
Occlusion-Aware Navigation of Autonomous
Mobile Robots in Unknown, Unstructured and

Dynamic Environments

A
Doctoral Dissertation

Presented to
the Faculty of the School of Engineering and Applied Sciences

The University of Virginia

in partial fulfillment
of the requirements for the degree

Doctor of Philosophy

by

Jacob D Higgins

2024

APPROVAL SHEET

This
Dissertation

is submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Author: Jacob D Higgins

This Dissertation has been read and approved by the examining committee:

Advisor: Nicola Bezzo

Committee Member: Ye Sun

Committee Member: Sebastian Elbaum

Committee Member: Tariq Iqbal

Committee Member: Enrico Bini

© 2024 Jacob D Higgins

i

Occlusion-Aware Navigation of Autonomous
Mobile Robots in Unknown, Unstructured and

Dynamic Environments

by

Jacob D Higgins

M.S., Physics
The University of Virginia, 2019

B.S., Physics
University of Virginia, 2017

ii

Abstract

The interest in autonomous mobile robots (AMR) is fast growing in the private, military, and
commercial sectors for its promise to revolutionize key components of many industries, such as
logistics, structural inspection and transportation. One topic that is not as well studied by academia
is the problem of motion planning for AMR in occluded environments. Many practical sensor
modalities for AMR are limited to line-of-sight measurements, meaning that detected obstacles
(such as a static wall) may occlude the presence of other obstacles from the robot (such as a person
moving in a hallway). Occlusions introduce uncertainty into the motion planning problem, as the
occluded region may or may not hide obstacles to avoid. This uncertainty is multimodal and highly
unstructured, making it a unique challenge towards run time navigation.

This dissertation focuses on the problem of creating an occlusion-aware motion planning policy
for AMR. In particular, this work casts the occlusion-aware navigation problem as an optimization
problem in which a carefully selected cost function incorporates the desired occlusion-aware behavior,
in addition to the usual go-to-goal and obstacle avoidance behavior. Throughout this work, various
approaches to casting this optimization problem are explored. First, a visibility-based approach is
developed that seeks to approximate the area behind occlusions and actively minimize this area
via a Model Predictive Controller (MPC). This results in occlusion-aware motion that requires
no pre-training and little overhead to implement within a typical autonomy stack. Second, the
occlusion-aware navigation problem is cast as a risk-aware motion planning problem in which
occlusion-related uncertainty introduces some element of risk towards the motion of the ego robot.
Emphasis is placed upon data-efficient run time learning of common risk metrics, including Value at
Risk (VaR) and Conditional Value at Risk (CVaR), requiring relatively fewer datum than other
machine-learning approaches. Minimizing this risk amounts to increasing visibility around occlusions,
showing how occlusion-aware navigation may be an emergent behavior from risk-aware policies.
Additionally, techniques for run time optimizing over these machine-learned risk functions are
developed, including a trajectory generation approach based on Model Predictive Path Integral
(MPPI) control theory. Lastly, this work investigates techniques for constructing these risk-sensitive
policies from data collected at run time. We accomplish this using a Quantile Temporal Difference
(QTD) learning algorithm to develop a risk-sensitive policy from direct experiences of the ego
robot, as well as an additional approach that infers a risk-sensitive metric from observations of
dynamic obstacles near occlusions. The theoretical and practical implications of these approaches
are discussed, and these techniques are validated through extensive simulations and proof-of-concept
experiments, both inside and outside a controlled lab setting.

“Sunlight is the best disinfectant.”
– Louis Brandeis

iii

Acknowledgements

In many ways, this dissertation is the culmination of not only the past five years I have spent in the
AMR lab, but also the past eleven years I have spent at the University of Virginia. My academic
journey has been interesting to say the least, and I have many individuals I would like to thank.
First and foremost I want to express my deepest gratitude to Nicola Bezzo as my advisor for his
mentorship and guidance throughout my time in the UVA Engineering department. I owe him
a great debt for taking me on as a graduate student when I asked to join his lab in 2019, with
no (!) prior robotics experience. My learning curve was steep, but I am grateful for his patience
throughout the five years I have spent under his guidance. His constant energy and encouragement
has taken me farther than I ever would have imagined, and I will forever be a roboticist at heart
because of him.

I would like to thank my proposal committee members: Zongli Lin, Tomonari Furukawa,
Sebastian Elbaum and Enrico Bini for their insightful and constructive feedback about my research
last April. I would further like to thank Sebastian and Enrico for returning as dissertation committee
members, as well as Tariq Iqbal and Ye Sun for joining my dissertation committee and giving me
their valuable time and attention. I would like to give a special recognition towards Enrico and
Alessandro Papadopoulos for our collaboration over my time as a graduate researcher. It was a
pleasure working with both of you, and a joy to have briefly met you in person.

To fellow members and friends of the AMR lab – Esen, Paul, Rahul, Shijie, Phil, Lauren, Nick,
Will, Patrick, Vanessa, Isabel, and Beatrice – I could not have asked for a better group people to call
my friends for the past five years. Through the stresses of late nights and tough paper submissions,
you have been a constant source of support, and I am grateful to have you in my life.

I also wish to thank my friends from the Physics graduate program – Sean, Marybeth, Matt,
Thomas, Anna, and Miller – for allowing me to be their friend even though I abandoned you for
another department. I am extremely grateful to have remained in your lives, and it has been a
pleasure to watch you guys go all the way in your respective programs.

Last but not the least, I would like to thank my family: my mother Kathy, my grandmother
Gladys, and my uncles Mike, Johnny, and Michael. You guys have made me into the person I am
today, and my successes are because of you. I love you all.

iv

To fund my PhD research, I acknowledge: the National Science Foundation (NSF) through grant
#1816591, the Defense Advanced Research Projects Agency (DARPA) under Contract FA8750-18-C-
0090, Amazon Science through their Research Award program, and CoStar under the Autonomous
Building Condition Detection and Evaluation (ABCDE) grant.

v

Contents

Contents vi
List of Figures . ix

List of Abbreviations xii

1 Introduction 1
1.1 Related Literature . 3

1.1.1 Visibility-aware Navigation . 3
1.1.2 Uncertainty- and Risk-aware Navigation . 4
1.1.3 Data-efficient Learning for Navigation . 5

1.2 Overview of Research . 6
1.3 Dissertation Organization and Contributions . 8
1.4 Summary of Contributions . 11

I Visibility-Based Occlusion Navigation 12

2 Negotiating Visibility for Safe Autonomous Navigation in Occluding and Uncer-
tain Environments 13
2.1 Introduction . 13
2.2 Problem Formulation . 14
2.3 Approach . 15

2.3.1 MPC-based Known-Unknown Minimization 15
2.3.2 Safety Constraint . 18

2.4 Simulations . 21
2.5 Experiments . 23
2.6 Discussion and Conclusion . 24

3 A Model Predictive-based Motion Planning Method for Safe and Agile Traversal
of Unknown and Occluding Environments 26
3.1 Introduction . 26
3.2 Problem Formulation . 26
3.3 Approach . 28

3.3.1 MPC-based Motion Planning . 28
3.3.2 Visibility Objective for Unstructured Environments 29
3.3.3 Safety Constraint for Unknown Environments 32

3.4 Simulations . 34
3.5 Experiments . 36

vi

3.6 Discussion and Conclusion . 36

II Data-Driven, Risk-aware Motion Planning 38

4 A Model Predictive Path Integral Method for Fast, Proactive, and Uncertainty-
Aware UAV Planning in Cluttered Environments 39
4.1 Introduction . 39
4.2 Problem Formulation . 41
4.3 Approach . 42

4.3.1 Risk Measure Formulation . 42
4.3.2 MPPI for Motion Planning . 44

4.4 Simulations . 46
4.5 Experiments . 48

4.5.1 Rectangular Loop Case Study . 48
4.5.2 4-Way City Block Case Study . 49

4.6 Discussion and Conclusion . 50

III Data-Driven, Risk-based Occlusion-Aware Motion Planning 52

5 Data-Driven Occlusion-Aware Navigation via Online Quantile Temporal Differ-
ence Learning 53
5.1 Introduction . 53
5.2 Problem Formulation . 54
5.3 Approach . 55

5.3.1 Negative Outcomes . 56
5.3.2 Risk Map . 57
5.3.3 Motion Planning Policy and Run Time Learning 59

5.4 Simulations . 62
5.4.1 Hospital Environment . 63
5.4.2 Warehouse Environment . 64

5.5 Experiments . 66
5.5.1 Small-Scale Map . 67
5.5.2 Office Space . 67

5.6 Discussion and Conclusion . 68

6 What’s the Worst That Can Happen? Run Time Data-driven Occlusion-Aware
Navigation 71
6.1 Introduction . 71
6.2 Problem Formulation . 72
6.3 Approach . 73

6.3.1 Formalizing Distribution of Tracking Time 74
6.3.2 Online Modelling: Inferring Probability of Dynamic Obstacle Observations . 77
6.3.3 Offline Modelling: Learning Dependence on Tracking Time 80
6.3.4 Graph-Search Approach For Risk-Sensitive Path Planning 81

6.4 Preliminary Simulation Results . 82
6.4.1 Data Collection and Offline Trained Model 83

vii

6.4.2 Inferring Distribution of Observations at Run Time 84
6.4.3 Example Within Full Autonomy Stack . 86

6.5 Discussion and Conclusion . 87

IV Epilogue 89

7 Conclusions and Future Work 90
7.1 Conclusions . 90
7.2 Discussion and Possible Future Work . 91

viii

List of Figures

1.1 Depending on the hallway, the tracking the blue trajectory may be less risky for the
robot than tracking the orange trajectory. 2

1.2 Overview of the presented research in this dissertation. 7

2.1 Block diagram of the visibility-based occlusion-aware motion planning approach. . . 13

2.2 Pictorial representation of the problem covered in this work. As represents the visible
region while Aku is the “known-unknown” not visible sensed area by the robot. . . . 14

2.3 Defining the perception objective in terms of the occluding corner, relative to the
current location of the robot. 17

2.4 Mapping points in the x − y plane that are occluded by a corner (a) to values of the
known-unknown area Aku(x, y) and the logarithm of the perception objective Λ(x, y)
(b). 18

2.5 Example motion showing the effects of motion that reduces the known-unknown area. 18

2.6 Waypoint placement in safe and unsafe situations. 20

2.7 Snapshots of a simulation case study in which a UGV navigates an occluding corner,
considering uncertainties. The gray shaded region on the second corridor indicates
the probability that a certain cell is occupied by other actors. (d) shows plots of
velocity and Aku for our policy framework with and without perception compared to
a minimum travel time implementation. 21

2.8 The cumulative distribution function of the distance that the robot first senses a
dynamic object while negotiating the L-shaped corridor. 22

2.9 Sequence of snapshots for a simulation of a robot operating in a occluding environment
with variable expected traffic of dynamic objects (a-d). In (e) it is depicted the
comparison between the known-unknown areas over time of the case where the long
hallway is safe vs unsafe. 23

2.10 Snapshots of experiments and data for the two-corridor scenario. Highlighted in (a)
and (b) are the lidar point-cloud data before passing the corner showing a decreased
known-unknown in (b). In (c) the plots show the difference in Aku between (a) and (b). 24

ix

3.1 Diagram showing the different components of the proposed controller. The contribu-
tions of this section are within the green box. 27

3.2 Known-unknown area Aku for a circular obstacle within the FOV of the robot. . . . 30

3.3 Correlation between perception objective Λ(·) and true known-unknown area Aku. . 30

3.4 Comparison of motion commanded by the MPC, both with and without perception
objective. 31

3.5 Pictorial representation of the approximation for the known-unknown area around a
corner using virtual circles. 32

3.6 Example situation in which the safety module is used to command a slower velocity
around an obstacle. 34

3.7 Simulation case study for a robot navigating occluding corners in the presence of a
dynamic obstacle. The different color gradient in (a), (b) and (c) represent different
time instances: lighter (darker) colors occur earlier (later) in the trajectory. The
comparison between Aku and speeds is presented in (d). 35

3.8 Simulation case study for a robot navigating a randomly generated forest. 35

3.9 Experiments and results for a hallway scenario with Spot. 36

4.1 Motivating example in which a slower speed results in safer motion through a small
gap. 40

4.2 Diagram showing the proposed motion planner (blue shaded cell) within the context
of a general autonomy stack. 42

4.3 Example of trajectory tracking error. 43

4.4 An example iteration step of the MPPI algorithm. 46

4.5 Correlation between perception objective Λ(·) and true known-unknown area Aku. . 47

4.6 Simulation of quadrotor navigating an obstacle course using the MPPI motion planner. 47

4.7 Example situation in which the safety module is used to command a slower velocity
around an obstacle. 49

4.8 A demonstration of a single lap that the UAV performs around the 4-way city block
environment, along with its velocity profile. 50

4.9 Crazyflie positions and velocities for the 4-way city block environment (a) without
considering risk and (b) with the full approach. 50

5.1 Diagram showing the proposed approach. 56

5.2 Due to the sequential nature of motion planning, states that preceded negative
outcomes should also be considered when calculating risk. 58

x

5.3 An example of the run time learning pipeline. The risk map ρ(x) is updated as the
path planning policy Π interacts the environment. 59

5.4 Hospital simulation environment for validating the proposed occlusion-aware naviga-
tion. Fig. 5.4(a) shows the routes of the robot and the dynamic obstacles. Fig. 5.4(b)
visualizes the learned risk map after two hours of simulation, and Fig. 5.4(c) shows
how this policy norm changes over time. 63

5.5 Normalized histograms of the commanded speed v and angular velocity ω over the
two hour simulation in the hospital environment of Fig. 5.4. 65

5.6 Warehouse simulation environment for validating the proposed occlusion-aware naviga-
tion. Fig. 5.6(a) shows the routes of the robot and the dynamic obstacles. Fig. 5.6(b)
visualizes the learned risk map after two hours of simulation, and Fig. 5.6(c) shows
minimum decelerations of the two dynamic obstacles over time. 65

5.7 Small-scale environment used to validate the run time learning capabilities of the
proposed approach. Fig. 5.7(a) shows a portion of this environment, along with
snapshots of the initial occlusion-unaware path and an instance when a dynamic
obstacle was observed for the first time too close to the robot. Fig. 5.7(b) shows the
final learned path within the environment. Fig. 5.7(c) shows the resulting risk map
as well as a comparison of how the path adjusts to the learned risk. 67

5.8 Office space environment used to validate the run time learning capabilities of the
proposed approach. Fig. 5.8(a) shows a portion of this environment, along with
snapshots of the initial occlusion-unaware path. Fig. 5.8(b) visualizes the learned
risk map, as well as the resulting occlusion-aware path. Fig. 5.8(c) shows how the
policy norm changes over time. 68

5.9 Normalized histograms of the commanded speed v and angular velocity ω over the
course of the office space experiment in Fig. 5.8. 69

6.1 Block diagram for both the offline training stage and online solver failure prediction
and recovery framework. 74

6.2 Motivating example of the factors that influence P (Tτ). 76
6.3 Two example simulations on which the neural network ∆̃T (OΩ) is trained. 81
6.4 Actual simulation between robot and dynamic obstacle. 84
6.5 Actual simulation in which parameters for P (O, n) are estimated from run time

observations. 85
6.6 Simulation results for a simple rectangular environment. 86
6.7 Normalized histograms showing how the occlusion-aware path allowed for more

frequency forward full speed and forward motion. 87

xi

List of Abbreviations

AMR Autonomous Mobile Robots
AV Autonomous Vehicle
CVaR Conditional Value at Risk
FOV Field of View
FRS Forward Reachable Set
MDP Markov Decision Process
MPC Model Predictive Control
MPPI Model Predictive Path Integral
OPC Optimal Control Problem
POMDP Partially Observable Markov Decision Process
VaR Value at Risk

xii

Chapter 1

Introduction

Autonomous mobile robots (AMR) are poised to play a major role in revolutionizing many industrial
sectors, having potential applications such as commercial delivery [16], warehouse logistics [55]
and automated inspection [47], just to name a few. Such applications commonly require AMR to
negotiate environments with line-of-sight sensors that detect and avoid obstacles within the field of
view (FOV) of the robot. This presents a problem when considering obstacles that may lie behind
occlusions, since the success of negotiating an obstacle can be linked to how far in advanced the
obstacle is observed, giving the robot plenty of time to react. Currently, this risk is often mitigated
by having the robot move slowly through the environment so that the robot has an appropriate
amount of time to react. While this motion is safe, it is often simplistic and overly conservative.
The aim of this work is to investigate ways of intelligently approaching occlusion-aware navigation
that can plan motion without the need to act overly conservative and simplistic.

Consider the scenario shown in Fig. 1.1 in which a robot is attempting to negotiate around an
open doorway within an environment. The walls that define the doorway are obstacles to avoid, but
may also occluded the presence of other obstacles within the environment. The occluded region acts
as a source of uncertainty, creating a risk of sub-optimal motion at best, and a risk of collision at
worst. Navigation that is unaware of these considerations may take a time-optimal (orange) path
that minimizes travel distance by quickly cutting the corner. A more intelligent policy may instead
round the corner, taking a longer (blue) path but reducing the risks created by the uncertainty
associated with the occluding corner. A general path planning policy must balance time-optimality
with occlusion-aware considerations in a way that is achievable at run time and is flexible enough to
account for different environments and different types of obstacles (e.g., dynamic or static).

There are many possible approaches that focus on addressing different aspects of the occlusion-
aware navigation problem. For example, one approach may be to cast the occlusion-aware navigation
problem as a visibility-based optimization problem, planning motion that maximizes the FOV area
during travel and reducing the area occluded to the robot. In this way, the robot may observe

1

Figure 1.1: Depending on the hallway, the tracking the blue trajectory may be less risky for the
robot than tracking the orange trajectory.

obstacles at a larger distance away, increasing reaction time for the onboard obstacle avoidance
policy. Additionally, if dynamic obstacles are present that have their own obstacle avoidance policy,
increasing reaction time may be mutually beneficial towards these dynamic obstacles as well. In
Fig. 1.1, cutting the corner with the orange path would increase the occluded area behind the
occluding corner, decreasing the visibility around this corner. Instead, the blue path rounds the
corner at a certain distance away, decreasing the occluded area and increasing the area visible to
the robot. Quantifying the amount of occluded area and using it inside the cost function of an
optimization problem would thus lead to the desired occlusion-aware behavior.

A more sophisticated approach to occlusion-aware navigation recognizes that the occluded
regions act a source of uncertainty for the robot, since the environment is only partially observable,
and this environmental uncertainty translates into uncertainty on the quality of motion around
occlusions. For example, there is a possibility that taking the orange path in Fig. 1.1 may result in
smooth motion, but there is also a distinct possibility that a dynamic obstacle may emerge from
this occlusion and force the ego robot into an aggressive evasive maneuver. As the occlusion creates
uncertainty about what may happen, only the probability of any event can be discussed. From
this perspective, the blue path may offer a better choice in that the increased distance away from
the occluding corner may lessen the severity of the aggressive maneuver, lessen the probability of
needing an aggressive maneuver, or both. This approach casts occlusion-aware navigation as a
risk-minimization problem that must characterize and consider the uncertainty within the occluded

2

regions inside the motion planning framework.

Lastly, it may be noted that throughout this work an emphasis is placed on data-efficient
algorithms towards occlusion-aware navigation that require little to no training. This both lowers
the overhead of implementing these frameworks on real-world AMR and affords a greater level of
flexibility for the techniques discussed, allowing them to be applied in many different situations
and platforms. This dissertation explores data-efficiency through two distinct approaches. The first
is the creation of an analytical perception objective used within a visibility-based occlusion-aware
framework. This analytical perception objective is defined through basic geometric properties of the
surrounding occlusions, which can easily and efficiently be inferred from data available with any
standard line-of-sight sensor modality. Data-efficiency is additionally explored from the perspective
of risk-based approaches that attempt to learn a risk metric from relatively small amounts of data.
For the occlusion-aware approaches present in this work, this data-efficiency allows a risk metric to
be learned at run time, enabling these approaches to adjust to risks specific to the environment in
which that robot is deployed.

1.1 Related Literature

In this section, an overview of related literature is detailed that provides important context for the
occlusion-aware navigation techniques presented in this work. First discussed is visibility-aware
navigation in which policies are created that position the robot to explicitly reduce the occluded
area and promote visibility while moving. Next, general risk-aware navigation is discussed and then
contextualized with the problem of occlusion-aware navigation. Finally, data-efficient learning in
navigation and path planning are discussed as a means of creating occlusion-aware policies that can
adjust to data collected at run time.

1.1.1 Visibility-aware Navigation

Navigation of AMR with an emphasis on visibility or perception has steadily gained attention over
the past decade. Likewise, the problems addressed and the approaches developed have diverged,
depending on the application and underlying system. For example, camera-based visual SLAM
requires visibility of landmarks in order to reduce pose uncertainty. Thus, a number of works focus on
generating trajectories that keep such landmarks within camera FOV [71, 90, 61]. Some authors use
a Model Predictive Control (MPC)-based framework to promote visibility of these landmarks while
commanding aggressive maneuvers [28, 49]. Additional work has focused on reducing estimation
uncertainty of other obstacles in the environment, either for the purpose of improved obstacle
avoidance [84] or better tracking [86]. Such ideas have also been extended to multi-robot systems

3

that can minimize uncertainty of a single object from multiple viewpoints [82, 19]. Despite being
under the umbrella of occlusion-aware motion planning, these works address a separate problem of
keeping objects of interest within the FOV and reducing a uni-modal uncertainty of a single actor.
Instead, the proposed work is concerned with using visibility to discover obstacles to negotiate,
reducing the highly multi-modal uncertainty for general occupancy.

The discovery of obstacles in an occluded environment is not necessarily a new research topic.
The watchman routing problem [22, 17, 56] is a classic computational optimization problem in
which a path is planned where all unoccupied regions of a map must to observed by the line-of-
sight sensor on board the robot. The robotics community has extended this concept to unknown
environments, solving the watchman routing problem online as more portions of the environment
are discovered [94, 25, 74, 14, 58]. The goal of these works are often mapping oriented, treating
occlusions as an obstruction towards completely sensing the environment. While this is also true
of the occlusion-aware navigation problem discussed in this dissertation, we consider visibility as
a means of promoting better motion throughout the environment, and not necessarily to discover
more of the map per se.

Research into promoting visibility as a means of improving navigation has increased in recent
years, especially within the autonomous vehicle (AV) community. Authors in [5] seek to reduce
occlusions due to static parked obstacles, while [4] penalizes trajectories in which occluding corners
have a low angle of incidence with respect to the orientation of the AV. [36] constructs a policy to
maximize information gain of these occluded regions as the AV moves near occluding intersections,
and [35] extends this work by constructing a grid-based utility function that enables paths to be
planned that encourages greater visibility around occlusions.

1.1.2 Uncertainty- and Risk-aware Navigation

Instead of focusing on increasing visibility around occlusions, these occlusions may be treated
as a source of uncertainty for both static and dynamic obstacles. One technique to capture and
mitigate this uncertainty is to model the system as a Partially Observable Markov Decision Process
(POMDP) [43]. POMDP’s actively understand that the current state of the system (including
obstacle location) is only partially observed at any given moment and uses this partial information to
plan motion. In the context of path planning for AVs, several works have attempted to characterize
occluded regions as an unobservable portion of the state [13, 40, 79, 87]. These policies are often
tailored specifically for AV systems and exploit the structured nature of the road network in order
to apply simplifying assumptions to the problem. In the general setting, however, the POMDP has
been historically intractable to solve at run time for general robotics applications, although some
recent progress has been made on quickly finding approximate solutions to the POMDP [46].

4

Another way to address this uncertainty is to consider the “worst-case” scenario and construct a
reachability set of any possible dynamic obstacle that may emerge from an occlusion. For example,
authors in [69, 62] construct representations of occluded regions, predict reachable sets of potential
occluded agents, and plan trajectories that avoid these reachable sets. Authors in [97] instead use
bi-directional reachability to lower the computational complexity of constructing the reachable set.
These reachable set approaches are often limited to AV use cases, where assumptions can be placed
upon the movement of the occluded obstacles and simplify the computation of the reachable set [2,
45, 68]. Using reachability-based techniques to consider only the “worst-case” scenario can often
result in overly conservative motion, which is important in safety-critical situations but leaves room
for improvement for other smaller-scale systems.

Approaches that create less conservative policies may attempt to consider more of the uncertainty
distribution other than just the worst-case. Chance-constrained path planning problems are one
approach to this, which attempt to quantify the probability of a negative outcome happening
and find a path that ensures this probability is less than a predefined amount [10, 27, 66, 15].
Chance-constraints are often non-convex, however, and generally cannot be solved at run time
without overly-simplifying assumptions on the model or underlying uncertainty. Recent efforts
have instead recognized that risk metrics other than the worst-case scenario may be useful within
robotics [53]. Alternatives include Value at Risk (VaR) [1], which defines the quantile over a
distribution, and the more popular Conditional Value at Risk (CVaR) [38, 51, 63], which defines the
expectation of a distribution conditioned on being within the worst percentage of cases. Regarding
occlusion-aware navigation, some works have defined custom risk metrics that help quantify the
question of how “bad” are the worst possible cases, and act according to severity [77, 96].

Most of these risk-aware approaches, however, rely on a model of the underlying risk, often
defined by tunable parameters that must be determined prior to deployment. In reality every
environment is different, and reliable autonomy will require the robot to adapt to observations and
experiences collected at run time. The next section explores this concept of learning to use data
collected by the robot to make adjustments within a framework at run time in a way that efficiently
leverages this data.

1.1.3 Data-efficient Learning for Navigation

Data-driven navigation allows policies to instead be learned from experience, rather than set-based
rules. Reinforcement learning is a well-studied example of such a data-informed approach, with
many works creating complex policies for effective planners and controllers [81, 95, 42, 41, 30]. One
challenge regarding a data-informed approach to policy creation is the need for large amounts of data
required to train effective policies. For example, DeepMind’s DQN algorithm required millions of

5

frames of gameplay in order to learn superhuman policies for Atari games [57], and OpenAI’s Dactyl
used many millions of state transitions and hours of training for human-level dexterous controls for a
robotic hand [6]. While this amount of data collection is achievable through simulation, it becomes
much more difficult for policies deployed on real-world systems. Within the robotics community,
this leads to a concern for data-efficient approaches that can learn policies with relatively little
data. Such approaches involve using simplified inference models that can learn with relatively little
data such as an SVM [73], or, more popular, the use non-parameteric inference models such as a
Gaussian Process [20, 70, 60, 21]. Most of these works, however, are concerned with learning an
accurate data-informed model for the ego robot system.

