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Abstract

Many universities across the world are doing breakthrough research in the field of autonomous cars, but only

a few universities have the financial and legal means to operate a full-scale autonomous car.

Some institutions have continued to research on autonomous cars using scaled platforms to varying degrees

of success, but the question has always remained that these scaled platforms are limited in their capabilities

thus limiting their research usefulness.

In this thesis, we present a case for implementing high level computer vision based navigation on scaled

autonomous cars to prove that the scaled autonomous car platforms are an effective research tool.
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Chapter 1

Introduction

In the current world of academic research on autonomous vehicles, using a scaled system to replicate

performance and dynamics has become a popular option for universities across the world [2, 3], including the

Korean Institute of Advanced Science and Technology, the University of Tokyo, and the University of Western

Australia. This revolution was started in North America at the Massachusetts Institute of Technology’s

RACECAR group and the University of Pennsylvania mLAB group, and both use similar approaches to

develop the hardware part of this system, including the chassis, drive computer, and sensor suite; this

approach will be referred to as the ’Racecar Approach’. One of the primary drawbacks of the Racecar

Approach is that it relies upon the use of point-clouds, which are generated by a combination of LIDAR

and depth-sensors. Our team has been developing a method to adapt the Racecar Approach in order to

develop a monocular vision-based algorithm that helps the car navigate a test track, which is bounded by

lane markings not unlike those found on highways. The goal of this thesis is to expand the capability of

the Racecar Approach by developing a computer vision-based approach for understanding the environment

instead of relying on sensors that provide only point-cloud information.This expansive method increases the

intelligence of the car’s system, which is able to derive more information from the environment instead of

merely treating nearby objects as obstacles to avoid.

This thesis is divided into 3 parts: (1) an exploration of the current state of academic and industrial

research, including shortcomings, (2) a proposed method and its advantages, and (3) the results and conclusions

of our tests.
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1.1 Motivation & Problem Statement

Autonomous vehicles, including self-driving cars, are the next frontier of academic & industrial research [4].

Companies like Alphabet’s Waymo and Tesla have invested heavily in the field of autonomous vehicles hoping

to become industry leaders in the near future. The natural question here is: why would well established

corporations take risks amounting to several hundreds of billions of dollars on this technology now? A

self-driving car is not a new concept, with first recorded attempts since early 20th century [1]. The very first

automation is the invention of auto-ignition systems. Some of the early attempts at making an autonomous

car included the invention of the automatic transmission and, cruise control, although serious attempts of

realizing cruise control was made towards the later end of the 20th century. The definition of an autonomous

car is an open ended question, and there are levels of autonomy (to be discussed later), but it is commonly

agreed that a significant component of an autonomous car is its ability to navigate itself in a global frame

of reference. The steady pace at which navigation aides have evolved helped propel this idea into reality,

especially with the introduction of the satellite navigation systems that utilize the theory of relativity for

accurate positioning of objects with reasonably finite dimensions. A major problem with satellite navigation

is that it is primarily intended for ordnance delivery systems, and as such the controlling governing body will

always provide highly accurate channels only to law enforcement agencies [5].

Figure 1.1: An autonomous car (green waves indicate safe travel zones, and red waves indicate danger)

The other major drawback of satellite navigation is that the guided vehicle has no additional information,

especially about its surroundings. In technicality, this situation is called localization, and when technology
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was made available for low level localization scanners, the early concepts of self-driving cars, especially those

like Carnegie-Mellon’s NavLab [6] provided in-depth perspective required to make progress towards a truly

autonomous car.

Today, there exist mature technologies to help automate several subsystems in a car, like adaptive cruise

control. The aim of our thesis project is to extend the capabilities of framework developed by the University

of Pennsylvania’s mLab scaled autonomous car by designing a single monocular camera-based navigation

system that enables the car to travel in its lane, similar to a car driving on a highway. Our primary motivation

to develop this system is to bridge the gap between a full scale self-driving car and the Racecar Framework to

allow researchers across universities to test their algorithms in real life. While we agree agree that the thesis

Racecar cannot be a replacement for a full scale self-driving car, our approach will enable other researchers

in this field to obtain results with more reliability than that offered by pure simulation only results. The

Racecear in our thesis project uses a single monocular camera as its only environment perception sensor.

This single fixed Field of View (FOV) camera is always pointed forward like a dashboard camera and the

underlying algorithm filters the image frame, identifies lane markings and requests the drive computer to

navigate the track using PID control.

