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Abstract

A quantum covering group Uπ is an algebra with parameters q and π subject to π2 = 1

and it admits an integral form; it specializes to the usual quantum group at π = 1 and to

a quantum supergroup of anisotropic type at π = −1. In this dissertation, we establish the

Frobenius-Lusztig homomorphism and Lusztig-Steinberg tensor product theorem in the setting

of quantum covering groups at roots of 1, recovering Lusztig's constructions for quantum

groups at roots of 1 when we specialize at π = 1.

We develop a theory of quantum symmetric pair (Uπ,U
ı
π), whereUı

π is a coideal subalgebra

of Uπ. When specializing at π = 1, the pair (Uπ,U
ı
π), reduces to a quantum symmetric pair

of G. Letzter and its Kac-Moody generalization by Kolb. We give a Serre presentation for Uı
π

of quantum symmetric pairs (Uπ,U
ı
π) for quantum covering groups, introducing the ıπ-Serre

relations and ıπ-divided powers. We also develop a quasi K-matrix in this setting, which leads

to a construction of ıcanonical bases for the highest weight integrable Uπ-modules and their

tensor products regarded as Uı
π-modules, as well as an ıcanonical basis for the modi�ed form

of the ıquantum group Uı
π. Again, specializing at π = 1 we recover the Serre presentation of

Uı by Chen-Lu-Wang and the canonical basis construction of Bao-Wang. The specialization

at π = −1 leads to new constructions for quantum supergroups.
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Chapter 1

Introduction

In representation theory, quantum groups are a key object of interest. Originally used by

Drinfeld and Jimbo to study integrable systems, quantum groups are deformations of universal

enveloping algebras of Lie algebras through the addition of a parameter q, yielding a richer

algebraic structure known as a Hopf algebra. Today, quantum groups have many interesting

applications such as knot invariants, modular representation theory, and categori�cation.

Categori�cation is the process of taking a familiar algebraic construction and adding a

layer of categorical structure. For instance, the homology groups of a manifold can be viewed

as a categori�cation of the Euler characteristic. This process allows us to cast a familiar

construction as the shadow of some higher structure, leading to deeper insights.

An important structure in the study of quantum groups and categori�cation are canonical

bases, which are bases for quantum groups with certain nice properties, such as enabling one to

write down a basis for any simple module (hence the word `canonical'). Another such property

is the positivity of structure constants for multiplication in symmetric type, which hints at

geometry and categori�cation (these two concepts are often intertwined). In fact, canonical

bases have a geometric origin � they arise as shadows of intersection cohomology sheaves.

Canonical bases are often used in working with integral forms of quantum groups, which is

a version over the ring A = Z[q, q−1] that is ubiquitous in categori�cation, where q becomes
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the shadow of a grading shift. Two important examples of categori�cation are the KLR

construction for quantum groups by M. Khovanov, A. Lauda and R. Rouquier using quiver

Hecke algebras, and Soergel bimodules for Hecke algebras by B. Elias and G. Williamson. In

this setting, canonical bases above arise as the shadow of indecomposables.

The work in this dissertation lies at the intersection of a few notions that are built on

this rich foundation of quantum groups. These include the quantum covering groups and

quantum symmetric pairs. In the �rst part, we will discuss constructions at roots of unity for

quantum covering groups. The second part will feature a Serre presentation, bar involution

and canonical basis for quantum symmetric pairs of quantum covering groups. A brief overview

of these notions are given in the following paragraphs.

Quantum covering groups

A quantum covering group Uπ, introduced in [CHW13] (cf. [HW15]) is an algebra de�ned

via a super Cartan datum I (a �nite indexing set associated to Kac-Moody superalgebras

with no isotropic odd roots). Uπ depends on two parameters q and π, where π2 = 1. A

quantum covering group specializes at π = 1 to the quantum group above, and at π = −1 to

a quantum supergroup of anisotropic type (see [BKM98]). In addition to the usual Chevalley

generators, we have generators Ji for each i ∈ I. If one writes Ki as q
hi , then analogously

we will have Ji = πhi . The parameter π can be seen as a shadow of a parity shift functor

in .D. Hill and W. Wang's ([HW15]) categori�cation of quantum groups by the spin quiver

Hecke superalgebras introduced in [KKT16]. Since then, further progress has been made on

the odd/spin/super categori�cation of quantum covering groups; see [KKO14, EL16, BE17].

Just like for quantum groups, a theory of canonical bases for integrable modules of Uπ

and its modi�ed (idempotented) form U̇π has been developed, in [CHW14, Cl14].
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Quantum covering groups at roots of 1

A Drinfeld-Jimbo quantum group with the quantum parameter q admits an integral Z[q, q−1]-

form; its specialization at q being a root of 1 were studied by G. Lusztig in [Lu90a, Lu90b],

[Lu94, Part V] and also by many other authors. In these works Lusztig developed the quantum

group version of Frobenius homomorphism and Frobenius kernel (known as small quantum

groups), as a quantum analogue of several classical concepts arising from algebraic groups

in a prime characteristic. The quantum groups at roots of 1 and their representation theory

form a substantial part of Lusztig's program on modular representation theory, and they have

further impacted other areas including geometric representation theory and categori�cation.

The �rst part of this dissertation details generalizations of these constructions to quantum

covering groups in joint work with T. Sale and W. Wang [CSW18]. In Theorem 4.5, we

formulate a Lusztig-Steinberg tensor product theorem for Rf the half quantum group at a

root of unity, and then establish the Frobenius-Lusztig homomorphism between Rf and its

quasi-classical counterpart Rf
�:

Theorem A (Theorem 4.7, Frobenius-Lusztig homomorphism). There exists a homomor-

phism Fr : Rf −→ Rf
� which for all i ∈ I, n sends the generators θ

(n)
i to θ

(n/`i)
i if `i divides n,

and to 0 otherwise.

