

Semiotic Approaches & Software Development

STS Research Paper
Presented to the Faculty of the

School of Engineering and Applied Science
University of Virginia

By

Scott Lutz

February 28, 2020

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Benjamin J. Laugelli, Assistant Professor, Department of Engineering and Society

1

Introduction

 University of Virginia’s (UVA) Student Information System (SIS) is a web application

that over 20,000 students primarily use to create their class schedule for the next semester

("Statistics"). A majority of students express dissatisfaction with the technology because it is

very tedious and difficult to create a schedule with (Weigand, 2019). To get around this, students

use workarounds developed by other students and faculty. The most popular tools are Lou’s List

and UVA schedule | me. Lou’s List provides a well-organized catalog of all the courses offered

(Bloomfield). UVA schedule | me allows users to build a schedule with real time visual aid ("uva

schedule | me"). Some scholars would argue that a technology like SIS needed to sacrifice

functionality to enhance its usability in order to create a better experience for its users (Goodwin,

1987). Other scholars argue that SIS is poorly designed due to biased decisions that software

developers make during development (Tang, 2011). Both of these arguments fail to take into

account how the ideas about users embedded into SIS by the designers constrain what the users

can do and how these constraints have caused users to adapt and use workarounds to enhance

their experience with the software. By exploring how the constraints embedded into SIS have

caused users to have poor experiences and create their own solutions software developers stand

to gain a better understanding of the way misconfiguring a technology to its user can negatively

effect user experiences. Drawing on user configuration, I argue that the designers

misunderstanding of the user’s identity unintentionally embedded constraints into SIS which

caused users to adopt the use of third-party tools when attempting to create a schedule. Software

engineers stand to gain a better understanding of the importance of having an accurate image of

the user’s identity when attempting to develop successful software. I will use user configuration

to explore SIS as a technological script in order to show how it does not match the script of a

2

typical user and how this has caused users to express user agency and use workarounds rather

than use the technology directly.

Literature Review

 While several scholars have examined how the balance of functionality and usability and

the biases of software designers’ affect software development, scholars have not yet adequality

considered how software designers may have a flawed understanding of their user’s identity

which ends up being built into the core of their software.

 Goodwin argues that good software does not sacrifice usability for functionality. A

feature filled software application will be less useful to its users if they are unable to use it easily

(Goodwin, 1987). Particularly if they have to memorize a lot of commands, many users tend to

learn only a few that help them accomplish the same goal but may not be optimal to use.

Goodwin focuses on how increasing usability requires matching functions provided by the

software and task requirements to help lower task completion rates and the amount of user errors

(Goodwin, 1987). If the system is easier to use, then more users will want to use the software;

and Goodwin argues that this in itself is improving the functionality.

 Tang explains that software designers have cognitive bias, illogical reasoning, and low-

quality premises. Cognitive bias is, “a distortion of judgement in particular situations due to

psychological effects and insufficient regards of probability” (Tang, 2011). An example of this is

that software designers may pick an inappropriate design solution that does not address the

problem well because they are more familiar with it. Illogical reasoning happens primarily when

designers do not consider whether the premises of their argument are true or if the conclusion is

reasonable. Low-quality premises occur when designers have inaccurate premises about

something and this causes them to make incorrect decisions. All of these issues contribute to

3

poor software design reasoning and lead to poor decision making. Tang argues that software

solutions turn out poorly because individual designers can make bad design decisions due to

these biases and decision making is a key element in designing quality software (Tang, 2011).

 Both of these arguments consider different reasons that software might turn out poorly.

Goodwin believes there is too much focus on providing more functionality while compromising

usability and Tang believes that software designers’ poor decision-making due to their inherent

biases will lead to poor software development. Both of them fail to consider who the designer is

designing the software for. They never discuss how the designer’s solutions may be poor because

they are not designing with the user in mind or that their idea of the user’s identity may be

flawed.

 In my analysis, I will focus on addressing how the designers’ inadequate understanding

of the user can lead to a mismatch between the user and the technology. If the technology does

not match the user, then the user will resist the technology or be forced to adapt the technology.

If the user resists the technology it will be more difficult for them to be productive or enjoy using

it. If the user adapts the technology it will create more work for the users and show that the

technology was not adequately addressing the user’s problem.

Conceptual Framework

 My analysis of UVA’s web application SIS draws on user configuration, which I will use

to show how the designers’ flawed understanding of the user’s identity was built into its core and

the negative effect it has had on the user’s relationship with the technology.

 I will use the concept of user configuration to analyze the case of SIS as a technological

script. User configuration examines ways designers embed ideas about users into technologies,

which then function as scripts that direct what users can or cannot do (Akrich, 1992; Woolgar,

4

1991). The script, then can be described as the workflow forced upon the user by design. The

user follows the script in order to use the software; however, in the case of SIS the users’ script

does not match the technological script. The scripts do not match because the designer has

incorrect ideas about the user that get embedded into the technology (Lindsay, 2003). This

conflict causes the user to resist and create workarounds. I will also draw on the concept of user

agency, which analyzes how users take action to modify existing technology to fit their needs.