Figure 1.2: CMU NavLab 1: An early self-driving car
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1.2 Current Systems & Their Shortcomings

At full scale, a system similar to the one described by the Racecar Approach is implemented in all of Tesla

Motors production cars, but with many more cameras and other sensors. Some other companies, like Waymo

and Uber depend heavily on a network of sensors to make the car aware of its surroundings. A method

known as sensor fusion is applied to get the best possible information about the vehicle’s surroundings and

address the cost and technical trade-offs of individual sensors. Sensor fusion is combining sensory data or

data derived from disparate sources such that the resulting fused information has less uncertainty than would

be possible when these sources were used individually [7]. The term uncertainty reduction in this case can

mean more accurate, more complete, or more dependable, or refer to the result of an emerging view, such as

stereoscopic vision (calculation of depth information by combining two-dimensional images from two cameras

at slightly different viewpoints). It is common to find most or all of the following sensors:

Sensor Data Cost Performance

RGB Camera Images Inexpensive Unreliable during fog, mist & rain etc.

PIR Camera [8] Heat signature Expensive Easily saturated

Lidar [9] Point-cloud Very Expensive Highly dependent on lighting conditions

Radar Point-cloud Inexpensive Unreliable in urban areas

RTK GPS [10] Relative position Expensive Requires large open spaces

Figure 1.3: Sensor Fusion for an autonomous car
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By carefully observing the characteristics of each type of sensor used in self-driving cars, it is evident that

each type of sensor has its own set of advantages and disadvantages which is what originally led to the study

on sensor fusion. Research on self-driving cars is contemporary and will continue for the foreseeable future as

advances in sensor technology drives further advancements in safety and reliability of these machines [12].

One of the major drawbacks for universities is that self-driving car platforms are very expensive at

full-scale to procure and government regulations prohibit live testing, forcing many researchers to depend

on simulation for verifying their designs. While simulation tools are very robust, they can not accurately

capture the dynamics of the system [13], nor the dynamics of the operating environment.

One way around this problem is to observe the system in a scaled environment with reasonable scaling

factors that assist in accurately capturing the system’s dynamics and enable research teams to test and verify

their designs on a live model. While this cannot be considered a replacement for full scale testing, it is still

more reliable that simulation alone. Work on the scaled platforms began in the Massachusetts Institute of

Technology and spread throughout the universities in the world, and the design used in this thesis is partly

inspired by the original work done by the MIT RACECAR group [2].

Some modification that can be seen in our system include the use of a flight controller instead of a

generic AVR (an Atmel design) based micro-controller, and this allows use to reduce the additional hardware

required to collect critical navigation data including odometry, pose and it has a very computationally efficient

implementation of the Extended Kalman Filter (EKF) [14]. To reduce computational overhead on the Cortex

co-processors on board, our model is designed to run entirely on the GPGPU.

Currently, most of the scaled experimental platforms at other institutions depend on a planar scanning

LIDAR and/or a 3D point-cloud generator such as a stereo-camera. Their underlying software stack is designed

to scan the environment to identify obstacles to avoid and, they employ different navigation algorithms to

achieve this to varying levels of efficiency. By using the Racecar approach system out-of-the-box, and under

default configuration, the current approach is to transfer data over the wireless network to a powerful desktop

computer for computationally intensive processing, which then sends back the commands to the on-board

computer for execution. This process can extremely inefficient because:

1. It requires near zero network transfer latency and high network bandwidth. Systems capable of

supporting the network requirements usually communicate at 2.4GHz or 5GHz, and both these

frequencies have poor penetration, thereby drastically reducing the range [15]. This, coupled with the

FCC requirement to limit radiated power to less than 100mW produces a maximum range of 30 meters

on most commercial network infrastructures.
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2. Offloading computation is not scalable, because it implies that a computing cluster should provide up

to 99.99% up-time, and at this scale, such reliability can not be offered, nor expected [16]. However,

this is not an insurmountable problem for full scale cars which have more space, power and, control

computers like the NVIDIA Pegasus [17].

Figure 1.4: A few scaled autonomous car examples
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1.3 Proposed Solution & Success Measures

In this thesis we propose a simpler solution to address the problems described at the end of the last section:

Optimize the system to take full advantage of the on-board GPGPU (General Purpose Graphical Processing

Unit) and test its performance by implementing a lane following scaled Radio Control (RC) car and compare

it to the same problem implemented in a system that offloads computing over network and observe the

following:

1. Subjectively distinguish the vehicle’s ability to stay in the lane, especially at turns, to look for

characteristics such as smoothness, PID behaviour and lane crossover rates. Ex: A good PID gain

tuning will result in faster turns and quicker adjustments.

2. Compare the system performance as measured by resource utilization between a car that offloads

computation to a remote computer against that of a car that performs the computation online using

the Jetson and use available metrics to observe contrasting results.

7



Chapter 2

Experimental Setup

In this chapter, we explore the details of our hardware-based and software-based navigation stack. As

explained in chapter 1, we borrow heavily from the University of Pennsylvania’s design, with some critical

changes to enable higher level of performance and reliability of the autonomous drive system, including the

addition of a re-purposed and unconventional flight controller system and a software based telemetry, tracking

and control (TTC) system.
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2.1 The Hardware & It’s Dynamics

The hardware used in this thesis is broadly divided into chassis system and the drive electronics. The chassis

system includes the car itself and the drive electronics act as the implementation platform for the algorithms

that enable the car to move autonomously. We chose a black-box design approach for modelling our entire

hardware system where the various subsystems in our design architecture acted completely independent of

each other and at the same time synchronized their operations to achieve a common goal.