We then show that the homomorphism Fr can be extended to the modi�ed quantum

covering group in Theorem 4.8. We then use this to de�ne the small quantum covering group

and show that it is a �nite-dimensional Hopf algebra when Uπ is of �nite type.

Quantum symmetric pairs

A quantum symmetric pair (U,Uı) is a quantization of the symmetric pair of enveloping

algebras (U(g),U(gθ)) where θ : g → g is an involution of the Lie algebra g. Originally

developed for applications in harmonic analysis for quantum group analogs of symmetric

spaces, G. Letzter developed a comprehensive theory of quantum symmetric pairs for all
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semisimple g in [Le99]. The algebraic theory of quantum symmetric pairs was subsequently

extended to the setting of Kac-Moody algebras in [Ko14]. The ıquantum group Uı is a

subalgebra of the quantum group U satisfying a coideal property ; coideal subalgebras provide

important substructure for U, since Hopf subalgebras are rare `in nature'.

More recent developments have made it apparent that quantum symmetric pairs play

an important role in representation theory at large. In a series of groundbreaking papers,

H. Bao and W. Wang proposed a program of canonical bases for quantum symmetric pairs

[BW18a, BW18b, BW18c]. They performed their program for the Type AIII/IV symmetric

pairs (sl2N , s(glN × glN)) and (sl2N+1, s(glN × glN+1)) and applied it to tensor products of

their Uı-modules, establishing a Kazhdan-Lusztig theory and irreducible character formula

for the category O of the ortho-symplectic Lie superalgebra osp(2n+1 | 2m), a feat for which

they were awarded the 2020 Chevalley prize in Lie Theory. Together with previously known

results, these recent developments suggest that quantum symmetric pairs allow as deep a

theory as quantized enveloping algebras themselves. In fact, U can be viewed as a special

type of quantum symmetric pair, the diagonal quantum symmetric pair (U⊗U, ı(U)) where

ı = (ω⊗1)∆ : U→ U⊗U. It is thus reasonable to expect that many results about quantized

groups have their counterparts in the realm of quantum symmetric pairs.

A fundamental property of any quantum group U is the existence of a universal R-matrix,

an element in the completion of a tensor product of U with itself which gives rise to solutions

of the quantum Yang-Baxter equation for suitable representations of U. The existence of a

universal R-matrix is crucial to V. Drinfeld and M. Jimbo's investigation into the theory of

quantum integrable systems [Dri87], [Jim85], and has applications to the construction of knot

invariants [RT90]. The analog of the quantum Yang-Baxter equation for quantum symmetric

pairs is known as the boundary quantum Yang-Baxter equation, or the (quantum) re�ection

equation cf. [Che84]. An an element providing solutions of the re�ection equation in all

representations is called a `universal K-matrix', a term �rst used in E. Sklyanin's investigation

of quantum integrable models with non-periodic boundary conditions [Skl88], [KS92].
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For a quantum group U with negative part U− and postive part U+, the quasi R-matrix

for U is a canonical element in a completion of U− ⊗U+ which appears as an intertwiner of

two bar involutions on ∆(U). The quasi R-matrix has a simpler expression than the universal

R-matrix, and is used in [Lu94, Part IV] to construct canonical bases for tensor products of

U and U̇. For quantum symmetric pairs an analogue intertwining the bar involutions on Uı

and U, the quasi K-matrix is constructed for special cases in [BW18a] and more generally

in [BaK19]. An immediate application of the quasi K-matrix in [BW18a, BW18b, BW18c] is

the construction of canonical bases for tensor products of Uı-modules and U̇ı.

For the negative half U− of the quantum group in rank one U = Uq(sl2), the Lusztig

divided powers are monomials in a single variable F , and they form the canonical basis for

U−. The canonical basis for Uı in rank one is formed by the ı-divided powers, introduced

in [BW18b, BW18c] and further explored in [BeW18]. Instead of being monomials, they are

polynomials in a single variable B. They give bases for �nite-dimensional simple sl2-modules,

and have two di�erent formulas, B
(n)
ev and B

(n)

1
, depending on the parity of the corresponding

highest weight, which is a non-negative integer.

The ı-divided powers and their expansion formulas in [BeW18] formed a cornerstone of the

construction of the Serre presentation for quasi-split ı-quantum groups established in H. Chen,

M. Lu and W. Wang in [CLW18]. In [BW18b, BW18c], ı-divided powers for i ∈ I with τi = i

were de�ned using the same formulas, and then shown to generate as an algebra the integral

form AU̇
ı of the modi�ed quantum group.

Serre presentation for ıquantum covering groups

For quantum covering groupsUπ of super Kac-Moody type and a diagram involution τ , (quasi-

split) quantum symmetric pairs (Uπ,U
ı
π) we de�neUı

π with generators Kµ, J̃i (products of Ki

and Ji respectively which keep track of the q and π grading), and Bi satisfying the embedding
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formula

Bi = Fi + q−1
i EτiK

−1
i .

The ıquantum covering group Uı
π is a right coideal subalgebra.

The ı-divided powers above have a generalization to Uı
π, the ı

π-divided powers B
(m)

i,1
and

B
(m)

i,0
which are given in the formulas (7.31) and (7.32) below for i ∈ I with τi = i. The new

facets π and J of quantum covering groups are incorporated into these formulas, and when we

specialize at π = 1 and J̃i = 1, we obtain the ı-divided powers above. The ıπ-divided powers

also satisfy a collection of expansion formulas which are instrumental in the following result:

Theorem B (Theorem 8.1, Serre presentation for Uı
π). U

ı
π is generated by Bi Kµ, J̃i, subject

to a few standard relations and the following:

If τi = i 6= j,

1−aij∑
n=0

(−1)nπ
n+(n2)
i B

(n)
i,aij+pi

BjB
(1−aij−n)
i,pi

= 0. (B1)

If τi 6= i,
∑
n=0

/1−ai,τi(−1)nπ
n+(n2)
i B

(n)
i BτiB

(1−ai,τi−n)
i =

1

πiqi − q−1
i

(B2)

·
(
q
ai,τi
i (πiq

−2
i ; πiq

−2
i )−ai,τiB

(−ai,τi)
i Zi −(πiq

2
i ; πiq

2
i )−ai,τiB

(−ai,τi)
i Zτi

)
.

