that the Bertrand-Nash equilibrium is for both sellers to charge the 

competitive price. In this sense, sellers have no market power in this design. 

The quanta! response equilibrium for the model in figure 5a is characterized by 

a price distribution for each seller, F(p). Thus, F(p) is the probability that p is the 

highest price posted. A seller who chooses price p sells the unit with probability 1-F(p). 

The expected profit to a seller as a function of p is 

(1) 1r(p) = p [ 1 - F (p) ] 

In the present market context, the power function decision rule with A > 0 results in the 

following condition for a quanta! response equilibrium: 

(2) 

f (p) = (p [ 1 - F (p) ])"

µ 

µ = f (x [ 1- F (x) l)" dx

where µ is a constant. independent of p. The above equation parameterizes the set of 

possible equilibrium response functions f(p) with the parameter A, which is inversely 

related to the level of error. For A< 1, the equilibrium price distribution is 

(3) 
F(p) = 1 - [l-p"· 1 J-r=x, 

with the corresponding equilibrium price density: 1

1 It can be verified that equations (3) and (4) satisfy (2) with µ=(1-\)/(1 +>-..). 
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(4) 

It was shown in chapter 4 that, as A goes to 1, all the mass of probability is concentrated 

on the set of prices near 0. This result is appealing, since the model thereby accounts 

for systematic deviations from the Bertrand-Nash equilibrium. 2 

5.2 A MODEL WITH SEVERE CAPACITY CONSTRAINTS AND CONSTANT 

COSTS 

In the next market design, figure 5b, each seller's supply remains constant but 

demand is increased from 1 to 2 units at prices below 1. The range of competitive prices 

is from O to 1, since total capacity is equal to the total demand. The pure-strategy Nash 

equilibrium is for both sellers to charge a price of 1, the maximum competitive price. 

Thus no seller has an incentive to increase the price from the common maximum 

competitive price, since nothing can be sold at higher prices. At any price below 1, a 

unilateral price reduction lowers earnings from 1 to p. 

Now assume that the sellers' best responses are probabilistic rather than 

deterministic. Wben a seller chooses a price of p, the seller has the higher price with 

probability F(p) and the lower price with probability 1-F(p). Since a seller's unit always 

sells when p < 1, the earnings are 

2 As noted in chapter 4, when A� 1, one quanta! response equilibrium is the degenerate 

distribution F(p)=l for p�O. 



(5) 1r(p) = p , for p < I 

For any given A> 0, the power function response probabilities are: 

(6) 

p" 
f(p ) = for p < I , 

Integrating equation ( 6), one obtains the price distribution function: 

(7) F(p) = 

pi,.+ I 

(/\+ l)µ 
for p < I 
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The next task is to determine the constant µ from the analysis of boundary conditions. 

Let I! and p denote the bounds of the support of the price distribution. To determine the 

upper bound, note that the seller's profits are O for p > 1 . This result in turn implies 

that the equilibrium density in (6) is O for p > 1. On the other hand, p < 1 implies that 

the seller's expected payoff is strictly greater than O for p > p. Since f(p) is strictly 

positive by (6), this result contradicts the definition of p. Therefore F(l)=l by 

definition. The boundary conditions, F(O)=O and F(l)=l, imply that µ=ll(A+l)>O. 

Substituting this result back in (7), one obtains the equilibrium price distribution: 

(8) F (p) = p" + I , for p < I . 

In a quanta! response equilibrium, sellers 1 and 2 post prices according to (8). As /\ 

goes to oo, the probability of choosing p goes to O for pE(O, 1) and all probability mass 
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is concentrated on the Nash equilibrium price of 1. For finite A, the result in (8) is 

appealing since the model predicts systematic deviations from the Nash equilibrium, 

despite the fact that the error structure is assumed to be unbiased. 

By comparing this result with the one obtained for the Bertrand model with two 

price choices, it is interesting to note that in figure 5b a sufficient amount of decision 

error make individuals worse off. This is because errors lower the probability of 

choosing the price of 1. 

In order to contrast the above result with an alternative quanta! response function, 

we next analyze the model in figure 5b using the logistic formulation. If each seller uses 

the logistic quanta! response function, then we have 

f(p) = 
e"P for p < I, 
µ 

(9) 

µ = I e
/.,x dx 

where µ is the integral over all prices. The corresponding price distribution is 

(10) F(p) = for p < 1 , 

where k is a constant of integration. In order to obtain the equilibrium price distribution, 

µ and k must be determined. The notation used here is identical to the notation 

introduced previously. The boundary condition F(O)=O in turn implies that k= -1/)\µ. 

Consider the upper bound p. From (9), the probability density is positive for p > 1. 
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On the other hand, p < 1 implies that the seller's expected payoff is strictly greater than 

0 for p > p. Since f(p) is strictly positive by (9), this result contradicts the definition 

of p. Therefore F(p)=l. Then, it follows from (10) with F(l)=l and k=-1/>-.µ thatµ 

= (e"-1)/>-.. Substituting the solutions forµ and k back into equation (10), one obtains 

the quanta! response equilibrium distribution function: 

(11) F(p) =
e"P - 1 

e" - 1
for p < I . 

In order to evaluate (11) as A goes to oo, we apply L'Hopital's rule. Differentiating both 

parts of the fraction with respect to A and taking the limit, one obtains 

(12) 

since p < 1. This result implies that as the error rate, 1 /;>.., goes to 0, sellers behave as 

conventional Nash players. Similarly, L'Hospital's rule can be used to show that as 1/;>.. 

goes to oo, F(p) goes to p and prices are uniformly distributed. 

In summary, in the model in figure 5b, the power function and the log it 

equilibrium predict systematic departures from the Bertrand-Nash equilibrium for finite 

error parameters, and convergence to the Nash equilibrium as the errors vanish. 
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5.3 A MODEL WITH SEVERE CAPACITY CONSTRAINTS AND INCREASING 

COSTS 

Consider a more complex market model, figure 5c, where each seller has 1 unit 

with a low cost denoted by a and 1 unit with a high cost denoted by b, with a < b < 

r. Here r is the reservation price. The market demand is rectangular with 4 units 

demanded for prices below r. The intersection of the high marginal cost with demand 

determines the range of competitive prices, [b,r]. The Nash equilibrium is the highest 

competitive price, r. Clearly, a seller posting a price above r earns O profits, while a 

unilateral price reduction does not increase sales. When demand is divided equally at 

the Nash price, each seller sells 2 units. 

Although the market designs 5b and 5c may share identical Nash equilibrium, in 

experiments different average prices are observed. The obvious question is why the 

presence of the two-cost step structure should have any effect on equilibrium price. In 

light of this experimental result, we next compute the quanta! response equilibrium for 

figure 5c. The calculation involves two parts, distinguished by the relation of price to the 

high cost, b. Note that for any p below the high cost step, b, both sellers sell 1 unit with 

probability 1, so 

(13) 1r(p) = (p - a), for p E [ a, b) 

Similarly, both sell 2 units for prices above the high cost step b: 
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(14) 1r(p) = (2p - b - a), for p E [ b , r ]  .

POWER FUNCTION RESPONSES

In this section the power function and logistic responses will be compared. First 

consider the power function formulation. For any given A> 0, the power-function 

conditions for a quanta! response equilibrium are: 

f(p) = 
(p - a) A 

for p E [a,b) ,

(15) 
µ 

f(p) = (2p - b - a)>-

for p E [b,r] 
µ 

Notice that the densities in (15) must integrate to 1. Hence µ is written as

(16) 
b r 

µ = i (x - al dx + f (2x - b - a)>- dx .

Integrating the densities in (15), we have 

F(p) = 
(p - a)". i 

+kl, 
for p E [a, b) ,

µ(A+ 1) 
(17) 

F(p) = 
(2p-b-a)"· 1 

+ k
2 , 

for p E [ b , r] 
2µ(A+ 1) 

where k1 and k2 are the constants of integration. Note that F(a) =O implies k1 
=0. The 

constant k2 1s chosen so that F(b)+ =F(b)·. It follows from (17) that 

k2
= (b-af--+1/2µ(A+ 1). The constantµ is next determined. First, consider the upper 

bound p. Equation (15) implies that the probability density is O for p > r since the 
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expected payoff is O for prices in this range. Therefore it must be the case that F(r) = 1. 

Substituting this result back into (17) evaluated at p=r and using the formula for k2 , it 

can be shown thatµ = [(2 r-b-a)H 1 + (b-a/'+ 1 ]/ 2(A+ 1). Substituting the formula forµ

back into (17). it follows that the equilibrium probability functions are written as: 

(18) 

2(p - a)"'· 1 
F(p) = -----

(2r-a -b/'·1 + (b-a)"-·1 '

F(p) = 

(2p-b-af'·1 +(b-af,• 1 

(2r-a-b)"· 1 +(b -a)"·1'

forp E[a.b),

forpE[b.r] , 

with the corresponding equilibrium probability densities: 

f(p) =

2(p - a) 1
' (A+ 1) 

(2r -b-a)"·1 + (b - a/'· 1' 
for p E [a, b) , 

(19) 

f(p) =

2(2p - b - a)1'(A+ 1) 
(2r -b - a)1'•t + (b -a)1'•t' 

for p E [b,r] . 

