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Abstract

Inter-tissue communication is an essential mechanism that maintains physiological homeostasis.
Communication in the endocrine system occurs when cells in an origin tissue secrete proteins that interact
with target tissue receptors after traveling via the bloodstream. These interactions are referred to as
endocrine signaling. Genes are responsible for tissue communication via the endocrine system, and to
what degree each tissue participates is relatively unknown. Our group sought to produce a program that
could be utilized to address both knowledge gaps. To analyze endocrine interactions between tissues,we
created an R package as a bioinformatics approach that streamlines the process of identifying gene
correlations between tissue pairs using gene expression data. The human tissue sample data used in the
development of the package were acquired from the Genotype-Tissue Expression (GTEx) database.
Tissue-gene datasets were then formatted into appropriate matrices, normalized, and quality controlled in
Rstudio. This was a preliminary step in the development of the R package. Our software package is
equipped with the ability to accept two sets of tissue-gene data and analyze gene expression correlations
between tissue pairs while producing several visualizations depicting the results of the analysis. This fully
functional package was then applied to identify novel sex differences in putative endocrine interactions.
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Introduction

Cardiovascular diseases (CVDs) account for 25% of deaths
in the United States, and are the leading cause of global
mortality (CDC, 2018; Khera and Kathiresan 2017).
Obesity, metabolic syndrome, and type II diabetes are
associated with CVDs (Virani et al., 2020). Adipose
tissues are significantly involved in obesity and metabolic
dysregulation (Attie and Scherer, 2019). Abdominal
adiposity is linked to cardiometabolic diseases (Emdin,
2017). These diseases were found to have a genetic
heritability of around 50%, with obesity having the highest
heritability of up to 70% (Khera and Kathiresan, 2017;
Herrera and Lindgren, 2010; Karastergiou et al., 2012).
These findings, and the high variability of type II diabetes
and CVDs in the population, prompted scientists to

investigate the relationship between body fat distribution,
genetics, and metabolic diseases. One way heritability can
affect individuals simply by their sex. Men and women
have different fat distribution patterns that impact their risk
for metabolic and cardiovascular diseases. Men store
adipose tissue around their abdominal region, which leads
to an increased risk for CVDs. In comparison, women
store adipose tissue in the gluteofemoral region, and were
found to have improved systemic metabolism compared to
their male counterparts, despite having higher total body
fat (Karastergiou et al. 2012). These findings implicate a
significant difference in adipose tissue function in men and
women. Disease genetic heritability has led researchers to
create computational methods that are capable of modeling
inter-tissue interactions to better understand the
communication pathways that lead to disease states. This
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growing collection of work has spawned the field of
bioinformatics, a combination of the emergent field of data
science, and biological studies.

Bioinformatics is a rapidly growing field and has great
potential for research and clinical applications. As the field
grows and information derived from the analysis of large
cohort biological data becomes highly accurate, this
information could form the foundation of medical
informatics. Medical informatics is the application of
bioinformatics approaches to the fields of clinical medicine
and biomedical research (Chang, 2005). Genetics is one of
the most rapidly growing fields in medicine and genetic
data is essential for the growth of bioinformatics used in
clinical settings (Reches et al., 2019). Medical informatics
has extensive potential to expand and individualize the
treatment options for patients (Chang, 2005). The
implementation of bioinformatics methods into clinical
settings will supplement phenotype-based diagnosis with
information on patient genotype (Reches et al., 2019). This
will also allow for the correlation between disease
condition phenotype and genotype for more accurate
diagnosis and efficacious therapeutics. Bioniformatics
approaches based solely on genetics and DNA alignment
are not the only applications of these methods in clinical
settings. Bioinformatics can be used to analyze protein
function and structure, discover signalling pathways
between tissues, and search for biomarkers that indicate
susceptibility to disease states like cancer (Chang, 2005).