With regards to navigation, a recent survey on data-informed navigation [91] has found that
a majority of data-informed approaches focus on end-to-end policies, but lack proven reliability
in real-world scenarios. In contrast, approaches that learn a subcomponent of a classical planner
inherit safety and explainability of the classical planner while enjoying the benefits of machine
learning, often requiring less data to train when compared to the complexity required for end-to-end
policies [92]. In fact, a recent comparative study highlights the difficulty of end-to-end planners in
generalizing to new environments in which the planner was not trained [93]. Instead, some recent
work has explored learning cost maps for motion planners, such as [29] that learns a traversability
cost map for a Spot quadruped from a dataset generated from a traversability oracle, or [18]
that learns a cost map from a pseudo-traversability metric derived from IMU data. For social
navigation, some works use inverse reinforcement learning to create a socially-aware cost function
from expert-generated navigation examples [65, 54]. For these works, however, training occurs
offline for large neural networks that cannot be adapted at run time. The work within this thesis
instead focuses on components that are trained with relative little data, allowing training to occur
online so that the robot can immediately adjust its behavior to the peculiarities of any environment
in which it is deployed.

1.2 Overview of Research

The research presented in this dissertation consists of three successive parts that include: I) visibility-
based occlusion-aware navigation, II) data-driven, risk-aware motion planning, and III) data-driven,
risk-based occlusion-aware navigation. A final Part IV summarizes what we have gained and
learned from the first three Parts. Figure 1.2 provides an overview of the research presented in this
dissertation.

Beginning with Part I, the occlusion-aware navigation problem is cast as a visibility-based
optimal path planning problem, in which the geometric area behind occlusions is estimated and
actively minimized, promoting visibility around occlusions. Analytic expressions for these approx-

6

Figure 1.2: Overview of the presented research in this dissertation.

imations are constructed and motivated in this section, and are placed within the cost function
of a receding horizon optimal control problem (OCP). The occlusion-aware policy is derived from
solving this OCP online using numerical solvers. In Part II, we shift our focus towards a risk-aware
navigation approach that characterizes risk of collision and plans a trajectory that actively attempts
to minimize this risk. A risk metric is constructed that is used within the cost function of an OCP,
so that solving this OCP results in a trajectory that minimizes this risk metric. Emphasis is also
placed on constructing a data-informed risk metric that efficiently leverages data collected from the
system and learns an accurate characterization of risk for different trajectories. Part II also explores
runtime sampling-based approaches towards solving this OCP, which do not require the cost function
to be analytically differentiable and enables a richer class of cost functions to be utilized. Part III
applies these concepts of risk-aware navigation and data-efficient learning towards occlusion-aware
path planning. We present an approach that uses data involving the ego robot’s experience of a
particular environment, collected at run time, to learn an occlusion-aware globally defined risk
metric that is minimized over the planned path. This allows the resulting policy to actively adjust
itself to avoid negative outcomes experienced by the robot at run time. Additionally, the globally
defined risk metric allows the policy to also adjust to specific traffic patterns of dynamic obstacles
within a particular situation, rather that treat all occlusions as the same. Before concluding Part
III, we also include our preliminary work that extends beyond defining a policy using only negative
outcomes experienced by the robot, and instead include an inference of what could happen if the
ego robot moves close to an occlusion, given historical observations of dynamic obstacles moving
around the same occlusion.

Throughout Parts I-III in this dissertation, we validate these frameworks through high-fidelity
simulations and physical experiments both inside and outside the lab. Finally, in Part IV, we

7

conclude the dissertation by providing insight in what we have accomplished and learned, followed
by a discussion on possible directions we could take in the future.

1.3 Dissertation Organization and Contributions

In this section, we present the composition of this dissertation by providing summaries of each
chapter and specifying contributions within each chapter. As a summary for this dissertation, Part
I consists of Chapter 2 and Chapter 3 which constructs an analytical approximation for geometric
visibility around occlusions and actively attempts to find the optimal balance between visibility,
safety (avoiding collisions) and liveliness (making it to a goal). Part II is covered by Chapter 4
and explores the data-driven risk-aware motion planning problem, and Part III is comprised of
Chapter 5 and Chapter 6 which explore how these data-driven risk-based approaches may be used
towards occlusion-aware navigation. Part IV concludes this dissertation by summarizing our results
and discussing possible future work.

Chapter 2: Negotiating Visibility for Safe Autonomous Navigation in Occluding and
Uncertain Environments

This chapter presents a novel planning framework that combines both perception and safety
constraints, resulting in motion that is quick and safe when occlusions are present. Perception is
satisfied using a model predictive control (MPC)-based approach to provide inputs that increase
visibility around occlusions. This is achieved by engineering an analytical cost function component
that approximates the geometric area behind occlusions. By including this analytical term inside
the cost function of an MPC, the resulting motion policy actively seeks to improve visibility around
occlusions while moving towards a goal and avoiding obstacles. Additionally, safety is promoted by
modeling uncertainties as projected probabilities of occupancy derived from current observation
and expected traffic motion. Improvements in visibility, safety, and speed are shown in simulations
and are experimentally validated using an unmanned ground vehicle. This chapter is based on the
following publication:

• Higgins, J. and Bezzo, N, “Negotiating visibility for safe autonomous navigation in occluding

and uncertain environments,” in IEEE Robotics and Automation Letters (RAL), 2021.

Chapter 3: A Model Predictive-based Motion Planning Method for Safe and Agile
Traversal of Unknown and Occluding Environments

In this chapter, the planning framework of Chapter 2 is extended to include unknown and unstruc-
tured environments. First, this extension involves the the inclusion of a new analytical term that can

8

be used towards more generally shaped occlusions, and does not require a structured environment
in order to function correctly. This new visibility cost is geometrically motivated and includes a
discussion on how it may be used in unstructured environments. Second, a safety module is included
that does not require a pre-constructed nominal trajectory to aid in producing occlusion-aware
motion, as such a trajectory would not be available in unknown environments. This chapter is based
on the following publication:

• Higgins, J. and Bezzo, N., “ A model predictive-based motion planning method for safe and

agile traversal of unknown and occluding environments,” 2022 International Conference on

Robotics and Automation (ICRA), pp. 9092-9098.

Chapter 4: A Model Predictive Path Integral Method for Fast, Proactive, and
Uncertainty-Aware UAV Planning in Cluttered Environments

This chapter outlines an approach towards risk-aware motion planning for agile navigation that
avoids the risk of collision. This is accomplished through the creation of a risk metric that can
accurately establish a conservative estimate on the risk of collision for a given trajectory. This
risk-metric is unique from related approaches in that it is represented as a machine-learned model,
trained using data collected from a number of flight demonstrations. The number of demonstrations
needed to train this component is relatively much smaller than comparative machine-learned policies,
allowing a more data-efficient approach towards constructing a risk-aware policy. This risk metric is
passed into the cost function of an OCP, and the resulting policy accomplishes risk-aware trajectory
generation by minimizing this risk-aware component of the cost function. In order to find the
solution to this OCP, a novel sampling-based trajectory generation solver is used that borrows from
a similar control-theoretic approach. This chapter is based upon the following paper:

• Higgins, J., Mohammad, N. and Bezzo, N., “ A model predictive path integral method for fast,

proactive, and uncertainty-aware UAV planning in cluttered environments,” 2023 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 830-837.

Chapter 5: Data-Driven Occlusion-Aware Navigation via Online Quantile Temporal
Difference Learning

This chapter introduces a novel approach that casts the occlusion-aware navigation problem as
a risk-aware navigation problem, borrowing from the concepts established in Chapter 4. This
work explores alternative methods of viewing the occlusion-aware problem beyond simply avoiding
collisions, and instead focuses on other benefits towards occlusion-aware navigation, such as time-
optimality in the face of dynamic obstacle uncertainty within occluded regions. This is accomplished

9

through the creation of a risk metric that encodes the probability of encountering a general negative
outcome, which is defined in this work as sensing a dynamic obstacle emerge from an occluded
region close to the robot, although it may potentially be applied to other use cases. This risk metric
is constructed from experience gathered by the ego robot at run time, and not using pre-defined
metrics, as was the case in the approaches of Chapter 2 and Chapter 3. This enables the approach
to adjust to newly acquired data and create a policy bespoke to any environment in which it is
deployed. Lastly, this approach leverages concepts borrowed from the reinforcement learning (RL)
community and constructs this risk metric using Quantile Temporal Difference learning (QTD).
This chapter is based on the following paper currently under review:

• Higgins, J. and Bezzo, N., “Data-Driven Occlusion-Aware Navigation via Online Quantile

Temporal Difference Learning,” submitted and under review to IEEE Transactions on Robotics

(T-RO).

Chapter 6: What’s the Worst That Can Happen? Run Time Data-driven Occlusion-
Aware Navigation

In this chapter, we detail our current work on occlusion-aware navigation. As with the work in
Chapter 5, the current research effort involves the creation of risk-based policy that incorporates
and adjusts to data collected at run time. While Chapter 5 focuses on avoiding negative outcomes
experienced by the ego robot, this current work instead uses collected data observed around occlusions
to infer what could happen before the ego robot actually arrives at the occlusion. Additionally,
this work provides a novel way of framing the risk-based path planning problem as a travel time
minimization problem, in which the uncertainty of dynamic obstacles within occluded regions causes
potential uncertainty in the travel-time required to reach a goal. A risk metric is defined over
the distribution of possible travel times, and a graph-search algorithm is used to find a path that
minimizes this risk metric. This chapter is based on the following current work:

• Higgins, J. and Bezzo, N., “Data-driven Occlusion-Aware Navigation at Run-time,” in prepa-

ration for submission to the 2025 International Conference on Robotics and Automation

(ICRA).

Chapter 7: Conclusions and Future Work

In this chapter, we conclude the dissertation by summarizing the results from all the aforementioned
works and discuss potential future directions to build on.

10

1.4 Summary of Contributions

To summarize, the work presented in this dissertation will contribute to the existing state-of-the-art
in autonomous robotic occlusion-aware navigation by providing:

• A novel occlusion-aware control framework for common human-populated environments,
quantifying the amount of FOV occluded by a hallway corner and actively seeking to minimize
this occlusion while enforcing safety and liveliness.

• Extending this work to unstructured and unknown environments populated by generally-
shaped occlusions, providing a generalized way to estimate the portion of the FOV that is
occluded by an obstacle.

• Development of a novel data-informed risk metric that is efficiently learned from relatively
small amounts of data and, when minimized, produces trajectories that reduce risk.

• Development of a technique to optimize over non-differentiable costs at run time, allowing to
use optimization problems of a more general form that can tackle more complex scenarios.

• A novel approach that casts the occlusion-aware navigation as a risk-aware navigation problem,
investigating other benefits to occlusion-aware navigation rather than purely a safety-based
consideration.

• A novel framework for learning this risk-based occlusion-aware policy at run time from the
data directly experience by the ego robot, leveraging techniques borrowed from RL to adjust
the policy bespoke to a particular environment.

• Development of a novel occlusion-aware motion planning approach that leverages historical
observations of dynamic obstacles to infer the risk associated with certain environmental
occlusions.

• Formalizing a novel approach to cast the occlusion-aware navigation problem as a risk-based
navigation problem, which associates the uncertainty created by occlusions with a risk of
increased travel time, and actively finding a path that minimizes this risk.

11

Part I

Visibility-Based Occlusion Navigation

12

Chapter 2

Negotiating Visibility for Safe Autonomous Navigation
in Occluding and Uncertain Environments

2.1 Introduction

From food delivery to warehouse logistics, many AMR are increasingly being developed for and
deployed in structured environments such as office buildings or street sidewalks. These structured
environments are usually characterized by floor plans with regularly spaced hallways, rectangular
rooms and hallway intersections. This chapter presents an approach that leverages this structure to
reason about the visibility from certain positions within the environment. The proposed control
policy combines both visibility and safety constraints into a single framework, using these objectives
to inform the importance of the other in an intuitive and natural way. This control framework is
shown in Fig. 2.1 and captures the complex notions of safety and visibility, yet is kept simple so
that it may be easily deployed by efficiently leveraging data easily obtainable from any standard
line-of-sight sensor.

The main thrust of this work is to cast the promotion of visibility as an optimization problem,
in which the effect of occlusions are actively minimized by the controller. This is achieved by
quantifying the geometric area that is within the robot’s FOV radius but is occluded by an obstacle.
Fig. 2.2 shows a motivating situation in which the robot is tasked with moving towards a goal

Figure 2.1: Block diagram of the visibility-based occlusion-aware motion planning approach.

13

Figure 2.2: Pictorial representation of the problem covered in this work. As represents the visible
region while Aku is the “known-unknown” not visible sensed area by the robot.

location that lies behind an occluding corner. As the robot approaches this occluding corner, the
line-of-sight sensors are able to detect an area As, while a portion of the environment known to be
traversable is still left unobservable from the current position of the robot. We label this geometric
occluded area as the “known-unknown” area Aku, and seek to minimize this area as the robot
navigates an environment, thus promoting higher perception around occlusions, rather than cutting
around occluding corners. In addition to this perception objective, safety is also considered within
the proposed framework as a means of ensuring the robot avoids collisions as it travels throughout
the environment.

This work presents two main contributions: (i) the formulation of an analytic perception objective
that, when used in the cost function of an optimal control problem, results in motion that increases
perception around occlusions, and (ii) an occupancy grid-based technique to determine if the robot
can safely navigate around the occlusion in the presence of traffic from other moving actors. This
work was published in a journal (RAL’21), as well as presented as a conference paper (ICRA’21).

2.2 Problem Formulation

In this work we are interested in finding a control policy for a robot to negotiate occlusions while
considering visibility, safety, and speed constraints. The framework should be able to apply to any
general autonomous mobile system, as well as be able to generalize to any structured occluded
environment. While there are many ways of approaching this multi-faceted problem, our approach
decouples this research question into two sub-problems whose solution strongly affects the overall
motion of the autonomous system. Formally, these two problems can be defined as follows:

14

Problem 1: Safe Navigation: A robot must be able to avoid collision with any obstacle
within its visibility range at any time over a time horizon tT , or mathematically:

||p(t′) − oi|| > 0, ∀t′ ∈ [t, t + tT], ∀i ∈ [1, no] (2.1)

Here, p(t) = [x, y]⊺ is the position of the robot, oi(t) = [ox, oy]⊺ is the position of the ith obstacle
in the x − y plane at time t, and no is the number of obstacles. In the context of this work, this
problem implies that the robot must be able to stop and avoid a collision with actors and obstacles
that are occluded, and hence may suddenly appear in in the FOV of the vehicle.

This work also seeks to solve the problem of visibility-aware navigation. Motivated by Fig. 2.2,
we define a known-unknown region Aku(t) as the area within a FOV radius A(t) minus the area
As(t) not occluded by obstacles in the environment, or Aku(t) = A(t) − As(t). With this in mind,
the second problem that we propose to solve in this work is:

Problem 3.2: Minimizing Known-unknown Occlusions: Given the safety constraint
defined in Problem 3.1, find a control policy Pu which at runtime maximizes visibility in an occluded
environment, or equivalently minimizes Aku(t):

Pu(t) = arg min
u

Aku(t), ∀t (2.2)

where u is the commanded input to the robot.

2.3 Approach

2.3.1 MPC-based Known-Unknown Minimization

In this work, we are interested in designing a single model predictive controller (MPC) framework
that negotiates occluded intersections of varying shapes and sizes. MPC operates on solving an
online optimal control problem (OCP) that optimizes over a moving prediction horizon. This OCP
requires two main components: (1) a cost function J that the OCP minimizes at each time step,
and (2) feasibility regions that the OCP must respect. The cost function J at time t for our specific
problem is expressed as:

J = (xt+T − wt)⊺Qt+T (xt+N − wt)

+
T −1∑
i=1

(xt+i − wt)⊺Qt+i(xt+i − wt) + u⊺
t+i−1Rut+i−1

+wΛΛ2(xt+i, yt+i) (2.3)

15

where xi is the state space vector for the ith prediction step, wt is the desired reference, and ui

is the ith control input that the MPC computes at each sampling period. Q and R are the cost
weighting matrices for state space position and control input reference tracking, respectively.

The OCP is then formulated as:

arg minu0,...,uN−1 J(x0,u0, ...uN−1)
subj. to ut+i ∈ Ut, ∀i = [0, N − 1]

xt+i ∈ Xt, ∀i = [1, N]

(2.4)

where xt+i is the model-based predicted state at future time t + i × ∆t, ∆t is the sampling
time and T is the prediction horizon over N steps. The feasibility regions for the control inputs
and state-space variables are denoted as Ut and Xt, respectively. In this chapter, control inputs are
restricted by simple min-max inequalities umin ≤ u ≤ umax. The feasibility region for the position
component of the state is denoted by Pt and defined by an H-Polyhedron:

Pt = {p ∈ R2 : Ap(t) ≤ b} (2.5)

where the matrices A and b that define Pt depend on the position of the robot p(t), as well as the
width of the current corridor w0 and the width of the next corridor w1:

A =


−1 0
0 1
1 −y/x

 ; b =


w0

w1

0

 (2.6)

Motion through the environment is produced by a pure pursuit approach of a waypoint wt that
changes over time. The novelty about our MPC framework is the inclusion of a new term Λ(x, y) in
(2.3), which defines the perception objective. The purpose of the perception objective Λ(x, y) is to
value the current position based on this occluded area.

An exact analytical expression for the known-unknown area Aku(t) of an occluded environment is
in general a piecewise continuous function that is not differentiable and computationally intractable.
Instead, this work finds use in a simple analytical expression that closely correlates to Aku(t). This
analytical expression is defined by distances ∆x and ∆y relative to the occluding corner, shown
in Fig. 2.3. The angle between the position of the robot and the upcoming corridor is defined as
θ = arctan(∆y/∆x). With these quantities, the perception objective is defined as:

Λ(∆x, ∆y) = θ

∆y
= arctan(∆y/∆x)

∆y
(2.7)

In other words, the perception objective is defined as the ratio between the angle θ and the

16

Figure 2.3: Defining the perception objective in terms of the occluding corner, relative to the
current location of the robot.

parallel distance ∆y. This expression has two main properties that make it appealing to use as a
perception objective:

• lim
∆y−→∞

Λ(∆x, ∆y) = 0, meaning that this perception objective naturally tends to zero if the
robot is far away from the occluding corner. In this case, the robot’s motion will not be
affected by the perception objective.

• lim
∆y−→0,∆x ̸=0

Λ(∆x, ∆y) = 1/∆x, meaning that as the robot approaches the occluding corner,
the perception objective takes on the value 1/∆x and the MPC tries to increase ∆x in order to
minimize the perception objective. By increasing ∆x, the occluded area is naturally minimized.

Lastly, it may be noted that the relative position of occluding corner (∆x, ∆y) may be easily identified
using the range measures provided by any standard line-of-sight sensor. This is accomplished by
noting any large jumps in range value between two successive range angles, and identifying the close
range location as the occluding corner.

We will now show that the analytical expression in (2.7) mimics the desired behavior that an
ideal perception objective would have and provides a differentiable cost function that any nonlinear
MPC can handle. Fig. 2.4 shows a mapping between spatial points occluded by an upcoming
corner, the desired value Aku(x, y) and perception objective Λ(x, y). The values of Aku(x, y) are
considered the “ground truth” that the analytical perception objective Λ(x, y) is approximating.
The quantity log(Λ(x, y)) is plotted against Aku(x, y) to address the non-linear relationship between
them. Highlighted in Fig. 2.4 is a red line of locations along which ln(Λ(x, y)) and Aku(x, y) share
a correlation of 0.96, implying a strong relationship between the two values. In other words, as the
MPC decides to increase/decrease the perception objective as defined in (2.7), this correlates to an
increase/decrease in the known-unknown area.

Analyzing the effects of the perception constraint in (2.3), we note that a large weight wΛ causes
the MPC to return commanded inputs whose overall effect is to provide a better vantage down

17

(a) (b)

Figure 2.4: Mapping points in the x − y plane that are occluded by a corner (a) to values of the
known-unknown area Aku(x, y) and the logarithm of the perception objective Λ(x, y) (b).

Figure 2.5: Example motion showing the effects of motion that reduces the known-unknown area.

occluded hallways. Fig. 2.5 shows the effect of this perception objective. First, Fig. 2.5(a) shows
motion of a robot moving with a baseline policy of following the middle of the hallway. Fig. 2.5(b)
instead shows a minimum-time policy that seeks to quickly cut around the corner, with wΛ = 0. In
contrast to these policies, Fig. 2.5(c) shows the resulting trajectory with wΛ > 0 in which the robot
moves to decrease Aku, thereby increasing visibility. Finally, Fig. 2.5(d) shows the value of Aku over
time for each trajectory, quantitatively demonstrating the effects of each trajectory.

2.3.2 Safety Constraint

As mentioned in Sec. 2.3.1, the MPC is given a waypoint w(t) that serves as a pure pursuit objective
for the robot to follow. In the proposed framework, safety is enforced by adapting w(t) depending
on the uncertainty of the upcoming environment.

In the presence of uncertainty due to possible incoming traffic of actors from around occlusions,
safety is determined through probabilistic means by computing the average distance until collision.
In order to calculate this expectation value, one must know the probabilities of collision for different

18

locations in space at particular instances in time. While this may seem unwieldy at first, such a
task becomes more manageable by making the following connection: the probability of colliding
with an object at a given point in space is the same as that location’s probability of occupancy.
Occupancy grids are a common and well-studied approach for mapping [83], and readily give the
probability of occupancy for any grid location. The proposed framework borrows this idea of
occupancy-for-mapping and instead applies it towards calculating the likelihood of collision in an
occluded hallway.

In choosing a waypoint w in an uncertain environment, it is beneficial to have a function that
directly connects to the safety of w. In this framework, this function is the expected distance to
collision beyond the corner and is calculated using estimated future probabilities of occupancy in
the upcoming section of the hallway.

Define ∆d = p − w, and divide ∆d up into n sufficiently small line segments di = p + i
n∆d,

i = 1, . . . , n. Additionally, let Snext ∈ R2 define the area of the upcoming hallway. Define the set D
as,

D = {di : di ∈ Snext} (2.8)

In other words, D contains all points di that lie beyond the occluding corner.

An occupancy grid map takes as input the x − y position in space and returns the probability
that a region is occupied by an obstacle. At each sampling time, this occupancy grid is updated by
what is observed by the robot. Define pt(di) as the current probability function, with pt(di) = 1
representing the knowledge that di is occupied by an obstacle with certainty. In order to address
situations with dynamic obstacles (e.g., a person walking into view from around the corner),
future occupancy pt+∆t(di) at some time ∆t later is predicted from pt(di) via convolution with a
probabilistic motion model. For ease of discussion, the probabilistic motion model is assumed to be
a simple uni-directional motion down the corridor. The parameter ∆t is estimated as the distance
to w divided by the speed the robot is currently moving in that direction:

∆t = |d|
ṗ · d̂⊺

(2.9)

The expected location of collision d can be defined as:

d =
∑
i∈D

dipt+∆t(di)Πi
j=1 [1 − pt+∆t(dj)] (2.10)

Here, (2.10) can be thought in terms of a generalized geometric probability distribution, in that
the term p(di)Πi

j=1 [1 − p(dj)] is interpreted as the probability that the robot travels along ∆d from
its current position p and collides with an obstacle only at di. It should be noted that (2.10) is a

19

Figure 2.6: Waypoint placement in safe and unsafe situations.

conservative approximation of the actual expected distance to collision, as the motion of the robot
may not be along d.

The safety of a waypoint w is determined by comparing the expected distance to collision |d̄|
to the stopping distance of the robot. If we assume that the motion of the robot is limited to a
maximum velocity |ṗ|max and acceleration |p̈|max, a maximum stopping distance can be computed
as:

dstop, max = |ṗ|2max
2|p̈|max

(2.11)

A waypoint w is considered safe when the expected distance to collision is greater than the
maximum stopping distance. In this way, the robot has enough room to stop completely before its
anticipated collision. To indicate safety we introduce a binary variable Θ = 1(0) when safe (unsafe):

Θ =

1, if |d̄|/dstop, max > 1

0, else
(2.12)

Consider now a predefined desired trajectory τ used as a means of routing the robot around
known static obstacles, such as walls, towards the robot’s goal position. Points along τ that are
currently visible to the robot are considered as candidate waypoints, with (2.12) used to ensure
that any particular candidate is safe to move towards.

Let As(t) define the area visible to the robot at time t, and define the boundary of this area as
δAs(t) ∈ R2 as depicted in Fig. 2.6.

Let τ ′ = {pτ,0, . . . ,pτ,i . . . ,pτ,N } with i = {1, . . . , N} be an indexed set of N discrete points
that make up the visible model trajectory τ ′. The waypoint location w is placed at the furthest
point along τ ′ that is considered safe according to (2.12). The first point considered is the farthest
visible point pτ,N = δAs ∩ τ . If pτ,N is unsafe, then a closer visible point is considered, pτ,N−1.
Fig. 2.6 shows how this process may be repeated until a safe waypoint w = pτ,N−k is found. If no
point on τ is considered safe in the upcoming corridor, the waypoint is placed at the entrance of

20

the upcoming corridor pτ,0 and the upcoming corridor is considered unsafe. In situations where
δAs ∩ τ = ∅, the waypoint is chosen as the closest point v∗ ∈ δAs to the desired trajectory τ .

w =


pτ,N−k, k ∈ [1, N] if δAs ∩ τ ̸= ∅

v∗ ∈ δAs s.t. |p − v∗| ≤ |p − v|

∀v ∈ δAs(t), else

(2.13)

When the waypoint is placed at w = pτ,0, it means that there is some non-negligible probability
of expected traffic coming from around the occluding corner. In this situation, it is advantageous for
the robot to gain visibility around the occluding corner to increase the certainty that the upcoming
hallway is unoccupied, thereby lengthening the expected distance to collision in (2.12). Thus the
perception objective is activated and the waypoint is fixed at pτ,0. By bringing the waypoint closer
to the position of the robot, a desired side effect is that the MPC will reduce the speed of the robot
to a safe stop at the selected waypoint if needed.