It follows from equation (18) and from the definition of µ that equations (19) satisfy the 

quanta! response equilibrium conditions in (15). As A goes to 0, F(p) goes to (p-a)/(r-a), 

which is a uniform distribution resulting from maximal decision error. Next we apply 

L' Hospital's rule to evaluate (18) as A goes to oo. Differentiating both parts of the 

fraction in (18) with respect to A, for pE[a,b), we have 

(20) lim F(p) = lim 
ln[2(p-a)]el i.•IJ ln(2(p-a)J 

' 

>.-- >.-- ln(2r-b-a)ef >.•IJ ln < 2r-b-a) +ln(b-a)el'••111n <b-a)

Dividing all the terms of the above equation by e[1'+tJln(lr-b-a) yields 

for p E[a,b).
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(21) 
In [2(p-a)]el ).+l](lnf2(p-a )] -ln ( 2r-b-a )I 

li.tn F(p) = lim ------------
,.__ >.-- ln(2r-b-a) + ln(b-a)el1.+l][ln(b-a)-ln(2r-b-a)J 

for p E[a,b) 

If the power in the exponent function in the numerator in (21) is negative then as A goes 

to oo, F(p) goes to 0. The power in the exponent is negative when ln[2(p-a)] - ln (2r-b-a)

< 0, or equivalently, 2(r-p) > b-a. Given pE[a,b), a sufficient condition for the 

numerator in (21) to approach Oas A goes to oo is that (r-a) > (b-a)/2, which is clearly

true. Therefore, as A goes to oo, F(p) goes to O and all of the probability is on the upper

price range, where the Nash equilibrium is located. 

Applying L'Hopital's rule and hence differentiating both parts of the fraction in 

(18) with respect to A for pE[b, r], we have

(22) lim F(p) = li.tn ln(2p-b-a)ef).+1Jln(2p-b-a)) + ln(b-a)el).+l]ln(b-a) 
' 

).-� >.-� ln(2r-b-a)e[).+l]ln ( 2r-b-a) + ln( b-a)e[). +l]ln (b-a) 

Dividing all the terms in the above equation by elH 1 J10<2r-b-a) yields

for p E[ b, r ] .

(23) lim F(p) = lirn ln(2p-b-a)e[).+ll [ln(2p-b-a)-lnf2r-b-a)J + ln(b-a)e[),+IJ[ln(b-a)-ln(2r-b-a)J , 
for PE[ b, r]. 

l.-- >.-- ln(2r-b-a) + In( b-a)el>- +lJ [In (b-a I -lnC2r-b-a) I 

If the powers in the exponent functions in the numerator in (23) are negative, then as A 

goes to oo, F(p) goes to 0. The powers are negative for when ln(2p-b-a) -ln(2r-b-a) <

0 and ln(b-a) - ln(2r-b-a) < 0. The first inequality is true since r > p. The second 

inequality is also true since r > b. Therefore, F(p) goes to Oas A goes to oo, and the

price distribution converges to the Nash equilibrium price of r. 
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Another interesting property of this model is that a change in the cost structure 

does not alter the Nash equilibrium as long as b remains below r. However, a change 

in the cost parameters may alter the price distribution in a quanta! response equilibrium. 

Next, we examine how changes in the cost parameters affect the quanta! response 

equilibrium. As before, each price range must be considered separately. For pE[a,b), 

the first partial derivatives of F(p) in the top part of (18) with respect to a and b are: 

I.) oF (p) = 2().. + l)(p-al [ (2r-b-a}1-(p-2r+b) +(p-b)(b-a}1-]__;__..:.....:.___:__.:...:___ _ _:_�---'-__.:..___:.-'--__;__.:_ < 0, 

(24) aa [(2r-a-W· + 1 + (b-a)'-·112 

·.1 oF(p)
11,--

ob 

2()..+l)(p-a)'-· 1 [(b-a)"-(2r-b-a}1-] > 0
[(2r-a-w·· 1 + (b-a)'-· 112 

forp E[a,b) 

for p E[a,b) 

where the inequality claims are next verified. The sign of the equation 24(i) is negative 

if p-2r+b < 0 and p-b < 0, which is true since p < b and b < r. Thus, an increase 

in a decreases F(p). The sign of the equation 24(ii) is positive since (2r-b-a) > b-a, or 

equivalently, r > b. Hence, an increase in b increases F(p) on la,b). 

(25) 

For pE[b,r], the first partial derivative of F(p) with respect to a is 

oF (p) = 2().. • IX (b-a)j (2r-a-b).(b-r) + (2p-b-a)'(p-b)] • (2r-b-a)•(2p-b-a)•(p-r)] < 
0 

aa w 
for p �[b,r), 

where the denominator of (25) 1s given by w=[(2r-a-bl+1 + (b-a)"+ 1]2 . The sign in 

equation (25) is negative if the following is true 



(26) 

(2r-a-b)'(b-r) > (2p-a-b)).(p -b),

(2r-a-b)). > (p-b).2p-a-b b-r 

65 

for p E[b,r) , 

Notice that (2r-a-b)/(2p-a-b) > 1 in (26) since r > p. On the other hand, the term (p

b)/(b-r) is always negative since p > b and r > b. Therefore, an increases in a 

decreases F(p) on [b,r). The first partial derivative of F(p) with respect to the high cost 

unit b yields 

(27) aF (p J = 2(A + IX (b-a/ [ (1r-a-b)1(r-a) • (2p-b-a)\a -p)] •(2r-b-a)1(2p-b-a)•(p-r) 1 > 0
ab w 

for p e[b,r) 

The sign in equation (27) is positive if (2r-b-al/(2p-a-b)" > (a-p)/(r-a). Since r > p and 

p > a, it follows that the left hand side of the inequality is positive, and the right hand 

side is negative. Therefore, an increase in b increases F(p) in (27). In order to contrast 

our findings with an alternative quanta! response specification, we next consider the 

logistic quanta! response equilibrium. 

LOGISTIC RESPONSES 

The logistic equilibrium for the model in figure 5c is next examined. Recall that 

the calculation of the quanta! response equilibrium for this model involves two parts. 

For any )\ > 0, the conditions for a quanta! response equilibrium are given by 

where µ is the integral over all prices. 

(29) 

b r 

µ = I e>--( X - a) d.x + ! e"( 2x - b - a) dt . 



f(p )  
e'r..(p - a) 

for p E [a,b), = 

(28) 
µ 

f(p) 
eN 2p - b - al 

for p E [b,r] , = 

µ. 

It is readily verified from (28) that the price distributions are 

(30) 

e'r..(p - a) 
F(p) = _

µ.
_A_ + k1 ,

eA( 2p - b - a) 
F(p) = 

---

2µ.A 

for p E [a, b) , 

for p E [b , r] 
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The boundary condition F(a) =0 implies k 1 = -1/ µ.A. As before, k2 is chosen so that 

F(b)+ = F(bf. It follows from this condition that k2 = (e1'<h-a)_2) / 2µ.A. The boundary 

condition F(r) = 1 in turn implies that µ. = [er..< 
zr-b-aJ + e1'(b-a)_2]/2A. Substituting these 

results back into (30) we have 

i) F (p) = 

2[e1'(p-a) 
- 1] 

e1'(2r-b-a) +eA(b-a) _ 2 for pE[a,b) , 

(31) 

ii) F (p)
e1'< 2p - b -a) +eNb-a) _ 2 

= 

�(2r-b-a) + eA(b-a) _ 2 ' for p E [b , r] . 

In order to determine the limit of F(p) as A goes to 0, we next take the derivative with 

respect to A of both parts of the fraction in equation 31 ( i): 



2(p ) ).(p-a) (32) lim F (p) = 1im -a e 
, 

).--0 .l.--0 (2r-b-a)e'"12r -b-a) + (b-a)e'-(b-a) 
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for p E[a,b). 

From (32), as A goes to 0, F(p) goes to (p-a)/(r-a), and prices are uniformly distributed. 

To obtain the limit of F(p) as A goes to oo, we divide both parts of the fraction in (32) 

by e"'<2r-b-a) to obtain:

(33) 2(p-a)e A(p -2r•b)
lim F (p) = Jim __ ....::._ ____ _ 
A-oo A-oo (2r -b  - Q) + (b-a)e2"-Cb-r)

for p E [a,b). 

The power of the exponent in the numerator in (33) is negative if 2r > p + b, which is 

true since r > p and r > b. Then, as A goes to oo, F(p) goes to O on [a,b), which puts 

all mass in the upper range where the Nash price is located. Similarly, applying 

I' Hop ital' s rule to the equation 31 ( ii) yields 

(34) (2p-b-a)e"-(lp-b-a) +(b-a)e"-(b-a)
Jim F(p)  = lim --=----------
,.--0 A--0 (2r-b-a)eNZr-b-a) +(b-a)e"'<b-a)

for p E [b,r]. 

It follows from (34) that as A goes to 0, F(p) goes to the uniform distribution: (p-a)/(r-a). 

Next, we evaluate (34) as A goes to oo. By dividing both the numerator and denominator 

of (34) by e"-(lr-b-a)
' 

one obtains 

(35) lim F(p)  = Jim
(2p-b-a)e"'2(p-r>+(b-a)e-A2'

A-oo A-oo (2r-b-a)+(b-a)e-"'2
' 

for p E [b,r]. 

Notice that the power of the first exponent in the numerator in (35) is negative since r 

> p. Hence, as A goes to oo, the numerator in (35) goes to 0. Therefore F(p) goes to
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0 on the upper range, and the distribution converges to one that puts all mass at the Nash 

price of r. 

As before, we examine a change in the cost parameters on F(p). For pE[a,b), the 

first partial derivatives of F(p) with respect to a and b are 

(36) 

aF(p) 

aa 

aF(p) 

ab 

4Ae"<p-a) _ 2A(e"<2r-b-a) +e"<b-a>)
= < 0, 

[ e"(2r-a-b) + e"<b-a) -2]2

- 2A[ e"(p-a) _ 1] ( e"<b-a) _e"< 2r-b-a))
= > 0,

[ e"< 2r-a-b) + e"< b- a) -2]2

for p E [a,b) ,

for p E [a,b). 

where the inequality claims in (36) are verified next. The numerator of the first equation 

in (36) is negative if 4Ae"<P-•l < 2A(e"<2,-•-bJ+ e"<h-•l). Dividing both sides of the inequality

by 2Ae"<r-•l yields 2 < e"12r-p-bJ+ e"(b-pi. The powers in the exponents are positive since

r > b > p and A > 0. It follows from this result that aF(p)/aa < 0 on [a,b). The 

sign of the right side of the bottom equation in (36) is positive if e"<P-•l > 1 and e"<h-•l <

e"<2r-b-•l, which is true since p > a and r > b.