Relation (B1) is the ıπ-Serre relation � when π = 1, this specializes to the ı-Serre relation in

[CLW18]. Note that here pi = 0 or 1, giving a collection of alternate presentations. Similar to

the proof therein (Theorem 4.8), the expansion formulas for the ıπ-divided powers mentioned

above can be used to reduce the proof of (B1) to a q-binomial identity. The second relation

(B2) specializes to [BaK15, Theorem 3.6]) when π = 1.

Quasi K-matrix and canonical basis for ıquantum covering groups

As foreshadowed above above, the quasi K-matrix is a natural starting point in the investiga-

tion of a theory of canonical basis for Uı
π. For regular quantum groups, the bar involutions ψı

on Uı and ψ on U are not compatible; ψı is not simply the restriction of ψ to the subalgebra
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Uı. Thus, one can de�ne a quasi K-matrix Υ that `intertwines' these two bar involutions. In

the case of the diagonal quantum symmetric pair, the quasi K-matrix arises naturally from

Lusztig's quasi R-matrix. An application of the quasi K-matrix is transforming involutive

based U-modules (U-modules with distinguished bases compatible with the bar-involution ψ

on U), into involutive based Uı-modules, compatible with the bar-involution ψı on Uı. In the

quantum covering setting, the quasi R-matrix is constructed in [CHW13, Theorem 3.1.1]. In

this dissertation, we have the following generalization for quasi-split Uı
π:

Theorem C (Theorem 9.2). There exists a unique family of elements Υµ ∈ (U+
π )µ such that

Υ0 = 1 and Υ =
∑

µ Υµ where p(µ) is even, satisfying the following identity in Ûπ:

ψı(u)Υ = Υψ(u), for all u ∈ Uı
π.

When we specialize at π = 1, we obtain the quasi K-matrix of [BW18a] and [BaK19]. In

rank one i.e. when I is a single odd root, the quasi K-matrix takes on the form

Υ =
∑
k≥0

(−π)k(πq − q−1)kq2k−k2 [2k − 1]!!πE
(2k),

where [2k − 1]!!π := [2k − 1]π · [2k − 3]π · . . . · [1].

The quasi K-matrix Υ is invertible, and its inverse is obtained by applying the bar involu-

tion. Crucially, Υ has the property that it preserves the integrality of the A-forms of integrable

highest weight Uı
π-modules and their tensor products. Using this property of integrality of

the action of their quasi K-matrix, Bao and Wang de�ned in [BW18a, BW18c] a new bar

involution on based U-modules (modules M with a distinguished basis B, and compatible

involution ψ) thus enabling the construction of ı-canonical bases of these modules (which are

now based Uı-modules) from their canonical bases. With the ıπ-divided powers above, these

constructions also lead to a theory of canonical basis for integrable based Uı
π-modules - exam-

ples include highest weight integrable modules and their tensor products (following [BW16]).
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Here the integral form is now over Aπ := Zπ[q, q−1], and we have a π-basis - a `signed' basis

that for the half quantum group f specializes to the Lusztig-Kashiwara canonical basis when

π = 1, and when π = −1 specializes to Lusztig's signed basis [Lu94, Chapter 14].

Theorem D (Theorem 10.2). Let (M,B) be a based Uπ-module whose weights are bounded

above. Assume the involution ψı := Υ ◦ ψ of M preserves the Aπ-submodule AM . The

Uı-moduleM admits a unique π-basis Bı := {bı|b ∈ B}, which is ψı-invariant and of the form

bı = b+
∑

b′∈B,b′<b

tb;b′b
′, for tb;b′ ∈ q−1Zπ[q−1].

Bı forms an Aπ-basis for the Aπ-lattice AM (generated by B), and forms a Zπ[q−1]-basis for

the Zπ[q−1]-latticeM (generated by B).

We conclude by constructing a canonical basis for the modi�ed form U̇ı
π, generalizing

[BW18b, BW18c]:

Theorem E (Theorem 10.10). Let ζı ∈ Xı and (b1, b2) ∈ B ×B. The set

Ḃı = {b1♦ıζıb2

∣∣ζı ∈ Xı, (b1, b2) ∈ B ×B}

forms a K(q)-basis of U̇ı and an Aπ-basis of AU̇ı, where b1♦ıζıb2 is ψı-invariant and is the

unique element b1♦ıζıb2 = u ∈ U̇ı such that for all λ, µ� 0 with λ+ µ = ζı,

u(ηλ ⊗ ηµ) = (b1♦ζıb2)ıλ,µ ∈ Lı(λ, µ) = L(λ+ µ).

Organization

The �rst part of the dissertation is organized as follows: In Chapter 2, we cover the founda-

tional details of quantum covering groups. In Section 3.1, we establish several basic properties

of the (q, π)-binomial coe�cients at roots of 1, generalizing Lusztig [Lu94, Chapter 34]. In the
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same chapter, we recall the de�nitions of the half quantum covering group Rf and the whole

(respectively, the modi�ed) quantum covering group U (respectively, RU̇) over some ring Rπ,

associated to a super Cartan datum. We give a presentation of RU̇ and a presentation of the

quasi-classical counterpart Rf
� of Rf , generalizing [Lu94, 33.2].

