
Operating and Runtime Systems towards an Efficient

and Secure Edge

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

by

Liwei Guo

December 2022

© 2022 Liwei Guo

Abstract

Located near user data, the edge is a preferred place for executing latency and security-sensitive tasks such as

sensor data harvesting and processing. For instance, a smart speaker interacts with user speeches impromptu;

it does so by running Natural Language Processing (NLP) inferences purely on device without transmitting

the captured personal audio to the cloud for crucially preserving user privacy.

However, existing operating and runtime systems are inadequate in executing such tasks efficiently or

securely. First, they suffer from poor efficiency. Design inefficacies in kernel and machine learning inference

runtime have incurred large CPU idle epochs and correspondingly led to significant energy and memory

inefficiency, which are crucial for the resource-constrained edge. Second, they lack support for Trusted

Execution Environment (TEE). Designed to isolate and protect platform resources at the lowest level, a TEE

(e.g. Arm TrustZone) executes security-sensitive code, oblivious to the OS. Yet, without mature filesystems

or device drivers, the TEE inevitably relies on the OS by exposing the data and control path to the OS for

execution on its behalf, creating security and privacy loopholes.

This dissertation shows that, by co-designing systems software with hardware and incorporating the app

knowledge, it is possible to foster greater efficiency and security at the edge.

To this end, I present five systems in two parts. The first part addresses the efficiency problem. Starting

with Power Sandbox, I endow the knowledge of energy consumption to apps at OS level, allowing them

to reason about their own power and adapt towards greater efficiency accordingly. Then I will present

Transkernel and STI, two systems that address the execution inefficiencies in kernel and machine learning

runtime respectively. Through the two systems, I show that the key to greater efficiency is to eliminate CPU

idling by specializing systems with respect to edge workloads and hardware. The second part introduces

two systems Driverlet and Enigma, which enable TEE access to mature filesystems and complex devices for

the first time. I will show that by intercepting at proper hardware/software boundaries, it is possible not

only enable the practical use of TEE but also do so in a secure and private way. Together, the five systems

compose a holistic tapestry of system designs towards a more efficient and secure edge.

i

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Liwei Guo
Liwei Guo

This dissertation has been read and approved by the Examining Committee:

Dr. Felix Xiaozhu Lin, Advisor

Dr. Yangfeng Ji, Committee Chair

Dr. Mircea Stan

Dr. David Evans

Dr. Charlie Y. Hu

Accepted for the School of Engineering and Applied Science:

Jeniffer L. West, Dean, School of Engineering and Applied Science

December 2022

ii

To my parents for their endless love and support.

iii

Acknowledgments

My Ph.D. journey is a long venture both temporally and spatially, but I am grateful to the following people

who have made it easy for me.

First and foremost, I owe my deepest gratitude to my advisor, Professor Felix Xiaozhu Lin. Being the

Mastersmith and honing my research skills through the six-year apprenticeship is only the least he has done

for me. He has been a caring brother, navigating me through my early tough years in the U.S., caring for my

mental and physical wellness, and keeping me on my toes before I went astray. Moreover, by climbing the

Himalayas of systems research with him, he has shown me the grandeur of computer systems, given me the

great vision towards the future, and helped me develop a fine taste of doing systems research. I am forever

grateful for his teaching, on which the eaglet shall finally soar.

My gratitude extends to my committee members, Professor Yangfeng Ji, Professor Mircea Stan, Professor

David Evans of UVA and Professor Charlie Hu of Purdue. I thank them for their scrutiny and insightful

feedback of the STI project, which helps immensely with its publication.

I spent the first four years of my Ph.D. at Purdue, where I have worked with many wonderful people.

First, the crew members of Crossroads Systems Exploration Lab (XSEL): Hongyu Miao, Tiantu Xu, Heejin

Park, and Shuang Zhai. The days of us hanging out and those Friday chitchats will be my most precious

memory. I thank Mengwei Xu. During his one-year visit at XSEL, his knowledge in mobile intelligence brings

a breath of fresh air to me and he has been a good gym partner who helps me improve a lot. I thank Yizhou

Shan for deep conversations over OSes and kernels. I also thank my collaborators, Yi Qiao, Kaiyang Zhao,

and Professor Yiying Zhang for helping the Transkernel and Enigma project.

During the remaining two years at UVA, I thank Meng Wang, who guided me around Charlottesville

when I first arrived and had many technical discussions over security research with me afterwards. I am also

fortunate to work with Felix’s new batch of students: Wonkyo Choe, Rongxiang Wang, Xu Ouyang, Afsara

Benazir, and Changhong Yang, who help me better prepare the final defense; I wish I could have stayed

longer to pass along all my experiences in systems research.

iv

Acknowledgments v

I would also like to thank Renyu Guo (IU), Zhengyang Wang (Vanderbilt), Xiujia Yang (UIUC), and

Jiacheng Li (Purdue), who were also Ph.D. students and made my journey not alone. Weekend gaming nights

with them are important to my sanity, which refuel my energy and help me keep on grinding.

Last but not least, I am so grateful to my parents Hong Guo and Hua Xiong. They shape who I am today

and always offer the endless and unconditional love and support to me throughout my long years of study.

The journey would not have been possible without them.

Contents

Abstract i

Acknowledgments iv

Contents vi
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Background: workloads and hardware at the edge . 1
1.2 Challenges to systems software (OS and Runtime) . 3
1.3 Dissertation overview . 4

1.3.1 Dissertation statement . 4
1.3.2 Contributions . 4
1.3.3 Dissertation organization . 8

I Harnessing hardware heterogeneity for efficiency 9

2 Power Sandbox: Power Awareness Redefined 10
2.1 Introduction . 10
2.2 A Case for A New OS Principal . 13

2.2.1 Power awareness: what matters to apps? . 13
2.2.2 Fine-grained power metering is getting easier . 15
2.2.3 Accounting is hard due to power entanglement . 15
2.2.4 Power entanglement creates reasoning difficulty . 17
2.2.5 Power entanglement creates security vulnerability . 17
2.2.6 Design choices . 17

2.3 System Overview . 18
2.4 Kernel Support . 20

2.4.1 The driver model . 20
2.4.2 Applying the driver model . 21

2.5 Implementation . 25
2.6 Evaluation . 27

2.6.1 Elimination of power entanglement . 27
2.6.2 Performance impact . 29
2.6.3 Confinement of throughput loss . 30
2.6.4 An end-to-end use case . 31

2.7 Limitations & Discussions . 31
2.8 Road to Existing Ecosystems . 33

2.8.1 Hardware support . 33
2.8.2 Software support . 34

2.9 Related Work . 34

vi

Contents vii

2.10 Conclusions . 36

3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 37
3.1 Introduction . 37
3.2 Motivations . 39

3.2.1 Kernel in device suspend/resume . 40
3.2.2 A peripheral core in a heterogeneous SoC . 41
3.2.3 OS design space exploration . 42
3.2.4 Design objective . 44

3.3 The Transkernel Model . 45
3.4 ARK: An ARM Transkernel . 46

3.4.1 A Scheduler of DBT Contexts . 47
3.4.2 Interrupt and Exception Handling . 47
3.4.3 Deferred Work . 48
3.4.4 Locking . 49
3.4.5 Memory Allocation . 49
3.4.6 Delays & Timekeeping . 50

3.5 The Cross-ISA DBT Engine . 50
3.5.1 Exploiting Similar Instruction Semantics . 51
3.5.2 Passthrough of CPU registers . 52
3.5.3 Control Transfer and Stack Manipulation . 53

3.6 Translated −→ Native Fallback . 54
3.7 Evaluation . 54

3.7.1 Methodology . 54
3.7.2 Analysis of engineering efforts . 55
3.7.3 Measured execution characteristics . 56
3.7.4 Energy benefits . 58
3.7.5 Discussions . 59

3.8 Related Work . 60
3.9 Conclusions . 62

4 Turbocharge Interactive NLP at the Edge 63
4.1 Introduction . 63
4.2 Motivations . 66

4.2.1 Transformer on mobile devices . 66
4.2.2 Transformers challenge existing paradigms . 67
4.2.3 Model compression is inadequate . 68

4.3 Design overview . 68
4.3.1 The system model . 68
4.3.2 The operation . 69
4.3.3 Example execution scenarios . 70
4.3.4 Applicability . 70

4.4 Elastic model sharding . 71
4.4.1 Key challenges . 71
4.4.2 Instantiating model shards on disk . 71

4.5 Pipeline planning . 73
4.5.1 Overview . 73
4.5.2 Prerequisite: offline profiling . 73
4.5.3 Compute planning . 74
4.5.4 IO planning . 75
4.5.5 Submodel execution . 77

4.6 Implementation . 78
4.7 Evaluation . 79

4.7.1 Methodology . 79

Contents viii

4.7.2 End-to-end results . 80
4.7.3 Significance of key designs . 82
4.7.4 Sensitivity analysis . 84

4.8 Related work . 85
4.9 Concluding remarks . 86

II Fostering security and privacy 87

5 Minimum Viable Device Drivers for ARM TrustZone 88
5.1 Introduction . 88
5.2 Motivations . 91

5.2.1 Example trustlets of secure IO . 91
5.2.2 Prior art . 92

5.3 Approach overview . 93
5.3.1 System model . 93
5.3.2 Our approach . 95
5.3.3 Why driverlets work . 96
5.3.4 Limitations . 97

5.4 Record . 97
5.4.1 Problem formulation . 97
5.4.2 Key challenges & solutions . 98

5.5 Replay . 101
5.6 Implementation . 102

5.6.1 Recorder . 102
5.6.2 Replayer . 103

5.7 Experiences . 104
5.7.1 MMC . 104
5.7.2 USB . 106
5.7.3 Camera . 107

5.8 Evaluation . 108
5.8.1 Analysis of developer efforts . 109
5.8.2 Correctness & Security analysis . 110
5.8.3 Overhead . 111
5.8.4 End-to-end use case . 114

5.9 Discussions . 115
5.10 Related Work . 116
5.11 Conclusions . 116

6 Protecting File Activities via Deception for ARM TrustZone 117
6.1 Introduction . 117
6.2 Motivations . 120

6.2.1 TrustZone and its file services . 120
6.2.2 The Linux storage stack . 120
6.2.3 The attacks . 121
6.2.4 System Overview . 122

6.3 Sybil images with covert emulation . 124
6.3.1 Metadata-only sybil images . 124
6.3.2 Isolating filedata paths . 124
6.3.3 Rejecting OS access to filedata . 125
6.3.4 Defense against timing attacks . 125

6.4 Filesystem identity shuffling (FIDS) . 126
6.4.1 The mechanism . 126
6.4.2 Why FIDS works . 127

Contents ix

6.4.3 Defense against extinct lineage attacks . 128
6.5 Generating sybil file calls . 128

6.5.1 Design . 128
6.5.2 Case study . 130

6.6 Implementation . 130
6.7 Security analysis . 132

6.7.1 TCB . 133
6.7.2 Security guarantees . 133

6.8 Evaluation . 134
6.8.1 Methodology . 135
6.8.2 Space overhead . 136
6.8.3 File access delays . 137
6.8.4 FIDS overhead . 138

6.9 Related Work . 139
6.10 Concluding remarks . 140

7 Concluding Remarks 141

Bibliography 146

List of Tables

3.1 Hardware models compatible with Transkernel. 41
3.2 Kernel services supported by ARK and Linux ABIs ARK depends on. 47
3.3 Translation rules for v7a instructions. 51
3.4 Sample translation by ARK. 52
3.5 Source code of ARK. 55
3.6 The test platform - OMAP4460 on a Pandaboard . 57

4.1 The weight composition of a shard. 72
4.2 Platforms in STI evaluation . 79
4.3 GLUE benchmarks [1] used in evaluation. 79
4.4 Baselines for evaluation and their positions in the design space. 80
4.5 Model execution accuracy comparisons. 82
4.6 Submodel sizes selected under different target latencies. 82
4.7 Model accuracies resultant from allocating additional IO budget. 84

5.1 Events in interaction templates for replay. 98
5.2 The test platform and peripherals used. 104
5.3 Breakdown of 10 interaction templates of MMC. 105
5.4 Key constraints and taint operations of inputs on the RW 1 template of the MMC driverlet. 106
5.5 Events breakdown of 3 interaction templates under a given resolution for the CSI camera. . . 107
5.6 Key constraints and operations of input values for the camera driverlet. 108
5.7 Efforts for building drivers from scratch, showing the needed device knowledge. 109
5.8 Efforts for porting Linux drivers, showing the code the developers need to reason about and

potentially modify. 109
5.9 Benchmarks used from SQLite test suites and a breakdown of interaction template invocations.111

6.1 Enigma thwarts attacks against confidentiality. 132
6.2 A summary of benchmarks in Enigma. 135
6.3 The test platform used in Enigma evaluation. 135
6.4 Disk space needed by Enigma baselines. 137
6.5 File access delays by Enigma baselines. 138

x

List of Figures

1.1 This dissertation presents five systems towards a more efficient and secure edge. 2

2.1 An overview of psbox. 11
2.2 Concepts in app power-aware adaptation. 14
2.3 Examples of power entanglement. 15
2.4 Prototype hardware platforms used in psbox evaluation. 26
2.5 Benchmark apps used in psbox evaluation. 27
2.6 Power of the benchmark scenarios in psbox. 28
2.7 Resource multiplexing and the resultant system power, before and after one app* enters psbox. 29
2.8 Throughputs of co-running app instances, before and after one instance enters psbox. 30
2.9 CPU power of a VR scenario with psbox. 31

3.1 An overview of Transkernel. 38
3.2 Alternative ways for offloading kernel phases. 43
3.3 Counts of Linux kernel functions referenced by device suspend/resume. 43
3.4 The ARK structure on a peripheral core. 46
3.5 Execution time and energy in device suspend/resume. 56
3.6 ARK busy execution overhead for devices under test. 56
3.7 System energy consumption of ARK relative to native execution. 59

4.1 Comparison of NLP model execution methods. 64
4.2 BERT model parameter breakdown. 66
4.3 System architecture of Speedy Transformer Inference (STI) and workflow. 69
4.4 Model sharding process of STI. 71
4.5 Example shard profiles on SST-2 and RTE. 75
4.6 A mini example of AIB tracking the layerwise IO budgets. 76
4.7 Zoom-in view of STI accuracies compared with other methods. 81
4.8 A comparison between submodels executed by Ours and StdPL-6bit. 83

5.1 Overview of the Driverlet model. 89
5.2 A motivating example of the driverlet approach. 95
5.3 An example of driverlet extracting constraints, data dependencies, and polling loops into a

template. 99
5.4 The driverlet mandates a fixed number of DMA allocations in a template. 100
5.5 SQLite benchmarks for MMC and USB driverlets. 112
5.6 Image capturing latency for Camera benchmarks. 113
5.7 Microbenchmarks of read/write on the MMC and USB driverlets. 114
5.8 A trusted perception trustlet built atop driverlets. 115

6.1 An overview of Enigma. 118
6.2 The Enigma architecture. 123
6.3 A minimal example of filesystem identity shuffling. 127

xi

List of Figures xii

6.4 FIDS diminishes probability of OS distinguishing an image’s history from histories of other
images. 133

6.5 Disk usage and metadata compression ratio of Enigma. 136
6.6 Enigma file access delays. 138
6.7 Trustlet throughputs under different FIDS intervals. 139

Chapter 1

Introduction

Emerging edge platforms are equipped with increasingly abundant and heterogeneous computing resources.

Yet, the existing systems software is inadequate in fully utilizing them. To address the problem, my dissertation

features five novel systems designs which help these edge platforms run more efficiently, securely and privately.

1.1 Background: workloads and hardware at the edge

Definition. This dissertation targets edge devices, which are low-cost embedded/mobile Arm SoCs running

commodity, general purpose Linux kernels. Examples include smart speakers [2], cameras [3], watches [4], as

well as phones [5]. An edge device may have multiple tenant apps but is entitled to only a single user or a

small list of users. For instance, a mobile phone has many apps but is often used by a single user; a smart

speaker runs only an intelligent personal assistant (IPA) app and is shared by household members.

Workloads. Sitting at the frontier of the data flow (hence the “edge”), edge devices are responsible for

harvesting, processing, and persisting the data. Example workloads include:

• Harvesting. Deployed in the wild, an edge device periodically collects data from physical world, e.g. images,

temperature, humidity. To save energy, the edge device often suspends between harvesting intervals and only

resumes to harvest data from sensors.

• Processing. As soon as an edge device has harvested the data, it may process the data on-device. Doing so

has two key benefits: 1) low latency, as it saves network roundtrips; 2) privacy, since no data leaks to the

cloud. For example, the smart speaker and camera may execute machine learning inference on-device for

speech recognition and object detection without transmitting any user audio/images to the cloud.

1

Chapter 1 Introduction 2

• Persisting. An edge device often needs to persist the harvested data and processed results in local storage

in case of power loss; for reliability, it relies on mature filesystems to manage the data blocks.

Hardware. Driven by aforementioned workloads, edge devices are not only equipped with rich, multi-

instance, IO devices such as MMC, USB, Wi-Fi NICs, and CSI cameras, but also are equipped with abundant

and heterogeneous computing resources. For instance, they often have microcontroller-like peripheral cores

(e.g. Cortex M3 [6]) which run alongside their Arm CPUs; with a much simpler micro-architecture, the

heterogeneous cores achieve far better energy efficiency (e.g. 100× smaller idle power) than CPUs, making

them an ideal place to run infrequent sensor data harvesting tasks, e.g. step counting. To process data (e.g.

by executing ML inferences), they are often armed with various accelerators (e.g. DSPs, GPUs, NPUs), which

execute math operators fast and efficiently by exploiting high data parallelism. For security, they employ Arm

TrustZone as the Trusted Execution Environment (TEE) [7] which partitions the SoCs’ resources among the

secure and normal world, running in a time-sharing fashion. By design, the secure world isolates security and

privacy-sensitive execution (e.g. sensor data acquisition) from the normal world OS (e.g. Linux). Figure 1.1

shows the software/hardware stack of such a heterogeneous edge platform.

MMC 1 DMA 1

Secure world

(TEE)

Trustlet

I/O Devices

Filesystems

CPU

Device Drivers

Peripheral

Core

DBT

1
2

5

4

User app: ML

inference

3

GPU Wi-FiMMC 0 DMA 0

Cam.USB 0 USB 1 DSP

Multiple instances

Normal world

(OS)

Figure 1.1: The five systems this dissertation presents towards a more efficient and secure edge platform.
The figure shows their corresponding positions in the software/hardware stack. 1 : Psbox (Chapter 2), 2 :
Transkernel (Chapter 3), 3 : STI (Chapter 4), 4 : Driverlet (Chapter 5), 5 : Enigma (Chapter 6)

1.2 Challenges to systems software (OS and Runtime) 3

1.2 Challenges to systems software (OS and Runtime)

Despite the rich (sometimes over-provisioned) hardware resources, existing systems software on edge platforms

fails to fully utilize them in their workloads and faces two key inadequacies.

First, poor energy efficiency. As edge platforms are often battery-powered, energy efficiency is of their

paramount importance. Yet, even with accelerators and heterogeneous cores, they still suffer from energy

drain and have poor energy efficiency, as demonstrated by [8, 9, 10]. We discover two key bottlenecks in

existing systems design:

• Lack of energy accounting facility. Existing systems provide no reliable, accurate energy accounting

facilities. As a result, there is no means for apps running on the edge platform to tell their actual power

consumption and adapt towards better efficiency, which is a long desired goal [11].

• Large CPU idle epochs. CPU execution is not efficient, either. In kernel execution, there exist many

small, yet accumulatively large CPU idle epochs [12]; they are due to waiting for voltage ramp up and power

state transitions, which are bound by physical factors. In ML inference, the existing runtime designs model

loading and computation in separation; the result is, to execute an inference task, a CPU often times must

wait IO (i.e. model loading) to complete before proceeding to computation, incurring long delays [13] and

energy waste.

Second, inadequacy in using TEE. As an isolated execution environment, TrustZone TEE and its

runtime kernel (e.g. OPTEE-OS [14]) resembles much of a baremetal environment, lacking essential services

such as filesystems and device drivers. To use it, apps of the TEE (i.e. trustlets) must forward the file calls

and IO job requests to a normal world OS and rely on the software stack of a commodity kernel. This creates

two security risks which break the integrity and confidentiality goals of TrustZone TEE:

• Possible data leak and tampering. During execution of forwarded requests, the data passes through the

OS. For devices without end-to-end encryption, this leads to possible data leak and tampering: a malicious OS

(including its drivers) may peek into the data content, tamper with it, and feed the trustlets with tampered

data.

• External IO as a side channel. As forwarding must send the arguments of a request in the clear (e.g.

file offsets, read/write sizes), they can be used to infer the input data of the trustlet, creating a side channel.

For instance, by inferring the accessed file offsets of a SQLite query, the attacker learns the query content [15].

Chapter 1 Introduction 4

1.3 Dissertation overview

1.3.1 Dissertation statement

Towards an efficient and secure edge, our overarching approach is to co-design systems software with hardware

and workloads. The approach instantiates two key visions:

• First, specialize for beaten path. As described earlier, the workloads at edge are often driven by

missions and executed repetitively; furthermore, its small set of users induces less dynamism to the device.

For instance, a smart camera periodically captures image frames and a smart speaker keeps listening to

activation keywords so it may execute speech recognition tasks in a tight loop. As such, there exist beaten

paths among the workloads at the edge device. They are recurring, stable, and lean code paths, i.e. having

similar call graphs and function dependencies, and are only a tiny fraction of their original codebase. One

key insight is to specialize systems software for such beaten paths. Doing so has two key benefits: 1) it allows

the system to co-design software with hardware at a finer granularity, thus improving efficiency; 2) it enables

code reuse at a low cost, i.e. it only needs to reason about a small fraction of code. The benefits are crucial

for an edge device, which is resource-constrained and craves for better efficiency.

• Second, co-schedule hardware resources with app in the loop. Unlike hardware on the cloud

which is primarily designed for high throughput, hardware resources at the edge are more diverse and bring

forth new tradeoffs, sometime unorthodox ones, which are often dependent on workloads and apps. For

instance, a micro-controller like peripheral core is two orders of magnitude more efficient than a CPU when

idling but runs one order of magnitude slower [16]; placing arbitrary app/workloads on a peripheral core only

incurs efficiency loss instead of gain. To fully harness them towards our goals of efficiency and security, our

key insight is to let systems software orchestrate hardware with app in the loop. We hence enable two-way

interactions. First, the system provides APIs to apps for exposing necessary hardware details (e.g. power) so

that apps may adapt accordingly. Second, the app supplies adaption decisions/workload characteristics (e.g.

which parts of a file will be needed first), so that the system may prioritize and optimize for them. With such

knowledge and interactions, the systems software works closer to hardware by selectively placing workloads

on it, e.g. it decides what to place for efficiency and what not for security.

1.3.2 Contributions

This dissertation presents five novel systems which work in harmony under the aforementioned principle to

address the above two key challenges.

This section overviews them by answering three key questions for each system:

1.3 Dissertation overview 5

• Why is the system important to the dissertation & what problem(s) it has addressed?

• What are the key innovations & results?

• What are the contributions to the field?

1 Power Sandbox [17] is an OS principal to allow co-running apps to observe their individual power

consumption at fine-granularity. It enables power awareness for applications, facilitating them to adapt to

runtime environment towards better energy efficiency.

• Why important? Power awareness is important towards a more efficient edge platform; by knowing its

own power consumption, an app can dynamically adjust its runtime behavior (e.g. throttle data transmission

bandwidth, vary streaming fidelity), thus achieving better energy efficiency. However, in the existing approach

an OS often meters system power and divides it among apps. Since the impacts of concurrent apps on system

power are entangled, this approach not only makes it difficult to reason about power and but also results in

power side channels, a serious vulnerability.

• Key innovations. A Power Sandbox (psbox) enables one app to observe the fine-grained power consumption

of itself running in its vertical slice of the hardware/software stack. The observed power is insulated from the

impacts of other apps. We support the psbox through two new kernel extensions: resource ballooning and

power state virtualization. The former grants a psbox exclusive use of resource partitions at fine spatial or

temporal granularities; it meters and reports the power of resource balloons. The latter virtualizes hardware

power states for every single psbox upon exit and re-entry, eliminating power side channel.

• Key results. We implement psbox for a variety of major hardware components, including CPU, GPU,

DSP, and WiFi interface on two embedded platforms. Psbox keeps an app’s power observations highly

consistent even when the app co-runs with other different apps. Across these runs, the app’s energy, as

observed by the app itself, differs by less than 5%; by contrast, energy shares reported by a prior approach

differ by up to 60%.

• What matters to the field? Power sandbox is the first work that recognizes the power entanglement

problem, which makes prior energy accounting approaches inadequate; it is the first kernel mechanism to

address the problem and empowers apps with their power consumption.

2 Transkernel [16] is an OS structure which offloads the unmodified kernel driver suspend/resume

workloads of the CPU onto a peripheral core via dynamic binary translation. By doing so, a transkernel

eliminates tedious and energy inefficient idling on CPUs, thus improving the energy efficiency of an edge

platform.

Chapter 1 Introduction 6

• Why important? A major energy drain of smart devices is ephemeral tasks driven by background

activities. To execute such a task, the OS kernel wakes up the platform beforehand and puts it back to sleep

afterward. Such kernel executions are inefficient as they mismatch typical CPU hardware. They are better off

running on a low-power, microcontroller-like core, i.e., peripheral core, relieving CPU from the inefficiency.

• Key innovations. The Transkernel OS structure has a set of novel designs. It translates stateful kernel

execution through cross-ISA, dynamic binary translation (DBT); it emulates a small set of stateless kernel

services behind a narrow, stable binary interface; it specializes for hot paths; it exploits ISA similarities for

lowering DBT cost.

• Key results. In 10K SLoC, we implemented a transkernel prototype called ARK atop an ARM SoC.

ARK offers complete support for device suspend/resume in Linux, capable of executing diverse drivers that

implement rich functionalities (e.g., DMA and firmware loading) and invoke sophisticated kernel services

(e.g., scheduling and IRQ handling). As compared to native kernel execution, transkernel only incurs 2.7×

overhead, 5.2× lower than a baseline of off-the-shelf DBT. It reduces system energy by 34% under real-world

usage.

• What matters to the field? The transkernel represents a new OS design point for harnessing heteroge-

neous SoCs. It contributes a key insight: while cross-ISA DBT is typically used under the assumption of

efficiency loss, it can enable efficiency gain, even on off-the-shelf hardware.

3 STI [18] is an NLP inference engine which unifies model loading and execution via an elastic pipeline.

With STI, an edge platform executes inference requests in short delays with minimum memory consumption,

and is more efficient.

• Why important? Natural Language Processing (NLP) inference is seeing increasing adoption by mobile

applications, where on-device inference is desirable for crucially preserving user data privacy and avoiding

network roundtrips. Yet, the unprecedented size of an NLP model stresses both latency and memory, creating

a tension between the two key resources of a mobile device. To meet a target latency, holding the whole

model in memory launches execution as soon as possible but increases one app’s memory footprints by several

times, limiting its benefits to only a few inference before being recycled by mobile memory management and

resulting in poor memory efficiency. On the other hand, loading the model from storage on demand incurs

a few seconds long disk IO, far exceeding the delay range satisfying to a user; pipelining layerwise model

loading and execution does not hide IO either, due to the large skewness between IO and computation delays.

• Key innovations. STI contributes two novel techniques. First, model sharding. STI manages model

parameters as independently tunable shards, and profiles their importance to accuracy. Second, elastic

pipeline planning with a preload buffer. STI instantiates an IO/compute pipeline and uses a small buffer

1.3 Dissertation overview 7

for preload shards to bootstrap execution without stalling in early stages; it judiciously selects, tunes, and

assembles shards per their importance for resource-elastic execution, which maximizes inference accuracy.

• Key results. Atop two commodity SoCs, we build STI in 1K SLOC and evaluate it against a wide range

of NLP tasks, under a practical range of target latencies, and on both CPU and GPU. We demonstrate

that, STI delivers high accuracies with 1–2 orders of magnitude lower memory, outperforming competitive

baselines.

• What matters to the field? STI is the first inference engine that co-designs model loading and execution.

Built on the key idea of maximizing IO/compute resource utilization on the most important parts of a model,

STI reconciles the latency/memory tension of an edge platform.

4 Driverlet [19] is a driver model for deriving device drivers (e.g. MMC, USB storage, and CSI camera)

for TrustZone from mature commodity Linux kernels via record and replay. By fulling confining device access

inside TrustZone, driverlets ensures the data integrity and confidentiality, improving the security of an edge

platform.

• Why important? Designed for IO-rich client devices, TrustZone features secure IO, allowing TrustZone

apps (trustlets) to access IO devices without being known or tampered by the OS. However, Secure IO

remains largely untapped today due to the difficulty in implementing device drivers for TrustZone.

• Key innovations. The Driverlet contributes a key insight: instead of reusing drivers code, we may

reuse driver/device interactions from mature Linux driver via record and replay. Ahead of time, developers

exercise a full driver and record the driver/device interactions; the processed recordings, called interaction

templates, are replayed in the TEE at run time to access IO devices. The interaction template ensures

faithful reproduction of recorded IO jobs (albeit on new IO data); it accepts dynamic input values; it tolerates

nondeterministic device behaviors

• Key results. We build driverlets for three devices MMC, USB Mass, and a CSI Camera on RaspberryPi

3. We show driverlets are easy to build and have sufficient performance to trustlets: it only takes a few days

to build a driverlet while porting/implementing a driver takes at least months; with driverlets, trustlets can

execute over 100 SQLite queries per second (1.4× slower than a full-fledged native driver) and capture images

at 2.1 FPS from a CSI camera (2.7× slower).

• What matters to the field? Driverlets fix the key missing link for secure IO, and for the first time open

a door for trustlets to access complex yet essential devices.

5 Enigma [20] is a deception-based defense in TrustZone, which injects sybil file activities as the cover of

actual file activities. By doing so, it mitigates the file activity side channels which can be used to infer app

Chapter 1 Introduction 8

secrets of TrustZone, protecting the privacy of an edge platform.

Why important? As TrustZone TEE lacks filesystem implementations, the in-TEE apps (trustlets) often

invoke external filesystems of a normal world OS for file services (e.g. persist the collected sensor data, access

user credentials). While filedata can be encrypted, the file activities, including file operation types (e.g.

read/write), sizes/offsets, and access occurrence (e.g. “the trustlet just created a file”) must be sent in the

clear. From the received file activities, the OS can infer a truslet’s secrets such as input data, compromising

the trustlet’s privacy.

Key innovations. Enigma contributes three new designs. (1) To make the deception credible, the TEE

generates sybil calls by replaying file calls from the TEE code under protection. (2) To make sybil activities

cheap, the TEE requests the OS to run K filesystem images simultaneously. Concealing the disk, the TEE

backs only one image with the actual disk while backing other images by only storing their metadata. (3) To

protect filesystem image identities, the TEE shuffles the images frequently, preventing the OS from observing

any image for long.

Key results. We build Enigma on Raspberry Pi 3, which works with unmodified EXT4 and F2FS shipped

with Linux. We show that Enigma can concurrently run as many as 50 filesystem images with 37% disk

overhead (less than 1% of disk overhead per image). Compared to common obfuscation for hiding addresses

in a flat space, Enigma hides file activities with richer semantics. Its cost is lower by one order of magnitude

while achieving the same level of probabilistic security guarantees.

What matters to the field? Enigma is the first system to guard the external IO of TrustZone. Its

deception approach opens the door for a TEE to external untrusted OS services.

1.3.3 Dissertation organization

Guided by the two main challenges (§ 1.2), this dissertation is organized in two parts. The first part –

Harnessing hardware heterogeneity for efficiency presents three works, Power Sandbox (Chapter 2), Transkernel

(Chapter 3), and STI (Chapter 4), which re-defines power awareness for apps, improves kernel and user

app efficiency on an edge platform, respectively. The second part – Fostering security and privacy presents

Driverlet (Chapter 5), Enigma (Chapter 6) which are crucially tied to TrustZone as well security/privacy of

an edge platform. Finally, Chapter 7 concludes the dissertation and discusses design hints to future edge

systems.

Part I

Harnessing hardware heterogeneity for

efficiency

9

Chapter 2

Power Sandbox: Power Awareness

Redefined

2.1 Introduction

The quest for app power awareness1 has lasted over a decade [11]: an app, as one or a group of user processes,

demands to observe its power consumption online, in order to adapt its behaviors accordingly to lower power

or higher efficiency. Traditionally, an operating system (OS) supports app power awareness through a two-step

approach at run time as shown in Figure 2.1(a). First, the OS meters system power by either consulting

a power model [21, 22, 23, 24, 25, 26, 27, 28] or performing in situ direct measurement [11, 29, 30, 31, 32].

Second, it divides the metered power into per-app shares, based on certain heuristics chosen at the OS

development time.

Despite recent advances in fine-grained power metering [32, 31], the above approach suffers from two key

inadequacies.

(1) Reasoning difficulty: it fails to provide power observations that are easy for apps to reason about

and act upon.

(2) Security vulnerability: it creates power side channels [33], allowing attackers to learn a victim

app’s security-sensitive behaviors.

The latter inadequacy is already shown by prior work [34, 35, 36] and will be further demonstrated in

this paper (§2.2.5): from its observed GPU power, an attacker app can infer what website a co-running

1Power awareness and energy awareness are often used interchangeably in prior work. To highlight power knowledge at fine
temporal granularity, we use power awareness in this paper unless stated otherwise.

10

2.1 Introduction 11

HW
Power

(a) State of the Art (b) Power Sandbox

OS Accounting

Apps
Observe

Power
Sandbox

Insulation of
power impacts

Power
Metering Metering

Observe

Figure 2.1: An overview of psbox.

victim browser is visiting. Such inference’s success rate is 6× higher than random guess. Fine-grained power

metering further exacerbates this vulnerability.

In summary, the two inadequacies are becoming the major obstacles towards app power awareness.

Our key observation is that the metered system power contains entangled impacts from concurrent apps,

and the impacts cannot be separated cleanly. Such power entanglement is rooted in work-conserving OSs

that aggressively multiplex apps on hardware resources. Unfortunately, the existing approach to app power

awareness copes with power entanglement reactively at best without attempting to eliminate it.

To this end, we advocate a fresh perspective on OS support for power awareness, as illustrated in

Figure 2.1(b). First, the OS supports any app to observe the power of the app running in its vertical

environment (i.e., its vertical slice of the software/hardware stack) and hence prompts the app to suit the

vertical environment. Furthermore, the OS insulates the app’s power observation from the impacts of other

apps.

Following this perspective, we propose a new abstraction called power sandbox, or psbox for short. A

psbox allows the enclosed app to observe the collective power of the app itself and its vertical environment at

fine temporal granularities. In this observation, the only possible contributions of concurrent apps are periods

of idle power. The OS enforces psbox as the only way for apps to observe power: one app may enter or leave

its psbox freely, but is only allowed to observe power when it is in the psbox. Free of power entanglement,

the resultant power observation is not only amenable to reasoning but also minimizing power side channels.

We stress that power sandbox insulates app power impacts but does not isolate their executions: all apps,

inside a psbox or not, share the same system image as usual.

To support psbox, we have addressed two primary challenges:

Chapter 2 Power Sandbox: Power Awareness Redefined 12

Enforcing psbox boundaries We make the OS kernel respect psbox boundaries in resource multiplexing.

The kernel does so with two extensions: i) it grants a psbox exclusive use of resource partitions at fine spatial

or temporal granularities, called resource balloons ; it meters and reports the power of resource balloons; ii) it

virtualizes hardware power states for every single psbox.

Confining performance loss to sandboxed apps As other mechanisms for online resource monitoring

[37, 38], psbox comes with runtime costs, which is mainly due to lost sharing opportunities. In response, a

core mechanism of psbox is to confine the costs to the sandboxed apps and therefore ensures performance

fairness among all the apps, regardless of their usage of psbox. This mechanism is both powerful and critical:

assuming two apps co-running on a multicore equally share the CPU time and one app enters its psbox, the

unsandboxed app continues to enjoy its original share normally – half of the total CPU time, despite the

reduction in combined CPU utilization.

The OS kernel confines performance loss with two techniques. It tracks the lost sharing opportunities

and fully charges the loss to the sandboxed app, disadvantaging this app in future resource competitions. It

encapsulates resource balloons as normal scheduling entities and therefore reuses most of the existing kernel

infrastructure for scheduling.

We intend psbox to be a “pay-as-you-go” service for apps: apps use psbox to periodically sample power

or to selectively monitor power of key execution phases. Based on their power observation, apps make

power-aware decisions, which remain valid even after they leave psbox. In most of their lifetime, they run

outside of psbox without overhead.

Atop a recent Linux kernel and two embedded platforms, we implement psbox for a variety of major

hardware components, including CPU, GPU, DSP, and WiFi interface. psbox keeps an app’s power

observations highly consistent even when the app co-runs with other different apps. Across these runs, the

app’s energy, as observed by the app itself, differs by less than 5%; by contrast, energy shares reported by a

prior approach differ by up to 60%. In a benchmark of three co-running computer vision apps, the use of

psbox by one app leads to 10% total throughput loss. The confinement of performance loss is robust: in a

test with extremely high resource contention, despite the throughput of the sandboxed app dropping by 4×,

the other co-running app only experiences 1% throughput loss.

Based on psbox, we present an end-to-end use case. We build a virtual reality app (in 2K SLoC) that

periodically observes its power and dynamically trades its fidelity level for lower power, demonstrating how

psbox facilitates the construction of power-aware apps.

This paper has made the following contributions:

• We present an analysis of existing approaches to app power awareness, demonstrate the inadequacies,

2.2 A Case for A New OS Principal 13

and identify the cause as power entanglement. In response, we present a novel OS principal called power

sandbox (psbox) that supports an app to observe the power of itself and its vertical environment.

• We enforce psbox and confine its performance cost to the sandboxed app. We do so through a suite

of techniques: resource ballooning, power state virtualization, and tracking/charging the lost sharing

opportunities.

• On top of a recent Linux kernel, we implement psbox for CPU, GPU, DSP, and WiFi interface. Our

evaluation shows that psbox reliably insulates power impacts, incurs minor cost, maintains fairness,

and facilitates the construction of power-aware apps.

The full source code of psbox is available at:

http://xsel.rocks/p/psbox

2.2 A Case for A New OS Principal

We next analyze the design space of supporting app power awareness. First, we distill the essential power

knowledge needed by apps (§2.2.1). Next, we examine the classic two-step approach, showing that while

metering is becoming accurate and efficient (§2.2.2), accounting encounters a fundamental difficulty which

we dub power entanglement (§2.2.3 – §2.2.5). To address the difficulty, we advocate eliminating power

entanglement and empowering apps to observe exactly what they need to know. This motivates a new OS

principal (§2.2.6).

2.2.1 Power awareness: what matters to apps?

We first examine what power knowledge has been required by existing app adaptation strategies. Figure 2.2

illustrates the key concepts of app power-aware adaptation.

App cares about its own power impact By design, most adaptation strategies focus on optimizing

one app’s behaviors. By exploiting the app’s domain knowledge, these strategies reduce the app’s power

impact, which will be translated to a similar reduction in the system power or energy. Often, apps demand

to know their power impacts at fine temporal granularities in order to map the power to short-lived software

activities [39, 32, 27, 25].

This app-centered approach is extensively taken by prior work: an app optimizes its own code execution

efficiency [32, 39, 40, 41, 42], reduces the power impact of its own I/O activities [43, 44, 45], or does both

simultaneously [46, 47].

Chapter 2 Power Sandbox: Power Awareness Redefined 14

Vertical

Environment

Adapts to

Impacts

System

Power

App

Action
Prompts

Figure 2.2: Concepts in app
power-aware adaptation.

App adapts to suit its vertical environment As illustrated in Fig-

ure 2.2, a vertical environment incorporates hardware conditions, system software

configurations, user preferences, etc.

For higher power efficiency, prior systems adapt to various factors of a

vertical environment. Code generators adapt to CPU microarchitectures [39].

Mobile/cloud offloading [40, 41] and mobile data compression [46] adapt to the

comparative efficiency of CPU and wireless link. Content fidelity [11, 48, 49] and

algorithm accuracy [50] adapt to user preferences. Network transfer scheduler

adapts to network conditions [43, 44, 45] or app preference [51]. Web page

or game rendering adapts to user perception [42, 52]. As such, power-aware

adaptation decisions inherently depend on the app’s vertical environment.

By contrast, app-centered adaptation rarely considers “horizontal” factors such as peer app activities,

which would require apps to have not only deep knowledge of each other but also mutual trust. As a result,

power-saving opportunities from horizontal cooperation (e.g., app co-execution [53], cooperative I/O [54],

request piggybacking [55]) are more limited, and are often exploited at the OS level. These are complementary

to the app-centered adaptation under discussion.

Comparative power drives actions To make an adaptation decision, an app often chooses one

action out of multiple candidates by comparing their power impacts. In existing power-aware systems, these

alternative actions include program partitioning plans [28, 40, 41], code generation strategies [39], middleware

configurations [49], graphics rendering strategies [52], network transfer plans [43, 44, 45], hardware component

combinations [47], and compression algorithms [46].

Summary: essential power knowledge We summarize the power knowledge that is essential to app

adaptation as follows:

1. An app demands to observe power consumption of itself and its vertical environment at fine temporal

granularity. It is often indifferent to the power impacts of peer apps.

2. An app must be able to compare the above power observations quantitatively.

Unfortunately, this essential power knowledge mismatches what apps are learning from the current

approach to power awareness. Next, we examine this approach, in particular its two key steps.

2.2 A Case for A New OS Principal 15

 0

 2

 4

 6

 8

0.0 0.5 1.0

Po
w

e
r/

W
a
tt

Time/Sec

2 instances
1 instance (doubled)

(a) Total CPU power of two co-
running process instances, one on
each core, compared to 2× power of
one instance running alone. Hard-
ware: 2×core Cortex-A15

1
2

3C
m

d
s

 0
 0.5

 1
 1.5

 2

0.0 5.0 10.0 15.0 20.0 25.0

1
2

3

Po
w

e
r/

W
a
tt

Time/ms

(b) A sequence of three GPU com-
mands (top) and the total GPU
power (bottom). Commands of
the same type have the same color.
Hardware: PowerVR SGX544MP

 0

 1

 2

 3

0.0 0.4 0.8

Po
w

e
r/

W
a
tt

Time/Sec

exec after busy
exec after idle

(c) Comparison of CPU power of
the same app when it runs after a
CPU idle period and when it runs
after a busy period.

Figure 2.3: Examples of power entanglement.

2.2.2 Fine-grained power metering is getting easier

System-level power metering2 used to be the major challenge towards power awareness. While most prior

work metered power using models [21, 22, 23, 24, 25, 26, 27, 28], such modeling for modern hardware is

increasingly difficult, due to processor heterogeneity, variation in fabrication [56], and changing operating

conditions [57].

Fortunately, direct measurement, the alternative metering method, starts to show high promise. Besides

the known benefits of high rate (>10KHz) and accuracy (in mW) [57], recent work demonstrates that direct

measurement can be efficient and therefore in situ, by offloading periodic power sampling and pre-processing

to low-power microcontrollers [31, 32]. Fine-grained, inexpensive power metering enables characterization of

short-lived software activities, and is likely to become a common feature of future hardware platforms. We

will discuss this in detail in §2.8.1.

2.2.3 Accounting is hard due to power entanglement

Even though system power can be metered at a high resolution, attributing it to separate apps encounters a

fundamental difficulty:

Power entanglement: In a work-conserving OS that aggressively multiplexes apps on hardware,

concurrent apps impact the hardware power simultaneously, and the impacts become inseparable.

We identify three major causes for power entanglement:

• Spatial concurrency in hardware Multiple apps concurrently use disjoint hardware resources for which

power can only be metered as a whole. Note that such power metering scopes are often hardware

design choices. We show this with a simple experiment in Figure 2.3(a). On a dual-core CPU with one

power rail, we measure the whole CPU power, and compare i) only running one process on core 0 to

2In this paper, we use “metering” to refer to both physically measuring energy and inferring energy through software models.

Chapter 2 Power Sandbox: Power Awareness Redefined 16

ii) additionally running a second instance of the same process on core 1. As shown in the figure, one

cannot simply extrapolate the former run’s power, e.g., by doubling it, to get that of the latter run.

This is because in the latter run, the power impacts of two active CPU cores are entangled, as has also

been confirmed by prior work [53].

• Blurry request boundary Many hardware components, notably accelerators and I/O, accept requests

from CPU and execute the requests asynchronously. Since CPU lacks visibility into the execution

durations of in-flight requests, it cannot differentiate their power impacts. In Figure 2.3(b), we show

the durations of three consequent GPU commands and the GPU power. The commands’ durations are

to the best of CPU’s knowledge. Each duration starts when the command leaves the OS and enters the

GPU, and ends when the OS is notified command completion by a GPU interrupt. Although we expect

that the power of command 2 is similar to that of command 3 (they are of the same type), command 2

significantly overlaps with command 1 in time and their power impacts are hence entangled. The OS is

incapable of separating power of these two commands.

• Lingering power state Software workloads may prompt changes in the hardware power state, which

will affect the power of subsequent workloads. In Figure 2.3(c), we compare the CPU power when one

app runs in two different scenarios: running after the CPU has been idle for a while; running right after

the completion of another busy workload. The latter scenario incurs noticeably different power, as the

CPU clock rate raises prior to the app execution. Similar effects exist in transmission power of wireless

interfaces.

Power entanglement exists no matter how power is metered, either through modeling or direct measurement.

In particular, modeling suffers from all the causes above, as most existing modeling techniques infer system-

level power from aggregated hardware activities, e.g. total LLC misses read from performance counters [27].

High-rate direct measurement does not help either, since the above causes prevent obtained power samples

from being attributed to apps, as we will demonstrate in evaluation (§2.6).

Existing approaches are inadequate Existing accounting mechanisms cope with power entanglement

reactively at best. They divide system power among apps using a variety of heuristics: even splitting [58],

attributing each app’s marginal contribution [23], attributing based on app hardware utilization [59], or

attributing to the app that uses the hardware most recently [25].

These heuristics are useful for system-level energy accounting, in that they encapsulate the beliefs or

policies of the OS designers. However, they are unable to address the aforementioned major obstacles in

per-app power awareness, since no accounting heuristics can eliminate power entanglement that has already

occurred.

2.2 A Case for A New OS Principal 17

2.2.4 Power entanglement creates reasoning difficulty

Existing accounting mechanisms provide per-app power shares that are difficult for apps to reason about

or reproduce. For instance, merely based on its power share, one app can hardly tell why one network

transmission consumes more energy than others of the same length (which could be because the OS charged

the WiFi tail energy to this particular transmission [25, 26]); or why multiple invocations of the same function

show much different power behaviors (which could be because varying workloads ran concurrently on other

CPU cores).

One may suggest that besides dividing the system power, OS should open up its accounting internals to

apps, e.g., publishing the hardware usage of concurrent apps and the accounting heuristics used by the OS.

This will create more problems. i) Besides reasoning about power, app developers now need to reason about

power accounting heuristics. As the heuristics become non-trivial (e.g. based on cooperative game theory

[23]), app development soon becomes a daunting task. ii) Revealing apps’ hardware usage to each other may

create security vulnerabilities.

2.2.5 Power entanglement creates security vulnerability

Dividing system power among apps may reveal their power behaviors to each other. When the apps are

mutually distrusted, this creates a known vulnerability called power side channels [33]: by observing the

power of a victim app, an attacker app may learn the victim’s security-sensitive behaviors, such as encryption

and authentication procedures [60, 61, 35], GPS usage [34], or GUI state [35].

We next demonstrate that power entanglement can be exploited through power side channels, showing

GPU power leaks a browser’s deep information – which website it is visiting. We co-run two apps: a browser

(victim) is scripted to open the Alexa top10 websites; an attacker app, while executing light GPU workloads

as camouflage, attempts to infer what website the browser is opening. We train the attacker once with the

GPU power traces collected when the browser runs alone, labeled by website URLs. In subsequent runs, the

attacker infers the websites based the similarity between its known and observed GPU power activities. The

similarity is measured with DTW, a well-known algorithm for time-series analysis [62].

Our results show that the attacker’s success rate of inference is 60%, 6× higher than random guess. This

is because different web pages tend to generate different GPU workloads, and hence unique power signatures.

2.2.6 Design choices

We advocate an OS principal for any power-aware app to observe the collective power of the app itself and

its vertical environment. Specifically, the OS should achieve three objectives:

Chapter 2 Power Sandbox: Power Awareness Redefined 18

1. Insulate app power observation The OS shields an app’s power observation from the impacts of other

apps, and hence eliminates power entanglement for this observation. The OS does so by adjusting

resource multiplexing.

2. Preserve vertical environment The OS keeps an app vertical environment unchanged, whether the

app is using the OS service for observing power or not. This enables apps to make valid adaptation

decisions based on their insulated power observations.

3. Track and charge cost The OS charges any overhead or lost multiplexing opportunity in insulating

power observations to the requesting app. This ensures fairness among all apps despite their different

usages of the service.

Following these choices, we introduce a new OS principal called power sandbox, or psbox, as will be

presented below.

2.3 System Overview

psbox is an OS principal enclosing one power-aware app, i.e., one or a group of user processes. It is the only

way for any app to observe power. More specifically, a psbox exposes an interface of virtual power meter to

the enclosed app, from which the app may read real-time power consumption incurred by the app and its

vertical environment. In this observed power, the only possible contributions of concurrent apps are periods

of idle power.

1 // Create a power sandbox

2 box=psbox_create(HW_CPU /* optional */);

3 psbox_enter(box);

4 // Continuous collection of power samples

5 psbox_sample(box , &buf , NUM_SAMPLES);

6 // One -time query of energy

7 energy = psbox_read(box);

8 psbox_leave(box);

Listing 2.1: The psbox User API

Intended usage of psbox Since a psbox’s overhead is charged to the sandboxed app, we expect apps

to use psbox as a “pay as you go” service. They use psbox to periodically sample power, or selectively

monitor power during interesting execution phases, and leave psbox for full-speed execution. An app makes

power-aware decisions according to its psbox’s virtual power meter. After the app leaves the psbox, its

2.3 System Overview 19

decisions remain valid, since the OS preserves the app’s vertical environment (§2.2.1). The app only pays the

price of psbox during a small fraction of its execution time.

We would like to stress this “pay as you go” power sandboxing is complementary to, and may coexist with,

the OS mechanisms that optimize multiplexing of power-unaware apps for combined efficiency [53, 63, 64].

The app interface Apps access psbox through the API summarized in Listing 2.1. An app creates a

psbox and binds it to a set of hardware components of which power is reported (line 2). The granularity of

hardware sets is determined by the possible power metering scopes as supported by hardware. For example,

the hardware can be a subset of CPU cores sharing one measurable power rail [65]. During execution, the

app is at liberty to enter or leave the psbox (line 3 and 8).

When it is in psbox, the app may query the psbox’s virtual power meter. Similar to accessing CPU

performance events [66, 67], the app may collect power samples in a user-provided buffer (line 5) or poll

to get the accumulated energy (line 7). Unlike existing CPU events (including the power events [68]), all

psbox power readings are timestamped. These timestamps come from a standard clock that apps can access

through the clock gettime() syscall. This allows apps to readily map power readings to software activities at

fine granularities. Depending on metering methods, the timestamp resolution can be as high as 10 µs, as will

described Section 2.5.