One group of researchers developed a pipeline that utilized
gene expressions to model endocrine tissue interactions in
mice (Seldin et al., 2018). This was achieved by
calculating gene expression correlations between two
endocrine tissues. The study used a variety of inbred
strains of mice, and five endocrine tissues. Their
computational software was able to identify previously
known interactions, validating the results of their work,
while also discovering novel interactions that were
previously undocumented. Due to their results being
supported by previous research, the computational method
presented by Seldin et al. holds promise for application in
human subjects. In their work, they invite future
researchers to apply their pipeline to human data to see if
novel interactions in humans could be discovered.

Basing our work off that of Seldin et al., we hope to
contribute an efficacious tool to the scientific community.
We plan to automate the computational method presented
in Seldin et al., and compile it into an R package that
expedites the correlation analyses for inter-tissue
communications. We will be utilizing human expression

data, so as to fulfill the proposed future directions of
Seldin et al. We develop a publicly available package that
we will then apply ourselves to explore the differences
between male and female endocrine interactions, since this
dynamic has not been extensively studied.

Results

In order to achieve our objectives for this project, we split
the work into three specific aims. These would act as a
roadmap for our work, with each aim serving a purpose in
the consequent one. Because this restricted our work into a
sequential order, all three members of our group worked
on each aim together, and did not move forward until all
members accomplished their respective tasks.

Specific Aim 1 - Process and format human inter-tissue
communication data.

Our first aim was to acquire and perform preprocessing on
human gene expression data. We utilized the
Genotype-Tissue Expression (GTEx) project as our source
for such data (GTEx Consortium, 2013). The GTEx
project is a public database that contains a multitude of
human data readily available for download, with the
objective of providing the scientific community the
resources to study gene expression and regulation in
humans. The data was essential for ensuring that the
scripts used to develop our R-package worked properly
throughout aim two, but it was also critical for performing
a sex based analysis of endocrine interactions in aim three.
Following a vignette developed by our advisor in
Anderson et al. (Anderson et al., 2020), we were able to
download, annotate, normalize, and quality control the
gene expression data. The data collected came from 49
unique tissues, all of them sampled from 838 consenting
donors. We normalized the expression data using log base
2 for standardization between tissue samples. Quality
control was performed by evaluating the expression of the
XIST gene, a gene exclusively expressed in females, to
confirm male and female donor identification.

Specific Aim 2 - Development of an R Package

An R package was developed with the primary objective of
analyzing gene expressions between tissue pairs. The
processing of human RNA-Seq TPM data conducted
earlier laid the foundation for the development of this
package. The current edition of this package titled,
‘geneExpCor’ is successfully able to accept two pairs of
tissue-gene data, conduct a biweight midcorrelation
analysis on both data sets, and return the p-values and
correlation coefficients associated with the analysis while
producing a series of scatter plots and histograms depicting
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gene expression correlations. This package is publicly
available on Github and details pertaining to the intricacies
of the package are documented in both the package
vignette and function manual.

R Package Features and capabilities

The package is equipped with 3 subfunctions, one primary
function, and an additional validation function. Each of the
three subfunctions performs a particular task, gene and
donor matching, variance filtration, and finally ligand
filtration followed by the main correlation analysis. The
primary function called ‘corr_analysis,’ wraps together our
subfunctions and has five parameters: tissue gene matrix 1,
tissue gene matrix 2, variance percentage, p-value
variance, and variance plotting. The first two parameters
are tissue gene expression matrices that contain data on
gene expression values for each of the subject donors.
When the function performs the analysis, the tissue
matrices are assumed to be formatted with the ‘subjects’ as
the columns and the associated ‘genes’ as the rows. This is
an important note since the ‘corr_analysis’ function
assumes imputed data abides to the format listed above to
produce results based on the initial parameters set by the
user. Variance percentage is another parameter that allows
the user to filter out genes with low variability. Filtering
genes by variability allows for the specific targeting of the
most variable genes between both tissue matrices resulting
in more significant gene correlations between the tissues.
A histogram for gene variances between adipose and liver
tissue is presented in Figure 1, with the vertical line
indicating the cutoff based on the user defined percentile
value. Other than filtering by variability, a ligand filtration
process is automatically conducted on the first inputted
tissue matrix to isolate ligand-encoding genes. Utilizing
the ligand encoding genes from the data is an essential

factor in analyzing endocrine interactions because ligands
have an active role in mediating endocrine signaling
between cells (Hoopes, 2014). The next parameter of the
main function is p-value variance which essentially filters
for the negative log base 10 p-values above the specified
threshold. Adjusting the percentage of p-values provides
another layer of detail when determining the kind of
visualizations associated with the analysis.