Our Chapter 4 is a generalization of [Lu94, Chapter 35]. We establish in Theorem 4.1 a

Rπ-superalgebra homomorphism Fr′ : Rf
� −→ Rf , which sends the generators θ

(n)
i to θ

(n`i)
i

for all i ∈ I, n. This is followed by the Lusztig-Steinberg tensor product theorem for Rf

which we prove in Theorem 4.5. Next we establish in Theorem 4.7 the Frobenius-Lusztig

homomorphism Fr : Rf −→ Rf
� which sends the generators θ

(n)
i to θ

(n/`i)
i if `i divides n, and

to 0 otherwise, for all i ∈ I, n. We further extend the homomorphism Fr to the modi�ed

quantum covering group in Theorem 4.8.

Finally in Chapter 5, we formulate the small quantum covering groups and investigate its

Hopf algebra structure. In the �nite type case corresponding to type B(0, n), we show that

the small quantum covering group is �nite dimensional, and we compute its dimension.

In Part 2, we discuss key constructions for quasi-split quantum symmetric pairs (Uπ,U
ı
π)

for quantum covering groups, dropping the subscript π. In Chapter 6 we introduce the

ıquantum covering group Uı, giving its structure and size. In the following chapter, we

introduce the ıπ-divided powers and prove a handful of their expansion formulas, which we

will use to prove the validity of the ıπ-Serre relations in Chapter 8. The rest of Chapter 8

contains a statement and proof of the Serre presentation for quasi-split Uı, which uses an

approach inspired by [CLW18], reducing the main result to the (q, π)-binomial identity in

�8.3.

In Chapter 9, we see that the Serre presentation enables the de�nition of a bar involution

on Uı (�9.1), and in the same chapter a quasi K-matrix Υ intertwining this bar involution is

constructed, and we show that Υ preserves the integral forms of various based modules and

their tensor products. Finally, in Chapter 10, a theory of canonical basis for tensor products

of Uı-modules and U̇ı is formulated, using a quasi R-matrix Θı for Uı constructed from Υ.
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Notation

As a remark: we will drop the subscript π from Uπ and related notation in the following

chapters, so U will be understood to refer to the quantum covering group. We will explicitly

mention when we are referring to the usual quantum group e.g. when we specialize π = 1.
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Part I

Quantum Covering Groups at Roots of 1
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Chapter 2

Quantum Covering Groups

In this chapter, we will give an overview of the details of quantum covering groups. We will go

over basic notation, conventions and constructions that are fundamental to the main results

in the subsequent chapters.

2.1 Foundations and structure

We start by recalling the de�nition of a quantum covering group from [CHW13] starting with

a super Cartan datum and a root datum.

Super Cartan data

A Cartan datum is a pair (I, ·) consisting of a �nite set I and a symmetric bilinear form

ν, ν ′ 7→ ν · ν ′ on the free abelian group Z[I] with values in Z satisfying

(a) di = i·i
2
∈ Z>0;

(b) 2 i·j
i·i ∈ −N for i 6= j in I.

If the datum can be decomposed as I = I0

∐
I1 such that

(c) I1 6= ∅,
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(d) 2 i·j
i·i ∈ 2Z if i ∈ I1,

then it is called a super Cartan datum; cf. [CHW13].

We denote the parity p(i) = 0 for i ∈ I0 and p(i) = 1 for i ∈ I1. Following [CHW13], we

will always assume a super Cartan datum satis�es the additional bar-consistent condition:

(e) i·i
2
≡ p(i) mod 2, for all i ∈ I.

This condition is always satis�ed for super Cartan data of �nite or a�ne type, with one

exception.

Note that (d) and (e) imply that

(f) i · j ∈ 2Z for all i, j ∈ I.

The i ∈ I0 are called even, i ∈ I1 are called odd. We extend the parity function p : I →

{0, 1} to the homomorphism p : Z[I] → Z. Then p induces a Z2-grading on Z[I] which we

shall call the parity grading.

A super Cartan datum (I, ·) is said to be of �nite (resp. a�ne) type exactly when (I, ·) is

of �nite (resp. a�ne) type as a Cartan datum (cf. [Lu94, �2.1.3]). In particular, the only super

Cartan datum of �nite type is type B(0, n) for n ≥ 1; the corrresponding the Lie superalgebras

are the orthosymplectic Lie superalgebras osp(1|2n).

A root datum associated to a super Cartan datum (I, ·) consists of

(a) two �nitely generated free abelian groups Y , X and a perfect bilinear pairing 〈·, ·〉 :

Y ×X → Z;

(b) an embedding I ⊂ X (i 7→ i′) and an embedding I ⊂ Y (i 7→ i) satisfying

(c) 〈i, j′〉 = 2i·j
i·i for all i, j ∈ I.

We will always assume that the root datum is X-regular (respectively Y -regular) image of the

embedding I ⊂ X (respectively, the image of the embedding I ⊂ Y ) is linearly independent

in X (respectively, in Y ).
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We also de�ne a partial order ≤ on the weight lattice X as follows: for λ, λ′ ∈ X,

λ ≤ λ′ if and only if λ′ − λ ∈ N[I]. (2.1)

The matrix A := (aij) := 〈i, j′〉 is a symmetrizable generalized super Cartan matrix: if

D = diag(di | i ∈ I), then DA is symmetric.

Let π be a parameter such that

π2 = 1.

For any i ∈ I, we set

qi = qi·i/2, πi = πp(i).

Note that when the datum is consistent, πi = π
i·i
2 ; by induction, we therefore have πp(ν) =

πν·ν/2 for ν ∈ Z[I]. We extend this notation so that if ν =
∑
νii ∈ Z[I], then

qν =
∏
i

qνii , πν =
∏
i

πνii .