2.4 Simulations

The first case study investigated in this work is a simple “L”-shaped corridor with one occluding
corner. The simulated UGV robot uses a common differential drive motion model [48] and has a
maximum velocity of 2 m/s and maximum acceleration of 1 m/s2. Thus, from (2.11), dstop, max = 2 m.
The FOV of the UGV is limited to a 5 m radius. The optimal control problem was solved using
ACADO toolkit [39] and qpOASES [32] as the solver. Fig. 2.7 shows a series of snapshots of the
proposed framework navigating the robot through the occluded intersection. The gray grid cells
represent the estimated future probabilities of occupancy. Current occupancy probabilities are

(a) (b) (c) (d)

Figure 2.7: Snapshots of a simulation case study in which a UGV navigates an occluding corner,
considering uncertainties. The gray shaded region on the second corridor indicates the probability
that a certain cell is occupied by other actors. (d) shows plots of velocity and Aku for our policy

framework with and without perception compared to a minimum travel time implementation.

21

determined through a log-odds Bayesian update, and used to estimate future occupancy probabilities
by convolving with a known motion model.

Also shown in Fig. 2.7 are simulated dynamic objects, uniformly ranging in speed from 0 to
5 m/s traveling to the left. The convolution model used to temporally propagate the occupancy
probabilities correlates to this uniform probability in dynamic obstacle velocity. As the simulation
ran, the UGV could “sense” a dynamic object only when it was within the UGV’s FOV, recording
its distance. This distance serves as a conservative estimate on safety of the proposed framework
since it is designed to provide ample reaction time in uncertain situations, and not provide a policy
that plans around dynamic obstacles. For these reasons, the dynamic obstacles are removed from
simulation when they are first observed.

Figure 2.8: The cumulative distribution function
of the distance that the robot first senses a

dynamic object while negotiating the L-shaped
corridor.

Fig. 2.7(d) plots velocities and known-
unknown areas for these simulations for com-
parison. It is apparent from Fig. 2.7(d) that
the proposed policy framework performs best at
maximizing visibility. What may be surprising
is that by considering visibility constraints, the
proposed framework also moves faster around
the corner than motion guided only by the safety
module. The UGV is able to do this because
having visibility around the occluding corner
helps reduce the uncertainty in occupancy, es-
tablishing safety more quickly than using the safety module alone.

Fig. 2.8 shows these results as a cumulative distribution function over the distance that a
dynamic obstacle was first sensed. As a point of comparison, also shown are the results of a UGV
moving to minimize traveling time (i.e., quickly cutting the corner) as well as a UGV following the
safety module without a perception objective to help with visibility. The figure shows how motion
that minimizes traveling time has a 23% chance of sensing a dynamic obstacle under dstop, max = 2 m.,
which is unacceptable in a safety-critical situation. With the full safety and perception framework,
there was no situation where the UGV sensed a dynamic obstacle within its maximum stopping
distance.

The second case-study focused on a real-world situation in which an industrial UGV was tasked
to navigate a series of hallways inside a warehouse to retrieve an item from a stockroom and take it to
a specified location. In this case study, the UGV must reach the stockroom via a main hallway that
is often occupied by dynamic obstacles (e.g., people, other robots), and thus has some uncertainty
of occupancy. Two scenarios were tested: (1) the main hallway is known to be clear of dynamic

22

obstacles (e.g. it is night-time and no other actors are present in the warehouse) and thus this main
hallway is known to be safe a priori, and (2) occupancy in the main hallway is unknown, with a
probabilistic motion model that assumes all dynamic obstacles move down the hallway. Fig. 2.9
shows the setup and results for these scenarios.

As Fig. 2.9 shows, the main difference of trajectories between the two scenarios is when the
UGV enters the main hallway. When there is uncertainty, the UGV moves to gain visibility up the
hallway, and when the main hallway is known to be safe, it instead cuts the corner. Fig. 2.9(e)
shows how the known-unknown area is reduced when occupancy is uncertain in the main hallway.

2.5 Experiments

Experimental validations were performed with a Clearpath Robotics Jackal UGV inside our lab.
As a proof of concept, different occluded geometries were created to showcase how the proposed
framework adapted to different scenarios. For each scenario, a Vicon motion capture system was
used to measure state-space values of the Jackal, which were fed into the policy framework outlined
above. The MPC executed at 10 Hz, producing commanded velocities which were fed to a lower
level controller executing at 100 Hz. As the Jackal can follow commanded velocities, it can instantly
stop moving at any point and dstop, max is effectively zero. Because of this feature, only the effect of
the perception constraint on motion was explored in experiments.

Fig. 2.10 shows snapshots for the case study of a UGV approaching the intersection of two
hallways where its sensing capabilities are occluded by a sharp corner. Two different objectives were
tested: (1) minimum time and (2) perception. Fig. 2.10 shows snapshots of these two experiments,
as well as known-unknown areas recorded by the Jackal. Additionally Figs. 2.10(a,b) show laser

(a) (b) (c) (d) (e)

Figure 2.9: Sequence of snapshots for a simulation of a robot operating in a occluding environment
with variable expected traffic of dynamic objects (a-d). In (e) it is depicted the comparison between

the known-unknown areas over time of the case where the long hallway is safe vs unsafe.

23

(a) Motion with minimum traveling
time.

(b) Motion with perception. (c) Aku over time

Figure 2.10: Snapshots of experiments and data for the two-corridor scenario. Highlighted in (a)
and (b) are the lidar point-cloud data before passing the corner showing a decreased

known-unknown in (b). In (c) the plots show the difference in Aku between (a) and (b).

scan data recorded by the onboard lidar. The impact of including perception is highlighted by the
additional laser scan points around the occluding corner.

2.6 Discussion and Conclusion

This chapter presents an approach for visibility-based occlusion-aware navigation in structured
environments. This was achieved by using the relative position of the occluding corner as a means of
approximating the occluded “known-unknown” area within a structure environment. This analytical
approximation was placed within the cost function of an OCP, acting as a perception objective that,
when minimized, encouraged motion that increased visibility around these occluding corners. When
paired with a safety module, the combined framework allowed for motion that maintained speed
while negotiating an occluded environment. The proposed approach was validated through both
simulations and experiments.

Due to the simple analytical form provided by the perception objective, occluding corners within
structure environments are relatively easy to locate using any standard line-of-sight sensor, meaning
this approach can leverage the data generated by these sensors to inform the occlusion-aware motion
policy without the need for any training. Thus, the approach presented in this chapter presents a
data-efficient method for occlusion-aware navigation.

The main limitation of this approach is the need for tuning of cost function weights within (2.3).
These weights are parameters whose values must be determined by an operator prior to deployment
in the real world. For a single occluding corner, (2.3) includes nine parameters (assuming matricies
Qt+T , Qt+i and R are diagonal) and becomes a more complex tasks as additional occluding corners
are included within the cost function. Additionally, there is no principled way to approach this
tuning beyond trial and error. Thus, there is a trade-off in which the training required of other

24

approaches is replaced by some operator tuning with the approach proposed in this chapter. Lastly,
this approach relies on the structured nature of the occluded environment in order for the perception
objective to accurately approximate the known-unknown area. Environments with amorphous or
unstructured obstacles may present a challenge for the approach discussed in this chapter. Chapter 3
addresses these concerns by providing an additional perception objective that may be applied to
both unknown and unstructured environments.

25

Chapter 3

A Model Predictive-based Motion Planning Method for
Safe and Agile Traversal of Unknown and Occluding
Environments

3.1 Introduction

One natural extension of the work presented in Chapter 2 is to consider general environments
in which the occlusions are not necessarily defined by hallways in a structured environment. In
order to accommodate this more complex task, the visibility objective Λ(·) must be reformulated
so that it may be applied to general occluding surfaces, and not just structured hallway-like walls.
Additionally, unknown environments will not have a pre-defined trajectory τ that may be used
to defined a safe waypoint w for the robot to travel towards. Thus, this section provides two
novel approaches to both visibility and safety that may to utilized in general and unstructured
environments. Fig. 3.1 shows a diagram on this approach. Although similar to Fig. 2.1, the safety
module and the perception module are improved with more general mechanisms to account for both
safety and visibility. Additionally, the visibility objective presented in this chapter utilizes geometric
features within the environment that may be easily extracted using any standard two-dimensional
line-of-sight sensor. Thus, the approach discussed here leverages data generated by the light-of-sight
sensors as a means of defining the visibility objective to be optimized over.

3.2 Problem Formulation

In this work, we are interested in finding a control policy that can swiftly navigate a robot towards
a goal while avoiding collision with both known and unknown obstacles in the environment.

Problem 1: Safe Navigation in Occluding Environments: A robot must be able to
avoid collision with any obstacle within its visibility range at any time over a time horizon T , or

26

mathematically:
|p(t′) − oi|2 > ri, ∀t′ ∈ [t, t + T], ∀i ∈ [1, no] (3.1)

in which p(t) = [x, y]⊺ is the position of the robot, oi(t) = [ox, oy]⊺ and ri are the position and
radius of the ith obstacle in the x − y plane at time t, and no is the number of obstacles. In the
context of this work, this problem implies that the robot must be able to stop and avoid a collision
with actors and obstacles that are occluded, and hence may suddenly appear in the FOV of the
vehicle.

This work defines agility as the ability of the robot to track a reference speed. Let vr and
v(t) = |[ẋ(t), ẏ(t)]|2 represent the reference speed and speed of the robot at time t, respectively. The
velocity error may then be defined as:

ev(t) = |v(t) − vr|

At the same time, motion should be commanded that promotes visibility around occlusions.
Define A(t) as the area within the FOV that is not known a priori to be occupied or blocked by
obstacles, and As(t) ∈ A(t) as the area that is visible to the robot. The difference between these
two sets is the area that is occluded to the robot, which we quantify as the known-unknown area
Aku(t) = A(t) − As(t). Fig. 1.1 shows an example of both As and Aku.

Problem 2: Promoting Speed and Visibility: Given the safety constraint of Problem 3.1,
find a control policy Pu that simultaneously minimizes both the velocity error and the known-
unknown area at runtime:

Pu(t) = arg min
u

(cvev(t) + ckuAku(t)) , ∀t (3.2)

where cv and cku are hyperparameter constants of optimization and u is the commanded input to
the robot.

Figure 3.1: Diagram showing the different components of the proposed controller. The
contributions of this section are within the green box.

27

3.3 Approach

3.3.1 MPC-based Motion Planning

In this work, an MPC commands motion of a system throughout the environment by solving an
OCP online. Let us assume that the system follows general state dynamics defined by state x and
control input u:

ẋ = f(x,u) (3.3)

The function f(·) is assumed to be time-invariant, meaning that the starting time may be taken
as t0 = 0 without loss of generality. Define xr and ur as the desired reference state and control
input of the system, respectively. The cost function J(·) of this OCP can be defined over a future
horizon T as:

J(x(t),u(t)) = |x(T) − xr|2QN
+

ˆ T

0
|x(t) − xr|2Q + |u(t) − ur|2R +

nobs∑
i=1

|Λi(p(t))|2Mdt
(3.4)

Here, QN , Q and R are positive definite weighting matrices and M is a positive semi-definite
scalar. These weights determine the relative importance in minimizing each term in the cost function.
In addition to reference tracking, this cost function also includes a perception objective Λi(·) that is
dependent only on the x − y position of the robot, defined as p(t) = [x(t), y(t)], and the position of
the nearest nobs obstacles. By including this term, the resultant motion also seeks to minimize the
known-unknown area behind occlusions, thereby increasing visibility of the environment.

Constraints can be included inside an OCP so that the solution respects the physical limits of
the controlled system, e.g., a limit on the speed of the system, or applied control input. These
constraints are generally cast as inequalities in the following form:

glim(x,u) ≤ 0

Constraints on the position of the system p may also be used to command motion that avoids
obstacles in the environment. In this approach, two types of constraints are considered. The first
are half-plane constraints, defined with matrix A and offset term b:

ghp(p) = Ap − b ≤ 0 (3.5)

Half-plane constrains are used for obstacles shapes that have a large eccentricity, such as the
wall of a long hallway. Obstacles with low eccentricity are instead approximated with circles that

28

envelope their boundary. These circles are defined by their position c(t) = [cx(t), cy(t)] and radius
r, and this constraint may again be cast as an inequality:

gcirc(p) = r2
i − |p − ci|2 ≤ 0, ∀i ∈ {1, ..., nobs} (3.6)

To simplify notation, these inequality constraints may be combined into one function g(x,u) =
[glim, ghp, gcirc]. The OCP that the MPC solves may thus be defined in the following way:

arg minu(t) J(x(t),u(t))
subj. to x(0) = x0

ẋ = f(x,u)
g(x,u) ≤ 0

(3.7)

3.3.2 Visibility Objective for Unstructured Environments

The purpose of the perception objective is to directly correlate with the value of the known-unknown
area behind occluding obstacles. In this way, as the MPC minimizes the cost defined in (3.4), it
simultaneously seeks to reduce the position tracking error (i.e, move towards a goal) while also
reducing this known-unknown area. Ideally, the perception objective Λ(·) would provide an exact
value for the known-unknown area. Unfortunately, the known-unknown area is often non-smooth
as a function of the robot position p, meaning such a function would be discontinuous in the first
derivative and could not be used in many general solvers available today that rely on the continuity
of the cost derivative to find a minimum.

Our approach instead defines Λ(·) as an approximation of the known-unknown area. Assume
that an occluding obstacle at position c is characterized by a radius r. For general obstacles with
low eccentricity, r could be the size of a circle that completely envelopes the obstacle. Assuming that
the occlusion is within the field of view of the robot with radius rfov, and that d = |p − c|2 is the
Euclidean distance between the robot and the occlusion, an approximation of the known-unknown
area Âku can be defined as:

Âku = r

d
(r2

fov − d2) (3.8)

This approximation for Aku is motivated in Fig. 3.2. First, Aku is approximated as the difference
between two circle sectors with the same angle θ. The larger circle has radius rfov, while the small
circle has radius d, so Aku ≈ θ

2(r2
fov − d2). A second approximation is made by defining the sector

angle θ to be the arc length of the smaller sector (≈ 2r) divided by the radius d, so that θ ≈ 2r/d.

While this is a reasonable approximation for Aku of a circle, one issue is that Âku < 0 if the
obstacle is outside of the FOV radius, or d > rfov. In fact, Âku is negatively unbounded as d → ∞.

29

This of course does not reflect reality, as Aku = 0 for all d > rfov. In order to correct this, Âku is
put into a ReLU function defined as hReLU(x) = max (0, x) [76].

In other words, hReLU(x) returns the input when it is positive, and 0 whenever the input is
negative. Unfortunately, hReLU is an inconsistent function, and so will not work with many available
nonlinear program solvers [44]. For this reason, the proposed approach uses the softplus function
hsp(x) = ln (1 + exp x) as a continuous approximation to the ReLU function. The full perception
objective is thus defined to be:

Λ(p) = ln (1 + exp (Âku)) (3.9)

Fig. 3.3 shows how (3.9) correlates to the actual known-unknown area behind an obstacle.
Varying positions of the robot are colored next to an occluding obstacle, with the respective
known-unknown area shown with the corresponding color. For each position, the actual value of the
known-unknown area is recorded, along with the value of Λ(·). These value pairs are also plotted in
Fig. 3.3. The result is a near-perfect direct correlation between the two quantities, with a correlation
of 0.9996. This means minimizing Λ(·) directly correlates to minimizing the actual known-unknown
area of a circular obstacle.

Figure 3.2: Known-unknown area Aku for a circular obstacle within the FOV of the robot.

(a) (b)

Figure 3.3: Correlation between perception objective Λ(·) and true known-unknown area Aku.

30

Figure 3.4: Comparison of motion commanded by the MPC, both with and without perception
objective.

Finally, this perception objective can be used to approximate the known-unknown areas of
multiple occlusions at once. The value of the perception objective for the ith obstacle can be
calculated for nobs nearest obstacles. The square sum for each Λi(·) is then used for the total
perception objective in (3.4).

Fig. 3.4 shows the effect that the perception objective has on the resulting trajectory of a robot
whose goal is to the right of the map along y = 0 with one obstacle in the environment. Shown in
orange is the trajectory of the robot without a perception objective; effectively, this means that
M = 0 in (3.4) and the MPC does not command motion to minimize the known-unknown area.
In this case, the robot still avoids the obstacle, but comes very close to the obstacle boundary
as it tries to minimize the distance to the y = 0 line. Shown in blue is the trajectory with the
perception objective. Not only does the MPC command the robot towards the goal, but it also
works to minimize the known-unknown area created by the occluding obstacle.

Although the approximate known-unknown area (3.8) assumes a circular occlusion, it may also
be applied to corner occlusions with minimal adaptation. Consider the scenario shown in Fig. 3.5
where the robot approaches an occluding corner. The shape of the corner is assumed to be known
a priori, e.g., the corner of a hallway in an office building where a map is available or identifiable
using cameras and range sensors. The true known-unknown area is shown, as well as three virtual
circles that are placed along the edge of the obstacle that is occluded. These virtual circles do
not represent physical obstacles in the environment; instead, they are used to approximate the
known-unknown area created by the corner occlusion.

In this case, the sum of perception objective for these three virtual circles
∑3

i=1 |Λ(·)|2M approxi-
mates the true known-unknown area of the corner.

While the approximation becomes better with more virtual circles of smaller radii, this also
increases the number of terms to be minimized in the objective function (3.4). This could affect
solving time and convergence properties, so the appropriate number and size of virtual circles is

31

Figure 3.5: Pictorial representation of the approximation for the known-unknown area around a
corner using virtual circles.

application dependent.

3.3.3 Safety Constraint for Unknown Environments

The constraints of the OCP defined in (3.7) can only guarantee collision-free motion for obstacles
that are known to the robot. Thus, care must be taken to avoid obstacles that are occluded to the
field of view of the robot. These unknown obstacles are located in the uncertain regions that are
occluded to the robot or outside of its field of view

To mitigate this risk, a safety module is included that considers the distance the robot may
travel until a collision is possible. With this distance, it determines a safe speed vr for the robot to
maintain. This speed is fed into the OCP of (3.7) as a reference speed for the MPC to track. The
smaller the distance to collision, the slower vr is set. This vr is constantly recomputed at the same
sampling rate as the MPC, allowing potentially rapid changes in the environment to be accurately
accounted for in the MPC computation.

In order to estimate the distance to a possible collision, let us define the set of admissible controls
as U , so that u(t) ∈ U ∀t. The forward reachable set (FRS) of a system is the set of state-space
points that are reachable by the robot from its current state x0 within some time t. Assuming the
state dynamics (3.3) are time invariant, the FRS may be defined as:

Rnx(t,x0) =
{
x | x(t) = x0 +

ˆ t

f(x,u)dt, ∀u ∈ U
}

(3.10)

Here, nx is the dimension of the state space. In order to estimate collisions with other obstacles,
let us define R2(t,x0) as the projection of Rnx(·) onto the x − y plane. For the remainder of the
paper, R2(·) will be referred to simply as the FRS, although (3.10) is the strict definition.

The FRS defines the portion of the environment that is accessible to the robot. In order to
estimate a distance to collision within this FRS, an occupancy grid P (·) is defined for the entire
environment [83]. This function P (·) takes in a location on the x−y plane and returns the probability

32

of occupancy at that location. Typically, P (x, y) = 1.0 denotes that an obstacle is known to be
occupying space at location (x, y), P (x, y) = 0.0 denotes free space and P (x, y) = 0.5 denotes
complete uncertainty, i.e., there is a 50% chance of an obstacle occupying that location.

This framework assumes that all known obstacles may be successfully avoided by appropriately
defining the inequality constraints (3.5) and (3.6). Thus, the safety module is only concerned with
the occluded space behind obstacles that may contain an obstacle. Mathematically, this uncertainty
can be measured using the entropy of a binary variable H(P) = −P ln (P) − (1 − P) ln (1 − P).
Entropy of a grid square is maximum when P (·) = 0.5, and decreases to zero as P (·) = 0.0 or
P (·) = 1.0.

The distance to an unknown obstacle is defined as the distance between the robot and the
nearest grid square within the FRS that has an entropy greater than some threshold H:

d = |p − q∗| s.t. |p − q∗| < |p − q| ∀ q ∈ R2(t,x),

H(q) > H
(3.11)

Fig. 3.6(a) shows an example of this process. The FRS is shown in purple for a particular choice
in robot dynamics (specifically for the figure, differential drive dynamics [83]). The occupancy map
permeates the entire environment; white grid cells are known to be free of obstacles, while gray
grid cells are uncertain because they have not been observed by the robot. The value for d is then
chosen as the distance between the robot and the closest grid cell that i) is within the FRS and ii)
has an entropy above a certain threshold.

In order to consider dynamic obstacles, the future values of the occupancy map can be estimated
by convolving the current occupancy map P (·) with a probabilistic motion model of the dynamic
obstacles. This probabilistic motion model P (o′|o) defines the probability of a dynamic obstacle
moving from location o to o′ over some time dt. Convolution is applied over time dt to find a future
occupancy estimate P ′(·):

P ′(o′) =
∑
o

P (o′|o)P (o) (3.12)

This operation is repeatedly applied until P ′(·) estimates the occupancy grid at the same time t

into the future as the FRS, effectively dilating the boundary of grid cells with high entropy and in
turn decreasing d when the robot is near these boundaries.

This distance d is a conservative estimate on the required stopping distance of the robot.
Assuming the robot has a maximum allowed acceleration amax, then the maximum allowed velocity
can be found such that the robot moving with speed vstop =

√
2damax can stop within distance d

under a constant acceleration amax.

There is only a need to slow down if vstop is less than the maximum velocity of the system vmax;

33

(a) (b)

Figure 3.6: Example situation in which the safety module is used to command a slower velocity
around an obstacle.

otherwise, it is beneficial to travel at or near vmax to reduce travel time. Thus, the following is sent
as a velocity reference into (3.4), used in (3.7) as a reference speed for the MPC to track:

vr = min (vstop, vmax) (3.13)

Fig. 3.6(b) shows the speed profile for the example in Fig. 3.6(a). As the robot moves close to
the obstacle boundary, there is uncertainty of what lies behind the occlusion and the distance d

decreases, in turn decreasing vstop. The reference velocity vr is determined through (3.13) and sent
to the MPC, commanding a safe speed for the robot.

3.4 Simulations

Simulations were performed to show the capabilities of the proposed control policy to reduce
the known-unknown area, increase speed and avoid collisions in unknown environments. In each
simulation, a simple non-holonomic velocity motion model was assumed of the robot as {ẋ =
v cos θ; ẏ = v sin θ; θ̇ = ω}, with pose x = [x, y, θ]⊺ controlled via commanded translational and
rotational velocity u = [v, ω]⊺. To facilitate motion in general environments and prevent deadlock,
an intermediary waypoint obtained by intersecting the robot’s FOV with its desired path was given
to the MPC for position tracking.

In order to solve the OCP posed in (3.7), the acados nonlinear program solver [85] was used for
sequential quadratic programming, with qpOASES [31] as the underlying quadratic program solver.
The prediction horizon T = 5 s, discretized into time steps dt = 0.25 s.

Fig. 3.7 shows an example with a robot moving clockwise around a square obstacle. The shape
and location of this obstacle is known to the robot beforehand, e.g., it represents a static wall of an
office building. Also present is a dynamic obstacle that is initially unknown and occluded to the
robot. Fig. 3.7(a) shows motion without our approach in which timing and positioning cause the

34

(a) (b) (c) (d)

Figure 3.7: Simulation case study for a robot navigating occluding corners in the presence of a
dynamic obstacle. The different color gradient in (a), (b) and (c) represent different time instances:

lighter (darker) colors occur earlier (later) in the trajectory. The comparison between Aku and
speeds is presented in (d).

robot to not see the moving obstacle until it is too late and a collision occurs. Fig. 3.7(b) shows
motion with only the safety module. The robot slows its velocity as it approaches the occluding
corner, preventing a collision with the dynamic obstacle. Fig. 3.7(c) shows the policy that uses both
the safety module and the perception objective inside the OCP of the MPC. This policy commands
the robot to move around the occluding corner to improve perception. Not only does this prevent
collision, but this also allows the robot to maintain the same speed and increase visibility through
the operation. Fig. 3.7(d) compares the speed and Aku over time for each of these runs, showing
how the full control policy reduces the known-unknown area while maintaining a higher velocity.

To demonstrate how this policy also works in unstructured environments, Fig. 3.8 shows example
motion through an unknown randomly generated dense forest, both with and without the perception
objective. Fig. 3.8(a) shows the difference in trajectories that the perception objective makes.
Without perception, the MPC commands motion close to obstacle boundaries, and with perception,
the robot chooses a path often midway between trees. Fig. 3.8(b) compares the speed and known-
unknown area over time for both. Our full approach not only reduces the known-unknown area while
moving through the forest, but also results in movement at max speed for 82% of the trajectory,
compared to 58% of the trajectory without perception.

(a) (b)

Figure 3.8: Simulation case study for a robot navigating a randomly generated forest.

35

3.5 Experiments

The proposed approach was additionally verified on a Boston Dynamics’ Spot platform, a quadrupedal
robot that offers unique mobility capabilities that can outperform wheeled robots in more challenging
terrain [11]. Spot can also be commanded using the same velocity motion model used in simulation,
and so is an ideal use case for our approach. The OCP in (3.7) was solved at runtime in a hallway
environment with two corners, similar to the simulation shown in Fig. 3.7. The prediction horizon
and discretization time were set to be T = 5 s and dt = 0.25 s, respectively.

Fig. 3.9 shows the results of this experiment. Fig. 3.9(a) shows motion using only the safety
module, with Spot slowing down as it cuts each corner around the hallway. Fig. 3.9(b) shows motion
with our full approach that uses the perception objective to minimize occlusions in the environment.
Fig. 3.9(c) compares the known-unknown area and speed in each example. Again, the perception
objective not only reduces the known-unknown area around each occlusion, but also allows for faster
motion. For motion with the perception objective, speed drops to 0.0 m/s only momentarily as Spot
turns sharply around the first corner – otherwise, it maintains a near-max speed throughout the
rest of the trajectory.