The concept of antiprogram, the extent that designers’ and users’ scripts conflict, will allow me

to analyze how the tools created by users, such as UVA schedule | me, were an expression of

user agency to address major issues in the design of SIS (Oudshoorn & Pinch, 2003, p.7-11). In

this case, the users have created tools such as Lou’s List and UVA schedule | me to help them

use SIS more efficiently.

 In what follows I examine the case of UVA’s SIS through the context of user

configuration by first examining the technological script and the user’s script to see where they

do not match. Then I will incorporate the concept of antiprogram and user agency to strengthen

my argument that there is a mismatch between the designers’ ideas about users built into SIS and

the user’s true identity.

Analysis

 The designers of UVA SIS failed to create software that is helpful and enjoyable for

students to use. Through the lens of user configuration, I will demonstrate that the designers of

SIS misconfigured the technology to their users by showing the poor workflow SIS constrains

users to follow and how users have resisted using SIS by creating and using many workarounds.

5

Step-by-Step Workflow of SIS

 Students primarily use SIS in order to plan their curriculum and create a schedule for the

next semester. I will next present a plausible process of picking out classes and creating a

schedule on SIS in order to highlight how the technological script of SIS is extremely tedious

and frustrating and does not match the script of the users.

1) A user opens up a list of their remaining course requirements (See Appendix A).

a. In the box you can see an example of a requirement that has not yet been fulfilled

and a list of possible courses to choose from that would fulfill that requirement.

2) The user needs to remember which courses they need to take or they can write them

down somewhere.

a. Using SIS alone, it is not possible to view the list of required courses at the same

time of selecting them. Due to how the web application is implemented, a user

can only view one page at a time. Trying to open a new page in a different tab

will break the system.

Figure 1 - A list of computer science courses on SIS ("Student information
system")

6

3) The user navigates to a list of courses (Figure 1), chooses one, and adds it to his or her

cart. The user cannot view multiple versions of this page with different filters at the same

time. Filters narrow down which courses are shown in the list from the full list.

4) The user can navigate to a visual representation (Figure 2) of their schedule so they can

see how the time slots for different classes line up and if there are any conflicts. This

page cannot be viewed at the same time a student is viewing a list of all the courses.

5) The user continues to go back and forth between selecting different classes (Figure 1) and

looking at the visual representation (Figure 2) until they have built a schedule they are

satisfied with.

The most important thing to notice on all of these pages is separation of information.

Appendix A, Figure 1, and Figure 2 can never be viewed at the same time. The technological

script of SIS for schedule creation can be broken down as follows. A student looks at their

requirements, finds those courses on a list and adds them to a schedule and views that schedule

Figure 2 - A visual representation of a student’s schedule on SIS ("Student information
system")

7

to make sure there are no time conflicts. This process is then repeated until a complete schedule

is built or a user decides to write down some of this information so that they can remember it.

From my own experience and the experiences described to me by many fellow students the

users’ script is completely different. Users want to see a list of their requirements, a list of

offered courses, and a visual representation of their schedule at the same time in order to greatly

reduce the amount of information that needs to be remembered or written down. Students are

forced to remember a lot of information or write it down as they navigate back and forth between

different pages, rather than having all of the information they need provided to them at once.

Schedule creation requires visual aid so that students can have any idea of what classes can fit

together and what their daily schedule will be like. This highlights how the designers of SIS had

a flawed understanding of the user’s identity and how that has been embedded into the

technological script. It indicates that they overestimated the abilities of the user’s memory and

visualization skills by forcing that work onto the user rather than the software. It is important to

notice that all of the information a student would need to create a schedule are present, but it is

presented to the user poorly. The designers had a good understanding of the requirements of the

software and created something that was fully functional; however, the workflow it creates does

not match the user’s desires and therefore has led many to resist the technological script of SIS

by expressing user agency and utilizing work arounds.

Step-by-Step Workflow with Workarounds

 Many users have been forced to express user agency and create workarounds due to

antiprogram, the conflict between the technologies and the user’s scripts. I will demonstrate how

users have resisted SIS by using these workarounds and examining how they greatly enhance the

experience of the users. It is important to note that some users decide to use these tools together

8

while others may only use one, but for this analysis I will go through the workflow of using

Lou’s List and UVA schedule | me together because they are complementary. Lou’s List has

better search functionality and UVA schedule | me allows students to visualize their schedule.

1) A user goes to SIS and opens up a list of their required courses (Appendix A).

Figure 3 - A list of computer science courses on Lou’s List (Bloomfield)

9

2) In a new tab a user navigates to Lou’s List (Figure 3) where they can easily search for

any course and see what time it is offered. The list of courses in Figure 3 is exactly

the same as the list of courses in Figure 2, but the advantage is that a user can have as

many tabs of Lou’s List open as they want and they can view Lou’s List at the same

time they are viewing a list of requirements.