For any ring R we de�ne a new ring Rπ = R[π]/(π2− 1) (with π commuting with R). Below,

we will work over K(q)π where K is a �eld of characteristic 0, and we will also consider algebras

over the ring Aπ, where A = Z[q, q−1].

Recall also the (q, π)-integers and (q, π)-binomial coe�cients in [CHW13]: we shall denote

[n] =

n
1

 =
(πq)n − q−n

πq − q−1
for n ∈ Z,

[n]! =
n∏
s=1

[s] for n ∈ N,
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and with this notation we havem
n

 =
[m]!

[n]![m− n]!
for 0 ≤ n ≤ m.

We denote by [n]i, [m]!i, and

n
m


i

the variants of [n], [m]!, and

n
m

 with q replaced by qi

and π replaced by πi, and

m
n


q2

the variant with q replacing q2.

For any i 6= j in I, we de�ne the following polynomial in two (noncommutative) variables

x and y:

Fij(x, y) =

1−aij∑
n=0

(−1)nπ
np(j)+(n2)
i

1− aij

n


i

xnyx1−aij−n. (2.2)

The quantum covering group

Let U denote the quantum covering group associated to the root datum (Y,X, ...) introduced

in [CHW13]. By [CHW13, Proposition 3.4.2],U is a unitalK(q)π-superalgebra with generators

Ei (i ∈ I), Fi (i ∈ I), Jµ (µ ∈ Y ), Kµ (µ ∈ Y ),

subject to the relations (a)-(f) below for all i, j ∈ I, µ, µ′ ∈ Y :

Ei (i ∈ I), Fi (i ∈ I), Jµ (µ ∈ Y ), Kµ (µ ∈ Y ),

with parity p(Ei) = p(Fi) = p(i) and p(Kµ) = p(Jµ) = 0, subject to the relations (a)-(f) below

for all i, j ∈ I, µ, µ′ ∈ Y :

K0 = 1, KµKµ′ = Kµ+µ′ , (R1)

J2µ = 1, JµJµ′ = Jµ+µ′ , (R2)
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JµKµ′ = Kµ′Jµ, (R3)

KµEi = q〈µ,i
′〉EiKµ, JµEi = π〈µ,i

′〉EiJµ, (R4)

KµFi = q−〈µ,i
′〉FiKµ, JµFi = π−〈µ,i

′〉FiJµ, (R5)

EiFj − πp(i)p(j)FjEi = δi,j
J̃iK̃i − K̃−i
πiqi − q−1

i

, (R6)

(q, π)-Serre relations Fij(Ei, Ej) = 0 = Fij(Fi, Fj), for all i 6= j. (R7)

where for any element ν =
∑

i νii ∈ Z[I] we have set K̃ν =
∏

iKdiνii, J̃ν =
∏

i Jdiνii. In

particular, K̃i = Kdii, J̃i = Jdii. Under the bar-consistency condition (e), J̃i = 1 for i ∈ I0

while J̃i = Ji for i ∈ I0. Note that by the same condition aij is always even for i ∈ I1, and so Ji

is central for all i ∈ I. As usual, denote by U−, U+ and U0 the subalgebras of U generated by

{Ei | i ∈ I}, {Fi | i ∈ I} and {Jµ, Kµ |µ ∈ Y } respectively. Also denote U0′ = {Ji, Ki | i ∈ I}.

We endow U with a Z[I]-grading | · | by setting |Ei| = i, |Fi| = −i, |Jµ| = |Kµ| = 0. The

parity on U is given by p(Ei) = p(Fi) = p(i) and p(Kµ) = p(Jµ) = 0.

The specialization at π = 1 of the algebra U, which we will denote by U|π=1, is a variant of

the usual Drinfeld-Jimbo quantum group with extra central elements Jµ, with many properties

specializing to that of [Lu94], cf. [CHW13]. The specialization at π = −1 of the algebra U/J

is naturally identi�ed with a quantum group associated to the Cartan datum (I, ·).

If we write F
(n)
i = F n

i /[n]!i and E
(n)
i = En

i /[n]!i for n ≥ 1 and i ≥ 1, then the (q, π)-Serre

relations (R7) can be rewritten as:

1−aij∑
n=0

(−1)nπ
np(j)+(n2)
i F

(n)
i FjF

(1−aij−n)
i = 0 (2.3)

and
1−aij∑
n=0

(−1)nπ
np(j)+(n2)
i E

(n)
i EjE

(1−aij−n)
i = 0. (2.4)

By [CHW13, Propositions 1.4.1, 3.4.1], the unital Q(q)π-superalgebra f is generated by θi
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(i ∈ I) subject to the super Serre relations

∑
n+n′=1−〈i,j′〉

(−1)n
′
π
n′p(j)+(n

′
2 )

i θ
(n)
i θjθ

(n′)
i = 0

for any i 6= j in I; here a generator θi is even if and only if i ∈ I0. There is an Aπ-form for f ,

which we call Af . It is generated by the divided powers θ
(n)
i = θni /[n]!qi,πi for all i ∈ I, n ≥ 1.

As Rπ is an Aπ-algebra (cf. �3.1), by a base change we de�ne Rf = Rπ ⊗Aπ Af .

The algebra U has an Aπ-form AU. By a base change, we obtain RU = Rπ ⊗Aπ AU. Let

RU
+ (resp. RU

−) denote the subalgebra of RU generated by the E
(n)
i = En

i /[n]!qi,πi (resp.

Fi = F n
i /[n]!qi,πi). As a R

π-algebra Rf is isomorphic to RU
+ (resp. RU

−) via the map x 7→ x+

(resp. x 7→ x−), where (θ
(n)
i )+ = E

(n)
i (resp. (θ

(n)
i )− = F

(n)
i .

Denote by X+ = {λ ∈ X | 〈i, λ〉 ∈ N, for all i ∈ I}, the set of dominant integral weights.