3.6 Discussion and Conclusion

This chapter presented a framework for visibility-based occlusion-aware navigation in unknown
and unstructured environments. This framework built upon Chapter 2 in that it formulated
an analytically simple perception objective that approximated the known-unknown area behind
occluding obstacles and used this perception objective within the cost function of an OCP. This
chapter improved upon these concepts by providing a perception objective that was defined in
terms of circular occluding obstacles, which allowed it to be applied towards more unstructured
environments. Additionally, a safety module was included that commanded safe speeds in unknown
environments, enabling the robot to safely brake to a stop if necessary. Both visibility and safety

(a) Motion with safety mod-
ule only.

(b) Motion with both safety
and perception.

(c) Comparison of Aku and speed, with/without percep-
tion objective.

Figure 3.9: Experiments and results for a hallway scenario with Spot.

36

were combined into the same framework, and it was shown through simulation and experiment
how increasing visibility allowed the robot to maintain a maximum speed throughout the unknown
environment.

As with Chapter 2, the analytically simple form of the perception objective allows the approach
discussed here to be applied to an existing navigation stack with relatively little overhead and
without any pre-training. Similarly, the resulting occlusion-aware behavior can heavily depend upon
the relative weights of the different components within the cost function (3.4), meaning tuning may
be required when deploying the proposed framework in various environments. Additionally, the
frameworks presented in Chapter 2 and this chapter increase visibility around occlusions by design,
and it is demonstrated through simulation and experiment how these frameworks are beneficial to
the overall motion of the robot. Often times, increasing visibility around occlusions helps decrease
the risk of poor motion created by dynamic obstacles behind these occlusions. Motivated by this
observation, the remainder of this dissertation explores the concept of risk-aware motion planning as
a means of approaching the occlusion-aware navigation problem. In this way, motion that increases
visibility around occlusions may be considered an emergent property of a risk-aware policy, rather
than assumed to be beneficial to the robot as in a visibility-based policy.

37

Part II

Data-Driven, Risk-aware Motion Planning

38

Chapter 4

A Model Predictive Path Integral Method for Fast,
Proactive, and Uncertainty-Aware UAV Planning in
Cluttered Environments

4.1 Introduction

This chapter presents an exploration into a risk-aware navigation policy that minimizes some risk
metric over a planned trajectory. Specifically, this chapter deals with the risk of collision with
static obstacles in the environment. Additionally, this risk metric is modeled as a machine-learned
component, trained via example test flight data. Although the problem addressed in this chapter
does not directly relate to occlusion-aware navigation, the concept of data-efficient learning and
risk-aware planning apply to both Chapter 5 and 6, which treat the occlusion-aware navigation
problem as a risk-aware navigation problem, efficiently using data to train a risk-sensitive policy.

Concretely, this chapter addresses the risk of collision due to trajectory tracking error from a
low-level controller. Consider the scenario depicted in Fig. 4.1 in which an aerial robot must pass
through a narrow opening to the other side. A receding-horizon motion planner may command a
fast-moving trajectory to reduce travel time, but such a trajectory may not be perfectly tracked
by the low level controller. This could induce a large tracking error, meaning that tracking a
collision-free trajectory may not result in collision-free motion. In order to mitigate the risk of
collision under this kind of uncertainty, the robot must command slower motion through the gap,
reducing the tracking error.

One possible solution is a data-informed approach, where the tracking error and subsequent risk of
collision are inferred from past performance of the robot. This data-informed risk assessment allows
the risk measure to accurately reflect the performance of the low level controller, but must capture
a potentially complex relationship between the commanded trajectory and the risk of tracking that
trajectory. Gradient-based and quadratic-programming-based approaches are restrictive in that risk-

39

Figure 4.1: Motivating example in which a slower speed results in safer motion through a small gap.

based costs must have certain numerical qualities for real-time use. Alternatively, sampling-based
approaches consider costs with minimal assumptions, allowing a greater flexibility and generality
when defining risk. For this reason, the heart of the proposed approach in this chapter is a receding-
horizon Model Predictive Path Integral (MPPI) motion planner, adapted from the sampling-based
MPPI control used in information theoretic control theory [88]. Typical MPPI works by rapidly
sampling the low level control space of the system around a “best guess” of the optimal open-loop
control policy, and a weighted sum is performed to iteratively update this best guess, converging to
the optimal control policy after many iterations. One consequence of sampling within the low level
control is the need for a large number of samples at a high rate (typically on the order of 50-100 Hz).
For real-time use, this requires the robot to have a GPU on board to speed up the sampling time.

Our approach adopts MPPI control to a trajectory planning setting; instead of sampling within
the control space, we sample within a trajectory parameter space. In particular, the proposed MPPI
trajectory planner determines waypoints that define a spline-based trajectory. This reduces the
sampling space dimension, allowing our MPPI path planner to run on a CPU in real-time, hence
for a more relaxed set of system requirements. Overall, our approach allows for a computationally
more efficient method to sample trajectories within the MPPI framework, without sacrificing the
ability to generate fast and safe trajectories.

This chapter presents two main contributions. First, the MPPI control approach is cast as a
parameterized high level planner, reducing the dimension of the optimization space and mitigating
the hardware requirements needed to find reasonable solutions to the motion planning problem.
Second, a data-informed risk measurement is included inside the cost function of the MPPI motion
planner, using the actual trajectory tracking performance of the system to determine safe and lively
trajectories. The result is motion that minimizes risk of collision due to trajectory tracking error
while avoiding obstacles and moving towards a goal. Together, the overall approach provides a

40

practical method for run time risk-aware trajectory generation towards safe navigation. While this
approach is flexible enough to be applied in a general motion planning setting, this chapter focuses
on motion planning for an unmanned aerial vehicle (UAV) since these types of systems can be
greatly affected by tracking error, and such tracking error can induce risk of collision, especially
when navigating cluttered environments.

4.2 Problem Formulation

In this work, we are interested in creating a receding-horizon trajectory generation policy that
addresses the risk of collision due to tracking error between the commanded trajectory and the actual
trajectory of a UAV, especially when navigating potentially cluttered environments. Additionally,
this trajectory generation policy should be able to handle data-informed functions of risk, and
consider potentially complex relationships by placing minimal assumptions on the properties such
functions may have (e.g. smoothness, differentiability). We separate this problem into two parts: (i)
creation of a receding-horizon trajectory generator that can optimize for a general cost function at
run time, and (ii) the inclusion of a risk factor that, when minimized, commands safe and lively
trajectories in the presence of low level tracking error.

Problem 1: Receding Horizon Trajectory Generation: We seek a policy Pτ (x(t0)) that
takes in the current state of the robot x(t0) ∈ Rnx and at run time returns a time-based trajectory
τ(t) defined over a future horizon t ∈ [t0, t0 + tH] for a low level controller to track. This trajectory
should move the robot closer to a goal state xg ∈ Rnx , as well as avoid the state set XO ∈ Rnx

occupied by obstacles:
|x(t0 + tH) − xg| ≤ |x(t0) − xg|

x(t) /∈ XO, ∀t′ ∈ [t0, t0 + tH]
(4.1)

In addition to these requirements, this policy should optimize over a cost function S(τ) that may
be nonlinear, non-smooth and even non-differentiable:

Pτ = arg min
τ

[S(τ)] (4.2)

Note that the commanded trajectory τ(t) may not be the same as the actual trajectory τact of
the system over time, due to tracking error. To compensate for this, the proposed approach also
considers a risk measure ρ(·) ∈ R that relates a given trajectory τ(t) to the risk of collision due
to this error |τ(t) − τact(t)|. Although we do not constrain ρ to have any particular form, basic
assumptions must be placed in order to cast the problem of risk minimization correctly: (i) ρ(·) is
positive semi-definite, (ii) ρ(·) = 0 for situations that have no risk, and (iii) ρ(·) > 0 for situations

41

that have risk of collision. With these assumptions, this risk can be included inside the cost function
of the trajectory generation policy.

Problem 2: Risk-aware Navigation: Given a risk measure ρ(·), create a policy Pτ for
finding a trajectory τ that also minimizes risk:

Pτ = arg min
τ

[
S(τ) +

ˆ
τ

ρ(·)dt

]
(4.3)

Next, we discuss our proposed approach for safe, risk-aware navigation of a UAV by combining risk
measures with a novel MPPI-based motion planning technique.

4.3 Approach

Fig. 4.2 shows a diagram of the proposed approach. Trajectories τ(t, R) are parameterized with
respect to both time t and R. The current robot and environment state are fed into the MPPI
trajectory planner, which has a generalized risk function ρ(·) that characterizes the risk of a particular
trajectory. The output of this trajectory planner is a set of parameters R∗ that optimizes over a
general cost function S(τ) that includes go-to-goal and obstacle avoidance objectives, as well as this
risk of collision:

R∗ = arg min
R

[
S(τ) +

ˆ
τ

ρ(·)dt

]
(4.4)

As a concrete running example for this work, risk-aware navigation of a quadrotor was chosen
as a straight-forward yet elucidating system. In particular, the MPPI trajectory planner sought to
minimize risk of collision due to trajectory tracking error; that is, for a given trajectory determined
by parameters R, the risk associated with a lower-level controller not perfectly tracking this error
and colliding with an obstacle.

4.3.1 Risk Measure Formulation

This section proposes a data-informed risk measure that models geometric mismatch between
the trajectory τ(t, R) tracked by the low level controller and the actual motion of the UAV, τact.

Figure 4.2: Diagram showing the proposed motion planner (blue shaded cell) within the context of
a general autonomy stack.

42

Specifically, a relationship is established between this mismatch and the maximum speed commanded
by τ(t, R). This relationship captures how higher robot speeds often worsen tracking error of a
desired trajectory by the low level controller. This degradation in performance can lead to unsafe
situations, especially when the robot is travelling in a cluttered environment. Thus, the risk measure
ρ(τ(t, R)) relates the speed of the commanded trajectory to the risk of collision with nearby obstacles.

In order to define this risk measure, first define d(t1, t2) as the euclidean distance between a
point τ1(t1) on one trajectory and point τ2(t2) on another. The Hausdorff distance dH(·) between
two trajectories τ1 and τ2 is defined as:

dH(τ1, τ2) = max
{

max
t1∈[0,P T]

[
min

t2∈[0,P T]
d(t1, t2)

]
, max

t2∈[0,P T]

[
min

t1∈[0,P T]
d(t2, t1)

]}
(4.5)

Fig. 4.3 shows an example of how dH(·) is found between the commanded trajectory τ(t, R) and the
actual trajectory τact that results from trying to track τ(t, R).

If dH(τ(t, R), τact) ≈ 0, then both trajectories have considerable overlap in the xyz plane over the
entire trajectory, while dH(τ(t, R), τact) ≫ 0 signifies at least some portion where there is significant
deviation. Through simulation or experiment, data can be collected that measures dH(τ(t, R), τact)
for various commanded trajectories. Specifically these data can be used to create an estimator of
the deviation as a function of some states and inputs. For the specific UAV application considered
in this chapter we have observed – as intuitively expected – that the deviation is a function of the
maximum speed vmax commanded by τ(t, R). In this way it is possible to predict the tracking error
using only information from the commanded trajectory.

Denote dobs as the distance between τ(t, R) and the nearest obstacle. For the UAV, it is
considered risky when dobs < dH , since the deviation of the actual trajectory may extend toward
the obstacle, potentially colliding with it. Likewise, if dobs ≥ dH , then there is no risk of collision,
since the robot is expected to deviate from τ(t, R) by a distance smaller than the nearest obstacle.

Figure 4.3: Example of trajectory tracking error.

43

To this end, the risk measure is defined as:

ρ(τ(t, R)) = max
[
0,

dH

dobs
− 1

]
(4.6)

In this way, ρ(·) > 0 when there exists the potential for τact to intersect with the boundary of an
obstacle, and ρ(·) = 0 when dobs ≥ dH .

4.3.2 MPPI for Motion Planning

MPPI control is a sampling-based control method to find the solution to a stochastic optimal control
problem (OCP). In the proposed approach, the MPPI solver is used to find a series of waypoint
positions R = {r1, r2} that define a trajectory τ(t, R).

The MPPI algorithm must be defined with respect to some stochasic equations of motion for
the state x:

xk+1 = f(xk, τ(tk, R + E)) (4.7)

Here, f(·) represents a discrete-time equation of motion in which the robot x evolves under the
influence of a trajectory τ(t, R + E), where E = {ϵ1, ϵ2} are random perturbations that shift the pth

waypoint by ϵp ∼ N (0, Σ).

The stochastic optimal control problem may be defined as the minimization of an expectation
value, denoted by E(·):

R∗ = arg min
R

EQ [S(R + E)] (4.8)

The term S(·) defines the cost of the total trajectory, with waypoints R being perturbed by
stochastic variables E that create the probability distribution Q.

The total cost S(·) is defined over P = 2 waypoints as:

S(R + E) = ϕ(x(PT)) +
ˆ P T

0
C(x(t))dt (4.9)

The term ϕ(·) is a terminal cost function defined as the error between the final state x(PT) and the
goal state:

ϕ(x(PT)) = wg|x(PT) − xg| (4.10)

The constant wg > 0 is a scaling factor that is tuned to adjust the relative weight of the different
objectives within (4.9). The running cost C(x(t)) is defined by two terms:

C(x) = Cobs(x) + Cρ(x) (4.11)

44

The first term Cobs is an obstacle cost that heavily penalizes collisions with known obstacles in
the environment. Since MPPI is a gradient-free method, the exact form of Cobs can be quite sparse
with gradient information, such as an indicator function used with an occupancy map. For the
obstacle course assumed by this chapter, the obstacle cost is defined using an indicator function
Ioj (x) that returns 1 when state x lies within obstacle oj , else it returns zero.

Cobs = wobs

no∑
j=0

ˆ P T

0
Ioj (x(t))dt (4.12)

The second term Cρ is the portion of the cost related to the risk of a trajectory. Since we
constrain ρ(·) to be positive semi-definite, the risk cost can be defined as proportional to this risk
measure:

Cρ = wρρ(·) (4.13)

As was the case with the obstacle cost, using an MPPI-based approach to solving (4.8) allows the
exact form of ρ(·) to be quite flexible in its definition, since it does not require information about
the gradient of ρ(·). For example, ρ(·) may be a function that approximates some notion of risk that
may be hard to write by hand, e.g., a learned policy trained on simulated or experimental data.

Inclusion of the risk measure defined by (4.6) in the cost function has two different effects. First,
trajectories are generally planned to be spatially away from obstacles in order to increase dobs.
Second, if the robot must move through small gaps in order to reach its goal, then trajectories that
command slower motion are preferred in order to decrease dH .

Authors in [89] show how it is possible to obtain a theoretical exact solution to (4.8). Unfortu-
nately it is impossible to compute directly, but may be approximated using an iterative sampling
method. This iterative algorithm relates the (k + 1)th iteration to the kth iteration by:

Rk+1 = Rk +
N∑

i=1
w(Ei)Ei (4.14)

w(Ei) = 1
η

exp [−S(Rk + Ei)] (4.15)

Here, η is a normalization factor to ensure
∑N

i w(Ei) = 1. Fig. 4.4 illustrates how this algorithm
finds a trajectory around an obstacle with P = 2 waypoints. At the kth iteration, the current
waypoint locations Rk are subjected to a series of random perturbations {Ei}. The blue/green
trajectories are the results of these perturbations, with the color corresponding to the weight of the
trajectory as determined by (4.15). The (k + 1)th iteration is found through a weighted sum of these
perturbations, so that τ(t, Rk+1) has a lower cost than the previous iteration. This procedure is

45

Figure 4.4: An example iteration step of the MPPI algorithm.

repeated niter times, and the resulting waypoints Rniter are applied. In general, niter is chosen to be
as large as possible so that the iterative procedure can reasonably converge to the optimal solution.

4.4 Simulations

Simulations were performed to validate the ability of the proposed approach to reduce risk and
negotiate obstacles in a cluttered environment while navigating towards a goal. RotorS [34] was
used as a high-fidelity simulator for UAV motion that also includes a low level trajectory nonlinear
controller [50]. Given a commanded trajectory τ(t), the low level controller attempts to track
this trajectory, but due to measurement noise and physical limitations the actual trajectory τact

is somewhat different, leading to a non-zero tracking error dH(τ(t), τact(t)). In order to estimate
dH(·), data were collected by commanding different trajectories τ(t) and recording the resulting
trajectory τact. Each trajectory was defined by P = 2 waypoints placed in the xyz plane, with
T = 2.5 seconds between each waypoints. Noise was injected into the simulated odometry sensor as
a way to exacerbate the tracking error of the low level controller.

Fig. 4.5(a) shows a recorded example in which τact differs from τ(t). Also included in this plot
is dH(·) between the two trajectories. Fig. 4.5(b) shows a plot of dH(·) as a function of maximum
speed vmax along τ(t). It can be seen that as vmax increases, the set difference dH(·) also increases.
A regression line d̂H(vmax) was fit to the data to capture the 95th percentile, giving a conservative
estimate of the actual set difference, d̂H(vmax) ≈ dH(·). This estimator of the set difference d̂H was
used in (4.6) to find an estimate of the risk ρ(·).

The MPPI algorithm that solves (4.8) was written in C++, using perturbation covariance matrix
Σ = diag(0.15, 0.15, 0.0) m, N = 50 samples per iteration and niter = 200 total iterations per MPPI
sample. The MPPI was run on a Lenovo ThinkPad X1 with Intel i7 6-core processor, and took an
average of 0.19 ± 0.03s to run. The algorithm took the current state of the UAV x0 as well as a
set of local obstacles {oj} and returned an optimal set of waypoints R∗ that defined a trajectory

46

(a) (b)

Figure 4.5: Correlation between perception objective Λ(·) and true known-unknown area Aku.

τ(t, R∗) to be tracked. This trajectory was re-planned in a receding-horizon fashion, with the MPPI
being re-sampled at a rate of 1 Hz to find an updated set of waypoints.

To test the capabilities of the MPPI planner, the UAV was tasked with navigating an obstacle
course, shown in Fig. 4.6, with both small and large gaps to negotiate. To facilitate clockwise
motion around the track, goal points were chosen a priori and commanded sequentially as the goal
state in the MPPI cost function (4.10). These goal states also acted as a warm-start for the MPPI
algorithm, choosing the initial waypoints R0 to be along these goal points.

(a) (b) (c)

Figure 4.6: Simulation of quadrotor navigating an obstacle course using the MPPI motion planner.

Fig. 4.6(a) visualizes the resulting motion of the UAV as it tracked trajectories commanded by
the MPPI. To highlight the effect of the risk objective on the overall motion of the UAV, Fig. 4.6(b)
shows the resulting trajectories with wρ = 0 in the risk cost objective (4.13). This effectively removed
the consideration of risk within the MPPI when planning motion, instead finding a trajectory that
avoided obstacles while moving as quickly as possible. Qualitatively, the difference between these
trajectories is only apparent when the UAV approaches small gaps A and B. With our full risk-aware
approach, the UAV slowed down enough to ensure safe passage through these tight spots, whereas
the policy with no risk consideration sped through these gaps, resulting in collisions due to tracking
error. These collisions are shown visually by the red dots in Fig. 4.6(b). Alternatively, the risk-aware

47

approach commanded the same high speed as the risk-agnostic policy through corridor C, since
there were no close obstacles and it was safe to move quickly through this region.

Fig. 4.6(c) additionally shows the distance between the UAV and the nearest obstacle as
it traveled around the track. This distance is plotted against progress along the track, where
progress = 0 when the UAV was at the start of the course, and progress = 1 at the end of the
course. This plot shows how the full approach worked to increase the distance between the UAV
and obstacles, whereas the MPPI without risk consideration commanded motion closer to obstacles.
Over the 20 laps, the full approach with risk consideration had 0 collisions, while motion with no
consideration for risk resulted in 4 collisions.

4.5 Experiments

The proposed approach was additionally verified experimentally on a Bitcraze Crazyflie quadrotor
in a rectangular loop case study. A Vicon motion capture system provided odometry information
to an offboard laptop, which then used the MPPI path planner with the same parameters as in
simulation to send trajectories to the Crazyflie’s non-linear controller [72]. The effect of including
the risk measure inside the MPPI cost function is shown by comparing the full approach to the
same MPPI with wρ = 0 in (4.13).

4.5.1 Rectangular Loop Case Study

The Crazyflie was tasked to complete loops around a central rectangular obstacle while negotiating
its way through a narrow 30 cm gap between the northern wall and a protruding square obstacle.
The top portion of Fig. 4.7 shows a snapshot of a sample pass through the narrow gap, both without
risk consideration and with our full approach. For these single trajectory examples, the physical
obstacle height was raised to demonstrate a collision without risk consideration. For the rest of data
collected, the physical obstacle height was lowered to allow multiple laps around the environment
without disruption.

The results of the multiple laps are shown in the bottom plots of Fig. 4.7. For this study, 20 laps
were recorded for both the no risk and full approach cases, giving 40 total laps tested. Fig. 4.7(a)
shows how the UAV collided with the north wall 6 times (highlighted in red) when risk was not
taken into account due to overshooting the planned MPPI trajectories at high speeds. However,
with the full approach (Fig. 4.7(b)), no collisions occurred because the UAV slowed down at the
bends of the loop in order to mitigate the overshooting behavior. Additionally, the UAV achieved
comparable speeds both without risk consideration and with our full approach on the east, south
and west side of the central square. This demonstrates how our full approach proactively adapted

48

(a) (b)

Figure 4.7: Example situation in which the safety module is used to command a slower velocity
around an obstacle.

to move quickly through regions where there were no close obstacles, and the risk of collision due to
tracking error was minimal.

4.5.2 4-Way City Block Case Study

In the second case study, the UAV was tasked to complete a complex path that involved alternating
between straight lines and turning in different directions through a 4-way city block-like circuit.
First, the UAV passed through a narrow 20 cm horizontal channel in the center of the configuration
(Fig. 4.8(a)). It then executed a u-turn around the narrow rectangular obstacle in the second
quadrant (Fig. 4.8(b)) and went through a 20 cm vertical passage (Fig. 4.8(c)) before looping back
to the start (Fig. 4.8(d)). Fig. 4.9 shows the trajectory of the Crazyflie over 10 laps in both the
no risk and full approach cases, giving 20 laps total. As can be seen from the results, in the no
risk case (Fig. 4.9(a)), the UAV collided with obstacles on 8 occasions within the narrow corridors,
while in the full approach (Fig. 4.9(b)) it never collided. The speed profiles also demonstrate that,
when obstacles are far enough away, the full approach allowed the UAV to reach the same speeds
as with no risk consideration. Furthermore, thanks to our risk-aware framework, the UAV slowed
down when traversing the cluttered sections of the environment, allowing for safer navigation that
avoided collisions.

49

(a) (b) (c) (d)

Figure 4.8: A demonstration of a single lap that the UAV performs around the 4-way city block
environment, along with its velocity profile.

(a) No risk (b) Full approach

Figure 4.9: Crazyflie positions and velocities for the 4-way city block environment (a) without
considering risk and (b) with the full approach.

4.6 Discussion and Conclusion

This chapter presented a receding-horizon path planning approach that can proactively adapt
the trajectory of a robot at run time in order to reduce overall risk while navigating through a
cluttered environment. The proposed approach utilizes an MPPI control algorithm in order to
accommodate a general, data-informed risk measure. Importantly, the trajectory planned by the
MPPI is parameterized by only a few number of variables, greatly reducing the computational
requirements to run the MPPI algorithm and allowing the approach to run on more general hardware.
The full approach was validated on a UAV robotic system navigating around obstacles towards a
goal, with risk defined by the tracking error between commanded trajectory and the actual trajectory.
Both simulation and experiment demonstrated how the inclusion of this risk measure inside the
cost function allows the robot to move more safely through the environment, compared to motion
without consideration for risk.

Despite this problem not being directly related to occlusion-aware navigation, Chapter 5 and 6
both apply the concepts developed in this chapter towards the creation of occlusion aware policies.

50

First, the concept of risk-aware motion planning is applied towards the problem of occlusion-aware
navigation, and a metric is developed that quantifies the risk associated with occluded regions.
Second, this risk metric is informed through data collected at run time, efficiently using such data
to create a risk-sensitive policy at run time.

51

Part III

Data-Driven, Risk-based Occlusion-Aware

Motion Planning

52

Chapter 5

Data-Driven Occlusion-Aware Navigation via Online
Quantile Temporal Difference Learning

5.1 Introduction

Chapter 2 and Chapter 3 introduced a visibility-based approach towards occlusion-aware navigation
in which an analytical function that approximated the geometric area behind occlusions was included
as a term inside the cost function of an OCP. Doing so resulted in occlusion-aware motion that
balanced between promoting visibility around occlusions and minimizing travel time to goal, and
the overall effect was a greater reaction time to account for dynamic obstacles in the environment,
which in turn resulted in both smoother and faster motion. One question that follows from this
work is if a policy can instead learn how occlusions affect the experience of the ego robot, using data
collected at run time as a means of learning how to avoid certain occlusions in the environment.
Doing so may still produce motion that promotes visibility around occlusions, but such a behavior
would be emergent as the policy learns to avoid negative experiences, instead of being assumed a
priori.

To explore these concepts, this chapter proposes an approach for occlusion-aware navigation in
dynamic environments, collecting data and learning how to improve visibility at run time. This
is achieved through a classical planning algorithm outfitted with a global cost map that encodes
the risk of experiencing a negative outcome. This risk cost map, or “risk map,” is learned from
data collected through run time interactions with the dynamic environment. Because of this, the
learned risk map is bespoke to the unique factors that contribute to negative outcomes, such as
the placement of the dynamic obstacles within the environment, as well as the movement patterns
of these dynamic obstacles. This risk map is created using the Quantile Temporal Difference
(QTD) [24] algorithm, a technique borrowed from distributional reinforcement learning, to determine
the distribution of negative outcomes that result from dynamic obstacles being occluded within
the environment. Creating this distribution imbues the risk map with a certain sensitivity towards

53

infrequently encountered outcomes to achieve a risk-sensitive policy. Thus the classical planning
algorithm serves as a starting point for the proposed approach, incrementally learning this risk map
while simultaneously seeking to avoid areas of high risk.

Our work presents two main contributions. First, we propose the use of QTD learning to create
a risk map, represented as a global cost map that encodes risky areas of occlusion-related negative
outcomes for a global path planner to avoid. This particular representation is favorable because it
allows the risk map to encode risk associated with individual occlusions within the environment
(rather than considering all occlusions as the same), and its simplified input structure enables the
risk map to be generated quickly using relatively small amounts of data. Second, we leverage these
characteristics to create this risk map at run time, enabling the policy to adjust to new data as
they are collected. The result is a path planning approach that may be immediately used out of the
box, and can adjust its paths “on the fly” in order to reduce the experience of negative outcomes.