For pE[b,r], the first partial derivatives of F(p) with respect to a and b are 

aF(p) 
= 

2A[ e"<2p-b-a) _e"<2r-b-a) ]
< 0' 

aa [ e"<2r-b-a\ + e"(b-a) _ 2]2
(37) 

for p E [b,r) ,

aF(p) 
= 

2A[e"<b-a) - l](e"<2r-b-a) -e"(2p-b-a\) > 0 ,
ab [ e"< 2r-a-b ) + e"<b- a)_ 2]2 

for p E [b,r) ,

where the inequality claims in (37) are verified next. The sign of the right side of the 

first equation in (37) is negative since e"'<2p-h-•> < e"<2r-b-•J, or equivalently, r > p. The
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bottom equation in (37) is positive if eA<b-aJ > 1 and eA<lr-b-aJ > eA<lp-b-al, which is true since 

b > a and r > p. 

The comparative statics results are summarized in the table below: 

pE[a,b) pE[b,r) 

aF(p)/aa aF(p)lab aF(p)/aa aF(p)/ab 

power function + + 

logit + + 

In summary, the model presented in this section has the feature that the Nash 

equilibrium is unaffected by changes in the cost structure as long as b remains below r. 

For the quantal response equilibria, the comparative statics results in the table above are 

depicted in Figure 5.2. An increase in the low-cost step stochastically raises prices in 

the whole range of prices. Thus, sellers in a quantal response equilibrium post 

stochastically higher prices when they face an increase in the low-cost step. By contrast, 

an increase in the high-cost step raises the distribution function for the whole range of 

prices. Hence, sellers post stochastically lower prices given an increase in the high-cost 

step. The intuition behind this last result is that an increase in b reduces profits for the 

second unit that is only sold at prices above b, which causes sellers to post stochastically 

lower prices in a quantal response equilibrium. 



Figure 5.2 

F(p) 
-1

F(p) 
1 F(p) 1Jb 

• 

F(p) •
• • 

• F(p) fra • 
• 

• 

• 
• 

• 
• 

• • 
• 
• 

• 

-

0
• 

a b r Prices 
a b r Prices 



71 

5.4 MARKET POWER AND CONSTANT COSTS 

The market model in figure 5. 3 illustrates the situation when there is excess 

supply and the Nash equilibrium involves randomization. To understand how 

randomization may arise, consider the duopoly model in figure 5d (Tiro le, 1988). Each 

of the 2 sellers has the capacity to supply 2 units at O cost. The market quantity 

demanded is 3 units at any price less than or equal to 1, and O at any price above 1. 

Assume that sellers split the market in the case of ties. Further, suppose that only two 

prices can be posted. For example, if seller 1 offers 2 units at a price of O and seller 2 

posts a price equal to 1 /2, buyers would like to buy from seller 1. This seller will sell 

two units, netting a profit of 0. Seller 2 will face a residual demand of 1 unit and will 

net 1/2. Hence each seller has a unilateral incentive to raise price above a common 

competitive price of 0. 

The Nash equilibrium will involve randomization. 3 The calculations are 

straightforward (see Holt and Solis-Soberon (1992) and the references therein). Given 

seller 2 's capacity constraint, seller 1 can always obtain a safe payoff of 1 by charging 

the price of 1 and selling to the residual demand. For seller 1 to be indifferent between 

posting some arbitrary price p and the limit price 1, it must be the case that seller 2 

3 As can be verified, there is no equilibrium in pure strategies. There is randomization 
over the set of prices (1/2, 1). For instance, if seller 1 posts a price of 1, seller 2's best 
response is to slightly cut this price and sell the 2 units. Then, seller 1 's best response 
is to cut this price. This Edgeworth cycle of best responses continues until the price falls 

to 1/2. At this price, the expected payoff from selling one unit equals the expected 
payoff from selling 2 units at the price of 1. 
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prices according to a distribution F(p) that makes seller 1 's expected earnings at p equal 

to the certain earnings. When seller 1 chooses a price of p, seller 1 has the highest price 

with probability F(p) and the lowest price with probability 1-F(p). Therefore, seller 1 

sells 1 unit with probability F(p) and 2 units with probability 1-F(p). Hence the expected 

profit function for a seller as a function of p is 

(38) 1r(p) = p F(p) + 2 p [ 1 - F(p)] . 

In a mixed strategy Nash equilibrium, seller 1 must be indifferent among all prices over 

which randomization occurs. Hence, the distribution F(p) must equate the expected 

profit at each p in the support [12,p], to the certain profit of 1. The resulting equation 

yields 

(39) F(pJ = 2 - _!_ 
p 

with the corresponding probability density 

(40) 
1 

f(p) = p2 

mited Nash equilibn·um, 

Next, we determine the upper and the lower bound of the price distribution. Notice that 

no price above the reservation price will be charged since the payoff to a seller is zero. 

From (39), the boundary condition F(Q)=O implies that 12=1/2. 

In the analysis that follows, the Nash equilibrium is generalized to incorporate 

decision errors, First note that the expected profit in (38) can be expressed: 
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1r(p)=p[2-F(p)]. Therefore, the power-function quanta! response equilibrium condition 

lS: 

f(p) = 

[p(2-F(p))]" 

(41) 
µ 

µ = f �t( 2 -F (x))] A dx 

As before, µ is a constant independent of p. Before deriving the quanta! response 

equilibrium price distribution, it is worth pointing out one interesting property of ( 41). 

By substituting (39) into the right side of ( 41), it follows that a quanta! best response to 

the other seller's Nash equilibrium in mixed-strategies is the uniform distribution, 1/µ. 

This is because the expected profits are equal at all prices in a mixed-strategy Nash 

equilibrium. Hence, if the rival is using his Nash equilibrium, the seller's best response 

is to spread price decisions uniformly. This result shows why the quanta! response 

equilibrium and Nash distribution cannot be the same when the Nash mixed distribution 

is not uniform to begin with. 

To derive F(p) in (41), we integrate from Oto some p· to obtain 



(42) 
p. p. 1' 
f f (p) dp = f p

µ 
dp .

1, [2-F (p )Y ! 
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Let c = F(p) and de = f(p)dp. As p goes from O to p*, c goes from F(O) =0 to F(p*). 

Assuming A ;r: l , 4 

(43) [2 - C r- 1' F( p • ) 
1-A l 

= p 
1'+1 P 

Iµ(A+ 1) o 

Equation ( 43) is reexpressed as 

(44) 
[2 - F (p. )]1-A 21-A 
_____ +_ = 

1-A 1-A 
( •) 1'+1
p 

- 0.
µ (A+ 1) 

To simplify the notation let p denote p· and rearrange: 

(45) f2-F(p)]l-A = 21-/\ - (1-A)
PA+!

µ(1 +'}\) 

It follows from ( 45) that the price distribution is 

(46) F( ) = 2- [21-A- (1-'}\) /\•1]-rh 
p µ(l+'}\)p 

The next task is to determine µ. The boundary condition, F(l) = 1, implies that the term 

in square brackets in (46) is equal to 1. Hence, µ=(l-'}\)/(1 +A)(21 ·A-l). Thus, replacing 

µ in (46) yields the power-function equilibrium distribution: 

4 If A= 1. the same method provides an explicit solution. The derivation of the price 
distribution is provided in the appendix at the end of this chapter. 
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(47) F(p) = 2 - [21 -"-(2 H - l)p"• 1Jn Q.R.E. 

The corresponding equilibrium density is 

(48) f(p) 

It can be shown using (47) and the definition ofµ that the density in (48) satisfies the 

equilibrium condition in (41). As A goes to 0, F(p) goes to p and prices are uniformly 

distributed. 

Experimental evidence indicates that observed pricing does not conform to the 

Edgeworth cycle theory. However, by comparing equations (54) and ( 62) it is readily 

verified that the Nash equilibrium distribution at the lower bound of the price support, 

FN(l/2)=0, is less than the quanta! response equilibrium distribution, F
Q
(l/2). Therefore, 

consider the conjecture that the Nash equilibrium distribution, FN(p), stochastically 

dominates (in terms of first degree dominance) the quanta! response equilibrium, F
Q
(p), 

or equivalently, FN(p) < F
Q
(p). From equations (54) and (62), FN(p) < F

Q
(p) implies 

1/p > [21-"(I-pH 1) + pH 1]111-". Raising both sides of the inequality to the power 1-A 

yields p"-1 > [2 1-"(1-pH1) + pH 1]. Dividing by p"-1 and arranging terms we have 1 > 

p'-"21-"( l-p 1 H) + p2 . As A goes to 1, the right hand side of the inequality goes to 2(1-p2) 

+ p2 = 2-p2, which is greater than 1 for pE(O, 1). This result in turn contradicts the 

conjecture that the Nash equilibrium stochastically dominates the quanta! response 

equilibrium. 
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Figure 5 .4 illustrates the relationship between the Nash and the quanta! response 

equilibria predictions. In this figure the distribution functions are measured along the 

vertical axis, while the horizontal axis represent prices. The figure shows that as the 

error rate, 1/;\, goes to 1, F Q(p) differs from FN(P). This figure illustrates the fact that

in this model the Nash and quanta! response equilibria differ. The best quanta! response 

to the Nash equilibrium with equilibrium expected payoffs is to spread the probability 

uniformly across all price decisions. In some other models, however, the Nash and 

quanta! response equilibria are identical. This is the case of the all-pay auction presented 

in the next chapter. 