The chassis is a generic 1:10 scale RC car, and we chose the Traxxas Rally car for the following advantages:

1. Single servo motor and single traction motor, thereby greatly simplifying the Input/Output (I/O) to

two channels and a low latency control link to both actuators through a 22ms radio control system

2. Servo motor with self-contained Proportional-Derivative-Integral (PID) control for powering the Ack-

ermann steering mechanism [18], and a high powered DC motor controller by an Electronic Speed

Controller (ESC) that also provides DC power to the servo motor.

3. Four wheel drive setup provides precision control to even a heavy setup, with rapid positive and negative

acceleration capabilities.

Figure 2.1: The RC Car chassis
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The chassis is impressive in it’s ability to robustly respond to commands, relatively independent of the

terrain in which it is operating, but it was primarily intended for hobbyists who often push its physical

abilities to the limits using the radio system provided. The remote control of the vehicle is dependent on a

complex visual feedback of the operator, so issues such as obstacle avoidance, driving in a straight line and

driving at a near-constant speed can be easily achieved if the vehicle’s state is correctly estimated and/or

recorded. To understand this better, imagine that the RC car is controlled manually by a human operator;

the car’s motion is refined by information the human operator gets by actively looking at the car (visual

feedback) and predicting the trajectory of the car from the current position to the next position.

To obtain critical information about the vehicle at all times, we have used an open-source controller known

as Pixhawk. Developed at the Swiss Federal Institute of Technology, Pixhawk is a mature adaptation of

Ardupilot, an Arduino based autonomous vehicle controller. Pixhawk wins over Ardupilot in both hardware

capability and its navigation software. The software stack, called PX4, rests on a Linux based Real Time

Operating System (RTOS) and provides the following features:

Component Base Type Function

MPU9250 Inertial Sensor Extended Kalman Filtering

PCA9685 I2C Actuator PWM State Machine

STM32F427 Processor I/O, Serial UART

ICM20608 Inertial Sensor Odometry

Figure 2.2: The Pixhawk Controller

It should be noted here that the Extended Kalman Filtering (EKF) is preimplemented on the flight

controller and is widely supported by the open-source community, so we did not have to work more on it

to ensure operational reliability. The vehicle base responds to commands through messages passed using

Pulse Width Modulation (PWM) [19]. PWM, in our context, is the art of encoding steering and throttle

position, by mapping these values to the approximate duty cycle of the signal. If the signal duty cycle if 10%,

this makes the traction motor turn at 10% of it’s original power, or the servo motor to point at 18 degrees
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from rest. An additional high accuracy inertial sensor is used to obtain linear and angular velocities and

the system’s odometry in all 3 dimensions, which is critical information for higher level control. The main

processor which hosts the RTOS is also responsible for serial communications via the Universal Asynchronous

Receiver Transmitter (UART) [20] modem through a serial cable or Universal Serial Bus (USB) cable.

The controller is connected to a more powerful on-board computer, the NVIDIA Jetson TK1. The Jetson

is a single board computer with unique features including a 4-core Cortex A15 and 192-core NVIDIA Pascal

GPU. By using GPU based libraries, this computer is capable of 160 Billion Floating Point Operations

per Second (FLOPS) [21] with single precision. Coupled with DDR3 memory bandwidth, the Jetson is just

capable enough of executing Computer Vision intensive tasks that we plan on implementing in this thesis.

The system is assembled using custom 3D printed support structures using PLA plastic that is light

and strong enough for this task. The priority was given for protecting the on-board computer and the

lithium batteries. The finalpart of the system is the telemetry and network infrastructure. We have used an

Access Point (AP) router that provides wireless link between the on-board computer and the remote control

computer.

Figure 2.3: The NVIDIA Jetson TK1 control computer
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2.2 ROS & The Software Stack

This project would have been exponentially more complex and difficult to implement without using the Robot

Operating System (ROS) middleware. ROS is a collection of libraries that enable and simplify communications

between processes and the physical robot [22]. The on-board Jetson natively supports Ubuntu 14.04 which is

necessary for ROS Indigo Igloo, the ROS distribution that is necessary for us to proceed with this project.

In addition to packages deployed by default while installing ROS, we have used the following additional

packages:

1. ros-indigo-mavros [23]

2. ros-indigo-uvc camera [24]

3. ros-indigo-ros-perception [25]

A brief introduction of how ROS works is necessary to completely understand the rationale for choosing

this method. First, ROS, in a very simple way, acts as a communications handler that transports messages

between processes and provides libraries and tools to help software developers create robot applications. It

provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management,

and more.