For λ ∈ X, let M(λ) be the Verma module of U, and we can naturally identify M(λ) = f

as K(q)π-modules. The AU-submodule AM(λ) can be identi�ed with Af as Aπ-free modules.

For λ ∈ X+, we de�ne the integrable U-module V (λ) = M(λ)/Jλ, where Jλ is the left f -

module generated by θ
〈i,λ〉+1
i for all i ∈ I. Let RM(λ) = Rπ ⊗Aπ AM(λ) for λ ∈ X, and

RV (λ) = Rπ ⊗Aπ AV (λ) for λ ∈ X+.

The following lemmas on the twisted derivation (de�ned in [CHW13, �1.5]) will be impor-

tant tools for the construction of the quasi K-matrix in part 3. The �rst is from [CHW13,

Lemma 1.5.2]) (cf. [Lu94, Lemma 1.2.15] for the quantum group version):

Lemma 2.1. Let x ∈ fν where ν ∈ N[I] is nonzero.

(a) If ri(x) = 0 for all i ∈ I, then x = 0.

(b) If ir(x) = 0 for all i ∈ I, then x = 0.

Just as in [BW18a], the following lemma will play a useful role (cf. [BW18a, Lemma 1.1])

Lemma 2.2. jr ◦ ri = ri ◦ jr for all i, j ∈ I
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Proof. It su�ces to show this for homogeneous x ∈ ′fµ, using induction on the height of µ;

for x = 1 both sides are identically 0, and from the inductive de�nition, we have

rj ◦ ir(xy) = ir(x)rj(y) + πp(y)p(j)q|y|·jrj(ir(x))y + πp(x)p(i)q|x|·ixrj(ir(y))

+ πp(x)·p(i)+p(ir(y))p(j)q|x|·i+|ir(y)|·jrj(x)ir(y)

and

ir ◦ rj(xy) = ir(x)rj(y) + πp(y)p(j)q|y|·j ir(rj(x))y + πp(x)p(i)q|x|·ixir(rj(y))

+ πp(y)·p(j)+p(rj(x))p(i)q|y|·j+|rj(x)|·irj(x)ir(y),

and since p(rk(z)) = p(z)− p(k), the π powers in the last term of each of the two expressions

on the right is equal to p(x)p(i) + p(y)p(j) − p(i)p(j); similarly |rk(z)| = |z| − k so the q

powers are |x| · i+ |y| · j− i · j, and so the two expressions agree by application of the inductive

hypothesis.

Here, as in [CHW13], we will use the following conventions for the comultiplication:

∆(Ei) = Ei ⊗ 1 + J̃iK̃i ⊗ Ei (i ∈ I) ∆(Fi) = Fi ⊗ K̃−i + 1⊗ Fi (i ∈ I), (2.5)

∆(Kµ) = Kµ ⊗Kµ (µ ∈ Y ) ∆(Jµ) = Jµ ⊗ Jµ (µ ∈ Y ). (2.6)

2.2 The modi�ed algebra U̇

In [Lu94, Chapter 23] a modi�ed form of the quantum group is introduced, featuring or-

thogonal idempotents that behave like projections onto weight spaces. For quantum covering

groups, the modi�ed form U̇ is de�ned in [CFLW, De�nition 4.2] to be the (non-unital) K(q)π-

algebra generated by the symbols 1λ (the orthogonal idempotents), Ei1λ and Fi1λ, for λ ∈ X
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and i ∈ I, subject to the relations:

1λ1λ′ = δλ,λ′1λ,

(Ei1λ)1λ′ = δλ,λ′Ei1λ, 1λ′(Ei1λ) = δλ′,λ+i′Ei1λ,

(Fi1λ)1λ′ = δλ,λ′Fi1λ, 1λ′(Fi1λ) = δλ′,λ−i′Fi1λ,

(EiFj − πp(i)p(j)FjEi)1λ = δij [〈i, λ〉]vi,πi 1λ,∑
n+n′=1−〈i,j′〉(−1)n

′
π
n′p(j)+(n

′
2 )

i E
(n)
i EjE

(n′)
i 1λ = 0 (i 6= j),∑

n+n′=1−〈i,j′〉(−1)n
′
π
n′p(j)+(n

′
2 )

i F
(n)
i FjF

(n′)
i 1λ = 0 (i 6= j),

where i, j ∈ I, λ, λ′ ∈ X, and we use the notation xy1λ = (x1λ+|y|)(y1λ) for x, y ∈ U. A more

in-depth treatment of U̇ı can be found in [Cl14], and covers its tensor modules and canonical

bases (�3.3 and �4 of loc.cit. respectively).

The modi�ed quantum covering group U̇ admits an Aπ-form, AU̇ and so we can de�ne

RU̇ = Rπ ⊗Aπ AU̇. We will give here a presentation for RU̇.

Lemma 2.3. The modi�ed quantum covering group RU̇ is generated as an Rπ-algebra by

x+1λx
′− or equivalently by x−1λx

′+, where x ∈ Rfµ, x
′ ∈ Rfν and λ ∈ X, subject to the

following relations:

(θ
(N)
i )+1λ(θ

(M)
i )−

=
∑
t≥0

π
MN−(t+1

2 )
i (θ

(M−t)
i )−

M +N + 〈i, λ〉

t


qi,πi

1λ+(M+N−t)i′(θ
(N−t)
i )+,

(θ
(N)
i )−1λ(θ

(M)
i )+

=
∑
t≥0

π
MN+t〈i,λ〉−(t2)
i (θ

(M−t)
i )+

M +N − 〈i, λ〉

t


qi,πi

1λ−(M+N−t)i′(θ
(N−t)
i )−,

(θ
(N)
i )+(θ

(M)
j )−1λ = πMNp(i)p(j)(θ

(M)
j )−(θ

(N)
i )+1λ, for i 6= j,
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x+1λ = 1λ+µx
+, x−1λ = 1λ−µx

−,

(x+1λ)(1λ′x
′−) = δλ,λ′x

+1λx
′−, (x−1λ)(1λ′x

′+) = δλ,λ′x
−1λx

′+,

(x+1λ)(1λ′x
′−) = δλ,λ′1λ+µx

+x′−, (x−1λ)(1λ′x
′+) = δλ,λ′1λ−µx

−x′+,

(rx+ r′x′)±1λ = rx±1λ + r′x′±1λ, where r, r
′ ∈ Rπ.