Tissue Pair Expression Analysis

A biweight midcorrelation method is used within the
‘corr_analysis’ function to appropriately analyze
tissue-gene correlations. Biweight midcorrelation is a
median-based method that is resilient to outliers and is
therefore the chosen method for identifying gene
expression correlations. When the ‘corr_analysis’ function
is run, the results of the biweight midcorrelation method
are returned as matrices of p-values and correlation
coefficients, which are then utilized by the function to
produce several scatter plots and histograms depicting
gene-gene correlations between the two tissues. The
histogram output plot for our example analysis using
adipose to liver tissue analysis is presented in Figure 2.

Identifying Tissue Pair Interactions

We utilized two methodologies for identifying significant
gene interactions in our analysis pipeline, one of which
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was utilized by Seldin et al. (Seldin et al., 2018), and the
second was proposed as a viable alternative. The proposed
method is to utilize a p-value cutoff. The second requires
the evaluation of Ssec scores, which measure the
interaction of origin tissue genes on the entirety of a target
tissue. Due to the number of genes being analyzed during
the calculation of correlation coefficients, thousands of
gene pairs have p-values close to zero. Rather than utilize a
p-value cutoff for significance which can be difficult to
gauge without utilizing multiple hypothesis correction like
false discovery rate or bernoulli methods, our program will
isolate p-values of magnitude lower than a percentile
cutoff. Negative log base 10 is applied to each of the
p-values after filtration for ligand encoders for effective
visualization of the p-value distribution. Gene pairs
identified based on the highest magnitude negative log
base 10 p-values are visualized in a scatter plot of their
expression in the origin and target tissues. An example
output for analysis using adipose and liver tissue data for
the p-values distribution and expression plots are provided
in Figure 3 and 4. Figure 3 includes a vertical line
indicating the percentile cutoff for gene pairs based on a
user defined input parameter. Our package also generates
linear regression lines for each isolated gene pair
expression scatter.

𝑆𝑠𝑒𝑐 = ∑(− 𝑙𝑜𝑔(𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 𝑝𝑣𝑎𝑙𝑢𝑒𝑠))/# 𝑜𝑓 𝑑𝑜𝑛𝑜𝑟𝑠 
[1]

Ssec scores gauge the interaction of one origin ligand
encoder gene across all genes within the target tissue. An
equation for how these scores are calculated is presented in
Equation 1. The scores are divided by the number of
donors present in the target tissue matrix to standardize
and allow for comparison between tissue pair analyses.
Table 1 provides gene symbol, Ssecs, and p-values of
adipose tissue ligand encoder interactions with liver tissue
for the top 10 highest magnitude scores. Measuring the
significance of these
scores is not apparent
however. Because the
distribution of Ssec
scores is unknown, we
opted to produce a null
distribution to quantify
the significance of
observed values in our
analysis. To do this, we
permute the donor data
of the target liver tissue
matrix used in the
correlation analysis
1000 times and
calculate the random Ssec score each time. Then, we
calculate the p-value of the observed Ssec from our
unaltered analysis on the null distribution. An example
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plot for the validation of our Ssec scores is shown in
Figure 5.

Specific Aim 3 - Analyzing novel differences between
male and female organ interactions

Prior research has demonstrated that some genes are
differentially expressed between males and females
(Zhang et al., 2009; Ellegren and Parsch 2007). Whether
differential gene expression applies to ligand and receptor
encoding genes, responsible for the maintenance of the
endocrine system, in males and females is not well
documented. We hypothesize that differential endocrine
interactions between males and females can be identified
through the application of our R-package. In our third aim,
we applied our R-package to adipose and liver expression

data split by the sex of the donor. These two tissues are
known to have secreted factors and receptors that influence
tissue function, making this pair an optimal choice for our
analysis. Discovery of differential gene interactions
between males and females based on correlation
coefficients and Ssec scores can illuminate novel
differences in tissue communication.