Kernel enforces psbox boundaries The kernel eliminates power entanglement for a psbox. To do so,

the kernel allocates spatial and temporal partitions of hardware resources at fine granularities, and grants

exclusive use of them to the psbox. We term these partitions resource balloons, which are exemplified by a set

of CPU cores and a time slice of the WiFi interface. Having established the boundaries for resource balloons,

the kernel meters the corresponding hardware power, through either direct measurement or modeling (§2.2).

The kernel then reveals the metered hardware power to the psbox’s virtual power meter.

Kernel confines performance loss A psbox incurs performance overhead. Most notably, the exclusive

use of resource balloons likely leads to hardware under-utilization. The kernel tackles the overhead in two

ways. On one hand, the kernel reduces the overhead by keeping resource balloons small, as will be shown

in Section 2.6. More importantly, the kernel confines the overhead to the sandboxed app and minimizes

the impact on apps outside the psbox. To do so, the kernel tracks the lost sharing opportunity due to

resource ballooning, bills it to the sandboxed app, and properly disadvantages the sandboxed app in future

competitions for accessing the hardware.

Chapter 2 Power Sandbox: Power Awareness Redefined 20

2.4 Kernel Support

To support psbox, we face a twist of two challenges: i) eliminating power entanglement (§2.2.3) by changing

how the kernel multiplexes concurrent apps on hardware; ii) integrating the changes into mature kernel

mechanisms to avoid disruptive modifications. To address the first challenge, we present a model for extending

kernel drivers; to address the second challenge, we describe how to apply the model to the kernel subsystems

that manage major hardware components. For brevity, the remainder of this paper refers to these kernel

subsystems as drivers in general.

2.4.1 The driver model

We propose two lightweight extensions to existing drivers.

Resource ballooning Resource multiplexing must respect psbox boundaries. More specifically, the

kernel must confine spatial concurrency and asynchronous requests, two major causes of power entanglement

(§2.2.3). To this end, we retrofit the concept of memory ballooning for virtual machines [69]. The kernel

allocates fine-grained resource partitions, called resource balloons, and makes them exclusive to a psbox. The

kernel schedules resources balloons together with other normal apps, enforces balloon boundaries, and meters

the power of resource balloons for the psbox.

We next describe two types of balloons. In the discussion, we use psbox⟨App , hw⟩ to denote a psbox

bound to hardware hw and enclosing an app App . We use App to refer to all other apps outside the psbox.

• Spatial balloon is for confining spatial concurrency on OS-schedulable, preemptable resources, most

notably CPU cores. It prevents App and App from using hw simultaneously. To do so, when granting

the access of hw to App , the OS schedules in a spatial balloon that occupies all the resources in hw,

which effectively exclude App from hw.

• Temporal balloon is for confining request asynchrony on accelerators and I/O devices. It prevents

App and App from having in-flight requests submitted to hw simultaneously. To do so, when granting

App the access to hw, the OS schedules in a temporal balloon, a time slice during which the OS only

dispatches the requests from App to hw. At the start and end of the temporal balloon, the OS drains

in-flight requests by holding back new requests until hw completes the existing ones.

A key advantage of resource balloons is they appear as normal scheduling entities to the existing kernel

infrastructure. Hence, they keep most of the latter oblivious and therefore unmodified. i) The kernel’s existing

accounting mechanism does not differentiate the portion of hw used by App from the portion intentionally

kept idle by the balloons, e.g. unused CPU cores or stalled GPU cycles. The kernel simply bills all the

2.4 Kernel Support 21

resource occupied by the balloons to App . ii) The kernel’s existing schedulers, e.g. for CPU or for network

packets, still enjoy full freedom of choice: they are at liberty to decide whether and when to schedule a

balloon on hw, and may freely multiplex App on hw without constraints.

Figure 2.7 in evaluation shows resource balloons in action.

Power state virtualization Enclosed in a psbox⟨App , hw⟩, App should neither observe any lingering

power state (§2.2.3) on hw nor leave any residual state after using hw. To this end, the OS keeps a virtual

copy of the power state of hw for each psbox (and a separate copy for App). Upon scheduling in a resource

balloon on hw, the OS puts hw in the power state in which the psbox left hw previously; when scheduling

out the resource balloon, the OS extracts the hardware power state and saves it for the psbox.

To make this idea practical, we put hardware power states into two categories, depending on the costs of

the related state transitions, and treat them differently:

• Off/suspended states, in which devices lose power or remain in deep sleep. Examples include CPU deep

sleep that retains no cache content, or GPS cold start without any locked satellite. Exiting these power

states often requires expensive hardware operations, e.g. device initialization. Once a device exists such

an off/suspended state, it often remains in an operating state for a long period, as described below.

• Operating/idle states are rough equivalents of P and C states in ACPI [70], which control performance

settings of a working device or power saving of an idle device. A device can switch among these states

at low cost and with low delay (often sub-milliseconds). Examples include CPU frequencies and WiFi

transmission power levels.

The kernel virtualizes operating/idle states and reports the corresponding hardware power to psboxes.

By contrast, it neither virtualizes off/suspended states nor reveals the power pertaining to these states. The

rationales are as follows. First, reconstructing off/suspended states for each psbox can be prohibitively

expensive, e.g. it requires to cold restart a GPS device for each new psbox. Furthermore, it is unsafe to reveal

unvirtualized off/suspend hardware states to apps, which would allow a malicious app to infer the device

usage, e.g. whether other apps have just used GPS for localization, through power side channels (§2.2.5).

Hence, for the durations when hw is off/suspended, the kernel simply feeds psbox with samples of hw’s idle

power. To App , hw appears idle.

2.4.2 Applying the driver model

According to our model, a driver takes on two new responsibilities for psbox:

1. Enforcing resource balloon boundaries, including virtualizing power states;

Chapter 2 Power Sandbox: Power Awareness Redefined 22

2. Tracking lost opportunities of resource sharing and counting them against App .

Beyond these two, balloon scheduling is handled by existing kernel mechanisms transparently.

Multicore CPU

We build spatial balloons into the CPU scheduler. A typical multicore CPU scheduler runs multiple instances,

one for each core and managing a runqueue of local tasks (processes or threads). To choose the next running

task, an instance picks the one with the best scheduling credit. Scheduling credits are often computed from

tasks’ recent CPU usage. For scalability, scheduler instances rarely communicate.

To enforce spatial balloons for psbox⟨App , hw⟩, the CPU scheduler coschedules tasks of App on all the

cores of hw. If the runnable tasks in App are fewer than the cores, the scheduler runs dummy tasks on the

remaining cores to force them idle.

To do this, an existing multicore scheduler faces twofold challenges. First, it needs to decide when to

start and end a coscheduling period across a set of cores. However, in current designs each scheduler instance

schedules its local tasks independently. Second, according to CPU cycles spent in coscheduling, the scheduler

needs to discount scheduling credits, and hence ensure fairness between App and App across all the cores.

However, in current designs an instance focuses on maintaining fairness among its local tasks.

While the idea of coscheduling is long known [71], the above challenges were still considered unaddressed

on multicore, especially the fairness concern [72]. To address the challenges, we introduce a new notion of

scheduling loan with three key ideas: i) we allow a scheduler instance to pick a task T for execution even if T

does not have the best scheduling credit among all the local runnable tasks; ii) in order to be picked, T must

get a loan to triumph other runnable tasks and pay back the loan with its future credits; iii) all tasks in App

share their scheduling loans.

Our augmented multicore scheduler works as follows.

• Scheduling entities : Similar to a Linux cgroup, a psbox has a set of scheduling entities {E}, one entity

on each core. An entity Ei encompasses all tasks in App on core i and keeps a collective scheduling

credit. The kernel schedules Ei together with other normal tasks.

1. Schedule in: Same as in current designs, the scheduler instance on core i picks Ei when Ei has the best

scheduling credit. The instance further picks a task within Ei to run.

2. Task shootdown: The scheduler instance thus requests all other cores to schedule in their corresponding

entities in {E}. It does so by sending inter-processor interrupts to all other cores. Upon request, the

scheduler on a remote core j picks Ej : it calculates ∆j , the initial loan of Ej , as the difference between

2.4 Kernel Support 23

Ej ’s current scheduling credit and that of the most favorable task on core j (which would otherwise

run). After shootdown, all tasks in App are off CPU and a coscheduling period for App starts.

3. Running & loan update: During coscheduling, scheduler instances bill local CPU cycles to the cor-

responding entities in {E}. When any scheduler instance, e.g., the one on core i, is invoked for

rescheduling, it takes the chance to calculate the extra loan needed by Ei to warrant Ei’s continue use

of core i, and add this new loan to ∆i.

4. Schedule out : The coscheduling of App continues until none of {E} has the best credit on their

corresponding cores, i.e., they all need extra loans to continue. At that time, the scheduler simultaneously

schedules out all Ei from all the cores, by performing another shootdown.

5. Loan redistribution & repayment : When scheduling Ei out, a current scheduler design will adjust Ei’s

credits based on the time Ei just runs. We further make App pay back the loans that have accumulated

during the preceding coscheduling period. To provide long-term fairness over all the cores, all entities

in {E} evenly split their total loans. The scheduler redistributes the loans within {E}, which will

disadvantage App in future scheduling.

Accelerators

Accelerators, such as GPU and DSP, execute commands offloaded from the CPU. The lowest CPU/accelerator

interface is often a shared command queue. To exploit hardware parallelism, the command queue is

asynchronous: CPU may dispatch multiple commands to the queue, and will be notified by the accelerator

on the completion of these commands.

In multiplexing apps on an accelerator, the corresponding driver schedules their commands. The driver

picks one app’s pending commands for dispatch, based on the scheduling credits of all apps, e.g., their recent

accelerator usages, and the driver’s scheduling policy. To support psbox, we bake temporal balloons (§ 2.4.1)

in the driver. We augment how the driver switches among commands of different apps and bills the accelerator

usage; meanwhile, we keep any scheduling policy intact. In a nutshell, i) the augmented driver treats App as

a single app in scheduling; ii) the driver avoids dispatching commands of App as long as any commands from

App are outstanding; iii) the driver bills any resultant lost opportunity in utilizing the accelerator to App ;

iv) the driver further virtualizes the accelerator’s operating frequency, its most important power state, for

each psbox.

We next describe how the driver schedules in and out a temporal balloon.

Chapter 2 Power Sandbox: Power Awareness Redefined 24

1. Drain others: When the driver’s scheduling policy decides to dispatch commands for App , the driver

buffers all subsequent requests (from both App and App) until the accelerator hardware notifies the

completion of all existing commands. During this phase, the driver bills the unutilized portion of the

accelerator (e.g., idle DSP cores) to App as if the portion was actually used by App .

2. Flush psbox : After draining outstanding commands, the driver sends out any buffered command for

App , which may have accumulated during phase 1.

3. Serve psbox : The driver directly dispatches all the subsequent requests from App to the accelerator

while buffering the ones from App.

4. Drain psbox : When the driver’s scheduling policy decides that App deserves the access of accelerator, it

drains any outstanding commands from App in a way similar to phase 1. Over the course of phase 2–4,

the driver bills the usage of entire accelerator to App .

5. Flush others: The driver sends out any buffered commands from App, which may have accumulated

in phase 4, in their queueing order. Thereafter, it buffers all subsequent commands from App while

dispatching ones from App directly.

The above design integrates well with existing schedulers, yet are not tied to any specific definition of

fairness or scheduling policy. A challenge to demonstrating this, however, is that many production accelerator

drivers use simple scheduling policies, e.g., round-robin dispatch, which do not guarantee fairness. In our

implementation described in Section 2.5, we have built fair queueing schedulers as baseline designs for GPU

and DSP on our test platform, and augment the schedulers for supporting psbox.

Wireless interfaces

Wireless network interfaces (NICs) such as WiFi interface, are asynchronous by nature. Often, apps trap into

the kernel to deposit their packets into their corresponding kernel buffers; the driver incorporates a packet

scheduler to dispatch these packets into a unified transmission queue, from which the driver will send packets

to the NIC in order. The packet scheduler determines scheduling credits for apps based their total sent bytes;

it ensures fairness through its queueing discipline, e.g., the Linux fq codel.

We tap into the packet scheduler to realize temporal balloons for NICs. We realize packet draining phases

similar to accelerators as described above, while holding back packets in per-socket buffers instead of a global

queue. To better assess lost sharing opportunities, the packet scheduler inspects packets that are buffered

due to temporal balloons. It identifies any buffered packets that could have been dispatched without the

2.5 Implementation 25

balloons. Based on the total bytes in these packets, the driver discounts the scheduling credit of App as a

penalty for the lost opportunities.

A particular challenge is making packet reception respect psbox boundaries (§2.4.1). To achieve this, the

NIC should defer receiving the packets that are not destined to the current temporal balloon, a function

unsupported by commodity wireless NICs. Because of this, our current implementation is limited in insulating

power impacts of receiving different packets. Yet, we have observed that such reception deferral can be

achieved by exploiting virtual MAC addresses, an emerging feature of recent WiFi NICs [73, 74, 75]: the

driver creates one virtual MAC for each psbox and switches among virtual MACs as it switches among

temporal balloons.

Wireless NICs often have non-trivial power state that must be virtualized. Fortunately, modern WiFi

NICs [76] often expose the control of power states to the OS. Hence, we augment the WiFi NIC driver to

virtualize power states including transmission modes and power saving timer, and drive an independent state

machine for each psbox. We recognize that cellular (4G) NICs have uncontrollable power states [77] which

we will discuss in Section 2.7.

2.5 Implementation

We have built psbox into the Linux kernel 4.4 with about 2250 SLoC. We have assembled two hardware

prototypes capable of measuring each of the major hardware components in situ and separately, as shown in

Figure 2.4. The power sampling is as fast as 100KHz. Besides acquiring power samples, the power meter

and the CPU synchronize their respective clocks to align power samples with software activities. It is worth

noting that the purpose of our hardware prototypes is for evaluating psbox; they are not intended to be

free-roaming devices as other systems [32, 31].

CPU We build psbox into the Linux completely fair scheduler (CFS) [79]. Although a CFS instance is

able to schedule a process group (cgroup) as one scheduling entity, it does not coordinate multiple scheduler

instances. We encapsulate each power sandbox in a Linux cgroup, and coordinate the tasks within through

IPI.

GPU We implement psbox for PowerVR SGX544, a mobile GPU on the platform in Figure 2.4(a). Due

to diversity of modern GPUs, we further evaluate psbox atop Qualcomm Adreno420 on Nexus 6. The two

GPUs belong to different families, and have very different hardware/software stacks.

For both GPUs, we tap into their GPU command queues to implement fair schedulers in the spirit of the

Linux CFS [79]: our scheduler tracks per-app virtual GPU runtime and favors GPU commands from the

app that has the minimal virtual GPU runtime. Atop the schedulers, the drivers enforce temporal balloon

Chapter 2 Power Sandbox: Power Awareness Redefined 26

DAQ
(MCCDAQ USB1608G)

DAQ Controller
(BeagleboneBlack)

Power
readings

AM57EVM

DSPGPUCPU

To controller

To DAQ

Sampling
Power

DAQ
(MCCDAQ USB1608G)

Wi-Fi Module
(WiLink 8)

BeagleboneBlack

Sampling
Power

To controller

To DAQ

WiFi

GPUCPU DSP

AM57EVM

Po
we

r r
ea

di
ng

s In Situ Power Meter

Dual
Cortex A15

SGX
544MP

TMS320
C66x

BeagleboneBlack

 Cortex
A8

TI
WiLink8

(a) Platform for testing psbox on
CPU, GPU, and DSP

(b) Platform for testing psbox on
WiFi interface

In Situ Power Meter

Sampling
power

SD
IO

 +
 P

ow
er

CPU

Figure 2.4: Prototype hardware platforms used in psbox evaluation. In situ, per component power metering
(through four distinct power rails) is built atop a Cortex-A8 controlling MCCDAQ USB1608G [78] sampling
at 100KHz. Time synchronization is over GPIO (not shown). In (b), the Beaglebone Black acts as both the
target system and the DAQ controller.

boundaries differently, based on their existing structures: since SGX544 directly dispatches commands from

syscall contexts to GPU, the driver buffers app locking requests; by contrast, since Adreno330 buffers GPU

commands in per-process queues before dispatching them, the driver buffers commands from apps.

DSP We implement psbox for TI c66x, a popular multicore DSP that supports OpenCL. During

execution, CPU dispatches DSP commands, e.g., task execution or cache flush, via a kernel-managed

command queue. Similar to GPU, we enforce resource partitions atop a fair scheduler along the command

queue. The driver further inspects DSP commands for tracking their dispatch and completion time.

WiFi We build psbox for the TI WiLink8 NIC with a wl1837 chip as shown in Figure 2.4(b). The chip

accepts packets and commands from CPU over SDIO, and runs its own firmware to implement MAC layer

and below.

2.6 Evaluation 27

Benchmark Description

C
P
U

bodytrack A vision program tracking human body move (P)
calib3d Camera calibration and 3D reconstruction (O)
dedup Compressing data stream with deduplication (P)

G
P
U

browser A webkit browser opening a Google homepage (T)
magic Rendering a “magic lantern” scene at 60fps (V)
cube Rendering a rotating cube scene at 60fps (Q)
triangle A synthetic app drawing 100k triangles /sec offscreen

D
SP

sgemm Single-precision matrix-multiplication (T)
dgemm Double-precision matrix-multiplication (T)
monte Monte Carlo simulation. (T)

W
iF
i browser A Links browser opening a Yahoo homepage

scp Transmitting a 50MB data file over ssh
wget Transmitting a 50MB data file over http

Figure 2.5: Benchmark apps used in evaluation. P-PARSEC 3; O-OpenCV 3.1; T-TI am57 SDK; V-PowerVR
SDK; Q-Qt SDK

We build temporal resource partitions into the Linux’s fair packet scheduler and virtualize the NIC power

state in the driver. Despite the NIC’s support of multiple MACs, when we switch MAC at run time the NIC

resets and loses its association with base station. Therefore, the lack of true MAC virtualization defeats our

effort in insulating energy impacts of receiving different packets, as described in Section 2.4.2.

2.6 Evaluation

We evaluate the drivers augmented for psbox reported in Section 2.5 using benchmark apps summarized in

Table 2.5. The evaluation answers the following questions:

§2.6.1 Does psbox eliminate power entanglement?

§2.6.2 How does psbox impact app performance?

§2.6.3 Does psbox confine throughput loss to sandboxed apps?

§2.6.4 Does psbox facilitate building power-aware apps?

2.6.1 Elimination of power entanglement

Methodology To test each driver, we run a set of scenarios as shown in Figure 2.6. Designating a benchmark

app App to be power-aware, we first run App alone and then co-run it with other apps. For co-running

scenarios, we compare psbox to an existing kernel-level accounting mechanism [26] without psbox. This prior

mechanism derives App’s power by dividing each system power sample among co-running apps based on their

hardware usages in each power sampling interval. Note that we implement this prior mechanism favorably by

Chapter 2 Power Sandbox: Power Awareness Redefined 28

Running alone Co-running scenarios
psbox Existing approach

C
P
U

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d
936mJ

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ body]
922mJ (-1.5%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ dedup]
925mJ (-1.2%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ body]
853mJ (-8.9%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ dedup]
804mJ (-14.1%)

D
S
P

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm
3018mJ

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm [w/ sgemm]
2906mJ (-3.7%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm[w/monte+sgemm]
2959mJ (-2.0%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm [w/ sgemm]
1560mJ (-48.3%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm[w/monte+sgemm]
1110mJ (-63.2%)

G
P
U

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser
201mJ

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ magic]
199mJ (-0.9%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ triangle]
201mJ (0%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ magic]
211mJ (+5.0%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ triangle]
172mJ (-14.4%)

W
iF

i

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser
267mJ

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ scp]
273mJ (+2.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ wget]
313mJ (+17.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ scp]
412mJ (+35.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ wget]
455mJ (+41.3%)

Figure 2.6: Power of the benchmark scenarios. In all plots, x-axis: Time/Sec; y-axis: Power/Watt. In
each row: even as an app co-runs with different apps (column 2–5), psbox provides it with consistent power
observations (column 2 & 3), which are close to the power of the app running alone (column 1). This contrasts
to the power attributed to the app by an existing accounting approach (column 4 & 5). The numbers under
each plot show the app’s total energy and the difference compared to the energy when the app runs alone.
Some plots cannot display full length of power activities due to space limit.

tracking hardware usage at the lowest software level and at very fine granularities (10µs, 10× smaller than

prior work [32, 31]).

Our experiments demonstrate that psbox achieves its primary goal of eliminating power entanglement. As

shown in the figure, no matter whether App is executed alone or co-executed with different apps, psbox keeps

App’s power observations highly consistent, e.g., preserving significant power spikes and dips. By contrast,

the power shares produced by the prior mechanism exhibit significant variations. The power differences are

reflected in that of the accumulated energy: while the energy values reported by psbox are less than 5%

within each other in most scenario sets, that of the prior approach can be as high as 60%. This also supports

our argument in Section 2.2.3: existing accounting approaches are fundamentally inadequate, despite of the

high metering rate. Note that psbox does not seek absolute reproducibility of power observations, which

2.6 Evaluation 29

Calib3D*
(Idle)

Bodytrack
Others

 0

 2

 4

0 50 100 150

Po
w

e
r/

W
a
tt

Time/ms

(a) Dual-core CPU w/o psbox

Calib3D*
(Idle)

Bodytrack
Others

 0

 2

 4

0 50 100 150

Po
w

e
r/

W
a
tt

Time/ms

(b) Dual-core CPU w/ psbox and spatial bal-
loons for calib3d*

 0

 10

 20

C
o
m

m
a
n
d

sgemm
monte

dgemm*

 0

 0.5

 1

 1.5

1.0 2.0 3.0 4.0 5.0

Po
w

e
r/

W
a
tt

Time/Sec
(c) DSP w/o psbox. Commands overlap in time
freely.

 0

 10

 20

C
o
m

m
a
n
d

sgemm
monte

dgemm*

 0

 0.5

 1

 1.5

1.0 2.0 3.0 4.0 5.0

Po
w

e
r/

W
a
tt

Time/Sec
(d) DSP w/ psbox and temporal balloons for
dgemm*

Figure 2.7: Resource multiplexing and the resultant system power, before and after one app* enters psbox.
(a)(b): CPU schedule and power. When Calib3D runs, the system power consumption is lower because
Calib3D’s psbox forces the other CPU core to stay idle. (c)(d): DSP commands and power.

is difficult, if not impossible, on commodity computers. This is because OS resource scheduling and app

behaviors are not guaranteed to be the same across different runs.

We further show the details of resource multiplexing, without and with psbox. As shown in Figure 2.7,

psbox creates spatial and temporal balloons on CPU and DSP, respectively, and hence makes resource

multiplexing respect the psbox boundaries. Outside of these balloons, the kernel multiplexes other apps

freely as usual.

2.6.2 Performance impact

Latency increase All apps in the system may experience extra latency in some of their hardware access, if

the hardware access happens to trigger resource balloon switch. Our implementation keeps the extra latency

relatively low. Throughout our benchmark scenarios, the CPU scheduling latency is increased by tens of µs

Chapter 2 Power Sandbox: Power Awareness Redefined 30

 0

 10

 20

 30

 40

Before After

K
B

/s

calib3d
calib3d

calib3d*

(a) CPU

 0

 2

 4

 6

 8

Before After

G
FL

O
P
S

sgemm1
sgemm2

sgemm3*

(b) DSP

 0

 200

 400

 600

Before After

C
o
m

m
a
n
d
s/

s

cube1
cube2*

(c) GPU

 0

 400

 800

 1200

 1600

Before After

K
B

/s

wget1
wget2*

(d) WiFi

Figure 2.8: Throughputs of co-running app instances, before and after one instance (marked with *) enters
psbox.

for task shootdown; the command dispatch latencies for GPU and DSP are increased by 1.8 ms and 100 ms

on average, respectively.

The increased latency for WiFi packet transmission can be long, sometimes hundreds of ms. We found

this is likely due to internal notification batching by the firmware of the WiLink NIC on the platform in

Figure 2.4(b). In addition, the platform’s wimpy CPU also contributes to interrupt handling latency. The

combined software and hardware behaviors prolong draining phases.

Throughput loss As mentioned in Section 2.3, the exclusion of resource balloons may lead to lost

sharing opportunities, which will reduce the total throughput on hardware. In our experiments, the total

throughput loss can be noticeable, ranging from 0.9% (WiFi) to 9.8% (CPU). In face of the hardware

throughput loss, we next discuss how well psbox maintains fairness among apps.

2.6.3 Confinement of throughput loss

Our system maintains throughput fairness among apps which may have different usages of psbox. To ease the

comparison of app throughput loss, we co-run multiple instances of the same app. We show the throughputs

of all the apps in Figure 2.8. When one app enters its psbox, it is the only one experiencing throughput

loss; in comparison, the throughputs of other co-executing apps remain largely unaffected despite the total

throughput decrease. Note that this is achieved without changing existing scheduling policies. This validates

our key design of fully charging lost sharing opportunities to the sandboxed app (§2.4.2). We further test the

robustness of our fairness guarantee under extremely high resource contention: we test the GPU driver, by

co-running browser (in psbox) with triangle, a synthetic, intensive benchmark. Our results show that while

2.7 Limitations & Discussions 31

 0

 1

 2

 3

0.0 0.5 1.0

Po
w

e
r/

W
a
tt

Time/Sec

others
rendering (in psbox)

Figure 2.9: CPU power of a VR scenario. The rendering task enters psbox to observe its power and adapts
accordingly

the GPU throughput of browser drops by 4× due to excessive draining time, that of triangle only decreases

by 1%.

2.6.4 An end-to-end use case

We demonstrate the efficacy of psbox on a virtual reality (VR) scenario derived from a SDK demo (2K

SLoC) [80]. The VR scenario lets a human user move her hand in order to control animated water waves.

Two CPU tasks are running continuously. The gesture task processes video frames, identifies hand contours,

and recognizes hand gestures. The rendering task translates the recognized gestures to wind directions,

generates Phillips spectrum and 2D IFFT, and keeps refreshing a height map for animating the waves.

We, as app programmers, set to make rendering power-aware, so that it can trade the rendering fidelity

(e.g. framerate, resolution) for lower power at run time. Without psbox, reasoning about the power of

rendering is difficult due to power entanglement, as shown in Figure 2.9. To worsen the problem, the gesture

task’s workloads (and hence its power impacts) largely vary based on inputs, i.e., the number of contours

in a frame. With psbox, the rendering task observes its power without the varying impacts of gesture. By

adjusting the rendering fidelity based on its power observation in psbox, rendering achieves a wide range

(8.9×) of power, from 90mW to 800mW.

Without psbox isolation, the rendering task will mistakenly take entangled power impacts into account.

This incorrect power knowledge will mislead the app’s power adaptation strategy, lowering energy efficiency

or user experience. This VR scenario demonstrates the benefit from insulating power impacts.

2.7 Limitations & Discussions

Support psbox on extra hardware (1) Display may consume more than 50% of energy of a smartphone

or tablet [81]. Fortunately, modern displays, notably OLED, are known free of power entanglement: each

pixel contributes to the total power independently with little lingering power state [82]. Hence, OS may

simply divide the display power among apps based the pixels produced by each app [25]. (2) GPS power

Chapter 2 Power Sandbox: Power Awareness Redefined 32

is unaffected by concurrent uses once the device is operating. Therefore, the kernel can safely reveal GPS

hardware power, except when the GPS is in off/suspended state, to individual psboxes. This avoids expensive

power state virtualization as described in Section 2.4.1. (3) Cellular interface While temporal balloons for

cellular interface (4G) can be constructed in a way similar to WiFi NICs (§2.4.2), a unique challenge is for

the kernel to virtualize a cellular interface’s power state [26]. In practice, the state transitions of a cellular

interface are not controllable by the OS, but by the cellular standard that must be agreed with cellular

towers. To this end, psbox will be made feasible on cellular interfaces through future hardware support. (4)

DRAM consume 5% – 25% of system energy [81, 83]. Given that DRAM power is often metered at the

level of DIMM [84] or controller [68], it is possible to realize psbox on DRAM through temporal balloons,

However, it is challenging to track app DRAM usage and ensure fairness, for which the OS may need to

consult hardware performance counters.

Userspace OS daemon Our current implementation focuses on kernel drivers. In other systems

especially Android, multiplexing of app requests also happens in user-level daemons. It is possible to build

psbox into these daemons by making their request multiplexing respect psbox boundaries.

Power-aware entities other than apps Some scenarios define alternative entities for power awareness,

e.g. a user request served by multiple processes or even machines [85, 27]. psbox may enclose these entities

in addition to an app. To do support this, each involved process or machine, as points of multiplexing, must

be augmented to respect psbox boundaries.

Alternative OS mechanisms for supporting psbox Besides our Linux-based instantiation of psbox

(§2.4.2), there are existing OS mechanisms that are absent in the mainline Linux yet suiting the need of

enforcing psbox. First, scheduler activations [86] help move much of the CPU scheduling logic for psbox to

user space. With such a mechanism, an app in its psbox spawns dummy threads to occupy unused cores

for enforcing the balloon boundary; as the app’s actual threads suspend/resume, the kernel notifies the app

through upcalls, which adjust the number of dummy threads accordingly. Second, gang scheduling [72],

commonly seen in real-time kernels, directly supports executing all threads in a psbox (a gang) simultaneously

and enforces mutual exclusion among gangs. Third, systems like Dune [87] creates per-app virtualized views

of the baremetal CPU hardware. This idea can be further extended to create per-app views of baremetal I/O

devices, e.g. WiFi NIC. The virtualization cost can be further reduced by only enforcing power insulation (as

required by psbox) while eschewing strong state isolation.

2.8 Road to Existing Ecosystems 33

2.8 Road to Existing Ecosystems

To bring psbox and the power awareness into today’s mobile and embedded ecosystems, the major challenges

are twofold: i) processing high-rate power data with low hardware cost and ii) reusing mature APIs. We

next discuss how these can be achieved by leveraging the existing software/hardware support for sensor data

processing.

2.8.1 Hardware support

We next discuss how situ power metering (§ 2.2.2) can be realized atop existing hardware platforms with

little addition.

Integrating with existing sensor hubs To harness rich sensors, most modern mobile/embedded

devices incorporate sensor hubs, whose overall market is projected to exceed 2 billion units [88]. Sensors

hubs are dedicated, extremely efficient processors for pre-processing sensor data, typically incarnated as Arm

Cortex-M MCUs. As the volume of sensor hubs grows, their cost keeps decreasing: it is several US dollars

per unit at the time of writing. They are penetrating most of the mobile/embedded SoC market.

By their design, sensor hubs directly suit pre-processing of power samples. A Cortex-M0 sensor hub

clocked at 32 MHz consumes as low as 13 mW, and is capable of real-time processing of power data sampled

at 1 KHz [89]. Such a sampling frequency already exceeds what is demanded by existing power-aware

systems [32, 29, 11], and is able to differentiate microscopic power activities, e.g. scheduler context switch as

shown in Figure 2.7.

Asymmetric cores We recognize that there exist mobile/embedded devices that do not have sensor

hubs (yet). To increase efficiency of pre-processing power samples, they can leverage the lower-power cores

in modern Arm architecture, e.g. big.LITTLE and DynamIQ [90]. The trend of increasing architectural

asymmetry promises better processing efficiency.

Utilizing low-cost power sensors Modern mobile devices are already sensor-rich. For instance, the

recent iPhone X has eight sensors of different types [91], ranging from the accelerometer to proximity sensor.

Often, it is the types of sensors that differentiate mobile devices. While existing sensors are for extrospection,

we believe it is equally valuable and feasible for the devices to additionally incorporate power sensors for

introspection.

Power sensors can be very cost effective. The simplest power sensor can be a shunt resistor accompanied by

an analog-to-digital converter (ADC); the latter can be further integrated into an on-chip I/O controller [65].

The combined cost is less than $1 [92]. Standalone current sensing ICs provide additional design convenience.

At minor cost (around $1 per unit) [93], such an IC can be attached to a device’s I2C bus with little extra

Chapter 2 Power Sandbox: Power Awareness Redefined 34

hardware complexity. A typical current sensing IC [94] is capable of sampling three power rails at 500KHz

simultaneously and returns digitalized power samples. They are already pervasive on experimental devices

including Tegra X1 [95], X2 [96], Odroid XU3 [97].

2.8.2 Software support

To foster its adoption, psbox can further leverage the existing software infrastructure. This includes mature

API frameworks and processing algorithms of sensor samples.

High-level sensor APIs Mobile OSes such as Android and iOS support tens of sensor types. They

already offer mature APIs for apps to retrieve sensor data and subscribe to sensor events [98, 99]. The

psbox native interface, as presented in Section 2.3, can be further wrapped under such APIs, adding a new

“power” sensor type. For instance, through calling Android’s SensorManager.registerListener, an app is able

to retrieve power samples or register callbacks for “high power” events. This is exactly how today’s apps

monitor existing sensors such as accelerometers.

To cater to app-defined power events, existing sensor APIs can be further augmented with simple temporal

predicates [100]. Through embedded scripting languages such as Lua or Javascript, the apps can specify

events such as “frequent power spikes” or “power keeps increasing”. The predicates are continuously evaluated

over power samples by the OS or the sensor hub.

Sensor hub runtime As discussed before, processing of power samples can be offloaded to sensor

hub hardware for efficient execution. Fortunately, there exist rich runtime software on sensor hubs that

facilitates such offloading. First, existing commodity sensor hub runtimes, e.g. SenseMe [101], are already

mature; they provide an arsenal of signal processing algorithms, e.g. denoising, that can pre-process power

samples with high efficiency. Second, recent research has proposed a variety of techniques for simplifying new

code development for sensor hubs. For instance, our work Reflex [102] creates a software distributed shared

memory between CPU and sensor hubs; MobileHub [103] automatically learns sensor events and produces

event detection code for sensor hubs; Sidewinder [104] supports composition of parameterized, pre-defined

algorithms for sensor hubs. These rich techniques are applicable to development of power data processing

algorithms for sensor hubs.

2.9 Related Work

Power metering Much work infers power from software-visible events, such as syscall activities [24, 25],

kernel activities [26], hardware states [59, 105, 21, 27, 22, 58, 28]. They often construct linear models either

during development [21, 27, 24, 25, 26, 59, 28] or at run time [22, 58, 105]. Although convenient, energy

2.9 Related Work 35

modeling is limited by complex hardware [57] and high variation in semiconductor process [56]. Intel

RAPL [68] is a CPU feature: the firmware monitors hardware activities and infers power based on pre-defined

models. Yet, lacking timestamps, RAPL power samples can hardly be mapped to software activities at

fine time granularity [106, 107]. Direct measurement allows accurate power metering through external

multimeters [11, 29], fine-grained hardware instrumentation [30], smart switching regulators [108], smart

battery interfaces [31, 32], and specialized metering circuits [109, 110]. Regardless of metering approaches,

power entanglement is inevitable as explained in Section 2.2, which necessitates power sandboxes.

Power accounting heuristics As mentioned in Section 2.2, prior work attributes power using various

heuristics. Eprof [24, 25] attributes lingering tail power to the last triggering entity. HaPPy [111] splits

hyperthreading CPU power based on per-thread aggregated cycles. Ghanei et al. [112] track asynchronous

hardware use and evenly divides power among concurrent apps. Dong et al. [23] attribute energy based

game theory. Power Containers [27] meters per core power, while evenly splitting the power of shared

resources among active cores. Joulemeter [113] models per-VM power in the server by inferring system power

from hardware activities reported by OS or performance counters. However, without eliminating power

entanglement, they suffer from the inadequacies described in Section 2.2. It is also difficult to apply the

performance counter-based approaches to many accelerators and I/Os that lack performance counters.

OS-level power management Power management has been a key OS responsibility. Odyssey [11, 29]

enables the OS to guide apps for energy-aware adaptation. ECOSystem [21] and Cinder [114] present OS-level

abstractions for energy. Koala [105] builds energy models in the kernel and sets performance/efficiency

dynamically. Rao et al. [115] build a controller to balance performance loss and energy saving, based on

application-specific data profiled offline. OS also manages power for accelerators [116] and I/O devices [117, 12].

However, none prior work presented virtualized power view to individual apps.

Power side-channel attacks Prior work exploits power side channels to steal private information

on smartphones [35], recover cryptographic keys [60, 61], reveal mobile user geolocations [34], and leak

information across virtual machines [36]. However, few systems prevent power side channels through active

resource management as we do.

OS resource scheduling Several proposals on scheduling are in particular related to psbox. GPU

scheduling has been advocated for long. TimeGraph [118] prioritizes and isolates performance of competing

apps. PTask [119], Gdev [120], and Menychtas et al. support fair sharing of GPU. ShuffleDog [63] prioritizes

UI tasks through resource scheduling. SmartIO [64] reduces app delay by prioritizing disk reads over writes.

Energy discounted computing [53] co-schedules tasks to improve total system efficiency. Complementary to

psbox, these scheduling proposals target performance or efficiency for power-unaware apps.

Chapter 2 Power Sandbox: Power Awareness Redefined 36

2.10 Conclusions

An app’s power observation should be insulated from the impacts of concurrent apps. We introduce power

sandbox, a new OS principal capturing the power of the enclosed app and its vertical environment. To support

power sandbox, our key techniques are two: to allocate exclusive resource partitions at fine granularities and

bill the lost sharing opportunities; to virtualize hardware power states. Our experience shows that power

sandbox simplifies reasoning, eliminates security vulnerability, and still ensures fairness among apps.

Chapter 3

Transkernel: Bridging Monolithic

Kernels to Peripheral Cores

3.1 Introduction

Driven by periodic or background activities, modern embedded platforms1 often run a large number of

ephemeral tasks. Example tasks include acquiring sensor readings, refreshing smart watch display [121],

push notifications [122], and periodic data sync [123]. They drain a substantial fraction of battery, e.g.,

30% for smartphones [124, 125] and smart watches [126], and almost the entire battery of smart things

for surveillance [127]. To execute an ephemeral task, a commodity OS kernel, typically implemented in a

monolithic fashion, drives the whole hardware platform out of deep sleep beforehand (i.e., “resume”) and

puts it back to deep sleep afterwards (i.e., “suspend”). During this process, the kernel consumes much more

energy than the user code [121], up to 10× shown in recent work [122].

Why is the kernel so inefficient? Recent studies [128, 12, 121] show the bottlenecks as two kernel phases

called device suspend/resume as illustrated in Figure 3.1. In the phases, the kernel operates a variety of IO

devices (or devices for brevity). It invokes device drivers, cleans up pending IO tasks, and ensures devices

to reach expected power states. The phases encompass concurrent execution of drivers, deferred functions,

and hardware interrupts; they entail numerous CPU idle epochs; their optimization is proven difficult (§3.2)

[12, 129, 130].

We deem that device suspend/resume mismatches CPU. It instead would be much more efficient on

low-power, microcontroller-like cores, as exemplified by ARM Cortex-M. These cores are already incorporated

1This paper focuses on battery-powered computers such as smart wearables and smart things. They run commodity OSes
such as Linux and Windows. We refer to them as embedded platforms for brevity.

37

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 38

Wakeup
CPU

User Task

Sleep
Existing

Device
Resume

Thaw user

CPU
Peripheral

Core

Suspend
Resume

Commodity
Kernel

DRAM

Emu

Dynamic
Binary
Translation

IO

Translated
code

Freeze user

Device
Suspend

CPU Peripheral
Core

w/ Transkernel

(a) The transkernel model (b) System execution workflow
Time

A transkernel

Figure 3.1: An overview of Transkernel.

as peripheral cores on a wide range of modern system-on-chips (SoCs) used in production such as Apple

Watch [131] and Microsoft Azure Sphere [132]. On IO-intensive workloads, a peripheral core delivers is much

more efficient than the CPU due to lower idle power and higher execution efficiency [102, 133, 134, 135].

Note that running user code (which often builds atop POSIX) on peripheral cores is a non-goal: on one hand,

doing so would gain much less efficiency due to fewer idle epochs in user execution; on the other hand, doing

so requires to support a much more complex POSIX environment on peripheral cores.

Offloading the execution of a commodity, monolithic kernel raises practical challenges, not only i) that

the peripheral core has a different ISA and wimpy hardware but also ii) that the kernel is complex and

rapidly evolving [136]. Many OS proposals address the former while being inadequate in addressing the

latter [137, 138, 139, 140, 141]. For instance, one may refactor a monolithic kernel to span it over CPU and a

peripheral core; the resultant kernel, however, depends on a wide binary interface (ABI) for synchronizing

state between the two ISAs. This interface is brittle. As the upstream kernel evolves, maintaining binary

compatibility across different ISAs inside the kernel itself soon becomes unsustainable. Instead, we argue for

the code running on peripheral cores to enjoy firmware-level compatibility: developed and compiled once, it

should work with many builds of the monolithic kernel – generated from different configurations and source

versions.

Our response is a radical design called transkernel, a lightweight virtual executor empowering a peripheral

core to run specific kernel phases – device suspend/resume. Figure 3.1 overviews the system architecture.

A transkernel executes unmodified kernel binary through cross-ISA, dynamic binary translation (DBT), a

technique previously regarded as expensive [137] and never tested on microcontroller-like cores to our knowledge.

Underneath the translated code, a small set of emulated services act as lightweight, drop-in replacements for

their counterparts in the monolithic kernel. Four principles make transkernel practical: i) translating stateful

3.2 Motivations 39

code while emulating stateless kernel services; ii) identifying a narrow, stable translation/emulation interface;

iii) specializing for hot paths; iv) exploiting ISA similarities for DBT.

We demonstrate a transkernel prototype called ARK (An aRm transKernel). Atop an ARM SoC, ARK

runs on a Cortex-M3 peripheral core (with only 200 MHz clock and 32KB cache) alongside Linux running on

a Cortex-A9 CPU. ARK transparently translates unmodified Linux kernel drivers and libraries. It depends

on a binary interface consisting of only 12 Linux kernel functions and one kernel variable, which are stable

for years. ARK offers complete support for device suspend/resume in Linux, capable of executing diverse

drivers that implement rich functionalities (e.g., DMA and firmware loading) and invoke sophisticated kernel

services (e.g., scheduling and IRQ handling). As compared to native kernel execution, ARK only incurs 2.7×

overhead, 5.2× lower than a baseline of off-the-shelf DBT. ARK reduces system energy by 34%, resulting in

tangible battery life extension under real-world usage.

We make the following contributions on OS and DBT:

• We present the transkernel model. In the design space of OSes for heterogeneous multi-processors, the

transkernel represents a novel point: it combines DBT and emulation for bridging ISA gaps and for catering

to core asymmetry, respectively.

• We present a transkernel implementation, ARK. Targeting Linux, ARK presents specific tradeoffs between

kernel translation versus emulation; it identifies a narrow interface between the two; it contributes concrete

realization for them.

• Crucial to the practicality of ARK, we present an inverse paradigm of cross-ISA DBT, in which a

microcontroller-like core translates binary built for a full-fledged CPU. We contribute optimizations that

systematically exploit ISA similarities. Our result demonstrates that while cross-ISA DBT is typically used

under the assumption of efficiency loss, it can enable efficiency gain, even on off-the-shelf hardware.

The source code of ARK can be found at http://xsel.rocks/p/transkernel.

3.2 Motivations

We next discuss device suspend/resume, the major kernel bottleneck in ephemeral tasks, and that it can

be mitigated by running on a peripheral core. We show difficulties in known approaches and accordingly

motivate our design objectives.

http://xsel.rocks/p/transkernel

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 40

3.2.1 Kernel in device suspend/resume

Expecting a long period of system inactivity, an OS kernel puts the whole platform into deep sleep: in brief,

the kernel synchronizes file systems with storage, freezes all user tasks, turns off IO devices (i.e., device

suspend), and finally powers off the CPU. To wake up from deep sleep, the kernel performs a mirrored

procedure [142]. In a typical ephemeral task, the above kernel execution takes hundreds of milliseconds [143]

while the user execution often takes tens of milliseconds [121]; the kernel execution often consumes several

times more energy than the user execution [122].

Problem: device suspend/resume By profiling recent Linux on multiple embedded platforms, our pilot

study [12] shows the aforementioned kernel execution is bottlenecked by device suspend/resume, in which the

kernel cleans up pending IO tasks and manipulates device power states. The findings are as follows. i) Device

suspend/resume is inefficient. It contributes 54% on average and up to 66% to the total kernel energy

consumption. CPU idles frequently in numerous short epochs, typically in milliseconds. ii) Devices are

diverse. On a platform, the kernel often suspends and resumes tens of different devices. Across platforms,

the bottleneck devices are different. iii) Optimization is difficult. Device power state transitions are

bound by slow hardware and low-speed buses, as well as physical factors (e.g., voltage ramp-up). While

Linux already parallelizes power transitions with great efforts [129, 130], many power transitions must happen

sequentially per implicit dependencies of power, voltage, and clock. As a result, CPU idle constitutes up to

68% of the device suspend/resume duration.

Challenge: Widespread, complex kernel code Device suspend/resume invokes multiple kernel layers [136,

144]. Specifically, it invokes functions in individual drivers (e.g., MMC controllers), driver libraries (e.g., the

generic clock framework), kernel libraries (e.g., for radix trees), and kernel services (e.g., scheduler). In a

recent Linux source tree (4.4), we find that over 1000 device drivers, which represent almost all driver classes,

implement suspend/resume callbacks in 154K SLoC. These callbacks in turn invoke over 43K SLoC in driver

libraries, 8K SLoC in kernel libraries, and 43K SLoC in kernel services. The execution is control-heavy, with

dense branches and callbacks.

Opportunities We observe the following kernel behaviors in device suspend/resume. i) Low sensitivity to

execution delay On embedded platforms, most ephemeral tasks are driven by background activities [122,

145, 124]. This contrasts to many servers for interactive user requests [146, 145]. ii) Hot kernel paths In

successful suspend/resume, the kernel acquires all needed resources and encounters no failures [147]. Off the

hot paths, the kernel handles rare events such as races between IO events, resource shortage, and hardware

failures. These branches typically cancel the current suspend/resume attempt, perform diagnostics, and retry

later. Unlike hot paths, they invoke very different kernel services, e.g., syslog. iii) Simple concurrency

3.2 Motivations 41

SoC Cores ISAs
Shared
DRAM?

Mapping
kern
mem?

Shared
IRQ

OMAP4460
[148] (2010)

A9+M3 v7a+v7m Full
Yes.
MPU

39/102

AM572x [149]
(2014)

A15+M4 v7a+v7m Full
Yes.
MPU

32/92

i.MX6SX [150]
(2015)

A9+M4 v7a+v7m Full
Yes.
MPU

85/87

i.MX7 [151]
(2017)

A7+M4 v7a+v7m Full
Yes.
MPU

88/90

i.MX8M [152]
(2018)

A53+M4 v8a+v7m Full
Yes.
MPU

88/88

MT3620 [132]
(2018)*

A7+M4 v7a+v7m Full
Likely.
MPU

Likely
most

Table 3.1: Transkernel hardware model fits many popular SoCs which are used in
popular products such as Apple Watch and Azure Sphere. Section 3.7.5 discusses
caveats. *: lack public technical details.

exists among the syscall path (which initiates suspend/resume), interrupt handlers, and deferred kernel

work. The concurrency is for hardware asynchrony and kernel modularity rather than exploiting multicore

parallelism.

Summary: design implications Device suspend/resume shall be treated systematically. We face challenges

that the invoked kernel code is diverse, complex, and cross-layer; we see opportunities that allow focusing on

hot kernel paths, specializing for simple concurrency, and gaining efficiency at the cost of increased execution

time.

3.2.2 A peripheral core in a heterogeneous SoC

Hardware model We set to exploit peripheral cores already on modern SoCs. Hence, our software design

only assumes the following hardware model which fits a number of popular SoCs as listed in Table 3.1.

1. Asymmetric processors: In different coherence domains, the CPU and the peripheral core offer disparate

performance/efficiency tradeoffs. The peripheral core has memory protection unit (MPU) but no MMU,

incapable of running commodity OSes as-is.

2. Heterogeneous, yet similar ISAs : The two processors have different ISAs, in which many instructions

have similar semantics, as will be discussed below.

3. Loose coupling : The two processors are located in separate power domains and can be turned on/off

independently.

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 42

4. Shared platform resources : Both processors share access to platform DRAM and IO devices. Specifically,

the peripheral core, through its MPU, should map all the kernel code/data at identical virtual addresses as

the CPU does. Both processors must be able to receive interrupts from the devices of interest, e.g., MMC;

they may, however, see different interrupt line numbers of the same device.

How can peripheral cores save energy? They are known to deliver high efficiency for IO-heavy

workloads [102, 134, 153, 135, 103]. Specifically, they benefit the kernel’s device suspend/resume in the

following ways. i) A peripheral core can operate while leaving the CPU offline. ii) The idle power of a

peripheral core is often one order of magnitude lower [133, 154], minimizing system power during core idle

periods. iii) Its simple microarchitecture suits kernel execution, whose irregular behaviors often see marginal

benefits from powerful microarchitectures [155]. Note that a peripheral core offers much higher efficiency than

a LITTLE core as in ARM big.LITTLE [156], which mandates a homogeneous ISA and tight core coupling.

We will examine big.LITTLE in Section 3.7.

ISA similarity On an SoC we target, the CPU and the peripheral core have ISAs from the same family,

e.g., ARM. The two ISAs often implement similar instruction semantics despite in different encoding. The

common examples are SoCs integrating ARMv7a ISA and ARMv7m ISA [150, 151, 149, 132, 148]. Other

families also provide ISAs amenable to same-SoC integration, e.g., NanoMIPS and MIPS32. We deem that

the ISA similarities are by choice. i) For ISA designers, it is feasible to explore performance-efficiency tradeoffs

within one ISA family, since the family choice is merely about instruction syntax rather than semantics [157].

ii) For SoC vendors, incorporating same-family ISAs on one chip simplifies software efforts [158], silicon

design, and ISA licensing.

3.2.3 OS design space exploration

We set to realize heterogeneous execution for an existing monolithic kernel.

How about refactoring the kernel and cross-compiling statically? One may be tempted to modify

a monolithic kernel (we use Linux as the example below) [133, 137] to be one unified source tree; the tree

shall be cross-compiled into a kernel binary for CPU and a “peripheral kernel” for the peripheral core. This

approach results in an OS structure shown in Figure 3.2(a). Its key drawback is the two interfaces that are

difficult to implement and maintain, shown as in the figure.

1 The interface between two heterogeneous ISAs, as needed for resolving inter-kernel data dependency.

Through the interface, both kernels synchronize their kernel state, e.g., devices configurations, pending IO

tasks, and locks, before and after the offloading. Built atop shared memory [133, 137, 160], the interface is

essentially an agreement on thousands of shared Linux kernel data types, including their semantics and/or

3.2 Motivations 43

Linux

kernel

Suspend

Resume

Peripheral

kernel

Kernel State

Linux

kernel

DBT

CPU Peripheral Core

2

1
Translated

Code

4

DRAM IO IO

CPU Peripheral Core

Kernel State

3

(a) Source code transplant (b) Full cross-ISA DBT

Figure 3.2: Alternative ways for offloading kernel phases.