Proof. This is proved in the same way as [Lu94, �31.1.3]. Let A be the Rπ-algebra with the

above generators and relations. All of these relations are known to hold in RU̇. The �rst three

are shown to hold in RU̇ by a direct application of [CHW13, Lemma 2.2.3] as in [Cl14, Lemma

4] while the remaining ones are clear. However, there was an error in the second relation of

[Cl14, Lemma 4], so we derived that relation from [CHW13, Lemma 2.2.3] in [CSW18]. We

have

(θ
(N)
i )−1λ(θ

(M)
i )+

= (θ
(N)
i )−(θ

(M)
i )+1λ−Mi′

=
∑
t≥0

(−1)tπ
(M−t)(N−t)−t2
i (θ

(M−t)
i )+

K̃i;M +N − (t+ 1)

t


qi,πi

(θ
(N−t)
i )−1λ−Mi′

=
∑
t≥0

(−1)tπ
(M−t)(N−t)−t2
i (θ

(M−t)
i )+

〈i, λ〉 −M −N + t− 1

t


qi,πi

1λ−(M+N−t)i′(θ
(N−t)
i )−

=
∑
t≥0

π
MN+t〈i,λ〉−(t2)
i (θ

(M−t)
i )+

M +N − 〈i, λ〉

t


qi,πi

1λ−(M+N−t)i′(θ
(N−t)
i )−

where in the last step, we used [CHW13, (1.10)] with a = M +N − 〈i, λ〉. Hence the natural

homomorphism A −→ RU̇ is surjective. Let S be an Rπ-basis of Rf consisting of weight

vectors. Then {x+1λx
′−|x, x′ ∈ S, λ ∈ X} can be seen to be an Rπ-basis for A, and it is

known to be one for RU̇ (cf. [Cl14, Lemma 5]). Thus, the natural homomorphism is, in fact,
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an isomorphism.

Let A = Zπ[q, q−1]. There is an A-subalgebra AU̇ generated by E
(n)
i 1λ, F

(n)
i 1λ for i ∈ I

and n ≥ 0 and λ ∈ X. Note that U̇ is naturally a U-bimodule, and in particular we have

Kh1λ = 1λKh = q〈h,λ〉1λ, for all h ∈ Y.

We have the mod 2 homomorphism Z → Z2, k 7→ k, where Z2 = {0, 1}. Let us �x an

i ∈ I. De�ne

U̇i,ev :=
⊕

λ: 〈hi,λ〉∈2Z

U̇1λ, U̇i,odd :=
⊕

λ: 〈hi,λ〉∈1+2Z

U̇1λ. (2.7)

Then U̇ = U̇i,ev ⊕ U̇i,odd. Similarly, letting AU̇i,ev = U̇i,ev ∩A U̇ and AU̇i,odd = U̇i,odd ∩A U̇,

we have AU̇ = AU̇i,ev ⊕ AU̇i,odd.

For our later use, with i ∈ I �xed once for all, we need to keep track of the precise value

〈hi, λ〉 in an idempotent 1λ but do not need to know which speci�c weights λ are used. Thus

it is convenient to introduce the following generic notation

1?m = 1?i,m, for m ∈ Z, (2.8)

to denote an idempotent 1λ for some λ ∈ X such that m = 〈hi, λ〉. In this notation, the

identities in [Cl14] (with a correction provided in [CSW18, Lemma 3.2]) can be written as
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follows: for any m ∈ Z, a, b ∈ Z≥0, and i 6= j ∈ I,

E
(a)
i 1?i,m = 1?i,m+2aE

(a)
i , F

(a)
i 1?i,m = 1?i,m−2aF

(a)
i ; (2.9)

Ej1
?
i,m = 1?i,m+aij

Ej, Fj1
?
i,m = 1?i,m−aijFj; (2.10)

F
(a)
i E

(b)
i 1?i,m =

min{a,b}∑
j=0

π
ab+jm+(j2)
i

a− b−m
j


i

E
(b−j)
i F

(a−j)
i 1?i,m; (2.11)

E
(a)
i F

(b)
i 1?i,m =

min{a,b}∑
j=0

π
ab+(j+1

2 )
i

a− b+m

j


i

F
(b−j)
i E

(a−j)
i 1?i,m. (2.12)

From now on, we shall always drop the index i to write the idempotents as 1?m.

Remark 2.4. If u ∈ U satis�es u1?2k−1 = 0 for all possible idempotents 1?2k−1 with k ∈ Z (or

respectively, u1?2k = 0 for all possible 1?2k with k ∈ Z), then u = 0.

Convention

We impose a mild bar-consistent assumption on the super Cartan datum in this paper, fol-

lowing [HW15, CHW14]. This assumption ensures that the new super Cartain datum and

root datum arising from considerations of roots of 1 work as smoothly as one hopes. The

assumption turns out to be also most appropriate again for the existence of Frobenius-Lusztig

homomorphisms for quantum covering groups.
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Chapter 3

Notation and formulas

In this chapter, we will introduce notation for the rest of this part, and establish several basic

formulas of the (q, π)-binomial coe�cients at roots of 1. They specialize to the formulas in

[Lu94, Chapter 34] at π = 1. We also describe a presentation for the quasi-classical counterpart

of modi�ed quantum covering groups.