5.5 MARKET POWER AND INCREASING MARGINAL COSTS 

Consider figure 5e. In the absence of the low-cost step a (if a is equal to b), the 

Nash equilibrium analysis for figure 5d would apply and sellers would randomize over 

an interval of prices that exceed b. The obvious question is whether the two-cost step 

structure can explain observed supracompetitive pricing (Holt and Davis, 1994). In light 

of some experimental results, we next examine the quanta! response equilibria for the 

market power design in figure 5e. 

In what follows the random variable p will be treated first as a continuous and 

then as a discrete variable. This is done because it is not possible to obtain a closed

form solution for the quanta! response equilibrium with continuous price choices. 

However, the intuition gained from dealing with the continuous case is useful in dealing 
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with the discrete set-up. 5 Numerical methods are used in the discrete case in order to 

assess the effect of market power on the equilibrium price distribution. 

In figure 5e, each of the two sellers, S 1 and S2, may offer a total of 2 units: 1 

unit at a cost of a, and 1 unit at a per unit cost of b. A total of 3 units are demanded by 

a buyer at any price below the reservation value r. As in the previous example, neither 

seller has the capacity to meet the market demand, but there is excess industry capacity. 

The existence of a pure-strategy Nash equilibrium in this market design is precluded by 

incentives for both sellers to undercut from any common price. As before, the 

calculation of the mixed equilibrium involves equating expected payoffs to a constant. 

Let F(p) denote the continuous distribution of the other seller's price, i.e, F(p) is the 

probability that the other's price is less than p. A seller with a price p that is between 

b and r will earn a profit of p-a if the rival prices below p, and the seller will earn 2p-a-b 

otherwise. Then the expected profit function for p > b is written as 

(49) 
1r(p) = F(p)(p - a)+[l-F(p)](2p-a-b) 

= 2p-a-b +F(p)(b-p). 

For seller 1 to be willing to randomize over a range of prices, it must be the case that 

all prices in that range offer the same expected profit. At a price of r, the seller sells 

1 unit and earns r-a for sure. Seller 1 will be indifferent between posting p and posting 

5 Holt and Solis-Soberon ( 1992) contain a detailed discussion of the calculation of the 

Nash equilibrium in posted-offer markets. 
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r if [l-F(p)](2p-a-b) + F(p)(p-a) = r-a. Solving for F(p), it follows that seller 2 must 

price so that 

(50) F(p) 
= b + r -2p 

b-p
b+r 

forp E(-,r) 
2 

The above equation specifies the mixed distribution that seller 2 must use in order for 

seller 1 to be willing to choose randomly in a range of prices that yield equal expected 

profits. In equilibrium, both sellers randomize according to (50). The last step is to 

verify the lower bound of the price distribution in (50). At the lower bound, F(p)=O, 

so l!=(b+r)/2. The equilibrium distribution is bounded above by r. 6 

In laboratory experiments the set of allowable price decisions often is finite (e.g., 

pennies). In what follows, the mixed-strategy Nash equilibrium when prices are 

integer-valued is calculated. The equilibrium expected payoff, S, must satisfy (51) 

below. This equation is similar to the one for the continuous case. However, this 

equation also accounts for the payoff function that determines earnings when a seller's 

price matches the other's price. At this price, demand is divided equally, so each seller 

earns the average profit: [ (2p-a-b) + (p-a) ]/2. The density, f(pJ, is the equilibrium 

probability that a price selected is Pi, f(pJ � 0 for Pi 
=p 1 , • •  

,r: 

6 By equating the distribution in (50) to .5, one obtains the median of the mixed 
distribution, p = b + (2r)/3. 



(51) 

where Pk 
= p 1 , . .  ,r. Equation (51) can also be expressed as 

(52) 
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The G(p1c.) in equation (52) is a modified "distribution function", that allows for 

the event of ties: 

(53) 

where the final equation follows from (52). In order to obtain the support of the 

equilibrium mixed-strategy Nash equilibrium, consider a set of consecutive integer-valued 

prices: [p1 , . . .  ,r], where r is the largest price. Define PL and PH as the lowest and highest 

prices respectively that are selected with strictly positive probability, where p1 :::;; PL < 

PH :::;; r. By evaluating (51) at PH and using the fact that the sum of the densities up to 

f(pH) equals one, one obtains 

(54) 

S = [ 1 -/(pH)] (pH-a) + /(pH ) [ 
(2pH-a -:

) +(pH-a)
]

f(pH) 
= (pH-a)+ -2-[pH-b] .

Since f(pH)>O, r � PH and r > b, it follows from (54) that S > PH - a. Now, we 

calculate the mixed equilibrium probabilities for this model. For example, suppose that 

a=O, b=4 and r= 9. Conjecture that f(pJ = (r-b)/(b-Pk)2 , with the upper bound pH
= 9 and 
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the lower bound PL =7, is a Nash equilibrium in mixed-strategies. In equilibrium, the 

seller must be indifferent between the prices 7, 8 and 9. Next, we verify that the seller 

has no incentive to deviate by choosing an outside price with positive probability. Using 

equation (52) and the conjecture. f(pJ = (r-b )/(b-pJ2
, one can show that S7 = S8 = S9 == 

9.16. 7 The equilibrium probabilities are: f(7)= 5/9, f(8)= 5/16 and f(9)= 5/25. The 

equilibrium distribution function that results is G(7) = 5/9, G(8) = 125/144 and G(9) = 1. 

The mixed-strategy Nash distribution function is depicted in Figure 5 .5. In this figure 

the horizontal axis represents prices, while the distribution function is labeled on the 

vertical axis. 

Now we examine sellers' best responses using the quanta! response equilibrium. 

Let F(p) be the probability that a seller posts the highest price p. The calculation of the 

quanta! response equilibrium for the model in figure 5e involves two parts. For a p 

between the low and the high cost, a seller only offers 1 unit, which always sells 

regardless of the other seller's price, so: 

7 These three calculations are: 

S
7 

= t<;) ((2 * 7 -4-0) + (7 -0)] + [1-f(7)] (2 * 7 -4-0), 

S
8 

= f(7)[8-0] +fi
)[(2 * 8-4-0)+(8-0)] +[l -f(7)-f(8)] (2 * 8-4-0),

S
9 

= [f(7)+f(8)·•. f(9)]( (9-0)-(2*9-4)) + (2*9-4) .
2 
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(55) 1r(p) = p-a, for p E[a,b) . 

For a p between the high cost step b and the reservation price r, the seller always sells 

1 unit at cost of a. When the seller charges p it may be that p is the smallest price 

posted. This happens if the seller's rival charges a price higher than p, an event which 

has probability [1- F(p)]. However, the seller also sells two units if the rival prices 

below the high-cost step b, this event has probability F(b). Hence the expected profit 

function for a seller as a function of p becomes 

(56) 
1r(p) = (p - a) + [1 - F(p) + F(b)](2p-a-b), 

= (p - a) + [ z - F(p) ](2p - a -b) , 

for p E [b,r], 

where z= 1-F(b) is a constant independent of p. The power-function quanta! response 

equilibrium conditions are given by 

f(p) = 
(p - a)"

for p E[a,b), 
µ 

(57) 

f(p) = 

( (p - a) + [ z - F(p) ]( 2p - a - b) )" for p E [b,r] . 
µ 

Since the densities have to integrate to one, the constant µ is written as 

(58) 

b r 

µ = I (x - a)" dx + i ( (x - a)+ [z -F(x)](2p-a-b) )" dx.

Notice that the calculation of F(p) for pE[a,b) parallels previous examples. However, for 

prices above b, an analytical solution cannot be found. 
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In order to determine the effects of market power on the price distribution, we 

next proceed to calculate the quantal response equilibrium when the price choices are 

discrete, and it is necessary to account for the event of ties. The notation used here is 

identical to the notation introduced previously. For any price between the low and the 

high-cost step, the seller's expected profit function is 

(59) 

where p. is the price at the low-cost step, a. Similarly, Pt, is the price at the high-cost 

step, b. Hence the expected profit function for a seller as a function of Pk is 

for p
1 

E{p
,,, 

.. ,r) 

The first term in equation (60) is the expected profit of a seller when his price is higher. 

The last term is the profit of a seller when the rival prices below b. The second term in 

(60) is the expected profit in the event of ties. The logit quantal response equilibrium

conditions are shown in (61): 

(61) 

where G(pk) is the modified "distribution function" that allows for ties. Since the 

densities in (61) have to sum to one. the constantµ is written as 
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(62) b-1 

µ = 
L 

el (x-a) + � l [G(.r)(.r-a) •[ I -G(.r)) (2.r-a -b) •F(p�_1)(2r-a -b) ] 
�e 

.r=a .t•b 

Numerical methods are used to obtain the equilibrium price density, f(pJ. The parametric 

values are the following: PkE{0,1,2, .. ,9}, a = 0, b =4 and r =9. The quanta! response 

function employed is the logit. The procedure for finding the equilibrium price densities 

is as follows. First, an initial uniform distribution of prices is provided. Using this 

distribution, values for the expected payoffs and the logistic probabilities are computed. 

Given the updated values of the function probability distribution, new values of the 

expected payoffs are computed and the procedure is repeated until the probability 

distribution converges. 

The Nash and quanta! response equilibrium price distributions are illustrated in 

Figure 5.6. In this figure the distribution functions are indicated in the vertical axis, 

while prices are represented in the horizontal axis. The quanta! response equilibrium is 

plotted for different error rates. The upper and lower bound of the mixed-strategy Nash 

equilibrium is 9 and 7 respectively. The figure shows that as the error rate, 1/;>.., 

decreases more of the mass of probability in a quanta! response equilibrium is 

concentrated in the reservation price of 9. In the Nash equilibrium, however, the mass 

of probability is concentrated near the lower bound of the mixed-strategy Nash 

equilibrium. With respect to the equilibrium strategies, it is interesting to note that F
0
(p) 

dominates stochastically FN(p), in terms of first degree dominance, or equivalently, F
0
(p) 
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< FN(P). This means that sellers are posting stochastically higher prices in a quanta! 

response equilibrium than in the mixed-strategy Nash equilibrium. 