359

845

217

858

Device
specific

Driver
lib

Kernel
lib

Kernel
services

(a) # of functions

848

55

721

159

828

173

v4.17

(Jul 2018)

1075

1111 1043

354

498

395

155

674

214

707661

v3.16 v4.4 v4.9 v4.17v2.6

213

1060

384

1015

155

378

196

385

194

384

848

216

780

214

797

163

v2.6

(Jan 2011)

v3.16

(Aug 2014)

v4.4

(Jan 2016)

v4.9

(Dec 2016)

640

855

606

717

500

816

938

From To

(b) # of functions (upper) & types (lower) w/ changed ABI across
kernel versions

Figure 3.3: Counts of Linux kernel functions referenced by device suspend/resume, showing (a) the functions
are rich and diverse and (b) their ABI change is substantial over time. Exported functions only. Build config:
omap2defconfig. ABI changes detected with ABI compliance checker [159].

memory layout. The agreement is brittle, as it is affected by ISA choices, kernel configurations, and kernel

versions. Hence, keeping data types consistent across ISAs entails tedious tweak of kernel source and

configurations [161, 160]. As Greg Kroah-Hartman puts, “you will go insane over time if you try to support

this kind of release, I learned this the hard way a long time ago.” [162]

2 The interface between the transplant code and the peripheral kernel, as needed for resolving functional

dependency. In principle, this interface is determined by the choice of transplant boundary. In prior work, the

example choices include the interface of device-specific code [161, 160, 163], that of driver classes [164, 165],

or that of driver libraries [133]. All these choices expose at least hundreds of Linux kernel functions on this

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 44

interface, as summarized in Figure 3.3(a). This is due to Linux’s diverse, sophisticated drivers. Implementing

such an interface is daunting; maintaining it is even more difficult due to significant ABI changes [166] as

shown in Figure 3.3(b).

In summary, all these difficulties root in the peripheral kernel’s deep dependency on the Linux kernel.

This is opposite to the common practice: heterogeneous cores to run their own “firmware” that has little

dependency on the Linux kernel. This is sustainable because the firmware stays compatible with many builds

of Linux.

How about virtual execution? Can we minimize the dependency? One radical idea would be for a

peripheral core to run the Linux kernel through virtual execution, as shown in Figure 3.2(b). Powered by

DBT, virtual execution allows a host processor (e.g., the peripheral core) to execute instructions in a foreign

guest ISA (e.g., the CPU). Virtual execution is free of the above interface difficulties: the translated code

precisely reproduces the kernel behaviors and directly operates the kernel state (3). The peripheral core

interacts with Linux through a low-level, stable interface: the CPU’s ISA (4).

The problem, however, is the high overhead of existing cross-ISA DBT [167]. It is further exacerbated by

our inverse DBT paradigm: whereas existing cross-ISA DBT is engineered for a brawny host emulating a

weaker guest (e.g., an x86 desktop emulating an ARM smartphone) [168, 169], our DBT host, a peripheral

core, shall serve a full-fledged CPU. A port of popular DBT exhibits up to 25× slowdown as will be shown in

§3.7. Such overhead would negate any efficiency promised by the hardware and result in overall efficiency loss.

Furthermore, cross-ISA DBT for the whole Linux kernel is complex [170]. A peripheral core lacks necessary

environment, e.g., multiple address spaces and POSIX, for developing and debugging such complex software.

3.2.4 Design objective

We therefore target threefold objective.

G1. Tractable engineering. We set to reuse much of the kernel source, in particular the drivers that are

impractical to build anew. We target simple software for peripheral cores.

G2. Build once, work with many. One build of the peripheral core’s software should work with a

commodity kernel’s binaries built from a wide range of configurations and source versions. This requires the

former to interact with the latter through a stable, narrow ABI.

G3. Low overhead . The offloaded kernel phases should yield a tangible efficiency gain.

3.3 The Transkernel Model 45

3.3 The Transkernel Model

Running on a peripheral core, a transkernel consists of two components: a DBT engine for translating and

executing the unmodified kernel binary; a set of emulated, minimalistic kernel services that underpin the

translated kernel code, as will be described in detail in Section 3.4. A concrete transkernel implementation

targets a specific commodity kernel, e.g., Linux. A transkernel does not execute user code in ephemeral tasks

as stated in Section 3.1.

The transkernel follows four principles:

1. Translating stateful code; emulating stateless services By stateful code, we refer to the offloaded

code that must share states with the kernel execution on CPU. The stateful code includes device drivers,

driver libraries, and a small set of kernel services. They cover the most diverse and widespread code in device

suspend/resume (§3.2). By translating their binaries, the transkernel reuses the commodity kernel without

maintaining wide, brittle ABIs. (objective G1, G2)

The transkernel emulates a tiny set of kernel services. We relax their semantics to be stateless, so that

their states only live within one device suspend/resume phase. Being stateless, the emulated services do not

need to synchronize states with the kernel on CPU over ABIs. (G2)

2. Identifying a narrow, stable translation/emulation ABI The ABI must be unaffected by kernel

configurations and unchanged since long in the kernel evolution history. (G2)

3. Specializing for hot paths In the spirit of OS specialization [171, 172, 173], the transkernel only executes

the hot path of device suspend/resume; in the rare events of executing off the hot path, it transparently falls

back on CPU. The transkernel’s emulated services seek functional equivalence and only implement features

needed by the hot path; they do not precisely reproduce the kernel’s behaviors. (G1)

4. Exploiting ISA similarities for DBT The transkernel departs from generic cross-DBT that bridges

arbitrary guest/host pairs; it instead systematically exploits similarities in instructions semantics, register

usage, and control flow transfer. This makes cross-ISA DBT affordable. (G3)

Limitations First, across ISAs of which instruction semantics are substantially different, e.g., ARM and

x86, the transkernel may see diminishing or even no benefit. Second, the transkernel’s longer delays (albeit

lower energy) may misfit latency-sensitive contexts, e.g., for waking up platforms in response to user input.

Our current prototype relies on heuristics to recognize such contexts and falls back on the CPU accordingly

(Section 3.4).

In Section 3.4 below we describe how to apply the model to a concrete transkernel, in particular our

translation/emulation decisions for major kernel services, and our choices of the emulation interface. We will

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 46

sched
spin

lock

virt

addr

deferred

work
IRQ

handler

IRQ

handler

(early)

mutex

sem

mem

alloc

fallback

Translated

Code

(stateful)

delay

sleep Emulation

(stateless)

Linux

kernel

binary

Device-specific

Driver libs

Accessing

Linux

kernel state
private

lib

Stable ABI

Kernel libs

DBT

contexts

DBT Engine

Figure 3.4: The ARK structure on a peripheral core.

describe DBT in Section 3.5.

3.4 ARK: An ARM Transkernel

Targeting an ARM SoC, we implement a transkernel called ARK. The SoC encompasses a popular combination

of ISAs: ARMv7A for its CPU and ARMv7m for its peripheral core. The CPU runs Linux v4.4.

Offloading workflow ARK is shipped as a standalone binary for the peripheral core, accompanied by

a small Linux kernel module for control transfer between CPU and the peripheral core. We refer to such

control transfer as handoff. Prior to a device suspend phase, the kernel shuts down all but one CPU cores,

passes control to the peripheral core, and shuts down the last CPU core. Then, ARK completes the device

phase in order to suspend the entire platform. Device resume is normally executed by ARK on the peripheral

core; in case of urgent wakeup events (e.g., a user unlocking a smart watch screen), the kernel resumes on

CPU with native execution.

System structure As shown in Figure 3.4, ARK runs a DBT engine, its emulated kernel services, and a

small library for managing the peripheral core’s private hardware, e.g., interrupt controllers. The emulated

services serves downcalls () from the translated code and makes upcalls () into the translated

code. Table 3.2 summarizes the interfaces. Upon booting, ARK replicates Linux kernel’s linear memory

mappings for addressing kernel objects in shared memory [133, 160]. ARK maps I/O regions with MPU and

time-multiplexes the regions on the MPU entries.

3.4 ARK: An ARM Transkernel 47

Kernel services Implementations & reasons

Scheduler (§3.4.1) Emulated. Reason: simple concurrency.
IRQ handler (§3.4.2) Early stage emulated; then translated
HW IRQ controller (§3.4.2) Emulated. Reason: core-specific
Deferred work (§3.4.3) Translated. Reason: stateful
Spinlocks (§3.4.4) Emulated. Reason: core-specific
Sleepable locks (§3.4.4) Fast path translated. Reason: stateful
Slab/Buddy allocator (§3.4.5) Fast path translated. Reason: stateful
Delay/wait/jiffies (§3.4.6) Emulated. Reason: core-specific

jiffies udelay() msleep() tasklet schedule() irq thread()
ktime get() queue work on() worker thread() run local timers()
generic handle irq() schedule() async schedule()* do softirq()*

*=ABI unchanged since 2014 (v3.16); others unchanged since 2011 (v2.6).

Table 3.2: Top: Kernel services supported by ARK. Bottom: Linux kernel ABI (12 funcs+1 var) ARK
depends on. ARK offers complete support for device suspend/resume in Linux.

To support concurrency in the offloaded kernel phases, ARK runs multiple DBT contexts. Each context

has its own DBT state (e.g., virtual CPU registers and a stack), executing DBT and emulated services

independently. Context switch is as cheap as updating the pointer to the DBT state.

ARK executes the hot paths. Upon entering cold branches pre-defined by us, e.g., kernel WARN(), ARK

migrates all the DBT contexts of translated code back to the CPU and continues as native execution there

(§3.6).

3.4.1 A Scheduler of DBT Contexts

ARK emulates a scheduler which shares no state, e.g., scheduling priorities or statistics, with the Linux

scheduler on the CPU. Corresponding to the simple concurrency model of suspend/resume (§3.2), ARK

eschews reproducing Linux’s preemptive multithreading but instead maintains and switches among cooperative

DBT contexts: one primary context for executing the syscall path of suspend/resume, one for executing IRQ

handlers (§3.4.2), and multiple for deferred work (§3.4.3). Managing no more than tens of contexts, ARK

uses simple, round-robin scheduling. It begins the execution in the syscall context; when the syscall context

blocks (e.g., by calling msleep()), ARK switches to the next ready context to execute deferred functions until

they finish or block. When an interrupt occurs, ARK switches to the IRQ context to execute the kernel

interrupt handler (§3.4.2).

3.4.2 Interrupt and Exception Handling

During the offloaded device phase, all interrupts are routed to the peripheral core and handled by ARK.

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 48

Kernel interrupt handlers ARK emulates a short, early stage of interrupt handling while translating

the kernel code for the remainder. This is because this early stage is ISA-specific (e.g., for manipulating

the interrupt stack), on which the CPU (v7a) and the peripheral core (v7m) differ. Hence, the emulated

services implement a v7m-specific routine and install it as the hardware interrupt handler. Once an interrupt

happens, the routine is invoked to finish the v7m-specific task and make an upcall to the kernel’s ISA-neutral

interrupt handling routine (listed in Table 3.2), from where the ARK translates the kernel to finish handling

the interrupt.

Hardware interrupt controller ARK emulates the CPU’s hardware interrupt controller. This is needed

as the two cores have separate, heterogeneous interrupt controllers. The CPU controller’s registers are

unmapped in the peripheral core; upon accessing them (e.g., for masking interrupt sources) the translated

code triggers faults. ARK handles the faults and operates the peripheral core’s controller accordingly.

Exception: unsupported We don’t expect any exception in the offloaded kernel phases. In case exception

happens, ARK uses its fallback mechanism (§3.6) to migrate back to CPU.

3.4.3 Deferred Work

Device drivers frequently schedule functions to be executed in the future. ARK translates the Linux services

that schedule the deferred work as well as the actual execution of the deferred work. ARK chooses to translate

such services because they must be stateful : the peripheral core may need to execute deferred work created

on the CPU prior to the offloading, e.g., freeing pending WiFi packets; it may defer new work until after the

completion of resume.

ARK maintains dedicated DBT contexts for executing the deferred work (Section 3.4.1). While the Linux

kernel often executes deferred work in kernel threads (daemons), our insight is that deferred work is oblivious

to its execution context (e.g., a real Linux thread or a DBT context in ARK). Beyond this, ARK only has to

run the deferred work that may sleep with separate DBT contexts so that they do not block other deferred

work. From these DBT contexts, ARK translates the main functions of the aforementioned kernel daemons,

which retrieve and invoke the deferred work.

Threaded IRQ defers heavy-lifting IRQ work (i.e., deferred work) to a kernel thread which executes the

work after the hardware IRQ is handled. A threaded IRQ handler may sleep. Therefore, ARK maintains

per-IRQ DBT contexts for executing these handlers. Each context makes upcalls into irq thread() (the main

function of threaded irq daemon, listed in Table 3.2).

Tasklets, workitems, and timer callbacks The kernel code may dynamically submit short, non-sleepable

functions (tasklets) or long, sleepable functions (workitems) for deferred execution. Kernel daemons (softirq

3.4 ARK: An ARM Transkernel 49

and kworker) execute tasklets and workitems, respectively.

ARK creates one dedicated context for executing all non-sleepable tasklets and per-workqeueue contexts

for executing workitems so that one workqueue will not block others. These contexts make upcalls to the

main functions of the kernel daemons (do softirq(), worker thread(), and run local timers()), translating

them for retrieving and executing deferred work.

3.4.4 Locking

Spinlocks ARK emulates spinlocks, because their implementation is core-specific and that ARK can safely

assume all spinlocks are free at handoff points: as described in early Section 3.4, handoff happens between one

CPU core and one peripheral core, which do not hold any spinlock; all other CPU cores are offline and cannot

hold spinlocks. Hence, ARK emulates spinlock acquire/release by pausing/resuming interrupt handling. This

is because ARK runs on one peripheral core and the only hardware concurrency comes from interrupts.

Sleepable locks ARK translates sleepable locks (e.g., mutex, semaphore) because these locks are stateful:

for example, the kernel’s clock framework may hold a mutex preventing suspend/resume from concurrently

changing clock configuration [174]. Furthermore, mutex’s seemingly simple interface (i.e., compare & exchange

in fast path) has unstable ABI and therefore unsuitable for emulation: a mutex’s reference count type changes

from int to long (v4.10), breaking the ABI compatibility. The translated operations on sleepable locks may

invoke spinlocks or the scheduler, e.g., when updating reference counts or putting the caller to sleep, for

which the translated execution makes downcalls to the emulated services.In practice, no sleepable lock is held

prior to system suspend.

3.4.5 Memory Allocation

The device phase frequently requests dynamic memory, often at granularities of tens to hundreds of bytes.

By Linux design, such requests are served by the kernel slab allocator backed by a buddy system for page

allocation (fast path); when the physical pages runs low, the kernel may trigger swapping or kill user processes

(slow path).

ARK provides memory allocation as a stateful service. It translates the kernel code for the fast path,

including the slab allocator and the buddy system. In the case that the allocation enters the slow path (e.g.,

due to low physical memory), ARK aborts offloading; fortunately, our stress test suggests such cases to be

extremely rare, as will be reported in Section 3.7. With a stateful allocator, the offloaded execution can free

dynamic memory allocated during the kernel execution on CPU, and vice versa. Compare to prior work that

instantiates per-kernel allocators with split physical memory [133], ARK reduces memory fragmentation and

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 50

avoids tracking which processor should free what dynamic memory pieces. Our experience in Section 3.7

show that ARK is able to handle intensive memory allocation/free requests such as in loading firmware to a

WiFi NIC.

3.4.6 Delays & Timekeeping

Delays ARK emulates udelay() and msleep() for busy waiting and sleeping. ARK converts the expected wait

time to the hardware timer cycles on the peripheral core. ARK implements msleep() by pausing scheduling

the caller context.

jiffies The Linux kernel periodically updates jiffies, a global integer, as a low-overhead measure of elapsed

time. By consulting the peripheral core’s hardware timer, ARK directly updates the jiffies. It is thus the

only shared variable on the kernel ABI that ARK depends (all others are functions).

3.5 The Cross-ISA DBT Engine

A Cross-ISA DBT Primer DBT, among its other uses [175, 176, 177], is a known technique allowing a

host processor to execute instructions in a foreign guest ISA. In such cross-ISA DBT, the host processor runs

a program called DBT engine. At run time, the engine reads in guest instructions, translates them to host

instructions based on the engine’s built-in translation rules, and executes these host instructions. The engine

translates guest instructions in the unit of translation block – a sequence (typically tens) of guest instructions

that has one entry and one or more exits. After translating a block, the engine saves the resultant host

instructions to its code cache in the host memory, so that future execution of this translated block can be

directed to the code cache.

Design overview We build ARK atop QEMU [170], a popular, opensource cross-ISA DBT engine. ARK

inherits QEMU’s infrastructure but departs from its generic design which translates between arbitrary ISAs.

ARK targets two well-known DBT optimizations: i) to emit as few host instructions as possible; ii) to exit

from the code cache to the DBT engine as rarely as possible. We exploit the following similarities between

the CPU’s and the peripheral core’s ISAs (ARMv7a & ARMv7m):

1. Most v7a instructions have v7m counterparts with identical or similar semantics, albeit in different

encoding. (§3.5.1)
2. Both ISAs have the same general purpose registers. The condition flags in both ISAs have same semantics.

(§3.5.2)

3. Both ISAs use program counter (PC), link register (LR), and stack pointer (SP) in the same way. (§3.5.3)

3.5 The Cross-ISA DBT Engine 51

Beyond the similarities, the two ISAs have important discrepancies. Below, we describe our exploitation

of the ISA similarities and our treatment for caveats.

3.5.1 Exploiting Similar Instruction Semantics

Category Cnt v7m

w
/

C
N

T
P

R
T

 Identity 447 1

Side effect 52 3-5

Const constraints 22 2-5

Shift modes 10 2

w/o counterparts 27 2-5

Total (v7a) 558

Table 3.3: Translation rules for v7a instruc-
tions. Column 3: the number of v7m in-
structions emitted for one v7a instruction

We devise translation rules with a principled approach by pars-

ing a machine-readable, formal ISA specification recently pub-

lished by ARM [178]. Our overall guideline is to map each v7a

instruction to one v7m instruction that has identical or similar

semantics. We call them counterpart instructions. For a coun-

terpart instruction with similar (yet non-identical) semantics,

ARK emits a few “amendment” v7m instructions to make up

for the semantic gap. The resultant translation rules are based

on individual guest instructions, different from translation rules

based on one or more translation blocks commonly seen in cross-

ISA DBT [179]. This is because semantics similarities allows identity translation for most guest instructions.

Amendment instructions are oblivious to interrupts/exceptions: as stated in §3.4.2, ARK defers IRQ handling

to translation block boundary and expects no exceptions.

Table 3.3 summarizes ARK’s translation rules for all 558 v7a instructions. Among them, 80% can be

translated with identity rules, for which ARK only needs to convert instruction encoding at run time. 15%

of v7a instructions have v7m counterparts but may require amendment instructions, which fortunately fall

into a few categories: i) Side effects. After load/store, v7a instructions may additionally update memory

content or register values (shown in Table 3.4, G1). ARK emits amendment instructions to emulate the extra

side effect (H3). ii) Constraints on constants. The range of constants that can be encoded in a v7m

instruction is often narrower (Table 3.4, G2). In such cases, the amendment instructions load the constant to

a scratch register, operate it, and emulate any side effects (e.g., index update) the guest instruction may

have. iii) Richer shift modes. v7a instructions support richer shift modes and larger shift ranges than

their v7m counterparts. This is exemplified by Table 3.4 G1, where a v7m instruction cannot perform LSR

(logic shift right) inline as its v7a counterpart. Similar to above, the amendment instructions perform shift

on the operand in a scratch register.

Beyond the above, only 27 v7a instructions have no v7m counterparts, for which we manually devise

translation rules.

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 52

ARMv7a ARMv7m (by ARK)

G1: ldr r0, [r1],

r2, lsr #4

H1: ldr.w r0, [r1]

H2: lsr.w t0, r2, 0x4

H3: add.w r1, r1, t0

G2: adds r0, r1,

0x80000001

H4: mov.w t0, 0xc0

H5: ror.w t0, t0, 0x7

H6: adds.w r0, r1, t0

G3: sub r0, r1, r2 H7: sub.w r0, r1, r2

Table 3.4: Sample translation by ARK. By contrast, our baseline QEMU port translates G1–G3 to 27 v7m
instructions

In summary, through systematic exploitation of similar instruction semantics, ARK emits compact host

code at run time. In the example shown in Table 3.4, three v7a instructions are translated into seven v7m

instructions by ARK, while to 27 instructions by our QEMU baseline.

3.5.2 Passthrough of CPU registers

General purpose registers Both the guest (v7a) and the host (v7m) have the same set (13) of general-

purpose registers. In allocating registers of a host instruction, ARK follows guest register allocation with best

efforts (e.g., one-to-one mapping in best case, as in Table 3.4, G1). ARK emits much fewer host instructions

than QEMU, which emulates all guest registers in host memory with load /store.

Caveats fixed The amendment host instructions operate scratch registers as exemplified by t0 in Table 3.4,

H2-H6. However, the wimpy host faces higher register pressure, as it (v7m) has no more registers than the

brawny guest (v7a). To spill some registers to memory while still reusing the guest’s register allocation, we

make the following tradeoff: we designate one host register as the dedicated scratch register, and emulates its

guest counterpart register in memory. We pick the least used one in the guest binary as the dedicated scratch

register, which is experimentally determined as R10 by analyzing kernel binary. We find most amendment

instructions are satisfied by one scratch register; in rare cases when extra scratch registers are needed, ARK

follows a common design to allocate dead registers and spill unused ones to memory.

Condition flags Both the guest and the host ISAs involve five hardware condition flags (e.g., zero and

carry) with identical semantics; fortunately, most guest (v7a) instructions and their host (v7m) counterparts

have identical behaviors in testing/setting flags per the ISA specifications [178]. ARK hence directly

emits instructions to manipulate the host’s corresponding flags. Such flag passthrough especially benefits

control-heavy suspend/resume, which contains extensive conditional branches (§3.2); we study its benefits

quantitatively in §3.7.3.

3.5 The Cross-ISA DBT Engine 53

Caveats fixed Amendment host instructions may affect the hardware condition flags unexpectedly. For

amendment instructions (notably comparison and testing) that must update the flags as mandated by ISA,

ARK emits two host instructions to save/restore the flags in a scratch register around the execution of these

amendment instructions.

3.5.3 Control Transfer and Stack Manipulation

Function call/return Both guest (v7a) and host (v7m) use PC (program counter) and LR (link register)

to maintain the control flow. QEMU emulates guest PC and LR in host memory. As a result, the return

address, loaded from stack or the emulated LR, points to a guest address (i.e., kernel address). Each function

return hence causes the DBT to step in and look up the corresponding code cache address. This overhead is

magnified in the control-heavy device phase.

By contrast, ARK never emits host code to emulate the guest (i.e., kernel) PC or LR. For each kernel

function call, ARK saves the return addresses within code cache on stack or in LR; for each kernel function

return, ARK loads the return address (which points to code cache) to hardware PC from the stack or the

hardware LR. By doing so, ARK no longer participates in all function returns. Our optimization is inspired

by same-ISA DBT [180].

Stack and SP QEMU emulates the guest (i.e., kernel) stack and SP with a host array and a variable. Each

guest push/pop translates to multiple host instructions updating the stack array and the emulated SP. This

is costly, as suspend/resume frequently makes function calls and operates stack heavily.

ARK avoids such expensive stack emulation by emitting host push/pop instructions to directly operate

the guest stack in place. This is possible because ARK emulates the Linux kernel’s virtual address space

(§3.4). ARK also ensures the host code generate the same stack frames as the guest would do by making

amendment instructions avoid using stack, which would introduce extra stack contents. In addition, this

further facilitates the migration in abort (§3.6).

Caveats fixed i) As the host saves on the guest stack the code cache addresses, which are meaningless to

the guest CPU, upon migrating from the peripheral core (host) to the CPU (guest), the DBT rewrites all

code cache addresses on stack with their corresponding guest addresses. ii) guest push/pop instruction may

involve emulated registers (i.e., scratch register). ARK must emit multiple host instructions to correctly

synchronize the emulated registers in memory.

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 54

3.6 Translated −→ Native Fallback

As described in Section 3.3, when going off the hot paths, ARK migrates the kernel phase back to the CPU

and continues as native execution, analogous to virtual-to-physical migration of VMs [181]. Migrating one

DBT context is natural, as ARK passes through most CPU registers and uses the kernel stack in place

(§3.5.3). Yet, to migrate all active DBT contexts, ARK address the following unique challenges.

Migrate DBT contexts for deferred work After fallback, all blocked workitems should continue their

execution on the CPU. Unfortunately, their enclosing DBT contexts do not have counterparts in the Linux

kernel. To solve this issue, we again exploit the insight that the workitems are oblivious to their execution

contexts. Upon migration, the Linux kernel creates temporary kernel threads as “receivers” for blocked

workitems to execute in. Once the migrated workitems complete, the receiver threads terminate.

Migrate DBT context for interrupt If fallback happens inside an ISA-neutral interrupt handler

(translated), the remainder of the handler should migrate to the CPU. This challenge, again, is that ARK’s

interrupt context has no counterpart on the CPU: the interrupt never occurs to the CPU. ARK addresses

this by rethrowing the interrupt as an IPI (inter-processor interrupt) from the peripheral core to the CPU;

the Linux kernel uses the IPI context as the receiver for the migrated interrupt handler to finish execution.

Section 3.7 will evaluate the fallback frequency and cost.

3.7 Evaluation

We seek to answer the following questions:

1. Does ARK incur tractable engineering efforts? (§3.7.2)

2. Is ARK correct and low-overhead? (§3.7.3)

3. Does ARK yield energy efficiency benefit? What are the major factors impacting the benefit? (§3.7.4)

3.7.1 Methodology

Test Platform We evaluate ARK on OMAP4460, an ARM-based SoC [148] as summarized in Table 3.6. We

chose this SoC mainly for its good documentation and longtime kernel support (since 2.6.11), which allows our

study of kernel ABI over a long timespan in Section 3.2. As Cortex-M3 on the platform is incapable of DVFS,

for fair comparison, we run both cores at their highest clock rates. Note that OMAP4460 is not completely

aligned with our hardware model, for which we apply workarounds as will be discussed in Section 3.7.5.

Benchmark setup We benchmark ARK on the whole suspend/resume kernel phases. We run a user

program as the test harness that periodically kicks ARK for suspend/resume; the generated kernel workloads

3.7 Evaluation 55

are the same as in all ephemeral tasks. Our benchmark is macro: it exercise extensive drivers and services,

during which ARK translates and executes over 200 million instructions.

The benchmark operates nine devices for suspend/resume. 1. SD card: SanDisk Ultra 16GB SDHC1 Class

10 card; 2. Flash drive: a generic drive connected via USB; 3. MMC controller: on-chip OMAP HSMMC

host controller; 4. USB controller: on-chip OMAP HS multiport USB host controller; 5. Regulator:

TWL6030 power management IC connected via I2C; 6. Keyboard: Dell KB212-B keyboard connected

via USB; 7. Camera: Logitech c270 connected via USB; 8. Bluetooth NIC: an adapter with Broadcom

BCM20702 chipset connected via USB; 9. WiFi NIC: TI WL1251 module. The kernel invokes sophisticated

drivers, thoroughly exercising various services including deferred work (2–4,6–8), slab/buddy allocator

(1–4,6–9), softirq (9), DMA (2,6–9), threaded IRQ (1,5,9), and firmware upload (9).

We measure device suspend/resume executed by ARK on Cortex-M3 and report the measured results.

We compare ARK to native Linux execution on Cortex-A9. We further compare to a baseline ARK version:

its DBT is a straightforward v7m port of QEMU that misses optimizations described in Section 3.5. We

report measurements taken with warm DBT code cache, as this reflects the real-world scenario where device

suspend/resume is frequently exercised.

3.7.2 Analysis of engineering efforts

Existing code (unchanged)

Translated 15K SLoC

Substituted

w/ emu
25K SLoC

New implementation

DBT 9K SLoC

Emulation 1K SLoC

Table 3.5: Source code of ARK.

ARK eliminates source refactoring of the Linux kernel (§3.2.3). As shown

in Table 3.5, ARK transparently reuses substantial kernel code (15K SLoC

in our test), most of which are drivers and their libraries. We stress that

ARK, as a driver-agnostic effort, not only enables reuse of the drivers

under test but also other drivers in the ARMv7 Linux kernel.

Table 3.5 also shows that ARK requires modest efforts in developing

new software for the peripheral core. The 9K new SLoC for DBT is low

as compared to commodity DBT (e.g., QEMU has 2M SLoC). ARK implements emulation in as low as 1K

SLoC and in return avoids translating generic, sophisticated Linux kernel services [180, 182]. The result

validates our principle of specializing these emulated services.

ARK meets our goal of “build once, run with many”. We verify that the ARK binary works with a variety

of kernel configuration variants (including defconfig-omap4 and yes-to-all) of Linux 4.4. We also verify that

ARK works with a wide range of Linux versions, from version 3.16 (2014) to 4.20 (most recent at the time of

writing). This is because ARK only depends on a narrow ABI shown in Table 3.2, which has not changed

since Linux 3.16.

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 56

0 1 2 3 4 23
a) Accumulated Time (s)

Native
ARK

Baseline

Idle
Busy

0 70 140 210 280 681
b) Energy (mJ)

IO
DRAM

Core busy
Core idle

Figure 3.5: Execution time and energy in device suspend/resume. ARK substantially reduces the energy.

0x

5x

10x

15x

20x

25x

O
v
e
rh

e
a
d

Baseline

Baseline + Reg Passthrough

ARK (Baseline + all optimizations)

SD Card
Flash

MMC-Ctrl

USB-Ctrl

RegulatorKB
Cam BT

Wi-F
i

0x

5x

10x

15x

20x

25x

Figure 3.6: Busy execution overhead for devices under test (top: suspend; bottom: resume). Our DBT
optimizations reduce the overhead by up to one order of magnitude

3.7.3 Measured execution characteristics

ARK’s correctness Formally, we derive translation rules from the specification of ARM ISA [178];

experimentally, we validate ARK by comparing its execution results side-by-side with native execution and

examining the translated code with the native kernel binary. Over 200 million executed instructions, we

verify that ARK’s translation preserves kernel’s semantics and presents consistent execution results.

Core activity We trace core states during ARK execution. Figure 3.5 (a) shows the breakdown of execution

time. Compared to the native execution on CPU, ARK shows the same amount of accumulated idle time but

much longer (16×) busy time. The reasons are Cortex-M3’s much lower clock rate (1/6 of the A9’s clock

rate) and ARK’s execution overhead. Despite the extended busy time, ARK still yields energy benefit, as we

will show below.

Memory activity We collect DRAM activities by sampling the hardware counters of the SoC’s DDR

controller. We observed that ARK on Cortex-M3 generates much higher average DRAM utilization (32 MB/s

3.7 Evaluation 57

CPU Peripheral core
Core Cortex A9@1.2GHz Cortex M3@200MHz
Cache L1:64KB + L2:1MB L1:32KB
Typical busy/idle power 630mW/80mW 17mW/1mW

Table 3.6: The test platform - OMAP4460 on a Pandaboard

read and 2MB/s write) than the native execution on A9 (only 8MB/s read and 4MB/s write). We attribute

such thrashing to M3’s small (32KB) last-level cache (LLC). Throughout the test, the ARK emitted and

executed around 230KB host instructions, which far exceeds the LLC capacity and likely causes thrashing.

By contrast, Cortex-A9 has a much larger LLC (1MB), which absorbs most of the kernel memory access.

The memory activity has a strong energy impact, as will be shown below.

Busy execution overhead Our measurement shows that ARK incurs low overhead in busy kernel execution,

which includes both DBT and emulation. We report the overhead as the ratio between ARK’s cycle count on

Cortex-M3 to the Linux’s cycle count on A9. Note that an M3 cycle is 6× longer than A9 due to different

clock rates.

Overall, the execution overhead is 2.7× on average (suspend: 2.9×; resume: 2.6×). Of individual drivers,

the execution overhead ranges from 1.1× to 4.5× as shown in Figure 3.6. Our DBT optimizations (§3.5)

have strong impact on lowering the overhead. Lacking them, our baseline design incurs a 13.9× overhead

on average, 5.2× higher than ARK. We examined how our optimizations contribute to the gap: register

passthrough (§3.5.2) reduces the baseline’s overhead by 2.5× to 5.5×. Remaining optimizations (e.g., control

transfer) collectively reduce the overhead by additional 2×. Our optimizations are less effective on drivers

with very dense control transfer (e.g., USB) due to high DBT cost.

Emulated services Our profiling shows that ARK’s emulated services incur low overhead. Overall, the

emulated services only contribute 1% of total busy execution. i) The early, core-specific interrupt handling

(§3.4.2) takes 3.9K Cortex-M3 cycles, only 1.5–2× more cycles than the native execution on A9. ii) Emulated

workqueues (§3.4.3) incurs a typical queueing delay of tens of thousands M3 cycles. The delay is longer than

the native execution but does not break the deferred execution semantics.

Fallback frequency & cost We stress test ARK by repeating the benchmark for 1000 runs. Throughout

the 1000 runs, ARK encounters only four cases when the execution goes off the hot path, all of which caused

by the WiFi hardware failing to respond to resume commands; it is likely due to an existing glitch in WiFi

firmware. In such a case, ARK migrates execution by spending around 20 us on rewriting code cache addresses

on stack (§3.5.3), 17 us to flush Cortex-M3’s cache, and 2 us to wake up the CPU through an IPI.

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 58

3.7.4 Energy benefits

Methodology We study system-level energy and in particular how it is affected by ARK’s its extended

execution time. We include energy of both cores, DRAM, and IO.

We measure power of cores by sampling the inductors on the power rails for the CPU and the peripheral

core. As the board lacks measurement points for DRAM power [183], we model DRAM power as a function

of DRAM power state and read/write activities, with Micron’s official power model for LPDDR2 [184]. The

system energy of ARK is given by:

EARK = Ecore︸ ︷︷ ︸
Measured

+Tidle · (Pmem sr + Pio)︸ ︷︷ ︸
Modeled

+Tbusy · (Pmem + Pio)︸ ︷︷ ︸
Modeled

Here, Ecore is the measured core energy. All T s are measured execution time. P s are power consumptions

for DRAM and IO: Pmem is DRAM’s active power derived from measured DRAM activities as described

in Section 3.7.3; Pmem sr is DRAM’s self-refresh power, 1.3mW according to the Micron model; Pio is the

average IO power which we estimate as 5mW based on prior work [117]. Note that during suspend/resume,

IO devices no longer actively perform work, thus consuming much less power.

Energy saving ARK consumes 66% energy (a reduction of 34%) of the native execution, despite its longer

execution time. The energy breakdown in Figure 3.5(b) shows the benefit comes from two portions: i) in busy

execution, ARK’s energy efficiency is 23% higher than the native execution due to low overhead (on average

2.7×); ii) during system idle, ARK reduces system energy to a negligible portion, as the peripheral core’s idle

power is only 1.25% of the CPU’s. Figure 3.5(b) highlights the significance of our DBT optimizations: the

baseline, like ARK, benefits from lower idle power as well; however its high execution overhead ultimately

leads to 5.1× energy compared to the native execution. Interestingly, ARK consumes more DRAM energy

than the native execution. We deem the cause as Cortex-M3’s tiny LLC (32KB) as describe earlier. Our

result suggests that the current size is suboptimal for the offloaded kernel execution.

What-if analysis How sensitive is ARK’s energy saving to two major factors: the DBT overhead (ARK’s

behavior) and the processor core usage (Linux’s behavior)? To answer the question, we estimate the what-if

energy consumption by using the power model as described above. The analysis results in Figure 3.7 show

two findings. i) ARK’s energy benefit will be more pronounced with lower core usage (i.e., longer core idle),

because ARK’s efficiency advantage over native execution is higher during core idle. ii) ARK’s energy benefit

critically depends on DBT. When the DBT overhead (on x-axis) drops to below 3.5×, ARK saves energy even

for 100% busy execution; when the overhead exceeds 5.2×, ARK wastes energy even for 20% busy execution,

the lowest core usage observed on embedded platforms in prior work [12].

Qualitative comparison with big.LITTLE We estimate ARK saves tangible energy compared to a

3.7 Evaluation 59

1x 3x 5x 7x 9x 11x 13x 15x

DBT Overhead

0%

20%

40%

60%

80%

100%

%
 o

f B
us

y
Ti

m
e

in
 N

at
iv

e
Ex

ec
ut

io
n

(2.7x,41%)
ARK energy: 66%

(13.9x,41%)
w/o optimization

energy: 333%

0%
50%
100%
150%
200%
250%
300%
350%
400%

Figure 3.7: System energy consumption (inc. cores, DRAM, and IO) of ARK relative to native execution
(100%), under different DBT overheads (x-axis) and processor core usage (y-axis). ARK’s low energy hinges
on low DBT overhead.

LITTLE core. We use parameters based on recent big.LITTLE characterizations [185, 186]: compared to the

big (i.e., CPU on our platform), a LITTLE core has 40 mW idle power [187] and offers 1.3× energy efficiency

at 70% clock rate [188]. We favorably assume LITTLE’s DRAM utilization is as low as the big, while in

reality the utilization should be higher due to LITTLE’s smaller LLC. Even with this favorable assumption

for LITTLE and unfavorable, tiny LLC for ARK, LITTLE consumes 77% energy of native execution, more

than ARK (51%–66%), mainly because LITTLE’s idle power is 40× of Cortex-M3. Furthermore, ARK’s

advantage will be even more pronounced with a proper LLC as discussed earlier.

Battery life extension Based on ARK’s energy reduction in device suspend/resume, we project the battery

life extension for ephemeral tasks reported in prior work [122]. When the ephemeral tasks are executed at

5-second intervals and the native device suspend/resume consumes 90% system energy in a wakeup cycle,

ARK extends the battery life by 18% (4.3 hours per day); with 30-second task intervals and a 50% energy

consumption percentage, ARK extends the battery life by 7% (1.6 hours per day). This extension is tangible

compared to complementary approaches in prior work [122, 117].

3.7.5 Discussions

Workarounds for OMAP4460 While OMAP4460 mostly matches our hardware model as summarized in

Table 3.1, for minor mismatch we apply the following workarounds. Memory mapping Our hardware model

(§3.2.2) mandates that the peripheral core should address the entire kernel memory. Yet, Cortex-M3, according

to ARM’s hardware specification [6], is only able to address memory in certain range (up to 0xE0000000),

which unfortunately does not encompass the Linux kernel’s default address range. As a workaround, we

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 60

ARMv8 ARMv7m (by ARK, ideally)

G1:

ldrb w2, [x22, #1059]

ldrb w1, [x0, #160]

H1:
(emulate x22+#1059 in addr1)
ldrb r2, [addr1]
(emulate x0+#160 in addr2)
ldrb r1, [addr2]

G2: cmp w2, w1 H2: cmp r2, r1

G3: beq
mmc_select_bus_width+0x160

H3: beq
mmc_select_bus_width+0x160

Table 3.7: Ideal AARCH64 translation by ARK for mmc compare ext csds() in Linux v4.4. While identity
mapping still exists (G2→H2), software emulation can diminish ARK’s benefits (G1→H1).

configure the Linux kernel source, shifting its address range to be addressable by Cortex-M3. Interrupt

handling While our hardware model mandates that both processors should receive all interrupts, OMAP4460

only routes a subset of them (39/102) to Cortex-M3, leaving out IO devices such as certain GPIO pins. These

IO devices hence are unsupported by the ARK prototype and are not tested in our evaluation.

Recommendation to SoC architects To make SoCs friendly to a transkernel, architects may consider:

i) routing all interrupts to CPU and the peripheral core, ideally with the identical interrupt line numbers;

ii) making the peripheral core capable of addressing the whole memory address space; iii) enlarging the

peripheral core’s LLC size modestly. We expect a careful increase (e.g., to 64 KB or 128 KB) will significantly

reduce DRAM power at a moderate overhead in the core power.

Applicability to a pair of 64-bit/32-bit ISAs While today’s smart devices often use ARMv7 CPUs,

emerging ARM SoCs start to combine 64-bit CPUs (ARMv8) with 32-bit peripheral core (ARMv7m), as

listed in Table 3.1. On one hand, transkernel’s idea of exploiting ISA similarity still applies, as exemplified

by G2→H2 in Table 3.7; on the other hand, its DBT overhead may increase significantly for the following

reasons. Compared to the 32-bit ISA, the 64-bit ISA has richer instruction semantics, more general purpose

registers, and a much larger address space. As a result, ARK cannot pass through 64-bit CPU registers but

instead have to emulate them in memory; ARK must translate the guest’s 64-bit memory addresses to 32-bit

addresses supported by the host (Table 3.7 G1→H1), e.g., by keeping consistent two sets of page tables, for

64-bit and 32-bit virtual address spaces, respectively; with large physical memory (¿4GB), even this technique

will not work because the peripheral core’s page tables are incapable of mapping the extra physical memory.

3.8 Related Work

OS for heterogeneous cores A multikernel OS runs its kernels on individual processors. A number of

such OSes are designed anew with a strong distributed system flavor. They define explicit message interfaces

among kernels [139, 189, 190]; some additionally exploit managed languages/compilers to generate such

3.8 Related Work 61

interfaces [138]. Unlike them, transkernel targets spanning an existing monolithic kernel and therefore adopts

DBT to address the resultant interface challenge.

OSes like Popcorn [137] and K2 [133] seek to present a single Linux image over heterogeneous processors.

For sharing kernel state across ISAs, they rely on manual source tweaks or hand-crafted communication.

They face the interface difficulty as described in §3.2.3.

Prior systems distribute OS functions over CPU and accelerators [191, 192]. The accelerators cannot

operate autonomously, which is however required by device suspend/resume. Prior systems offload apps from

a smartphone (weak) to cloud servers (strong) for efficiency [40, 41]. Unlike them, transkernel offloads kernel

workloads from a strong processor to a weak peripheral core on the same chip.

DBT DBT has been used for system emulation [170] and binary instrumentation [180, 177, 176, 182]; DeVuyst

et al. [193] uses DBT to speed up process migration. Related to transkernel, prior systems run translated

user programs atop an emulated syscall interface [170, 194, 169]. Unlike them, transkernel translates kernel

code and emulates a narrow interface inside the kernel. Prior systems use DBT to run binaries in commodity

ISAs (e.g., x86) on specialized VLIW cores and hence gain efficiency [195, 196, 197, 198]. None runs on

microcontrollers to our knowledge. transkernel demonstrates that DBT can gain efficiency even on off-the-shelf

cores. Existing DBT engines leverage ISA similarities, e.g., between aarch32 and aarch64 [168, 199]. They

still fall into the classic DBT paradigm, where the host ISA is brawny and the guest ISA is wimpy (i.e., lower

register pressure). With an inverse DBT paradigm, ARK addresses very different challenges. Much work is

done on optimizing DBT translation rules, using optimizers [200, 201] or machine learning[179]. Compared

to them, ARK leverages ISA similarities and hence reuses code optimization already in guest code by guest

compilers.

Kernels and drivers The transkernel is inspired by the POSIX emulator [202] however is different as it

emulates kernel ABIs. Prior kernel studies show rapid evolution of the Linux kernel and the interfaces between

kernel layers are unstable [136, 203]. This observation motivates transkernel. Extensive work transplants

device drivers to a separate core [160], user space [161], or a separate VM [204]. However, the transplant

code cannot operate independent of the kernel, whereas transkernel must execute autonomously.

Encapsulating the NetBSD kernel subsystems (e.g., drivers) behind stable interfaces respected by develop-

ers, rump kernel [205] seeks to enable their reuse in foreign environments, e.g., hypervisors. The transkernel

targets a different goal: spanning a live Linux kernel instance over heterogeneous processors. Applying Rump

kernel’s approach to Linux is difficult, as Linux intentionally rejects interface stability for drivers [162].

Suspend/resume’s inefficiency raises attention for cloud servers [145, 206] and mobile [122]. Drowsy [122]

mitigates inefficiency by reducing the devices involved in suspend/resume through user/kernel co-design; Xi et

Chapter 3 Transkernel: Bridging Monolithic Kernels to Peripheral Cores 62

al. propose to reorder devices to resume [206]. While acknowledging the value of such kernel optimizations, we

believe ARK is a key complement that works on unmodified binaries. ARK can co-exist with the mentioned

optimizations in the same kernel. PowerNap [145] takes a hardware approach to speed up suspend/resume for

servers. It does not treat kernel execution for operating diverse IO on embedded platforms. Kernels may put

idle devices to low power at runtime [117], complementary to suspend/resume that ensures all devices are off.

3.9 Conclusions

We present transkernel, a new executor model for a peripheral core to execute a commodity kernel’s phases,

notably device suspend/resume. The transkernel executes the kernel binary through cross-ISA DBT. It

translates stateful code while emulating stateless services; it picks a stable ABI for emulation; it specializes

for hot paths; it exploits ISA similarities for DBT. We experimentally demonstrate that the approach is

feasible and beneficial. The transkernel represents a new OS design point for harnessing heterogeneous SoCs.

Chapter 4

Turbocharge Interactive NLP at the

Edge

4.1 Introduction

Natural Language Processing (NLP) is seeing increasing adoption by mobile applications [207]. For instance,

a note-taking app allows users to verbally query for old notes and dictate new notes. Under the hood, the

app invokes an NLP model in order to infer on user input. It is often desirable to execute NLP inference on

device, which crucially preserves user data privacy and eliminates long network trips to the cloud [208, 209].

NLP inference stresses mobile devices on two aspects. (1) Impromptu user engagements. Each engagement

comprises a few turns [210]; users expect short delays of no more than several hundred ms each turn [211],

often mandated as target latencies [208]. (2) Large model size. Designed to be over-parameterized [212, 213],

today’s NLP models are hundred MBs each [214, 215, 216], much larger than most vision models [217, 218].

As common practice, separate NLP model instances are fine-tuned for tasks and topics, e.g. one instance for

sentiment classification [219] and one for sequence tagging [220], which further increase the total parameter

size on a mobile device.

How to execute NLP models? There are a few common approaches (Figure 4.1). (1) Hold in memory :

preloading a model before user engagement or making the model linger in memory after engagement. The

efficacy is limited: a model in memory increases one app’s memory footprint (often less than 100MB [221, 222])

by a few times, making the app a highly likely victim of the mobile OS’s low memory killer [223]; as user

engagements are bursty and each consists of as few as 1-3 model executions [210], a lingering model likely

benefits no more than 2 executions before its large memory is reclaimed by the OS; since user engagements

63

Chapter 4 Turbocharge Interactive NLP at the Edge 64

Model Memory

A
cc

ur
ac

y
(%

)
60

90

70

80

(b) Load before exec

0

(a) Hold in mem

1MB 170MB

Ours (d) 170X smaller memory
similar accuracy

much higher
accuracy

Hold in mem (a)

Load on demand (b & c)

(c) Standard pipeline (d) STI (ours)

IO

Comp.

Preload IO

Large M

DistilBERT)

1 2 3 4 5 6

1 23 4 5 6

Full compute

1 2 3
1 2 3

Large bubblesCompute
starves

T0 0 T T0

Figure 4.1: Comparison of model execution methods. Our method achieves high accuracy at low memory
cost. T: target latency. M: model memory for Transformer weights.

are impromptu [224, 225], predicting when to preload/unload models is challenging. (2) Load on demand.

The problem is the long IO delays for loading a NLP model. For instance, DistilBERT, a popular model

optimized for mobile, takes 2.1 seconds to load its 170 MB parameters as we measured, far exceeding user

desirable latencies of several hundred ms. To hide IO delays, one may stream model parameters from storage

to memory during computation: execute model layer k while loading parameters for layer k+1. While such a

IO/compute pipeline was known in ML [226, 227], directly applying it to NLP inference is ineffective: the core

parts of NLP models such as attention has a skewed IO/compute ratio due to low arithmetic intensity [228].

As a result, most of the time (¿72%) the computation is stalling.

These approaches suffer from common drawbacks: (1) key resources – memory for preload and IO/compute

for model execution – are managed in isolation and lack coordination; (2) obliviousness to a model’s parameter

importance, i.e. which parameters matter more to model accuracy. Hence, the preload buffer unnecessarily

holds parameters that could have been streamed in parallel to execution; IO unnecessarily loads parameters

that the computation cannot consume within the target latency. The results are memory waste, frequent

pipeline stalls, and inferior model accuracy due to low FLOPs.

Our design We present an engine called STI. Addressing the drawbacks above, STI integrates on-demand

model loading with lightweight preload, getting the best of both approaches.

(1) A model as resource-elastic shards. The engine preprocesses an N-layer model: partitioning each layer into

M shards; compressing each shard as K fidelity versions, each version with a different parameter bitwidth.

The engine therefore stores the N ×M ×K shard versions on flash. At run time, the engine assembles a

submodel of its choice: a subset of n layers (n <= N); m shards (m <= M) from each selected layer; a fidelity

version for each selected shard. Any such submodel can yield meaningful inference results, albeit with different

4.1 Introduction 65

accuracies and resource costs. Our model sharding is a new combination of existing ML techniques [229, 230].

In this way, the engine can dynamically vary a model’s total execution time, adjust IO/compute ratios for

individual shards, and allocate IO bandwidth by prioritizing important shards.

(2) Preload shards for warming up pipeline. The engine maintains a small buffer of preload shards, adjusting

the size to available memory. Instead of trying to hold the entire model, it selectively holds shards from a

model’s bottom layers (closer to input). Upon user engagement, the engine can start executing the early

stage of a pipeline with much of the parameters already loaded, which otherwise would have to stall for IO.

(3) A joint planner for memory, IO, and computation. The engine’s planner selects shards and their versions

to preload and to execute. Its goal is to compose a submodel that simultaneously meets the target latency,

minimizes pipeline stalling, and maximizes accuracy.

Towards this goal, our ideas are (1) set layerwise IO budgets according to layerwise computation delays

and (2) allocate IO budgets according to shard importance. To plan, STI first decides a submodel that can be

computed under the target latency. The engine then sets accumulated IO budgets (AIBs) at each layer to be

the computation delays of all prior layers; it further treats the available memory for preload shards as bonus

IO budgets to all layers. Having set the budgets, the engine iterates over all shards, allocating extra bitwidths

to loading important shards and hence debiting IO budgets of respective layers. The engine preloads the first

k shards in the layer order that maximize the usage of preload memory size |S| but not exceeding |S|.

Results We implement STI atop PyTorch and demonstrate it on mobile CPU and GPU of two embedded

platforms. On a diverse set of NLP tasks, STI meet target latencies of a few hundred ms while yielding

accuracy comparable to the state of the art. We compare STI against competitive baselines enhanced with

recent ML techniques [229, 230] as illustrated in Figure 4.1. Compared to holding a model in memory, STI

reduces parameter memory by 1-2 orders of magnitude to 1–5MB, while only seeing accuracy drop no more

than 0.1 percentage points; compared to existing execution pipelines, STI increases accuracy by 5.9-54.1

percentage points as its elastic pipeline maximizes both compute and IO utilization.

Contributions The paper makes the following contributions:

• Model sharding, allowing the engine to fine control an NLP model’s total computation time and finetune

each shard’s IO time according to resource constraints and shard importance.

• A pipeline with high IO/compute utilization: a small preload buffer for warming up the pipeline; elastic

IO and computation jointly tuned to minimize pipeline bubbles and maximize model accuracy.

• A two-stage planner for the pipeline: picking a submodel, tracking layerwise IO budgets, and prioritizing

importance shards in resource allocation.

Chapter 4 Turbocharge Interactive NLP at the Edge 66

. . .

Output

FFN 1

Inputs

Q

FFN 2
Module # of param.

FFN2 2.36M

FFN1 2.36M

Output 590K

Value 590K

Key 590K

Query 590K

Total # 7.08M
K

Multiple attn.
heads

Layer 1

Layer 11

Param. breakdown
(one BERT layer)

Layer 0

V

Figure 4.2: (Left) The BERT model comprising transformer layers and (Right) the number of 32-bit floating
point parameters within a layer [231].