1. A node is a process that performs computation. Nodes are combined together into a graph and

communicate with one another using streaming topics.

2. Topics are named buses over which nodes exchange messages. Topics have anonymous publish/subscribe

semantics, which decouples the production of information from its consumption.

3. Nodes communicate with each other by publishing messages to topics. A message is a simple data

structure, comprising typed fields including standard types (integer, floating point, boolean, etc.).

4. The ROS Master provides naming and registration services to the rest of the nodes in the ROS system.

It tracks publishers and subscribers to topics as well as services.

Software in ROS is organized in packages. A package might contain ROS nodes, a ROS-independent

library, a dataset, configuration files, a third-party piece of software, or anything else that logically constitutes

a useful module. The goal of these packages it to provide this useful functionality in an easy-to-consume

manner so that software can be easily reused. In general, ROS packages follow a ”Goldilocks” principle:
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Figure 2.4: The general system architecture

enough functionality to be useful, but not too much that the package is heavyweight and difficult to use from

other software.

Packages are easy to create by hand or with tools like catkin create pkg. A ROS package is simply a

directory descended from ROS PACKAGE PATH that has a package.xml file in it. Packages are the most

atomic unit of build and the unit of release. This means that a package is the smallest individual thing you

can build in ROS and it is the way software is bundled for release (meaning, for example, there is one debian

package for each ROS package), respectively.

ROS packages tend to follow a common structure. Here are some of the directories and files that are

commonly used.

• include/package name: C++ include headers (make sure to export in the CMakeLists.txt)

• msg/: Folder containing Message (msg) types

• src/package name/: Source files, especially Python source that are exported to other packages.

• srv/: Folder containing Service (srv) types

• scripts/: executable scripts

• package.xml: Package catkin/package.xml

• CMakeLists.txt: CMake build file

• CHANGELOG.rst: Can be automatically injected into binary packaging

A brief explanation for the use of the additional packages is necessary here. The default ROS distribution

is meant to support robot libraries that are most commonly used, but with the introduction of the Pixhawk

controller and the monocular camera, we need to install additional libraries to support the new hardware.

13



Mavros is one of the most important additional library used in this thesis project. It is developed and

maintained by the same community of developers that originally spearheaded research into the open-source

autopilot system called Pixhawk. Mavros is a python and C based interface library that uses a fast transmission

protocol call MAVlink to enable communications between the Jetson and the Pixhawk controller. Mavros

publishes upto 22 different topics and 13 different nodes, but in the context of the thesis project, we are

interested only in “actuator control”, “odom” and “imu/data”.

“actuator control” is a topic that uses the mavros message class ActuatorControl. ActuatorControl

has three fields: (1) Header, which is a standard message (std msg) type synchronization message, (2)

control group, which determines the type of vehicle the Pixhawk controller is attached to (in our case, the

value is set to 0) and, (3) controls, which is a list of 8 elements representing individual control channels, each

with floating values ranging from -1 to +1. Header is usually controlled by rosmaster, and control group is

set to a constant integer. Since the thesis project car needs only two channels, we chose to use channels 1 &

2 to control the car. For example, a value of -1 means full left steering or full reverse throttle and +1 means

full right steering or full forward throttle.

“odom”, or, odometry, is a geometry message type topic that uses inertial data to determine the current

position of the car relative to its starting position and provides total distance travelled. In our thesis project,

we are interested only in the latter. This topic is subscribed to only for battery resource management at a

very high level. We have developed a process that uses odometry to determine range of travel, and this is

especially important when the car is asked to undertake long distance missions. The process outputs the cars

ability to undertake the current mission and stops the car if it determines that the current mission objectives

can not be performed by the car.

“imu” is a node that publishes inertial measurement data to ROS and has two topics: “imu/data” &

“imu/data raw”. We chose to subscribe only to “imu/data” because this topic is the output of the Pixhawks

onboard EKF, and is more reliable than “imu/data raw”. The “imu/data” topic is used to obtain critical

vehicle states, like its linear velocities and pose. This information is sent to the Jetsons PID steering and

velocity control nodes for smooth driving behaviour.

The other library that we depend upon for our thesis project is “vision OpenCV” which is a bridge

between ROS and CV libraries. ROS passes around images in its own sensor msgs/Image message format, but

we want to use images in conjunction with OpenCV. CVBridge is a ROS library that provides an interface

between ROS and OpenCV. CvBridge can be found in the cv bridge package in the vision opencv stack.
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2.3 Test Track & Other Parameters

As described in chapter 1, the thesis project car is designed to bridge the capability gap between full scale

autonomous car and the Racecar Approach. In contemporary research, the most popular test scenario is

a highway. Our thesis project was tested in a single lane road setup in the LinkLab at the University of

Virginia. We created this setup under the following considerations.