5.6 SELLER CONCENTRATION 

In this section we examine the quanta! response equilibrium in the presence of a 

change in seller concentration. This structural variable is another factor that has been 

associated to systematic deviation from the Bertrand-Nash equilibrium in posted-offer 

markets (Holt and Davis, 1984). 

Consider a generalization of the baseline model introduced at the beginning of this 

chapter to the case of N sellers. As before, each seller has 1 unit to sell at a zero cost. 

The quantity demanded is 1 unit for all prices less than or equal 1. A well known result 

is that for N � 2, where N is the number of sellers, the Bertrand-Nash equilibrium is to 

set price equal to marginal cost. 

Now consider the calculation of the quanta! response equilibrium. When a seller 

charges p it may be that p is the smallest price being posted. This happens only if the 

other sellers charge prices higher than p, an event which has probability [1- F(p)jN-1• 

Therefore, the expected profit of the seller is 

(63) 1r(p) = [1-F(p)]N-lp. 

In the present market context, the power-function decision rule implies that the choice 

probabilities must satisfy: 



(64) 

f(p) 
= (p [ 1-F (p)] N-1 )"' 

µ 

µ = 
i 

( X [ 1- F (x) ]"'- 1 )" dx . 

Equation ( 64) can be expressed as 

(65) f (p) = 
p"

[l-F(p
)](N-l)A µ 

Integrating both sides of equation (65) from O to some p* > 0, we have 

(66) 
p. p. 

f f (p) d = f p" d 
! fl-F(p)J<N-l)A p 

! µ 
p

.

Let c = F(p) and de = f(p)dp. As p goes from O to p·, c goes from F(O) to F(pJ. 

Assuming /\ -;,t. 1 

(67) 

(68) 
[1-c]1-(N-l)/.. F(rl = p

"
•I p 

1-(N-1)/\ F(O) µ(A+l) i 

Using the boundary condition F(O) =0, equation (68) is also written as 

(69) [ 1 - F (p • ) ] 1-(N - l )/.. 

+ 
1 

1-(N- l)A 1-(N-l)A 

Multiplying both sides of (69) by 1-(N-l)A yields 

= p. /..•! 

µ(A+l) 

Simplifying the notation, it follows from (70) that the probability distribution is 
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(70) 

(71) 

-[1-F(p.)]l•A-M' = [ (1+/\-NV)(p•)"•l -1)
µ(/\+ 1) 

F(p) 
= 1- [ 1 - (1+/\-N/\) 

p "·1] �
µ(1 +/\) 
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where µ is a constant to be determined. The boundary condition, F(l) = 1, implies that 

µ = (1 +/\-/\N)/(/\+ 1). The quanta! response equilibrium price distribution is 8 

(72) 
F (p) = 1- [ 1 - p "•1 ] � ,

with the corresponding equilibrium price density: 

(73) 

Next we examme the effect of the number of sellers, on the endogenous 

equilibrium price distribution. The partial derivative of (73) with respect to N is 

(74) aF a ( i_ ln(l-p'·'i) 
- = -- e�

aN aN 

Equation (74) is expressed as follows 

(75) aF = -e� 1n <1-p'·'iJ__ [ 1 ln(l-p"•1)]
aN aN 1 +/\-m 

The partial derivative of F(p) with respect to N is 

� From ( 64), a quanta! response equilibrium for ( 1/N) - 1 � /\ is the degenerate 
distribution F(p) = 1 for p � 0. 



(76) aF 
1 In( l -p11•1) "A = -(1-p�]

aN (1-,."J,..-N";,..)2 
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The logarithm in (76) is negative since pE(O, 1 ). Therefore, as N increases the price 

distribution F(p) increases, and price declines stochastically. 

To summarize: 

As the number of sellers, N, increases, the power-function price equilibrium increases. 

Thus, given an increase in N, sellers post stochastically lower prices. 
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5. 7 CONCLUSIONS

This chapter examined the effects of structural variables on equilibrium price 

distributions; cost structure, market power and seller concentration. The quanta! 

response equilibrium was calculated for a series of variations of the simple duopoly 

model presented in chapter 4. The variations were introduced sequentially in order to 

develop the intuition needed to compute the quanta! response equilibria in these models. 

The computations of the quanta! response equilibria are not straightforward since it often 

involves determining expected payoffs for different ranges of prices, and it is not always 

possible to obtain closed-form solutions. Numerical methods were used in more complex 

market designs to assess the effects of structural variables on the equilibrium price 

distribution. The models considered in this chapter had 1 or 2 cost steps, severe capacity 

constraints and market power. Specific conclusions for the models analyzed in this 

chapter include: 

1. With severe capacity constraints. the power-function and the logit

quanta! response equilibrium predict systematic departures from the 

Bertrand-Nash equilibrium for finite error parameters, and convergence 

to the Nash equilibrium as the errors vanish. Accordingly, the model is 

able to account for systematic price deviations in past experiments. 

2. With severe capacity constraints and increasing costs, it is shown that

sellers post stochastically higher prices when they face an increase in the 

low cost parameter. An increase in the high-cost parameter increases 
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prices above the high cost step, which reduces profits for the second unit 

that only sells at higher prices. This causes sellers to post stochastically 

lower prices in a quanta! response equilibrium. By contrast, the Nash 

equilibrium is unaffected by changes in the cost parameters as long as the 

high cost parameter is below the reservation price. 

4. With market power and constant costs, it is shown that the Nash

equilibrium in mixed-strategies and the quanta! response equilibrium 

differ. 

5. With market power and increasing costs, the quanta! response

equilibrium stochastically dominates the Nash equilibrium (in terms of 

first degree dominance). In a quanta! response equilibrium, as the error 

rate decreases, the mass of probability is concentrated in the reservation 

pnce. In the mixed-strategy Nash equilibrium, however, the mass of 

probability is concentrated near the lower bound of the price distribution. 

6. In the N-firm model, a decrease in the number of sellers generates a

stochastic increase in prices. 

In this chapter, a comparison was made between the predictions of the quanta! response 

approach and empirical features of posted-offer market experiments. The main finding 

is that the quanta! response approach is typically consistent with supracompetitive pricing 

observed in posted-offer markets, including seller concentration, market power with 

increasing costs and cost structure. 
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5.8 APPENDIX II 

For )+..= 1, the power function quanta! response equilibrium condition becomes 

(77) f(p) = p(2 -F(p))
µ 

This equation can be also arranged as follows 

(78) f(p) 
(2-F(p)) 

p 

µ 

The above equation is reexpressed as 

(79) a In ( 2 - F (p)) = - ]!_
µ 

Integrating from O to some p0 • we have 

p p* 

(80) fa In (2 -F(p)) = f - p
0 0 µ 

Equation (80) yields the following result: 

(81) 
.2 

In (2-F(p *)) = _[!_ 
2µ 

To simplify the notation let p denote p·. It follows from the above equation that the price 

distribution is 



(82) - ,;
F(p) = 2 [ 1 - e :iµ ] . 
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The next task is to determine µ. The boundary condition, F(l) = L implies that µ = 

-1/(2*ln(l/2)).



CHAPTER 6 

FIRST-PRICE, ALL-PAY AUCTIONS 

6.1 INTRODUCTION 

Auctions are one of the basic mechanisms for determining the prices of goods to 

be exchanged. In auctions, prices are determined by competition among potential buyers. 

Since the price in an auction is determined when the object is sold, it reflects all the 

available information and the preferences of the potential buyers who are bidding. 

Auctions may take one of two basic forms, oral or sealed-bid. In oral auctions, bidders 

hear one another's bids as they each made. In sealed-bid auctions, bidders 

simultaneously submit one or more bids to the seller without revealing their bids to one 

another. 1 A widely used sealed-bid auction is the first-price auction. In this auction, 

the highest bidder wins the item and pays the price submitted; the other bidders get and 

pay nothing. 

The all-pay auction is similar to the first-price auction, except that losers must 

also pay their submitted bids. Baye et al. ( 1995) fully characterize the set of Nash 

equilibria in the first-price all-pay auction with complete· information. In contrast to 

previous research, they show that the set of equilibria is much larger than the set of 

1 For a further .discussion of auctions, see, for example, McAfee and McMillan (1987), 
Milgrom and Weber (1982) and Myerson (1991). 
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symmetric equilibria. They show also that the equilibria are not revenue equivalent in 

general. 

Many economic problems can be modeled with the all-pay auction. In situations 

such as lobbying for rents in regulated or protected industries, technological competition 

and political campaigns, the participant showing the greatest effort or expenditure wins 

the prize, while the others are penalized. For example, Dasgupta (1986) uses the all-pay 

auction to model patent races in which the bids are research and development 

expenditures and the prize is a patent with known value. The firm spending the most on 

research and development obtains the patent, while the other firms make loses since they 

do not recover their expenditures. 2 A characteristic of this model is that the reward 

structure is such that ex-post payoffs are discontinuous. This property precludes the 

existence of Nash equilibrium in pure strategies. 3 The Nash equilibrium of the all-pay 

auction with complete information typically involves the use of randomized strategies, 

which protect bidders from being overbid by a small amount. However, bidders can 

make mistakes in calculating small differences in expected payoffs. This chapter uses 

the quantal response approach to model behavior in the all-pay auction. Two parametric 

2 Moulin ( 1986) also examines this symmetric equilibrium, but interprets it as a lobbying 
game. 

3 Dasgupta and Maskin ( 1982) have shown that discontinuous games do possess mixed
strategy Nash equilibrium under certain restrictions. A sufficient set of conditions is that 
the firm's profit function is everywhere left lower semi-continuous in its price, (and 

hence weakly lower semicontinuous), the profit function is bounded, and the sum of the 
two firms' profit functions is continuous. 
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classes of quanta! response functions, the power function and the logit are used to 

calculate the quanta! response equilibrium of the all-pay auction. As shown in chapter 

3, these functional forms arise from different models of the error structure. An 

interesting result obtained in this chapter is that the Nash equilibrium in mixed-strategies 

and quanta! response equilibrium are identical in the all-pay auction. 