4.2 Motivations

4.2.1 Transformer on mobile devices

A primer on transformer Figure 4.2 shows the architecture of Transformer [231], the modern NN

developed for NLP tasks. Compared with traditional NNs (e.g. LSTM [232]), it features a unique Multi-

Headed Attention (MHA) mechanism. MHA extracts features at sequence dimension by modeling pairwise

word interactions through many attention heads (typically 12), which are backed by three fully-connected (i.e.

linear) layers, namely Query (Q), Key (K), Value (V). Given an input, each attention head independently

contributes an attention score as one representation of the feature space. Scores across attention heads are

concatenated via a linear output layer (O) and then projected into higher feature dimensions by two linear

layers in the point-wise Feed-Forward Network (FFN) module.

Due to the large number of fully connected layers, a transformer based model contains over 100 million

parameters. As a result, a typical pretrained model is of a few hundred MBs. For instance, BERT [214] as

one of the most popular model is over 400MB large.

Resource demands (1) Low latencies. Prior studies show that users expect mobile devices to respond in

several hundred milliseconds, and their satisfaction quickly drops as latency grows beyond around 400ms [233].

(2) Large model parameters. The scale of NLP parameters is unprecedented for on-device machine learning.

Even DistilBERT [215] optimized for mobile has nearly 200MB of parameters, contrasting to popular vision

models which are as small as a few MBs [217, 218]. Such numerous parameters stress both memory capacity

4.2 Motivations 67

and IO for loading them.

Besides parameters, model execution also allocates memory for intermediate results. Yet, such data has

short lifespans and does entail loading from storage. Hence, it can be served with a relatively small working

buffer sufficient to hold a model tile (often a few MBs); the size do not grow with the model size. We therefore

do not optimize for it.

4.2.2 Transformers challenge existing paradigms

Existing paradigms are inadequate, as shown in Figure 4.1.

First, hold in memory. An app may keep model files lingering in memory or even pin them; thus, the

model can start execution anytime without IO delays. For how long the app holds the model depends on its

prediction of future user engagements.

The major drawback is that an in-memory model will take hundreds of MBs of memory, bloating an app’s

memory footprint which is often less than 100 MBs [221, 222]. When an app’s memory footprint is much

larger than its peers, it becomes a highly likely victim of mobile memory management, which aggressively

kills memory-hungry apps [221]. Once killed, the app has to reload the model for the next engagement.

Furthermore, precise prediction of user engagement is difficult, as mobile apps often exhibit sporadic and

ad hoc usage [8, 211]. To exacerbate the problem, co-running apps may invoke separate models for their

respective tasks, e.g. for sentiment analysis and for next-word prediction.

Second, load before execute. As the default approach by popular ML frameworks [234, 235]: upon

user engagement, the app sequentially loads the model and executes it. As we measured on a modern

hexa-core Arm board (see Table 4.2), it takes 3.6 seconds to execute DistilBERT, among which 3.1 seconds

are for loading the whole 240 MB model file. Prior work observed similar symptoms of slow start of model

inference [236, 226].

Third, pipelined load/execution. To hide IO delays, one may leverage layerwise execution of ML

models [237, 238] and overlap the layer loading IO and execution [226, 227]. This approach is barely effective

for on-device NLP due to the high skewness between IO delays and computation delays. As we measured, a

layer in DistilBERT requires 339 ms for parameter load while only 95 ms to compute. The root causes are (1)

low arithmetic intensity in Transformer’s attention modules [239] and (2) mobile device’s efficiency-optimized

flash, which limits the rate of streaming parameters from storage to memory. As a result, the pipeline is

filled with bubbles and the computation stalls most of the time at each model layer.

Section 4.7 will compare our system against these approaches.

Chapter 4 Turbocharge Interactive NLP at the Edge 68

4.2.3 Model compression is inadequate

For efficient NLP inference, a popular category of techniques is model compression, including pruning networks

(e.g. layers [215] and attention heads [240]), reducing feature dimensions [241], and sharing weights across

layers [242]. A notable example is DistilBERT [215]: through distilling knowledge, it prunes half of BERT’s

layers, shrinking the model by 2×.

Still, model compression alone is inadequate. (1) While one may compress a model to be sufficiently small

(e.g. ∼10MBs [243]) so that the load delay or the memory footprint is no longer a concern, the resultant

accuracy is inferior, often unusable [244]. (2) The execution pipeline’s bubbles still exist: compression often

scales model compute and parameters in tandem, without correcting the computation/IO skewness. Hence,

compute is still being wasted. (3) Most compression schemes lack flexibility as needed to accommodate

diverse mobile CPU, GPU, and IO speeds. They either fix a compression ratio or require model re-training

to adjust the ratios, which must done by the cloud for each mobile device.

Section 4.7 will evaluate the impact of model compression.

4.3 Design overview

4.3.1 The system model

STI incarnates as an library linked to individual apps. For complete NLP experience, we assume that the app

incorporates other components such as automatic speech recognition (ASR), word embedding, and speech

synthesis [245, 246, 247, 248]. As they often run much faster than model execution and are orthogonal to

STI, this paper does not optimize for them.

STI loads and executes a model by layer: it loads one layer (comprising multiple shards) as a single IO

job, decompresses all the shards in memory, and computes with the layer as a single compute job. IO and

compute jobs of different layers can overlap. STI does not use smaller grains (e.g. load/execute each shard)

as they leave the IO and GPU bandwidth underutilized, resulting in inferior performance.

STI allocates two types of memory buffers.

• Preload buffer holds shards preloaded selectively. STI keeps the buffer as long as the app is alive. STI can

dynamically change the buffer size as demanded by the app or the OS.

• Working buffer holds a layer’s worth of intermediate results and uncompressed parameters. The buffer

is temporary, allocated before each execution and freed afterward. The buffer size is largely constant, not

growing with the model size; it is not a focus of STI.

4.3 Design overview 69

|S| = 1MB
T = 300ms

Working Buf.
Execution
pipeline

N x M x K shards
(on disk)

“I like this!”

N-layer
NLP
model Model

sharding

L0
L1

engineSTI

Submodel w/
mixed-bitwidths
shards

Shard IO
Shard loading

Hardware
Capability

Shard
importance

Top-10
Accu.
…

Comp. L0

Preload Buf.

L1 L2

The planner

Compute

IO

Figure 4.3: System architecture of Speedy Transformer Inference (STI) and workflow.

4.3.2 The operation

The STI architecture is shown in Figure 4.3. STI preprocesses a given language model (e.g. DistilBERT

finetuned for sentiment analysis): decomposing the model into shards and profiling shard importance

(Section 4.5). As a one-time, per-model effort, the preprocessing is expected to be done in the cloud prior to

model deployment to mobile devices; as preprocessing only requires lightweight model transformation (as

opposed to expensive re-training [249]), it can be done on device as needed. The resultant model shards are

stored alongside apps.

STI profiles each device’s hardware once. The goal is to measure IO and computation delays in executing

a language model; the profiling results serve as the basis for pipeline planning. To do so, STI loads and

executes a Transformer layer in different bitwidths.

As an app launches, STI is initialized as part of the app. The app specifies which NLP model(s) it expects

to execute, as well as the corresponding target latencies T s and preload buffer sizes |S|s. Later, the app can

update T s and |S|s at any time. For each expected model, STI plans a separate execution pipeline with

separate preload model shards. STI plans a pipeline once and executes it repeatedly. Replanning is necessary

only when a model’s T or |S| is changed by the app or OS.

Chapter 4 Turbocharge Interactive NLP at the Edge 70

Upon user engagement, STI executes a pipeline for the requested model. Since planning is already done

beforehand, STI simply loads and executes the shards that have been selected in planning.

4.3.3 Example execution scenarios

One-shot execution In this scenario, a user engagement consists of one turn, executing the model once.

With preloaded shards, STI executes the pipeline without stalling in bottom layers close to input. STI uses

the working buffer during the execution and frees it right after. Throughout the execution, the content of

preload buffer is unchanged.

A few back-to-back executions One engagement may comprise multiple executions (often no more

than 3) [210]. The scenarios is similar to above except for the opportunity of caching already loaded shards

between executions. To this end, the app may request to enlarge the preload buffer so it selectively caches

the loaded shards. In subsequent executions, STI no longer reloads these shards; its planner redistributes the

freed IO bandwidth to other shards (Section 4.5), loading their higher-fidelity versions for better accuracy.

After the series of executions, the app may choose to keep the additional cached shards as permitted by the

OS or simply discard them.

4.3.4 Applicability

STI supports Transformer-based models [250, 229, 249]. This paper focuses on classification tasks (BERT and

its variants), which underpin today’s on-device NLP. Although STI’s key ideas apply to generative models

such as GPT-2 [216], their wide adoption on mobile (in lieu of template-based responses [251]) is yet to be

seen; we consider them as future work.

STI keeps a model’s execution time under a target latency T . However, it alone is insufficient to keep

the total wall-clock time under T . Such a guarantee would require additional OS support, e.g. real-time

scheduling. Towards such a guarantee, STI lays the foundation.

STI expects a small preload buffer. It can, however, work without such a buffer (i.e. “cold start” every

time), for which its elastic sharding and pipeline still offer significant benefits as we will show in Section 4.7.

On future hardware/workloads, we expect STI’s benefit to be more pronounced: mobile compute continues

to scale (due to advances in technology nodes and accelerators); users expect results in higher accuracy;

NLP models are becoming larger. All these lead to higher computation/IO skewness, necessitating an elastic

pipeline of loading and execution.

4.4 Elastic model sharding 71

2b

FFN2

FFN1

One of N BERT layers

K versions

4 Centroids:
00b: 0.098, 01b: 0.113
10b: 0.125, 11b: 0.138

Outliers:
Q[0][0] = -1.2134125
Q[4][1] = -1.2033245

M vertical slices

Centroids (4 x 32-bit)

00 01 01 11 10 10 00 00

……

Weights (99.9%, 2-bit)

Outliers (0.1%, 32-bit)

2b

N x M x K shards on disk

2 3

01 00 01 10 10 00 00 11

O

Q

1

K V

One attn
head.

1/M
neurons

2-bit version

Figure 4.4: Instantiating N ×M ×K model shards on disk. The example shows a 2-bit shard. 99.9% of its
weights are represented by 2-bit indexes pointing to 22 centroids; the rest 0.1% outliers are preserved as-is.

4.4 Elastic model sharding

4.4.1 Key challenges

We solve a key challenge: how to partition the model into individual shards? Set to enable the resource

elasticity of a model (i.e. depths/widths/fidelity), the shards must meet the following criteria:

• Elastic execution. Shards must preserve the same expressiveness of the attention mechanism and can

execute partially to produce meaningful results.

• Tunable IO. The IO delays of shards must be tunable to accommodate IO/compute capability of different

hardware (e.g. due to diverse CPU/GPUs and DVFS).

4.4.2 Instantiating model shards on disk

To address the challenges, our key idea is to combine two machine learning techniques – dynamic trans-

former [229, 250] and dictionary-based quantization [252], in a novel way. We next describe details.

First, vertical partitioning per layer The system adopts a pretrained transformer model, which has

already been fine-tuned on a downstream task.

For each of the N layers, the system partitions it into M vertical slices, as shown in Figure 4.4 (1). By

construction, each vertical slice is independent, constituting one attention head plus 1/M of FFN neurons

of the layer; the partitioning is similar to a dynamic transformer [250, 229]. Table 4.1 shows the weight

compositions of a vertical slice. Each cell of the table describes the dimension of the weight matrix, where d

is hidden state size, M is the number of attention heads, and dff is the number of FFN neurons; a shard is

therefore one of the M equal slices of a layer. Doing so warrants model shards the same capability to extract

linguistic features from inputs, as done by the attention mechanism: of an individual shard, its attention head

obtains one independent representation of input tokens, which is projected into a higher feature dimension by

Chapter 4 Turbocharge Interactive NLP at the Edge 72

Attn (Q,K,V,O) FFN1 FFN2
Transformer Layer d× d dff × d d× dff
Shard (vertical slice) d× d

M
dff

M × d d× dff

M

Table 4.1: The weight composition of a shard. M is number of attention heads. The M shards equally
slices a transformer layer, where each shard of the layer can be uniquely identified by its vertical slice index
i = 0 . . .M − 1.

FFN neurons [253, 254]; jointly, multiple shards attend to information from different representation subspace

at different positions [231]. Therefore, an arbitrary subset of shards of a layer can be executed and still give

meaningful results.

STI uses the submodel to describe the transformer model on shards, e.g. a n×m submodel comprises

n layers, each layer having m shards. The number m is the same across all layers, as mandated by the

transformer architecture [231], which specifies each layer must have the same width (i.e. number of shards m)

for aligning input/output features between layers. Although it is possible for a shard to use 0s as placeholder

weights, STI expects all m shards to have concrete weights for a good accuracy.

Second, quantization per shard The system compresses each of the N ×M shards into K bitwidths

versions (e.g. K = 2 . . . 6). STI is the first to bring quantization to shard granularity, whereas prior work

only explores layer granularity [255, 256, 257]. Doing so reduces IO/compute skewness and facilitates elastic

IO, allowing STI to prioritize IO resources at a much finer granularity, e.g. by allocating higher bitwidths to

more important shards, and catering to IO/compute capability of diverse devices.

To compress, STI uses Gaussian outlier-aware quantization [230]. The key idea is to represent the vast

majority of weights (e.g. 99.9%) which follow a Gaussin distribution using 2k floating point numbers called

centroids, hence compressing the original weights into k-bit indexes pointing to centroids. For the very few

outliers (e.g. 0.1%) which do not follow the Gaussian distribution, it preserves their weights as-is. The

process is shown in Figure 4.4 (2).

We choose it for two main reasons. 1) It provides good compatibility between shards of different bitwidths,

allowing STI to tune their bitwidth individually per their importance and to assemble a mixed-bitwidth

submodel. This is due to its lossy compression nature – shards still preserve the original distribution of

layer weights, albeit in different fidelities. Hence they can work with each other seamlessly. 2) It does not

need to fine-tune a model or require additional hardware support. The quantization analyzes the weight

distribution of the pretrained model and is not specific to network structures; it hence does not require

fine-tuning, as opposed to fixed-point quantization [258, 243]. The resultant mixed-bitwidth submodel also

differs from a traditional mixed-precision network [257, 256, 255], which requires DSP extensions for executing

integer operations efficiently; the extensions are often exclusive to microcontrollers on ARM devices, e.g.

4.5 Pipeline planning 73

Cortex-M4 [259].

Quantized shards are not meant to be used as-is. Prior to use, STI must decompress them, which is a

mirror process of compression, by substituting dictionary indexes with floating point centroids and outliers.

Therefore model shards quantization reduces IO but not computation (FLOPs) as the inference still executes

on floating point numbers.

Third, storing shards per version STI stores each shard of every bitwidth on disk, in total N ×M ×K

shards (e.g. N=M=12, K=2 . . . 6, 32, where 32 is the uncompressed, full fidelity). Each shard contains a

weight matrix of the same dimensions listed in Table 4.1. Instead of original FP32 weights, the weight matrix

now stores K-bit indexes, which reduces its file size by 32/K×. Additional to the weight matrix, it stores

centroids and outliers as dictionaries to look up during decompression, as illustrated by Figure 4.4 (3). To

load, it refers to individual on-disk shards by their original layer/vertical slice indexes and bitwidths.

4.5 Pipeline planning

4.5.1 Overview

Planning goals Towards maximizing the accuracy under a target latency T, STI plans for two goals:

• First, minimize pipeline bubbles. STI attempts to utilize both IO and computation as much as possible:

by keeping IO always busy, it loads higher-bitwidth shards to improve submodel fidelity; by maxing out

computation (FLOPs), it drives the inference towards a higher accuracy.

• Second, prioritize bitwidths on important shards. As transformer parameters exhibit clear redundancy, STI

allocates IO bandwidths with respect to shard importance, i.e. a shard is more important if it contributes

more significantly to accuracy when being executed in higher bitwidths.

Two-stage planning Towards the goals, STI conducts a two-stage planning: 1) Compute planning. Based

on measured computation time of a layer, it proposes the largest submodel R’ bound by T, which has the

maximum FLOPs. 2) IO planning. It first assigns each layer an accumulated IO budget (AIB) for tracking

layerwise IO resources. To allocate and saturate the IO resources, STI attempts to consume each layer’s AIB.

Starting from most important shards, STI assigns them a higher bitwidth, e.g. 6-bit; it does so iteratively for

less important shards, until no AIB is left for each layer. We next describe details.

4.5.2 Prerequisite: offline profiling

The following measurements are done ahead of time, off the inference execution path.

Chapter 4 Turbocharge Interactive NLP at the Edge 74

Hardware capability STI measures the following hardware capabilities of a mobile device at installation

time.

• IO delay Tio(k) as a function of bitwidth k. STI measures the average disk access delay for loading one

shard in k bitwidth, where k = 2 . . . 6, 32. It only has to measure one shard per bitwidth because all others

have same amount of parameters.

• Computation delay Tcomp(l,m, freq) as a function of l, the input sentence length, m, the number of shards

per layer (e.g. m = 3 . . . 12), and freq as the current operating frequency of CPU/GPU. It fixes l to be

commonly used input lengths after padding (e.g. l = 128). It does a dry run for each (l,m, freq) tuple on

one transformer layer. It measures the average execution delay as the decompression delay of m shards

in 6-bitwidth and the execution delay of the transformer layer composed by the m shards. Although the

decompression delay is strictly dependent on the shard bitwidth, the delay differences between individual

bitwidths are negligible in practice, e.g. < 1ms; measuring 6-bitwidth shards further provides an upper

bound for decompression delays, ensuring STI always stays under the target latency.

The delays can be recorded offline and replayed at run time because they are data-independent [19, 260]

and are shown deterministic [261], w.r.t. the parameters k, l,m, and freq.

Shard importance Intuitively, important shards have greater impacts on accuracy. Formally, STI deems

a shard more important than another if the shard increases the model accuracy more significantly as they

have higher fidelities. Specifically, STI profiles shard importance as follows. It first sets the full 12x12 model

(i.e. with 144 shards) to the lowest bitwidth (i.e. 2-bit), enumerates through each shard, and increases the

shard bitwidth to the highest (i.e. 32-bit); for each enumeration, it runs the resultant model on a dev set and

profiles its accuracy. The profiling therefore produces a table (e.g. with 12× 12 = 144 entries), whose each

entry records the model accuracy when the individual shard is at the highest bitwidth. STI then sorts the

table by model accuracy and obtains the list of ranked shard importance.

Notably, the profiling needs to be done for individual fine-tuned models, which differ in weight distribution.

Figure 4.5a and 4.5b shows the example of profiling results for models used in SST-2 and RTE respectively. As

can be seen, shards of different models exemplify dissimilar importance distributions. For instance, important

shards distribute more evenly throughout the layers of SST-2 model yet they are much more concentrated on

bottom layers (i.e. layer 0-5) of RTE model.

4.5.3 Compute planning

Given a target latency T, STI proposes a submodel sized by n×m for the incoming inference, which maximizes

FLOPs.

4.5 Pipeline planning 75

(a) SST-2 (b) RTE

Figure 4.5: Example shard profiles on SST-2 and RTE show distinct importance distribution. Each cell at (x,
y) marks a shard; the lighter its color is, the more important the shard is. Y-axis: transformer layer index,
X-axis: vertical slice index.

Key ideas In searching for the submodel size, STI follows two principles: 1) whenever possible, it always

picks the submodel with most number of shards, i.e. n×m is maximized; 2) when two candidate submodels

have similar number of shards, it prefers the deeper one, i.e. the candidate with a larger n. As the transformer

attention heads within the same layer are known to be redundant [212], it is wiser to incorporate more layers.

To infer (n,m), STI enumerates through all possible pairs using the profiled Tcomp(l,m, freq); the

enumeration process has a constant complexity and is efficient. Since all inputs can be padded to a constant

length (e.g. l = 128), and freq is often at peak during active inference, STI only needs to enumerate in total

144 pairs in practice. For each T, the enumeration therefore deterministically gives a submodel of (n×m)

which is both largest and deepest.

4.5.4 IO planning

In this stage, STI selects the bitwidths for individual shards of the (n×m) submodel. Without stalling the

pipeline, it seeks those that maximize accuracy.

Problem formulation

Given the deadline T , n×m submodel R determined by compute planning, and the preload buffer S, STI

plans for a shard configuration S′ to load during computation, s.t. 1) loading S′ does not stall the pipeline,

and 2) R = S + S′ achieves maximum accuracy.

Chapter 4 Turbocharge Interactive NLP at the Edge 76

Accumulated IO budgets

To ensure the planning S′ does not stall the pipline, STI uses Accumulated IO Budgets (AIBs) to track

fine-grained, per-layer available IO .

Key ideas To quantify AIBs, our observation is that the pipeline does not stall iff before executing one

layer, all shards of the current and prior layers are already loaded. We hence define AIBs as follows:

Definition (Accumulated IO Budgets). The AIB(k) of kth layer is the available IO time the layer can

leverage to load all shards from 0 . . . k layers, written as AIB(k) = AIB(k − 1) + Tcomp(k − 1), where

Tcomp(k − 1) is the computation delay of the (k − 1)th layer.

The recursive definition (i.e. hence accumulated) encodes the data dependency between pipeline layers:

each layer crucially depends on previous layers’ available IO budgets and computation delays for overlapping

the loading of its own shards. As of the very first layer, its AIB is set as the IO delay to fill the preload buffer

S, considered as “bonus IO”. For instance, the AIB of the second layer is the AIB plus the computation delay

of the first layer, i.e. AIB(1) = AIB(0) + Tcomp(0). With the above definition, STI checks AIBs of all layers:

as long as they are non-negative, STI knows each layer still has IO time remaining and the pipeline does not

stall, and deems the planning valid.

How to use Upon each planning, STI initializes AIBs for all layers as follows. It first sets AIB(0) to be the IO

delay to fill the preload buffer as described before. Next, STI sets subsequent AIBs recursively using the above

definition, e.g. AIB(1) = AIB(0) + Tcomp, AIB(2) = AIB(0) + 2× Tcomp, AIB(3) = AIB(0) + 3× Tcomp.

Note that since layers have an identical structure, STI uses a constant Tcomp across all layers.

When STI selects a shard at k-th layer, it deducts the shard IO from AIBs of k-th as well as all subsequent

layers. The is because loading such shards only affect yet-to-be-executed layers but not the already executed

ones. At the end of selection, STI checks all AIBs to see if they are non-negative. If so, STI deems the

planning S′ valid, otherwise rejects it.

S’ (IO planning decides)

Comp. L0 Comp. L12bit 2 2

Preload buffer

Submodel (2 x 3)
(from compute planning)

T_comp0s 1s T=2s -0.6s

“bonus IO”

AIB(1) = 1.6s
AIB(0) = 0.6s

2

2

Bits (b) 2 3 4 5 6

T_IO(b) 0.2s 0.3s 0.4s 0.5s 0.6s

T_IO table A

2 2 2

2 2 2

B
2 2 2

3 3 3

2 2 2

5 2 4

C

Invalid
AIB(1) = -0.1s

AIB propagation

? ? ?

? ? ?

Figure 4.6: A mini example of AIB tracking the layerwise IO budgets.

4.5 Pipeline planning 77

Example Figure 4.6 shows a mini example of using AIBs to check the validity of S′, where it plans for a 2x3

submodel, targeting a 2s deadline with Tcomp = 1s. The engine initializes AIBs recursively from L0, whose

AIB(0) = 0.6s due to the three 2-bit shards in S. To plan, the engine first fills S′ with S, deducting 0.6s

from both AIB(0) and AIB(1) because all shards in S are in L0. Since only L1 has spare AIB, the engine can

only select shards for it. We show three execution plan candidates A, B, and C. In this case, both candidates

A and B are valid because their AIBs are non-negative, meaning loading them does not stall computation L1.

Yet, C is invalid, because AIB(1) = −0.1s, violating the constraint and stalling the pipeline.

Selecting optimal shard versions

For each T , there exist an enormous number of execution plans. The goal is to select an optimal configuration

S′, which 1) is valid, and 2) maximizes accuracy. For instance, both A and B in Figure 4.6 are valid, but

which has the maximum accuracy?

Key idea To ensure validity, STI respects the key invariant AIB(k) ≥ 0 for each allocation attempt on

layer k. To maximize accuracy, our key idea is to first uniformly increase bitwidths for all shards, then with

the rest AIBs it greedily and iteratively allocate highest possible bitwidths to individual shards guided by

shard importance. By doing so, we build an information passageway for most important shards, allowing

their maximum activations to be preserved in highest fidelity as possible.

The allocation process comprises two passes as follows. In the first pass, STI picks a uniform bitwidth for

all unallocated shards in the submodel, i.e. those not in preload buffer. To do so, it enumerates from lowest

bitwidth (i.e. 2-bit) and selects the highest bitwidths while AIBs still satisfy the invariant. Notably, it fills a

submodel layer with the shards from the same original layer and does not mix up shards across layers, due to

quantization preserves intra-layer weight distribution (§4.4.2). If AIBs cannot even support 2-bit shards, e.g.

due to T and/or preload buffer S too small, STI still selects them as they are necessary for execution but

aborts further allocation. In the second pass, STI iteratively upgrades the bitwidths of individual shards to

full 32 bitwidth guided by the shard importance profiled in §4.5.2, until all AIBs are consumed.

The allocation result is an optimal execution plan which instantiates the submodel with individual shard

configurations, and is ready to be executed by the IO/compute pipeline.

4.5.5 Submodel execution

Despite STI partitions the model into shards, it still executes the plan (submodel) in a layerwise, pipelined

manner from layer 0 to layer n-1. This is because although attention heads can be computed individually,

FFN neurons must wait until all shards are loaded to execute.

Chapter 4 Turbocharge Interactive NLP at the Edge 78

STI executes both IO and computation as fast as possible; it does not reorder the loading of individual

shards in order to meet data dependency between execution, because by design AIBs have already ensured so.

To compute, STI decompresses the shards into the working buffer using the dictionaries stored along with

them; the working buffer is enough to hold one layer of FP32 weights and shared by all layers during their

ongoing execution. After execution, STI evicts loaded shards from top to bottom layers until preload buffer

is filled. It does so because shards at bottom layers (i.e. closer to input) are needed early during inference.

Preserving as many of them as possible avoids compulsory pipeline stalls in early stages.

4.6 Implementation

We implement STI in 1K SLOC (Python: 800, C: 200) based on PyTorch v1.11 [262] and sklearn v0.23.2 [263],

atop two commodity SoCs listed in Table 4.2.

We preprocess the pretrained DynaBERT [229] models. We choose them because they are easily accessible

and well documented. We preprocess the model as follows. To quantize a model into k bitwidth, we first

partition the model by layers and gathers all weights of the layer into a large flat 1D array. We then fit the 1D

array into a Gaussian distribution using GaussianMixture with one mixture component from sklearn.mixture

for detecting outliers. Based on the fitted distribution, we calculate the log likelihood of each sample in

the 1D weight array. Following [230] we also use -4 as the threshold – if the weight’s log likelihood is below

the threshold, we deem it as an outlier and records its array index; in our experiments, a model only has

0.14-0.17% outliers, which are an extremely small portion. For non-outliers which are the vast majority, we

sort them based on their values and divided them into 2k clusters with equal population. We calculate the

arithmetic mean of each cluster as one centroid for representing all weights of the cluster. With such, we

extract shards from the layer based on their weight composition in Table 4.1 and massively substitutes their

weights with k-bit indexes to centroids; for bit alignment, we represent outliers also as k-bit integers but

bookkeep their original weights and offsets in the shard. We repeat the process for each layer and for each

k = 2 . . . 6, which takes a few minutes per bitwidth. We co-locate disk blocks of shards from the same layer

for access locality. To measure shard importance, we use dev set from the respective GLUE benchmark on

which the model is fine-tuned.

Implementing the layerwise pipeline is straightforward, by intercepting the forwarding function at each

BERT layer and using asynchronous IO for loading shards. Yet, we have discovered Python has a poor

support for controlling concurrency at fine granularity (e.g. via low-level thread abstraction), which introduces

artificial delays to shard decompression. Therefore we implement the decompression in separate 200 SLOC

of C code using OpenMP [264], which concurrently substitutes the low-bit integers back to FP32 centroids

4.7 Evaluation 79

Platform CPU GPU Mem.

Odroid-N2+
4x Cortex-A73 +

2x Cortex-A53
Mali-G52 4GB

Jetson Nano 4x Cortex-A57
Nvidia Maxwell w/

128 CUDA cores
4GB

Table 4.2: Platforms in evaluation. Benchmarks run on Odroid’s CPU (its GPU lacks Pytorch support) and
Jetson’s GPU.

Benchmark Category Task Metrics Domain

SST-2 Single-sentence Sentiment Acc. Movie rev.

RTE Inference NLI Acc. News, Wiki.

QNLI Inference QA/NLI Acc. Wiki.

QQP Similarity/paraphrase Paraphrase Acc./F1 Social QA

Table 4.3: GLUE benchmarks [1] used in evaluation.

using all available cores of our SoCs; we expect the decompression to be further accelerated with GPU, but

leave it as future work.

For miscellaneous parameters of a layer which are not part of shards, i.e. layer normalization (layernorm)

and biases, we keep them in memory in full fidelity because their sizes are small, e.g. tens of KB per layer.

4.7 Evaluation

We answer the following questions:

1. Can STI achieve competitive accuracy under time and memory constraints? (§4.7.2)

2. How much do STI’s key designs contribute to its performance? (§4.7.3)

3. How do STI’s benefits change with available time and memory? (§4.7.4)

4.7.1 Methodology

Setup and metrics Table 4.2 summarizes our test platforms, which are commodity SoCs. We choose

them to evaluate STI on both CPU and GPU. Based on user satisfaction of NLP inference delays on mobile

devices [233], we set T=150, 200, and 400ms. Prior work reported that beyond 400ms user satisfaction greatly

drops [233]. With T under 100ms, all comparisons including STI show low accuracy – there is not enough

compute bandwidth. This is a limit in our test hardware, which shall mitigate on faster CPU/GPU.

Table 4.3 summarizes our benchmarks and metrics. We diversify them to include each category of GLUE

benchmarks [1], which span a broad range of NLP use cases on mobile devices.

Chapter 4 Turbocharge Interactive NLP at the Edge 80

Preload?

Sharding?

IO & compute

Quantization?

N

N

In seq

N

N

Y

In seq

N

N

Y

Pipeline

X bits

Whole model

Y

Comp only

X bits

Selected shards

Y

Pipeline

Per-shard bitwidths

Load on demand Hold in memory

DistilBERT Load&Exe StdPL-X Ours PreloadModel-X

Table 4.4: Baselines for evaluation and their positions in the design space.

Comparisons We consider two NLP models. (1) DistilBERT [215], the outcome of knowledge distillation

from BERT. Due to its high popularity on mobile, we use its accuracy as our references and call it gold

accuracy. Yet, DistilBERT has fixed depths/widths (6 layers x 12 heads) and thus cannot adapt to different

target latencies. (2) DynaBERT [229], which is derived from BERT (12 layers x 12 heads), allowing execution

of a submodel to meet the target latency.

Based on DynaBERT, we design the following competitive baselines as summarized in Table 4.4.

• Load&Exec: It loads model as a whole and executes it. It chooses the best submodel so the sum of IO

and execution delays is closest to the target latency, using the algorithm described in Section 4.5.3. Model

parameters are not quantized (32 bits).

• Standard pipelining (StdPL-X): It executes a layerwise pipeline, overlapping IO and computation. It chooses

the best submodel so that the total pipeline delay stays under the target latency. We further augment it with

quantization. All parameters in a model have the same bitwidth X.

• PreloadModel-X : The whole model is already in memory and no IO is required. It chooses the best submodel

so that the total computation delay stays under the target latency. We augment it with quantization; all

parameters have the same bitwidth X.

We choose X=6 as the highest quantization bitwidth, as further increasing the bitwidth has little accuracy

improvement.

4.7.2 End-to-end results

STI achieves comparable accuracies to gold under target latencies (T) of a few hundred ms. Across all

benchmarks and latencies, STI accuracy is on average 7.1 percentage point (pp) higher than that of baselines,

which is significant.

Compared to preloading the whole model, STI reduces memory consumption by 1-2 orders of magnitude

while seeing 0.16 pp higher accuracy averaged across all latencies and benchmarks; compared to loading the

model on demand, STI improves the accuracy by 14 pp at the cost of preload memory of no more than 5

MBs.

4.7 Evaluation 81

Ours
Preload-6bit

Preload-fullStdPL-6bit

StdPL-2bit

Load&Exec, StdPL-full

Ours

(a) Odroid

Ours Ours

(b) Jetson

Figure 4.7: STI’s accuracy is significantly higher than Load&Exec and StdPL, and is similar/higher compared
to PreloadModel albeit using 1-2 orders of magnitude smaller memory. T=200ms. Full data and benchmarks
in Table 4.5.

Figure 4.7 zooms in accuracy/memory tradeoffs under T=200ms of SST and QQP benchmarks. Note that

we use log scale in X-axis (memory consumption) due to its large span. STI uses 204× lower memory than

PreloadModel-full while having less than 1% average accuracy loss. Even when compared with the quantized

version (i.e. PreloadModel-6bit), STI uses on average 41× smaller memory to achieve the same accuracy.

Accuracy STI’s accuracy matches those of DistilBERT. Given a target latency T, STI achieves consistent

and significant accuracy gain over baselines. Table 4.5 shows the full view. On Odroid, STI (Ours)

increases average accuracy by 21.05/21.05/17.13/5.83 pp compared with Load&Exec/StdPL-full/StdPL-

2bit/StdPL-6bit, respectively. On Jetson, STI increases average accuracy by 18.77/18.77/6.53/3.15 pp

compared with Load&Exec/StdPL-full/StdPL-2bit/StdPL-6bit, respectively. Notably, STI’s benefit is game-

changing compared with Load&Exec and StdPL-full. They are barely usable under low latency (T≤200ms).

Memory consumptions Compared with preloading the whole model, STI reduces memory consumption

significantly and consistently, by 122× on average. This is because the PrelodModel baselines hold the whole

12x12 model in memory. By comparison, STI only needs preload memory of 1MB/5MB on Odroid and Jetson

respectively, which is sufficient to hold shards of the first model layer and warms up the pipeline execution.

Chapter 4 Turbocharge Interactive NLP at the Edge 82

(a) Odroid (b) Jetson

SST-2 (91.3) RTE (59.9) QNLI (89.2) QQP (88.5)

150 200 400 150 200 400 150 200 400 150 200 400

50.9 50.9 78.8 47.3 47.3 47.7 44.8 44.8 59.4 45.4 45.9 42.9

50.9 50.9 78.8 47.3 47.3 47.7 44.8 44.7 59.4 45.4 45.9 42.9

74.7 67.8 89.3 46.9 47.3 51.6 51.2 50.6 53 33.9 31.6 55.2

78.8 78 92 47.3 47.7 67.5 59.3 54.1 88.9 41.6 44.7 88.2

78.8 87.2 92 47.7 52.3 68.2 59.4 72.7 88.8 42.9 81.2 88.1

78.8 87.2 92 47.3 52.7 67.5 59.3 69.7 88.9 41.6 80.7 88.2

78.8 87.2 91.9 47.3 52.7 67.9 56.3 71.0 88.8 39.4 80.7 88.2

78.8 87.2 92 47.7 52.7 68.2 60 71.2 89 42.4 81.3 88.2

SST-2 (91.3) RTE (59.9) QNLI (89.2) QQP (88.5)

150 200 400 150 200 400 150 200 400 150 200 400

51.2 52.9 73.1 47.2 47.2 48.0 51.6 53.1 50.5 36.9 31.5 31.5

51.2 52.9 73.1 47.2 47.2 48.0 51.6 53.1 50.5 36.9 31.5 31.5

68.1 77.2 85.7 47.6 50.1 48.0 51.9 51.1 62.4 54.2 51.3 74.0

60.2 78.0 90.7 46.5 50.5 58.4 53.1 57.6 81.8 58.3 44.1 82.9

65.8 81.5 91.5 46.9 51.6 62.4 53.5 54.8 86.4 58.1 61.8 85.8

66.1 82.2 91.5 45.4 49.4 63.8 53.5 54.9 86.1 57.6 60.2 85.4

65.9 81.6 91.6 46.9 51.9 63.1 53.6 54.6 86.2 57.3 61.5 85.4

65.9 81.6 91.6 46.9 51.9 62.0 53.6 54.6 86.4 58.3 61.5 85.6

Benchmark (Gold accu.)

Target latency (ms)

Load&Exec

StdPL-full

StdPL-2bit

StdPL-6bit

Preload-full |S|:320 MB

Preload-6bit |S|: 60 MB

Ours-0MB |S|: 0 MB

Ours |S|:(a)1MB (b)5 MB

Table 4.5: Model execution accuracies; given target latencies, ours are the best or the closest to the best.
—S—: preload buffer size. Gold accuracy from DistilBERT [215], which exceed all target latencies. End-to-end
DistilBERT execution delays: 3.7s on Odroid, of which IO=3.1s; 3.36s on Jetson, of which IO=3.0s.

Compute
underutilized

IO
underutilized

Odroid (CPU) Jetson (GPU)

150 200 400 150 200 400

1x4 1x5 3x3 2x1 3x1 5x1

1x4 1x5 3x3 2x1 3x1 5x1

3x3 4x3 10x3 2x12 3x12 7x12

3x3 4x3 10x3 2x8 3x7 7x3

3x3 5x3 10x3 2x12 3x12 7x12

3x3 5x3 10x3 2x12 3x12 7x12

3x3 5x3 10x3 2x12 3x12 7x12

Platform

Latency (ms)

Load&Exec

StdPL-full

StdPL-2bit

StdPL-6bit

Preload-full

Preload-6bit

OursCompute & IO
well utilized

Table 4.6: Sizes (depth×width) of submodels selected under different target latencies. A large submodel
means more FLOPs executed, suggesting a higher accuracy. STI is able to run the largest submodel.

Storage & energy overhead For a model, STI only requires 215 MB disk space to store five fidelity

versions of {2,3,4,5,6} bits, in addition to the full model (in 32 bits) of 418 MB. This storage overhead is

minor given that today’s smartphone has tens or hundreds GB of storage.

For a given latency, we expect STI to consume notably more energy than low-accuracy baselines (e.g.

Load&Exec, StdPL-full), as STI has higher resource utilization to achieve higher accuracy. Compared to

similar-accuracy, high-memory baselines (i.e. PreloadModel-full), we expect STI to consume moderately

but not significantly more energy. First, the major energy consumer is active compute (FLOPs); similar

accuracies indicate similar FLOPs. Second, although STI adds IO activities, the contribution to the system

power is marginal because the whole SoC is already in high power states.

4.7.3 Significance of key designs

Submodel configuration Within a given latency, the result accuracy hinges on total FLOPs executed,

which depends on the size of executed submodel. Our results show that STI dynamically adjusts submodel

sizes towards the maximum FLOPs. Table 4.6 shows the details. Estimated by comparing submodel sizes: our

4.7 Evaluation 83

FLOPs is as high as that of PreloadModel, which however consumes 1-2 orders of magnitude more memory;

our FLOPs is 7× higher compared with Load&Exec and StdPL-full, for which the IO blocks computation

most of the time; our FLOPs is 1.3× higher than that of StdPL-2/6bit, two strong baselines that increase

FLOPs through IO/compute parallelism and quantization as us; at lower T (e.g. T ≤ 200ms), their IO delays

of loading the first layer may block computation, resulting in a smaller model. Figure 4.8 shows such an

example. Thanks to a small preload buffer, our executed submodel has 1.25× higher FLOPs (i.e. it has one

extra layer), which leads to 9.2 percentage point (pp) higher accuracy.

Preloaded (1MB)

6 6 32 6 32
6 6 32 6 6
6 6 6 6 32

6bit 6 6 6
6 6 6 6
6 6 6 6

Layer0 Layer3
(a) StdPL-6bit (b) Ours

Layer0 Layer4

Figure 4.8: A comparison between submodels executed by Ours and StdPL-6bit. Benchmark: SST-2 on
Odroid. T=200ms. Ours runs a larger submodel and higher FLOPs, resulting in 9.2 pp higher accuracy.

Table 4.6 also shows that our system adjusts submodels according to platform hardware. Specifically, our

system assembles shallow/wide submodels on Jetson (GPU) as opposed to deeper/narrower submodels on

Odroid (CPU). The reason is GPU’s lack of proportionality on Transformer shards, e.g. executing a layer of

12 shards is only 0.7% longer than a layer of 3 shards. The root cause is that GPU is optimized for batch

workload; it pays a fixed, significant cost even in executing a fraction of a transformer layer and for one input

example, which is the case of interactive NLP.

Elastic pipelining STI’s per-shard bitwidths contribute to its accuracy significantly. By contrast, one

fixed bitwidth for all shards in a model is too rigid, resulting in pipeline bubbles. With a full bitwidth of

32 bits (StdPL-full), IO takes long and stalls the computation (19.9 pp lower accuracy than STI); with a

lower bitwidth (StdPL-{2,6}bit), IO bandwidth is left underutilized (8.2 pp lower accuracy than STI). Any

fixed bitwidth between 6 and 32 bits does not help either (Section 4.7.1). Unlike them, STI well utilizes both

compute and IO through its two-stage planning (§4.5).

Preload buffers show a clear benefit as shown in Table 4.5. By using a small preload buffer of a few MBs,

STI achieves a noticeable and consistent accuracy gain compared to not using the preload buffer (Ours-0MB).

The benefit is most pronounced on QNLI and QQP among the benchmarks, increasing accuracy by up to 3.7

percent point (Odroid). Section 4.7.4 will present a sensitivity analysis regarding its size.

Chapter 4 Turbocharge Interactive NLP at the Edge 84

Benchmark SST-2 RTE QNLI QQP

IO budget (MB) 0.4 2.0 4.0 0.4 2.0 4.0 0.4 2.0 4.0 0.4 2.0 4.0

Random 79.5 79.8 81.8 48.0 48.0 51.3 51.1 51.1 52.8 39.2 40.2 59.8
Ours 81.2 83.8 85.8 50.2 54.5 54.5 53.3 60.3 62.2 56.3 63.3 75.5

Table 4.7: Model accuracies resultant from allocating additional IO budget within a 5x3 submodel of 2-bit
shards. Our method shows much higher accuracies than random shard selection.

Shard importance . STI allocates its IO budgets to the most important shards. The accuracy benefit is

most pronounced in a small/median submodel where most shards have low to medium bitwidths.

Case study. We demonstrate the efficacy through a differential analysis. Table 4.7 shows an intermediate

state of planning: a 5x3 submodel comprising all 2-bit shards. Now the planner is awarded additional IO

budgets, e.g. from enlargement of the preload buffer, with which the planner will increase some shards’

bitwidths to 6 bits. We compare two strategies: (1) randomly pick shards; (2) pick shards in their importance

order (as in STI). Despite the same IO budget is spent, STI shows higher accuracy by up to 23.1 percent

point (8.19 percent point on average) across all benchmarks.

4.7.4 Sensitivity analysis

We examine how STI’s benefit changes as resource amounts.

Target latencies A more relaxed target latency allows STI to deliver more FLOPs and execute a deeper

submodel, suggesting a higher accuracy. Yet, an NLP model’s accuracy sees diminishing return as its depth

continues to grow, as shown in prior work [265, 229]; as a result, STI’s benefit diminishes as the target latency

is further relaxed. Specifically, on Odroid (CPU) STI has most significant advantage over baselines (7.7 pp

higher accuracy) when target latencies are below 200 ms; in such cases, a feasible submodel has fewer than 10

layers. On Jetson (GPU) STI has most significant advantage when target latencies are below 400 ms and a

feasible submodel has fewer than 7 layers. When the target latency grows beyond such ranges, STI’s benefits

gradually reduce.

Preload buffer size Its significance hinges on the relative speeds of computation (which consumes model

parameters) and IO (which loads the parameters), because the buffer bridges the speed gap of the two. When

the computation is much faster than IO, an increase in the buffer size will result in large accuracy gain, and

vice versa.

On our platforms, STI shows a noticeable and consistent accuracy gain over baselines by using a preload

buffer of a few MBs. Since at current preload buffer size STI has already reached best accuracy (i.e. same as

PreloadModel-full), further increasing the buffer size does not boost the accuracy proportionally. We expect

4.8 Related work 85

that with faster compute (e.g. neural accelerators), the preload buffer takes in a greater role. The reason is,

when execution become faster and can only overlap with loading of low-fidelity shards (e.g. 2 bits), a few

high-fidelity shards provided by preload buffer can significantly boost the accuracy. Such a case is shown in

Table 4.7, as preload buffer sizes increase from 0.4 to 4.0 MB, the accuracy increase by 19.2 pp.

4.8 Related work

Our system is related to a wide range of ML and systems techniques. We next discuss the similarities and

differences.

Model compression is a common technique for reducing model size (IO), facilitating faster loading; it

includes model structure [265, 215] and feature pruning [241], and quantization which reduces full-precisions

(32bit) parameters into low-bit (e.g. 2bit) representations [243, 266, 258, 252]. We use quantization

to compress the model; differently, we scale compression ratios to runtime IO by instantiating multiple

compressed versions. Automated quantization searches for optimal bit-widths of a NN in the offline, often

on a per layer basis [257, 256, 267]. HAQ [257] adopts the reinforcement learning to find the best mixed

precision for each layer, similar with our multiple versions of shards. Compared with them, we do not need

any fine-tuning, which is time-consuming and we must make fine-grained decisions (i.e. per-shard) at run

time.

Dynamic configuration of DNNs changes model widths and/or depths in order to suit resource

constraints [229, 208, 265, 250, 268]. EdgeBERT [208] improves NLP energy efficiency under target latencies

via early exit. NestDNN [268] hosts one multi-capacity model on device and switches across submodels

depending on available resources. Assuming the whole model always held in memory, these systems miss the

opportunities of pipelined IO/compute and therefore incur high memory cost when applied to NLP. Similar

to them, we configure the NLP model architecture dynamically. Unlike them, we address the challenge of

loading large models through pipelining. Furthermore, our configuration is on the basis of individual shards

and adapts to both memory and latency constraints.

Pipeline parallelism for ML Pipelining has been extensively used to accelerate ML. Prior work mainly uses

it to scale out ML to multiple machines (overcome limit of single machine resource). Notably for training, PP is

used to partition a model or training data over a cluster of machines [237] for maximizing hardware utilization

by minimizing pipeline stalls using micro/minibatches [238], exploiting hardware heterogeneity [269], or

by adapting pipeline depths on the fly [270]. We share a similar goal of maximizing pipeline utilization

and minimizing bubbles. Unlike that they focus on a pipeline of computations (forward/backward passes

Chapter 4 Turbocharge Interactive NLP at the Edge 86

of different inputs) or network/computation, our pipeline consists of disk IO tasks and computation. Our

approach towards high efficiency is through adjusting IO workloads of model shards to the computation.

4.9 Concluding remarks

We present STI, a novel system for speedy transformer inference on mobile devices. STI contributes two

novel techniques: model sharding and elastic pipeline planning with a preload buffer. The former allows STI

to tune model parameters at fine granularities in a resource-elastic fashion. The latter facilitates STI for

maximizing IO/compute utilization on most important parts of the model. With them, STI reduces memory

consumption by 1-2 orders of magnitude while delivering high accuracies under a practical range of target

latencies.

Part II

Fostering security and privacy

87

Chapter 5

Minimum Viable Device Drivers for

ARM TrustZone

5.1 Introduction

Arm TrustZone is a trusted execution environment (TEE). It hosts small programs called trustlets, which

manage sensitive data against an untrusted OS. Designed for IO-rich client devices, TrustZone features

secure IO : the TEE maps an IO device’s physical resources – registers, interrupts, and memory regions –

to the TEE’s address space, therefore keeping them inaccessible to the OS. Trustlets can use secure IO

for: (1) storing credentials, keys, and biometric data [271, 272]; (2) acquiring sensitive audio and video for

processing [260, 273, 274]; (3) rendering graphical UI with security-critical contents [275]. In these use cases,

IO data moves between trustlets and IO devices, bypassing the OS; the trusted computing base (TCB)

consists of only the TEE and the underlying hardware.

Secure IO, however, remains largely untapped today. Popular TrustZone runtimes such as OPTEE and

Trusty have been developed for almost one decade [276, 277]; yet they still cannot access important IO – flash

storage, cameras, and display controllers [278]. The difficulty lies in device drivers. Implementing drivers –

even only supporting a small set of functions needed by trustlets – can be non-trivial. For instance, to read a

block from an SD card, a multimedia card (MMC) driver issues more than 1000 register accesses: configuring

the MMC controller, exchanging 5–6 commands/responses with the storage hardware, and orchestrating

DMA transfers. To do it correctly, developers need to reason about the bus protocols from over 200 pages of

MMC standards [279, 280] and the device’s register interface. They also need to deal with hardware quirks

or bugs [281].

88

5.1 Introduction 89

Full-fledged
device
drivers

Devices

Linux
Concrete sample
invocations

Drv/Dev
Interactions

Parameterized
invocations

Driverlet

write(regA,X);
write(regB,Y);
v=dma_alloc(30);
write(regC, v);
poll(RegD, “delay” 0);
…

Interaction Template
Log &

process

Ahead of time: Record At run time: Replay

TEE

“read X blks
from block Y”

“read 4 blks
from block 0”

Devices

Trustlet

Replayer

Figure 5.1: Overview of the Driverlet model. Our system records driver/device interactions from full-fledged
device drivers and automatically processes them into interaction templates. The results are lightweight
driverlets for serving secure IO in TEE.

How about reusing mature drivers from a commodity OS? That route is difficult as well. Mature drivers

are designed to be comprehensive. They are often large, structured as multiple abstraction layers. They

depend on a variety of kernel services. For instance, the MMC driver in Linux comprises 25K–30K SLoC

scattered in over 150 files [16]; it invokes kernel APIs such as the slab allocator, DMA, and CPU scheduling.

Developers could port the driver in two ways. (1) They move a driver and all its dependencies to the TEE

(i.e. “lift and shift”). This, however, is likely to move excessive, or even most, the Linux kernel code, adding

hundreds of K SLoC [282]. It violates TrustZone’s principle of a lean TCB. (2) Alternatively, developers may

refactor the driver, stripping code unneeded by the trustlets. To do so, they nevertheless have to reason

about the driver and device internals and port a variety of kernel APIs. Our experiences in Section 5.7 show

high efforts of reasoning, debugging, and trial-and-error.

Approach Since complex device drivers are overkills to simple trustlets, we advocate for a new way for

deriving the drivers: instead of reusing a mature driver’s code, we selectively reuse its interactions with the

device. The basic idea is shown in Figure 5.1. (1) Developers exercise a mature driver with sample invocations

that would be made by the trustlets, e.g. write 10 blocks at block address 42. (2) With symbolic tracing,

our recorder logs driver/device interaction events: register accesses, shared memory accesses, and interrupts.

(3) At run time, as the trustlets invoke the driver interfaces, the TEE replays the recorded interactions. At

a higher level, our approach resembles duck typing in the context of a device driver: upon user inputs, a

driverlet executes as a driver; upon device inputs, a driverlet reacts as a driver; then it must be as correct as

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 90

a driver.

Compared to driver porting, our approach requires less developer effort. Developers only reason about the

driver/device interfaces for recording, while remaining oblivious to their complex internals. Our approach

respects TEE’s security needs. The record runs are done on a developer’s machine, an environment considered

trustworthy [283]. The resultant recordings comprise only primitive events but no complex code. The replayer

is as simple as a few KSLoC and imposes stringent security checks. Section 5.8 will present a detailed security

analysis.