• The lane width is scaled by the same factor as the RC car is scaled from a full scale car.

• The track produces just enough Gaussian noise as does a real road in a rural environment.

• Some sections of track turn at much tighter angles, while some others turn a lower angles.

In order to understand why these considerations are made, we request the reader to imagine driving a car

on a highway through the country side. Depending on the traffic, this scenario is the least overwhelming for

the human driver as compared to driving in a town or a metropolis. We have included a set of images that

describe the track and, this will educate the reader about the track layout.

The track has a length of about 160 feet. It is bounded by 2 lanes of blue color and on a grey coloured

surface. The filtering mechanism that extracts lane information is documented later in chapter 3.

Figure 2.5: Test Track: Sample 1
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Figure 2.6: Test Track: Sample 2

Figure 2.7: Test Track: Sample 3

Figure 2.8: Test Track schematic layout
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Chapter 3

Design, Implementation & Testing

In chapter 3, we describe the algorithms used by the thesis project car to perceive, plan and navigate in the

test track. Broadly speaking, we have implemented the computationally intensive computer vision task on

the Jetson and the control algorithms have been implemented on the Pixhawk controller. We have designed

the system in this manner because of the relative strengths of the Jetson and the Pixhawk in different

environments. We have described these strengths in detail in chapter 2.

17



3.1 System Architecture: Computer Vision

When we drive, we use our eyes to decide where to go. The lines on the road that delineate the lanes act as

our constant reference for where to steer the vehicle. Naturally, one of the first things we would like to do

in developing a self-driving car is to automatically detect lane lines using an algorithm. We want to start

with an image like figure 3.1, process the image for lane detection like figure 3.2 and finally extrapolate and

average those lines for a smooth lane detection feature which we can apply to video frames like figure 3.3. [26]

Figure 3.1: Raw image

Figure 3.2: Lines drawn from Hough space conversion

The first step to working with our images will be to convert them to grayscale. This is a critical step to

using the Canny Edge Detector inside of OpenCV. we will talk more about what canny() does in in the next

step, but right now its important to realize that we are collapsing 3 channels of pixel value (Red, Green, and
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Figure 3.3: Final image

Blue) into a single channel with a pixel value range of [0,255]. Before we can detect our edges, we need to

make it clear exactly what were looking for. Lane lines are always either yellow or white in the United States.

Yellow can be a tricky color to isolate in RGB space, so lets convert instead to Hue Value Saturation or HSV

color space. The target range for yellow values we used are below. Next, we will apply a mask to the original

RGB image to return the pixels were interested in. [27]

lower_yellow = np.array([20, 100, 100], dtype = "uint8")

upper_yellow = np.array([30, 255, 255], dtype="uint8")

mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow)

mask_white = cv2.inRange(gray_image, 200, 255)

mask_yw = cv2.bitwise_or(mask_white, mask_yellow)

mask_yw_image = cv2.bitwise_and(gray_image, mask_yw)

Now we apply a quick Gaussian blur. This filter will help to suppress noise in our Canny Edge Detection

by averaging out the pixel values in a neighborhood.

kernel_size = 5

gauss_gray = gaussian_blur(mask_yw_image,kernel_size)

Now we compute our Canny Edge Detection. Basically, canny() parses the pixel values according to their

directional derivative (i.e. gradient). Whats left over are the edges or where there is a steep derivative in at

least one direction. We will need to supply thresholds for canny() as it computes the gradient. John Canny

himself recommended a low to high threshold ratio of 1:2 or 1:3 [28]. In brief, the Process of Canny edge

detection algorithm can be broken down to 5 different steps
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Figure 3.4: BGR to Grayscale conversion

Figure 3.5: Grayscale image with all pixels that are not yellow or white set to black/zero

• Apply Gaussian filter to smooth the image in order to remove the noise

• Find the intensity gradients of the image

• Apply non-maximum suppression to get rid of spurious response to edge detection

• Apply double threshold to determine potential edges

• Track edge by hysteresis: Finalize the detection of edges by suppressing all the other edges that are

weak and not connected to strong edges.

low_threshold = 50

high_threshold = 150

canny_edges = canny(gauss_gray,low_threshold,high_threshold)
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We dont want our car to be paying attention to anything on the horizon, or even in the other lane. Our

lane detection pipeline should focus on whats in front of the car. Do do that, we are going to create another

mask called our region of interest (ROI) in our (human) perspective [29]. Everything outside of the ROI will

be set to black/zero, so we are only working with the relevant edges.

Figure 3.6: Canny edge detection

roi_image = region_of_interest(canny_edges, vertices)

Figure 3.7: The ROI for lane detection

When images are to be used in different areas of image analysis such as object recognition, it is important to

reduce the amount of data in the image while preserving the important, characteristic, structural information.