After splitting the adipose and liver tissue matrices by
male and female donors, we utilized these pairings as
inputs into our corr_analysis function. This process
produced two sets of gene-to-gene correlation coefficients,
p-values, and Ssec scores. We adapted our two
methodologies for identifying tissue pair gene interactions
to identify divergence between sexes. The first is taking
the difference of biweight midcorrelation coefficients, and
analyzing the magnitude of the difference matrix, similar
to the p-value analysis mentioned previously. The second
is a difference of Ssec scores. The first method allows us
to single out particular gene pairs that show considerable
deviation in correlation between males and females. The
second method allows us to analyze differences in how
each origin adipose tissue gene impacts all genes present in
the liver tissue.

Matrices resulting from the use of our package on
separated male and female data do not inherently match
due to filtration by gene variance. Before a difference of
male and female correlation coefficients can be taken, the
matrices must be realigned to include genes present in
both. After this formatting, female coefficients are
subtracted from the male’s to produce our difference
matrix. Lastly, before we identify gene pairs based on the
magnitude of coefficient differences, we perform one final
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filtration of target tissue receptor encoding genes in the
liver. This allows us to identify potentially specific genes
responsible for endocrine pathways between the adipose
and liver tissue. Solute carrier family 5 member 6
(SLC5A6) and Tumor necrosis factor receptor superfamily
member 12A (TNFRSF12A) were the pairing with highest
magnitude correlation difference of 0.702. Expression
scatters for these two genes are presented below in Figure
6. There is a significant positive correlation of the genes in
male donors, and a negative correlation in females.
Although the p-value for these genes in females is not
significant, the identification of similar differential
correlations can have vast future implications.

The second method utilized in our analysis pipeline is a
difference in Ssec scores. Similar to our methodology
above, genes retained after variance filtration differ after
function utilization. Therefore, matching of ligand
encoding genes between male and female results is the first
step. Then, after solving for the male and female
difference, we can identify important ligand encoders in
adipose that have large impacts on liver tissue gene
function differences between sexes. To compare the
magnitudes, Figure S1 displays the Ssec differences
histogram for matched genes. In Table 2, we display the
top ten adipose ligand encoders with differential impacts
on the liver. Genes with positive Ssec differences have
larger effects on the liver in males than females, while
genes with negative Ssec differences demonstrate the
opposite effect. Adrenomedullin (ADM) and Vascular
endothelial growth factor A (VEGFA) have the largest
absolute value differences, and an analysis on their
function along with the gene pair identified based on
correlation differences will be analyzed in the discussion.

Discussion

Utilizing our bioinformatics program, we identified
multiple genes that could play a critical role in differential
tissue communication in males and females. ADM is a
vasodilator protein, and prior research has identified
adipose tissue as a major
source of the protein ADM
in the body. It was also
identified that the expression
of ADM increased
significantly in an obese
mice model (Nambu, 2005).
VEGFA plays a key role in
angiogenesis and tissue
remodeling, but research has
also identified it as

potentially influencing metabolism and insulin resistance
(Elias, 2013). Hypothesizing why we see differences
between males and females for these genes is difficult to
speculate without more concrete understanding of their
function. SLC5A6 is a multivitamin transport protein
encoder and TNFRSF12A is an apoptosis modulator and
signal protein encoder (NCBI, 2021). Research linking
these two genes is limited, even less so for identifying
potential interaction differences based on sex.