Challenges (1) Correctness. By following pre-recorded interactions, how does the replayer assure that

it faithfully reproduces the recorded IO jobs, e.g. having written given data to block address 42? This is

exacerbated by the device’s nondeterministic behaviors, e.g. it may return different register values or different

interrupts in response to the same driver stimuli. (2) Expressiveness. While the recorder exercises the driver

with a finite set of concrete inputs, e.g. {blkid=42, blkcnt=4}, can the recorded interactions be generalized to

cover larger regions of the input space, e.g. {0¡blkid¡0xffff, 0¡blkcnt¡32}?

Driverlet We present a system for recording and replaying driver/device interactions. For a given IO device,

the recorder produces multiple recordings, dubbed a driverlet. The driverlet offers satisfactory coverage of

IO functions as needed by the trustlets, e.g. to access flash storage at a variety of block granularities. A

driverlet thus serves as the device’s minimum viable driver.

A driverlet provides the same level of correctness guarantee as the full driver with the following insight:

a replay run is faithful when the device makes the same state transitions as in the record run. Based on

this insight, the recorder identifies a series of state-changing events from the recorded interactions. The

state-changing events are the “waypoints” that a faithful replay must precisely reproduce. As for other

interaction events not affecting the device state, the recorder emits constraints on them to tolerate their

deviations from the recording in a principled manner. This approach sets us apart from many record-and-

replay systems [284, 260, 285], where the replays must reproduce the recorded executions with high precision

including all the non-deterministic events.

From each record run, the recorder distills an interaction template, which, at a high level, specifies the

behavior envelope for the replay run. The template prescribes input events that the replayer should expect,

which may come from the trustlet program, the device, or the TEE environment; the template also prescribes

output events that the replayer should emit to the latter. By reproducing the sequence of input/output events,

the replayer is guaranteed to induce the same device state transitions as in the record run, hence reproducing

the IO jobs faithfully.

An interaction template is more expressive than a raw log of interactions in three ways. (1) Input events

5.2 Motivations 91

accept dynamic values that are not limited to the recorded concrete values. (2) Output events can be

parameterized, encoding the data dependency between the earlier inputs and the later outputs. (3) A driver’s

polling loops are lifted as meta events, each replayed as a varying number of input/output events until the

loop termination condition is met.

Results We implement our system with a suite of known techniques: taint tracking, selective symbolic

execution, and static code analysis. We apply our approach to a variety of device drivers previously considered

too complex to TEE: MMC, USB mass storage, and CSI cameras. With light developer efforts and no

knowledge of device internals (e.g. the device FSM specifications), our recorder generates driverlets, each

comprising 3-10 interaction templates and 50-1500 interaction events. The replayer itself has minimum

dependencies on the TEE; it is in around 1000 SLoC, which are three orders of magnitude smaller than the

full drivers. The driverlets incur modest overheads: on RaspberryPi 3, a low-cost Arm platform, trustlets can

execute 100 SQLite queries per second (1.4× slower than a full-fledged native driver) and capture images at

2.1 FPS from a CSI camera (2.7× slower). They provide practical performance to use cases such as secure

storage and surveillance.

Contributions This paper contributes:

• A new model called the driverlet for reusing driver/device interactions via record and replay. The driverlets

generalize the recordings as interaction templates, ensuring sound replay while accepting new inputs beyond

those being recorded.

• A toolkit for automatically exercising a full driver and generating driverlets.

• Case studies of applying driverlets to a variety of complex device drivers. The resultant driverlets are

immediately deployable to TrustZone. With them, the TrustZone TEE gains access to these devices for the

first time to our knowledge.

By fixing a long missed link in TrustZone, driverlets enable holistic, end-to-end protection of the TrustZone’s

IO.

5.2 Motivations

5.2.1 Example trustlets of secure IO

The following use cases motivate our design. In these cases, TEE protects the IO, which prevents the OS

from observing sensitive IO data and tampering with the data.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 92

• Secure storage. Trustlets manage sensitive data, such as credentials, fingerprints, and user emails. The

trustlets store and retrieve the data by using an in-TEE flash hardware such as multimedia cards (MMC) [286]

and embedded MMC (eMMC) [287].

• Trusted perception. Trustlets ingest sensitive data from the sensor hardware protected within the TEE. A

particularly interesting case is video, which often contains privacy-sensitive contents and requires non-trivial

camera drivers [288].

• Trusted UI. Trustlets render security-sensitive contents, such as cloud verification codes and bank account

information; the UI reads in user inputs such as key presses and touches. Both the display controller and

input devices are isolated in TEE [275, 289].

IO needed by today’s trustlets The above use cases all rely on trustworthy device drivers, for which we

exploit the following opportunities.

• Trustlets are less sensitive to IO performance. Today’s trustlets are mostly deployed on mobile devices and

tolerate overhead [271]. For instance, those managing user credentials or email contents do not need high

storage throughput; trustlets for surveillance can be served with median to low frame rates and resolutions

(e.g. 720P at 1FPS [290, 291]).

• Trustlets can be served with simple IO device features. In the examples above, trustlets only need the

write/read of flash blocks, acquisition of video frames, and rendering bitmaps or vector paths to given screen

coordinates. They are unlikely to need complex device features, e.g. hotplug of flash cards.

• Trustlets may share IO devices at coarse-grained time intervals. Concurrent trustlets are far fewer than the

normal-world apps. Even when multiple trustlets request to access the same device, their requests can be

serialized without notable user experience degradation. Examples include serializing accesses to a credential

storage and serializing drawing requests to a trusted display.

The above observations on existing trustlets motivate our design choice: trading IO performance and fine-

grained sharing for driver simplicity and security. As future trustlets may be more performance-demanding,

our approach may fall short; we will discuss the limitation in Section 5.3.4.

5.2.2 Prior art

Mature device drivers They are often overkills to trustlets because of their following design choices. (1)

Optimal performance. For instance, an MMC driver tunes bus parameters periodically (by default every

second). It implements a complex state machine for handling corner cases, so that the driver can recover from

runtime errors with minimum loss of work. (2) Device dynamism. The drivers support full device features

5.3 Approach overview 93

as permitted by hardware specifications, e.g. runtime power management [292] and device hotplug [293].

(3) Fine-grained sharing. A driver maintains separate contexts for concurrent apps. The driver multiplexes

requests at short time intervals. Some drivers, e.g. USB, implement sophisticated channel scheduling for

optimizing throughput and meeting request deadlines.

Existing approaches The following approaches may be used to bring drivers into TEE.

1. Lift and shift. One may bundle a full driver with all its kernel dependencies and port them to the

TEE [282, 205]. While easing porting, this approach often adds substantial code (tens of KSLoc) as well as

bringing vulnerabilities to the TEE.

2. Trim down. Developers may carve out only needed driver functions from the kernel, which has been done

on simpler drivers, e.g. UART [294]. On non-trivial drivers, however, the approach is impractical because the

drivers have deep dependencies on complex device configurations and kernel frameworks. Section 5.8 presents

our own experiences on trimming three drivers.

3. Synthesis. While it is possible to synthesize some drivers from scratch (assuming the device FSM is fully

known), this approach requires non-trivial efforts. Developers have to write FSM specifications [295], develop

code templates [296], and write glue code. In case of secure IO, we deem such synthesis efforts unwarranted,

because trustlets only need simple IO functions and the source code of a mature driver is already available.

4. Partitioning. One may partition a full driver, executing only the security-sensitive partition in the secure

world and leaving the remainder in the normal world [297, 298]. This approach, however faces two obstacles.

First, it is built upon the Trim down approach, where the developer must manually carve out code pieces and

resolve kernel dependencies. Second, it is difficult for the developer to reason about the security properties at

the interface between secure/insecure partitions, where notorious attacks are common [299].

5.3 Approach overview

5.3.1 System model

SoC hardware We assume an IO device instance exclusively assigned to the TrustZone TEE. This is feasible

as a modern SoC often has multiple independent instances of a device, e.g. 4–6 MMC controllers [150, 151, 300].

Through an address space controller (TZASC), the SoC maps selected physical memory and device registers

to the TEE.

Targeted IO devices We focus on IO devices that have strong use cases in TEE. These devices manipulate

sensitive IO data while lacking end-to-end data encryption. Examples include USB storage, video/audio

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 94

devices, and display controllers. We make the following assumptions.

• Device FSM. A device operates its internal finite state machine (FSM), which encodes the driver/device

protocol and decides the device behaviors [301, 302, 303]. The FSM is reactive to requests submitted by a

driver, e.g. read/write flash blocks; it does not initiate requests autonomously. During request execution, the

device state transitions are independent of IO data content, e.g. the state of a MMC controller is unaffected

by the block contents being read.

We are agnostic to FSM internals: we only assume a device to have an internal FSM, but not the knowledge

of the FSM’s specifications. This is because devices often have unpublished FSMs with states not exposed to

software explicitly.

• Driver/device interactions. The driver’s interfaces to a device include registers, shared memory, and

interrupts. The interactions are a set of input and output events from the driver’s perspective. The input

events include reading the device registers/shared memory, receiving interrupts from the device, and requesting

services from the environment (e.g. DMA memory allocation); the output events include writes to the device

registers and the shared memory.

• State-changing events. They are input/output events used by a driver to shepherd the device FSM

executions. Figure 5.2(a) shows a simple example: the output events prepare a buffer and kick off the FSM

execution of command 0x10; an input event, i.e. read of interrupt (IRQ) status, reflects the FSM execution

outcome; seeing the success status (0x1), the driver de-asserts the IRQ by writing 0x0 to the status register

with an output event. Specifically, we define state-changing events as follows:

1. All output events. They directly change the device state, kick off a hardware job, etc.

2. A subset of input events, including interrupts, service responses from the environment, as well as

register/shared-memory reads that have causal dependencies with at least one subsequent output event.

Note that we define state-changing events broadly, so that we err on the side of falsely assessing a successful

replay as a failure, rather than a failed replay as a success. The former can be overcome with re-execution

while the latter will cause silent errors. Therefore, our assessment of replay success is sound. Our system

automatically identifies the state-changing events, as will be described in Section 5.4.

The gold driver We assume that the full driver implements sufficient state-changing events, so that it can

assess if the device has finished the state transitions needed by given requests. We do not rule out other bugs

in the driver, of which consequences will be discussed in Section 5.8.

5.3 Approach overview 95

Driver recording

Single state

transition path

RegBufAddr=

0x4200

RegBufLen=

0x10

RegCmd=

0x10

Device FSM

Wait for

Buf Len

Wait for

Buf Addr

Wait for

CMD

CMD

Compl.

Wait for

IRQ clear

RegBufAddr=

0x4000

RegBufLen=

0x16

RegCmd=

0x10

Correct replay Incorrect replay

RegBufAddr=

0x4200

RegBufLen=

0x20

RegCmd=

0x10
Input

events

Output

events

(CMD exec…)

(a) (b) (c)

IRQ

IRQStatus=

0x1

IRQ

IRQStatus=

0x2

IRQStatus=

0x0

IRQStatus=

0x0
(Device Reset)

IRQ

IRQStatus=

0x1

Figure 5.2: A motivating example of the driverlet approach, which captures and reuses a single device state
transition path. Device FSM is implicitly assumed. All input/output events listed are state-changing events.
Underlined values are generalized in a replay. Highlighted input events in a replay are expected to be matched
exactly in a recording.

5.3.2 Our approach

Our idea is to selectively reuse driver/device interactions induced by device state transitions. The core

mechanism is as follows.

• Design prerequisite. We require that a device always follows the same path of state transitions to finish a

given request. As such, we configure the driver so that it constrains the device’s state space: disabling irq

coalescing, concurrent jobs, and runtime power management.

• To record. The driver is invoked with a concrete request, e.g. to read 16 blocks starting from block 42.

In this process, the recorder logs the driver/device interactions, including accesses to registers, the DMA

memory, and interrupts.

• To replay. The recorded log is generalized as an interaction template. The template strikes a balance

between simplicity and expressiveness. It dictates a linear sequence of input/output/meta events, which are

the replayer’s minimum activities to fulfill the recorded IO jobs. The template accepts dynamic inputs (from

program/environment/device) which are much broader than just the logged input values.

Section 5.4 and 5.5 will present the mechanism in full.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 96

5.3.3 Why driverlets work

We discuss three key questions tied to the driverlet design: how does a driverlet assure the correctness? how

expressive is it? what happens if it fails?

A driverlet is as correct as a gold driver, as long as the replay is faithful. For the replay to be

faithful [284], the replayer observes the same sequence of state-changing events as the gold driver observes at

record time. This can be proven in two steps. 1) The recorded state-changing events constitute a device

state transition path; a faithful replay drives the device through the same path, which is equivalent to the

recorded one as far as the device FSM is concerned. 2) If there exists an alternative path undetected by a

driverlet, e.g. for a write request the same state-changing events are observed but data is silently lost, the

path would also be undetected by the gold driver; this means the recorded gold driver does not implement

sufficient state-changing events for inferring device states, contradicting to our assumption (§5.3.1).

Figure 5.2 (b) shows a faithful and correct replay: all the state-changing events match those in the record

run (a), except for the parameters in the output events.

A driverlet is as expressive as a subset of full driver functionalities. The subset of functionalities is

encoded in device state transition paths, recorded as sequences of state-changing events. Through generalizing

the output events, a driverlet can vary the stimuli to the device FSM while still staying on the same state

transition paths. It retains the capabilities to access arbitrary IO data but must access the data in ways

specified by the recorded paths, e.g. accessing at the granularities of 1, 8, or 32 flash blocks. It leaves out

other driver functionalities, such as accessing data at arbitrary granularities, optimizations for large transfers,

and dynamic power management.

A driverlet deals with state divergence by device reset. Should the replayer observe any state-

changing event mismatching the recording, it deems a divergence in the state transition and a failure in IO

jobs, hence an incorrect replay. Figure 5.2 (c) shows the example where the IRQ status (0x2) mismatches the

recording (0x1). Fundamentally, such divergences happen because the device FSM has received unexpected

stimuli. We identify three major sources. (1) Residual states left from prior IO jobs. For example, if a

device’s FIFO is yet to be flushed, the replayer may read different numbers of empty FIFO slots at different

times. (2) Fluctuation in chip-level hardware resources such as power, clock, and memory bandwidth. (3)

Unexpected hardware failures. For example, a media accelerator loses the connection to the image sensor. To

prevent divergences (cause 1 above) and recover from transient failures (cause 2 and 3), the driverlet resets

the device before executing each template and upon the occurrence of a divergence. Section 5.8 will discuss

the efficacy of recovery.

5.4 Record 97

5.3.4 Limitations

First, driverlets’ simplicity hinges on the data-independence of device FSM. As such, driverlets give up on

devices where state transitions depend on IO data content, a behavior commonly seen on network interface

cards (NICs). An example is BCM4329 [304], a WiFi NIC that implements 802.11 MAC in its firmware. Its

Linux driver sends different commands to the NIC based on the header content of received WiFi packets.

Fortunately, protecting NICs with secure IO is not as crucial as other devices, because security-sensitive

network traffic through NIC can be protected with end-to-end encryption.

Second, driverlets’ correctness relies on the full driver being gold (§5.3.1). The assumption is based on

our empirical observation on the drivers in the mainline Linux. We, however, do not certify the full drivers.

Doing so would require involving the device and driver vendors.

5.4 Record

How to use To generate a driverlet, e.g. for MMC, developers launch a record campaign, exercising the driver

in multiple runs. In each run, the developers supply a different sample input (e.g. blkcnt = 1, rw = 0); from

the run, a recorder produces an interaction template. Once done, the recorder signs the templates which are

thereafter immutable, and reports a cumulative coverage of the input space, e.g. 0 < blkcnt < 32, rw = {0|1}.

Note that the sufficiency of coverage is determined by the developers. If developers see a desirable input v

uncovered, they do a new record run with input v to extend the input coverage. They conclude the campaign

upon satisfaction of the coverage.

5.4.1 Problem formulation

Record entry is the entry point of a recording, which requests the driver to complete an IO job. A record

entry may invoke multiple functions in a driver, e.g. a series of ioctl() to acquire an image frame.

Recorded interfaces include the following.

• Program ↔ Driver : the interface seeds the recording. It includes record entries invoked with concrete

arguments, e.g. {blkcount = 16, blkid = 0} .

• Environment ↔ Driver : it includes a number of kernel APIs invoked by a driver. Examples include DMA

memory allocation, random number generation, and timekeeping.

• Device ↔ Driver : the interface is the frontier of driver/device interaction. It includes access to device

reigsters, descriptors in shared memory, and interrupts.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 98

Events Description

Input

V=read(I, C, A)
Read A bytes from register/shm address I
at V with constraint C

V=dma_alloc(C=Null, A)
I=dma_alloc from env. Allocate A bytes of
DMA memory at V

V=get_rand_bytes(C=Null, A)
I=get_rand_bytes from env. Get A random
bytes at V

V=get_ts(C=Null, A)
I=get_ts from env. Get timestamp of A
bytes (usually 4 or 8) at V

wait_for_irq(C=Null, A) Wait for an interrupt from IRQ number A

Output write(I, V) Write V to a register/shm address I

Meta

delay(A) Delay for N microseconds

poll(I, E, Cond)
Poll from register/shm address I, execute
loop body E until condition Cond is met

Table 5.1: Events in interaction templates for replay. They are generic primitives for all driverlets.

Record outcome: interaction templates A template exports a callable interface to the replayer. The

interface has the same signature as a record entry. The template comprises a sequence of events in Table 5.1:

• An input event V =< I,C,A > expects an input V from the interface I; I can be the address of a device

register, a shared memory pointer, or an environment API (e.g. dma alloc). When the expected value V is

specified, it must satisfy the constraint C; otherwise the replayer will reject the input event as a replay failure.

The argument A specifies the input’s properties, e.g. expected input length; it can be concrete or a symbolic

expression of an earlier input.

• An output event < I, V > writes a value V to an interface I. V can be concrete or a symbolic expression of

an earlier input.

• A meta event is delay or poll < I,E,Cond >. The latter polls from an interface I until a termination

condition Cond is met. The loop body E is a series of input/output events.

We select these events as they are generic primitives in the kernel driver framework and are applicable to all

driverlets. For debugging ease, each event is accompanied by its source location in the full driver.

5.4.2 Key challenges & solutions

We next discuss automatic generation of interaction templates, which must handle input variation while still

maintaining correctness. We have addressed three challenges.

Challenge I: How to discover causal dependencies between input/output events? This is to

identify state-changing events (§5.3.3) and discover constraints, thus to reject inputs that will compromise

replay correctness, i.e. deviation from the correct device state transition path. Naively matching concrete

values from record runs does not work because variations in input values may not indicate state changes. For

instance, input values from a FIFO statistics register are time-dependent and hence do not always correspond

5.4 Record 99

if (blkcnt <=8) Discover constraints

Actual path

dat = dma_alloc(4096);
dat2= dma_alloc(4096);

Alternative, symbolic
executed path.

Pruned on divergence.

dat = dma_alloc(4096);
blkid &= ~0x7;
writel(SDARG, blkid);
while(readl(SDCMD) != 0) {udelay(10);}

Taint input values blkcnt=6,blkid=1

Symbolize & fork

Collect taints

Extract loop

blkcnt=read(prog, “<=8”, 4);
blkid=read(prog, “”, 4);
write(SDARG, (blkid & (~0x7)));
poll(SDCMD, “udelay(10)”, “!=0”);

Interaction Template

1

2
3

3

2

1

Figure 5.3: An example of our system extracting constraints, data dependencies, and polling loops into a
template.

to a device state change. Instead, it’s whether subsequent output events causally depend on the FIFO register

value that indicates a state change.

Solution: Selective symbolic execution Our idea is to study whether variations in input values

impact the driver output events, i.e. a causal dependency. The rationale is the driver, by design, always

reacts to state-changing inputs and decides output events correspondingly. An example is the FIFO statistics

register mentioned above: finding the FIFO watermark too high, the driver writes to a configuration register

to tune the bus bandwidth which changes the device state.

To this end, the recorder uses selective symbolic execution (also called conclic execution [305]) to explore

the driver’s multiple execution paths and assess if they lead to different device state transitions. To avoid

path explosion, the recorder prunes as soon as there is divergence in the output event sequences. This is

shown in Figure 5.3. As the driver executes with a concrete input blkcnt = 6 and encounters a conditional

branch (blkcnt ≤ 8), the recorder forks the driver execution, explores both (one actual path with concrete

blkcnt = 6 and an alternative path when blkcnt > 8), and compares their subsequent device state transitions.

It discovers that the alternative path has an additional DMA memory allocation, which is a divergent input

event as defined in §5.3.1; the recorder hence concludes that this path’s state transitions are different and

prunes it. Due to such causality, it flags the input event of blkcnt as a state-changing event. Throughout the

execution, the recorder flags state-changing events and collects path conditions, e.g. blkcnt ≤ 8. These path

conditions serve as the constraints that input events must satisfy to stay on the same device state transition

path. Section 5.6.1 will present implementation details.

Challenge II: How to discover data dependency between input/output events? Input values may

be processed and used as an argument of another input event or as an output value by the driver, resulting

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 100

A=dma_alloc(31);
B=dma_alloc(31);
C=dma_alloc(31);
/*alloc. data pages*/
pA=dma_alloc(4096);

…
/* chain A,B,C */
write(A+0x4, B);
write(B+0x4, C);
write(DMA_ADDR, A)
/*link data pages*/
write(A+0x8, pA);

…

Interaction template

(a) DMA descriptor topology of
an MMC controller

Desc_A Desc_B Desc_C

(b) Template reconstructs
such pointer topology

DMA_ADDR Device Register

Shared Memory

Page_A Page_B Page_C

DMA
descriptors

Data
pages

Figure 5.4: To reconstruct a complex descriptor topology (a), the driverlet mandates a fixed number of DMA
allocations in a template (b).

in data dependencies. For instance, upon the notification of an incoming image frame of size S, the driver

requests a DMA memory region of size S, and writes the region’s aligned address to a device register.

Solution: Dynamic taint tracking The recorder discovers data dependencies with dynamic taint

tracking: it taints all input values at all interfaces, propagating the taints in driver execution and accumulating

both arithmetic and bitwise operations on the taint value until the taints reach their sinks. For each taint sink,

the recorder replaces the concrete value with a symbol as the taint source with the accumulated operations

on the symbol. Figure 5.3 shows an example. The recorder tracks blkid and discovers its taint sink SDARG

and a bitwise operation (blkid& =∼ 0x7) for alignment. It hence emits an output event with a blkid symbol

plus the operation.

We also face challenges from higher-order dependencies. As shown in Figure 5.3, the driver allocates more

descriptors when blkcnt > 8. Depending on the number of descriptors, a driver, per the device protocol,

often links descriptors as pointer-based structures such as lists or arrays of lists; it may further optimize the

structures based on descriptor addresses, e.g. coalescing adjacent ones. Figure 5.4(a) shows the descriptor

topology for an MMC controller (details in Table 5.2). For every eight blocks of a request the driver allocates

a 4K page and associates a descriptor with the page; it links them via a physical pointer field in the descriptor

and writes the address of the head to DMA ADDR register.

While it may be possible to extract such logic with some device-specific heuristics, such heuristics is likely

brittle; both the recorder and the replayer will be more complex in order to encode and interpret the logic.

For simplicity, the recorder sets DMA allocation as state-changing, mandating that a template must allocate

the same number of descriptors as in the record run. The interaction template in Figure 5.4 (b) shows a

faithful reconstruction of the descriptor topology: the template allocates a fixed number of descriptors, and

chains them by writing their symbolized addresses to the corresponding descriptor fields.

5.5 Replay 101

Challenge III: How to record polling loops? A major source of nondeterminism is polling loops. For

example, a driver waits for a command to finish by polling a status register; the number of register reads

depends on the timing of command execution. While conceptually simple, a polling loop is known difficult to

dynamic code analysis, as it can generate many or even infinite alternative executing paths [306]. To explore

all paths is impractical.

Solution: Static Loop analysis The polling loops in the driver/device interfaces are often succinct,

local, and have a clean code structure. For example, the RPi3 MMC driver implements polling loops by

either using standard register polling functions (e.g. readl poll timeout) or a short while loop (¡10 SLoC).

With static code analysis [307], we find the polling loops and lift each loop as a standalone meta event, which

preserves the loop condition and the input/output events inside the loop body. This allows the replayer to

execute a varying number of input/output events for a loop.

5.5 Replay

Overview In TEE, a trustlet statically links the replayer and the compressed interaction templates as a

library, which constitute “driverlets” for target devices. To use a driverlet, the trustlet invokes the callable

interfaces exposed by the interaction templates (§5.4.1). Under the hood, the replayer dynamically selects a

template, instantiates it, and executes its input/output/meta events; the replayer resets devices between

template executions and upon any device state divergence.

Selecting an interaction template The replayer decompresses the interaction template package within

TEE. Upon trustlet invocation, the replayer selects one template that has all constraints satisfied by the

trustlet inputs. By design, no two templates can be selected simultaneously; otherwise they should have been

merged by the recorder on the same state transition path (§5.4.2). If no template is selected, the replayer

reports an error that the given inputs are out of coverage.

Instantiating the template The selected interaction template preserves the symbolized input/output

values and refers to them by unique names. Doing so parameterizes the new inputs supplied by the trustlet

and allows them to reconstruct the recorded data dependencies. For physical device addresses, the replayer

replaces them with newly mapped TEE virtual addresses. It updates the callbacks of all events, pointing them

to the respective TEE APIs. Most events do not need special support from the TEE kernel. For instance,

read and write, which constitute over 90% of all events, are directly dispatched to TEE’s memory read/write.

Meta events are implemented as simple loops and delays. Only input events at the Env↔Driver interfaces

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 102

need more environment support, e.g. DMA allocation backed by a CMA pool. Luckily, they are often already

implemented by existing TEE kernels, which we will describe in Section 5.6.

Executing events The replayer uses a single-threaded, sequential executor. It maintains two contexts: a

normal context corresponds to the kernel context in the original driver; an interrupt context corresponds

to the IRQ handler, where only a minimal part is handcrafted to recognize IRQ sources and the rest is for

replaying. The scheduling of two contexts is triggered by the wait for irq input event. The design constrains

the device state space in the same way as a record run by limiting hardware concurrency (§5.3.2), hence

preventing many potential state divergences.

The executor is transactional. In a successful execution, all input events’ constraints must be satisfied,

including timely interrupts; it returns to the trustlet the requested data, if any. Otherwise, it soft resets the

device and re-executes the template, which we next discuss.

Resetting device states The replayer soft resets the device under two circumstances: 1) between interaction

template executions, 2) upon device state divergence. The soft reset brings the device back to a clean-slate

state – as if the device just finishes initialization in the boot up process. The soft reset recovers from transient

device errors. In case of persistent divergence despite of soft reset, the executor aborts and dumps the call

stack; it does so by reporting all previously executed events and their recording sites (source files and line

numbers). Section 5.8 will evaluate the reset efficacy and its overhead.

Self security hardening The replayer hardens itself by implementing a list of stringent security measures:

it verifies recording integrity by developers’ signatures; it only takes inputs from the trustlet; it does pervasive

boundary checks (e.g. device physical address) on interaction templates and trustlet inputs to mitigate

attacks exploiting memory bugs; it eliminates concurrency to avoid race conditions. Section 5.8.2 will present

a security analysis.

5.6 Implementation

5.6.1 Recorder

We implement the recorder in 2K SLoC C code based on S2E [308], a popular symbolic execution engine. We

choose it because it provides in-house support for analyzing Linux kernel drivers and is based on QEMU [170],

whose dynamic binary translation (DBT) engine enables us to trace driver execution at the instruction

granularity. We use existing LoopDetector S2E plugin to extract the polling loops. We next focus on the

recorder implementation details of selective symbolic execution and dynamic taint analysis, which primarily

relies on DBT. We omit the details of DBT lingoes; an interested reader may refer to [170].

5.6 Implementation 103

Matching state transition paths As described in Section 5.4.2, we first symbolize all input events,

including arguments from record entries, and register/shared-memory addresses (e.g. 24 addresses for MMC,

which we will describe shortly in Section 5.7). We do so by first annotating their corresponding kernel sources,

each with a custom CPU instruction. When the DBT engine translates the custom CPU instruction, it traps

the execution and examines any path condition on the symbol; if any, the recorder logs the path condition

and forks two new translation blocks, one as the current execution path with the concrete value and the

other as the alternative symbolized execution path; Section 5.7 will present the logged path conditions. The

recorder maps the state transition paths into the sequence/chain of translation blocks. As long as record runs

follow the same sequence of translation blocks, the recorder deems them undergo the same state-changing

events and hence are on the same state transition path. To ensure a complete and correct driver execution of

the DBT engine, we supply it with concrete input values of device registers, which are collected from the

of a RPi3 running the same record campaign side-by-side. A similar practice is done by Charm [309]. To

save time and avoid path explosion, the recorder emulates kernel API invocations which are input events

at Env↔Driver interface, e.g. dma alloc. The recorder does so by checking the function addresses being

translated; upon meeting them, the recorder logs their arguments (e.g. DMA allocation size) and returns

directly with a symbolized result (e.g. DMA address, timestamp), instead of translating the actual kernel

functions as-is.

Collecting input event taints To implement dynamic taint analysis, we interpose on the instruction

translation, similar to [310]. The recorder inserts Tiny Code Generator (TCG) IR for each translated

instruction which checks the taint status of source operand. The recorder applies taint propagation rules

similar to [311]; depending on the rule, it updates the taint status for the destination operand. Meanwhile,

the recorder logs the taint operations as its corresponding C code for debugging ease. In practice, we have

found an input event is usually tainted for only a few times before reaching its sink as an output event, which

is often a device register; Section 5.7 will present them.

5.6.2 Replayer

We implement the replayer in 1K SLoC within OPTEE-OS [14], whose key responsibility is to execute the

replay events in an interaction template with new, dynamic values at runtime. For simplicity, we emit the

recorded interaction templates as standalone header files, consisting of human-readable input/output/meta

events for debugging ease; each event is encoded as a function, whose signature is listed in Table 5.1. For

instance, a read event from SDCMD register expecting a 0x0 value manifests as read(SDCMD, "=0x0", 4). We

hence statically compile the templates and links them with the replayer. The replayer implements the events

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 104

as follows. It implements read/write as uncached memory access to ensure device memory coherence; it

implements poll/delay events as while loops, which continuously check against the termination conditions or

timeout. For the rest events that are more complex, the replayer leverages the existing OPTEE-OS facilities:

for DMA allocation, it uses the default OPTEE-OS memory allocator (i.e. malloc), which already allocates

contiguous pages; OPTEE-OS also implements hardware RNG to for random bytes and RPC to normal world

for getting timestamps.

5.7 Experiences

We put ourselves in the shoes of developers and apply our system to a variety of devices: MMC, USB, and

the CSI camera. We select them because they have important use cases of secure IO and their drivers are

complex and known difficult for TEE. For each driverlet, we as developers write only 20 SLoC in C as a

record campaign to exercise the driver execution; we also record the device initialization process in the driver

loading phase.

SoC Raspberry Pi Model 3B+, 1GB Normal OS Linux 4.14
CPU 4x Cortex-A53@1.4 GHz Secure OS OP-TEE 3.9

 MMC Transcend 16GB microSDHC Class10 UHS-1 Memory Card

USB Intenso GmbG Micro Line (8GB) VID:0x8644 PID:0x8003

CSI Cam Arducam 5MP Camera with OV5647 sensor

Table 5.2: The test platform and peripherals used.

Our test platform is RPi3; Table 5.2 shows the details of the board and peripherals. We choose RPi3

because of its popularity, good support by open-source TEE and the QEMU emulation. As we will show,

despite RPi3’s high popularity and an active developer community, building TEE drivers with existing

approaches is nevertheless challenging.

For each driver, we report our findings and answer the following questions:

• How complex is the driver and why is it complex?

• With hindsight, what are discovered by our toolkit and what interactions are recorded?

5.7.1 MMC

Driver overview

MMC is a common interface to off-chip flash, e.g. SD cards and eMMC. The Linux MMC framework supports

more than 20 MMC controller models with diverse interfaces and poor documents. The framework abstracts

the common driver logic as a “core” with 15K SLoC in 40 files; the driver for a concrete MMC controller

5.7 Experiences 105

plugs in the MMC core via a wide interface, including 44 callbacks implemented in four structs. The driver

itself often has a few K SLoC. All combined, the MMC framework implements an FSM with thirteen states

and hundreds of transitions among them. The FSM supports rich features, including streaming access of

blocks and medium hotplug.

Recording outcome

replay_mmc(rw, blkcnt, blkid, flag, buf)

Events RW_1 RW_8 RW_32 RW_128 RW_256

Input 24/27 24/27 27/30 39/42 55/58

Output 17/14 17/14 32/29 76/73 150/147

Meta 3/3 3/3 3/3 3/3 3/3

Table 5.3: Breakdown of 10 interaction templates of MMC given the replay entry replay mmc. RD/WR
templates of same blkcnt merged in one column (e.g. RW 1), separated by “/” (e.g. 24, 27 input events for
RD 1, WR 1 respectively).

We choose to implement a record campaign of 10 requests: read/write of 1, 8, 32, 128, 256 blocks. We

reserve the 15-th DMA channel for recording. The replay entry, 10 automatically generated templates and

their events breakdown are listed in Table 5.3. Each template covers the full range of 31M blocks (512 bytes

each) available. We have found templates are similar with each other, e.g. RW 8 and RW 32 only differ by 2

DMA allocations, due to additional descriptors.

Post analysis

Our system has observed two distinct state transition paths w.r.t different flags. (1) if O DIRECT is

specified, the full driver shifts individual words of data blocks from/to the SDDATA register. (2) otherwise

the driver uses DMA transactions to move the data. Notably, even when using the DMA transaction, the

driver moves the last 3 words via SDDATA on read path. This seems to work around an undocumented bug

in the SoC’s DMA engine, which cannot move the last few words of a transfer.

Each interaction template involves 15 different registers out of 24 total registers of MMC controller and a

system-wide DMA engine, in three groups: 8 for configuring the controllers, 5 for sending MMC commands,

and 2 for controlling the DMA engine. Key symbolized input values are encoded into 32-bit words written

to 4 different registers, as shown in Table 5.4. Notably, including read/write, five different SD commands

(CMD17, 18, 23, 24, 25) are sent to the SDCMD register; CMD23 (set block count) is used on the read path

but not write path. Our system has also gathered taints on blkid by Linux block layer for 8-block alignment.

We tried manually feeding misaligned blkid, which has caused state transition divergence.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 106

Input Constraints Taint sink & operations

rw =0x1(RD)||0x10(WR) SDCMD = ((0x8000) | ((rw) << 6))

blkcnt ≥0 && ≤0x8 && ≤0x400 SDHBLC = blkcnt

blkid ≥0 && ≤0x1df77f8 SDARG = blkid & (~0x7)

Table 5.4: Key constraints and taint operations of inputs on the RW 1 template of the MMC driverlet.

5.7.2 USB

Device overview

USB serves as a common transport between CPU and diverse peripherals, e.g. keyboards, and flash drives. A

typical USB controller exposes more than 100 registers. A device driver programs them to initiate transactions

and dynamically schedule them on multiple transmission channels; the controller translates each transaction

into up to 12 types of packets on the bus. Through 21K SLoC in 82 files, Linux kernel fully implements the

driver FSMs, which are big in order to accommodate rich features (e.g. dynamic discovery of bus topology)

and various runtime conditions (e.g. device speed mismatch, bus checksum errors).

We focus on USB mass storage for its significance to TEE’s secure storage. The driver accepts block

requests, translates the requests to various SCSI commands, and further maps the commands to USB bulk

transactions.

Recording outcome

We apply the same record campaign as MMC for 10 read/write requests. We reserve the 1st transmission

channel. We disable Start-of-Frame (SoF), which is used to schedule USB transactions proactively for

isochronous USB devices and is unfit for our model (§5.3.1).

For the record campaign, our system emits 200-1500 events for 10 interaction templates, each covering the

whole 15M blocks of the USB storage. Interestingly, the number of events are identical in a read template

and the corresponding write template; it appears only some output values to certain descriptors differ.

Post analysis

Our system has captured non-trivial interactions. To write blocks smaller than one LBA (4KB), the driver

reads back the entire LBA, updates in memory, and writes back. The driver also selects the best SCSI

commands: there exist five variants of a SCSI read/write command, which have different lengths and can

encode different ranges of LBA; the driver picks the 2nd shortest ones (i.e. read 10, write 10) just long enough

to encode the requested LBA addresses.

5.7 Experiences 107

Our system identifies 14 USB controller registers out of the 64 KB register range in three categories: 5

manage USB peripheral states (e.g. device power state); 3 manage the controller itself (e.g. interrupts); 6

manage transmission channels (e.g. DMA address & size). Unlike MMC, the USB driver communicates

with the device primarily via two descriptors: one command block wrapper (CBW) for SCSI commands and

the other for querying command status (CSW). The data dependencies are similar to MMC, except aligned

blkid and blkcnt are written to CBW instead of registers. Our system identifies two statistic inputs which

are unseen in MMC: a monotonic command serial number and an HFNUM register read. As they are not

state-changing, our system does not impose any constraints.

5.7.3 Camera

Device overview

On a modern SoC, CPU typically offloads video/audio processing to accelerators, which communicate with

CPU primarily via messages backed by shared memory. We studied VC4, the multimedia accelerator of

RPi3. According to limited information, VC4 implements key multimedia services, including camera input,

display, audio output. It communicates with CPU via a complex, proprietary message queue called VCHIQ.

Using VCHIQ as a transport, each media service further defines its message format and protocol, e.g. MMAL

(MultiMedia Abstraction Layer) for cameras. The details of VCHIQ, as well as internals of VC4, remain

largely undocumented.

We focus on one media service essential to secure IO: image capture from a CSI camera (a pervasive

image sensor interface used in modern mobile devices).

replay_camera(frame, resolution, buf, buf_size, img_size)

Events OneShot ShortBurst LongBurst

Input 34 61 331

Output 36 54 234

Meta 5 22 115

Table 5.5: Events breakdown of 3 interaction templates under a given resolution for the CSI camera with the
replay entry replay camera.

Recording outcome

We choose the record campaign: capture 1, 10, 100 image(s) at 720p, 1080p, 1440p.

For the record campaign, as listed in Table 5.5, our system emits 3 interaction templates (OneShot,

ShortBurst, LongBurst for capturing 1, 10, 100 images(s) respectively) of 75-680 events. Templates cover

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 108

all resolutions supported by the camera, and a practical range of frames. Unlike both MMC and USB, the

template’s input/output events are mostly accessing shared memories.

Input Constraints Taint sink & operations

resolution = 720p || 1080p || 1440p (queue+0x239c0) = resolution

buf_size >= img_size (queue+0x24000) = buf_size

img_size >= 0 && =(queue+0x5630)
(queue+0x5e86) = img_size,
(pg_list+0x0) = img_size

pg_list != NULL (queue+0x24198) = pg_list

queue != NULL MBOX_WRITE = queue & ~(0x3fff)

Table 5.6: Key constraints and operations of input values for the camera driverlet. queue and pg lsit are
DMA addresses allocated from dma alloc.

Post analysis

Of the templates, our system identifies only three registers in use. Two of them are a pair of “doorbells” for

inter-processor interrupts between CPU and VC4; only one MBOX WRITE register acts as a sink for queue,

which points to base address of message queue. We summarize the discovered dependencies in Table 5.6. A

notable constraint is for img size input value. It is assigned by VC4 and is sent back to VC4 in a message

initiating bulk receive procedure; later when the procedure finishes, VC4 passes another input value indicating

successful transmission size at queue+0x5630, which img size must exactly match.

Catering to concurrent media services, the message queue has a sophisticated structure. It is divided into

many 4KB slots, each assigned either to CPU or VC4 for enqueueing messages independently. Each slot

holds multiple messages, ranging from 28 bytes to 306 bytes. These messages belong to tens of types, either

for configuring the device, e.g. opening a service “port” of VC4, setting frame resolution; or for moving data,

e.g. bulk receive. Slot 0 is special, as it contains metadata that describes the whole message queue and will

be updated by both CPU and VC4, e.g. the number of slots, slot allocations, read/write locations in the

message queue. The doorbell registers – BELL0 and BELL2 signal CPU and VC4 to parse new message,

respectively. Upon a new doorbell, a slot handler thread actively polls and parses the message; a sync thread

synchronizes CPU-VC4 shared states in slot 0; a recycle thread actively frees and recycles used slots.

5.8 Evaluation

In this section we answer the following questions:

1. How does our system reduce developer efforts? (§5.8.1)

2. Why are driverlets correct and secure? (§5.8.2)

5.8 Evaluation 109

3. What is the overhead of driverlets? (§5.8.3)

4. How to use driverlets to build trustlets? (§5.8.4)

5.8.1 Analysis of developer efforts

We compare three approaches to implementing the same IO functionalities as described in Section 5.7.

 CMDs Proto. Spec. Dev. Spec. Trans. Paths Reg./Fields Desc./Fields

MMC 5 231 30 10 17/63 1/8

USB 4 650 Unavailable 10 14/100 4/32

VCHIQ 8 Unavailable Unavailable 9 3/3 10/104

Table 5.7: Efforts for building drivers from scratch, showing the needed device knowledge. Proto. Spec. is
Protocol Specifications and Dev. Spec. is Device Specifications; both are counted in number of pages.

Build From Scratch Developers handpick a set of device commands to implement, for which they consult

device specifications, implement the state transitions, and work around hardware quirks (§5.7.1). Table 5.7

gives a summary of the needed knowledge. We estimate that each driver takes a few months to build.

 Functions Dev. Conf. Macros Callbacks SLoC

MMC 22 11 90 79 1K

USB 58 14 427 142 3K

VCHIQ 137 9 405 159 11K

Table 5.8: Efforts for porting Linux drivers, showing the code the developers need to reason about and
potentially modify. Dev. Conf. is Device Configurations.

Port Developers familiarize themselves with device specifications, and decide what driver/kernel functions

to port (and what not to). They must spin off the code paths, which span 22–137 driver functions as we

measure. To resolve the kernel dependencies of the select code paths, the developers have to port at least

1K, 3K, 11K SLoC for each of the MMC, USB, and VCHIQ drivers; they need to port at least 5K SLoC for

emulated kernel frameworks such as block, power and memory management. We estimate that it takes a

few months to understand each driver and port its dependencies, plus several months to build the emulated

kernel frameworks.

Our approach By comparison, we require much lower developer efforts. We build the toolkit in several

weeks, which is a one-time effort. To derive each driverlet, we familiarize ourselves with the full driver’s

register definitions and instrument the input interfaces for code analysis. Each driverlet takes 1–3 days.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 110

5.8.2 Correctness & Security analysis

We experimentally validate the correctness and security concerns. We discuss them separately: correctness

violation is caused by software semantics bugs; security breaches are caused by active attackers who compromise

the software.

Correctness

Driverlets’ correctness can be affected by semantics bugs in the OS and the driver for recording, e.g. the

driver writing to a wrong device register. Such bugs result in malformed recordings and incorrect replay

outcomes. Driverlets neither mitigate nor exacerbate such semantic bugs. Our recorder and replayer may

introduce semantic bugs, e.g. due to implementation glitches. Yet, we expect such bugs to be rare because of

software simplicity: the recorder and the replayer are only 3K SLoC.

Experimental validation We further validate driverlets’ correctness experimentally by following the

practice in prior work [312, 313]. We develop test scripts to do the following:

• Statically vetting of templates. Our scripts scan templates as a sanity check for the integrity of state-changing

events, e.g. which SCSI command is written to what register, what MMAL message is sent. The scripts

verify that the templates conform to the record campaign and developer requests.

• Validation of IO data integrity. For MMC & USB, our scripts verify that values read by driverlets match

those by native drivers and that writes reach the storage; for VCHIQ, the scripts analyze the captured images

and verify that they are in the valid JPEG format.

• Stress testing templates. Our scripts enumerate templates to stress test and validate the coverage of input

space. The scripts verify a 100% coverage for MMC/USB blocks (MMC: ¿31M, USB: ¿15M of blocks); for

VCHIQ, the scripts repetitively invokes templates for 10K times and verify runs produce integral frames.

• Fault injection. We validate that driverlets handle state divergences properly. To do so, we unplug the

MMC/USB storage medium amid a replay run for a large data transfer (2K blocks). The driverlet correctly

detects divergence and attempts re-execution with reset. Because the injected failure is non-recoverable

through soft reset, the driverlet eventually gives up. It reports unexpected values from two status registers

(SDEDM for MMC and GINSTS for USB) as well as the source lines of the register reads in the original

drivers, allowing quick pinpointing of the failure causes.

Security

Threat model We follow the common threat model of TrustZone [314, 297]. On the target machine: we

trust the SoC hardware including any firmware; we trust the TEE software; we do not trust the OS.

5.8 Evaluation 111

We assume that the OS and driver on the developer’s machine for recording are uncompromised. The

rationale is that the developer machines are often part of a software supplychain with strong security measures.

Compromising them requires high capability and long infiltration campaigns [283].

Security benefits By leaving drivers out of TEE, driverlets therefore keep the TEE immune to extensive

vulnerabilities in the driver code. Examples include dirtyCoW [315] caused by race conditions in the

page allocator, BadUSB [316] caused by unrestricted privileges in the USB stack, and memory bugs in

drivers [317, 318, 319]. They could have been exploited by adversarial peripherals (a malicious USB

dongle [316]) or malformed requests sent from the OS to the TEE.

Attacks against driverlets (1) Fabricating interaction templates is unlikely. This is because they are

signed by developers, whose recording environment is trusted. (2) Attacks against the replayer. Vulnerabilities

in the replayer may be exploited by entities external to the TEE, e.g. an adversarial OS or peripherals.

Successful attacks may compromise the replayer or even the whole TEE. However, such vulnerabilities are

unlikely due to replayer’s low codebase (only 1K SLoC), simple logic (such as minimalist memory management

and well-defined event semantics), and stringent security measures (§5.5).

5.8.3 Overhead

Methodology

The details of our test hardware are listed in Table 5.2. Because the RPi3 board does not implement TZASC,

we modified Arm trusted firmware to assign devices instances to TEE. We isolate the whole MMC and VC4

instance. We reserve 3 MB of TEE RAM and use the stock OPTEE allocator for DMA memory.

 RW_1 RW_8 RW_32 RW_128 RW_256 R:W

select3 36 12 8 4 12 10:0

delete 28 20 5 4 12 9:1

idxby 56 35 5 4 12 9:1

io 15 16 5 4 14 8:2

selectG 42 18 18 5 14 6:4

insert3 39 15 19 4 16 5:5

Table 5.9: Benchmarks used from SQLite test suites and a breakdown of interaction template invocations.
Template details are shown in Table 5.3 and in Section 5.7.

Benchmarks 1) SQLite-MMC: we choose SQLite, a popular lightweight database to test MMC. We pick

6 tests from SQLite test suites to diversify read/write ratios; breakdown of their template invocations and

read/write ratios are shown in Table 5.9. The tests issue their disk accesses in TEE and we report IOPS. 2)

SQLite-USB: we test USB mass storage with the same SQLite test scripts. 3) Camera (OneShot/Short-

Burst/LongBurst): we request VCHIQ to capture 1, 10, 100 still images frames at 720P, 1080P, and 1440P.

We report the latency of each request.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 112

sel
ect
3
de
let
e
idx
by io

sel
ect
G
ins
ert
30

480

960

1440

IO
PS

native-sync
ours
native

(a) SQLite-MMC

sel
ect
3
de
let
e
idx
by io

sel
ect
G
ins
ert
30

280

560

840

IO
PS

native-sync
ours
native

(b) SQLite-USB

Figure 5.5: SQLite benchmarks for MMC and USB driverlets. Driverlets’ overhead increases with write ratios
due to they mandate synchronous IO jobs while native drivers do not.

Note that unlike many TrustZone systems [286, 297], driverlets do not incur world-switch overheads

because they fully run inside the TrustZone.

Comparisons We compare driverlets with drivers on Linux 4.14 which finishes the same benchmarks as

follows: for SQLite, we run a test harness invoking the full drivers with the same block accesses with default

flags (native) and with an additional O SYNC flag (native-sync); for Camera, we run v4l2-ctl to request

the same number of frames at corresponding resolutions (native).

Macrobenchmarks

SQLite-MMC Figure 5.5a shows the results. MMC driverlet achieves a decent performance: on average, it

achieves 434 IOPS, executing over 100 queries per second. As a reference, the throughput is a few orders of

magnitude higher than secure storage hardware, e.g. RPMB [320].

Compared with the native driver, MMC driverlet’s throughput is 1.8× lower on average. The overhead

grows with the write ratio, e.g. select3 (read-most) incurs 1.4× overhead while insert3 (write-most) incurs

2×. This is because the driverlet mandates synchronous IO jobs: while the native driver does not wait for

writes to complete, the replayer must wait to match state changing events. To validate, we mandate O SYNC

flag in the native driver execution (native-sync) and measure throughput 1.5× lower than driverlets. This is

because driverlets forgo complex kernel layers such as filesystems and driver frameworks.

SQLite-USB Figure 5.5b shows the results. The driverlet achieves 369 IOPS which is over 90 queries per

second. The overhead compared with the native driver is 1.5×. Such overhead is also caused by synchronous

5.8 Evaluation 113

ou
rs

-7
20

p
na

tiv
e-

72
0p

ou
rs

-1
08

0p
na

tiv
e-

10
80

p
ou

rs
-1

44
0p

na
tiv

e-
14

40
p

0

1

2

4

La
te

nc
y

(s
)

Camera-OneShot

ou
rs

-7
20

p
na

tiv
e-

72
0p

ou
rs

-1
08

0p
na

tiv
e-

10
80

p
ou

rs
-1

44
0p

na
tiv

e-
14

40
p

0

3

7

11

La
te

nc
y

(s
)

Camera-ShortBurst

ou
rs

-7
20

p
na

tiv
e-

72
0p

ou
rs

-1
08

0p
na

tiv
e-

10
80

p
ou

rs
-1

44
0p

na
tiv

e-
14

40
p

0

33

66

99

La
te

nc
y

(s
)

Camera-LongBurst

Figure 5.6: Image capturing latency for Camera benchmarks. OneShot, ShortBurst, and LongBurst are for
capturing 1, 10, and 100 images(s) respectively.

writes, where the write-most workload (insert3) incurs the highest overhead of 2×. Native-sync is 1.7× lower

than the native USB driver and 1.2× lower than USB driverlet.

Camera Figure 5.6 shows the results. The per-frame latencies of driverlet range from 2.1s (720p) to

3.6s (1440p) which are usable to many surveillance applications that periodically sample images [290]. The

per-frame latencies decrease with the number of frames per burst, because for each burst the driverlet pays a

fixed cost to initialize the camera and the media accelerator. It replays 41 events for the initialization and 5

events to capture each subsequent frame.

Compared with the native driver, our latency is only 11% higher for a one-frame burst and is 2.7× higher

for a 100-frame burst. This is again because the driverlet must wait for individual IRQs as mandated by the

templates (§5.3.3), while the native driver processes coalesced IRQs. As requests contain more events (e.g. 75

vs. 680 to capture 1 and 100 frames, Table 5.5), the delays of waiting for IRQs are more pronounced.

Microbenchmarks

We show latencies to execute individual templates for MMC and USB in Figure 5.7.

In both reads/writes, the driverlet’s latencies are near-native or even slightly lower than the native ones

(12% and 13% lower for MMC and USB respectively). On larger block writes (e.g. 256), the latency of USB

driverlet is even 40% lower; this is due to the driverlet, unlike a native driver, does not run transfer scheduling

logic for individual 4KB data pages. This confirms observations in the macrobenchmarks, where the driverlet

outperforms native-sync.