Edge detection makes it possible to reduce the amount of data in an image considerably. However the output

from an edge detector is still an image described by its pixels. If lines, ellipses and so forth could be defined

by their characteristic equations, the amount of data would be reduced even more. The Hough transform
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was originally developed to recognize lines, and has later been generalized to cover arbitrary shapes. We use

Hough Transform [30] in the next stage under the following assumptions:

• Pixels are considered points in XY space

• hough lines() transforms these points into lines inside of Hough space

• Wherever these lines intersect, there is a point of intersection in Hough space

• The point of intersection corresponds to a line in XY space

Figure 3.8: Lines from Hough transform

The key observation about the image above is that it contains zero pixel data from any of the photos we

processed to create it. It is strictly black/zeros and the drawn lines. Also, what looks like simply two lines

can actually be a multitude. In Hough space, there could have been many, many points of intersection that

represnted lines in XY. We will want to combine all of these lines into two master averages. Once we have

our two master lines, we can average our line image with the original, unaltered image of the road to have a

nice, smooth overlay.

complete = cv2.addWeighted(initial_img, alpha, line_image, beta, lambda)

In short, here is the working model pipeline for lane tracking employed in our thesis project.

def image_pipeline(self, data):

try:

cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")

except CvBridgeError as e:
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Figure 3.9: Result of First Stage

rospy.logerr(e)

# Inverse Perspective Mapping

self.ipm.initializeTransformationMatrix(cv_image)

warped = self.ipm.warp(cv_image)

# crop

cropped = self.img_prep.crop(warped, self.above_value, self.below_value, self.side_value)

# grayscale

gray = self.img_prep.grayscale(cropped)

# blur

blurred = self.img_prep.blur(gray, (self.deviation, self.deviation), self.border)

# canny

canny = self.img_prep.edge_detection(blurred, self.threshold_low, self.threshold_high, self.aperture)

heigth, width = canny.shape

if width == 133: # NOTE: This parameter is valid only for UVA LinkLab HW Lab

cv2.line(canny, (0, 4/2), (18/2, heigth), (0, 0, 0), 2)

cv2.line(canny, (width, 4/2), (width - 18/2, heigth), (0, 0, 0), 2)

else:

cv2.line(canny, (0, 4), (18, heigth), (0, 0, 0), 2)

cv2.line(canny, (width, 4), (width - 18, heigth), (0, 0, 0), 2)

# Lane Detection

canny = cv2.cvtColor(canny, cv2.COLOR_GRAY2BGR)
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self.lane_model.update_segments(canny.copy())

self.lane_model.draw_segments(canny)

state_point_x = self.lane_model.state_point_x()

Once the computer vision node has completed processing the current video frame, it sends the following

tracking values to the Pixhawk controller through mavros node:

• left lane track distance from lower left corner

• right lane track distance from lower left corner

• geometric centre of lane calculated from the previous two values

• vehicle’s current center

These values are used by the mavros node to calculate the deviation of the vehicle in the current frame

and produce error correction values so that the vehicle returns to the center.
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3.2 System Architecture: Command & Control

The thesis project car is modelled around a servo mechanism [32] for both steering and throttle. This is

a common actuator in a control system. It directly provides rotary motion and, coupled with wheels or

drums and cables, can provide translational motion. The electric equivalent circuit of the armature and the

free-body diagram of the rotor are shown in the following figure.

Figure 3.10: Free-body diagram of Servo Motor

In general, the torque generated by a DC motor is proportional to the armature current and the strength

of the magnetic field, which in our project is controlled using a PWM pulse with duty cycle varying between

1000 microseconds and 2000 microseconds. The dynamic equations of the servo mechanism in state-space

form are given below.
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In control engineering, a state-space representation is a mathematical model of a physical system as a set

of input, output and state variables related by first-order differential equations or difference equations. State

variables are variables whose values evolve through time in a way that depends on the values they have at

any given time and also depends on the externally imposed values of input variables. Output variables values

depend on the values of the state variables. The ”state space” is the Euclidean space in which the variables

on the axes are the state variables [31]. The state of the system can be represented as a vector within that

space. The above equations are of the form of standard state-space equations as described below.

ẋ = Ax +Bu

y = Cx

With a 1-radian step reference, the design criteria are the following.

• Settling time less than 0.05 seconds

• Overshoot less than 20%

• No steady-state error, even in the presence of a step disturbance input

In control theory the settling time of a dynamical system such as an amplifier or other output device is

the time elapsed from the application of an ideal instantaneous step input to the time at which the amplifier

output has entered and remained within a specified error band. Overshoot refers to an output exceeding its

final, steady-state value. Steady-state error is defined as the difference between the input (command) and the

output of a system in the limit as time goes to infinity (i.e. when the response has reached steady state).

Since all of the state variables in our problem are very easy to measure (simply add an ammeter for current,

a tachometer for speed, and a potentiometer for position), we can design a full-state feedback controller for

the system without worrying about having to add an observer. The control law for a full-state feedback

system has the form u = r −Kc. The associated block diagram is given in Fig 3.11.