This chapter consists of two parts. In the first part, the Nash equilibrium of the 

(first-price) all-pay auction is analyzed. Section 6.2 contains the model. Following 

Dasgupta (1986), the Nash equilibrium in mixed strategies for continuous bid choices is 

analyzed in section 6.3. In laboratory experiments the set of feasible bid decisions often 

is finite; the calculation of the Nash equilibrium for the all-pay auction when the 

allowable bids are integer-valued is the topic of section 6.4. The second part of this 

chapter examines the quanta! response equilibrium of the all-pay auction. Specifically, 

sections 6.5 and 6.6 provide a general statement of the conditions under which the Nash 

equilibrium in mixed-strategies and quanta! response equilibria are identical. Section 6. 7 

illustrates the calculation of the quanta! response equilibrium for discrete and for 

continuous bid choices using two different models of the error structure. Common 

patterns of the Nash and quanta! response equilibrium price distributions are discussed 

at the end of this chapter. 
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6.2 THE MODEL 

Assume that there are 2 identical bidders (which are henceforth referred to as 

firms). The "bids", which can be interpreted as competitive expenditures, are set 

simultaneously. The firm spending the most obtains the prize. Each of these firms has 

an identical known valuation, v. For instance, in a research and development (R&D) 

race, the bids are R&D expenditures and the prize is a patent with corresponding 

monopoly profit. In political contests, the bids are lobbying expenditures and the prize 

is a political favor. The value is split in case of a tie. The payoff to firm 1 is given by 

v-p 1 
for P 1 

> P2

(1) lll(pl) 
V 

for P 1 
= - -p l 

= P2 
2 

-p l 
for P 1 

<p2 . 

Notice from ( 1) that the bid Pi is paid whether or not the prize is won. Competition in 

an all-pay auction may be risky because it can generate negative profits. For such a 

bidding contest to take place, its outcome cannot be deterministic. Each player must 

have at least some chance of winning in order to be willing to participate. 
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6.3 THE NASH EQUILIBRIUM WITH CONTINUOUS BID CHOICES 

Let Pi denote the bid posted by firm i, i= 1,2. Notice from (1) that at a bid Pi

above v, the firm with the higher bid makes negative profits. Also no firm is allowed 

to set a bid Pi less than 0. The calculation of the Nash equilibrium for the all-pay auction 

typically involves mixed strategies. To see this, suppose there is a pure strategy 

equilibrium with firm 1 bidding p 1 and firm 2 bidding p2: 

Now, consider the bid p 1 ': 

Since v-(p 1 + pi)/2 > v-p
1 , firm 1 wins the prize and earns higher profits from bidding 

p1' than p1. Suppose p1 
=p2 � 0. Then, a firm by raising slightly its bid wins the prize 

for sure. Using this argument, it follows that there is not a pure-strategy Nash 

equilibrium in the all-pay auction. 

In what follows, the symmetric mixed-strategy distribution with support [12,p] is 

constructed. There can be no mass points in the interval [12,p]. The reason is that if 

there were mass points in this interval, it would pay for a rival to concentrate just below 

such a mass point, to increase its payoff. 

Since there are no mass points in the equilibrium density. f(p), the equilibrium 

cumulative distribution function, F(p), will be a continuous function on [12,p]. The 
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possibility of ties is not considered until the next section, where bids are integer-valued. 

Notice that when a firm bids p, it may be that p is the highest bid being posted, in which 

case, the firm's profit is v-p. This happens only if the other firm bids lower than p, an 

event which has probability F(p). Thus the firm's expected profit function is vF(p)-p. 

For firm 1 to be indifferent between bidding some arbitrary bid p and 0, it must 

be the case that firm 2 bids according to a distribution Fz(p) that makes firm 1 's expected 

earnings at p equal to a security expected profit, S 1 • Otherwise, it would pay a firm to 

increase the frequency for the bid with the higher expected payoff. The equilibrium 

expected payoff S 1 , must satisfy: 

(2) for p E(p_ ,p ) 

In a symmetric equilibrium, F1(p) =Fi(p), and in this case, (2) yields: 

(3) 
F(p) = P + S

V 

Equation (3) determines the equilibrium distribution function, once the S constant is 

found from an analysis of boundary conditions, which is the next task. Recall that there 

are no mass points in this equilibrium. Given F(Q) =0, it follows that S = -12 in equation 

(2). Since bidding zero is a permissible strategy in this model, it must be the case that 

12=0 and hence S=O. Given F(p)=l, equation (2) can be used to show that v-p=O so 

v =p. Using the boundary conditions, F(O) =0 and F(v) = 1, yields the equilibrium 

probability distribution 



(4) F(p) = P 

The corresponding price density is written as 

(5) 
1 

f(p) = -
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In the symmetric mixed-strategy Nash equilibrium, bidders randomize according to (4). 

Baye, et al. (1995) have shown that with more than two players the symmetric all pay 

auction delivers a continuum of asymmetric equilibria. Also, in any equilibrium, the 

expected payoff to each player is 0. 

To summarize: 

Proposition 1 (Dasgupta 1986. p. 536) 

In the symmetric-mixed strategy Nash equilibrium, each firm bids randomly with 

probability I Iv in the suppon [O, i,J. Funhermore, expected profits are zero in 

equilibrium. 
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6.4 THE NASH EQUILIBRIUM WITH DISCRETE BID CHOICES 

In laboratory experiments, the set of feasible decisions is almost always finite.4 

The calculation of the mixed-strategy Nash equilibrium when bids are restricted to be 

integer-valued is similar to the one for the continuous case. The equilibrium expected 

payoff S is given in equation (6). This equation is comparable to equation (2) but 

equation (6) also includes the payoff function that determines earnings when a firm's bid 

matches the other's bid. The density, f(pJ, denotes the equilibrium probability that a 

price selected is Pi, where f(pJ � 0 for Pi =p,, .. , v: 

(6) 

where Pk = p 1, •• , v. The first term in ( 6) is the expected profit from being the higher 

bidder. The second term is the expected profit of a tie at Pk · At this bid, the prize is, 

divided equally. The last term corresponds to the expected payoff from being outbid. 

Equation ( 6) can also be expressed as 

The G(pJ in equation (8) is a modified " distribution function" that allows for the 

event of ties: 

4 The analysis of mixed-equilibria for simple normal form games is discussed in Moulin 
(1981). Holt and Solis-Soberon (1992) contains a discussion of the calculation of the 
mixed-strategy equilibria in posted-offer markets. 
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(8) 

where the final equality follows from (7). In order to obtain the support of the 

equilibrium mixed-strategy Nash equilibrium, consider a set of consecutive integer-valued

bids: [p1,p2, ... ,v], where v is the largest integer bid. Define PL and PH as the lowest and

highest bids respectively that are selected with strictly positive probability, where p1 s 

PL < PH s v. By evaluating (6) at PH and using the fact that the sum of the densities

up to f(pH) equals one, one obtains

(9) 

Since f(pH) > 0, it follows from (9) that S < v - PH· Now, we calculate the mixed

strategy equilibrium for this model. Conjecture that f(pJ = l/v with the upper bound 

PH =v-l and the lower bound p1 =pL =0, is a Nash equilibrium in mixed-strategies. Next,

we verify that a seller is indifferent between the bids 0, 1, .. , v-l. By evaluating (7) at PH 

= v-1, one obtains

(10) 

S = [F(v -2) + /( 
v; 1) ]v -(v -1)

= - - +- -(v-1).
[v-1 l f 

V 2v 
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It is straightforward to verify from ( 10) that S = 1 /2. An analogous argument shows that 

at the lower bound, PL =0, S = 1/2, and similarly for intermediate prices. In contrast to 

the Nash equilibrium with continuous bid choices, rents are not dissipated in equilibrium 

in the discrete case. A possible reason is that in the discrete case a firm has to bid higher 

money amounts to outbid a rival. 

To summarize: 

Proposition 2 

The probability ]Iv over the set of consecutive integer-valued bids: [0,1, ... ,v-JJ is a 

mi.xed-strategy Nash equilibrium. Further, in equilibrium expected profits are 112. 

In this model, bidders randomize to protect themselves from being overbid by a 

small amount. However, bidders can make mistakes in calculating small differences in 

expected payoffs. Next, we qualify the assumption that firms are perfect maximizers of 

their own money payoffs. This is done by introducing decision error, i.e., in choosing 

their bid strategies firms make mistakes. Bidders 'tremble' and therefore every bid 

strategy is played with a strictly positive probability. 
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6.5 EQUIVALENCE OF EQUILIBRIA WITH DISCRETE BID CHOICES 

POWER-FUNCTION QUANTAL RESPONSES (MULTIPLICATIVE ERRORS) 

For any structure of the error term (i.e multiplicative or additive), the next 

propositions illustrate a general statement of the equivalence between the Nash 

equilibrium in mixed-strategies and quanta! response equilibria. Such equivalence arises 

because the expected profits in the mixed-strategy Nash equilibrium with discrete bid 

choices are equal at all bids in the support [O, 1, .. ,v-1] ( continuous case, [O,v] ). Hence, 

if the rival is using his Nash equilibrium, the player's best quanta! response is to spread 

bid decisions uniformly in the support [O, 1..., v-1] or (0, v] respectively. 