5.2 Problem Formulation

In this work, we are interested in creating a motion planning policy Π that can account for occlusions
created by static obstacles in the environment. The proposed approach casts the problem of occlusion
aware navigation as a risk aware navigation problem, in which the occlusions actively cause a
risk of encountering a negative outcome, e.g., the robot is too close to a dynamic obstacle. This
outcome is denoted as a binary variable C ∈ {0, 1}, with C = 1 denoting when the robot experiences
a negative outcome. Although not strictly required, C is treated in this work as caused by the
presence of occluded dynamic obstacles moving with an unknown policy. Thus, C = 1 serves to
denote an avoid-set for the robot, one which is possibly entered from certain problematic states in
the environment. A function ρ(x) can be created from past experience that maps from robot state
x to an associated risk of encountering C = 1.

Concretely, let ẋ = f(x,u) define the dynamics of a robot system with state x ∈ Rnx and
control signal u ∈ Rnu , which is derived from a lower level controller g(·) attempting to track a
path τ so that u = g(τ,x). Define X as the set of possible robot states, with Xo ⊂ X defined as the
area occupied by static and dynamic obstacles in the environment.

Problem 1: Run Time Risk Mapping: Let Π define a policy that generates τ from robot
state x to goal set Xg while avoiding Xo.

τ = Π(x, Xg, Xo, ·). (5.1)

Furthermore, define Ct ∈ {0, 1} as a stochastic random variable that denotes the experience Ct = 1
or non-experience Ct = 0 of a negative outcome for the robot at time t. We seek a risk measure

54

ρ : Rnx → R that maps from the robot state x to a positive semi-definite scalar ρ that describes the
risk of encountering a negative outcome from using policy Π. This function ρ(·) should be trained
from statistics discerned by data gathered at run time and collected into a replay buffer R.

Typically, the policy Π is defined to minimize some overall cost S0, such as distance traveled.
However, learning this risk map ρ at run time provides an additional opportunity for the path
planning policy Π to be adjusted as well. That is, the policy Π that generates data for the risk map
ρ can be adjusted at run time to avoid risky states the next time the robot negotiates the same
portion of the environment. In this way, the policy Π can actively avoid risks learned at run time.

Problem 2: Run Time Risk-Aware Adaptation: We seek a pipeline that allows the motion
planning policy Π to incorporate the risk map ρ(·) at run time,

τ = Π(ρ(·), ·). (5.2)

Specifically, we seek a policy Π that finds a path τ to minimize the following cost function S,

S =
ˆ

τ
L0(x) + λρ(x)dτ, (5.3)

where L0 is the Lagrangian that results in occlusion-agnostic motion, so that S0 =
´

τ L0dτ . The
weight λ ≥ 0 defines the relative importance of avoiding risk based on past experience against
following the original policy. In this way, Π may undergo policy improvement, actively avoiding
risky situations.

5.3 Approach

Rather than creating a path planning policy entirely from scratch, we propose an approach that
leverages a pre-existing policy Π0, commonly available to many robots deployed in the real-world, that
serves as an occlusion “unaware” policy that can effectively negotiate a known static environment.

Overtime, the current policy Πk is evaluated to determine states in which negative outcomes
(C = 1) are experienced due to occlusions, and subsequently adjusted so that the new policy Πk+1

reduces the risk of a negative outcome by improving visibility. These steps of policy evaluation and
policy improvement are commonly found within RL approaches, but are adjusted here to (i) instead
encode the risk of entering an undesired set and (ii) be data-efficient so that this process can happen
at run time. The run time risk-aware mapping and adaptation steps described in Sec. 5.2 thus refine
the policy Π to account for negative interactions with dynamic obstacles due to occlusions. This
allows our approach to plan motion with no initial training, and adapt to its environment over time
as the robot gains more experience within this environment.

55

Figure 5.1: Diagram showing the proposed approach.

Fig. 5.1 shows a diagram of our approach. As the robot moves around and interacts with
the environment, a data collection module tracks the previous state xi−1 and current state xi,
along with the current outcome flag Ci, and sends this as training tuple Ti = {xi−1,xi, Ci} to a
QTD-based policy training module at run time. This module saves this data within a replay buffer
R = {Ti}, using the replay buffer to continually train and update the risk map ρ(·) with this new
data. Finally, this updated risk map is sent to the path planner module, placing a high-cost on
risky states and avoiding them the next time the same occlusion is encountered. The path planner
creates a trajectory τ that is tracked by a lower-level controller to produce a control signal u.

The rest of Sec. 5.3 further details the proposed approach, where Sec. 5.3.1 discusses how
outcome Ci is defined in any given situation, Sec. 5.3.2 details how this risk metric ρ is constructed,
and Sec. 5.3.3 describes how these concepts are used within the proposed approach for run time
learning.

5.3.1 Negative Outcomes

Negative outcomes C = 1 are a general way of defining what should be avoided by the robot, if
possible. Because the proposed approach seeks to learn at run time, the robot should have the
ability to determine from its current state xt if it is experiencing a negative outcome, Ct = 1, or
it is not, Ct = 0. Additionally, the robot can also track multiple negative outcomes that may be
possible, and set Ct = 1 if any one is currently being satisfied. For the proposed approach, one
sensible negative outcome is if the robot position pt = [px(t), py(t)]⊺ is inside a desired avoid radius
ravd for an obstacle with position o = [ox, oy]⊺ and radius ro:

Ct,avd =

1 if |pt − o| ≤ ravd

0 else
(5.4)

56

Typically, the avoid radius is chosen such that ravd > ro, providing additional padding between the
robot and obstacle.

For occlusion-aware navigation, it is also desirable for newly visible dynamic obstacles to first be
sensed by the robot from an appropriate distance away rvis. This allows an appropriate time for this
new information to be incorporated inside the path planning module, producing smoother motion.
This also serves to benefit the path planning policy of the dynamic obstacle, which can first sense
the robot from at least rvis distance away as well and adjust its own planned path accordingly. Let
{o}vis,t−1 define the set of obstacles that is visible to the robot at the previous time step t − 1. If
an obstacle o is observed at the current time t, an occlusion-aware outcome Cocc can be defined as:

Ct,occ =

1 if o /∈ {o}vis,t−1 and |pt − o| ≤ rvis

0 else
(5.5)

Because we make no assumptions on the motion policy of the dynamic obstacles, it is difficult to
characterize an appropriate distance rvis from first principles alone. Instead, the proposed approach
leaves this as a tunable parameter, which may be adjusted based on the overall quality of the
motion.

The union of both Ct,avd and Ct,occ form the set of negative outcomes:

Ct = Ct,avd ∨ Ct,occ (5.6)

5.3.2 Risk Map

Over time, data tuples Ti = {xi−1,xi, Ci} are collected into a replay buffer R = {Ti} in order to
train the risk map ρ(·). To effectively manage memory, this replay buffer is implemented as a
double-ended queue, in which new experience is added to the front and, once the replay buffer
becomes a certain maximum size, pops old data from the back. The function ρ(·) should take in a
robot state x and return a risk value associated with that state, based on the data available in R.
In order to define this risk, consider the scenario shown in Fig. 5.2 in which a robot must negotiate
a corner that occludes the presence of an incoming dynamic obstacle. The initial policy, unaware
of any risk, may choose to closely cut around the corner, seeing the dynamic obstacle at state xt.
Because |p − o| ≤ rvis, this state is associated with a negative outcome, (xt, Ct = 1). Additionally,
due to the inherently sequential nature of the path planning problem, states that immediately
preceded xt should also be considered when calculating risk, since they could lead to a negative
outcome. This sequential nature is readily captured by defining a discounted sum of costs, or return

57

Figure 5.2: Due to the sequential nature of motion planning, states that preceded negative
outcomes should also be considered when calculating risk.

cost G:
Gt = Ct + γCt+1 + γ2Ct+2 + ... =

∞∑
k=0

γkCt+k (5.7)

Here, γ ∈ [0, 1) is a discount factor that affects how Gt is influenced by future costs. The return
cost defined in (5.7) is similar to the discounted sum of rewards usually defined for MDPs [80], the
difference being the return cost should be minimized. This allows us to use techniques borrowed
from reinforcement learning (RL) to leverage data of the form Ti = {xi−1,xi, Ci} collected in the
replay buffer R and create a risk measure ρ of encountering a negative outcome.

Typical RL techniques, such as temporal difference learning or proximal policy gradient, calculate
the expected value of the return cost, which is often called risk-neutral because it is poor at tracking
worst-case scenarios [53]. Since infrequent negative outcomes should also be accounted for, the
proposed approach uses quantile temporal difference learning (QTD) [24] to learn the distribution
of Gt from a given state. This distribution, denoted as ηΠ(x), depends on the path planning policy
Π and the state of the robot x, and is defined as

ηΠ(x) = DΠ
x (Gt) , (5.8)

where DΠ
x is an operator that extracts the underlying probability distribution of the stochastic

return cost Gt. Because probability distributions are infinitely dimensional, QTD uses a distribution
representation of m equally spaced q-quantiles which are defined using parameters θi(x):

{θi(x) ∈ R : FηΠ(x)(θi(x)) = 2i − 1/2m} (5.9)

Here, Fη(·) is the cumulative distribution function of η, and θi(x) is the 2i − 1/2m-quantile of η. These
q-quantiles are used to form an approximate distribution η̂Π(x):

η̂Π(x) =
m∑

i=1

1
m

δθi(x) (5.10)

58

where δ(·) is the dirac delta function that holds unit probability. QTD thus uses data from R to
find quantiles θi(x) that accurately describes the return cost distribution. Further details may be
found in [9].

Once these quantiles θi(x) are learned through QTD, they may be used to define a risk metric
ρ(x) for the return cost. In fact, the 2i − 1/2m-quantile is equivalent to the Value at Risk VaRα(Gt),
with α = 1 − (2i − 1/2m), a common risk metric that can describe infrequent, worst-case scenarios [23].
To minimize computation and memory requirements, the number of quantiles m should reflect
the desired α value to be tracked. For example, if m = 32, then the 2m − 1/m = 98%-quantile is
equivalent to VaR0.02(Gt), defining the worst α = 2% of outcomes for a particular state.

Thus, for a user-defined risk value α the proposed approach uses the learned 2m − 1/m-quantile,
defined as θm(x), as the metric to associate a robot state x to a risk value ρ:

ρ(x) = θm(x). (5.11)

We close this section by noting that we consider C = 1 as a terminal outcome, meaning once
C = 1 is encountered, the state trajectory is terminated. With this definition, it follows from (5.7)
that the return cost Gt ∈ [0, 1], since the worst-case return cost is an immediate experience of
Ct = 1. Additionally, because the risk ρ is a quantile of the return cost Gt, this also bounds the risk
map

0 ≤ ρ(·) ≤ 1. (5.12)

5.3.3 Motion Planning Policy and Run Time Learning

The process detailed in Sec. 5.3.2 is a technique for evaluating the risk of motion planning policy Π
for particular states and creating a risk map ρ(x). If done at run time, ρ(x) can likewise be used by
policy Π to avoid states that lead to C = 1 during the motion planning stage, which is essentially a
policy improvement process. Together, both policy evaluation and improvement form the general

(a) (b) (c) (d)

Figure 5.3: An example of the run time learning pipeline. The risk map ρ(x) is updated as the
path planning policy Π interacts the environment.

59

policy iteration process that underlies almost all RL algorithms [80]. The proposed approach utilizes
this concept in order to enable run time occlusion aware navigation: as the robot gains experience
about its current motion planning policy Πk, it uses this experience to train quantiles {θi(x)} and
find the risk map ρ(x), which the motion planning policy Πk+1 uses to avoid high-risk states on the
map.

Fig. 5.3 shows an example of this run time learning pipeline, in which the risk map ρ(x),
represented as the grid of cells, is updated at run time. In Fig. 5.3(a), the robot initially has no prior
experience with this particular occlusion, and so ρ(x) = 0 for these states (denoted by the color
white). From (5.3), this means that the initial path generated is unaware of the risks associated with
this occlusion, and simply cuts close to the corner. Fig. 5.3(b) shows the robot just before it rounds
the corner, with an occluded dynamic obstacle approaching from the opposite direction. Fig. 5.3(c)
shows the moment when it sees the dynamic obstacle for the first time within rvis, meaning C = 1
according to (5.5). The data tuples {Ti} up to now are trained with QTD to find the q-quantiles
θi(x), and updating the risk map ρ(x) defined by (5.11). Fig. 5.3(d) shows the next time that the
robot encounters this occlusion, along with the updated risk map. The path planning policy Πk+1

uses this updated ρ(x) to minimize (5.3), now with ρ(x) > 0 for the risky states, thereby planning
a path that minimizes this risk.

Stability Properties

The stability properties of DRL algorithms are inherently difficult to characterize, due to the
complexity of optimizing a cost function while simultaneously approximating the distribution of
return costs [8]. Nevertheless, stability of the proposed approach can be established through the
path cost (5.3) minimized by path planner Π. For a given starting state x0 and goal set Xg, define
T as the set of all feasible paths. Additionally, let ϱ represent the space of all feasible risk maps
that satisfy (5.12). The path cost S(·) is a functional that maps the path τ and risk function ρ(·)
to a positive scalar value. The optimal cost for this risk mapping S∗

ρ is defined as

S∗
ρ = min

τ∈T
S(τ, ρ(·)) (5.13)

Because ρ ∈ [0, 1] as remarked in (5.12), we can likewise establish bounds for the value of S∗.

Lemma 5.1 Define Dτ as the total length of feasible trajectory τ from initial state x0 to goal set Xg.
Furthermore, let τ0 represent the trajectory found when ρ(x) = 0 ∀x, i.e., occlusion-unaware motion.
For a given risk map ρ ∈ ϱ, the optimal cost of (5.3), denoted as S∗

ρ , is bounded S∗
ρ ∈ [Smin, Smax],

where the lower bound Smin = S0, and the upper bound Smax = S0 + λDτ0.

60

Proof: To show the lower bound, suppose ρ = 0 everywhere, so that
´

τ (ρ)dτ = 0 for all
τ ∈ T . This is equivalent to risk-agnostic motion, and Π will create a path τ0 with optimal cost
S∗

ρ = S0. If ρ > 0 for some states, then
´

τ (ρ)dτ ≥ 0 and S∗
ρ ≥ S0. Therefore, it must be that the

minimum possible cost for a risk map ρ ∈ ϱ is Smin = S0. To establish the upper bound, suppose
ρ = 1 everywhere, so that

´
τ ρdτ = Dτ . In this case, the cost associated with τ0 is S = S0 + λDτ0 .

This means the optimal trajectory τ∗ must have at most this cost, since any trajectory τ ̸= τ0

will have Dτ ≥ Dτ0 so that it cannot be the minimum cost. Additionally, if ρ ≤ 1 for some states,
it must be that

´
τ (ρ)dτ ≤ Dτ . Therefore, for a given ρ ∈ ϱ, the optimal cost is upper bounded

S∗
ρ ≤ Smax = S0 + λDτ0 .

Further analysis requires additional information on how the risk map ρ changes over time. While
this is difficult to characterize in a general way, it becomes more tenable if we assume, for a given
state input x, the risk map ρ(·) is non-decreasing, a reasonable assumption since the upper-end
quantile values are designed to be disproportionately affected by negative outcomes (C = 1) more
than positive outcomes (C = 0). Concretely, let ρ(·) be the risk map used by Π to generate risk-aware
motion. The proposed approach uses ρ(·) to navigate through the environment, collecting data to
help train an updated risk map ρ+(·), so in general ρ+(·) ̸= ρ(·). We define this non-decreasing
property as:

δρ = ρ+(x) − ρ(x) ≥ 0, ∀x ∈ X . (5.14)

Intuitively, this describes a situation in which the estimated risk function ρ only increases the
estimated risk as more data is collected. If the approach initially assumes no risk, then ρ = 0 to
start and over time will naturally only increase ρ(·) as negative outcomes are experienced. Or, it
may be that a conservative estimate of ρ is desired and (5.14) is enforced during the QTD training.
In either case, if this assumption is satisfied, then we can make the following claim:

Lemma 5.2 For a given starting state x0 and goal set Xg, define S∗
ρ as the optimal path cost

associated with risk map ρ(·). If ρ+(·) defines the updated risk map based on new information
and (5.14) is satisfied, then the updated optimal cost S∗

ρ+ is also non-decreasing so that S∗
ρ+ ≥ S∗

ρ .

Proof: For a given trajectory τ ∈ T , it can be shown that difference in cost δSτ = λ
´

τ (δρ)dτ .
Since δρ ≥ 0, this means that δSτ ≥ 0 for all feasible trajectories. Define the optimal trajectories
associated with optimal costs S∗

ρ and S∗
ρ+ as τ∗ and τ∗

+, respectively. If τ∗ = τ∗
+, then it has been

shown that δSτ∗ ≥ 0. However, if τ∗ ̸= τ∗
+, then it must be that S∗

ρ+ ≥ S∗
ρ . This is shown by

contradiction: if S∗
ρ+ < S∗

ρ and δSτ∗
+

≥ 0, then S(τ∗
+, ρ) < S∗

ρ . This is not possible, however, since
by definition S∗

ρ = S(τ∗, ρ) ≤ S(τ∗
+, ρ). Therefore, it must be that S∗

ρ+ ≥ S∗
ρ .

61

Since the cost S is both lower- and upper-bounded via Lemma 5.1 and, under the non-decreasing
assumption defined in (5.14), the cost can only increase via Lemma 5.2, then the cost must eventually
converge to a finite value. Although multiple trajectories could theoretically have this same cost in
certain situations, it is usually not a problem in practice for a path planner to find and stick with a
certain trajectory, implying the planned path itself will effectively converge as well.

5.4 Simulations

Simulations were performed to validate the ability of the proposed approach to adapt its planned path
at run time and promote visibility of dynamic obstacles through occlusion-aware motion. Gazebo
was used as a high fidelity simulator for the Clearpath Jackal platform, with a state x = [px, py, θ]T

defined by global Cartesian coordinates (px, py) and heading θ, and controls u = [v, ω]T . Different
environments were constructed in Gazebo, and the robot was equipped with a 360◦ lidar to produce
laser scans of the immediate surroundings. The SLAM package Gmapping [67] was used to created
a map of static portions of the environment, while AMCL [3] was used to localize within these
maps. A ROS obstacle detection package [64] observed the dynamic obstacles from the current
laser scan, encoded as a set of circles O = {(oi, ro,i)}, each defined by a center o and radius ro. To
simulate realistic scenarios, the dynamic obstacles moved along pre-determined paths throughout
the environment, controlling their acceleration to either track a desired speed or slow down when
the robot was observed to be along their path. Velocity information about the dynamic obstacles
was not inferred from their location, both for simplicity in analysis and in order to highlight how
the proposed approach is agnostic to an intention-aware mechanism for the dynamic obstacles.

The navigation stack used by the robot is shown in Fig. 5.1 and is composed of two modules:
(i) a high-level global path planner that produces a feasible trajectory τ for the robot to follow
towards a goal, and (ii) a low-level controller that produces controls u to track this trajectory. A
Hybrid A* planner [26] was used for the global planner and ran at a frequency of 0.5 Hz, while a
Dynamic Window Approach (DWA) controller [33] was used as the low-level controller and ran
at 50 Hz. The DWA controller commanded v ∈ [−0.2, 0.8] m/s and ω ∈ [−2.0, 2.0] rad/s. Both
modules had access to an occupancy map and dynamic obstacle encoding O in order to perform
typical collision avoidance. Both the ego robot and the dynamic obstacles could only observe each
other when within line-of-sight, i.e., unoccluded by static obstacles in the environment.

Our approach augments this path planner through the use of a risk map ρ : R3 → R that is
learned at run time to produce occlusion-aware navigation. This risk map utilizes a discretized
approximation Xd of the true global state space X , where each xd ∈ Xd represents a small grid cell
of the state space, centered on xd and sized 0.25 m in the the xy cartesian position, and π/4 rad in
heading. To start, ρ(·) = 0 for all bins, resulting in occlusion-unaware motion initially. Data tuples

62

Ti = {xi−1,xi, Ci} were collected into a replay buffer R with a maximum size of 1e5 at a rate of
2 Hz, so that it would take over 13.5 hours to completely fill the buffer. Data from this replay buffer
were used to learn a return-cost distribution η̂(x) defined by m = 32 q-quantile parameters {θi(x)}
for each binned global pose. On a Lenovo Thinkpad X1 with an i7 12-core processor, the QTD
algorithm that calculated {θi(x)} could be iterated 10,000 times in 34 ms, enabling new data to be
incorporated quickly into the risk map over environments of reasonable size. The risk map ρ(·) was
then created by constructing cost with the the mth quantile of each bin, which tracked the worst
2% of return costs for each global pose (px, py, θ).

Discussed below are two scenarios that serve to highlight the benefits of the proposed approach.
The first is a hospital environment in which the robot must perform a patrol-like pattern throughout
the main floor that is populated with dynamic obstacles moving from room to room. The second is
a warehouse that contains two dynamic obstacles that moves much faster than the robot and must
slow down when the robot is crossing over its forward path. Together, the results of these scenarios
showcase how occlusion-aware navigation can improve overall navigation of both the ego robot as
well as the dynamic obstacles.

5.4.1 Hospital Environment

Fig. 5.4(a) shows a picture of the Gazebo environment, along with the routes taken by the robot
and the dynamic obstacles throughout the environment. The many walls and rooms of the hospital
served to occlude the presence of dynamic obstacles from the robot, which resulted in instances
where the robot suddenly observed a dynamic obstacle close by, requiring the navigation stack to
quickly replan motion around these obstacles. Twelve different dynamic obstacles moved throughout

(a) (b) (c)

Figure 5.4: Hospital simulation environment for validating the proposed occlusion-aware navigation.
Fig. 5.4(a) shows the routes of the robot and the dynamic obstacles. Fig. 5.4(b) visualizes the

learned risk map after two hours of simulation, and Fig. 5.4(c) shows how this policy norm changes
over time.

63

the environment, each with a radius of 0.5 m and speed within the range 0.3 − 0.8 m/s. It was
empirically found that a distance of 2 m was ample space for the robot navigation stack to observe
and smoothly replan around dynamic obstacles, so rvis = 2 in (5.5). With our proposed approach, a
risk map ρ(·) was learned from direct experience over the course of a two-hour simulation. Fig. 5.4(b)
visualizes this risk map by showing ρ2D(px, py) = maxθ ρ(px, py, θ) for each binned global position
(px, py). It can be seen how areas of high risk (ρ = 1) are learned around the occluding corners of
the map, where the distance between the robot and a newly observed obstacle is below rvis = 2. To
get a sense of how this risk map changes over time, define the policy norm |ρ(·)| as the sum of risk
values over all bins,

|ρ(·)| =
∑

xd∈Xd

ρ(x) (5.15)

Fig. 5.4(c) shows how the norm of ρ(·) evolves over the course of the two hours. Vertical purple
lines show time instances in which C = 1, which precede an increase in |ρ(·)|, showing how the QTD
algorithm quickly incorporated this new information into the risk map. Over time, the frequency of
C = 1 instances decreases as the global planner uses the updated ρ(·) to avoid the risky states. This
can be compared to the faint red lines, showing the results of a navigation stack that did not use
ρ(·) to inform its policy, instead remaining occlusion-unaware and repeatedly encountering C = 1.

Fig. 5.5(a) shows a normalized histogram of the command robot speed v over the entire two hours,
both with the occlusion-aware run time learning and without such a learning enable component. It
can be seen how the occlusion-aware navigation stack resulted in higher overall frequency of the
highest allowable commanded speed of 0.8 m/s. This a direct result of the improved visibility of
dynamic obstacles around occlusions, as this prevented instances where the robot suddenly sees a
dynamic obstacle close by, and must rapidly stop (or even reverse) in order to negotiate around these
obstacles with the desired padded radius. Additionally, Fig. 5.5(b) shows a normalized histogram
of the commanded robot angular velocity ω, which tells a similar story: with occlusion-aware
navigation, the robot moves along a straight path (ω ≈ 0) with a higher frequency when compared to
occlusion-unaware navigation since it does not need to rapidly move out of the way of newly-observed
dynamic obstacles.

5.4.2 Warehouse Environment

Fig. 5.6(a) shows a picture of the warehouse in which two dynamic obstacles moved between each of
the inner rooms in a clockwise direction. The first dynamic obstacle (DO1) moved with a maximum
speed of 4 m/s, and a second dynamic obstacle (DO2) moved with a maximum speed of 6 m/s.
The route of the robot moved around these rooms and crossed over the route of the dynamic
obstacles in several locations. Occlusion-aware navigation was learned through data collected at

64

(a) (b)

Figure 5.5: Normalized histograms of the commanded speed v and angular velocity ω over the two
hour simulation in the hospital environment of Fig. 5.4.

(a) (b) (c)

Figure 5.6: Warehouse simulation environment for validating the proposed occlusion-aware
navigation. Fig. 5.6(a) shows the routes of the robot and the dynamic obstacles. Fig. 5.6(b)

visualizes the learned risk map after two hours of simulation, and Fig. 5.6(c) shows minimum
decelerations of the two dynamic obstacles over time.

runtime, producing the ρ2D shown in Fig. 5.6(b). Also shown are the route of the robot around the
warehouse, both with occlusion-aware navigation (blue line) and without occlusion aware navigation
(orange line). Fig. 5.6(a) and 5.6(b) both label doorway A into which dynamic obstacles enter and
doorway B from which dynamic obstacles emerge. The occlusion-aware policy actually adapted to
this asymmetry by learning to move away from B and closer to A in order to improve the visibility
of dynamic obstacles, while the occlusion-unaware policy remained close to B in order to reduce
total path length. The same occlusion-aware behavior also developed near other doorways in the
environment as well.