Recall that the characteristic polynomial for this closed-loop system is the determinant of sI − (A−BKc)

where s is the Laplace variable. Since the matrices A and BKc are both 3x3 matrices, there should be 3
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Figure 3.11: Control Block Diagram of Servo Mechanism

poles for the system. This fact can be verified with the MATLAB command order. If the given system

is controllable, then by designing a full state-feedback controller we can move these three poles anywhere

we’d like. Whether the given system is controllable or not can be determined by checking the rank of the

controllability matrix [B AB A2B . . .]. The MATLAB command ctrb constructs the controllability matrix

given A and B. Additionally, the command rank determines the rank of a given matrix, though it can

be numerically unreliable. Therefore, we will use the command det to calculate the determinant of the

controllability matrix where a full rank matrix has a non-zero determinant.

From the above, we know that our system is controllable since the determinant of the controllability

matrix is not zero and hence we can place the system’s closed-loop poles anywhere in the s-plane. We will

first place the poles at -200, -100+100i and -100-100i. By ignoring the effect of the first pole (since it is

faster than the other two poles), the dominant poles correspond to a second-order system with ζ = 0.5

corresponding to 20% overshoot and σ = 100 which corresponds to a settling time of 0.05 seconds. Once

we have determined the pole locations we desire, we can use the MATLAB commands place or acker to

determine the controller gain matrix, Kc, to achieve these poles. We will use the command place since it is

numerically better conditioned than ’acker’. However, if we wished to place a pole with multiplicity greater

than the rank of the matrix B, then we would have to use the command ’acker’.

Referring back to the equations and schematic at the top of the page, we see that employing a state-feedback

law u = r −Kcx, the state-space equations become the following.

ẋ = (A−BKc)x +Br

y = Cx
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After incorporating this, we test for the system’s step response, shown in figure 3.12.

Figure 3.12: Step response of the controller

Note that our given requirements are not met, specifically, the steady-state error is much too large.

Before we address this, let’s first look at the system’s disturbance response. In order to observe the system’s

disturbance response, we must provide the proper input to the system. In this case, a disturbance is physically

a load torque that acts on the inertia of the motor. This load torque acts as an additive term in the second

state equation (which gets divided by J , as do all the other terms in this equation). We can simulate this

simply by modifying our closed-loop input matrix, B, to have a 1/J in the second row assuming that our

current input is only the disturbance. The step response of the system to disturbance is given in Fig 3.13.

Figure 3.13: Step response of the controller with disturbance

Notice that the error due to the step disturbance is non-zero. Therefore, this will also need to be
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compensated for. We know that if we put an extra integrator in series with the plant it can remove the

steady-state error due to a step reference. If the integrator comes before the injection of the disturbance, it

will also cancel a step disturbance input in steady state. This changes our control structure so that it now

resembles the block diagram shown in the following figure 3.14.

Figure 3.14: Control Block Diagram of Servo Mechanism with Integrator

We can model the addition of this integrator by augmenting our state equations with an extra state for

the integral of the error which we will identify with the variable w. This adds an extra state equation, where

the derivative of this state is then just the error, e = y − r where y = θ. This equation will be placed at the

bottom of our matrices. The reference r, therefore, now appears as an additional input to our system. The

output of the system remains the same.
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These equations represent the dynamics of the system before the loop is closed. We will refer to the

system matrices in this equation that are augmented with the additional integrator state as Aa, Ba, Ca, and

Da. The vector multiplying the reference input r will be referred to as Br. We will refer to the state vector

of the augmented system as xa. Note that the reference, r, does not affect the states (except the integrator

state) or the output of the plant. This is expected since there is no path from the reference to the plant

input, u, without implementing the state-feedback gain matrix Kc.

In order to find the closed-loop equations, we have to look at how the input, u, affects the plant.

In this case, it affects the system in exactly the same manner as in the unaugmented equations except

now u = −Kcx − Kiw. We can also rewrite this in terms of our augmented state as u = −Kaxa where

Ka = [Kc Ki]. Substituting this u into the equations above provides the following closed-loop equations.

ẋa = (Aa −BaKa)xa +Brr

y = Caxa

In the above, the integral of the error will be fed back, and will result in the steady-state error being

reduced to zero. Now we must redesign our controller to account for the augmented state vector. Since we

need to place each pole of the system, we will place the pole associated with the additional integrator state

at -300, which will be faster than the other poles. We can see that all of the design specifications are close to

being met by this controller. The settle time may be a little large, but by placing the closed-loop poles a

little farther to the left in the complex s-plane, this requirement can also be met. The step response of the

system is shown in Fig 3.15.