3) After a student has decided on which courses they wish to take, they navigate to UVA

schedule | me.

4) On UVA schedule | me (Figure 4) they can add all of the courses they wish to take to

their schedule. This is accomplished by searching for the course in the search bar that

says “Add some courses” and clicking on the “+” button.

5) From here, students can check boxes to decide which time slot they want to take each

course at, on the bottom left of Figure 4.

Figure 4 - A visual representation of a student’s schedule on UVA schedule | me ("uva
schedule | me")

10

6) UVA schedule | me can automatically create valid schedules based on the courses

chosen and the user can navigate through the options or the user can select their own

time slots freely and see the visual representation of their schedule update

dynamically in real time to reflect what they have chosen, on the right of Figure 4.

7) After a final schedule has been decided on, UVA schedule | me provides course IDs,

highlighted in a box near the top of Figure 4, that can be easily entered into SIS in

order to add the courses a student has chosen to his or her schedule.

According to Google Trends related queries, a large number of students at UVA tend to

use these tools when it is time to create a new schedule ("Google trends: Lou's list"). It is

important to mention that Lou’s List was created by a professor at the university in order to help

students search for classes more easily. UVA schedule | me was created by students in order to

help other students create visual representation of their schedules dynamically without have to

manually create an excel spreadsheet in order to see it.

Both of these tools are an expression of user agency and highlight how users are resisting

the technological script of SIS because it does not match their script. Lou’s List and UVA

schedule | me help students have a less frustrating experience creating a schedule by reducing the

amount of time they have to spend navigating back and forth between a list of courses and a

visual representation of their schedule. The users’ script wanted to have all of the information

that they needed at once and these workarounds allow for that to be possible by having multiple

webpages open at once. The creation and widespread use of these tools illustrates how the

designers’ flawed understanding of the user’s identity that was built into the core of SIS has

constrained the user’s abilities and has rendered the technology to be less useful for its intended

user.

11

 The technological script of SIS does not match the user’s script which has caused an

expression of user agency in order to create a less frustrating experience for students as they

create schedules. Some may argue that the designers of SIS did not have a flawed understanding

of the user’s identity. Instead they had to comprise usability in order to promote security and

ensure that student’s data was safer. However, by creating such a frustrating system the designers

have led more students to enter their information on other, potentially less secure, websites as a

result of their design decisions.

Conclusion

 I have argued that the designers of SIS created a frustrating tool for students to create

schedules because they had a flawed understanding of the user’s identity and capabilities built

into its core. The workflow SIS forces upon the user does not match what the user desires and

has forced the user to express agency by relying on workarounds to create a schedule. The user

configuration framework offered insight into where the designer’s ideas about a user were

incorrect and the result it had on user experience with SIS. This is significant for software

engineers because it highlights that having an inaccurate image of the user’s identify during

software development leads to the creation of a poor solution. It is not enough to consider

functionality vs usability. Software designers needs to consider a diverse variety of users and try

to create software solutions that match them and their expectations.

Word Count: 2910

12

Appendix

Appendix A - List of course requirements on SIS ("Student
information system")

13

References

Akrich, M. (1992). The de-scription of technical objects. Shaping Technology/Building Society,

205–224.

Bloomfield, L. (n.d.). UVa class schedules. Retrieved from

https://rabi.phys.virginia.edu/mySIS/CS2/.

Goodwin, N. C. (1987). Functionality and usability. Communications of the ACM, 30(3), 229–

233. doi: 10.1145/214748.214758

Google trends: Lou's list. (n.d.). Retrieved from

https://trends.google.com/trends/explore?date=today 5-y&geo=US&q=lous list,uva lous

list.

Lindsay, C. (2003). From the shadows: Users as designers, producers, marketers, distributors,

and technical support. In N. Oudshoorn and T. Pinch (Eds.), How Users Matter (pp. 29-

51).

Oudshoorn, N. & Pinch, T. (2003). Introduction: How users and non-users matter. In N.

Oudshoorn and T. Pinch (Eds.), How Users Matter (pp. 1-25).

Statistics. (n.d.). Retrieved from https://admission.virginia.edu/admission/statistics.

Student information system. (n.d.). Retrieved from https://msisuva.admin.virginia.edu/.

Tang, A. (2011). Software designers, are you biased? Proceeding of the 6th International

Workshop on Sharing and Reusing Architectural Knowledge - SHARK 11. doi:

10.1145/1988676.1988678

uva schedule | me. (n.d.). Retrieved from https://www.uvaschedule.me/.

14

Weigand, S. (2019, May 20). UX case study: Process of redesigning UVA's student information

system (SIS) page. Retrieved from https://medium.com/@smw5gn/ux-case-study-

process-of-redesigning-uvas-student-information-system-sis-page-7ee7ecfabc88.

Woolgar, S. (1991). Configuring the user: The case of usability trials. In A Sociology of

Monsters: Essays on Power, Technology and Domination (pp. 58–99). London:

Routledge.