In this scenario, the occlusion-aware path serves to improve the overall navigation of DO1 and
DO2. As mentioned previously, when the dynamic obstacle observed the ego robot along its forward
route some distance d ahead, a negative acceleration a (i.e., deceleration) was applied that allowed
the dynamic obstacle to stop before collision with the robot. Kinematically, a body in motion

65

travelling at speed v must apply the following acceleration in order to fully stop:

a = v2/2d. (5.16)

The above equation shows how a higher deceleration is required to slow down when a dynamic
obstacle first observes the robot to be a short distance away d in front of it. Since DO1 and DO2
are moving at a relatively high speed compared to the ego robot, the majority of the interactions
consist of the dynamic obstacles needing to slow down and wait for the ego robot to move out of
their way before they can travel full speed again. This means that occlusion-aware navigation of the
ego robot can also benefit the dynamic obstacles by observing the ego robot at a farther distance
away. Since both DO1 and DO2 observe the robot at a farther distance d, this requires a lower
magnitude of deceleration in order to avoid collisions with the robot.

Fig. 5.6(c) showcases this principle by plotting the deceleration a of both dynamic obstacles
when the robot followed an occlusion-aware policy, as well as an occlusion-unaware policy. In order
to improve readability, the minimum deceleration over a sliding window of 6 minutes is shown and
was capped at −30 m/s2. It can be seen that over the course of the simulation, both dynamics
obstacles were required to brake harder if the robot followed an occlusion-unaware policy than if the
robot had learned an occlusion-aware policy. Additionally, DO1 experiences a smaller magnitude
deceleration than DO2 under the occlusion-aware policy, since DO1 traveled at a smaller speed.

5.5 Experiments

Experiments were conducted on a Boston Dynamics Spot [12] quadruped robot to further validate
the proposed approach in a real-world setting. Spot was equipped with an OS1 Ouster 3D lidar
sensor, using Gmapping to map the static obstacles of the real-world environment a priori, AMCL to
localize within this environment, and the same dynamic obstacle detection pipeline as the simulations.
Additionally, the same navigation stack from the simulated experiments was used with Spot, using
a Hybrid A∗ planner to create a global path to follow and a DWA controller to track this trajectory.
As Spot navigated the environment, dynamic obstacle observations were used to determine outcome
Ci and create data tuples Ti = {xi−1,xi, Ci} which were collected into a replay buffer and used to
train a risk map ρ : R3 → R at run time. This risk map informed the Hybrid A∗ planner of areas to
avoid, thereby creating an occlusion-aware navigation policy. Lastly, Spot was outfitted with a Spot
Core [78] computational payload, allowing all modules within the proposed navigation stack to run
onboard Spot.

Two experiments were conducted, each highlighting different aspects of the proposed approach.
The first placed Spot within a small-scale map that had a single occluding wall, focusing on how

66

the proposed approach creates an occlusion-aware policy by learning from negative outcomes, even
if they are infrequent. The second tests the navigation stack in a real-world office space, showcasing
the benefits of the proposed approach on a real-world system.

5.5.1 Small-Scale Map

The robot was placed in a small-scale map with a single wall that acted as an occluding median,
around which the robot was tasked to move in a counterclockwise direction. Fig. 5.7(a) shows a
picture of this environment, as well as snapshots of the robot moving with initially occlusion-unaware
motion. After four full laps around the median, a human actor was introduced as a dynamic obstacle
within this map. This actor was asked to adopt an adversarial policy of appearing from behind the
occlusion as close as possible to the robot (also shown in Fig. 5.7(a)), testing the worst-case scenario
in this experiment. This triggered a negative outcome of C = 1, information which the proposed
approach incorporated, resulting in a trajectory that improved visibiliy around the occluding corner,
shown in Fig. 5.7(b). Additionally, Fig. 5.7(c) visualizes this risk map after several instances of
negative outcomes, as well as a comparison of trajectories before and after experiencing these
negative outcomes.

5.5.2 Office Space

Additional experiments were conducted in a real-world office space setting in which Spot was tasked
to navigate. Again, a human actor was instructed to move against Spot’s direction of travel and to
appear as close to Spot as possible around two different corners within the environment. The goal
was to test the worst-case scenario and see how the proposed approach responded. Fig. 5.8(a) shows

(a) (b) (c)

Figure 5.7: Small-scale environment used to validate the run time learning capabilities of the
proposed approach. Fig. 5.7(a) shows a portion of this environment, along with snapshots of the

initial occlusion-unaware path and an instance when a dynamic obstacle was observed for the first
time too close to the robot. Fig. 5.7(b) shows the final learned path within the environment.

Fig. 5.7(c) shows the resulting risk map as well as a comparison of how the path adjusts to the
learned risk.

67

(a) (b) (c)

Figure 5.8: Office space environment used to validate the run time learning capabilities of the
proposed approach. Fig. 5.8(a) shows a portion of this environment, along with snapshots of the

initial occlusion-unaware path. Fig. 5.8(b) visualizes the learned risk map, as well as the resulting
occlusion-aware path. Fig. 5.8(c) shows how the policy norm changes over time.

the camera view of one of these corners, as well as occlusion-unaware motion and occlusion-aware
motion (as learned by the proposed approach). As can be seen within this figure, the proposed
approach allows Spot to adjust its position and gain a better visibility around the occluding corner.
Fig. 5.8(b) shows the risk map learned by the proposed approach, as well as the resulting trajectories.
Fig. 5.8(c) visualizes the policy norm (blue line) over the duration of the experiment, showing
how with two negative outcomes (purple lines) the run time learning stack changed the risk map
to reflect these experiences and eliminate any more negative outcomes. This is also compared
against the same exact experiment with the learning stack disabled so that Spot’s motion remains
occlusion-unaware during the experiment. The faint red lines show instances of C = 1 in this case,
which continue unmitigated from the occlusion-unaware path Spot continues to take.

Additionally, Fig. 5.9 shows a normalized histogram of the controls u = [v, ω] commanded by
the DWA controller over the course of the experiment. As was the case in the simulation experiment
described in Sec. 5.4.1, the data show two distinct trends: first, the occlusion-aware motion policy
allows the DWA to commanded higher speeds more frequently, owing to the fact it improves visibility
of dynamic obstacles and reduces the need to slow down or stop because they are observed at an
appropriate distance away. Second, the occlusion-aware motion policy allows a higher frequency of
ω ≈ 0, meaning Spot must turn less frequently as well, again owing to the improved visibility of
dynamic obstacles around occlusions.

5.6 Discussion and Conclusion

In this chapter we have outlined an approach for occlusion-aware navigation which learns risk-aware
policies from direct experience with the environment. This allows for an occlusion-aware policy
that is bespoke to the idiosyncrasies of real-world environments that are difficult to model a priori,

68

(a) (b)

Figure 5.9: Normalized histograms of the commanded speed v and angular velocity ω over the
course of the office space experiment in Fig. 5.8.

such as dynamic obstacle size, traffic flow, and motion policy. The approach is designed to be
risk-sensitive and data-efficient, enabling an occlusion-aware policy that is learned from relatively
few negative outcomes. The result is a policy that learns from its previous experiences and moves
to improve visibility around occlusions which have shown to be problematic in the past.

Despite this flexibility, there are particular challenges with using the QTD algorithm to learn
quantiles from experience at run time. For example, any RL technique assumes the Markov property
in which the distribution of cost variable C is entirely dependent upon the current robot state x

and the current motion policy. Effectively, this means that the chance of encountering a negative
outcome C = 1 must be entirely dependent upon the current global pose of the robot. While this
may be true for simple environments, modeling actual human motion may not be as straightforward,
as the speed and traffic patterns of dynamic obstacles may be influenced by either the historic
motion of the robot or even complex external factors not captured by the robot state x, e.g., traffic
patterns that change based on amount of traffic flow or time of day. Additionally, this work assumes
the underlying dynamic obstacle probabilities are constant over time for a given environment, which
may not be true for a real-world deployment. If these probabilities do change over time, then
the current approach will conflate data collected from these different periods of time, producing
quantiles ρ(·) that do not accurately describe the actual risk. This is related to the question of
how much experiential data to keep as the robot is deployed for extended periods of time. If the
traffic patterns change from hour-to-hour or day-to-day, it may be disadvantageous to keep all data
within a single replay buffer. Instead, it may be better to purge the replay buffer and restart the
QTD algorithm with freshly collected data, or the replay buffer may only be partially purged, with
certain datum recognized as important and kept. Identifying these transition periods is a particular
challenge for this approach, and is left in this work as an interesting avenue for future research.

69

Although this framework approaches a stable risk-aware policy over time, it relies upon the
robot experiencing a negative outcome before adjusting the risk metric. Before moving near an
occlusion, however, the robot may observe dynamic obstacles emerging from this occluded region.
This observation suggests one potential approach may leverage these dynamic obstacle observations
and infer the risk of a negative outcome without the need to experience it. This idea is the basis
for Chapter 6, which extends the idea of risk-based, data-informed occlusion-aware navigation
presented in this chapter towards a policy that can infer the risk of negative outcomes from historical
observations of dynamic obstacles.

70

Chapter 6

What’s the Worst That Can Happen? Run Time
Data-driven Occlusion-Aware Navigation

6.1 Introduction

Chapter 5 introduced an approach to occlusion-aware navigation that cast the problem as risk-aware
navigation, where this risk was caused by the uncertainty created by occluded dynamic obstacles.
This risk was generated by negative outcomes directly experienced by the robot in particular
locations throughout the global map, and eventually the proposed framework learned to avoid such
areas, effectively resulting in an occlusion-aware policy. Despite the effectiveness of this policy
over time, it should be noted that when the robot is far away from an occluding corner, the robot
may observe dynamic obstacles emerging from behind this corner before the robot experiences
these negative outcomes. An intelligent policy may take these observations and understand the
possibility of negative outcomes given the historical record of dynamic obstacles emerging from this
occluded region, combined with an understanding of what would happen if the robot traveled close
to the occlusion. This chapter explores an occlusion aware policy that can understand the “what if”
scenarios given previous dynamic obstacle observations within the environment. In this way, an
occlusion-aware policy may be developed without the need for the robot to experience the negative
outcomes associated with occlusions.

Concretely, this chapter provides several novel contributions towards run time occlusion-aware
navigation. First, the risk-based occlusion-aware concepts developed in Chapter 5 are further
extended, with a focus on how unknown occluded obstacles present a risk of increased travel
time. Once these concepts are formalized, a framework is developed that can calculate this risk
for a given path. This risk calculation is based upon two different models: (i) an offline-trained
supervised learning model that predicts how well the robot may negotiate a recently unoccluded
dynamic obstacle, and (ii) an online-created model that predicts the probability of encountering
such a situation given the historical observations of dynamic obstacles within the environment.

71

These components are combined to create a risk-sensitive path-planning cost function used by a
graph-search algorithm to find a path that minimizes this cost. When constructing the risk-sensitive
cost function, the underlying cost distribution is assumed to take form of a parametric function.
This is done so that these distributions may be simple to define with parameter values inferred from
data collected at run time, as well as ensure the cost function is computationally quick to evaluate
within the graph-search algorithm.

6.2 Problem Formulation

Let ẋ = f(x,u) represent the equations of motion for a robot with state x ∈ Rnx and control inputs
u ∈ Rnu . These controls are produced by a low-level controller that is tracking a position-based path
τ ∈ R2 generated at time t0. Additionally, define E the set of all obstacles within the environment
to be avoided. In this chapter , the goal is to reduce the estimated travel time Tτ needed to track τ

that provides a path for the robot towards a goal g ∈ R2, while avoiding obstacles within E . The
types of obstacles encountered in E can be decomposed into two distinct categories:

• Static map M that represents all stationary obstacles, e.g. walls, and may be mapped offline.

• The set of dynamic obstacles D, that must be observed at run time.

Due to the line-of-sight nature of the sensors available to the robot, only a subset of dynamic
obstacles Do ∈ D are actually observable at any given moment, meaning the set of unobserved
obstacles Du = D \ Do is unknown at run time. Both M and Do may be used to inform the creation
of a feasible path τ , which takes some finite time Tτ to track. However, the uncertainty introduced
by Du can be difficult to reconcile, as the position, velocity and amount of unobserved obstacles can
have a huge impact on Tτ . From the point of view of the robot, this epistemic uncertainty ultimately
causes Tτ to be non-deterministic, as the ego robot may need extra time to avoid obstacles that
were previously occluded. Thus, we may consider Tτ to effectively be a stochastic variable, and
assume it has some underlying distribution P (Tτ). Furthermore, we assume that Du is the only
factor that contributes to the distribution of Tτ and not other potential factors, e.g., unmodeled
robot dynamics. This leads to the first problem addressed in this paper:

Problem 1: Producing a Risk-Sensitive, Time-Optimal Path: For a given static obstacle
map M and observed dynamic obstacle set Do, let P (Tτ) ∈ P represent the distribution of possible
times to track τ , caused by the underlying epistemic uncertainty of Du. Furthermore, define a risk
metric ρ : P → R that maps from this distribution to a real number. We seek a policy Π that
creates a path τ to minimize this risk metric:

τ = arg min
τ ′

ρ(τ ′) (6.1)

72

The distribution P (Tτ) must be well characterized in order to effectively perform the minimization
in (6.1). For example, if the robot knows there are no dynamic obstacles in the environment, then
Tτ is effectively deterministic, and solving (6.1) amounts to the standard path-planning problem in
a known environment M. However, if the environment contains many dynamic obstacles, e.g., a
busy airport, then P (Tτ) could be very much affected by the location or time of day. This presents
another reasonable requirement that the proposed approach should adapt at run time to different
traffic patterns inferred from previous dynamic obstacle observations.

Problem 2: Adaptability using Run Time Observations: Define {Oi} as a series of
run time dynamic obstacle observations, where each Oi represents dynamic obstacle information
gathered by the robot within the environment in which it is deployed. We seek a method that can
inform the stochastic distribution P (Tτ) at run time using these observations,

{Oi} → P (Tτ), (6.2)

allowing the approach a high degree of adaptability to different D that may be present in a given
environment.

6.3 Approach

Fig. 6.1 shows a diagram of the proposed approach, in which run time observations {Oi} are used
to create a path τ from current position p0 to goal position g. To create a risk-sensitive policy for
run time occlusion-aware motion planning, the proposed process must (i) model the distribution
P (Tτ) given {Oi}, and (ii) use this model within an optimal path planning algorithm. In order to
model P (Tτ), the proposed approach separates the process into two distinct sub-models: a model
created online, and a model created offline. The online-created model infers the distribution P (O, n)
that describes the probability of sensing n dynamic obstacles at a given location and speed. This
is not only dependent on where the robot is located, but also the size, speed and traffic pattern
of the dynamic obstacles within the environment. Observations {Oi} can thus inform P (O, n),
contributing to a sense of where dynamic obstacles may be observed in the future given where they
have been observed historically. This is used in conjunction with a second model, P (Tτ |O, n), that
describes how such dynamic obstacle observations may effect travel time Tτ for a given trajectory.
In particular, focus is given to dynamic obstacles that emerge from occluded regions. This model
is created offline by generating simulations of interactions between robot and previously occluded
dynamic obstacles. Both the online and offline models are used together within the path planner to
solve (6.1), producing a trajectory τ that is tracked by a low level controller.

73

Figure 6.1: Block diagram for both the offline training stage and online solver failure prediction and
recovery framework.

Sec. 6.3.1 formalizes the notion of P (Tτ), as well as how this distribution may be decomposed
into two different factors that are separately modeled. Sec. 6.3.2 describes how observations {Oi}
are used to create a model of P (O, n) at run time, while Sec. 6.3.3 details how a model of P (Tτ |O, n)
may be trained offline. Lastly, Sec. 6.3.4 describes how both models may be used together to
solve (6.1) at run time via a graph-search path planning algorithm.

6.3.1 Formalizing Distribution of Tracking Time

In order to facilitate discussion, let us first define τ as a series of {x, y} locations pi for the robot to
track throughout the environment, so that τ = {pi}. The total time to traverse the entire path τ is
equal to the sum of times required to traverse each segment of this path,

Tτ =
∑

i

Ti, (6.3)

where Ti is the time required for the robot to move from pi to pi+1. Each Ti can be further broken
down into a deterministic and stochastic component:

Ti = T 0
i + ∆Ti (6.4)

Here, T 0
i is the time required to move from from p to pi+1, assuming no dynamic obstacles are

occluded in the environment. This is considered a deterministic variable, as it is influenced by
factors such as robot kinematic/actuation constraints and known obstacles in the environment. On
the other hand, ∆Ti is labeled the excess time and is a stochastic variable that contains the influence
of the epistemic uncertainty caused by occlusions potentially hiding other dynamic obstacles Du in
the environment. In this way, Tτ may be separated out as well:

Tτ = T 0
τ +

∑
i

∆Ti (6.5)

74

Here, T 0
τ =

∑
T 0

i is the deterministic time to complete τ , and there are many standard techniques
to find the minimum-time path through a known environment. The inclusion of

∑
i ∆Ti complicates

this process because the distribution of ∆Ti is to be inferred at run time from dynamic obstacle
observations {Oi}, and so any approach must be adaptable enough to account for information
gathered at run time.

Furthermore, we assume that each dynamic obstacle observation Oi contains information on
the position pOi and velocity vOi of that dynamic obstacle, which may be easily inferred from any
typical line-of-sight sensor:

Oi = [pOi,vOi]⊺ (6.6)

Such an observation must necessarily occur within the FOV F of the robot, and our approach is
interested in dynamic obstacles that are newly observed emerging from occluded areas along the
boundary δF along unoccupied space, typically defined by large jumps in lidar range measurements
between successive angles. To help formalize this important distinction, we make the following
definition:

Definition 1: For some observation time window ∆tO, we characterize the observation of an
obstacle as Ω ∈ {0, 1}, where Ω = 1 denotes an obstacle that has emerged from an occluded area
and is newly observed, otherwise Ω = 0.

Here, a time window ∆tO must be defined because Ω describes a discrete event that occurs
over a continuous time. We can further define OΩ = [O ∧ (Ω = 1)] as observing a dynamic obstacle
emerging from an occluded area at location and velocity O. It is also important to recognize that
during ∆tO, multiple dynamic obstacles may emerge from the same location pO, depending on the
length of the observation window. Although a rigorous treatment would consider each dynamic
obstacle as its own stochastic variable, this would result in a stochastic number of stochastic variables,
which is analytically difficult to handle for run time optimization techniques. Instead, we make
the assumption that dynamic obstacles emerging from an occlusion at location pO will realistically
have similar velocity distributions. Thus, we define nΩ as the number of obstacles that are newly
observed from occluded regions.

With these concepts defined, we seek to describe P (Tτ), the distribution of possible travel
times while tracking a total path τ , via individual distributions P (Ti) defined over each segment.
Furthermore, focus is placed on describing the stochastic portion of this travel time segment P (∆Ti).
In the proposed approach, the distribution P (∆Ti) is cast as a marginal over the following factors:

P (∆Ti) =
∑

OΩ,nΩ

P (∆Ti|OΩ, nΩ)P (OΩ, nΩ) (6.7)

Here, P (∆Ti|OΩ, nΩ) is a factor determines how the excess time depends on the dynamic obstacle

75

Figure 6.2: Motivating example of the factors that influence P (Tτ).

observation OΩ as well as the number of dynamic obstacles nΩ. The second factor P (OΩ, nΩ)
determines the probability of making this observation in the first place. Both factors P (∆Ti|·) and
P (OΩ, nΩ) also have a dependence on the locations pi and pi+1 that define the path segment, but
is not explicitly shown for notational brevity.

Fig. 6.2 shows an example how these two factors are important in planning a path from p0 to g.
Two example paths are shown, with locations pa and pb chosen along each, as well as the FOV edge
δF that defines the occluded regions. The goal g is located behind occluding corner 1, and there is
a non-zero probability of observing a dynamic obstacle emerging from around both occluding corner
1 and 2. This probability, P (OΩ, nΩ), is modeled online from previous observations {Oi} that help
create a more general probability of observing a dynamic obstacle P (O, n). In Fig. 6.2, both pa and
pb have similar P (OΩ, nΩ), since their δF FOV edges intersect this region of non-zero probability.
If a dynamic obstacle does emerge from behind corner 1, pa will incur a higher excess time than pb

since pa is closer to this corner. Additionally, if a dynamic obstacle does emerge from corner 2, both
pa and pb are far enough away as to not have an appreciable effect on Tτ . This effect is modeled
through P (∆Ti|OΩ, nΩ), which describes how well the ego robot can negotiate around a dynamic
obstacle, and may be learned offline through the simulation of many different scenarios.

Fig. 6.2 also motivates an additional simplification, in that not all locations defined by
P (OΩ, nΩ) > 0 need to be considered; in this example, the P (OΩ, nΩ) associated with corner
1 is enough to consider the effects of epistemic uncertainty of occluded dynamic obstacles, while
corner 2 can be effectively ignored to reduce run time computation. With this in mind, our approach

76

does not take the full sum over OΩ in (6.7), but instead focuses on a single location O′
Ω:

P (∆Ti) ≈
∑
nΩ

P (∆Ti|O′
Ω, nΩ)P (O′

Ω, nΩ) (6.8)

This location is chosen to maximize the worst case ∆Ti that is possible to happen, i.e., P (O′
Ω, nΩ) > 0

and P (∆Ti|O′
Ω, nΩ) > 0. This helps reduce the number of different possibilities that need to be

considered at run time, and instead focuses on the worst-case possibility.

6.3.2 Online Modelling: Inferring Probability of Dynamic Obstacle Observations

The distribution P (OΩ, nΩ) describes the probability of observing n dynamic obstacles emerging
from an occluded region at O. While this probability may be created offline, the proposed approach
seeks to infer P (OΩ, nΩ) online using historical observations of dynamic obstacles moving within the
environment. This enables the framework to evaluate occlusion-aware risk not only for a particular
static map M, but also for a particular dynamic obstacle traffic pattern that has been historically
observed. Likewise, if no dynamic obstacles have been observed emerging from an occluded region,
then the proposed framework could determine that this occluded region has no risk of increased
travel time based upon this historical evidence.

In order to model P (OΩ, nΩ) online, we split this probability into the following factors:

P (OΩ, nΩ) = P (Ω = 1|O)P (O, n) (6.9)

Here, P (O, n) is the probability of n dynamic obstacles having location and velocity O within
time window ∆tO, regardless of if they are emerging from an occluded area. This probability is
assumed to be inherent to the environment in which the ego robot is travelling. Such a probability
is affected by the size, shape and layout of the static map M, as well as the traffic patterns of the
dynamic obstacles D. The other term P (Ω = 1|O) describes the probability that a dynamic obstacle
is observed emerging from an occluded region at O. Evaluating this factor is simple due to the
line-of-sight nature of the sensors, since this can only occur at the edge of the FOV δF :

P (Ω = 1|O, n) =

1, if pO ∈ δF

0, else
(6.10)

This essentially restricts the sum defined in 6.7 to be along δF , determined by the path segment
starting location pi and the static obstacles M. Evaluating the factor P (O, n) is a more involved
process, as it requires estimating the probability of observing a dynamic obstacle at O using only
historical data {Oi}.

77

Formally Defining Probability of Observation

The distribution P (O, n) = P ([pO,vO], n) is defined over R4 ⊗ N , and describes the probability of
sensing n dynamic obstacles at a particular position pO and velocity vO within a time window tO.
The goal for the proposed approach is to infer an approximate distribution for P (O, n) strictly from
historical observations of the dynamic obstacles within the environment. This term is broken up
into three distinct components in order to make this inference process more tractable at run time:

P (O, n) = P (|vO|)P (v̂O|pO)P (n|pO) (6.11)

The first component P (|vO|) describes the probability of observing a dynamic obstacle with a
certain velocity magnitude, i.e., speed. Here, the simplifying assumption is made that the speeds of
all dynamic obstacles are independent of where the dynamic obstacle is located and which direction
it is heading. The second component P (v̂O|pO) describes the probability of observing the dynamic
obstacle with a certain velocity heading v̂O, given a particular location. Lastly, the distribution
P (n|pO) describes the probability of observing n dynamic obstacles at a particular location over a
time window ∆tO.

The advantage of breaking up P (O, n) into three distinct components via (6.11) is that each one
may be independently calculated from a set of observations {Oi}, and then used to calculate the
full probability P (O, n). Sec. 6.3.2 details how this may be exploited to effectively estimate P (O, n)
using these run time observations.

Estimating Probability of Observation from Historical Observations

While there are many methods of inferring a probability distribution from historical data, the
proposed framework uses a parametric approach towards estimating P (O, n) from {Oi}. Each
component of (6.11) is assumed to take the form of an underlying distribution defined by a single
parameter, and observations {Oi} determine what values these parameters should take. Simple
distributions are chosen for these estimations, as the ultimate probability P (Tτ) must be tenable to
solve 6.1 at run time. First, P (|vO|) is assumed to take the form of an impulse function:

P (|vO|) := δ
(
|vO| − |̃vO|

)
(6.12)

Here, |vO| describes the input variable of the impulse function and |̃vO| is the parameter that
defines where the distribution is concentrated. As observations are collected at run time, the

78

parameter |̃vO| is taken as the average of all previously observed dynamic obstacles speeds:

|̃vO| = 1
|{Oi}|

∑
{Oi}

|vOi| (6.13)

Similarly, P (v̂O|pO) is also assumed to be an impulse function defined over global angle ∠v̂O

determined by the heading of the unit vector v̂O:

P (v̂O|pO) = δ
(
∠v̂O − ∠ ˜̂vO(pO)

)
(6.14)

Here, the parameter ∠ ˜̂vO(pO) is also calculated as the average of all previously observed dynamic
obstacles headings. But unlike |̃vO|, the parameter ∠ ˜̂vO(pO) is dependent on the location of the
dynamic obstacle pO. Thus, a different average must be maintained for all possible pO, and the
terms in this average are restricted to observations Oi for which pOi = pO, denoted as {Oi|pO}

∠ ˜̂vO(pO) = 1
|{Oi|pO}|

∑
{Oi|pO}

∠vOi (6.15)

Finally, P (n|pO) is assumed to be a Poisson distribution, since it appropriately describes the
occurrence of n discrete events over a finite time window ∆tO. Using the Poisson distribution is
useful because it also only requires the average number of dynamic obstacles λ(pO) at a given
location.

Let λ(pO) define the average number of dynamic obstacles at location pO for a given environment
and time window ∆tO. The Poisson distribution is defined as:

P (n|pO) = (λ(pO))n e−λ(pO)

n! (6.16)

Similar to ∠ ˜̂vO(pO), the parameter λ(pO) must be estimated for different global positions pO

throughout the environment. Additionally, estimation of λ(pO) must only use observations grouped
over non-overlapping time windows of length ∆tO. The set of observations that satisfy this subset
are denoted by {Oi|pO, ∆tO}.