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 114

1 8 32 12
8

25
6

0

2800

5600

8400
La

te
nc

y
(u

s) ours
native

(a) MMC read latency

1 8 32 12
8

25
6

0

4000

8000

12000

La
te

nc
y

(u
s) ours

native

(b) MMC write latency

1 8 32 12
8

25
6

0

2400

4800

7200

La
te

nc
y

(u
s) ours

native

(c) USB read latency

1 8 32 12
8

25
6

0

5600

11200

16800

La
te

nc
y

(u
s) ours

native

(d) USB write latency

Figure 5.7: Microbenchmarks of read/write on the MMC and USB driverlets. X-axis: number of blocks,
Y-axis: Latency in milliseconds. Driverlets achieve near-native performance or even outperform the native
256-block writes due to its simplicity.

Memory overhead.

The driverlet executables for MMC, USB, and VCHIQ are of 6 KB, 26 KB, and 19 KB, respectively. For

implementation ease, our current recorder emits templates as human-readable documents. Conversion to

binary forms is likely to further reduce their sizes.

5.8.4 End-to-end use case

To showcase the use of driverlets, we build an end-to-end trustlet for secure surveillance in only 50 SLoC and

less than an hour. As shown in Figure 5.8, the trustlet periodically samples image frames and stores the

frames on an SD card. Without driverlets, such a trustlet cannot enjoy secure IO path: it has to invoke the

OS for the needed drivers. With driverlets, the trustlet code simply includes one header file and invokes the

two interfaces for camera and MMC respectively. Corresponding to the invocations, the replayer selects two

interaction templates: one for image capturing and the other for writing 256 blocks. To store each frame

which is 1–2 MB, the replayer invokes the latter multiple times. We have measured that capturing each frame

takes 3.7s, in which most is spent on initializing the camera and storing the image only takes 154 ms.

5.9 Discussions 115

#include <driverlet.h> /* only header needed */
int size; /* actual image size in bytes */
int buf_size = 2 << 20; /* 2MB trustlet buffer */
void *img = malloc(buf_size);
/* capture one 1080P image */
ret = replay_cam(1, 1080P, img, buf_size, &size);
if (ret == ERR) { /* check replay results */
/* err: no template, buffer too small, etc. */
}
/* store image in 256-block trunks from block 0 */
for(i = 0; i < ((size >> 17) + 1); i++) {
/* write each trunk starting at i-th block */
ret = replay_mmc(

WRITE, 256, i, O_SYNC, img + (i << 17));
if (ret == ERR) {
/* err: card removed, cmd timeout etc. */
}

}

Camera

Trustlet

TrustZone
Linux

Secure
IOTrustlet

code sample

Flash Storage

Figure 5.8: A trusted perception trustlet built atop driverlets, which expose two simple interfaces (replay cam
and replay mmc).

5.9 Discussions

A simpler recorder without symbolic tracing To generate driverlets, the developers rely on symbolic

tracing. While the tool (i.e. DBT) exists for popular hardware such as RPi3, it may not be always available

or easily accessible. Under such circumstances, developers may resort to tracing the concrete interactions

at the three interfaces (§5.3.1), exercised by desired record campaigns, as has been demonstrated in prior

work [260]. Additionally, our experiences in Section 5.6 and 5.7 show that the generated constraints and

taints are likely simple, which entail manageable efforts to verify the state transition paths.

Applicability to TEEs other than TrustZone Despite we choose Arm TrustZone as a key use case

for driverlets, driverlets themselves rely only on secure IO and are not tied to Arm TrustZone nor a specific

TEE. For instance, driverlets can be used in Keystone of RISC-V [321], which achieves secure IO via PMP

(for memory/registers isolation) and processor M-mode (for routing IRQs); for SGX which lacks native

secure IO support, driverlets require additional techniques [322]. Driverlets are not tied to a specific TEE

kernel or host environment, neither. As long as the host environment implements replayer and replay events

correctly, driverlets should work out-of-box, e.g. in TEE kernels such as Trusty [323] and QTEE [324] or

unikernels [173].

Chapter 5 Minimum Viable Device Drivers for ARM TrustZone 116

5.10 Related Work

Driver reuse To reuse drivers, some “lift and shift” [205, 160, 282, 161]; some trim down simple drivers [14];

Our system shares same goal. Different from them, our system derives drivers by a novel use of record and

replay.

Record and replay is well-known and primarily applied to bug finding [325, 326, 327, 284] and security

analysis [328, 329, 330]. It also enables offloading [331, 332], emulation [333], and cheap versioning [285]. We

are inspired by them to reproduce a subset of program behaviors, e.g. device/driver interactions. The key

difference is we generalize replay inputs such that replay completes requests beyond those recorded. Quite

related to driverlets, GPUReplay [260] also records and replays the device interactions at hardware/software

boundary. Compared to it, driverlets face a different challenge: how to generalize and parameterize recordings;

this challenges necessitates a new construct – interaction template; by contrast, GPUReplay does not

parameterize input events.

Program analysis techniques have been widely applied by extensive works for testing [312] and

finding vulnerabilities [307] in kernel drivers and excavating data structures (e.g. in binaries [334, 335] and

network protocols [336]). Inspired by them, our system is built atop well-known program analysis techniques.

Differently, we use those techniques for a distinct goal: reuse device state transition paths.

Trusted execution environment is commonly used to shield trustlets from untrusted host OS [297,

337, 338, 274]. Lacking storage drivers, the trustlets delegate IO to OS [286, 339, 340] and mediate their

accesses [341]. Similar with them, we leverage TEE’s strong security guarantees; differently, we provide key

missing device drivers for them. Some works bring drivers to TEE, e.g. IPU [275], GPU [260]. Compared to

them, which are point solutions to individual devices, we present a holistic approach to systematically derive

a set of drivers.

5.11 Conclusions

We present a novel approach to deriving device drivers for TrustZone. Our toolkit records driver/device

interactions from a gold driver and accordingly distills interaction templates; by replaying a template with new

dynamic inputs, the driverlet completes requests beyond the one being recorded while assuring correctness.

We build the recorder/replayer and show that driverlets have practical performance on MMC, USB, and

VCHIQ. Driverlets fix the key missing link for secure IO, and for the first time open a door for trustlets to

access complex yet essential devices.

Chapter 6

Protecting File Activities via

Deception for ARM TrustZone

6.1 Introduction

TrustZone is the trusted execution environment (TEE) on Arm CPUs. To use TrustZone, developers

encapsulate security-sensitive code as trustlets, which are isolated in the secure world and shielded from an

untrusted OS [297, 342].

File services for TEE Many trustlets store security-sensitive data as files, such as sensor readings and

login credentials. As shown in Figure 6.1(a), trustlets often export file calls (e.g. open/read/write/close) to

the OS which hosts a modern filesystem. Doing so gives trustlets access to modern file features such as crash

consistency and flash optimizations from various mature filesystems; meanwhile the filesystem code does not

have to be pulled into the TEE, keeping the TEE lean.

Question & challenges Reliance on an external filesystem suffers from a key drawback: leak of file activities.

Although a trustlet can encrypt file contents for confidentiality and integrity, it has to send file activities in

the clear. The activities include file operation types (e.g. read, write, seek, and create), sizes/offsets, and

access occurrence (e.g. “the trustlet just created a file”). From the received file activities, the OS can infer a

truslet’s secrets such as input data [15, 282]. Section 6.2.3 will show evidence.

In general, access activities can be obfuscated by injecting sybil activities [343, 344, 345]. When it comes

to file activities, existing solutions are inadequate. (1) Popular obfuscation techniques, e.g. ORAM [346],

focus on hiding data access addresses in a flat, memory-like space. While they can generate random offsets

within a file [15], they cannot generate file operations with rich semantics, e.g. “read /a/index at offset 42;

117

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 118

phys
disk

TEE

phys
disk

Filesystem
image

TEE

(a) An existing TEE (b) This work

Discarded

Trustlet Trustlet K Filesystem images

Exposed file activities

Shuffling

SybilSybil Actual

En
ig

m
a

OS

vdisk vdisk vdisk

Disk requests

Figure 6.1: An overview of Enigma.

then open /b/data and write at offset 1024”. (2) How to make sybil file activities credible? Merely making

them legal, e.g. no out-of-bound reads, is not enough to deceive an OS that has prior knowledge of the true

file activities. (3) How to minimize the cost of sybil activities, which often amplifies the actual activities

significantly? For instance, a file backed by ORAM-like disk blocks consumes up to 10× more space and

slows down access by at least one order of magnitude [15].

Enigma is a deception mechanism that hides file activities for a TrustZone TEE. It centers on two insights.

First, while invoking an external filesystem, the TEE conceals the underlying physical disk1. This allows the

TEE to inject numerous sybil file calls but discard their disk activities covertly with little cost. Second, to

make sybil activities credible, the TEE should borrow knowledge from the trustlet under protection.

1. Sybil filesystems with covert emulation Sybil activities are expensive as they pollute the actual

data on disk. We therefore instantiate multiple filesystem images: one actual image, to which the TEE sends

actual file calls; and many sybil images, to which the TEE sends sybil calls. This is shown in Figure 6.1(b).

The separation of filesystem images allows the TEE to fulfill their disk requests differently: performing all

the disk requests from the actual image; silently dropping filedata accesses from the sybil images. Essentially,

the TEE emulates storage for sybil images with only their metadata, reducing their overheads to just enough

for deceiving the OS. The TEE further implements measures against OS probing the internals of such covert

emulation.

2. Protecting filesystem identity via shuffling As the OS observes longer history of file activities, it

poses an increasing threat. For instance, the OS can determine which image may be actual by comparing the

current and the past file activities on an image. If the OS succeeds, it uncovers all the actual file activities in

retrospect and in the future.

1This paper uses disks to refer to storage hardware including flash.

6.1 Introduction 119

Our defense is to prevent the OS from observing file activities on any filesystem image for long. In the

spirit of moving target defense (MTD [347]), TEE periodically shuffles filesystem images that have identical

OS-visible states. Not knowing the shuffling scheme, the OS can only track an image’s activities for a short

period of time, less than several seconds in our implementation. TEE does shuffling efficiently by only

updating metadata references, not the metadata itself or filedata.

3. Generating credible activities calls via replay The TEE should issue sybil file calls close to what

the trustlet would issue; it cannot draw sybil calls, for example, from generic file traces. The TEE can only

deceive the OS when it knows the trustlet better than the OS. The challenge is that the TEE can hardly

model a trustlet’s behaviors or assess how much the OS already knows about the trustlet.

Our idea is for the TEE to replay file traces pre-recorded from the very trustlet to be protected. The

file traces hence form a tight envelope of the trustlet’s actual file activities. Enigma provides support for

developers to collect file call segments and for the TEE to produce an unbounded stream of sybil calls at run

time.

Results By constraining lightweight modifications to generic subsystems and interfaces, Enigma eschews

heavy internal changes to individual filesystems and works with unmodified EXT4 and F2FS, reusing over

60K SLOC filesystem-specific implementations. Through a study of six diverse trustlets from which we collect

over 200K file calls through testing, we show Enigma is practical to deploy and effectively hides the file

activities that leak trustlet secrets.

Enigma provides the following guarantees: (1) Against random guess attacks: the probability of a

successful guess is 1/K; the successes of individual attacks are independent. (2) Against an external, persistent

observer: the maximum period of continuously observing any filesystem image is T. Both K and T are

user-configurable.

On a low-cost ARM board (RaspberryPi 3) running 20 concurrent filesystem images, Enigma incurs 2.2×

access slowdown and consumes 25% additional disk space (with 1.5 MB per sybil image on average); with

as many as 50 concurrent filesystem images, Enigma incurs 3.9× access slowdown and 37% additional disk

space.

Contributions This paper presents Enigma, a novel mechanism that generates credible, rich sybil file

activities at low cost. Enigma contributes the following new designs:

• Sybil filesystem images emulated with only their metadata, which makes strong deception with numerous

sybil file activities affordable.

• Continuous shuffling of filesystem identities, which prevents an external observer from collecting long

histories of file activities, sybil or actual.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 120

• Replaying file call segments recorded from the trustlet under protection, which effectively deceives a

knowledgeable observer.

For a TrustZone TEE, Enigma’s deception approach opens the door to using more untrusted external

OS services.

6.2 Motivations

6.2.1 TrustZone and its file services

TEE secure storage Arm TrustZone statically partitions an SoC’s physical memory and IO devices between

normal world and a secure world (i.e. TEE) [348]. The TEE can isolate storage medium, e.g. a SD card or a

flash partition, from the normal world OS. The resource partitioning differs from Intel SGX where memory is

mapped to TEE dynamically and the OS controls IO hardware.

TEE needs file services Mobile/embedded devices produce and store security-sensitive data such as

user health logs and audios samples. TEE can isolate sensitive data from high-risk software such as the

OS, for which TEE needs a modern filesystem to keep the data persistent. For instance, journaling [349]

prevents data corruption, which is not uncommon on battery-powered smart devices; wear-leveling extends

flash lifespan [350], which is key to flash longevity as IoT devices or their flash can be difficult to replace.

Unfortunately, modern filesystems are complex, making them unsuitable to run within the TEE. First,

a modern filesystem has substantial code. For instance, EXT3/4 and F2FS have 35K and 17K SLOC

respectively. They would significantly bloat TEE’s trusted computing base (TCB), e.g. the popular OPTEE

which only has around 25K SLOC. Filesystem vulnerabilities [351, 352] then become attack vectors against the

TEE. Second, lifting-and-shifting a modern filesystem to TEE requires tedious effort. Not only the filesystem

but also extensive kernel APIs must be ported, e.g. VFS, page allocation, and workqueues. Trimming the

filesystem code for TEE is error-prone, for which developers need to thoroughly understand filesystem logic

and test rigorously. Maintaining a filesystem’s separate versions for OS and TEE complicates distributing

security updates and patches, which may give rise to a fragmented ecosystem.

For these reasons, forwarding file calls to the OS is a common practice of trustlets.

6.2.2 The Linux storage stack

Our design exploits the following OS storage features.

The stack layers At the top of the stack, the virtual filesystem (VFS) is a filesystem-agnostic frontend

receiving filesystem calls, such as read or write, from filesystem clients. VFS dispatches filesystem calls to

6.2 Motivations 121

concrete filesystem implementations; VFS also caches recent file access. A filesystem translates the file calls

to disk requests, e.g. block read/write, and submits the requests to an underlying block layer.

Filedata vs. Metadata A filesystem’s all on-disk state constitutes its image. The image consists of filedata

as user contents and metadata which describes the file and the filesystem. Common metadata examples are

inodes, directory structures, and block maps. Metadata often constitutes a small fraction of filesystem image,

a premise to be tested in Section 6.8. To execute a file call, a filesystem often examines the metadata, e.g.

reading inodes of a file in order to locate the disk blocks.

6.2.3 The attacks

Threat model We trust the software in TEE. Both the TEE’s file contents and file activities may expose its

secret. The file activities are driven by TEE software only and not by untrusted entities, e.g. a normal-world

app communicating with the TEE. The filedata and file/directory names can be encrypted by the TEE.

The OS hosts a filesystem for the TEE. The OS is:

• Curious. The OS probes the TEE’s secrets passively and actively. (1) It monitors the TEE’s file activities,

including file calls, disk requests, data move, and timing of these activities; (2) it inspects a filesystem’s

in-kernel state; (3) it may deviate the filesystem logic to request disk reads or writes.

• Knowledgeable. The OS knows the sequences of file calls that the trustlet may issue.

• With unbounded memory. The OS can memoize the full histories of file calls and disk requests it has ever

observed. Following the TrustZone convention [353], we deem hardware attacks (e.g. bus snooping) and their

side channels out of scope.

Side channels through file activities A file call exposes the following information that cannot be easily

obfuscated: file call types [354]; accessed file paths, in particular the relative location in a directory tree;

arguments, e.g. sizes, offsets, and flags. A trace of file calls is known to leak the caller’s secret [15, 355, 356].

We identify three common side channels from file traces: (1) Occurrence: the events that a trustlet access

files; (2) File paths ; (3) Access patterns : the combination of access offsets, sizes, and flags in a sequence of file

calls.

Trustlets & attacks We motivate our designs with the following trustlets, including their side channels

and secrets. Table 6.2 shows a detailed summary.

• Databases for embedded environments such as SQLite manage on-device user data [357]. Prior work shows

a database’s file access patterns depend on queries [15, 356, 358]. For instance, given a database’s schema

and a sequence of file offsets, the OS can learn a query’s secret: read 64 bytes at offset 0 and read 128 bytes

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 122

at offset 4096 gives away page-align predicate columns (e.g. “user physical activities”) and the rows selected

(e.g. “hours when the user is sleeping”).

• Fulltext search is for on-device QA over emails or messages [359]. Given a keyword, an engine reads a

binary index file, locates file offsets where the keyword appears, and reads in contextual lines. From the

access offsets, the OS can infer the secret: the keyword and the hit locations [356].

• Model loading. A trustlet loads a neural network model from a file, for which it may issue thousands of file

calls to read and parse model layers. As reported by prior work [360] and verified by us on TensorflowLite [235],

from the file path and offsets the OS can learn the secret: the loaded model.

• Video surveillance. A trustlet on a camera detects video events of interest, e.g. motion or vehicles, and

saves video frames of interest. The OS observes file writes and learns the secret: occurrences of events being

detected.

• Data historian. A trustlet on a robot collects sensor messages to a ROSBag file [361]. The messages are of

variable lengths depending on sensor types (e.g. point clouds and sound samples) as well as data contents

(e.g. a point cloud’s density). From the write sizes, the OS can learn the secret: sensor types, data contents,

and hence the robot’s activities.

• Credential manager. A trustlet loads one of multiple key files for authentication with a remote server. From

the file path, the OS can infer the secret: the loaded key, which corresponds to user identity (e.g. a specific

private key) or server identity (e.g. a specific CA certificate).

6.2.4 System Overview

Figure 6.2 shows the system architecture.

Initialization With secure IO, the TEE isolates the physical disk and exposes K virtual disks to the normal

world. From the OS’s perspective, a virtual disk is no different than a physical block device, except that

the OS submits block requests to the TEE. The TEE requests the OS to initialize K images with the same

filesystem implementation on the K virtual disks.

Operation As a trustlet emits a stream of actual file calls, the TEE generates additional K-1 streams of

sybil calls 1 by replaying pre-recorded file call segments (§6.5). The TEE sends the actual file calls to the

actual filesystem image and the sybil calls to their respective sybil images.

The OS runs K filesystem images with an unmodified filesystem implementation (although the kernel’s

generic storage subsystem is lightly modified, see Section 6.6). At the end of each file call execution, the

OS submits disk read/write requests to their corresponding virtual disks in the TEE 2 . The TEE omits

all filedata accesses from the sybil filesystem images and only executes their metadata accesses 3 , which is

6.2 Motivations 123

Buf
OS

(sybil)

(sybil)

Filedata

vdisk
(actual)

Disk reqs

Metadata

Trustlet

Enigma in TEE

File calls

Phys
disk

Actual
part.

Meta
data
blob

Filesystem
images

1

2

3

4

Figure 6.2: The Enigma architecture, showing the filedata/metadata separation and the physical disk layout

needed by the filesystem logic. The TEE periodically unmounts filesystem images, shuffles the virtual disks

backing them, and remounts the images on the shuffled virtual disks.

To probe the virtual disk internals, the OS will attempt to: (1) read filedata. (2) tamper with filedata.

(3) measure delays of disk access. The TEE implements mechanisms to block these attempts.

What the OS can and cannot see? The OS sees K virtual disks exported by the TEE, on which K

filesystem images are mounted. It does not know which image is actual.

The OS sees K streams of file calls sent to the K images. In each stream, the OS can see all file calls in

the clear, including their types and arguments. The OS cannot access filedata referenced in file calls. The

patterns of file calls fit in the OS’s prior knowledge about the trustlet’s file activities. All streams show

similar statistics, including throughputs of file calls and bytes read and written.

To execute file calls, the OS can freely access metadata (e.g. inode) on virtual disks but not filedata, as

such attempts are blocked by TEE; the delays in accessing metadata are the same across all virtual disks.

From time to time, the OS sees: the TEE unmounts some images and takes some virtual disks offline; the

TEE puts online new virtual disks with random names. The OS cannot associate any new virtual disks to

those disappeared.

Limitations To simplify security reasoning, we consider that one actual filesystem image is exclusively used

by one trustlet; concurrent trustlets use separate filesystem images.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 124

6.3 Sybil images with covert emulation

We seek to minimize the cost of sybil images so that Enigma can afford a lot of them for strong protection.

6.3.1 Metadata-only sybil images

The first question is what are the minimum disk requests for maintaining a sybil image? We exploit a

filesystem invariant: a filesystem only relies on its metadata to function properly (e.g. to read or update

inodes) [362]. Note that the filedata/metadata division in a modern filesystem can sometimes be ambiguous,

for which we will describe treatment (§6.6). Enigma therefore enforces that the code of filesystem and OS

only access metadata content and its access status (e.g. write completion), but not those of the filedata.

The second question is how to hide the fact that TEE only stores metadata for sybil images? The TEE

conceals the physical disk from the OS using the TrustZone’s secure IO (Section 6.2). Note that the OS

still manages insecure storage devices out of TEE. As shown in Figure 6.2, the TEE directly backs the

actual image with a contiguous physical disk region. This preserves the locality of actual disk accesses. The

TEE stores the metadata for all sybil images in a single binary blob. To save disk space, it compresses the

metadata with copy-on-write (CoW). CoW is effective because the sybil images are mutated by file calls from

the same trustlet and are likely to share similar metadata.

We next describe the OS’s probing attacks against the covert emulation, as well as our defense.

6.3.2 Isolating filedata paths

Threat: Knowing sybil filesystems contain only metadata, the OS submits disk read requests for filedata on

virtual disks; it knows the disk as sybil if no data comes out.

Defense: TEE mitigates the threat by isolating the filedata path, which keeps the OS oblivious to if filedata

disk requests are actually executed on disk, or when such requests are completed. The isolation is as follows.

1. The filedata path: trustlet ↔ disk. Filedata flows between a trustlet and the physical disk without leaving

the TEE. As shown in Figure 6.2, a trustlet makes file calls with opaque references of filedata buffers (e.g.

“read from offset 10 to buffer <a 64-bit int>”) (1); the OS executes the file calls and issues disk requests

containing these opaque references (2); the TEE receives the disk ops, maps the opaque references back to

the filedata buffers, and moves the filedata between the trustlet and the disk (4) without going through the

OS. To prevent fabrication, each opaque reference is a 64-bit integer and used one time only [363, 314].

2. The metadata path: OS ↔ disk. Metadata flows between the OS and the TEE’s disk. As shown in

Figure 6.2 (3): the filesystem code generates disk requests for metadata (e.g. “write to an inode at block

42”), which contains cleartext references to OS buffers. The TEE executes the requests and copies metadata

6.3 Sybil images with covert emulation 125

between the TEE and the supplied OS buffers. The TEE notifies the OS of metadata access completion. The

TEE never examines metadata or takes any action based on the metadata content.

6.3.3 Rejecting OS access to filedata

Threat: The filesystem code, by design, may rightfully repurpose disk blocks without notifying the underlying

disk. For instance, after flushing the redo log (metadata), EXT4 may store filedata to the underlying

blocks [364]. A malicious OS may tamper with the repurposed filedata blocks, breaking filedata integrity

and/or revealing the identity of sybil images (i.e. those containing no proper filedata after filedata writes).

Defense: The TEE rejects OS from accessing filedata. To do so, it tracks filedata blocks on the physical

disk and keeps the filedata/metadata dichotomy up to date.

Without requiring intimate filesystem knowledge, TEE enforces a simple policy: allow the OS to only read

back disk blocks it previously wrote to. When a block is written initially, the TEE tags the block as “metadata”

or “filedata” depending on whether the written data comes from an OS buffer or a trustlet buffer. The TEE

accommodates block repurposing: in case data is written from an OS buffer to a “filedata” block, the TEE

erases the block so no existing content is leaked, changes its tag as “metadata”, and grants the access.

Some filesystems may inline filedata in metadata blocks for efficiency, e.g. EXT4 may inline files smaller

than 160B. The TEE tags these blocks as “mixed” and tracks inlined filedata ranges. As a result, the TEE

allocates disk space for inlined filedata on sybil images, which incur less than 1% of the space overhead in our

measurement.

6.3.4 Defense against timing attacks

Threat: The OS measures disk delays of metadata access. Since a sybil image’s metadata is stored more

compacted than the actual image, the OS may see lower access delays.

Defense: The TEE pads delays of metadata access so that the OS sees uniform delays. Note that it does

not have to pad delays for filedata access, the completion notifications for which bypass the OS as shown in

Figure 6.2.

The TEE delays each metadata access to all filesystems to be longer than most (e.g. 99%) of the actual

delays, a value determined by profiling when filesystem is mounted. Delaying is practical for two reasons. i)

Metadata accesses only constitute a small fraction of all disk access. ii) The actual access delays on embedded

flash show low variation because the storage has limited internal buffering. We will show timing side channel

reduction and overhead in evaluation.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 126

6.4 Filesystem identity shuffling (FIDS)

TEE obfuscates file call histories in the spirit of moving target defense [347]. This is because an OS collecting

long histories of file calls poses two threats. (1) The OS is more capable of attacks. It can uncover filesystem

identities by reasoning about the histories. (2) The OS, if accidentally discerns, the actual filesystem, creates

higher damage. It learns all the actual file calls in the past and in the future.

6.4.1 The mechanism

Critically, FIDS follows an egalitarian principle. The TEE frequently shuffles identities of all filesystems,

sybil and actual. A filesystem image’s OS-visible state is ⟨v,M⟩: v is the name of virtual disk that the image

is mounted on; M is the metadata, which is exposed to the OS by design.

Shuffling. Shuffling prevents the OS from connecting segments of file call histories. It is performed on a

set filesystem images {⟨v1,M⟩, ..., ⟨vn,M⟩} that currently have identical metadata M , where n is the number

of filesystems. TEE assigns each backing virtual disk a new, random name: {⟨v′1,M⟩, ..., ⟨v′n,M⟩}. Since the

OS cannot connect new disk names v′i to the old names vi, it cannot connect new filesystem identities to the

old ones.

TEE triggers shuffling by time (e.g. an image has not participated in shuffling for a period of T) or by

activities (e.g. the image has served N file calls since its last shuffling). Section 6.8 will evaluate the impact

of T , and show that even in the worst case (i.e. accidental filesystem identity exposure), a practical T (e.g. a

few seconds) leaks no significant secrets of the trustlet.

Forking. Forking keeps shuffling going when all images have distinct metadata. In case TEE attempts

to shuffle an image ⟨v,M⟩ but no other images have metadata M , TEE creates an image with metadata M

and shuffles the two images, resulting in ⟨v′,M⟩ and ⟨v′′,M⟩. The OS cannot connect either of the two new

identities to the old image ⟨v,M⟩.

Retiring. TEE deletes an image to reclaim its blocks.

The mechanism is inexpensive. First, shuffling and forking only manipulate references to metadata, not

metadata itself nor filedata. Section 6.6 presents more details. Second, TEE does not need to execute forking

often, as there often exist abundant images with the same metadata. For instance, a read-most workload

only mutates metadata occasionally.

FIDS operations are visible to the OS, e.g. after mounting, the OS knows images with identical metadata

may have been forked. FIDS, however, does not leak filesystem identities, because both actual and sybil

images can be forked and shuffled; although the actual image cannot be retired, Enigma ensures that such a

behavior does not leak identity, as will be discussed in §6.4.3.

6.4 Filesystem identity shuffling (FIDS) 127

Actual image

Lineages as
perceived by OS

A

B

Shuffle

C

D

E

F G

H

Retired

Fork

Shuffle
Shuffling hidden
from OS

Time

Figure 6.3: A minimal example of filesystem identity shuffling. As time goes by, the OS perceives multiple
lineages as actual but cannot distinguish them

6.4.2 Why FIDS works

We use lineage to describe an image’s OS-visible history. A lineage starts with one of the initial K images. It

includes descendant images created by forking and OS-perceived descendants created by shuffling. Figure 6.3

shows an example: the first forking on image B creates two descendant C and D; the subsequent shuffling of

C and D result in images E and F. C–F all belong to the lineage of B. After shuffling A and F, the resultant

G and H belong to both the lineages of A and B.

FIDS limits continuous observation The OS can track the history of any image (e.g. by tagging them

with unique metadata), but only for a continuous period no longer than T . This prevents the OS from

collecting large number of samples (e.g. a few thousand [365]) and building statistical models for filesystem

images, thwarting template attacks. Consider the actual image B in Figure 6.3. Without FIDS, B has a

straight-line lineage and its full history of file activities are exposed to the OS. While FIDS does not change

the true history of B (annotated with ⋆) which is only known to TEE, it makes the history appear uncertain

to the OS. Forking adds branches to B’s lineage; shuffling merges and then splits lineages. OS can only see a

lineage tree that clouds over the actual history.

FIDS confines damage of identity exposure Assume the OS, via an unexpected channel, discovers

image B as actual. Without FIDS, the OS can track backward in time and reveal all the past file calls on B;

it can track forward to learn all future calls on B. All the actual file calls are hence leaked. FIDS prevents the

OS from backtracking no further than the most recent shuffling event; earlier than that event, all the images

participating in shuffling become the probable ancestors of B. Similarly, the OS can forward track no further

than the next shuffling/forking event on B. Section 6.8 will quantify the resultant uncertainty to the OS.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 128

6.4.3 Defense against extinct lineage attacks

Threat: While forking and shuffling are egalitarian, retiring cannot be: TEE never retires the actual image,

giving the OS a chance to weaken or break the actual image’s anonymity. If the descendants of an earlier

image X have all retired (i.e. an extinct lineage), the OS can rule out X from being actual.

Figure 6.3 shows an example: if the TEE retires image A prior to its renaming with F, the only remaining

lineage is the one from B, which the OS can deem as the actual. A successful OS pinpointing the actual

image thus exposes the filesystem identity as described above.

Defense: TEE picks images to retire by respecting two invariants: (1) at any moment in history, there are

always K alive lineages stemmed from the initial K images; (2) the retiring event leaves at least K images

alive. The first invariant ensures that the OS’s backtracking cannot rule out any of the initial image from

being actual. The second invariant ensures the strength of anonymity at any time in history. Both invariants

combined, the OS cannot find a time in the past when there were fewer than K lineages.

To enforce the two invariants, a challenge is to avoid memoizing all FIDS events which grow unbounded.

The TEE implements a simple rule: avoid retiring an image if it is the last surviving image on a lineage. To

do so, the TEE only keeps K tags: tagging each image with its ancestor as one of the K initial images and

propagating the tag to descendants.

The above design will not result in too many images of which none can be retired. As long as there are

more than K images, there are multiple images belonging to the same lineage; retiring any will satisfy both

invariants above.

6.5 Generating sybil file calls

We ensure that TEE generates sybil file calls close to what the trustlet would actually issue, from which the

OS is unable to discern the actual file calls. The objective is not to match the actual file traces in deployment,

but to generate diverse trace segments that provide strong cover.

6.5.1 Design

First, how to fit sybil file calls in a trustlet’s envelope of file activities? For instance, a database

may show a variety of file access patterns depending on queries; one pattern can be “read 8 bytes, skip 16

bytes, and read 42 more bytes”. If a stream of file calls do not show any such pattern that the OS knows

must exist in actual file calls, the OS can determine the stream of file calls as sybil. However, it is difficult for

Enigma to model a trustlet’s file activities or assess how much the OS knows about the activities.

6.5 Generating sybil file calls 129

Our solution is to exploit the knowledge already encoded in a trustlet: the TEE replays historic file traces

from the trustlet to be protected. To this end, developers exercise the trustlet with a set of inputs and record

file traces during the execution, which we will show in Section 6.5.2.

Second, how to generate sybil calls that provide

strong protection? Our insight is that the efficacy of sybil calls hinges on the set of plausible secrets they

represent as cover traffic for the actual secret; we measure such efficacy as the set’s cardinality and entropy

estimation [366]. Intuitively, a library of sybil calls would offer stronger anonymity if the library represents

more plausible secrets and these secrets are uniformly distributed in the space of secrets.

To quantify the set of plausible secrets, we exploit an observation: a trustlet’s file calls are driven by

input events [357, 367], which are associated with the trustlet’s secret. Therefore, we retrofit the idea of

viewing a file trace as independent segments, where each trace segment encodes a secret value. For instance,

the file trace of a database can be segmented per query and each segment encodes a secret ⟨C,R⟩: a query’s

predicate columns (C) and its selected rows (R).

With the above rationale, Enigma assists developers to collect sybil trace segments. It requires the

developers to (1) provide annotations for segmenting file traces, e.g. by input events; (2) provide test inputs,

such as concrete database queries; (3) annotate the inputs with plausible secrets they represent. A test

harness exercises the trustlet and records the resultant trace segments. It reports cardinality and entropy of

the current secret set [366] and makes suggestion towards improving them. The developers finish collection

when they are satisfied with the metrics.

For example, to collect trace from a database trustlet, the developers provide as input a set of queries, each

annotated with a secret ⟨C,R⟩ for the query. The set of plausible secrets is therefore {⟨C1, R1⟩, ⟨C2, R2⟩, ...}.

After running a batch of queries and collecting the trace segments, the test harness suggests to increase the

secret set entropy by running more queries that select more diverse columns.

Third, how to replay the segments? TEE replays by sampling from a library of trace segments; it

preserves both the pre-recorded order and arguments of file calls within a segment. As it runs, it gradually

renews the pre-recorded segments with segments (both sybil and actual) collected in deployment. As a result,

the sybil traces evolve to be even closer to what the trustlet is issuing in deployment. We further address the

following issues. (1) Time the emission of segments. TEE emits at random intervals so that sybil file call

throughput and read/write throughputs approximate that of the actual trace. (2) Delay between file calls.

To prevent timing side channel, the TEE uniformly pads all the intervals between file calls to the maximum

interval it has observed. (3) Make sybil calls consistent with filesystem images. The TEE adjusts sybil calls

before replay, for instance, to create files, to truncate the offsets of out-of-bound access, to redirect access

from non-existing files.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 130

6.5.2 Case study

We study the trustlets in Table 6.2. Our input for recording should be seen as examples; developers are likely

to have inputs better matching their deployment, e.g. queries from their deployed databases or logs from

their robots.

Database. We run SQLite on a database of user health activities with 3 columns in numeric types. We run

a suite of queries [368] and segment file traces by query. We collected 500 trace segments constituted by 15K

file calls.

FullText. We run Lucy, an embedded search engine [369] over 2GB of emails [370]. The inputs are 100

searches for top keywords. We segment file calls by search. The collected 100 segments consist of 100K file

calls.

ModelLoad. We run TensorflowLite. Our inputs are 10 sample NN models loaded for inference. We segment

file traces by each model load. We collected 100K file calls in 10 segments.

VideoEvent. We run an OpenCV motion detector. Our inputs are 100 hours of street camera videos in

Bangor [371]. We segment file calls by per video hour and have collected 9K file calls in 100 segments.

Historian. We run the ROSBag drive data historian with 10 different drives from the autonomous driving

dataset [361]. We instrument the run script to segment file calls by per test drive. We have collected 9K file

calls in 9K segments.

CredLoader Our test script generates 50 key files and invokes the Openssh client on these key files for login.

We instrument the test script to segment file calls by each login attempt. We have collected 300 file calls in

100 segments.

6.6 Implementation

We implement Enigma in 2K SLOC, atop OPTEE and Linux as summarized in Table 6.3. Of the code, 1K

SLOC is for modifying the generic kernel page cache and block subsystem; filesystem-specific code incurs

only less than 50 SLOC of changes. In another 1K SLOC, we use the MMC driverlet inside TEE [19], which

provides read/write functions sufficient to our needs. We use a 32-GB microSD for storage and partition

it into two: one is 4GB and used by the untrusted OS as its rootfs; the other is managed by Enigma as

the isolated physical disk. We next describe implementation details of Enigma – how we apply lightweight

instrumentations to generic kernel subsystems and avoid heavy modifications to individual filesystems.

TEE ↔ OS interfaces We instrument two interfaces for communicating between TEE and OS. At them,

we inject SMC instructions and handle world switches.

6.6 Implementation 131

1. TEE → OS. Via the interface, Enigma issues file calls (actual and sybil) to OS. To this end, we instrument

filesystem syscalls (e.g. generic perform read) at VFS layer. We modify the data buffer pointer of the interface

(i.e. iov iter) to pass opaque references pointing to in-TEE buffer addresses (§6.3.2) instead of userspace

addresses; we further preserve them in the kernel page struct, which we will describe shortly.

2. OS → TEE. At the filesystem bottom, we instrumented the block IO (bio) interface (e.g. submit bio). It

dequeues bios to TEE; when it does so, we retrieve the opaque references from the page struct pointed by the

bio and pass them back to TEE. We also modify bio callbacks to let the filesystem execute asynchronously

w.r.t. TEE invocations and disable bio merging.

Isolating filedata path While being conceptually independent of each other, filesystems work closely with

kernel memory management (MM) layer. For instance, a filesystem is also responsible for reading filedata

into the page cache, and in coordination with the MM layer, writes dirty pages (filedata) back to the disk.

To isolate the filedata path described in Section 6.3.2, we disengage the page cache layer as follows. We

first modify the page cache allocation methods (e.g. pagecache get page) to preserve the opaque references in

page cache. By design, OS must allocate page cache before manipulating data pointed by foreign addresses

(e.g. by userspace or opaque references). At TEE → OS interface when OS allocates pages, we tag all newly

allocated pages and inherit opaque references in their page struct. We then block kernel attempts to copy

from/to opaque references. To do so, we associate the tagged kernel pages (i.e. contain opaque references)

with pre-allocated user pages which only have dummy filedata, and direct all accesses to tagged pages to

them. With all changes reflected on tagged kernel pages and dummy user pages, OS is oblivious to opaque

references and makes decision based on its intact logic (e.g. whether to flush dirty pages). This transparently

bypasses the page cache layer without disruptive changes.

As a result of the above modifications: 1) on the filedata write path, OS allocates kernel pages which

preserve opaque references, and copies dummy user pages (i.e. filedata to write) to them. After filesystem

execution, OS generates bios whose filedata points to these kernel pages. It then submits the bios to TEE,

returning opaque references. 2) on the filedata read path, it is a mirror process.

Block translation tables A bio request received by the TEE carries a buffer address and a virtual block

number. The latter is translated to a block number for the isolated physical disk. The TEE does the

translation by consulting with its per-image block translation tables (BTT). A BTT maps an OS-visible

virtual block number to a TEE-visible physical block number. BTT entries are only for metadata blocks.

Filedata block numbers do not need translation – they are either directly mapped to the physical disk or

discarded.

BTTs reduce the cost of manipulating sybil filesystem images. (1) Much of FIDS becomes BTT operations.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 132

To fork an image, the TEE duplicates its BTT without duplicating the disk blocks. To shuffle two images,

the TEE unmounts the images, shuffle their BTTs, and re-mounts them. To retire an image, the TEE frees

its BTT. (2) The TEE implements CoW by setting BTT entries of identical metadata blocks pointing to

the same physical copy. When any shared disk block is written to, the TEE allocates a new disk block and

updates BTT entries for all filesystems.

Store BTTs securely The TEE stores encrypted BTTs in the normal world. There are two reasons: 1)

BTTs should enjoy equal confidentiality and reliability as user files; 2) storing BTTs on an in-TEE filesystem

(with crash consistency, etc.) would defeat our goal of leaving filesystem out of TEE.

Outsourcing BTT storage leaks no secrets: BTT lookups are driven by disk requests submitted from the

OS; the input block numbers are from the OS; the output block numbers will not be decrypted until they are

in the TEE. The TEE updates BTTs only in an egalitarian fashion. In shuffling filesystem images, the TEE

re-encrypts all their BTT entries. To allocate a new disk block for a virtual block, the TEE re-encrypts BTT

entries corresponding to the virtual block of all filesystems.

Metadata vs. filedata The following details are from real-world filesystems. (1) Because filesystem logic

needs to access directory contents, Enigma treats directories as metadata, although they may be implemented

as special files by some filesystems. (2) Enigma treats a journaling filesystem’s journal as metadata. By

default, common journaling filesystems write dirty metadata (e.g. inodes) to their journals. As an expensive

option, they can write filedata to journals for stronger consistency. In our current implementation we turn

the option off. (3) Some OS functions may read filedata, e.g. exec() will parse the header of an executable

file. These functions, however, are not supposed to be invoked on TEE-owned files (e.g. OS should not exec()

a TEE program file). TEE can safely reject the read attempts.

6.7 Security analysis

Attacks Defense/mitigation C I A

P
a
ss
iv
e Observing file activities Sybil filesystems with credible activities §6.3 & §6.5 ✓ - -

Observing filedata move Isolating filedata path §6.3.2 ✓ - -
Measure disk timing Delay padding §6.3.4 ✓ - -
Learning history of file activities Filesystem identity shuffling §6.4 ✓ - -

A
c
ti
v
e

Dropping file calls TEE checks file integrity [297] - ◦ ◦
Dropping (un)mounting requests TEE checks filesystem integrity [372] - ◦ ◦
Unsolicited reads from filedata Reject OS access §6.3.3 ✓ - -
Unsolicited writes to filedata TEE erases existing filedata §6.3.3; detect by file check [297] ✓ ◦ -
Unsolicited writes to metadata TEE not touching metedata §6.3.2; detect by filesystem check [372] ✓ ◦ -
Supplying wrong block numbers of filedata TEE checks file integrity [297] - ◦ -
Fabricated references of filedata Strong opaque references §6.3.1 ✓ ✓ -

Table 6.1: Enigma thwarts attacks against confidentiality. C: Confidentiality, I: Integrity, A: Availability.
✓: Attack thwarted, ◦: Attack detected -: Not targeted by the attack

6.7 Security analysis 133

6.7.1 TCB

Enigma keeps substantial OS code out of the TEE: 37K for EXT4, 22K for F2FS, and 37K for a block layer,

as reported by SLOCCount [373] in kernel v4.19. The Enigma runtime only adds 1K SLOC to the TEE

and its replay-based MMC driver adds another 1K SLOC. The TEE exports two interfaces to the OS, for

issuing file calls and for receiving disk requests. Through the two interfaces, the normal/secure workloads

share no state. Following a common practice [374], the TEE passes messages with arguments packed into

CPU registers during world switches, minimizing the risks of data leak. The only input data to the TEE

is metadata. The TEE is secure against invalid or malformed metadata: 1) the TEE simply moves the

metadata between OS buffers and the physical disk; it never touches the metadata; 2) the TEE sets the

backing memory to be non-executable.

6.7.2 Security guarantees

Against random guess attacks In each attempt, the attackers randomly pick one of K filesystem images

and infer secret based on the file calls on the image. They break the obfuscation if they either hit the actual

image, or hit a sybil image that coincides with the actual secret. Hence the probability to break Enigma is

1
K + K−1

K (1/N), where N is the number of plausible secrets represented by the trace library. As developers

generate traces towards an N much higher than K (§6.5.2), e.g. N=500 secrets for Database, the above

probability is close to 1/K.

Section 6.8 will compare Enigma to ORAM when they provide same probabilistic guarantees.

0 5 10 15 20
Rounds of shuffling

0.00
0.25
0.50
0.75
1.00

Pr
ob

ab
ilit

y

VideoEv
K=5
K=10
K=20

0 5 10 15 20
0.00
0.25
0.50
0.75
1.00

Historian

Figure 6.4: FIDS diminishes probability of OS distinguishing an image’s history from histories of other images.
Write-most benchmarks are shown. On read-most benchmarks the probability converges even faster

Against observation of file call histories We measure P : the probability that the OS pinpoints the

history of a given filesystem image F. P is reciprocal to the number of images (M) that have histories

indistinguishable from F to the view of the OS, due to shuffling (§ 6.4). We model M as a set cardinality:

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 134

M = |
⋃r

i=1 Si|, where r is rounds of shuffling, Si is the set of filesystems participating in i-th shuffling round;

M ∈ [1,K].

We study how P changes as a function of shuffling round r. In the above form of P , Si depends on the

set of filesystem images having identical metadata. Therefore, we run all benchmarks with varying K, collect

their traces, and report the average P as a function of r. The results are shown in Figure 6.4. In general, as

an image participates more rounds of shuffling, P drops from 1 (OS is certain about its history) to lower

values (less certain). P drops faster with a larger number of images (higher K), because of richer shuffling

opportunities and thus faster increase in uncertainty.

Against disk timing side channels We quantify the mitigation (§6.3.4). We measure the delays during

100 runs of filesystem image initialization, consisting of over 400K physical disk accesses as described. We set

the padding threshold to be 1.6 us, 99-percentile of the measured delays.

We then run a filesystem with two versions: (1) Insecure; (2) Enigma with various paddings. We use

mutual information (MI), a common notion of information theory used in privacy preservation [375, 376],

to characterize the correlation between two random variables: (a) the access timing distribution of 1000

randomly sampled blocks on version 1 (i.e. Insecure) and (b) the access timing distribution of the same set of

blocks on version 2 (i.e. ours with various paddings). Higher MI implies the higher certainty that the second

timings are sampled from an emulated disk.

Our measurement shows a significant MI reduction, from 0.342 bits (i.e. Enigma w/o padding) to 0.007

bits. Such a level of residue MI is considered negligible in prior work [375], suggesting it is difficult for the

OS to correlate whether a disk is emulated to the observed access delays.

Against other attacks Table 6.1 shows that Enigma leaks no filedata or activities to an adversarial OS

even when the OS deviates from the filesystem logic or injects malformed metadata. Enigma’s confidentiality

is susceptible to hardware side channels, e.g. through CPU cache. We rely on existing mitigations [375].

Enigma defeats filedata integrity attacks by rejecting OS accesses (§ 6.3.3). Enigma can detect availability

attacks but cannot prevent them, e.g. the OS powering down the whole device.

6.8 Evaluation

We seek to answer the following questions on Enigma:

• How much is the space overhead? (§6.8.2)

• How much is the slowdown in file accesses? (§6.8.3)

• What is the performance impact of FIDS? (§6.8.4)

6.8 Evaluation 135

6.8.1 Methodology

Trustlets & description IO Char. Dataset
Access
delay

Side
channels

Comparisons
(Baselines)

Database. Query on-device
database of user health data.

Single file
Rand RW

select(1-8) benchmarks from SQLite [368].
Total: 500 queries, 14K file calls. File size: 800KB

Per
query

Sizes & offsets
ORAM

Fulltext. Search text files for
on-device QA.

Multi files
Rand RD

Lucy [369] on pre-indexed Enron emails [370].
Total: 100 queries; 100K file calls. File size: 2 GB

Per
search

Sizes & offsets

ModelLoad. Load ML models
from files.

Multi files
Rand RD

TensorflowLite [235] loading 10 neural nets,
Total: 80K file calls. File size: 41 MB.

Load per
NN

Sizes & offsets
File paths

Historian. Log data bags
from multi. sensors on a robot.

Single file
Append

ROSBag on EU Long-term dataset [361].
Total: 36K file calls. File size: 659 MB.

Log per
data bag

Sizes & offsets PadWrite

VideoEv. Log images of
motion events detected.

Multi files
Seq WR

50 1080P images in Bangor video [371].
Total: 9K file calls. File size: 100 KB

Log per
image

Access occurrences InjectCreate

CredLoader. Load credentials
for authentication with servers.

Multi file
Seq RD

Load 50 key files generated with ssh-keygen.
Total: 150 file calls. File size: 0.9 KB.

Load per
key

File paths InjectFiles

Table 6.2: A summary of benchmarks in Enigma.

Setup and metrics Table 6.3 summarizes our test platform. We choose Rpi3 [377] for its good support

for TrustZone. Table 6.2 summarizes the trustlets as benchmarks and their traces. In TrustZone, we do

not run them but extract their file traces for replay, making benchmarks simple and reproducible. Note

that our benchmark programs are for reproducing trustlets’ file activities; production trustlets likely have

different, more compact implementations, e.g. by linking to embedded libraries. We deliberately diversify file

behaviors and file sizes. For each benchmark, we create the smallest disk partition that can accommodate the

benchmark files. Note that the smallest disk sizes supported by F2FS and EXT4 are 39 MB and 2 MB.

Filesystem choices We pick two mainstream filesystems that exercise Enigma in different ways.

• F2FS is Enigma’s reference filesystem. A log-structured filesystem popular on mobile devices, F2FS

extensively optimizes for NAND flash [378]. For flash longevity, F2FS allocates blocks on demand and

generates compact metadata. We create the test image with mkfs.f2fs v1.11.0.

• EXT4 is our stress test for Enigma. A journaling filesystem, EXT4 issues dense metadata writes [379].

Since Enigma stores metadata for sybil images, it incurs higher overhead with EXT4. We create the test

image with mkfs.ext4 v1.44.5.

Baselines First, we consider Insecure which incurs no overhead: the TEE invokes a filesystem image without

any protection. Furthermore, we consider protection baselines that specifically hide the side channel of each

trustlet. As such, these protections pay no cost for unneeded protection and are therefore competitive against

Enigma. They are summarized in Table 6.2 with details as follows.

• ORAM [15] is the baseline protection for Database, FullText, and ModelLoad. It mitigates side channels

due to access sizes and offsets within a single file through obfuscation. By design, ORAM guarantees that the

probability of random guesses recovering the file trace is P = 1/2LM , where L is the height of ORAM tree

SoC Raspberry Pi Model 3B+, 1GB Normal OS Linux 4.19
CPU 4x Cortex-A53@1.4 GHz Secure OS OP-TEE 3.9

Table 6.3: The test platform used in Enigma evaluation.

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 136

in
se

c 5 10 15 20 50
0

17

34

52
F2

FS
Si

ze
 (M

B)
Database

disk
usage

0x

23
x

46
x

70
x

in
se

c 5 10 15 20 45

0

826

1652

2479
Fulltext

0x
20

x
41

x
62

x

comp.
ratio

in
se

c 5 10 15 20 50

0

24

48

73
ModelLoad

0x
20

x
41

x
62

x

in
se

c 5 10 15 20 35

0

296

592

888
Historian

0x
1x
2x

4x

in
se

c 5 10 15 20 50

0

18

36

55
VideoEv

0x
16

x
32

x
49

x

in
se

c 5 10 15 20 50

0

17

34

52
CredLoader

0x

23
x

46
x

70
x

in
se

c 5 10 15 20 50

0
1

3

5

EX
T4

Si
ze

 (M
B)

0x
11

x
23

x
35

x

in
se

c 5 10 15 20 45
0

1000

2000

3000

0x

3x

6x

9x

in
se

c 5 10 15 20 50

0

30

60

90

0x

6x

13
x

19
x

in
se

c 5 10 15 20 45

0

420

840

1260

0x
1x

3x
4x

in
se

c 5 10 15 20 50

0

3

6

9

0x
11

x
23

x
35

x

in
se

c 5 10 15 20 50

0

1

3

4

0x

16
x

32
x

Figure 6.5: Disk usage (lines) and metadata compression ratio (columns). Enigma’s usage is modestly higher
than Insecure and grows gracefully with K on most benchmarks. X axis: number of filesystem images (K).
Note that an image of F2FS/Ext4 has a minimum size of 2 MB/39MB by design.

and M is number of accesses in the trace [380]. Since Enigma provides P = 1/K, we compare the overheads

of ORAM and Enigma when their guarantees match, i.e. P = 1/2LM = 1/K. We set K = 50, (P = 0.02),

the largest number of filesystem images Enigma can run on our test platform with limited TEE memory.