Proposition 3 

Consider a game in which the strategy space, S,, of player i is a discrete set of actions, 

s; E S;, i = 1 .... n. Suppose there exists a Nash equilibrium to the game at which player 

i plays each action in S;CS; with equal probability (i.e S\ = llk v S°; ES;, where k= 

number of elements in SJ. Let 1r °; (sJ denote i 's profit given all other players play their 

equilibn·um mixed strategies, and suppose funhermore that 1r·; (sJ > 0 v s; E S; while 

1r
°

; ::5: 0 V s; i S;. Then there exists a multiplicative-error quanta! response equilibrium 

when the error structure satisfies e; � 0 ( F(O) =0, no mass points at zero) and the 

errors are identically independently distn'buted. Funhermore, this multiplicative-error 

quanta! response equilibrium is identical to the Nash equilibrium described above. 
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Proof 

It suffices to show that player i will choose each strategy in S i with equal probability, 

given the other players choose strategies in the manner described in the proposition. 

Clearly, since u
i 
= 1r\ (s)e

i
, no strategy outside S i will be chosen (to do so would yield 

nonpositive payoff for all realizations of si, but nonnegative payoffs are guaranteed for 

si E S i , the probability of "ties" at zero is zero since F(O)=O). Finally, since 1r\(s
i
)=1r·i

(s1) = ii > 0 for all s
i
,s, E S;, it remains to be shown that 

(11) 

This is true since 

(12) 

1 Pr ( i e . = maxi e 
1 
) = 

J . .

ki. ; zs max 

LOGISTIC QUANTAL RESPONSES (ADDITIVE ERRORS) 

Proposition 4 

Consider a game in which the strategy space , S;, of player i is a discrete set of actions, 

s; E S;, i =I .... n, where sn < v. Suppose there exists a Nash equilibrium to the game at 

which player i plays each action in S; CS; with equal probability (i. e S'; = I /k v S\ E

S;, where k = number of elements in Si). Let 1r·; (sJ denote i ·s profit given all other 

players play their equilibrium mixed strategies, and suppose funhermore that 1r·; (sJ > 
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0 for all s; E S; while 1r ·; � 0 v s; fl. S;, Then there exists an additive-error quanta/ 

response equilibrium when the error structure satisfies e; � 0 ( F(O) =0, no mass points 

at zero) and the errors are identically independently distributed. Furthermore, this 

additive-error quanta/ response equilibrium is identical to the Nash equilibn'um described 

above. 

Proof 

It suffices to show that player i will choose each strategy in .S; with equal probability, 

given the other players choose strategies in the manner described in the proposition. 

Clearly, since u1 = 1r'; (s1) + e1, no strategy outside .S; will be chosen (to do so would 

yield nonpositive payoff V realizations of s;, but nonnegative payoffs are guaranteed for 

s; E .S;, the probability of "ties" at zero is zero since F(O) =0). Finally, since 1r';(si) =

1r';(si) = i; > 0 v si,s, E S;, it remains to be shown that

(13) 

This is true since 

1 
Pr ( i + e . = max i + e 

1 
) =

J .. 
J cs max 

(14) Pr ( i + e . = maxi + e 
1 
)

J . .

J cs max 



6.6 EQUIVALENCE OF EQUILIBRIA WITH CONTINUOUS BID CHOICES 

LOGISTIC QUANTAL RESPONSES (ADDITIVE ERRORS) 

Proposition 5 
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Consider a game in which the strategy space, Sj, of player i is an interval of actions, 

SE[O, v] . Suppose there exists a Nash equilibrium to the game at which player i plays 

each action with probabilityf(s) = 1 Iv. Let 1r·i (s) denote i's profit given all other players 

play their equilibrium mixed strategies, and suppose funhermore that 1r\ (s) � 0 for all 

SE[O, v]. Then there exists an additive-error quanta! response equilibrium when the error 

structure satisfies ei � 0 ( F(O) =0, no mass points at zero) and the errors are identically 

independently distributed. Funhermore, this additive-error quanta! response equilibrium 

is identical to the Nash equilibrium described above. 

Proof 

It suffices to show that player i will choose strategy s with equal probability, given the 

other players choose strategies in the manner described in the proposition. Since 

1r*i(s)=ii >O for all SE[O,v], it needs to be shown that 

(15) 

This is true since 

Pr ( i + e . = max i + e . ) = ..!. .
j ) i.r mAX 

I 
n 



(16) Pr ( i + e . = max i + e . )
J . . I 

J is max 

pn oo 1 

= f p n- 1 (e)f(e)de = - I = - .

�' n o n 

POWER-FUNCTION QUANTAL RESPONSES (MULTIPLICATIVE ERRORS) 

Proposition 7 
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Consider a game in which the strategy space, S;, of player i is an interval of actions, 

SE[O, v]. Suppose there exists a Nash equilibrium to the game at which player i plays each 

action with probability f(s) = I Iv. Let 1r'; (s) denote i's profit given all other players play 

their equilibrium mixed strategies, and suppose furthermore that 1r\ (s) 2 0 for all 

SE[O, v]. Then there exists a multiplicative-error quanta! response equilibrium when the 

error structure satisfies e; 2 0 ( F(O) =0, no mass points at zero) and the errors are 

identically independently distributed. Furthermore, this multiplicatire-error quanta! 

response equilibrium is identical to the Nash equilibrium described abore. 

Proof 

It suffices to show that player i will choose strategy s with equal probability, given the 

other players choose strategies in the manner described in the proposition. For all 

sE[O,v], the power-function quanta! response equilibrium selects all options with equal 

1r
2,

0: 
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(17) 

even when 1r=O since lim 1r�
+

.

The set of propositions stated above shows why the quantal response equilibrium 

and Nash distribution for the all-pay auction are the same when the Nash mixed 

distribution is uniform in the support [0,1, .. ,v-1] for the discrete case and [O,v] for the 

continuous case. Consequently. adding decision error into the all-pay auction with 

complete information does not affect the firms' probability choices. 

6. 7 EXAMPLES OF THE CALCULATION OF THE QUANT AL RESPONSE

EQUILIBRIUM 

DISCRETE BID CHOICES AND MULTIPLICATIVE ERRORS 

In this section we illustrate how the quantal response equilibrium of the all-pay 

auction can be computed. Recall that the the power-function quantal response 

equilibrium is derived from random utility with multiplicative errors. Then the power 

function quantal response equilibrium condition is given by 
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(18) 

( F(P,_1) + ftp/ ]v - P,)' 
==�� 

where µ is a constant independent of prices. The probability density in (18) is obtained 

by solving recursively the first equation in (18), beginning with the lowest bid and 

working upward. For simplicity, let A= 1. Since ties are possible with integer-valued 

bids, it follows that f(0)/2 > 0. By evaluating (18) at the lowest bid I\ =O, it follows that 

µ = v/2. The substitution ofµ back into (18) results in the following expression 

(19) 

Let Pk = z. Then, the above equation is written as 

z-1

(20) Lf(i) V == z ,
i=O 

for z = 1, ... , v. Consider z = 1. Then, it follows from (20) that f(O) = 1/v. Assume z 

= 2. Then, equation (20) yields 

(21) f(O) ... f(l) == 
2 

Since f(O) = 1 /v, it must be the case that f(l) = 1/v in (21). A similar argument shows 

that z =v yields 



(22) 
v-1

V 

+ f(v - 1)
V 

V 
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It is readily verified from (22) that f(v-1)=1/v. Now consider>,. > 1. Notice that 

f(O) >0 implies that µ= (f(0)) "- 1(v/2)". Conjecture that the equilibrium probability is 1/v. 

From (18), it follows that µ=v(l/2)\ By evaluating (18) at pk=v-1 and using the 

solution for µ. one obtains 

(23) 

.f(y-1) 

= 2 >. ( r F(v - 2) + f( V; 1)] V - (v-1) r

Substituting the conjecture 1/v in both sides of (23), it follows that 1/v satisfies (23). A 

similar argument shows that the uniform distribution, 1/v, satisfies intermediate bid 

values. 

CONTINUOUS BID CHOICES AND ADDITIVE ERRORS 

For any given A > 0, the logistic quanta! response equilibrium for continuous 

bid choices is given by 

f(p) 
e" 1 v F( P ) - P 1 

µ 

(24) 
V 

µ
= 

i 
e'-[ VF ( X ) - X ] dx 

where µ is a constant independent of p. The first equation in (24) is a nonlinear 

differential equation in the price distribution F(p). In order to obtain F(p) we first 



multiply both sides of the top equation in (24) by -Ave-)wF<rl, which yields 

(25) -AV e-'t,.p -A, V f(p)e-'t,.vF(p) :: ----

µ 

Integrating over all values of p, i.e from P
a 

to p*, we have 

p• 

(26) f -A, V f(p)e-'t,.vF(p ) dp 
P, 

p• 

f 
-AV e-'t,.p = dp 

P, 
µ 

The resulting equation is written as 

(27) 
F<p · l ve-¥ P 

e-,.,F<p) I = I 
F(p,) µ P, 
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The next task is to determineµ from an analysis of boundary conditions. Since negative 

prices produce no profits, conjecture that F(p.) =0, with P
a 
=0. Let p denote the upper 

bound of the bid distribution. Using the boundary condition, F(O) =0, equation (27) 

becomes 

(28) e-'t,.v F(p)_ 1 :: �[ e-'t,.p - 1] 
µ 

Now consider the upper bound p. From (24), p > v implies that f(p) > 0. Since bids 

above v produce O profits, conjecture that F(p)=l, with p=v. This conjecture in turn 

implies that µ=v. Substitutingµ back into (24), we have 

(29) 

It is readily verified from (29) that the equilibrium probability function is 
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(30) 
F(p) = 

p

which also satisfies the working assumption used above: F(O) =0 and F(v) = 1. 
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6. 8 CONCLUSIONS

In this chapter, we examine the quanta! response equilibrium for discrete and 

continuous bid choices of a (first-price) all-pay auction model. The main result derived 

in this chapter is that for any structure of the error terms the Nash in mixed-strategies 

and quanta! response equilibrium are identical under certain restrictions: The Nash 

equilibrium price distribution is uniform in the support and the error terms are 

independently distributed. This is the case for the all-pay auction since the expected 

profits in the mixed-strategy Nash equilibrium are equal at all bids in the support [O,v] 

in the continuous case, and [0,1, .. v-1] in the discrete case. Hence, if the rival is using 

his Nash equilibrium, 1/v, the seller's best response is to spread bid decisions uniformly 

in the corresponding support. Another interesting result derived in this chapter is that the 

Nash equilibrium in mixed-strategies with discrete bid choices is for each firm to choose 

the probability 1/v over the set of consecutive integer value bids: 0, 1, .... v-1 for an 

expected payoff of 1/2. In contrast with the continuous case, rents are not dissipated in 

equilibrium in the discrete case. 