λpO = 1
|{Oi|pO, ∆tO}|

∑
{Oi|pO,∆tO}

ni (6.17)

Together, (6.13), (6.15) and (6.17) provide a means of calculating parameters from historical
observations that fully define P (O, n) via (6.11). Thus, P (O, n) is modeled online and is flexible
to different static obstacle layouts and dynamic obstacle traffic patterns. Furthermore, this model
P (O, n) may be used to define P (OΩ, nΩ) via (6.9) and (6.10). This is one of two components

79

required to define the distribution of travels excess travel times P (∆Ti) defined in (6.8). Section 6.3.3
details how P (∆Ti|OΩ, nΩ) is determined offline.

6.3.3 Offline Modelling: Learning Dependence on Tracking Time

The factor P (∆Ti|OΩ, nΩ) acts as a prediction of how well the robot can negotiate n occluded
obstacles. In order to simplify the terms in (6.7), we assume the distribution P (∆Ti|O, n) takes the
form of an impulse function:

P (∆Ti|OΩ, nΩ) = δ
(
∆Ti − ∆̃T (OΩ, nΩ)

)
(6.18)

The function ∆̃T (OΩ, nΩ) is the estimate of extra time incurred from observing n dynamic obstacles
emerge from behind an occlusion at O, and is modeled with a machine-learned neural network. In
order to train this network, many interactions are simulated offline between an ego robot and a
single dynamic obstacle (nΩ = 1) emerging from an occlusion, and the resulting travel times between
different locations are recorded. These results for nΩ = 1 are generalized for multiple obstacles
through the following approximation:

∆̃T (OΩ, nΩ) ≈ nΩ · ∆̃T (OΩ, 1) (6.19)

In other words, the excess time of n obstacles is approximately n times the excess time of observing
a single previously-occluded obstacles. This helps reduce the dimension of the Monte Carlo sampling
space, as well as simplify the architecture of the neural network needed to learn ∆̃T (OΩ, 1) :=
∆̃T (OΩ).

Fig. 6.3 shows two example simulations in which the robot is placed in an occluding environment
starting from location p, and is tasked with navigating towards a goal position g some distance away.
The distance between start and goal is chosen to reflect a desired time window ∆ts that is large
enough to effectively capture the effect of the occluded dynamic obstacle (typically ∼ 3-4 seconds
for ground robots). A dynamic obstacle is placed along the ego robot FOV boundary δF(p, M)
and given its own goal to move towards. Additionally, movement and obstacle avoidance policies
must be assumed for the robot and the dynamic obstacle in order to actually run the simulation.
The simulation ends when the robot reaches g and the total travel time T is recorded.

In Fig. 6.3 the red starting location is close to the occluding corner, so that robot and the
dynamic obstacle must suddenly avoid each other, producing sub-optimal motion and causing
∆T > 0 for this simulation. The green starting location, on the other hand, is further away from
the occluding corner, allowing more distance between the robot and the dynamic obstacle, resulting
in near time-optimal motion and ∆T ≈ 0.

80

After many simulations are performed, the collected data are used to train a model that can
infer ∆Ti = Ti −T 0

i for two consecutive points in a planned path. This model ∆̃T (OΩ) uses carefully
chosen features to make this inference. These features include:

• The dynamic obstacle location and velocity, the same features contained within observation O.

• The goal location g.

Both of these features are transformed into the reference frame of the robot to help with the
generalization and training process.

6.3.4 Graph-Search Approach For Risk-Sensitive Path Planning

Both P (OΩ, nΩ) and P (∆Ti|O, n) may be used to find P (Tτ), which in turn is used to calculate the
risk metric in (6.1). Although there are many optional risk metrics, the proposed approach uses
Conditional Value at Risk (CVaR), a well-accepted risk metric within the robotics community that
is sensitive to worst-case scenarios [75]. CVaR is defined as the expected value over the worst α

percent of a distribution:
CVaRα(Tτ) =

ˆ ∞

VaRα

TτP (Tτ)dT (6.20)

Here, the Value at Risk (VaR) is defined as the (1 − α)-quantile of a probability distribution

{VaRα(Tτ) ∈ R : FP (Tτ)(VaRα(Tτ)) = 1 − α}, (6.21)

where FP (Tτ)(·) represents the cumulative distribution function of P (Tτ). Our proposed approach
thus requires an optimal path planning strategy that can find a path τ that optimizes for risk metric
ρ = CVaRα(Tτ).

Figure 6.3: Two example simulations on which the neural network ∆̃T (OΩ) is trained.

81

In order to find a path that optimizes CVaRα(Tτ), let us first use (6.3) to rewrite:

CVaRα(Tτ) = CVaRα

(∑
i

Ti

)
(6.22)

We can then exploit the sub-addivity property of CVaR [75] to provide an upper bound on this
quanity:

CVaRα

(∑
i

Ti

)
≤
∑

i

CVaRα(Ti) (6.23)

This relationship means that a conservative estimate for CVaRα(Tτ) may be calculated as the sum
of individual CVaRα(Ti) over τ . Using (6.4), we can separate out the deterministic portion so that
CVaRα(Ti) = T 0

i +CVaRα(∆Ti). Lastly, given the approximation for P (∆Ti) defined in (6.8) as well
as the definitions of P (OΩ, nΩ) and P (∆Ti|O, n) detailed in Sec. 6.3.2 and Sec. 6.3.3, respectively,
we can define CVaRα(Ti) as

CVaRα(Ti) = T 0
i + CVaRα(nΩ)∆̃T (OΩ) (6.24)

Here, nΩ is the stochastic number of dynamic obstacles distribution according to (6.16), and
∆̃T (OΩ) is the neural network trained from offline simulations. The value of CVaRα(Ti) may be
treated as an edge cost for a graph-search algorithm in which the total path cost is defined by (6.22),
whose upper bound is defined via the sum of all edge costs (6.23). Any graph search algorithm may
then be used to find the globally optimal path that optimizes this risk metric.

We close this section by noting particular advantages of using (6.24) as an edge cost. First, the
product CVaRα(nΩ)∆̃T (OΩ) represents the inferred risk of incurring excess time due to occluded
dynamic obstacles. If CVaRα(nΩ)∆̃T (OΩ) ≈ 0, e.g., there are no dynamic obstacles within the
environment that may be occluded, then CVaRα(Ti) = T 0

i and the resulting graph search would
return the standard minimum-time path. If CVaRα(nΩ)∆̃T (OΩ) > 0, then there are two possible
mechanism which may lead to a higher edge cost:

• A given environment may be trafficked with a high number dynamic obstacles, raising
CVaRα(nΩ).

• A single dynamic obstacle causes a large excess time, raising ∆̃T (OΩ).

6.4 Preliminary Simulation Results

This section presents preliminary results for the proposed approach. First, Sec. 6.4.1 discusses
the process for collecting data from simulation for the offline-trained inference model. Sec. 6.4.2

82

then discusses how run time observations of dynamic obstacles are used towards the online-created
inference model. Finally, Sec. 6.4.3 shows these components working within a full autonomy stack
for a high-fidelity simulator.

6.4.1 Data Collection and Offline Trained Model

A simulator was used to collect data for training ∆̃T (OΩ), determining how much excess time ∆Ti

may be incurred when a dynamic obstacle emerged from an occluded region at O. This simulator
was designed to be as lightweight as possible to quickly collect data. For accurate training, the
simulator must realistically reflect both the ego robot model and control policy to avoid obstacles
while moving towards a goal, as well as the model and motion policy of the dynamic obstacles
moving through the environment. For the ego robot, a unicycle model [48] was assumed with state
x = [px, py, θ]T defined by global Cartesian coordinates (px, py), heading θ, and controls u = [v, ω]T .
A DWA controller [33] that ran at 50 Hz was used to determine u = [v, ω]T , with v ∈ [−0.2, 0.8] m/s
and ω ∈ [−2.0, 2.0] rad/s. For the dynamic obstacles, an empirically-derived social force model [59]
was used to realistically simulate how a human may try to negotiate around the ego robot.

A simple rectangular environment was used to simulate interactions between the robot and a
dynamic obstacle emerging from an occluded region. In each simulation, the robot was initially
placed at a random unoccupied position p0 and heading with a goal also chosen in a random
unoccupied position g. From this position, the dynamic obstacle was placed at a random position
along the FOV edge δF , and itself given a random goal so that it would emerge from the occlusion
(rather than going further into the occluded region). With these initial conditions set, the simulation
was ran until the ego robot reached its goal position. This selection method allowed the data to
cover a wide set of possible scenarios the robot may encounter, including different possible relative
positions and headings for the dynamic obstacle emerging from an occluded region. For each
simulation, several pieces of information were recorded:

• g ∈ R2: The goal position

• pΩ ∈ R2: The position of the emerging dynamic obstacle

• vΩ ∈ R2: The velocity of the emerging dynamic obstacle

• T : The time taken for the robot to travel from p0 to g

The vectors g, p and v were all measured in the robot reference frame. Fig. 6.4 shows this an
actual example simulation between the robot control policy and the dynamic obstacle motion policy.
The excess time ∆T was calculated by first determining the nominal time to reach the goal T0

(reasonably approximated via T0 ≈ |g − p0|/vmax) and taking the difference ∆T = T − T0. For the

83

example shown in Fig. 6.4, the excess was calculated to be ∆T = 4.2 s since the dynamic obstacle
emerged from the occlusion so close to the robot.

Figure 6.4: Actual simulation between robot and dynamic obstacle.

Data were collected from 5 × 104 simulations, recording {g,pΩ,vΩ, ∆T} for each. This data was
used to train a model ∆̃T (OΩ) to predict ∆T from OΩ = [pΩ,vΩ], as well as the goal location g.
The model for ∆̃T was chosen to be a five-layer neural network, with 6 and 1 as the input and
output layer dimension, respectively, and [8, 6, 4] as the hidden layer dimensions. Once trained, the
model ∆̃T (OΩ) was used as a parameter that defined P (∆Ti|OΩ, nΩ) via 6.18. In particular, this
model was used in 6.24 to directly predict of how well the robot can negotiate an occluded obstacle
observed at OΩ. This offline-trained component thus informed how much the excess travel time ∆T

would be impacted by a dynamic obstacle emerging from a particular occlusion.

6.4.2 Inferring Distribution of Observations at Run Time

The second component needed for the proposed approach is the online-created model P (O, n) that
describes the probability of n dynamic obstacles being observed at a particular position and velocity.
This probability is split into three distinct factors via (6.11), where each factor describes (i) the
distribution of speeds for a dynamic obstacles (ii) the distribution of dynamic obstacle headings and
(iii) the number of dynamic obstacles observed at location pO. Each component is dependent on a
single parameter defined by the average value for each component:

• |̃vO|, defined in (6.13) as the average historical speed of dynamic obstacles

• ∠ ˜̂vO(pO), defined in (6.15) as the average historical heading angle of dynamic obstacles
observed at position pO

84

(a) (b)

Figure 6.5: Actual simulation in which parameters for P (O, n) are estimated from run time
observations.

• λ(pO), defined in (6.17) as the historical average number of dynamic obstacles observed at
position pO

Note that |̃vO| is relatively easy to calculate, since it is just an average over all dynamic obstacle
speeds observed. However, both ∠ ˜̂vO(pO) and λ(pO) are averages that are functions of position pO,
which is an uncountably infinite input space. To make these parameters tractable to estimate at
run time, a discrete estimate Md ∈ R2 is used in place of the true continuous global map M ∈ R2,
where each position pd ∈ Md represents a small grid cell of the position space, centered on pd and
sized 0.2 m on each side.

Fig. 6.5 shows a real simulation where these parameters are estimated at run time. Fig. 6.5(a)
shows how initially the robot has not observed dynamic obstacles within its FOV, and so P (n =
0|pO) = 1 for these locations. A time window of ∆tO = 1 s is defined, and dynamic obstacle
observations {Oi} are are collected within this window. Fig. 6.5(b) shows what this portion of the
map looks like after the dynamic obstacle has entered within the FOV for some time. The arrows
indicate the learned dynamic obstacle heading ∠ ˜̂vO(pO) at each grid location, and orange colored
grid cells indicate a learned λ(pO).

Estimating these parameters online allows the construction of two critical pieces of the proposed
approach: first, this allows an estimate of CVaRα(nΩ), i.e. a risk metric on the number of obstacles
expected at a given location pO. Second, if there is a non-zero probability of observing a dynamic
obstacle at a given location pO, |̃vO| and ∠ ˜̂vO(pO) may be used to estimate the velocity vO of
such an observation. Both pO and vO are then used to infer excess time via the offline-trained
model ∆̃T (OΩ). These are used as a means of estimating the risk of moving within an occluded
environment, and ultimately are combined to inform the creation of an optimal path that reduces
this risk.

85

6.4.3 Example Within Full Autonomy Stack

The proposed occlusion-aware path planning framework was implemented as part of a full autonomy
stack and tested within a high-fidelity simulator. Gazebo was used to simulate a real-world Clearpath
Robotics Jackal ground robot platform equipped with a 360◦ lidar to produce laser scans of the
immediate surroundings. The SLAM package Gmapping [67] was used to created a map of static
portions of the environment, while AMCL [3] was used to localize within these maps. Fig. 6.6(a)
shows the gazebo environment in which the robot was placed, tasked with moving clockwise around
a central rectangle. Dynamic obstacles were also placed within this environment, tasked with moving
counter clockwise around, i.e., directly opposed to the robot. The proposed occlusion-aware path
planner was used to generate a path τ for which a DWA controller would track while avoiding
obstacles, both static and dynamic. As the robot moved throughout the environment, dynamic
obstacles were observed moving counter clockwise through the environment, which were used to
infer dynamic obstacle distribution, as described in Sec. 6.4.2. This was used in conjuction with
the offline-trained model, described in Sec.6.4.1, to generate an occlusion-aware path around this
environment. Fig. 6.6(b) first shows the results of an occlusion-unaware path planning policy. Shown
in red is the path τ created for the robot to track, moving clockwise around the environment. Also
plotted is the robot path over five minutes of traveling around this environment, colored using the
commanded speed provided by the DWA. A yellor color indicates that the DWA commanded the
maximum speed of 0.8 m/s, while darker colors indicate slower speeds or full stops. Fig. 6.6(b) shows
how slower speeds are commanded around the occluding corners of the center rectangle, caused by
dynamic obstacle emerging from the behind these occluding corners while the robot was nearing
them. Fig. 6.6(c) instead shows the full approach in which an occlusion-aware path (green line) is
planned for the DWA controller to track. This occlusion-aware is generated as more observations of
dynamic obstacles in the environment are obtained by the robot, producing motion that increases
visibility around the occluding corners. This benefits the ego robot, as Fig. 6.6(c) shows how the
maximum speed is commanded over nearly the entire five minutes of simulation.

(a) (b) (c)

Figure 6.6: Simulation results for a simple rectangular environment.

86

(a) (b)

Figure 6.7: Normalized histograms showing how the occlusion-aware path allowed for more
frequency forward full speed and forward motion.

Additionally, Fig. 6.7(a) shows a normalized histogram of forward speeds |v| commanded by the
DWA planner over ten minutes of simulation. It can be seen how the occlusion-aware navigation
stack resulted in higher overall frequency of the highest allowable commanded speed of 0.8 m/s. This
a direct result of the improved visibility of dynamic obstacles around occlusions, as this prevented
instances where the robot suddenly sees a dynamic obstacle close by, and must rapidly stop in
order to negotiate around these obstacles. Additionally, Fig. 6.7(b) shows a normalized histogram
of the commanded robot angular velocity ω, which tells a similar story: with occlusion-aware
navigation, the robot moves along a straight path (ω ≈ 0) with a higher frequency when compared to
occlusion-unaware navigation since it does not need to rapidly move out of the way of newly-observed
dynamic obstacles.

6.5 Discussion and Conclusion

This chapter proposes an occlusion-aware path planning policy created using (i) a model trained
offline to predict how well a robot motion policy may negotiate and suddenly unoccluded dynamic
obstacle, and (ii) a model created online from run time dynamic obstacle observations to accurately
apply this model to the surrounding environment. Together, both models are used to infer a risk
of increased travel time due to the epistemic uncertainty caused by potentially occluded dynamic
obstacles in the environment. Finally, a graph-search algorithm was used to find a path that globally
minimizes such risk. The resulting approach to occlusion-aware navigation promises both expressive
power and flexibility towards new and unknown environments.

The proposed approach relies on many approximations in order to tractably estimate risk at run
time, but these simplifications may not behave well in all environments. For example, this work

87

models the predicted heading and speed of a recently unoccluded dynamic obstacle as a uni-model
impulse function, but the true underlying distribution may be best described using multiple modes
(e.g., humans and service AMR moving in the same space may have different operating speeds).
This simplification may hide certain risks associated with a given occlusion, which may impact
the overall performance of the framework. Thus, one future research direction may be to consider
multimodal distributions when modeling the probability distribution of dynamic obstacles within the
environment. Additionally, creating the offline model discussed in this approach required simulations
and pre-training of a neural network. In order to perform these simulations, a motion policy for the
dynamic obstacles must be assumed a priori. One future extension of this work would be to account
for additional uncertainty in the motion policy of the dynamic obstacle, using historic observations
to predict not only where dynamic obstacles may emerge from occlusions, but also how they might
behave.

Lastly, the simulation results discussed in Sec. 6.4 used a DWA controller to track a planned path
τ while avoiding dynamic obstacles. However, other such policies exist that attempt to negotiate
dynamic obstacles in different ways, and although DWA is still a commonly adopted approach for
AMR, it may be worth investigating how different robot control policies may effect ∆Ti. This would
ultimately effect the path planned by this approach, as it may be that cutting close to the corner
is actually advantageous with other robot control policies. Thus, the behavior and efficacy of the
proposed framework may be affected by motion policy of the robot, and should be explored in future
work.

88

Part IV

Epilogue

89

Chapter 7

Conclusions and Future Work

In this chapter, we will conclude the dissertation with an overview of what we have accomplished
and learned, followed by a discussion of real-world applications for this work and also any possible
directions we could take for future work to build on what we have achieved thus far.

7.1 Conclusions

In this dissertation, various frameworks for occlusion-aware navigation have been presented. Part
I discussed two different approaches towards visibility-aware motion that could balance between
increasing visibility around occlusions while moving towards a goal. This was accomplished through
the development of analytically simple yet expressive perception objective that, when included as a
component of the cost function of an OCP, served to promote motion that reduced the geometric
area occluded to the travelling robot. Such a cost component could be quickly deployed within any
typical navigation stack with no pre-training required. Additionally, safety modules were included
that regulated speed and direction of travel as a means of ensuring obstacle avoidance. Together, it
was shown how the complete framework could produce trajectories that improved visibility around
occlusions, and because of this allowed faster commanded speeds over the entire trajectory.

Beyond visibility-aware approaches towards occlusion-aware navigation, a more sophisticated
treatment involves establishing a risk metric that relates to the uncertainty associated with the
occluded region and attempting to produce a path or trajectory that minimizes this risk metric. To
this end, Part II describes a risk-aware trajectory generation technique that associates trajectories
to a certain risk of collision. This discussion establishes important concepts used in susbsequent
Part III, such as the utilization of the risk-sensitive VaR instead of the typical expected value, or an
emphasis on a data-informed risk metric that requires relatively little data to train compared to
other learning-based techniques to estimate risk. The proposed trajectory generation approach could
leverage this data-informed risk to adapt the planned trajectory to the surrounding environment,
commanding slower speeds to reduce the risk of collision from possible trajectory tracking error.

90

Finally, Part III discusses how risk-aware navigation may be applied towards the occlusion-aware
navigation problem. The first approach discussed leverages a pre-existing occlusion unaware planner
as the initial navigation policy, and efficiently uses data collected at run time to adjust this policy
on the fly, allowing the policy to adapt to the environment in which the robot is deployed. The
collected data helps inform a risk-metric created through the QTD algorithm and associates a given
trajectory with a certain risk of entering into an undesired set. This risk metric is included inside the
cost function of a graph-search algorithm, and the resulting approach is shown through simulation
and experiment to improve motion not only for the ego robot but also for other dynamic obstacle
traveling in the same environment. Preliminary discussion is also included on a second approach
that focuses on inferring the risk of a negative outcome from historical observation of the dynamic
obstacles within the environment, rather than direct experience of those negative outcomes by the
ego robot. This approach attempts to quantify the effect of uncertainty associated with occluded
dynamic obstacles on the total time to track a path, then establishes the estimate of a risk metric
over a planned path. This allows the total risk inference to be decomposed into two distinct models,
one that is trained with offline simulated data and one that is created online with dynamic obstacle
data collected at run time. This preliminary approach shows promising results for a framework that
can adapt to a given environment and create a policy bespoke to the surrounding risk specific to
that environment.

7.2 Discussion and Possible Future Work

One commonality throughout the work presented in this dissertation is the focus on the creation
of a cost function that, when optimized over a planned path, resulted in the desired occlusion-
aware behavior that sought to promote visibility and reduce uncertainty. Part I focused on the
creation of an analytical approximation of occluded area, while Part II and Part III explored using
a data-informed risk metric inside the cost function. Thus, one way to view this work is that
of cost/reward engineering for an optimal control problem, which comes with its own benefits
and challenges. In one sense, relying on a single utility function to determine behavior is the
definition of rational behavior [7], and any autonomy policy must be rational and explainable if
we expect it to be deployed in the real world. In another sense, using a scalar number to judge
and choose the best value for a decision variable has practical value, as there are many techniques
to optimize over a decision variable. The challenge, however, is to create a cost function that can
(i) be optimized over at run time while (ii) encoding potentially complex behaviors and produce
policies that mimic or out-perform humans. This is a subject that has been considered in both
multi-objective optimization [52] and reinforcement learning [37]. This dissertation is included in a
larger effort to explore different ways of crafting a cost function that accomplishes these desiderata

91

while remaining tractable for a computer to execute on board a robot at run time. Furthermore,
there is currently a gap between complex approaches that require millions of training data that
achieve human-level performance, and simpler approaches that are easier to implement and interpret
but cannot achieve a high level of performance. The work presented in Part II and Part III attempts
to bridge this gap by exploring techniques that can learn much smaller amounts of data (tens
to hundreds) by adopting simpler learning models as components within more classical planning
approaches. Part III extends this idea even further by using data collected at run time to inform
the risk-sensitive path planning policy.

As development continues on improving AMR toward human and superhuman capability, there
is clear need for path planning policies to account for the uncertainty created by occlusions. While
this dissertation details effort towards this goal, there is still much left to explore. One potential
research direction would be an exploration in more nuanced ways of defining the undesired set of
Chapter 5. While this work considers visibility of unoccluded obstacles, there may be other ways
to define this undesired set; for example, such a framework could lend well towards the study of
human-robot interaction, avoiding potentially negative or “awkward” interactions between robot and
humans when rounding occluding corners. The undesired set could include all negative interactions
between robot and humans, and learn there is a probability of these interactions occurring around
occlusions. Another potential research direction is investigation of the framework presented in
Chapter 6 for further analytical performance guarantees, ways to relax the simplifying assumptions,
or a practical means of finding an optimal path over risk metric.

92

Bibliography

[1] Mohamadreza Ahmadi, Ugo Rosolia, Michel D. Ingham, Richard M. Murray, and Aaron D.
Ames. “Risk-Averse Decision Making Under Uncertainty”. In: IEEE Transactions on Automatic
Control 69.1 (2024), pp. 55–68. doi: 10.1109/TAC.2023.3264178.

[2] Matthias Althoff and Silvia Magdici. “Set-based prediction of traffic participants on arbitrary
road networks”. In: IEEE Transactions on Intelligent Vehicles 1.2 (2016), pp. 187–202.

[3] AMCL. http://wiki.ros.org/amcl. Accessed: 2024-02-22.

[4] Hans Andersen, Javier Alonso-Mora, You Hong Eng, Daniela Rus, and Marcelo H. Ang.
“Trajectory Optimization and Situational Analysis Framework for Autonomous Overtaking
With Visibility Maximization”. In: IEEE Transactions on Intelligent Vehicles 5.1 (2020),
pp. 7–20. doi: 10.1109/TIV.2019.2955361.

[5] Hans Andersen, Wilko Schwarting, Felix Naser, You Hong Eng, Marcelo H. Ang, Daniela Rus,
and Javier Alonso-Mora. “Trajectory optimization for autonomous overtaking with visibility
maximization”. In: 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC). 2017, pp. 1–8. doi: 10.1109/ITSC.2017.8317853.

[6] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. “Learning
dexterous in-hand manipulation”. In: The International Journal of Robotics Research 39.1
(2020), pp. 3–20.

[7] Kenneth J Arrow. “Economic theory and the hypothesis of rationality”. In: Utility and
Probability. Springer, 1990, pp. 25–37.

[8] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional perspective on rein-
forcement learning”. In: International conference on machine learning. PMLR. 2017, pp. 449–
458.

[9] Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning.
MIT Press, 2023.

93

https://doi.org/10.1109/TAC.2023.3264178
http://wiki.ros.org/amcl
https://doi.org/10.1109/TIV.2019.2955361
https://doi.org/10.1109/ITSC.2017.8317853

[10] Lars Blackmore, Masahiro Ono, and Brian C Williams. “Chance-constrained optimal path
planning with obstacles”. In: IEEE Transactions on Robotics 27.6 (2011), pp. 1080–1094.

[11] Amanda Bouman, Muhammad Fadhil Ginting, Nikhilesh Alatur, Matteo Palieri, David D Fan,
Thomas Touma, Torkom Pailevanian, Sung-Kyun Kim, Kyohei Otsu, Joel Burdick, et al.
“Autonomous spot: Long-range autonomous exploration of extreme environments with legged
locomotion”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 2518–2525.

[12] Amanda Bouman et al. “Autonomous Spot: Long-Range Autonomous Exploration of Extreme
Environments with Legged Locomotion”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2020, pp. 2518–2525. doi: 10.1109/IROS45743.2020.

9341361.

[13] Maxime Bouton, Alireza Nakhaei, Kikuo Fujimura, and Mykel J. Kochenderfer. “Scalable
Decision Making with Sensor Occlusions for Autonomous Driving”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 2076–2081. doi: 10.1109/ICRA.

2018.8460914.