While we have demonstrated the capabilities of our
package to perform gene expression analysis and particular
sexed based analysis, there are some limitations to our
work that should be taken into consideration. Despite the
package being developed in tandem with the use of GTEx
sourced expression data, the package was produced to
accommodate the use of human expression data sourced
from other databases. This has yet to be tested; so we
assume that non-GTEx sourced information will work as
expected. A majority of donors in the GTEx data were
male. Some tissue expression matrices had relatively low
female donors, such as the liver with only 62 donors with
even fewer after tissue pair matching. Increasing the
number of donors in general, but especially for females,
could increase the accuracy of our correlation analysis.
Our package is written exclusively in R, and functions best
when in an Rstudio environment. This demands
knowledge of the programming language from the user,
and could pose as a barrier for entry to those unfamiliar
with R. It is entirely possible to translate our software to
other programming languages, like Python, but we cannot
confirm it would provide a novel purpose in those settings.
This package also uses gene expression levels, instead of
protein levels in its analysis. It cannot be assumed that
differential expression of genes will necessitate similar
differential translation of proteins. As such, performing a
correlation analysis on protein abundance could
complement our findings.

Future directions in the enhancement of our R-package
coincide with some of our limitations. Continued
improvement of the package will include providing
variations that function using other programming
languages. It is also important to experimentally validate
correlation results from our package analysis. It may be
pertinent to confirm whether the differential correlations in
gene expression lead to differential translation of proteins.
Just as our package was applied to do a group analysis
based on sex, the program could be applied to other group
based analysis. This could include analysis in groups
separated by disease state, age, and geographical location.
Genes that aren’t retained after filtration, both by variance
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and which genes are ligand encoders, may also be
pertinent information to analyze in the differences between
male and female tissue interactions.

Bioinformatics and data science methodologies are rapidly
being implemented in the field of biomedical engineering
as tools for better understanding large cohorts of biological
information. Study of gene expression in humans is just
one of many applications that data science is well suited to
address. Our R-package presents the scientific community
with an efficient tool for such analysis. With it, we
demonstrated a specific application of the program through
the analysis of differential endocrine interactions between
sexes.

Materials and Methods

Human Gene Expression Data

Gene expression data was downloaded from the GTEx
project website using the command line, and stored on the
University of Virginia’s High-Performance Computing
system, Rivanna. The data was then annotated using
subject sample identifiers, normalized using log base two,
and split into separate tissues using the R programming
language in an RStudio environment.

Matrix Processing

Sample donors were matched between tissue pairs to
ensure samples contained gene expressions for the relevant
tissues. ENSEMBL gene identifiers were renamed into the
corresponding HUGO symbols to match genes between
matrix pairs (Anderson et al., 2020), and then later to filter
for ligands in the origin tissue. The dataset containing the
list of ligand secreting genes was provided by the R
package GSEAplot (Reinaltt, 2021). Genes were then
filtered for high variance, in order to better serve later
correlation methods. For our sex based analysis, gene
information was rematched after male and female data was
processed due to differential retention of certain genes
during variance filtration. Finally, for the analysis of
gene-gene pairs utilizing p-values, target tissue genes were
filtered based on known receptor encoders to better capture
endocrine interactions between sexes.

Gene Expression Correlations

Inter-tissue correlation coefficients and corresponding
p-values were calculated using the R package WGCNA
(Langfelder, 2012). We utilized the biweight
midcorrelation method, which is median based, making
our package analysis less susceptible to outliers. Gene
pairs of significantly low p-value magnitude were isolated

and expression data from the initial tissue matrix was
called to visualize correlation.

Quantification and Statistical Analyses

The distribution of Ssec scores is unknown, and so to
analyze the significance of the scores, our group adopted a
method of creating null distributions for ligand encoding
genes for the origin tissues. This required the permutation
of donor column data 1000 times, and applying an ecdf
function in Rstudio to the Ssec scores calculated from the
randomly permuted data. Then the p-value for the
observed value was calculated on the null distribution to
quantify its significance. Similar analysis can be done on
differences of Ssec scores for validating significance, but
is computationally heavy and will be optimized and
implemented in future versions of the package.

Github

As referenced in the text, the R script used to perform the
pipeline, along with sample datasets, a vignette
walkthrough, and a function manual are all available at
https://github.com/Eziedu/Gene_Expression_Cors_JEF
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