CHAPTER 7 

CONCLUSIONS AND EXTENSIONS 

This thesis consists of several essays on quanta! response equilibria for models 

of price competition. The first part pertains to the derivation of the "power function" 

quanta! response equilibrium from a model of multiplicative random errors. The second 

part uses the quanta! response behavior to model equilibrium in models of price 

competition. 

A large experimental literature documents systematic deviations from the Nash 

equilibrium in game theory and industrial organization experiments. This thesis 

examined the equilibrium properties of models of price competition in which decision 

error may arise. The approach used in this thesis is the quanta! response equilibrium. 

Capturing decision error in a way that is clearly spelled out and not ad hoc is a difficult 

task, the quanta! response equilibrium does this by using the basis borrowed from 

discrete choice theory of Luce (1959), McFadden (1984) and Thurstone (1927). As 

discussed in chapter 2, the added complexity in applying the quanta! response equilibrium 

to game theory -- in contrast to individual choice -- is that the choice probabilities of the 

players have an important interactive component, since they are simultaneously 

determined in equilibrium. In a quanta! response equilibrium, a player's beliefs about 
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others' actions will determine the player's own expected payoffs, which in turn determine 

the player's choice probabilities via a quanta] response function. The model is closed by 

requiring the choice probabilities to be consistent with the initial beliefs. 

Chapter 3 derives the power-function quanta] response equilibrium. This 

functional form is a useful way to model decision errors in models of price competition 

since it often leads to tractable solutions and comparative statics results. The 

power-function quanta! response equilibrium is based on random utility maximization 

with multiplicative error terms. 

The power function approach can be thought of as a generalization of the Luce 

model of choice probability ratios that earn properties to utility ratios. In the power 

function model, the choice probability ratios are expected payoff ratios raised to some 

power. The power parameter governs the extent to which a player's deviates from being 

conventional expected utility maximizer. At one extreme, individuals choose randomly, 

independent of expected payoffs. At the other extreme, individuals always choose the 

decision with the highest expected payoff. 

The last part of chapter 3 established differences in the qualitative properties of 

Nash and quanta! response equilibria in a standard prisoners' dilemma game with two 

possible price choices. In this market game, the Nash equilibrium is also a power

function quanta! response equilibrium, but this is not true for the Iogit model. Another 

interesting consequence of this model is that, as the error rate, 1/A, increases, the 

probability of choosing the cooperative, high-price decision also increases. The analysis 
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of the prisoners' dilemma game with two price choices suggests that a sufficient amount 

of decision error can actually make individuals better off since it increases the probability 

of choosing the cooperative, high-price decision. This result provides a natural null 

hypothesis for experimental analysis. 

In chapter 4, the power-function equilibrium price distribution is derived for a 

simple Bertrand duopoly game. The power-function price distribution allow us to derive 

intuitive comparative results for the error-rate parameter, 1 /11.. Accordingly, the model 

is able to account for systematic price deviations from the Bertrand-Nash equilibrium. 

Chapter 5 examined the consequences of cost structure, market power and seller 

concentration on the endogenous equilibrium price distributions. This is done because 

such structural variables have been associated with systematic price deviations in models 

of price competition ( Holt and Davis, 1990, Davis and Williams, 1990, Wellford et al., 

1990 Brown-Kruse et al., 1993 and Davis and Holt, 1994). We first analyzed a model 

with severe capacity constraints. It is shown that, the quantal response equilibrium 

predicts systematic departures from the Bertrand-Nash equilibrium for finite error 

parameters, and convergence to the Nash equilibrium as the errors vanish. Experimental 

evidence indicates that although market models may share identical Nash equilibrium 

different average prices are observed (Holt and Davis, 1990). In light of this 

experimental result, we introduce increasing costs to the baseline model with severe 

capacity constraints. We found that, an increase in the low cost parameter stochastically 

raises prices. Thus, sellers in a quanta! response equilibrium post higher average prices 
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when they face an increase in the low cost parameter. However, the Nash equilibrium 

in this model is unaffected by changes in the cost structure. Thus, the model has the 

potential of explaining qualitative features of some experimental results (Holt and Davis, 

1990). A change in the number of sellers is another factor that has been associated to 

systematic price deviations from the Bertrand-Nash equilibrium in posted-offer markets 

(Holt and Davis, 1994). It was found that a decrease in the number of sellers generates 

a stochastic increase in prices. By contrast the Nash equilibrium is unaltered. 

The second part of chapter 5 examined competition between two price setting 

sellers, each of whom faces a production capacity constraint. Experimental evidence 

indicates that competitive equilibrium pricing, Edgeworth cycles in prices and mixed 

strategy Nash equilibrium in prices are not completely consistent with the experimental 

data. As the error decreases, the quanta! response equilibrium does not select the 

competitive outcome, which is consistent with experimental data. 

Another empirical feature of experimental models of price competition is that 

prices do not conform to Edgeworth cycle theory although experiments exhibit upward 

and downward swings of the sort predicted by the Edgeworth cycle theory. Because of 

this we examine the quantal response equilibrium of the baseline model with production 

capacity constraints. The conjecture that the quanta! response equilibrium stochastically 

dominates the Nash equilibrium cannot be rejected. Furthermore, it is shown that if a 

rival is using his Nash equilibrium strategy, the seller's best quanta! response equilibrium 

is to spread price decisions uniformly. This is because the expected profits are equal at 
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all prices in a mixed-strategy Nash equilibrium. A counterexample of this result is the 

all-pay auction model analyzed in chapter 6. 

The last part of chapter 5 examined a variation of the baseline model with 

capacity constraints. Using numerical methods it was shown that, as the error rate 

decreases, the probability mass is concentrated at the reservation price in a quanta! 

response equilibrium. In the mixed-strategy Nash equilibrium, however, the probability 

mass is concentrated near the lower bound of the price distribution. This result is 

consistent with qualitative features of the experimental posted offer markets results of 

Holt and Davis, 1994. 

Chapter 6 analyzed the all-pay auction model. The Nash equilibria of the all-pay 

auction typically involves randomization, which protect bidders from being overbid by 

a small amount. However, bidders can make mistakes in calculating small differences in 

expected payoffs. The Nash equilibrium for the all-pay auction is for each firm to choose 

bids with a uniform probability in the price support. For any specification of the error 

structure, it is shown that the Nash and quanta) response equilibria for the all-pay auction 

are identical. Moreover, if a game has the following properties, then the Nash 

equilibrium will be a quanta) response equilibrium: The expected payoff from choosing 

a particular bid strategy is constant over the bid support, each bid strategy in the support 

has the same uniform probability of being chosen and finally, the error terms must be 

independently distributed. 
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The theoretical results obtained in this thesis are motivated by stylized patterns 

in experimental data and will be used to suggest designs for further experiments. Even 

though one important feature of the approach derived in this thesis was its simplicity we 

would like to outline some extensions of the approach and give directions for further 

research. 

One extension is to apply the quanta] response equilibrium to posted-offer 

experimental data. The posted-offer triopolies conducted by Holt and Davis (1990) are 

especially interesting since the observed median prices for the first 15 market periods 

reveal systematic deviations from the Bertrand-Nash prediction. Figure 7 .1 illustrates 

these market designs. The median prices are labeled on the vertical axis while the 

horizontal axis represents output or units. Figures 7.2, 7.3 and 7.4 show the 

corresponding distribution function of prices for each market design. As can be seen 

from the figures, observed prices were above the pure-strategy Nash equilibrium in the 

two non-power market design. As a first step. the market models in figure 7 .1 were 

examined using numerical methods. In these simulations a logistic error rate of 1/8 

seems to track the qualitative features of the data in the non-power market designs. The 

next step in this research will be a statistical analysis of the data, using standard 

maximum likelihood techniques in a structural model that is directly implied by the 

quanta! response equilibrium. 
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FIGURE 7.1 
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FIGURE 7.2 
MARKET POWER AND INCREASING COSTS 
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FIGURE 7.3 
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FIGURE 7.4 
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Another extension is to examine ultimatum bargaining games in which there are 

decision errors in the buyer's purchase choices. There is a large experimental literature 

that documents systematic deviations from the Nash equilibrium in bargaining games. 

Systematic deviations in these games have been attributed to perceptions of fairness, 

focalness, and to random "errors" (Prisbrey, 1994). In principle, it is not difficult to 

extend the model to allow for buyer's decision errors. However, further work is needed 

in order to determine whether the model can predict systematic price deviations in 

ultimatum experiments. Another promising direction is to account for price choice 

decisions under horizontal product differentiation, in which the "error" rate is a measure 

of location or differentiation. Experimental evidence shows that in a Hotelling duopoly 

model, sellers' prices did not converge to the Nash prediction. In fact prices seem to be 

higher with greater distance between firms, even when different locations have identical 

Nash equilibrium (Brown-Kruse, 1989). The quanta! response equilibrium is a well 

suited model to explain such deviations since structural variables affect the equilibrium 

price distribution but typically do not affect the Nash equilibrium. Under product 

differentiation, however, the quanta! response equilibrium condition becomes a complex 

second-order nonlinear differential equation in the price distribution. Therefore 

performance of the model may be based on simulations. 
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