[14] Anthony Brunel, Amine Bourki, Cédric Demonceaux, and Olivier Strauss. “Splatplanner:
Efficient autonomous exploration via permutohedral frontier filtering”. In: 2021 IEEE inter-
national conference on robotics and automation (ICRA). IEEE. 2021, pp. 608–615.

[15] Adam Bry and Nicholas Roy. “Rapidly-exploring random belief trees for motion planning
under uncertainty”. In: 2011 IEEE international conference on robotics and automation. IEEE.
2011, pp. 723–730.

[16] Andrea Camisa, Andrea Testa, and Giuseppe Notarstefano. “Multi-Robot Pickup and Delivery
via Distributed Resource Allocation”. In: IEEE Transactions on Robotics 39.2 (2023), pp. 1106–
1118. doi: 10.1109/TRO.2022.3216801.

[17] Svante Carlsson, H̊akan Jonsson, and Bengt J Nilsson. “Finding the shortest watchman route
in a simple polygon”. In: Discrete & Computational Geometry 22 (1999), pp. 377–402.

[18] Mateo Guaman Castro, Samuel Triest, Wenshan Wang, Jason M. Gregory, Felix Sanchez,
John G. Rogers, and Sebastian Scherer. “How Does It Feel? Self-Supervised Costmap Learning
for Off-Road Vehicle Traversability”. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). 2023, pp. 931–938. doi: 10.1109/ICRA48891.2023.10160856.

[19] Yuan Chang, Han Zhou, Xiangke Wang, Lincheng Shen, and Tianjiang Hu. “Cross-Drone
Binocular Coordination for Ground Moving Target Tracking in Occlusion-Rich Scenarios”. In:
IEEE Robotics and Automation Letters 5.2 (2020), pp. 3161–3168. doi: 10.1109/LRA.2020.

2975713.

94

https://doi.org/10.1109/IROS45743.2020.9341361
https://doi.org/10.1109/IROS45743.2020.9341361
https://doi.org/10.1109/ICRA.2018.8460914
https://doi.org/10.1109/ICRA.2018.8460914
https://doi.org/10.1109/TRO.2022.3216801
https://doi.org/10.1109/ICRA48891.2023.10160856
https://doi.org/10.1109/LRA.2020.2975713
https://doi.org/10.1109/LRA.2020.2975713

[20] Kuo Chen, Jingang Yi, and Dezhen Song. “Gaussian Processes Model-Based Control of Un-
deractuated Balance Robots”. In: 2019 International Conference on Robotics and Automation
(ICRA). 2019, pp. 4458–4464. doi: 10.1109/ICRA.2019.8794097.

[21] Kuo Chen, Jingang Yi, and Dezhen Song. “Gaussian-Process-Based Control of Underactuated
Balance Robots With Guaranteed Performance”. In: IEEE Transactions on Robotics 39.1
(2023), pp. 572–589. doi: 10.1109/TRO.2022.3203625.

[22] Wei-pang Chin and Simeon Ntafos. “Optimum watchman routes”. In: Information Processing
Letters 28.1 (1988), pp. 39–44. issn: 0020-0190. doi: https://doi.org/10.1016/0020-

0190(88) 90141 - X. url: https : / / www . sciencedirect . com / science / article / pii /

002001908890141X.

[23] Moorad Choudhry. An introduction to value-at-risk. John Wiley & Sons, 2013.

[24] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. “Distributional reinforcement
learning with quantile regression”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 32. 1. 2018.

[25] Tung Dang, Christos Papachristos, and Kostas Alexis. “Autonomous exploration and simulta-
neous object search using aerial robots”. In: 2018 IEEE Aerospace Conference. IEEE. 2018,
pp. 1–7.

[26] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. “Practical search
techniques in path planning for autonomous driving”. In: Ann Arbor 1001.48105 (2008),
pp. 18–80.

[27] Noel E Du Toit and Joel W Burdick. “Robot motion planning in dynamic, uncertain environ-
ments”. In: IEEE Transactions on Robotics 28.1 (2011), pp. 101–115.

[28] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. “PAMPC: Perception-Aware
Model Predictive Control for Quadrotors”. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2018, pp. 1–8. doi: 10.1109/IROS.2018.8593739.

[29] David D. Fan, Ali-akbar Agha-mohammadi, and Evangelos A. Theodorou. “Learning Risk-
Aware Costmaps for Traversability in Challenging Environments”. In: IEEE Robotics and
Automation Letters 7.1 (2022), pp. 279–286. doi: 10.1109/LRA.2021.3125047.

[30] Wenhao Feng, Liang Ding, Ruyi Zhou, Chongfu Xu, Huaiguang Yang, Haibo Gao, Guangjun
Liu, and Zongquan Deng. “Learning-Based End-to-End Navigation for Planetary Rovers
Considering Non-Geometric Hazards”. In: IEEE Robotics and Automation Letters 8.7 (2023),
pp. 4084–4091. doi: 10.1109/LRA.2023.3281261.

95

https://doi.org/10.1109/ICRA.2019.8794097
https://doi.org/10.1109/TRO.2022.3203625
https://doi.org/https://doi.org/10.1016/0020-0190(88)90141-X
https://doi.org/https://doi.org/10.1016/0020-0190(88)90141-X
https://www.sciencedirect.com/science/article/pii/002001908890141X
https://www.sciencedirect.com/science/article/pii/002001908890141X
https://doi.org/10.1109/IROS.2018.8593739
https://doi.org/10.1109/LRA.2021.3125047
https://doi.org/10.1109/LRA.2023.3281261

[31] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and Moritz
Diehl. “qpOASES: A parametric active-set algorithm for quadratic programming”. In: Mathe-
matical Programming Computation 6 (2014), pp. 327–363.

[32] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and Moritz
Diehl. “qpOASES: a parametric active-set algorithm for quadratic programming”. In: Mathe-
matical Programming Computation 6.4 (2014), pp. 327–363. issn: 18672957. doi: 10.1007/

s12532-014-0071-1.

[33] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “The dynamic window approach to
collision avoidance”. In: IEEE Robotics & Automation Magazine 4.1 (1997), pp. 23–33.

[34] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. “Robot Operating
System (ROS): The Complete Reference (Volume 1)”. In: ed. by Anis Koubaa. Cham: Springer
International Publishing, 2016. Chap. RotorS—A Modular Gazebo MAV Simulator Framework,
pp. 595–625. isbn: 978-3-319-26054-9. doi: 10.1007/978-3-319-26054-9_23. url: http:

//dx.doi.org/10.1007/978-3-319-26054-9_23.

[35] Barry Gilhuly, Armin Sadeghi, and Stephen L. Smith. “Estimating Visibility From Alternate
Perspectives for Motion Planning With Occlusions”. In: IEEE Robotics and Automation
Letters 9.6 (2024), pp. 5583–5590. doi: 10.1109/LRA.2024.3396056.

[36] Barry Gilhuly, Armin Sadeghi, Peyman Yedmellat, Kasra Rezaee, and Stephen L. Smith.
“Looking for Trouble: Informative Planning for Safe Trajectories with Occlusions”. In: 2022
International Conference on Robotics and Automation (ICRA). 2022, pp. 8985–8991. doi:
10.1109/ICRA46639.2022.9811994.

[37] Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. “Unpack-
ing reward shaping: Understanding the benefits of reward engineering on sample complexity”.
In: Advances in Neural Information Processing Systems 35 (2022), pp. 15281–15295.

[38] Astghik Hakobyan, Gyeong Chan Kim, and Insoon Yang. “Risk-Aware Motion Planning and
Control Using CVaR-Constrained Optimization”. In: IEEE Robotics and Automation Letters
4.4 (2019), pp. 3924–3931. doi: 10.1109/LRA.2019.2929980.

[39] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. “ACADO toolkit - An open-source
framework for automatic control and dynamic optimization”. In: Optimal Control Applications
and Methods 32.3 (2011), pp. 298–312. issn: 01432087. doi: 10.1002/oca.939.

[40] Constantin Hubmann, Nils Quetschlich, Jens Schulz, Julian Bernhard, Daniel Althoff, and
Christoph Stiller. “A POMDP Maneuver Planner For Occlusions in Urban Scenarios”. In:
2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 2172–2179. doi: 10.1109/IVS.

2019.8814179.

96

https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1109/LRA.2024.3396056
https://doi.org/10.1109/ICRA46639.2022.9811994
https://doi.org/10.1109/LRA.2019.2929980
https://doi.org/10.1002/oca.939
https://doi.org/10.1109/IVS.2019.8814179
https://doi.org/10.1109/IVS.2019.8814179

[41] Heejin Jeong, Hamed Hassani, Manfred Morari, Daniel D. Lee, and George J. Pappas. “Deep
Reinforcement Learning for Active Target Tracking”. In: 2021 IEEE International Conference
on Robotics and Automation (ICRA). 2021, pp. 1825–1831. doi: 10.1109/ICRA48506.2021.

9561258.

[42] Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D. Lee, and George
J. Pappas. “Learning Q-network for Active Information Acquisition”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2019, pp. 6822–6827. doi:
10.1109/IROS40897.2019.8968173.

[43] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Planning and acting in
partially observable stochastic domains”. In: Artificial intelligence 101.1-2 (1998), pp. 99–134.

[44] Matthew Kelly. “An introduction to trajectory optimization: How to do your own direct
collocation”. In: SIAM Review 59.4 (2017), pp. 849–904.

[45] Markus Koschi and Matthias Althoff. “Set-based prediction of traffic participants considering
occlusions and traffic rules”. In: IEEE Transactions on Intelligent Vehicles 6.2 (2020), pp. 249–
265.

[46] Hanna Kurniawati. “Partially observable markov decision processes and robotics”. In: Annual
Review of Control, Robotics, and Autonomous Systems 5 (2022), pp. 253–277.

[47] Woong Kwon, Jun Ho Park, Minsu Lee, Jongbeom Her, Sang-Hyeon Kim, and Ja-Won
Seo. “Robust Autonomous Navigation of Unmanned Aerial Vehicles (UAVs) for Warehouses’
Inventory Application”. In: IEEE Robotics and Automation Letters 5.1 (2020), pp. 243–249.
doi: 10.1109/LRA.2019.2955003.

[48] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[49] Keuntaek Lee, Jason Gibson, and Evangelos A. Theodorou. “Aggressive Perception-Aware
Navigation Using Deep Optical Flow Dynamics and PixelMPC”. In: IEEE Robotics and
Automation Letters 5.2 (2020), pp. 1207–1214. doi: 10.1109/LRA.2020.2965911.

[50] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. “Control of complex maneuvers for
a quadrotor UAV using geometric methods on SE (3)”. In: arXiv preprint arXiv:1003.2005
(2010).

[51] Thomas Lew, Riccardo Bonalli, and Marco Pavone. “Risk-Averse Trajectory Optimization
via Sample Average Approximation”. In: IEEE Robotics and Automation Letters 9.2 (2024),
pp. 1500–1507. doi: 10.1109/LRA.2023.3331889.

97

https://doi.org/10.1109/ICRA48506.2021.9561258
https://doi.org/10.1109/ICRA48506.2021.9561258
https://doi.org/10.1109/IROS40897.2019.8968173
https://doi.org/10.1109/LRA.2019.2955003
https://doi.org/10.1109/LRA.2020.2965911
https://doi.org/10.1109/LRA.2023.3331889

[52] Jian-Yu Li, Zhi-Hui Zhan, Yun Li, and Jun Zhang. “Multiple tasks for multiple objectives: A
new multiobjective optimization method via multitask optimization”. In: IEEE Transactions
on Evolutionary Computation (2023).

[53] Anirudha Majumdar and Marco Pavone. “How should a robot assess risk? towards an axiomatic
theory of risk in robotics”. In: Robotics Research: The 18th International Symposium ISRR.
Springer. 2020, pp. 75–84.

[54] Gonçalo S Martins, Rui P Rocha, Fernando J Pais, and Paulo Menezes. “Clusternav: Learning-
based robust navigation operating in cluttered environments”. In: 2019 international conference
on robotics and automation (ICRA). IEEE. 2019, pp. 9624–9630.

[55] Courtney McBeth, James Motes, Diane Uwacu, Marco Morales, and Nancy M. Amato. “Scal-
able Multi-Robot Motion Planning for Congested Environments With Topological Guidance”.
In: IEEE Robotics and Automation Letters 8.11 (2023), pp. 6867–6874. doi: 10.1109/LRA.

2023.3312980.

[56] Joseph SB Mitchell. “Approximating watchman routes”. In: Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms. SIAM. 2013, pp. 844–855.

[57] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
“Human-level control through deep reinforcement learning”. In: nature 518.7540 (2015), pp. 529–
533.

[58] Nicholas Mohammad and Nicola Bezzo. “A Robust and Fast Occlusion-based Frontier Method
for Autonomous Navigation in Unknown Cluttered Environments”. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 6324–6331. doi:
10.1109/IROS47612.2022.9982059.

[59] Mehdi Moussaid, Dirk Helbing, Simon Garnier, Anders Johansson, Maud Combe, and Guy
Theraulaz. “Experimental study of the behavioural mechanisms underlying self-organization
in human crowds”. In: Proceedings of the Royal Society B: Biological Sciences 276.1668 (2009),
pp. 2755–2762.

[60] Javier Muñoz, Peter Lehner, Luis E. Moreno, Alin Albu-Schäffer, and Máximo A. Roa.
“CollisionGP: Gaussian Process-Based Collision Checking for Robot Motion Planning”. In: IEEE
Robotics and Automation Letters 8.7 (2023), pp. 4036–4043. doi: 10.1109/LRA.2023.3280820.

[61] Varun Murali, Igor Spasojevic, Winter Guerra, and Sertac Karaman. “Perception-aware
trajectory generation for aggressive quadrotor flight using differential flatness”. In: 2019
American Control Conference (ACC). 2019, pp. 3936–3943. doi: 10 . 23919 / ACC . 2019 .

8814697.

98

https://doi.org/10.1109/LRA.2023.3312980
https://doi.org/10.1109/LRA.2023.3312980
https://doi.org/10.1109/IROS47612.2022.9982059
https://doi.org/10.1109/LRA.2023.3280820
https://doi.org/10.23919/ACC.2019.8814697
https://doi.org/10.23919/ACC.2019.8814697

[62] Yannik Nager, Andrea Censi, and Emilio Frazzoli. “What lies in the shadows? Safe and
computation-aware motion planning for autonomous vehicles using intent-aware dynamic
shadow regions”. In: 2019 International Conference on Robotics and Automation (ICRA).
2019, pp. 5800–5806. doi: 10.1109/ICRA.2019.8793557.

[63] Andre Nuñez, Felix H. Kong, Alberto González-Cantos, and Robert Fitch. “Risk-Aware
Stochastic Ship Routing Using Conditional Value-at-Risk”. In: 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2023, pp. 10543–10550. doi: 10.1109/

IROS55552.2023.10341431.

[64] Obstacle Detection ROS Package. https://github.com/tysik/obstacle_detector. Ac-
cessed: 2024-02-22.

[65] Billy Okal and Kai O Arras. “Learning socially normative robot navigation behaviors with
bayesian inverse reinforcement learning”. In: 2016 IEEE international conference on robotics
and automation (ICRA). IEEE. 2016, pp. 2889–2895.

[66] Masahiro Ono, Marco Pavone, Yoshiaki Kuwata, and J Balaram. “Chance-constrained dynamic
programming with application to risk-aware robotic space exploration”. In: Autonomous Robots
39 (2015), pp. 555–571.

[67] OpenSLAM Gmapping. http://wiki.ros.org/gmapping. Accessed: 2024-02-22.

[68] Piotr F Orzechowski, Annika Meyer, and Martin Lauer. “Tackling occlusions & limited sensor
range with set-based safety verification”. In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE. 2018, pp. 1729–1736.

[69] Piotr F. Orzechowski, Annika Meyer, and Martin Lauer. “Tackling Occlusions and Limited
Sensor Range with Set-based Safety Verification”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). 2018, pp. 1729–1736. doi: 10.1109/ITSC.2018.

8569332.

[70] Sooho Park, Yu Huang, Chun Fan Goh, and Kenji Shimada. “Robot Model Learning with
Gaussian Process Mixture Model”. In: 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE). 2018, pp. 1263–1268. doi: 10.1109/COASE.2018.8560452.

[71] Bryan Penin, Paolo Robuffo Giordano, and François Chaumette. “Vision-Based Reactive
Planning for Aggressive Target Tracking While Avoiding Collisions and Occlusions”. In: IEEE
Robotics and Automation Letters 3.4 (2018), pp. 3725–3732. doi: 10.1109/LRA.2018.2856526.

[72] James A. Preiss, Wolfgang Honig, Gaurav S. Sukhatme, and Nora Ayanian. “Crazyswarm:
A large nano-quadcopter swarm”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017, pp. 3299–3304. doi: 10.1109/ICRA.2017.7989376.

99

https://doi.org/10.1109/ICRA.2019.8793557
https://doi.org/10.1109/IROS55552.2023.10341431
https://doi.org/10.1109/IROS55552.2023.10341431
https://github.com/tysik/obstacle_detector
http://wiki.ros.org/gmapping
https://doi.org/10.1109/ITSC.2018.8569332
https://doi.org/10.1109/ITSC.2018.8569332
https://doi.org/10.1109/COASE.2018.8560452
https://doi.org/10.1109/LRA.2018.2856526
https://doi.org/10.1109/ICRA.2017.7989376

[73] Shuanghu Qiao, Kai Zheng, and Guofeng Wang. “A Path Planning Method for Autonomous
Ships Based on SVM”. In: 2020 Chinese Control And Decision Conference (CCDC). 2020,
pp. 3068–3072. doi: 10.1109/CCDC49329.2020.9164806.

[74] Victor Massagué Respall, Dmitry Devitt, Roman Fedorenko, and Alexandr Klimchik. “Fast
sampling-based next-best-view exploration algorithm for a MAV”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 89–95.

[75] R Tyrrell Rockafellar, Stanislav Uryasev, et al. “Optimization of conditional value-at-risk”. In:
Journal of risk 2 (2000), pp. 21–42.

[76] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural networks
61 (2015), pp. 85–117.

[77] Markus Schratter, Maxime Bouton, Mykel J Kochenderfer, and Daniel Watzenig. “Pedestrian
collision avoidance system for scenarios with occlusions”. In: 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2019, pp. 1054–1060.

[78] Spot CORE payload reference. https://support.bostondynamics.com/s/article/Spot-

CORE-payload-reference. Accessed: 2024-02-22.

[79] Zachary Sunberg and Mykel J. Kochenderfer. “Improving Automated Driving Through
POMDP Planning With Human Internal States”. In: IEEE Transactions on Intelligent
Transportation Systems 23.11 (2022), pp. 20073–20083. doi: 10.1109/TITS.2022.3182687.

[80] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[81] Lei Tai, Giuseppe Paolo, and Ming Liu. “Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation”. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2017, pp. 31–36. doi: 10.1109/IROS.

2017.8202134.

[82] Rahul Tallamraju, Eric Price, Roman Ludwig, Kamalakar Karlapalem, Heinrich H. Bülthoff,
Michael J. Black, and Aamir Ahmad. “Active Perception Based Formation Control for Multiple
Aerial Vehicles”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 4491–4498. doi:
10.1109/LRA.2019.2932570.

[83] Sebastion Thrun. Probabilistic Robotics. MIT Press, 2005, p. 221.

[84] Jesus Tordesillas and Jonathan P. How. “Deep-PANTHER: Learning-Based Perception-Aware
Trajectory Planner in Dynamic Environments”. In: IEEE Robotics and Automation Letters
8.3 (2023), pp. 1399–1406. doi: 10.1109/LRA.2023.3235678.

100

https://doi.org/10.1109/CCDC49329.2020.9164806
https://support.bostondynamics.com/s/article/Spot-CORE-payload-reference
https://support.bostondynamics.com/s/article/Spot-CORE-payload-reference
https://doi.org/10.1109/TITS.2022.3182687
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/LRA.2019.2932570
https://doi.org/10.1109/LRA.2023.3235678

[85] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey, Niels van Duijkeren,
Andrea Zanelli, Branimir Novoselnik, Thivaharan Albin, Rien Quirynen, and Moritz Diehl. “aca-
dos – a modular open-source framework for fast embedded optimal control”. In: Mathematical
Programming Computation (Oct. 2021). issn: 1867-2957. doi: 10.1007/s12532-021-00208-8.
url: https://doi.org/10.1007/s12532-021-00208-8.

[86] Qianhao Wang, Yuman Gao, Jialin Ji, Chao Xu, and Fei Gao. “Visibility-aware Trajectory Op-
timization with Application to Aerial Tracking”. In: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2021, pp. 5249–5256. doi: 10.1109/IROS51168.

2021.9636753.

[87] Yue Wang, Yafeng Guo, and Jun Wang. “A hierarchical planning framework of the intersection
with blind zone and uncertainty”. In: 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). 2021, pp. 687–692. doi: 10.1109/ITSC48978.2021.9564821.

[88] Grady Williams, Brian Goldfain, Paul Drews, Kamil Saigol, James M Rehg, and Evangelos
A Theodorou. “Robust Sampling Based Model Predictive Control with Sparse Objective
Information.” In: Robotics: Science and Systems. 2018.

[89] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots,
and Evangelos A. Theodorou. “Information theoretic MPC for model-based reinforcement
learning”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017,
pp. 1714–1721. doi: 10.1109/ICRA.2017.7989202.

[90] Marios Xanthidis, Michail Kalaitzakis, Nare Karapetyan, James Johnson, Nikolaos Vitzilaios,
Jason M. O’Kane, and Ioannis Rekleitis. “AquaVis: A Perception-Aware Autonomous Naviga-
tion Framework for Underwater Vehicles”. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2021, pp. 5410–5417. doi: 10.1109/IROS51168.2021.

9636124.

[91] Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. “Motion planning and control for
mobile robot navigation using machine learning: a survey”. In: Autonomous Robots 46.5 (2022),
pp. 569–597.

[92] Xuesu Xiao, Zizhao Wang, Zifan Xu, Bo Liu, Garrett Warnell, Gauraang Dhamankar, Anirudh
Nair, and Peter Stone. “Appl: Adaptive planner parameter learning”. In: Robotics and Au-
tonomous Systems 154 (2022), p. 104132.

[93] Zifan Xu, Xuesu Xiao, Garrett Warnell, Anirudh Nair, and Peter Stone. “Machine learning
methods for local motion planning: A study of end-to-end vs. parameter learning”. In: 2021
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE. 2021,
pp. 217–222.

101

https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1109/IROS51168.2021.9636753
https://doi.org/10.1109/IROS51168.2021.9636753
https://doi.org/10.1109/ITSC48978.2021.9564821
https://doi.org/10.1109/ICRA.2017.7989202
https://doi.org/10.1109/IROS51168.2021.9636124
https://doi.org/10.1109/IROS51168.2021.9636124

[94] Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In: Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’. IEEE. 1997,
pp. 146–151.

[95] Pengzhi Yang, Yuhan Liu, Shumon Koga, Arash Asgharivaskasi, and Nikolay Atanasov.
“Learning Continuous Control Policies for Information-Theoretic Active Perception”. In: 2023
IEEE International Conference on Robotics and Automation (ICRA). 2023, pp. 2098–2104.
doi: 10.1109/ICRA48891.2023.10160455.

[96] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. “Occlusion-Aware Risk As-
sessment for Autonomous Driving in Urban Environments”. In: IEEE Robotics and Automation
Letters 4.2 (2019), pp. 2235–2241. doi: 10.1109/LRA.2019.2900453.

[97] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. “Risk Assessment and
Planning with Bidirectional Reachability for Autonomous Driving”. In: 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA). 2020, pp. 5363–5369. doi:
10.1109/ICRA40945.2020.9197491.

102

https://doi.org/10.1109/ICRA48891.2023.10160455
https://doi.org/10.1109/LRA.2019.2900453
https://doi.org/10.1109/ICRA40945.2020.9197491

	Contents
	List of Figures

	List of Abbreviations
	Introduction
	Related Literature
	Visibility-aware Navigation
	Uncertainty- and Risk-aware Navigation
	Data-efficient Learning for Navigation

	Overview of Research
	Dissertation Organization and Contributions
	Summary of Contributions

	I Visibility-Based Occlusion Navigation
	Negotiating Visibility for Safe Autonomous Navigation in Occluding and Uncertain Environments
	Introduction
	Problem Formulation
	Approach
	MPC-based Known-Unknown Minimization
	Safety Constraint

	Simulations
	Experiments
	Discussion and Conclusion

	A Model Predictive-based Motion Planning Method for Safe and Agile Traversal of Unknown and Occluding Environments
	Introduction
	Problem Formulation
	Approach
	MPC-based Motion Planning
	Visibility Objective for Unstructured Environments
	Safety Constraint for Unknown Environments

	Simulations
	Experiments
	Discussion and Conclusion

	II Data-Driven, Risk-aware Motion Planning
	A Model Predictive Path Integral Method for Fast, Proactive, and Uncertainty-Aware UAV Planning in Cluttered Environments
	Introduction
	Problem Formulation
	Approach
	Risk Measure Formulation
	MPPI for Motion Planning

	Simulations
	Experiments
	Rectangular Loop Case Study
	4-Way City Block Case Study

	Discussion and Conclusion

	III Data-Driven, Risk-based Occlusion-Aware Motion Planning
	Data-Driven Occlusion-Aware Navigation via Online Quantile Temporal Difference Learning
	Introduction
	Problem Formulation
	Approach
	Negative Outcomes
	Risk Map
	Motion Planning Policy and Run Time Learning

	Simulations
	Hospital Environment
	Warehouse Environment

	Experiments
	Small-Scale Map
	Office Space

	Discussion and Conclusion

	What's the Worst That Can Happen? Run Time Data-driven Occlusion-Aware Navigation
	Introduction
	Problem Formulation
	Approach
	Formalizing Distribution of Tracking Time
	Online Modelling: Inferring Probability of Dynamic Obstacle Observations
	Offline Modelling: Learning Dependence on Tracking Time
	Graph-Search Approach For Risk-Sensitive Path Planning

	Preliminary Simulation Results
	Data Collection and Offline Trained Model
	Inferring Distribution of Observations at Run Time
	Example Within Full Autonomy Stack

	Discussion and Conclusion

	IV Epilogue
	Conclusions and Future Work
	Conclusions
	Discussion and Possible Future Work