Since ORAM’s L and M must be integers, we choose the closest value LM = 6, where M depends on a

benchmark’s trace segments, e.g. M = 3 for Database.

• PadWrite hides the append sizes for Historian. The TEE pads the size of each append to be the largest

append the benchmark may issue. No sybil files or calls are injected.

• InjectCreate hides file creation occurrences for VideoEv. The TEE creates the same number of sybil files as

the actual files. The creation times are independent of the actual creation. Since VideoEv ’s file sizes are not

secret, the TEE creates the sybil files with same sizes as the actual.

• InjectFiles hides file paths for CredLoader. The TEE injects the same number of sybil files as the actual

files in the actual image and emits sybil reads to them. Since CredLoader ’s access offsets within files are no

secret, the sybil reads use the actual offsets.

6.8.2 Space overhead

Disk overhead comes from (1) the metadata size per sybil image amplified by (2) the number of sybil

images (K − 1).

As shown in Figure 6.5, the disk overhead is modest in most benchmarks. Compared to Insecure, Enigma

increases the disk usage by 1%-58% (18% on average) when K = 5. When K reaches as high as 50, the disk

space of Enigma as compared to Insecure is 38% on average, which roughly translates to 1% per additional

sybil image.

6.8 Evaluation 137

Our experiments show the efficacy of the metadata CoW compression (§6.3). For example, with K=20,

turning off CoW increases the disk overhead by 2× on F2FS and 4× on EXT4. When we further turn off

discard of filedata, the disk overhead is almost linear to K.

Baseline ORAM PadWrite InjectCreate InjectFiles

Trustlet Database Fulltext ModelLoad Historian VideoEv CredLoader

w/ F2FS 39 16,800 373 759 39 39

w/ Ext4 11.2 16,800 373 759 5 2

Table 6.4: Disk space (MB) needed by baselines. Note that EXT4/F2FS have the least allowable disk sizes of
2MB/39MB respectively. Figure 6.5 shows the disk usage of Enigma.

Comparison with baselines Table 6.4 shows their minimal disk usage. ORAM incurs 9× disk overhead,

3× to 9× higher than Enigma with K = 50, which is consistent with prior ORAM-based file protection [15].

This is because ORAM-based protection must store the whole ORAM tree, several times larger than the

address space (file size) to be protected.

For trustlets that can be protected with simple obfuscation, the baselines may use less disk space than

Enigma. For instance, on Historian and VideoEv which append to a single file, their disk usage is 6% and

18% lower than Enigma with K = 20. This is because 1) intensive filedata writes update metadata frequently,

which makes Enigma’s compression less effective; 2) the metadata on many sybil images exceeds the total

size of small files (e.g. 5MB).

Memory overhead of Enigma is from storing BTTs and the metadata of sybil images. Such memory

consumption grows with K. It is allocated in the normal world only and the stable consumption is modest,

e.g. 26 MB and 18 MB for running ModelLoad on EXT4 and F2FS when K = 20, a small fraction of the

1GB DRAM on our board.

6.8.3 File access delays

We measure delays of file access sequences as defined in Table 6.2. The rationale is the mobile/embedded

trustlets are often event-driven and latency-sensitive.

Figure 6.6 shows the results. On most benchmarks, the delays grow gracefully with K. Compared to

Insecure with only the actual image: Enigma with K = 20 increases the delays by 1.3×-4.5× (2× on average),

showing a sublinear growth. Enigma benefits from its elimination of filedata access for sybil images, which

discards 95% of disk requests on average. The delay of VideoEv does not grow because the TEE issues file

calls to images at different times in order to hide access occurrence; these file calls do not contend. When

K > 20, Enigma’s concurrent execution of filesystemes is bound by four ARM cores on our board. For

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 138

in
se

c 5 10 15 20 50

0
12
24
36
48

De
la

y
(m

s)

Database

in
se

c 5 10 15 20 45

0
270
540
810

1080 Fulltext

in
se

c 5 10 15 20 50

0
2100
4200
6300
8400 ModelLoad

in
se

c 5 10 15 20 45

0
360
720

1080
1440 Historian

in
se

c 5 10 15 20 50

0.0
16.5
33.0
49.5
66.0 VideoEv

ext4
f2fs

in
se

c 5 10 15 20 50

0
24
48
72
96 CredLoader

Figure 6.6: File access delays. Enigma’s delays are modestly higher than Insecure and grow gracefully with
K on most benchmarks. X axis: number of filesystem images (K). Delay metrics defined in Table 6.2.

Baseline ORAM PadWrite InjectCreate InjectFiles

Trustlet Database Fulltext ModelLoad Historian VideoEv CredLoader

w/ F2FS 271 Timeout 283,539 204 50 54

w/ Ext4 289 Timeout 295,281 222 48 31

Table 6.5: File access delays (in ms) by baselines for comparison. Enigma’s results are in Figure 6.6

Historian and Fulltext on F2FS with K > 45, our test board runs out of TEE memory. Note that the delays

of normal/secure world switches (i.e. ns) are negligible compared to the disk IO delays (i.e. us).

Comparisons Compared to ORAM, Enigma’s delays are lower by 8× – 70× (on average 37×). In contrast

to Enigma which discards sybil filedata, ORAM amplifies filedata by tens of times. While a benchmark

reads tens of MBs of data, ORAM amplifies reads by 18× and adds 20× extra writes. This results in 40×

disk IO and saturates our disk bandwidth.

On Historian, Enigma’s delay up to 4× higher than PadWrite. This is expected, as PadWrite precisely

caters to Historian’s append-only pattern and its side channel. Its only overhead is write of additional filedata.

On CredLoader with F2FS, the delay with K = 50 is 63% higher than the baseline InjectFiles. The reason is

in F2FS’s low performance in accessing many small files of this benchmark.

6.8.4 FIDS overhead

Costs of FIDS operations Shuffling and forking do not require data copy or move. Of their delays,

10%–30% comes from BTT manipulation while the remaining comes from stopping and restarting filesystem

images as done by the untrusted Linux kernel. With EXT4: 1) forking takes 90ms/180ms on a 64MB/2GB

disk, respectively. 2) shuffling two disks of 64MB/2GB each takes 80ms and 130ms, respectively. 3) retiring an

6.9 Related Work 139

5 10 15 20
0

55
110
165
220

F2
FS

Qu
er

y/
s

Database

5 10 15 20
0
2
4
6
8

Ke
yw

or
d/

s

Fulltext

T=1s
T=2s

T=5s
T=10s

5 10 15 20
0
1
2
3
4

M
B/

s

Historian

5 10 15 20
0

24
49
74
99

EX
T4

Qu
er

y/
s

5 10 15 20
0
2
4
7
9

Ke
yw

or
d/

s

5 10 15 20
00
1
2
3

M
B/

s

Figure 6.7: Trustlet throughputs under different FIDS intervals (T). X axis: number of images (K).

image takes less than 1 ms. Compared to EXT4, F2FS shows 39% – 66% shorter delays due to its “fastboot”

option. Our measurements suggest FIDS efficiency can benefit from further optimization of the Linux kernel,

e.g. by parallelizing mounting/unmounting of many filesystem images.

Impact on trustlet throughputs Because by design FIDS is executed in the background off the file access

path, we focus on its impacts on a trustlet’s throughputs.

Figure 6.7 shows three benchmarks where throughput matters. We chose the intervals based on [381],

which reports low-frequency and bursty file activities for mobile/edge device; under such intervals, at most 1-2

secrets may be exposed even in case of accidental filesystem identity leak. We validate their throughputs are

bound by disk IO because the throughputs are higher when running them on Insecure filesystem. Hence, our

test trustlets do not execute app logic, e.g. database code; they execute file accesses as quickly as Enigma

allows.

Even under strong protection (e.g. K = 20; FIDS every second), the benchmarks deliver throughputs

appropriate to the IoT/embedded scenarios. Database and Fulltext can process tens of queries per second

and several queries per second, respectively, sufficient to queries driven by a single user. Historian can log

a few MBs of data per second, which can support a robot’s 1–2 HD video streams or point clouds at 3–5

FPS [382]. As the developers relax the protection, the throughputs improve by 1.5× to 2×. Using Insecure

increases these throughputs by 2×-10×.

6.9 Related Work

Side-channels & mitigations Timing side channels are often mitigated by deploying low-res timer [383],

padding delays [375]. We do not focus on them but apply these techniques to mitigate the side channel of

our emulated disk. Access pattern side channels (e.g. memory [355, 356], file [15]) exploit data-dependent

Chapter 6 Protecting File Activities via Deception for ARM TrustZone 140

execution to infer user input (e.g. queries). They are often mitigated by distorting the access pattern (e.g.

via ORAM [346, 363, 358]). Motivated by them, we also protect access pattern; unlike them, we preserve the

patterns yet hide them under credible sybil ones.

Hide data in plain sight To hide data that must eventually be released, an old wisdom is to add noise [384]

as deception. Due to its practicality, recent systems start to adopt it for anonymous location sharing [344],

query processing [345]. Compared to them, we are the first to apply it to file services. Another approach is

to continuously reset attacker’s observations on the data (e.g. ASLR [385] limits attacker’s observation on

address spaces). We echo its motivations; we deal with filesystem identities (actual vs. sybil), a different

domain.

TEE and file services To enable files services for these apps, some include filesystem code inside TEE

(e.g. through porting [386], libraryOS [387], build anew [388]). Compared to them, we do not include nor

invent filesystem code, instead we take a forwarding approach which reuses unmodified filesystem code. Some

forward file calls as we do [297, 389]. In comparison, we focus on the ignored side channel caused by such

forwarding. Some exposes to apps a raw block device interface [286], which is backed by a file in normal OS

for crash consistency. Similar to it, we also store a backing file in normal OS (i.e. BTTs). Different from it,

we store inside TEE a compact representation of filesystems, similar to David [362].

6.10 Concluding remarks

Applicability to SGX Enigma may hide the file activities of an SGX TEE (enclave) albeit with different

implementation requirements. Unlike a TrustZone TEE, an SGX enclave lacks the capability of direct disk

access. Thus, Enigma may use a hypervisor to manage disk hardware for the enclave and isolate the disk

from the untrusted OS, similar to [390, 391].

Conclusions Enigma hides file activities of a TrustZone TEE. With Enigma, the TEE generates sybil

calls by replaying; the TEE backs only one image with the actual disk while other images with emulated

storage; the TEE prevents the OS from learning long history of any image. We build Enigma and show that

Enigma works with unmodified file systems, incurs affordable overhead, and represents a new design point in

guarding IoT storage stack. Enigma opens the door for a TEE to external untrusted OS services.

Chapter 7

Concluding Remarks

Advances in technology node endow tiny devices at the edge (e.g. smart speakers, cameras, phones) with

more computing power. Sitting close to user data, they are a preferred place for executing latency- and

security-sensitive tasks, without the cloud overhead. Yet, the current edge suffers from poor efficiency and the

lack of systems support for hardware security features, hindering the wider adoption of the edge computing

paradigm.

This dissertation addresses the above problems and shows a practical path towards designing systems for

making an edge device more efficient and secure.

Towards better efficiency The first and foremost question is how to find the ground truth power

consumption of individual apps, so they may adapt accordingly? For instance, a 3D game may lower its

rendering quality to save power, based on its current power consumption. To answer the question, this

dissertation introduces Power sandbox (Psbox), an energy accounting facility implemented as an OS principal.

Psbox is the first to pinpoint the power entanglement problem, where the energy cannot be cleanly separated

and attributed to co-running apps once it is aggregated. To address the problem, Psbox isolates the vertical

environment of the running app at the OS level, insulating its energy impacts from other co-running apps.

Provided as a pay-as-you-go OS service, Psbox enables the app running at the edge to know its ground truth

power consumption, which it can adapt accordingly towards better efficiency.

This dissertation next introduces Transkernel and STI, two systems which complement each other and

jointly improve the runtime efficiency of the edge.

Transkernel achieves so at the kernel level by taming the energy-hungry kernel suspend/resume workloads,

a major energy bottleneck in today’s smart device due to many small but inevitable idle epochs. Its key

insight is to exploit the peripheral cores on the commodity edge device. Compared with the CPU (e.g.

141

Chapter 7 Concluding Remarks 142

Cortex-A series), a peripheral core is wimpy (e.g. Cortex-M series) but has 1-2 order magnitude smaller

idle power, making it an ideal place for executing the idle epochs in suspend/resume process. To this end,

Transkernel features a specialized dynamic binary translator (DBT) on the peripheral core, which executes

unmodified kernel suspend/resume code. By co-designing the DBT software with the ISA similarity of the

heterogeneous cores, Transkernel has low overhead and saves 34% energy. More importantly, Transkernel

shows that while cross-ISA DBT is typically used under the assumption of efficiency loss, it can enable

efficiency gain, even on off-the-shelf hardware. STI, on the hand, explores an alternative path of improving

efficiency at userspace level. Targeting at the NLP inference where large models (e.g. a few hundred MBs)

are common, STI pinpoints the design inadequacies of existing runtime in utilizing the trinity of resources –

computation, IO, and memory; STI finds that the key resources – memory for preload and IO/compute for

model execution – are managed in isolation and lack coordination. To address it, STI proposes to manage

the NLP model parameters in finer grained shards, which have different importance; to execute inference

at runtime, STI instantiates an IO/compute pipeline and judiciously selects the most important shards to

maximize the pipeline utilization towards a higher accuracy. STI facilitates efficient NLP inference at the

edge: on a comprehensive suite of benchmarks, STI shows that it is possible to achieve a competitive accuracy

under a range of practical latencies while consuming 1-2 MB of memory.

Fostering security and privacy This dissertation then switches gear towards the other key inadequacy

at the edge – the unusable TEE features. Due to lack of device drivers and filesystems, the trustlet inside

TEE must rely on the OS, often through forwarding requests for execution. Doing such critically hinders its

intended security, which leaves both data and control path to the OS’es discretion; the latter, if malicious,

can peek into and even tamper with the data or control path for sabotaging TEE security, thus making it

unusable.

To enable the practical use of TEE, the key challenge is how to enable the use of drivers and filesystems in

TEE, which has a large codebase. As an example, an MMC driver framework contains 15K SLOC entangled

with over 20 different kernel subsystems, and the EXT4 filesystem consists of over 37K SLOC, which is even

larger than the core of OPTEE-OS used in TEE. It is therefore impractical to port them as a whole nor

building them from scratch – the former bloats the TCB while the latter throws away years of engineering

efforts and likely contain many bugs.

To address the challenge, this dissertation shows how to reuse mature device drivers and filesystem from

Linux inside TEE in a practical way, hence facilitating secure and private use of TEE.

Driverlet reuses mature Linux device drivers through specializing the drivers (hence driver“let”) with

respect to intended workloads, e.g. simple IO functions. By recording the driver/device interactions from the

Chapter 7 Concluding Remarks 143

mature Linux driver, a driverlet compactly packs all functions sufficient for driving the state machines on the

device, achieving the same IO function as desired by trustlet, e.g. disk read/write, frame capture. Enigma,

on the other hand, reuses mature Linux filesystems. It still forwards the file requests as-is but obfuscate

them with curated noise which constitutes sybil traces recorded with the trustlet knowledge and waits for the

resultant block requests from Linux filesystems; with an in-TEE MMC driverlet, it filters out block requests

from noise while only executing those from the trustlet, without being noticed by the OS. Evaluated on a

range of comprehensive and representative workloads, both driverlets and Enigma show practical overheads,

usable to today’s trustlets.

A holistic tapestry Together with the five systems, this dissertation composes a holistic tapestry towards

a more efficient and secure edge. It offers solutions and insights into developing kernel, userspace, as well as

TEE systems, covering the full software stack of an edge device. This dissertation next briefly discusses its

learned design hints in future edge systems.

Design hints to future edge systems

This final section summarizes the general lessons and hints we learned when designing and implementing the

five systems in this dissertation. These lessons and hints are behind-the-scene design choices; they are more or

less subjective, which make them less appropriate in submissions. We hence lay our two cents (lessons) down

as the final concluding remarks, in the fond hope that they may help inspire future edge system designs.

First, coping with an ossified Linux. Besides the research contributions themselves, we are urged to

constantly reflect on the practicality of our systems when designing them: how well can they integrate with

Linux? How much facility can they reuse from Linux?

We did so out of one key vision: existing Linux kernel is ossified. Yet, “kernel ossification” does not

mean the OS research is dead or that an OS cannot be improved. Instead, it stresses the status quo of the

prevalence of Linux kernel – a giant elephant in the room, which is unlikely to see a full-sweep replacement

of it, because there is too much legacy. Embracing the prevalence and coping with the legacy fosters wider

adoption of new systems.

Therefore, many of systems in this dissertation bear the idea in mind. For instance, we intend Transkernel

to execute unmodified kernel code and provides firmware-level compatibility across different kernel versions,

because doing so enables faster deployment of the OS model and a wider adoption. More so, when we design

driverlets and Enigma, building drivers/filesystems from ground up is out of the question in the first place.

Why not reuse the mature code which stands the test of time?

We summarize our learned lessons on how to cope with an ossified Linux as follows.

Chapter 7 Concluding Remarks 144

1. Dancing on the right interface. Part of the beauty of Linux code lies in the well designed interfaces

which cleanly glue different modules. By carefully navigating through the interfaces, new systems shall reduce

the reasoning of a large chunk of code into just a few function calls. Transkernel does this: in deciding

which kernel services to emulate, it judiciously chooses those with clean and stable ABIs which happen to

be stateless, e.g. schedule(). Doing so relieves the DBT from the burden of translating the complicated

subsystems, which do not contribute to the kernel suspend/resume process. Driverlets also is an example.

It is a pioneering work which shows mature Linux device drivers can be reused via reasoning about the

interactions at driver/hardware boundary (e.g. register access, DMA allocations). By comparison, prior

works choose to pack almost all kernel dependencies, e.g. like a library OS [205].

2. Code reuse through record and replay. The technique is well-known and primarily applied to bug

finding [325, 326, 327, 284] and security analysis [328, 329, 330]. But it is never considered for code reuse,

which is a unique opportunity enabled by edge systems. This is because one key characteristic of an edge

system is how “stable” its workloads are and how “simple” the IO devices are. For instance, a smart camera

periodically captures frames through a similar kernel stack with a fixed set of VC4 commands. The “stability”

forms many beaten paths [147], where variables are often only dependent on runtime inputs, e.g. the number

of frames requested and corresponding resolutions. This provides future edge systems a unique possibility for

reusing the existing code through record-and-replay, which captures the beaten paths and drive the same

state transitions on the device, as long as the variables are captured as well. Similarly, the app behavior (i.e.

execution logic) can also be imitated through record and replay exemplified by Enigma: it records sybil traces

resultant from actual workloads of the app and replay them at runtime as a strong cover for the actual traces.

Second, incorporating app knowledge. An edge system is tightly coupled with its workloads and the

apps running on it. As we have shown earlier in this dissertation, optimizing for their workloads is rewarding

in multiple aspects: faster deployment, comparable if not better performance, and new doors to many more

tradeoffs. To do so, our hint is to channel between apps and the edge system, which requires to set up the

two-way communication.

1. System → App. On one hand, we encourage the edge system to provide system-level support that exposes

low-level information to apps and enables adaptive execution. This shares a similar vision as Exokernel [171]

and library OS [172], where apps are deeply coupled with OS resource management. More importantly, the

system shall provide such information accurately. The example is exposing power information to apps, as

demonstrated by psbox: first, it questions the prior narratives, which assume the aggregated power can be

cleanly separated; it then shares the accurate information via enforcing temporal and spatial balloons at OS

level. We expect more such information to appear in future edge device as modern hardware becomes more

Chapter 7 Concluding Remarks 145

aggressive in resource multiplexing. Therefore, before exposing the information to apps, the edge system

shall rethink the nature of the information – is the information shared by multiple running apps? Can it

really be attributed to different apps and what measures shall be taken to facilitate accurate attribution?

2. App → System. On the other hand, the edge system incorporates the apps knowledge and optimizes

for it. To this end, our first hint is to understand the app workloads and have the edge system supply only

sufficient functionalities for fast deployment. The idea has first been demonstrated by Transkernel where the

DBT only translates kernel beaten path while falling back to native execution when execution spins off the

beaten path. It is then highlighted by driverlets, which shows how to pinpoint a set of basic IO functions

needed by the app and designs drivers specially for them. Our second hint is to take one step further and

peek into what is actually being executed. It may be the execution logic of the app, which Enigma captures

by recording sybil file traces. It may as well be large files, e.g. pretrained ML models, which STI shows how

to profile and schedule according to model parameter importance. Doing so opens door to new tradeoffs,

which help the edge system reconcile tensions between multiple resources.

Bibliography

[1] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.

[2] Alexa. The top 500 sites on the web. http://www.alexa.com/topsites.

[3] Android IP Webcam Application. https://play.google.com/store/apps/details?id=
com.pas.webcam&hl=en.

[4] Apple. Apple watch human interface guidelines. https://developer.apple.com/
library/prerelease/ios/documentation/UserExperience/Conceptual/

WatchHumanInterfaceGuidelines/, 2015.

[5] iphone 13 and iphone 13 mini - apple. https://www.apple.com/iphone-13/. (Accessed on
04/19/2022).

[6] Texas Instruments. Cortex-M3: Processor technical reference manual. http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html. (Accessed on 05/07/2019).

[7] Arm trustzone. http://www.arm.com/products/processors/technologies/trustzone/index.php.

[8] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum. Livelab: Measuring
wireless networks and smartphone users in the field. SIGMETRICS Performance Evaluation Review,
38(3):15–20, January 2011.

[9] Renju Liu and Felix Xiaozhu Lin. Understanding the characteristics of android wear os. In Proc. ACM
Int. Conf. Mobile Systems, Applications, & Services (MobiSys), 2016.

[10] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. Automated os-level device runtime power
management. In Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages 239–252, New York, NY, USA,
2015. ACM.

[11] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In Proceedings
of the Seventeenth ACM Symposium on Operating Systems Principles, SOSP ’99, pages 48–63, New
York, NY, USA, 1999. ACM.

[12] Shuang Zhai, Liwei Guo, Xiangyu Li, and Felix Xiaozhu Lin. Decelerating Suspend and Resume in
Operating Systems. In Proc. ACM Workshp. Mobile Computing Systems & Applications (HotMobile),
HotMobile ’17, pages 31–36, New York, NY, USA, 2017. ACM.

[13] Mario Almeida, Stefanos Laskaridis, Abhinav Mehrotra, Lukasz Dudziak, Ilias Leontiadis, and
Nicholas D. Lane. Smart at what cost?: Characterising mobile deep neural networks in the wild.
In Proceedings of the 21st ACM Internet Measurement Conference, pages 658–672. ACM.

[14] Linaro. Op-tee: Open portable trusted execution environment. https://www.op-tee.org/, 2017.

[15] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung Lee. OBLIVIATE:
A data oblivious filesystem for intel SGX. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018, 2018.

146

http://www.alexa.com/topsites
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://www.apple.com/iphone-13/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://www.arm.com/products/processors/technologies/trustzone/index.php
https://www.op-tee.org/

Bibliography 147

[16] Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin. Transkernel: Bridging monolithic kernels
to peripheral cores. In Dahlia Malkhi and Dan Tsafrir, editors, 2019 USENIX Annual Technical
Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 675–692. USENIX
Association, 2019.

[17] Liwei Guo, Tiantu Xu, Mengwei Xu, Xuanzhe Liu, and Felix Xiaozhu Lin. Power sandbox: power
awareness redefined. In Proceedings of the Thirteenth EuroSys Conference, page 37. ACM, 2018.

[18] Liwei Guo, Wonkyo Choe, and Felix Xiaozhu Lin. Efficient NLP inference at the edge via elastic
pipelining. CoRR, abs/2207.05022, 2022.

[19] Liwei Guo and Felix Xiaozhu Lin. Minimum viable device drivers for ARM trustzone. In Yérom-David
Bromberg, Anne-Marie Kermarrec, and Christos Kozyrakis, editors, EuroSys ’22: Seventeenth Eu-
ropean Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, pages 300–316. ACM,
2022.

[20] Liwei Guo, Kaiyang Zhao, Yiying Zhang, and Felix Xiaozhu Lin. Enigma: Privacy-preserving file
service for arm trustzone. Under Construction, 2020.

[21] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosystem: Managing energy as a first
class operating system resource. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS X, pages 123–132, New York,
NY, USA, 2002. ACM.

[22] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for battery-powered
mobile systems. In Proceedings of the 9th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’11, pages 335–348, New York, NY, USA, 2011. ACM.

[23] Mian Dong, Tian Lan, and Lin Zhong. Rethink energy accounting with cooperative game theory.
In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking,
MobiCom ’14, pages 531–542, New York, NY, USA, 2014. ACM.

[24] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-grained
power modeling for smartphones using system call tracing. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, pages 153–168, New York, NY, USA, 2011. ACM.

[25] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my app?: Fine
grained energy accounting on smartphones with eprof. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages 29–42, New York, NY, USA, 2012. ACM.

[26] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha. Appscope: Ap-
plication energy metering framework for android smartphone using kernel activity monitoring. In
Presented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages
387–400, Boston, MA, 2012. USENIX.

[27] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen. Power containers:
An os facility for fine-grained power and energy management on multicore servers. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 65–76, New York, NY, USA, 2013. ACM.

[28] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to estimate app energy
consumption. In Proceedings of the 18th Annual International Conference on Mobile Computing and
Networking, Mobicom ’12, pages 317–328, New York, NY, USA, 2012. ACM.

[29] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage of mobile appli-
cations. In Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications,
WMCSA ’99, pages 2–, Washington, DC, USA, 1999. IEEE Computer Society.

Bibliography 148

[30] T. Stathopoulos, D. McIntire, and W. J. Kaiser. The energy endoscope: Real-time detailed energy
accounting for wireless sensor nodes. In 2008 International Conference on Information Processing in
Sensor Networks (ipsn 2008), pages 383–394, April 2008.

[31] Niels Brouwers, Marco Zuniga, and Koen Langendoen. Neat: A novel energy analysis toolkit for
free-roaming smartphones. In Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems, SenSys ’14, pages 16–30, New York, NY, USA, 2014. ACM.

[32] Aaron Schulman, Tanuj Thapliyal, Sachin Katti, Neil Spring, Dave Levin, and Prabal Dutta. Stanford
CS battor: Plug-and-debug energy debugging for applications on smartphones and laptops. Technical
report, 2016.

[33] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with a Leakage Model,
pages 16–29. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[34] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan Boneh, and Gabi Nakibly.
Powerspy: Location tracking using mobile device power analysis. In 24th USENIX Security Symposium
(USENIX Security 15), pages 785–800, Washington, D.C., 2015. USENIX Association.

[35] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A study on power side channels on mobile devices.
In Proceedings of the 7th Asia-Pacific Symposium on Internetware, Internetware ’15, pages 30–38,
New York, NY, USA, 2015. ACM.

[36] H. Hlavacs, T. Treutner, J. P. Gelas, L. Lefevre, and A. C. Orgerie. Energy consumption side-channel
attack at virtual machines in a cloud. In 2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing, pages 605–612, Dec 2011.

[37] Perf. https://perf.wiki.kernel.org/index.php/Tutorial.

[38] John Levon. OProfile - A System Profiler for Linux. http://oprofile.sourceforge.net/about/.

[39] L. Mukhanov, D. S. Nikolopoulos, and B. R. d. Supinski. Alea: Fine-grain energy profiling with basic
block sampling. In 2015 International Conference on Parallel Architecture and Compilation (PACT),
pages 87–98, Oct 2015.

[40] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer Chan-
dra, and Paramvir Bahl. MAUI: making smartphones last longer with code offload. In Proc. ACM
Int. Conf. Mobile Systems, Applications, & Services (MobiSys), MobiSys ’10, pages 49–62, New York,
NY, USA, 2010. ACM.

[41] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. Clonecloud: Elas-
tic execution between mobile device and cloud. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, pages 301–314, New York, NY, USA, 2011. ACM.

[42] B. Zhao, W. Hu, Q. Zheng, and G. Cao. Energy-aware web browsing on smartphones. IEEE Transac-
tions on Parallel and Distributed Systems, 26(3):761–774, March 2015.

[43] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and David Wetherall. Reduc-
ing network energy consumption via sleeping and rate-adaptation. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, NSDI’08, pages 323–336, Berkeley,
CA, USA, 2008. USENIX Association.

[44] Ning Ding, Daniel Wagner, Xiaomeng Chen, Abhinav Pathak, Y. Charlie Hu, and Andrew Rice.
Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. In
Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’13, pages 29–40, New York, NY, USA, 2013. ACM.

[45] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad Deshpande, Calvin
Grunewald, Kamal Jain, and Venkata N. Padmanabhan. Bartendr: A practical approach to energy-
aware cellular data scheduling. In Proceedings of the Sixteenth Annual International Conference on
Mobile Computing and Networking, MobiCom ’10, pages 85–96, New York, NY, USA, 2010. ACM.

https://perf.wiki.kernel.org/index.php/Tutorial
http://oprofile.sourceforge.net/about/

Bibliography 149

[46] Kenneth C. Barr and Krste Asanović. Energy-aware lossless data compression. ACM Trans. Comput.
Syst., 24(3):250–291, August 2006.

[47] Geoffrey Challen and Mark Hempstead. The case for power-agile computing. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems, HotOS’13, pages 15–15, Berkeley,
CA, USA, 2011. USENIX Association.

[48] Hui Chen, Bing Luo, and Weisong Shi. Anole: A case for energy-aware mobile application design.
In Proceedings of the 2012 41st International Conference on Parallel Processing Workshops, ICPPW
’12, pages 232–238, Washington, DC, USA, 2012. IEEE Computer Society.

[49] Shivajit Mohapatra, Nalini Venkatasubramanian, Nikil Dutt, Cristiano Pereira, and Rajesh Gupta.
Energy-aware adaptations for end-to- end video streaming to mobile handheld devices. In E. Macii,
editor, Ultra Low-Power Electronics and Design, chapter 10, pages 266–290. Springer Science &
Business Media, 2007.

[50] Henry Hoffmann. Jouleguard: Energy guarantees for approximate applications. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 198–214, New York, NY, USA,
2015. ACM.

[51] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy consumption
in mobile phones: A measurement study and implications for network applications. In Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, IMC ’09, pages 280–293, New York,
NY, USA, 2009. ACM.

[52] Mohammad Hosseini, Alexandra Fedorova, Joseph Peters, and Shervin Shirmohammadi. Energy-aware
adaptations in mobile 3d graphics. In Proceedings of the 20th ACM International Conference on
Multimedia, MM ’12, pages 1017–1020, New York, NY, USA, 2012. ACM.

[53] Meng Zhu and Kai Shen. Energy discounted computing on multicore smartphones. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16), pages 129–141, Denver, CO, 2016. USENIX Asso-
ciation.

[54] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative i/o: A novel i/o semantics for energy-
aware applications. SIGOPS Oper. Syst. Rev., 36(SI):117–129, December 2002.

[55] Nicholas D. Lane, Yohan Chon, Lin Zhou, Yongzhe Zhang, Fan Li, Dongwon Kim, Guanzhong Ding,
Feng Zhao, and Hojung Cha. Piggyback crowdsensing (pcs): Energy efficient crowdsourcing of mobile
sensor data by exploiting smartphone app opportunities. In Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’13, pages 7:1–7:14, New York, NY, USA, 2013.
ACM.

[56] Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hempstead, and Geoffrey Challen.
Separated by birth: Hidden differences between seemingly-identical smartphone cpus. In Proceedings
of the 18th International Workshop on Mobile Computing Systems and Applications, HotMobile ’17,
pages 103–108, New York, NY, USA, 2017. ACM.

[57] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kuppuswamy, Alex C.
Snoeren, and Rajesh K. Gupta. Evaluating the effectiveness of model-based power characteriza-
tion. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’11, pages 12–12, Berkeley, CA, USA, 2011. USENIX Association.

[58] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge: Fast self-constructive power mod-
eling of smartphones based on battery voltage dynamics. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages 43–55, Lombard,
IL, 2013. USENIX.

Bibliography 150

[59] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuoqing Morley
Mao, and Lei Yang. Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS ’10, pages 105–114,
New York, NY, USA, 2010. ACM.

[60] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differential power
analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

[61] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Proceedings of the
19th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages
388–397, London, UK, UK, 1999. Springer-Verlag.

[62] Dynamic Time Warping, pages 69–84. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[63] G. Huang, M. Xu, F. X. Lin, Y. Liu, Y. Ma, S. Pushp, and X. Liu. Shuffledog: Characterizing and
adapting user-perceived latency of android apps. IEEE Transactions on Mobile Computing, PP(99):1–
1, 2017.

[64] David T. Nguyen, Gang Zhou, Guoliang Xing, Xin Qi, Zijiang Hao, Ge Peng, and Qing Yang. Re-
ducing smartphone application delay through read/write isolation. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys ’15, pages 287–300,
New York, NY, USA, 2015. ACM.

[65] ARM. 64 bit juno arm development platform. http://www.arm.com/files/pdf/
Juno ARM Development Platform datasheet.pdf, 2014.

[66] Philip J. Mucci. PapiEx - execute arbitrary application and measure hardware performance counters
with PAPI. http://icl.cs.utk.edu/~mucci/papiex.

[67] Vince Weaver. The unofficial Linux Perf Events web-page. http://web.eece.maine.edu/~vweaver/
projects/perf events. Last accessed: Dec. 12, 2013.

[68] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. Rapl: Memory
power estimation and capping. In Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design, ISLPED ’10, pages 189–194, New York, NY, USA, 2010. ACM.

[69] Carl A. Waldspurger. Memory resource management in VMware ESX server. SIGOPS Oper. Syst.
Rev., 36(SI):181–194, December 2002.

[70] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Acpi - advanced configuration and power
interface. http://www.acpi.info/.

[71] John K. Ousterhout. Scheduling techniques for concurrebt systems. In Proceedings of the 3rd Interna-
tional Conference on Distributed Computing Systems, Miami/Ft. Lauderdale, Florida, USA, October
18-22, 1982, pages 22–30, 1982.

[72] Nikunj A. Dadhania. Gang scheduling in cfs. https://lwn.net/Articles/472797/, 2011.

[73] R. Chandra, P. Bahl, and P. Bahl. Multinet: connecting to multiple ieee 802.11 networks using a
single wireless card. In IEEE INFOCOM 2004, volume 2, pages 882–893 vol.2, March 2004.

[74] Lei Xia, Sanjay Kumar, Xue Yang, Praveen Gopalakrishnan, York Liu, Sebastian Schoenberg, and
Xingang Guo. Virtual wifi: Bring virtualization from wired to wireless. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’11, pages
181–192, New York, NY, USA, 2011. ACM.

[75] Microsoft Hardware Dev Center. Virtual wifi in kernel mode. https://docs.microsoft.com/en-us/
windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/, 2017.

http://www.arm.com/files/pdf/Juno_ARM_Development_Platform_datasheet.pdf
http://www.arm.com/files/pdf/Juno_ARM_Development_Platform_datasheet.pdf
http://icl.cs.utk.edu/~mucci/papiex
http://web.eece.maine.edu/~vweaver/projects/perf_events
http://web.eece.maine.edu/~vweaver/projects/perf_events
http://www.acpi.info/
https://lwn.net/Articles/472797/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/

Bibliography 151

[76] Texas Instruments. WL18x7MOD WiLink 8 Dual-Band Industrial Module – Wi-Fi, Bluetooth, and
Bluetooth Low Energy, 2015.

[77] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. A close examination of performance and power characteristics of 4g lte networks. In
Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 225–238, New York, NY, USA, 2012. ACM.

[78] Measurement Computing. USB-1608G Series User’s Guide, 2012.

[79] Matt Blaze. A cryptographic file system for unix. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 9–16, New York, NY, USA, 1993. ACM.

[80] Texas Instruments. Processor SDK Demos Video Analytics. http://processors.wiki.ti.com/
index.php/Processor SDK Demos Video Analytics.

[81] Aaron Carroll and Gernot Heiser. The systems hacker’s guide to the galaxy: energy usage in a modern
smartphone. In Proc. of the 4th Asia-Pacific Workshop on Systems (APSYS), page 5. ACM, 2013.

[82] M. Dong and L. Zhong. Chameleon: A color-adaptive web browser for mobile oled displays. IEEE
Transactions on Mobile Computing, 11(5):724–738, May 2012.

[83] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 2013.

[84] Zehan Cui, Yan Zhu, Y. Bao, and M. Chen. A fine-grained component-level power measurement
method. In 2011 International Green Computing Conference and Workshops, pages 1–6, July 2011.

[85] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking energy in networked
embedded systems. In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 323–338, Berkeley, CA, USA, 2008. USENIX Association.

[86] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and Henry M Levy. Scheduler activa-
tions: Effective kernel support for the user-level management of parallelism. ACM Transactions on
Computer Systems (TOCS), 10(1):53–79, 1992.

[87] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe user-level access to privileged cpu features. In Proc. USENIX Conf. Operating Systems
Design and Implementation (OSDI), OSDI’12, pages 335–348, Berkeley, CA, USA, 2012. USENIX
Association.

[88] IHS Inc. Led by iphone 6s, sensor hubs market is growing fast, ihs says, ihs markit press release, 2017.

[89] Kionix. Kx23h-1035: Arm-based sensor hub with accelerometer. http://www.kionix.com/product/
KX23H-1035, 2014.

[90] Nandan Nayampally. ARM DynamIQ: Expanding the possibilities for artificial intelligence. 2017.

[91] Apple Inc. iPhone X, Tech Specs. https://www.apple.com/iphone-x/specs/, 2017.

[92] Texus Instruments. Ads7040: Ultra-low-power ultra-small-size sar adc. http://www.ti.com/product/
ADS7040, 2017.

[93] Texus Instruments. Ina231, ina3221 triple-channel, high-side measurement, shunt and bus voltage
monitor with i2c and smbus-compatible interface. http://www.ti.com/lit/ds/symlink/ina3221.pdf,
2016.

[94] Texus Instruments. Ina3221, 28-v, bi-directional, zero-drift, low-/high-side, i2c out current/power
monitor w/ alert in wcsp. http://www.ti.com/product/INA231, 2018.

http://processors.wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics
http://processors.wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics
http://www.kionix.com/product/KX23H-1035
http://www.kionix.com/product/KX23H-1035
https://www.apple.com/iphone-x/specs/
http://www.ti.com/product/ADS7040
http://www.ti.com/product/ADS7040
http://www.ti.com/lit/ds/symlink/ina3221.pdf
http://www.ti.com/product/INA231

Bibliography 152

[95] Nvidia. Jetson tx1 voltage and current monitor configuration application note. https://

developer.nvidia.com/embedded/tegra-2-reference, 2017.

[96] Nvidia. Tegra x2: Technical reference manual. https://developer.nvidia.com/embedded/tegra-2-
reference, 2017.

[97] Hardkernel. Odroid xu3: Board detail. http://www.hardkernel.com/main/products/
prdt info.php?g code=g140448267127&tab idx=2, 2014.

[98] Google. Sensors Overview. https://developer.android.com/guide/topics/sensors/
sensors overview.html.

[99] Apple. Core Motion. https://developer.apple.com/documentation/coremotion.

[100] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foun-
dations of Computer Science, SFCS ’77, pages 46–57, Washington, DC, USA, 1977. IEEE Computer
Society.

[101] QuickLogic. SenseMe™ - Sensor Algorithm Library for Mobile Devices. https://www.quicklogic.com/
technologies/sensor-hub/senseme/.

[102] Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong. Reflex: using low-power pro-
cessors in smartphones without knowing them. In Proc. ACM Int. Conf. Architectural Support for
Programming Languages & Operating Systems (ASPLOS), pages 13–24, New York, NY, USA, 2012.
ACM.

[103] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall. Enhancing Mobile
Apps to Use Sensor Hubs Without Programmer Effort. In Proc. Int. Conf. Ubiquitous Computing
(UbiComp), UbiComp ’15, pages 227–238, New York, NY, USA, 2015. ACM.

[104] Daniyal Liaqat, Silviu Jingoi, Eyal de Lara, Ashvin Goel, Wilson To, Kevin Lee, Italo
De Moraes Garcia, and Manuel Saldana. Sidewinder: An energy efficient and developer friendly
heterogeneous architecture for continuous mobile sensing. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 205–215, New York, NY, USA, 2016. ACM.

[105] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala: A platform
for os-level power management. In Proceedings of the 4th ACM European Conference on Computer
Systems, EuroSys ’09, pages 289–302, New York, NY, USA, 2009. ACM.

[106] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. A validation of dram rapl power mea-
surements. In Proceedings of the Second International Symposium on Memory Systems, MEMSYS ’16,
pages 455–470, New York, NY, USA, 2016. ACM.

[107] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E. Nagel. Power measurement
techniques on standard compute nodes: A quantitative comparison. In 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 194–204, April 2013.

[108] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy metering for free: Augmenting switching
regulators for real-time monitoring. In 2008 International Conference on Information Processing in
Sensor Networks (ipsn 2008), pages 283–294, April 2008.

[109] Patrick Titiano. Leveraging open-source power measurement standard solution.
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging Open-

Source Power Measurement Standard Solution 0.pdf.

[110] Bartosz Golaszewski. sigrok: Adventures in integrating a power-measurement device. http://

events.linuxfoundation.org/sites/events/files/slides/ELC pres bgolaszewski.pdf.

https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=2
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.apple.com/documentation/coremotion
https://www.quicklogic.com/technologies/sensor-hub/senseme/
https://www.quicklogic.com/technologies/sensor-hub/senseme/
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_Open-Source_Power_Measurement_Standard_Solution_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_Open-Source_Power_Measurement_Standard_Solution_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_bgolaszewski.pdf
http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_bgolaszewski.pdf

Bibliography 153

[111] Yan Zhai, Xiao Zhang, Stephane Eranian, Lingjia Tang, and Jason Mars. Happy: Hyperthread-aware
power profiling dynamically. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
211–217, Philadelphia, PA, 2014. USENIX Association.

[112] Farshad Ghanei, Pranav Tipnis, Kyle Marcus, Karthik Dantu, Steve Ko, and Lukasz Ziarek. Os-based
resource accounting for asynchronous resource use in mobile systems. In Proceedings of the 2016
International Symposium on Low Power Electronics and Design, ISLPED ’16, pages 296–301, New
York, NY, USA, 2016. ACM.

[113] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya. Virtual machine power
metering and provisioning. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 39–50, New York, NY, USA, 2010. ACM.

[114] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zel-
dovich. Energy management in mobile devices with the cinder operating system. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11, pages 139–152, New York, NY, USA, 2011.
ACM.

[115] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y. Handong. Application-specific performance-aware
energy optimization on android mobile devices. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 169–180, Feb 2017.

[116] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated CPU-GPU power management
for 3D mobile games. In Proc. of the 51st Annual Design Automation Conference (DAC), pages
40:1–40:6, 2014.

[117] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. Automated OS-level Device Power
Management for SoCs. In Proc. ACM Int. Conf. Architectural Support for Programming Languages
& Operating Systems (ASPLOS), New York, NY, USA, 2015. ACM.

[118] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka Ishikawa. Timegraph: Gpu
scheduling for real-time multi-tasking environments. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’11, pages 2–2, Berkeley, CA, USA, 2011.
USENIX Association.

[119] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett Witchel. Ptask:
Operating system abstractions to manage gpus as compute devices. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages 233–248, New York, NY,
USA, 2011. ACM.

[120] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. Gdev: First-class gpu re-
source management in the operating system. In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, pages 37–37, Berkeley, CA, USA, 2012. USENIX
Association.

[121] Renju Liu and Felix Xiaozhu Lin. Understanding the Characteristics of Android Wear OS. In Proc.
ACM Int. Conf. Mobile Systems, Applications, & Services (MobiSys), MobiSys ’16, pages 151–164,
New York, NY, USA, 2016. ACM.

[122] Matthew Lentz, James Litton, and Bobby Bhattacharjee. Drowsy Power Management. In Proc. ACM
Symp. Operating Systems Principles (SOSP), SOSP ’15, pages 230–244, New York, NY, USA, 2015.
ACM.

[123] Fengyuan Xu, Yunxin Liu, Thomas Moscibroda, Ranveer Chandra, Long Jin, Yongguang Zhang,
and Qun Li. Optimizing Background Email Sync on Smartphones. In Proc. ACM Int. Conf. Mobile
Systems, Applications, & Services (MobiSys), pages 55–68, 2013.

Bibliography 154

[124] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu, Maruti Gupta, and Rath Vannithamby.
Smartphone Background Activities in the Wild: Origin, Energy Drain, and Optimization. In Proc.
Ann. Int. Conf. Mobile Computing & Networking (MobiCom), MobiCom ’15, pages 40–52, New York,
NY, USA, 2015. ACM.

[125] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y. Charlie Hu, Maruti Gupta, and Rath Vannithamby.
Smartphone Energy Drain in the Wild: Analysis and Implications. In Proc. ACM SIGMETRICS
(SIGMETRICS), pages 151–164. ACM, 2015.

[126] Xing Liu, Tianyu Chen, Feng Qian, Zhixiu Guo, Felix Xiaozhu Lin, Xiaofeng Wang, and Kai Chen.
Characterizing Smartwatch Usage in the Wild. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’17, pages 385–398, New York,
NY, USA, 2017. ACM.

[127] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra, Sudipta Sinha,
Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman. Farmbeats: An iot platform for data-
driven agriculture. In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 515–529, Boston, MA, 2017. USENIX Association.

[128] Ulf Hansson. SDIO power on/off time impacts system suspend/resume time! http://

connect.linaro.org/resource/sfo17/sfo17-402/, 2017.

[129] LWN. Redesigning asynchronous suspend/resume. https://lwn.net/Articles/366915/, 2009.

[130] LKML. [git pull] pm updates for 2.6.33, 2009.

[131] Jim Morrison, Daniel Yang, and Chad Davis. Apple watch: teardown. https://

www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/. (Accessed
on 01/10/2019).

[132] MediaTek. Microsoft Azure Sphere MCU with extensive I/O peripheral subsystem for diverse IoT
applications. https://www.mediatek.com/products/azureSphere/mt3620, 2018.

[133] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: A mobile operating system for heterogeneous
coherence domains. In Proc. ACM Int. Conf. Architectural Support for Programming Languages &
Operating Systems (ASPLOS), pages 285–300. ACM, 2014.

[134] David Meisner and Thomas F. Wenisch. DreamWeaver: architectural support for deep sleep. In Proc.
ACM Int. Conf. Architectural Support for Programming Languages & Operating Systems (ASPLOS),
ASPLOS ’12, pages 313–324, New York, NY, USA, 2012. ACM.

[135] Yuvraj Agarwal, Steve Hodges, Ranveer Chandra, James Scott, Paramvir Bahl, and Rajesh Gupta.
Somniloquy: Augmenting Network Interfaces to Reduce PC Energy Usage. In Proc. USENIX Symp.
Networked Systems Design and Implementation (NSDI), pages 365–380. USENIX Association, 2009.

[136] Yoann Padioleau, Julia L Lawall, and Gilles Muller. Understanding collateral evolution in Linux
device drivers. In ACM SIGOPS Operating Systems Review, volume 40, pages 59–71. ACM, 2006.

[137] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnianski, Akshay Ravichandran,
Cagil Kendir, Alastair Murray, and Binoy Ravindran. Popcorn: Bridging the Programmability Gap in
heterogeneous-ISA Platforms. In Proc. The European Conf. Computer Systems (EuroSys), EuroSys
’15, pages 29:1–29:16, New York, NY, USA, 2015. ACM.

[138] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen Hunt. Helios: het-
erogeneous multiprocessing with satellite kernels. In Proc. ACM Symp. Operating Systems Principles
(SOSP), SOSP ’09, pages 221–234, New York, NY, USA, 2009. ACM.

[139] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The Multikernel: a new OS architecture
for scalable multicore systems. In Proc. ACM Symp. Operating Systems Principles (SOSP), pages
29–44. ACM, 2009.

http://connect.linaro.org/resource/sfo17/sfo17-402/
http://connect.linaro.org/resource/sfo17/sfo17-402/
https://lwn.net/Articles/366915/
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/
https://www.techinsights.com/about-techinsights/overview/blog/apple-watch-teardown/
https://www.mediatek.com/products/azureSphere/mt3620

Bibliography 155

[140] Gang Lu, Jianfeng Zhan, Xinlong Lin, Chongkang Tan, and Lei Wang. On Horizontal Decomposition
of the Operating System. CoRR, abs/1604.01378, 2016.

[141] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A Disseminated, Distributed
OS for Hardware Resource Disaggregation. In Proc. USENIX Conf. Operating Systems Design and
Implementation (OSDI), pages 69–87, 2018.

[142] A. Leonard Brown and Rafael J. Wysocki. Suspend-to-RAM in Linux. In Ottawa Linux Symposium,
pages 39–52, 2008.

[143] Intel. Intel suspendresume project. https://01.org/suspendresume, 2015.

[144] Asim Kadav and Michael M. Swift. Understanding Modern Device Drivers. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages & Operating Systems (ASPLOS), ASPLOS XVII,
pages 87–98, New York, NY, USA, 2012. ACM.

[145] David Meisner, Brian T. Gold, and Thomas F. Wenisch. PowerNap: Eliminating Server Idle Power.
In Proc. ACM Int. Conf. Architectural Support for Programming Languages & Operating Systems
(ASPLOS), ASPLOS XIV, pages 205–216, New York, NY, USA, 2009. ACM.

[146] Qi Zhu, Meng Zhu, Bo Wu, Xipeng Shen, Kai Shen, and Zhiying Wang. Software Engagement with
Sleeping CPUs. In Proc. Workshp. Hot Topics in Operating Systems (HotOS), Kartause Ittingen,
Switzerland, 2015. USENIX Association.

[147] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos. Lock-in-Pop: securing privi-
leged operating system kernels by keeping on the beaten path. In Proc. USENIX Annual Technical
Conference (ATC), pages 1–13. USENIX Association, 2017.

[148] Texas Instruments. OMAP4 applications processor: Technical reference manual. http://www.ti.com/
product/OMAP4470, 2010.

[149] Texas Instruments. AM5728 Sitara Processor: Dual Arm Cortex-A15 & Dual DSP, Multimedia —
TI.com. http://www.ti.com/product/AM5728. (Accessed on 05/14/2019).

[150] NXP Semiconductors. i.MX 6SoloX - fact sheet. https://www.nxp.com/docs/en/fact-sheet/
IMX6SOLOXFS.pdf. (Accessed on 05/14/2019).

[151] NXP Semiconductors. i.MX 7 Series Applications Processors — Arm® Cortex®-A7, Cortex-
M4 — NXP. https://www.nxp.com/products/processors-and-microcontrollers/arm-based-
processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES, 2017.
(Accessed on 05/14/2019).

[152] NXP Semiconductors. i.MX 8M Family of Applications Processors Fact Sheet. https://www.nxp.com/
docs/en/fact-sheet/i.MX8M-FS.pdf. (Accessed on 05/14/2019).

[153] Jacob Sorber, Nilanjan Banerjee, Mark D Corner, and Sami Rollins. Turducken: hierarchical power
management for mobile devices. In Proc. ACM Int. Conf. Mobile Systems, Applications, & Services
(MobiSys), pages 261–274. ACM, 2005.

[154] NXP Semiconductors. i.MX 7DS power consumption measurement. https://www.nxp.com/docs/en/
application-note/AN5383.pdf, 2016.

[155] J.C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar. Using Asymmetric Single-ISA
CMPs to Save Energy on Operating Systems. IEEE Micro, 28(3):26–41, 2008.