We have implemented this controller in the Pixhawk, which accepts reference inputs as either steering

angle or throttle position, and drives the system from the current state to the requested state.
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Figure 3.15: Step response of the controller with Integrator
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Chapter 4

Results & Conclusion

4.1 Results

ROS has some powerful data visualizations tools that capture the system dynamics and present it to the user

for analysis. In this thesis, we used two such tools: rosbag and rviz.

’rosbag’ is used to collect some or all data from the thesis car and store it on the Jetson and this data

is transferred in a file format known as ’bag’ to another computer for analyzing the data. We will explain

why the data transfer process is necessary later in this section. ’rosbag’ is a set of tools for recording from

and playing back to ROS topics. It is intended to be high performance and avoids deserialization and

reserialization of the messages. In Fig 4.1, we have provided a screen-shot of how a bag file is visualized.

While topics that carry image data are processed using the ROS openCV bridge, topics relating to the

Pixhawk controller are processed as standard data by ROS environment. We are interested in two main

topics here: ActuatorControl and IMU; and, in continuation of chapter 2, we have included the description of

the messages here.

Figures 4.4 to 4.6 describe the system behaviour on the test-track. The viewing window presents us with

the Racecar camera’s view, and above it, we can see the lane tracking window. In the tracking window, the

white lines represent the lane (and any other body with straight dimensions in the viewing window), and the

two green circles represent how the algorithm tracks the left and the right lane. The centre red line is the

geometric centre of the lane produced after an inverse perspective transform and the red circle shows the

Raecar’s current steering angle. The red circle tracks the red line using a PID control loop, whose gains are

tuned using a reinforcement learning function that has been pre-implemented in the Pixhawk controller.
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Figure 4.1: Bag File data from ROS

Figure 4.2: ActuatorControl message description

We use another ROS visualization tool called ’rviz’ to visualize the viewing window data. ’rviz’ cannot be

used to record data and, it has serious network bandwidth limitations which makes it difficult to get data in

real time. Hence, we use ’rosbag’ instead.
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Figure 4.3: IMU message description

Figure 4.4: Viewing window on straight line: Sample 1



Figure 4.5: Viewing window on straight line: Sample 2

Figure 4.6: Viewing window at a curve



The final results for the success metrics are subjective, because the Racecar’s erratic behaviour did not let

us extract enough data to determine system performance. However, the following table represents comments

from people (some with technical background, and some with non-technical background) invited to judge the

performance of the vehicle:

Metric/Percentage Smooth PID Corner Handling Disturbance Rejection

Poor Behaviour 0 0 0

Average Behaviour 0 50 30

Good Behaviour 60 50 70

Excllent Behaviour 40 0 0

Similarly, the vehicle’s navigation performance as a function of distance from the remote computer ’Vehicle

1’ (in meters), compared to that of a vehicle performing all the computation on board ’Vehicle 2’:

Distance 30mts 50mts 100mts

Behaviour stable stable marginally unstable

Where ’stable’ indicates that Vehicle 1 performance is comparable to that of Vehicle 2, and ’marginally

unstable’ indicates that Vehicle 1 network is congested with either high latency, full network buffer or radio

range decay. In near future, we plan on testing the vehicle at much larger distances so that we can obtain a

characteristic curve of performance vs range.

With the data from the two tables above, we have come to the conclusion:

• The thesis project car with the on-board computer outperforms the car with a networked computer:

– Subjectively; with better handling in both corners and straight lanes,

– Objectively; with faster response times to changes in track layout and, using at most 60 percent of

computational resource compared to the networked car

• The networked car requires frequent PID tuning for changes in the car’s state; including battery reserves,

weight, distance from the remote computer etc., but the car with the on-board computer is able to run

the entire course of the battery with minimal changes (and, sometimes, no changes) to the PID gains.

This indicates that the car with the on-board computer is more robust to environmental changes as

compared to the networked car.
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4.2 Conclusion & Future Work

The lane detection techniques play a significant role in intelligent transport systems. In this thesis project,

an OpenCV based lane detection method has been studied. It has resulted in a higher than average rate of

lane enforcement than traditional lane enforcement methods that use dual camera based PID lane control.

Therefore, further improvements can be done to enhance the results. In the near future, one can modify the

existing image pipeline so that it can measure both the curved and straight roads more accurately. Various

steps should be taken to improve the results in different environmental conditions like sunny day, foggy day,

rainy day etc.

With respect to the thesis car itself, we plan on further modifying the software base to implement machine

learning for coordinated vehicular navigation with two or more other similar cars. We also plan on modifying

the hardware to include the later NVIDIA Jetson TX2 computer along with DC power boosters that will

allow us power the entire car (traction motor and computer) from a single Lithium battery: this will allow

to simplify the hardware design and make the car lighter. We aim to do so to study and model the car’s

behaviours at higher velocities to deepen our understanding of controls of vehicles at extreme scenarios

(including driving during rain and, driving in a city).
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