[156] Peter Greenhalgh. Big.LITTLE processing with ARM Cortex-A15 and Cortex-A7. Technical report,
2011.

[157] Emily Blem, Jaikrishnan Menon, Thiruvengadam Vijayaraghavan, and Karthikeyan Sankaralingam.
ISA wars: Understanding the relevance of ISA being RISC or CISC to performance, power, and
energy on modern architectures. ACM Transactions on Computer Systems (TOCS), 33(1):3, 2015.

https://01.org/suspendresume
http://www.ti.com/product/OMAP4470
http://www.ti.com/product/OMAP4470
http://www.ti.com/product/AM5728
https://www.nxp.com/docs/en/fact-sheet/IMX6SOLOXFS.pdf
https://www.nxp.com/docs/en/fact-sheet/IMX6SOLOXFS.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/docs/en/fact-sheet/i.MX8M-FS.pdf
https://www.nxp.com/docs/en/fact-sheet/i.MX8M-FS.pdf
https://www.nxp.com/docs/en/application-note/AN5383.pdf
https://www.nxp.com/docs/en/application-note/AN5383.pdf

Bibliography 156

[158] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy, and Scott Hahn. Operating
system support for overlapping-ISA heterogeneous multi-core architectures. In Proc. IEEE Int. Symp.
on High Performance Computer Architecture (HPCA), pages 1–12. IEEE, 2010.

[159] Andrey Ponomarenko. ABI Compliance Checker. https://lvc.github.io/abi-compliance-
checker/, 2018.

[160] Balazs Gerofi, Aram Santogidis, Dominique Martinet, and Yutaka Ishikawa. PicoDriver: Fast-path
Device Drivers for Multi-kernel Operating Systems. In Proc. Int. Symp. on High-Performance Parallel
and Distributed Computing (HPDC), HPDC ’18, pages 2–13, New York, NY, USA, 2018. ACM.

[161] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrishnan, Michael M. Swift, and Somesh Jha.
The Design and Implementation of Microdrivers. In Proc. ACM Int. Conf. Architectural Support for
Programming Languages & Operating Systems (ASPLOS), ASPLOS XIII, pages 168–178, New York,
NY, USA, 2008. ACM.

[162] Greg Kroah-Hartman. The Linux Kernel Driver Interface – Stable API Nonsense. https:

//www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst. (Accessed on
05/04/2019).

[163] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of Commodity Operating
Systems. In Proc. ACM Symp. Operating Systems Principles (SOSP), 2003.

[164] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating Malicious Device Drivers in Linux. In Proc.
USENIX Annual Technical Conference (ATC). Boston, 2010.

[165] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recovering Device Drivers. In Proc.
USENIX Conf. Operating Systems Design and Implementation (OSDI), 2004.

[166] Michael Larabel. A Stable Linux Kernel API/ABI? ”The Most Insane Proposal” For Linux Develop-
ment. https://www.phoronix.com/scan.php?page=news item&px=Linux-Kernel-Stable-API-ABI,
2016.

[167] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno, Ho-Ren Chuang, Vin-
cent Legout, and Binoy Ravindran. Breaking the boundaries in heterogeneous-ISA datacenters.
In Proc. ACM Int. Conf. Architectural Support for Programming Languages & Operating Systems
(ASPLOS), pages 645–659. ACM, 2017.

[168] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján. Low Overhead Dynamic
Binary Translation on ARM. In Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), PLDI 2017, pages 333–346, New York, NY, USA, 2017. ACM.

[169] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, Stephen McCamant, Youfeng Wu, and Jayaram
Bobba. Enabling Cross-ISA Offloading for COTS Binaries. In Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys), pages 319–331. ACM, 2017.

[170] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proc. USENIX Annual Technical
Conference (ATC), pages 41–46, 2005.

[171] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An Operating System Architecture for
Application-level Resource Management. In Proc. ACM Symp. Operating Systems Principles (SOSP),
SOSP ’95, pages 251–266, New York, NY, USA, 1995. ACM.

[172] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C. Hunt. Rethinking
the Library OS from the Top Down. In Proc. ACM Int. Conf. Architectural Support for Programming
Languages & Operating Systems (ASPLOS), ASPLOS XVI, pages 291–304, New York, NY, USA,
2011. ACM.

https://lvc.github.io/abi-compliance-checker/
https://lvc.github.io/abi-compliance-checker/
https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst
https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Stable-API-ABI

Bibliography 157

[173] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library operating systems
for the cloud. In Proc. ACM Int. Conf. Architectural Support for Programming Languages & Operating
Systems (ASPLOS), pages 461–472. ACM, 2013.

[174] Mike Turquette. The Common Clk Framework. https://www.kernel.org/doc/Documentation/
clk.txt.

[175] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic Binary In-
strumentation. In Proc. ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[176] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In Proc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 190–200, New York, NY, USA, 2005. ACM Press.

[177] Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao. Optimizing Binary Translation of
Dynamically Generated Code. In Proc. Int. Symp. on Code Generation and Optimization (CGO),
CGO ’15, pages 68–78, Washington, DC, USA, 2015. IEEE Computer Society.

[178] Alastair Reid. Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture. In Proc.
Formal Methods in Computer-Aided Design (FMCAD), pages 161–168, 2016.

[179] Wenwen Wang, Stephen McCamant, Antonia Zhai, and Pen-Chung Yew. Enhancing Cross-ISA DBT
Through Automatically Learned Translation Rules. In Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems (ASPLOS), ASPLOS ’18, pages 84–97, New York,
NY, USA, 2018. ACM.

[180] Piyus Kedia and Sorav Bansal. Fast Dynamic Binary Translation for the Kernel. In Proc. ACM Symp.
Operating Systems Principles (SOSP), SOSP ’13, pages 101–115, New York, NY, USA, 2013. ACM.

[181] VMware. Technical note: Virtual machine to physical machine migration, 2004.

[182] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive kernel instrumentation via
dynamic binary translation. In ACM SIGARCH Computer Architecture News, volume 40, pages
135–146. ACM, 2012.

[183] eLinux.org. PandaBoard Power Measurements. http://elinux.org/
PandaBoard Power Measurements.

[184] Micron Technology, Inc. TN4201 LPDDR2 System Power Calculator. https://www.micron.com/
support/tools-and-utilities/power-calc, 2013.

[185] Hitoshi Oi. A Case Study of Energy Efficiency on a Heterogeneous Multi-Processor. SIGMETRICS
Perform. Eval. Rev., 45(2):70–72, 2017.

[186] Marcus Hähnel and Hermann Härtig. Heterogeneity by the numbers: A study of the ODROID XU+E
big.little platform. In Yuvraj Agarwal and Karthick Rajamani, editors, Proc. Workshp. Power-Aware
Computing and Systems (HotPower). USENIX Association, 2014.

[187] Nadja Peters, Sangyoung Park, Samarjit Chakraborty, Benedikt Meurer, Hannes Payer, and Daniel
Clifford. Web browser workload characterization for power management on HMP platforms. In Proc.
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
(CODES), pages 26:1–26:10. ACM, 2016.

[188] Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi, and Yong Meng Teo. A Perfor-
mance Study of Big Data on Small Nodes. Proc. VLDB Endow., 8(7):762–773, 2015.

https://www.kernel.org/doc/Documentation/clk.txt
https://www.kernel.org/doc/Documentation/clk.txt
http://elinux.org/PandaBoard_Power_Measurements
http://elinux.org/PandaBoard_Power_Measurements
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc

Bibliography 158

[189] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): the case for a scalable oper-
ating system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85, 2009. 1531805.

[190] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard P. Fettweis. M3: A
Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages & Operating Systems (ASPLOS), pages 189–203,
2016.

[191] Changwoo Min, Woonhak Kang, Mohan Kumar, Sanidhya Kashyap, Steffen Maass, Heeseung Jo,
and Taesoo Kim. Solros: a data-centric operating system architecture for heterogeneous computing. In
Proc. The European Conf. Computer Systems (EuroSys), page 36. ACM, 2018.

[192] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. GPUfs: Integrating a File System
with GPUs. In Proc. ACM Int. Conf. Architectural Support for Programming Languages & Operating
Systems (ASPLOS), ASPLOS ’13, pages 485–498, New York, NY, USA, 2013. ACM.

[193] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. Execution migration in a heterogeneous-ISA
chip multiprocessor. In Proc. ACM Int. Conf. Architectural Support for Programming Languages &
Operating Systems (ASPLOS), pages 261–272, New York, NY, USA, 2012. ACM.

[194] Raymond J Hookway and Mark A Herdeg. Digital FX! 32: Combining emulation and binary transla-
tion. Digital Technical Journal, 9:3–12, 1997.

[195] Darrell Boggs, Gary Brown, Nathan Tuck, and K. S. Venkatraman. Denver: Nvidia’s First 64-bit
ARM Processor. IEEE Micro, 35(2):46–55, 2015.

[196] Alexander Klaiber. The technology behind Crusoe processors. Transmeta Technical Brief, 2000.

[197] Simon Rokicki, Erven Rohou, and Steven Derrien. Hardware-accelerated dynamic binary translation.
In Proc. ACM/IEEE Design Automation & Test in Europe Conf. (DATE), pages 1062–1067, 2017.

[198] Simon Rokicki, Erven Rohou, and Steven Derrien. Supporting runtime reconfigurable VLIWs cores
through dynamic binary translation. In 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018, pages 1009–1014, 2018.

[199] Amanieu d’Antras, Cosmin Gorgovan, Jim Garside, John Goodacre, and Mikel Luján. HyperMAMBO-
X64: Using Virtualization to Support High-Performance Transparent Binary Translation. In Proc. Int.
Conf. Virtual Execution Environments (VEE), VEE ’17, pages 228–241, New York, NY, USA, 2017.
ACM.

[200] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu,
Chien-Min Wang, and Yeh-Ching Chung. HQEMU: a multi-threaded and retargetable dynamic binary
translator on multicores. In Proc. Int. Symp. on Code Generation and Optimization (CGO), pages
104–113, 2012.

[201] Sorav Bansal and Alex Aiken. Binary translation using peephole superoptimizers. In Proc. USENIX
Conf. Operating Systems Design and Implementation (OSDI), pages 177–192. USENIX Association,
2008.

[202] Jon Howell, Bryan Parno, and John R. Douceur. How to Run POSIX Apps in a Minimal Picoprocess.
In Proc. USENIX Annual Technical Conference (ATC), pages 321–332, 2013.

[203] Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. Documenting and automat-
ing collateral evolutions in Linux device drivers. In Joseph S. Sventek and Steven Hand, editors, Proc.
The European Conf. Computer Systems (EuroSys), pages 247–260. ACM, 2008.

[204] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified Device Driver Reuse and Improved System
Dependability via Virtual Machines. In Proc. USENIX OSDI, 2004.

Bibliography 159

[205] Antti Kantee and Justin Cormack. Rump Kernels No OS? No Problem! Login: USENIX Magazine,
39(5), 2014.

[206] Sam (Likun) Xi, Marisabel Guevara, Jared Nelson, Patrick Pensabene, and Benjamin C. Lee. Under-
standing the Critical Path in Power State Transition Latencies. In Proc. ACM/IEEE Int. Symp. Low
Power Electronics & Design (ISLPED), ISLPED ’13, pages 317–322, Piscataway, NJ, USA, 2013.
IEEE Press.

[207] Allan de Barcelos Silva, Marcio Miguel Gomes, Cristiano André da Costa, Rodrigo da Rosa Righi,
Jorge Luis Victoria Barbosa, Gustavo Pessin, Geert De Doncker, and Gustavo Federizzi. Intelligent
personal assistants: A systematic literature review. 147:113193.

[208] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang, Marco Donato, Victor
Sanh, Paul Whatmough, Alexander M. Rush, David Brooks, and Gu-Yeon Wei. EdgeBERT: Sentence-
Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 830–844. ACM.

[209] Alejandro Cartas, Martin Kocour, Aravindh Raman, Ilias Leontiadis, Jordi Luque, Nishanth Sastry,
José Núñez-Mart́ınez, Diego Perino, and Carlos Segura. A reality check on inference at mobile
networks edge. In Proceedings of the 2nd International Workshop on Edge Systems, Analytics and
Networking, EdgeSys@EuroSys 2019, Dresden, Germany, March 25, 2019, pages 54–59. ACM, 2019.

[210] Toine Bogers, Ammar Ali Abdelrahim Al-Basri, Claes Ostermann Rytlig, Mads Emil Bak Møller,
Mette Juhl Rasmussen, Nikita Katrine Bates Michelsen, and Sara Gerling Jørgensen. A Study of
Usage and Usability of Intelligent Personal Assistants in Denmark. In Natalie Greene Taylor, Caitlin
Christian-Lamb, Michelle H. Martin, and Bonnie Nardi, editors, Information in Contemporary Soci-
ety, Lecture Notes in Computer Science, pages 79–90. Springer International Publishing.

[211] Juan Pablo Carrascal and Karen Church. An in-situ study of mobile app & mobile search interac-
tions. In Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo, editors, Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, Seoul, Republic of
Korea, April 18-23, 2015, pages 2739–2748. ACM, 2015.

[212] Paul Michel, Omer Levy, and Graham Neubig. Are Sixteen Heads Really Better than One?

[213] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in RL and NLP. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[214] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding.

[215] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter.

[216] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[217] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 4510–4520.
Computer Vision Foundation / IEEE Computer Society, 2018.

[218] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convo-
lutional neural network for mobile devices. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 6848–6856. Computer
Vision Foundation / IEEE Computer Society, 2018.

Bibliography 160

[219] Hugging face:nlptown/bert-base-multilingual-uncased-sentiment. https://huggingface.co/nlptown/
bert-base-multilingual-uncased-sentiment. (Accessed on 07/07/2022).

[220] Kasturi Bhattacharjee, Miguel Ballesteros, Rishita Anubhai, Smaranda Muresan, Jie Ma, Faisal Lad-
hak, and Yaser Al-Onaizan. To BERT or not to BERT: comparing task-specific and task-agnostic
semi-supervised approaches for sequence tagging. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020, pages 7927–7934. Association for Compu-
tational Linguistics, 2020.

[221] Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy, and Irene Zhang. End the senseless killing:
Improving memory management for mobile operating systems. In Ada Gavrilovska and Erez Zadok,
editors, 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, pages
873–887. USENIX Association, 2020.

[222] Soyoon Lee and Hyokyung Bahn. Characterization of android memory references and implication to
hybrid memory management. IEEE Access, 9:60997–61009, 2021.

[223] Android. Android: Low memory killer daemon. https://source.android.com/devices/tech/perf/
lmkd/, 2022.

[224] Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin, Qiaozhu Mei, and
Feng Feng. Characterizing smartphone usage patterns from millions of android users. In Kenjiro
Cho, Kensuke Fukuda, Vivek S. Pai, and Neil Spring, editors, Proceedings of the 2015 ACM Internet
Measurement Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, pages 459–472. ACM,
2015.

[225] Yuan Tian, Ke Zhou, Mounia Lalmas, and Dan Pelleg. Identifying tasks from mobile app usage
patterns. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen,
and Yiqun Liu, editors, Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 2357–2366. ACM, 2020.

[226] Rongjie Yi, Ting Cao, Ao Zhou, Xiao Ma, Shangguang Wang, and Mengwei Xu. Understanding and
optimizing deep learning cold-start latency on edge devices, 2022.

[227] Hongyu Miao and Felix Xiaozhu Lin. Enabling large nns on tiny mcus with swapping. CoRR,
abs/2101.08744, 2021.

[228] Hanrui Wang. Efficient Algorithms and Hardware for Natural Language Processing. PhD dissertation,
Massachusetts Institute of Technology, 2020.

[229] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. DynaBERT: Dynamic
BERT with Adaptive Width and Depth.

[230] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. GOBO: Quantizing
Attention-Based NLP Models for Low Latency and Energy Efficient Inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 811–824. IEEE.

[231] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.

[232] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[233] Xiantao Chen, Moli Zhou, Renzhen Wang, Yalin Pan, Jiaqi Mi, Hui Tong, and Daisong Guan. Eval-
uating response delay of multimodal interface in smart device. In Aaron Marcus and Wentao Wang,
editors, Design, User Experience, and Usability. Practice and Case Studies - 8th International Con-
ference, DUXU 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando,

https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
https://source.android.com/devices/tech/perf/lmkd/
https://source.android.com/devices/tech/perf/lmkd/

Bibliography 161

FL, USA, July 26-31, 2019, Proceedings, Part IV, volume 11586 of Lecture Notes in Computer Sci-
ence, pages 408–419. Springer, 2019.

[234] Pytorch. https://pytorch.org/. (Accessed on 03/14/2022).

[235] Tensorflow. https://www.tensorflow.org/, 2021. (Accessed on 04/22/2021).

[236] Luting Yang, Bingqian Lu, and Shaolei Ren. A Note on Latency Variability of Deep Neural Networks
for Mobile Inference.

[237] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training
of giant neural networks using pipeline parallelism. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 103–112, 2019.

[238] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: generalized pipeline parallelism
for DNN training. In Tim Brecht and Carey Williamson, editors, Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019,
pages 1–15. ACM, 2019.

[239] Suchita Pati, Shaizeen Aga, Nuwan Jayasena, and Matthew D. Sinclair. Demystifying BERT: Impli-
cations for Accelerator Design.

[240] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
David R. Traum, and Llúıs Màrquez, editors, Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 5797–5808. Association for Computational Linguistics, 2019.

[241] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. MobileBERT:
A Compact Task-Agnostic BERT for Resource-Limited Devices.

[242] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.

[243] Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing Dang, Ziwei Liu,
and Xianglong Liu. BIBERT: ACCURATE FULLY BINARIZED BERT. page 24.

[244] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient Transformers: A Survey.

[245] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan, Frank Zhang, Duc
Le, and Mike Seltzer. Emformer: Efficient memory transformer based acoustic model for low latency
streaming speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6783–6787. IEEE, 2021.

[246] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David Brooks, and
Gu-Yeon Wei. RecSSD: Near data processing for solid state drive based recommendation inference.
In Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 717–729. ACM.

[247] Hu Wan, Xuan Sun, Yufei Cui, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue. FlashEmbedding:
Storing embedding tables in SSD for large-scale recommender systems. In Proceedings of the 12th
ACM SIGOPS Asia-Pacific Workshop on Systems, pages 9–16. ACM.

[248] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey Pupyrev, Kim Hazel-
wood, Asaf Cidon, and Sachin Katti. Bandana: Using Non-volatile Memory for Storing Deep Learning
Models. page 13.

https://pytorch.org/
https://www.tensorflow.org/

Bibliography 162

[249] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining
Approach.

[250] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. HAT:
Hardware-Aware Transformers for Efficient Natural Language Processing.

[251] Michael Frederick McTear, Zoraida Callejas, and David Griol. The conversational interface, volume 6.
Springer, 2016.

[252] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun, editors,
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

[253] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
David R. Traum, and Llúıs Màrquez, editors, Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 5797–5808. Association for Computational Linguistics, 2019.

[254] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of bert’s attention. In Tal Linzen, Grzegorz Chrupala, Yonatan Belinkov, and Dieuwke
Hupkes, editors, Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, BlackboxNLP@ACL 2019, Florence, Italy, August 1, 2019, pages 276–286.
Association for Computational Linguistics, 2019.

[255] Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z. Pan. Mixed Precision
Neural Architecture Search for Energy Efficient Deep Learning. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–7.

[256] Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. HAWQ: Hessian AWare
Quantization of Neural Networks With Mixed-Precision. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 293–302. IEEE.

[257] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-Aware Automated
Quantization With Mixed Precision. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8604–8612. IEEE.

[258] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quantized 8Bit BERT.

[259] Thomas Lorenser. The dsp capabilities of arm cortex-m4 and cortex-m7 processors. ARM White
Paper, 29, 2016.

[260] Heejin Park and Felix Xiaozhu Lin. Gpureplay: a 50-kb gpu stack for client ml. In Proceedings of
the 27th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 157–170, 2022.

[261] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. AsyMo: Scalable and efficient
deep-learning inference on asymmetric mobile CPUs. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pages 215–228. ACM.

[262] Pytorch 1.11, torchdata, and functorch are now available — pytorch. https://pytorch.org/blog/
pytorch-1.11-released/. (Accessed on 07/07/2022).

[263] Version 0.23.2 — scikit-learn 1.1.1 documentation. https://scikit-learn.org/stable/whats new/

v0.23.html. (Accessed on 07/07/2022).

[264] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory pro-
gramming. IEEE computational science and engineering, 5(1):46–55, 1998.

https://pytorch.org/blog/pytorch-1.11-released/
https://pytorch.org/blog/pytorch-1.11-released/
https://scikit-learn.org/stable/whats_new/v0.23.html
https://scikit-learn.org/stable/whats_new/v0.23.html

Bibliography 163

[265] Angela Fan, Edouard Grave, and Armand Joulin. Reducing Transformer Depth on Demand with
Structured Dropout.

[266] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. BinaryBERT: Pushing the Limit of BERT Quantization.

[267] Zhenhua Liu, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen Gao. Evolutionary Quantization of
Neural Networks with Mixed-Precision. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2785–2789.

[268] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant on-device deep learning
for continuous mobile vision. In Rajeev Shorey, Rohan Murty, Yingying (Jennifer) Chen, and Kyle
Jamieson, editors, Proceedings of the 24th Annual International Conference on Mobile Computing
and Networking, MobiCom 2018, New Delhi, India, October 29 - November 02, 2018, pages 115–127.
ACM, 2018.

[269] Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A. Beerel, Stephen P. Crago, and John
Paul N. Walters. Pipeline Parallelism for Inference on Heterogeneous Edge Computing.

[270] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: Automated
elastic pipelining for distributed training of large-scale models. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 4150–4159.
PMLR, 2021.

[271] Trusty tee uses and examples. https://source.android.com/security/trusty#uses examples.
(Accessed on 02/08/2022).

[272] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM trustzone to build a
trusted language runtime for mobile applications. In Rajeev Balasubramonian, Al Davis, and Sarita V.
Adve, editors, Architectural Support for Programming Languages and Operating Systems, ASPLOS
2014, Salt Lake City, UT, USA, March 1-5, 2014, pages 67–80. ACM, 2014.

[273] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis.
PPFL: privacy-preserving federated learning with trusted execution environments. In Suman Banerjee,
Luca Mottola, and Xia Zhou, editors, MobiSys ’21: The 19th Annual International Conference on
Mobile Systems, Applications, and Services, Virtual Event, Wisconsin, USA, 24 June - 2 July, 2021,
pages 94–108. ACM, 2021.

[274] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis, Andrea
Cavallaro, and Hamed Haddadi. Darknetz: Towards model privacy at the edge using trusted execution
environments. In Proceedings of the 18th International Conference on Mobile Systems, Applications,
and Services, MobiSys ’20, page 161–174, New York, NY, USA, 2020. Association for Computing
Machinery.

[275] Chang Min Park, Donghwi Kim, Deepesh Veersen Sidhwani, Andrew Fuchs, Arnob Paul, Sung-Ju
Lee, Karthik Dantu, and Steven Y. Ko. Rushmore: Securely displaying static and animated images
using trustzone. In Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’21, page 122–135, New York, NY, USA, 2021. Association for
Computing Machinery.

[276] commit 148fec63133d755259feac338d50a747976dbf37 - trusty/lk/trusty - git at google. https://

android.googlesource.com/trusty/lk/trusty/+/148fec63133d755259feac338d50a747976dbf37.
(Accessed on 02/21/2022).

[277] optee os/changelog.md at 0.1.0 · op-tee/optee os · github. https://github.com/OP-TEE/optee os/

blob/0.1.0/CHANGELOG.md. (Accessed on 02/21/2022).

https://source.android.com/security/trusty#uses_examples
https://android.googlesource.com/trusty/lk/trusty/+/148fec63133d755259feac338d50a747976dbf37
https://android.googlesource.com/trusty/lk/trusty/+/148fec63133d755259feac338d50a747976dbf37
https://github.com/OP-TEE/optee_os/blob/0.1.0/CHANGELOG.md
https://github.com/OP-TEE/optee_os/blob/0.1.0/CHANGELOG.md

Bibliography 164

[278] optee os/changelog.md at master · op-tee/optee os · github. https://github.com/OP-TEE/optee os/

blob/master/CHANGELOG.md. (Accessed on 08/12/2021).

[279] Sd standard overview — sd association. https://www.sdcard.org/developers/sd-standard-
overview/. (Accessed on 02/21/2022).

[280] e.mmc — jedec. https://www.jedec.org/standards-documents/technology-focus-areas/flash-
memory-ssds-ufs-emmc/e-mmc. (Accessed on 02/21/2022).

[281] I2c broadcom bug workaround. · issue #254 · raspberrypi/linux. https://github.com/raspberrypi/
linux/issues/254. (Accessed on 10/09/2021).

[282] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui, Vasily A. Sar-
takov, and Peter R. Pietzuch. SGX-LKL: securing the host OS interface for trusted execution. CoRR,
abs/1908.11143, 2019.

[283] National Institute of Standards and Technology (NIST). Defending against software
supply chain attacks. https://www.cisa.gov/sites/default/files/publications/
defending against software supply chain attacks 508 1.pdf.

[284] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans Kaashoek, and
Zheng Zhang. R2: an application-level kernel for record and replay. In Richard Draves and Robbert
van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages 193–208. USENIX
Association, 2008.

[285] Xianzheng Dou, Peter M. Chen, and Jason Flinn. Knockoff: Cheap versions in the cloud. In 15th
USENIX Conference on File and Storage Technologies (FAST 17), pages 73–88, Santa Clara, CA,
2017. USENIX Association.

[286] Daniel Hein, Johannes Winter, and Andreas Fitzek. Secure block device – secure, flexible, and efficient
data storage for arm trustzone systems. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages
222–229, 2015.

[287] Bernard Dickens III, Haryadi S. Gunawi, Ariel J. Feldman, and Henry Hoffmann. Strongbox: Confi-
dentiality, integrity, and performance using stream ciphers for full drive encryption. In Xipeng Shen,
James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors, Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, pages 708–721. ACM, 2018.

[288] Tiago Brito, Nuno O. Duarte, and Nuno Santos. ARM trustzone for secure image processing on the
cloud. In 35th IEEE Symposium on Reliable Distributed Systems Workshops, SRDS 2016 Workshop,
Budapest, Hungary, September 26, 2016, pages 37–42. IEEE Computer Society, 2016.

[289] Ardalan Amiri Sani. Schrodintext: Strong protection of sensitive textual content of mobile appli-
cations. In Tanzeem Choudhury, Steven Y. Ko, Andrew Campbell, and Deepak Ganesan, editors,
Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys’17, Niagara Falls, NY, USA, June 19-23, 2017, pages 197–210. ACM, 2017.

[290] Mengwei Xu, Tiantu Xu, Yunxin Liu, Xuanzhe Liu, Gang Huang, and Felix Xiaozhu Lin. Supporting
video queries on zero-streaming cameras. arXiv preprint arXiv:1904.12342, 2019.

[291] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman, Paramvir Bahl,
Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus: Querying large video datasets
with low latency and low cost. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), Carlsbad, CA, 2018. USENIX Association.

[292] Device power management basics — the linux kernel documentation. https://www.kernel.org/doc/
html/v4.18/driver-api/pm/devices.html. (Accessed on 10/09/2021).

https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://www.sdcard.org/developers/sd-standard-overview/
https://www.sdcard.org/developers/sd-standard-overview/
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://github.com/raspberrypi/linux/issues/254
https://github.com/raspberrypi/linux/issues/254
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.kernel.org/doc/html/v4.18/driver-api/pm/devices.html
https://www.kernel.org/doc/html/v4.18/driver-api/pm/devices.html

Bibliography 165

[293] Usb hotplugging — the linux kernel documentation. https://www.kernel.org/doc/html/v4.18/
driver-api/usb/hotplug.html. (Accessed on 10/09/2021).

[294] optee os/serial8250 uart.c at master · op-tee/optee os · github. https://github.com/OP-TEE/
optee os/blob/master/core/drivers/serial8250 uart.c. (Accessed on 02/21/2022).

[295] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. Automatic device
driver synthesis with Termite. In Proc. of the 22nd symposium on Operating systems principles
(SOSP), pages 73–86. ACM, 2009.

[296] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun Raghunath, Michael Stumm, and
Mona Vij. User-guided device driver synthesis. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 661–676, 2014.

[297] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and Trent Jaeger. Trust-
shadow: Secure execution of unmodified applications with arm trustzone. In Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’17, pages
488–501, New York, NY, USA, 2017. ACM.

[298] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Binyu Zang, Cheng-Kang Chu, and Tieyan Li.
Building trusted path on untrusted device drivers for mobile devices. In Asia-Pacific Workshop on
Systems, APSys’14, Beijing, China, June 25-26, 2014, pages 8:1–8:7. ACM, 2014.

[299] Stephen Checkoway and Hovav Shacham. Iago attacks: why the system call API is a bad untrusted
RPC interface. In Vivek Sarkar and Rastislav Bod́ık, editors, Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, pages
253–264. ACM, 2013.

[300] NVIDIA. Tegra2 Family: Technical reference manual, 2011.

[301] Raspberry Pi 3. Raspberry Pi 3 SDHost Driver: SDEDM FSM. https://github.com/raspberrypi/
linux/blob/rpi-5.10.y/drivers/mmc/host/bcm2835-sdhost.c.

[302] Linux. USB Linux Kernel Driver: OTG-FSM. https://github.com/raspberrypi/linux/blob/rpi-
5.10.y/drivers/usb/common/usb-otg-fsm.c.

[303] Joseh Yiu. White paper: Software based Finite State Machine (FSM) with general purpose processors.

[304] Bcm4329 preliminary data sheet. https://www.mouser.jp/datasheet/2/100/Radio%20with%
20Integrated%20Bluetooth%202.1%20 %20EDR%20and%20FM%20T-961654.pdf. (Accessed on
02/21/2022).

[305] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. Selective symbolic execu-
tion. In Proceedings of the 5th Workshop on Hot Topics in System Dependability (HotDep), number
CONF, 2009.

[306] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. Characteristic studies of loop problems for
structural test generation via symbolic execution. In Ewen Denney, Tevfik Bultan, and Andreas Zeller,
editors, 2013 28th IEEE/ACM International Conference on Automated Software Engineering, ASE
2013, Silicon Valley, CA, USA, November 11-15, 2013, pages 246–256. IEEE, 2013.

[307] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel, and Giovanni
Vigna. DR. CHECKER: A soundy analysis for linux kernel drivers. In Engin Kirda and Thomas
Ristenpart, editors, 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, pages 1007–1024. USENIX Association, 2017.

[308] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a platform for in-vivo multi-
path analysis of software systems. In Rajiv Gupta and Todd C. Mowry, editors, Proceedings of the
16th International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011, pages 265–278. ACM, 2011.

https://www.kernel.org/doc/html/v4.18/driver-api/usb/hotplug.html
https://www.kernel.org/doc/html/v4.18/driver-api/usb/hotplug.html
https://github.com/OP-TEE/optee_os/blob/master/core/drivers/serial8250_uart.c
https://github.com/OP-TEE/optee_os/blob/master/core/drivers/serial8250_uart.c
https://github.com/raspberrypi/linux/blob/rpi-5.10.y/drivers/mmc/host/bcm2835-sdhost.c
https://github.com/raspberrypi/linux/blob/rpi-5.10.y/drivers/mmc/host/bcm2835-sdhost.c
https://github.com/raspberrypi/linux/blob/rpi-5.10.y/drivers/usb/common/usb-otg-fsm.c
https://github.com/raspberrypi/linux/blob/rpi-5.10.y/drivers/usb/common/usb-otg-fsm.c
https://www.mouser.jp/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%202.1%20_%20EDR%20and%20FM%20T-961654.pdf
https://www.mouser.jp/datasheet/2/100/Radio%20with%20Integrated%20Bluetooth%202.1%20_%20EDR%20and%20FM%20T-961654.pdf

Bibliography 166

[309] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang, Zheng Zhang, Ardalan Amiri
Sani, and Zhiyun Qian. Charm: Facilitating dynamic analysis of device drivers of mobile systems.
In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 291–307. USENIX Association,
2018.

[310] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. DECAF++: elastic whole-system dynamic taint
analysis. In 22nd International Symposium on Research in Attacks, Intrusions and Defenses, RAID
2019, Chaoyang District, Beijing, China, September 23-25, 2019, pages 31–45. USENIX Association,
2019.

[311] Lok Kwong Yan and Heng Yin. Sok: On the soundness and precision of dynamic taint analysis.
Formal. Taint, 2017:1–15, 2017.

[312] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. Symdrive: Testing drivers without
devices. In Chandu Thekkath and Amin Vahdat, editors, 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages
279–292. USENIX Association, 2012.

[313] Vitaly Chipounov and George Candea. Reverse engineering of binary device drivers with revnic. In
Proceedings of the 5th European conference on Computer systems, pages 167–180, 2010.

[314] Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. Streambox-tz: Secure stream analytics at
the edge with trustzone. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
537–554, Renton, WA, July 2019. USENIX Association.

[315] Cve-2016-5195: Race condition in mm/gup.c in the linux kernel 2.x through 4.x before 4.8.3 allows
local users to gain privileges by leveraging incorrect handling of a copy-on-write (cow) feature to
write to a read-only memory mapping, as exploited in the wild in october 2016, aka d̈irty cow.̈. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195. (Accessed on 09/22/2021).

[316] Karsten Nohl and Jakob Lell. Badusb - on accessories that turn evil. Black Hat USA, 1(9):1–22, 2014.

[317] CVE-2016-7389. Available from MITRE, CVE-ID CVE-2016-7389., September 9 2016.

[318] Cve-2016-6775 : An elevation of privilege vulnerability in the nvidia gpu driver could enable a local
malicious application to execute arbitrary code. https://www.cvedetails.com/cve/CVE-2016-6775/.
(Accessed on 09/22/2021).

[319] Cve-2016-9120 : Race condition in the ion ioctl function in drivers/staging/android/ion/ion.c in the
linux kernel before 4.6 allows loca. https://www.cvedetails.com/cve/CVE-2016-9120/. (Accessed
on 09/22/2021).

[320] Rpmb file system performance · issue #1033 · op-tee/optee os. https://github.com/OP-TEE/
optee os/issues/1033. (Accessed on 10/09/2021).

[321] Keystone — an open framework for architecting tees. https://keystone-enclave.org/. (Accessed
on 02/10/2022).

[322] Samuel Weiser and Mario Werner. SGXIO: generic trusted I/O path for intel SGX. In Gail-Joon Ahn,
Alexander Pretschner, and Gabriel Ghinita, editors, Proceedings of the Seventh ACM Conference on
Data and Application Security and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24,
2017, pages 261–268. ACM, 2017.

[323] Trusty tee — android open source project. https://source.android.com/security/trusty. (Ac-
cessed on 03/13/2022).

[324] Guard your data with the qualcomm snapdragon mobile platform. https://www.qualcomm.com/
media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-

platform.pdf. (Accessed on 03/13/2022).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://www.cvedetails.com/cve/CVE-2016-6775/
https://www.cvedetails.com/cve/CVE-2016-9120/
https://github.com/OP-TEE/optee_os/issues/1033
https://github.com/OP-TEE/optee_os/issues/1033
https://keystone-enclave.org/
https://source.android.com/security/trusty
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf

Bibliography 167

[325] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidambaram.
Finding crash-consistency bugs with bounded black-box crash testing. In Andrea C. Arpaci-Dusseau
and Geoff Voelker, editors, 13th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages 33–50. USENIX Association,
2018.

[326] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam Arumuga Nainar,
and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs. In Richard
Draves and Robbert van Renesse, editors, 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pages 267–280. USENIX Association, 2008.

[327] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. Revirt:
Enabling intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.,
36(SI):211–224, December 2003.

[328] Ang Chen, W. Brad Moore, Hanjun Xiao, Andreas Haeberlen, Linh Thi Xuan Phan, Micah Sherr,
and Wenchao Zhou. Detecting covert timing channels with time-deterministic replay. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages 541–554, Broom-
field, CO, October 2014. USENIX Association.

[329] M. Yan, Y. Shalabi, and J. Torrellas. Replayconfusion: Detecting cache-based covert channel attacks
using record and replay. In 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 1–14, 2016.

[330] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim, Alessandro Orso, and
Wenke Lee. Enabling refinable cross-host attack investigation with efficient data flow tagging and
tracking. In 27th USENIX Security Symposium (USENIX Security 18), pages 1705–1722, Baltimore,
MD, August 2018. USENIX Association.

[331] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and touch-sensitive record and
replay for android. In 2013 35th International Conference on Software Engineering (ICSE), pages
72–81, 2013.

[332] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. Mobiplay: A remote execution based record-and-
replay tool for mobile applications. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, page 571–582, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[333] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James Mickens,
and Hari Balakrishnan. Mahimahi: Accurate record-and-replay for HTTP. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 417–429, Santa Clara, CA, July 2015. USENIX
Association.

[334] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic excavator for reverse engi-
neering data structures. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2011, San Diego, California, USA, 6th February - 9th February 2011. The Internet Society,
2011.

[335] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos, and Michael Franz. Bin-
rec: dynamic binary lifting and recompilation. In Angelos Bilas, Kostas Magoutis, Evangelos P.
Markatos, Dejan Kostic, and Margo I. Seltzer, editors, EuroSys ’20: Fifteenth EuroSys Conference
2020, Heraklion, Greece, April 27-30, 2020, pages 36:1–36:16. ACM, 2020.

[336] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang. Discoverer: Automatic protocol reverse
engineering from network traces. In Niels Provos, editor, Proceedings of the 16th USENIX Security
Symposium, Boston, MA, USA, August 6-10, 2007. USENIX Association, 2007.

Bibliography 168

[337] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roychoudhury. Automated par-
titioning of android applications for trusted execution environments. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, page 923–934, New York, NY, USA,
2016. Association for Computing Machinery.

[338] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu, Chen-
ren Xu, Lintao Zhang, and Junehwa Song. Occlumency: Privacy-preserving remote deep-learning
inference using sgx. In The 25th Annual International Conference on Mobile Computing and Network-
ing, MobiCom ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[339] SeungSeob Lee, Hang Shi, Kun Tan, Yunxin Liu, SuKyoung Lee, and Yong Cui. S2net: Preserving
privacy in smart home routers. IEEE Trans. Dependable Secur. Comput., 18(3):1409–1424, 2021.

[340] Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. Streambox-tz: Secure stream analytics at
the edge with trustzone. In Dahlia Malkhi and Dan Tsafrir, editors, 2019 USENIX Annual Technical
Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 537–554. USENIX
Association, 2019.

[341] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee. Secloak: ARM trustzone-
based mobile peripheral control. In Jörg Ott, Falko Dressler, Stefan Saroiu, and Prabal Dutta,
editors, Proceedings of the 16th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys 2018, Munich, Germany, June 10-15, 2018, pages 1–13. ACM, 2018.

[342] Mengmei Ye, Jonathan Sherman, Witawas Srisa-an, and Sheng Wei. Tzslicer: Security-aware dynamic
program slicing for hardware isolation. In 2018 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2018, Washington, DC, USA, April 30 - May 4, 2018, pages 17–24, 2018.

[343] Latanya Sweeney. K-anonymity: A Model for Protecting Privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[344] Pravin Shankar, Vinod Ganapathy, and Liviu Iftode. Privately querying location-based services with
sybilquery. In UbiComp 2009: Ubiquitous Computing, 11th International Conference, UbiComp 2009,
Orlando, Florida, USA, September 30 - October 3, 2009, Proceedings, pages 31–40, 2009.

[345] Madhav Suresh, Zuohao She, William Wallace, Adel Lahlou, and Jennie Rogers. Kloakdb: A platform
for analyzing sensitive data with k-anonymous query processing. CoRR, abs/1904.00411, 2019.

[346] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[347] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and Xiaoyang Sean Wang, editors. Moving
Target Defense - Creating Asymmetric Uncertainty for Cyber Threats, volume 54 of Advances in
Information Security. Springer, 2011.

[348] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM trustzone to build a
trusted language runtime for mobile applications. In Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014, pages 67–80,
2014.

[349] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis and
evolution of journaling file systems. In Proceedings of the 2005 USENIX Annual Technical Conference,
April 10-15, 2005, Anaheim, CA, USA, pages 105–120. USENIX, 2005.

[350] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao, Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei
Kuo. Garbage collection and wear leveling for flash memory: Past and future. In International
Conference on Smart Computing, SMARTCOMP 2014, Hong Kong, China, November 3-5, 2014,
pages 66–73. IEEE Computer Society, 2014.

Bibliography 169

[351] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. A study of linux file
system evolution. Trans. Storage, 10(1):3:1–3:32, January 2014.

[352] Kernel.org bugzilla - bug list. https://bugzilla.kernel.org/buglist.cgi?chfield=%5BBug%
20creation%5D&chfieldfrom=7d.

[353] Jon Geater. Usable hardware security for android on arm devices. page 35, 2012.

[354] Donald Lewine. POSIX programmers guide. ” O’Reilly Media, Inc.”, 1991.

[355] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy, SP ’15, pages 640–656, Washington, DC, USA, 2015. IEEE Computer Society.

[356] Shujie Cui, Sana Belguith, Ming Zhang, Muhammad Rizwan Asghar, and Giovanni Russello. Pre-
serving access pattern privacy in sgx-assisted encrypted search. In 27th International Conference on
Computer Communication and Networks, ICCCN 2018, Hangzhou, China, July 30 - August 2, 2018,
pages 1–9. IEEE, 2018.

[357] Roy Friedman and David Sainz. File system usage in android mobile phones. In Proceedings of the
9th ACM International on Systems and Storage Conference, SYSTOR 2016, Haifa, Israel, June 6-8,
2016, pages 16:1–16:11. ACM, 2016.

[358] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query processing using hardware enclaves,
2017.

[359] Qingqing Cao, Noah Weber, Niranjan Balasubramanian, and Aruna Balasubramanian. Deqa: On-
device question answering. In Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, pages 27–40, 2019.

[360] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. Reverse engineering convolutional neural networks
through side-channel information leaks. In Proceedings of the 55th Annual Design Automation Con-
ference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018, pages 4:1–4:6. ACM, 2018.

[361] ROS developers. Ros: Recording and playing back data. http://wiki.ros.org/Bags/Format, 2020.

[362] Nitin Agrawal, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Emulating goliath storage systems with david. In 9th USENIX Conference on File and Storage
Technologies, San Jose, CA, USA, February 15-17, 2011, pages 203–216, 2011.

[363] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and Ion
Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), pages 283–298, Boston,
MA, 2017. USENIX Association.

[364] Kevin D. Fairbanks, Christopher P. Lee, and Henry L. Owen III. Forensic implications of ext4.
In Frederick T. Sheldon, Stacy J. Prowell, Robert K. Abercrombie, and Axel W. Krings, editors,
Proceedings of the 6th Cyber Security and Information Intelligence Research Workshop, CSIIRW
2010, Oak Ridge, TN, USA, April 21-23, 2010, page 22. ACM, 2010.

[365] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski Jr.,
Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[366] Jan Beirlant, Edward J Dudewicz, László Györfi, Edward C Van der Meulen, et al. Nonparametric
entropy estimation: An overview. International Journal of Mathematical and Statistical Sciences,
6(1):17–39, 1997.

https://bugzilla.kernel.org/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=7d
https://bugzilla.kernel.org/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=7d
http://wiki.ros.org/Bags/Format

Bibliography 170

[367] Edmund B. Nightingale and Jason Flinn. Energy-efficiency and storage flexibility in the blue file
system. In Eric A. Brewer and Peter Chen, editors, 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages 363–378.
USENIX Association, 2004.

[368] SQLite: Speedtest1.c. https://sqlite.org/src/file/test/speedtest1.c, 2019. (Accessed on
08/16/2019).

[369] Apache lucy. http://lucy.apache.org/, 2020. (Accessed on 11/24/2020).

[370] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research. In
Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, Machine
Learning: ECML 2004, 15th European Conference on Machine Learning, Pisa, Italy, September 20-
24, 2004, Proceedings, volume 3201 of Lecture Notes in Computer Science, pages 217–226. Springer,
2004.

[371] Youtube live streaming: Downtown bangor. https://www.youtube.com/watch?v=LIQnvi2FmUg, 2021.
(Accessed on 05/06/2021).

[372] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. Sprobes: Enforcing kernel code integrity on
the trustzone architecture. CoRR, abs/1410.7747, 2014.

[373] David Wheeler. Sloccount. http://www. dwheeler. com/sloccount/, 2001.

[374] Min Hong Yun and Lin Zhong. Ginseng: Keeping secrets in registers when you distrust the operating
system. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society, 2019.

[375] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: The missing OS abstrac-
tion. In Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28,
2019, pages 1:1–1:17, 2019.

[376] Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy Sherwood. Safer program behavior
sharing through trace wringing. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17,
2019, pages 1059–1072. ACM, 2019.

[377] Raspberry pi 3 model b+. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-
plus/, 2021. (Accessed on 04/22/2021).

[378] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2fs: A new file system for flash
storage. In 13th USENIX Conference on File and Storage Technologies (FAST 15), pages 273–286,
Santa Clara, CA, 2015. USENIX Association.

[379] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. Unioning of the buffer cache and journaling layers
with non-volatile memory. In Keith A. Smith and Yuanyuan Zhou, editors, Proceedings of the 11th
USENIX conference on File and Storage Technologies, FAST 2013, San Jose, CA, USA, February
12-15, 2013, pages 73–80. USENIX, 2013.

[380] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 299–310, 2013.

[381] Kisung Lee and Youjip Won. Smart layers and dumb result: IO characterization of an android-based
smartphone. In Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr, editors,
Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2012, part of the
Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October 7-12, 2012, pages 23–32.
ACM, 2012.

https://sqlite.org/src/file/test/speedtest1.c
http://lucy.apache.org/
https://www.youtube.com/watch?v=LIQnvi2FmUg
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Bibliography 171

[382] Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang, Evgenya Perga-
ment, Eyal Cidon, Sachin Katti, and Marco Pavone. Network offloading policies for cloud robotics: a
learning-based approach. arXiv preprint arXiv:1902.05703, 2019.

[383] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine grained timers in xen.
In Proceedings of the 3rd ACM workshop on Cloud computing security workshop, CCSW ’11, pages
41–46. Association for Computing Machinery, 2011.

[384] Ruth Brand. Microdata protection through noise addition. In Inference control in statistical databases,
pages 97–116. Springer, 2002.

[385] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In 12th USENIX Security Symposium (USENIX
Security 03), Washington, D.C., August 2003. USENIX Association.

[386] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an untrusted cloud
with haven. ACM Trans. Comput. Syst., 33(3):8:1–8:26, August 2015.

[387] Chia-che Tsai, Donald E. Porter, and Mona Vij. Graphene-sgx: A practical library OS for unmodified
applications on SGX. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa
Clara, CA, USA, July 12-14, 2017., pages 645–658, 2017.

[388] Shweta Shinde, Shengyi Wang, Pinghai Yuan, Aquinas Hobor, Abhik Roychoudhury, and Prateek
Saxena. Besfs: A POSIX filesystem for enclaves with a mechanized safety proof. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020, pages 523–540. USENIX Association, 2020.

[389] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply: Low-TCB linux applications
with SGX enclaves. In Proceedings 2017 Network and Distributed System Security Symposium. Internet
Society, 2017.

[390] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi Hasegawa,
Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru
Chiba, Yasushi Shinjo, and Kazuhiko Kato. Bitvisor: a thin hypervisor for enforcing i/o device se-
curity. In Antony L. Hosking, David F. Bacon, and Orran Krieger, editors, Proceedings of the 5th
International Conference on Virtual Execution Environments, VEE 2009, Washington, DC, USA,
March 11-13, 2009, pages 121–130. ACM, 2009.

[391] Aravind Menon, Simon Schubert, and Willy Zwaenepoel. Twindrivers: semi-automatic derivation of
fast and safe hypervisor network drivers from guest OS drivers. In Mary Lou Soffa and Mary Jane
Irwin, editors, Proceedings of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA, March 7-11,
2009, pages 301–312. ACM, 2009.

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures

	Introduction
	Background: workloads and hardware at the edge
	Challenges to systems software (OS and Runtime)
	Dissertation overview
	Dissertation statement
	Contributions
	Dissertation organization

	I Harnessing hardware heterogeneity for efficiency
	Power Sandbox: Power Awareness Redefined
	Introduction
	A Case for A New OS Principal
	Power awareness: what matters to apps?
	Fine-grained power metering is getting easier
	Accounting is hard due to power entanglement
	Power entanglement creates reasoning difficulty
	Power entanglement creates security vulnerability
	Design choices

	System Overview
	Kernel Support
	The driver model
	Applying the driver model

	Implementation
	Evaluation
	Elimination of power entanglement
	Performance impact
	Confinement of throughput loss
	An end-to-end use case

	Limitations & Discussions
	Road to Existing Ecosystems
	Hardware support
	Software support

	Related Work
	Conclusions

	Transkernel: Bridging Monolithic Kernels to Peripheral Cores
	Introduction
	Motivations
	Kernel in device suspend/resume
	A peripheral core in a heterogeneous SoC
	OS design space exploration
	Design objective

	The Transkernel Model
	ARK: An ARM Transkernel
	A Scheduler of DBT Contexts
	Interrupt and Exception Handling
	Deferred Work
	Locking
	Memory Allocation
	Delays & Timekeeping

	The Cross-ISA DBT Engine
	Exploiting Similar Instruction Semantics
	Passthrough of CPU registers
	Control Transfer and Stack Manipulation

	Translated -3mu Native Fallback
	Evaluation
	Methodology
	Analysis of engineering efforts
	Measured execution characteristics
	Energy benefits
	Discussions

	Related Work
	Conclusions

	Turbocharge Interactive NLP at the Edge
	Introduction
	Motivations
	Transformer on mobile devices
	Transformers challenge existing paradigms
	Model compression is inadequate

	Design overview
	The system model
	The operation
	Example execution scenarios
	Applicability

	Elastic model sharding
	Key challenges
	Instantiating model shards on disk

	Pipeline planning
	Overview
	Prerequisite: offline profiling
	Compute planning
	IO planning
	Submodel execution

	Implementation
	Evaluation
	Methodology
	End-to-end results
	Significance of key designs
	Sensitivity analysis

	Related work
	Concluding remarks

	II Fostering security and privacy
	Minimum Viable Device Drivers for ARM TrustZone
	Introduction
	Motivations
	Example trustlets of secure IO
	Prior art

	Approach overview
	System model
	Our approach
	Why driverlets work
	Limitations

	Record
	Problem formulation
	Key challenges & solutions

	Replay
	Implementation
	Recorder
	Replayer

	Experiences
	MMC
	USB
	Camera

	Evaluation
	Analysis of developer efforts
	Correctness & Security analysis
	Overhead
	End-to-end use case

	Discussions
	Related Work
	Conclusions

	Protecting File Activities via Deception for ARM TrustZone
	Introduction
	Motivations
	TrustZone and its file services
	The Linux storage stack
	The attacks
	System Overview

	Sybil images with covert emulation
	Metadata-only sybil images
	Isolating filedata paths
	Rejecting OS access to filedata
	Defense against timing attacks

	Filesystem identity shuffling (FIDS)
	The mechanism
	Why FIDS works
	Defense against extinct lineage attacks

	Generating sybil file calls
	Design
	Case study

	Implementation
	Security analysis
	TCB
	Security guarantees

	Evaluation
	Methodology
	Space overhead
	File access delays
	FIDS overhead

	Related Work
	Concluding remarks

	Concluding Remarks
	Bibliography