3.1 Identities for (q, π)-binomials at roots of 1

Let π and q be formal indeterminants such that π2 = 1. Fix
√
π such that

√
π

2
= π. In

contrast to earlier papers on the quantum covering groups [CHW13, CHW14, CFLW, Cl14],

it is often helpful and sometimes crucial for the ground rings considered in this paper to

contain
√
π, and for the sake of simplicity we choose to do so uniformly from the outset. For

any ring S with 1, de�ne the new ring

Sπ = S ⊗Z Z[
√
π].

We shall use often the following two rings:

A = Z[q, q−1], Aπ = Z[q, q−1,
√
π].

25



Let N = {0, 1, 2, . . .}. For a ∈ Z and n ∈ N, we de�ne the (q, π)-integer

[a]q,π =
(πq)a − q−a

πq − q−1
∈ Aπ,

and then de�ne the corresponding (q, π)-factorials and (q, π)-binomial coe�cients by

[n]!q,π =
n∏
i=1

[i]q,π,

a
n


q,π

=

∏n
i=1[a+ 1− i]q,π

[n]!q,π
.

For an indeterminant v, we denote the v-integers

[a]v =
va − v−a

v − v−1

and we similarly de�ne the v-factorials [n]!v and v-binomial coe�cients

a
n


v

. We denote by

(
a
n

)
the classical binomial coe�cients.

In the rest of this chapter, the notation v is auxiliary, and we will identify

v :=
√
πq,

and hence, for n, t ∈ N,

[n]q,π =
√
π
n−1

[n]v, [n]!q,π =
√
π
n(n−1)/2

[n]!v,

n
t


q,π

=
√
π

(n−t)t

n
t


v

.

(3.1)

26



Fix ` ∈ Z>0 and let `′ = ` or 2` if ` is odd and let `′ = 2` if ` is even. Let

A′ = A/〈f(q)〉,

whereA/〈f(q)〉 denotes the ideal generated by the `′-th cyclotomic polynomial f(q); we denote

by ε ∈ A′ the image of q ∈ A. Take R to be an A′-algebra with 1 (and so also an A-algebra).

Introduce the following root of 1 in Rπ:

q =
√
πε ∈ Rπ. (3.2)

Then the element

v :=
√
πq ∈ Rπ

satis�es that

v2` = 1, v2t 6= 1 ( for all t ∈ Z, ` > t > 0). (3.3)

Consider the specialization homomorphism φ : Aπ → Rπ which sends q to q and
√
π to

√
π.

We shall denote by [n]q,π and

n
t


q,π

the images of [n]q,π and

n
t


q,π

under φ respectively,

and so on.

The following lemma is an analogue of [Lu94, Lemma 34.1.2], which can be in turn recov-

ered by setting π = 1 below.

Lemma 3.1. (a) If t ∈ Z>0 is not divisible by ` and n ∈ Z is divisible by `, then

n
t


q,π

= 0.
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(b) If n1 ∈ Z and t1 ∈ N, then we have

`n1

`t1


q,π

= π`
2t1(n1−(t1−1)/2)q`

2t1(n1+1)

(
n1

t1

)
.

(c) Let n ∈ Z and t ∈ N. Write n = n0 + `n1 with n0, n1 ∈ Z such that 0 ≤ n0 ≤ `− 1 and

write t = t0 + `t1 with t0, t1 ∈ N such that 0 ≤ t0 ≤ `− 1. Then we have

n
t


q,π

= π`(n0−t0)t1+`2(n1−(t1−1)/2)t1q`(n0t1−n1t0)+`2(n1+1)t1

n0

t0


q,π

(
n1

t1

)
.

Proof. One proof would be by imitating the arguments for [Lu94, Lemma 34.1.2]. Below we

shall use an alternative and quicker approach, which is to convert [Lu94, Lemma 34.1.2] into

our current statements using (3.1) via the substitution v =
√
πq. Part (a) immediately follows

from [Lu94, Lemma 34.1.2(a)].

(b) By applying [Lu94, Lemma 34.1.2(b)] to

`n1

`t1


v

and using (3.1), we have

`n1

`t1


q,π

=
√
π
`t1(`n1−`t1)

`n1

`t1


v

=
√
π
`2t1(n1−t1)

v`
2t1(n1+1)

(
n1

t1

)
,

which can be easily shown to be equal to the formula as stated in the lemma.

(c) Note that

√
π

(n−t)t
=
√
π
`((n0−t0)t1+(n1−t1)t0)√

π
`2(n1−t1)t1√π(n0−t0)t0 . (3.4)
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By applying [Lu94, Lemma 34.1.2(c)] to

n
t


v

and using (3.1)-(3.4), we have

n
t


q,π

=
√
π

(n−t)t

n
t


v

=
√
π

(n−t)t
v`(n0t1−n1t0)+`2(n1+1)t1

n0

t0


v

(
n1

t1

)

=
√
π
`((n0−t0)t1+(n1−t1)t0)√

π
`2(n1−t1)t1√π`(n0t1−n1t0)+`2(n1+1)t1

× q`(n0t1−n1t0)+`2(n1+1)t1

√π(n0−t0)t0

n0

t0


v

(n1

t1

)

= π`(n0−t0)t1+`2(n1−(t1−1)/2)t1q`(n0t1−n1t0)+`2(n1+1)t1

n0

t0


q,π

(
n1

t1

)
.

The lemma is proved.

Note that, due to our choice of q =
√
πε, we also have an analogue of equation (e) in the

proof of [Lu94, Lemma 34.1.2]:

v`
2+` = π(`+1)`/2q`

2+` = (−1)`+1. (3.5)

The following is an analogue of [Lu94, �34.1.3(a)].

Lemma 3.2. Let b ≥ 0. Then

[`b]!q,π
([`]!q,π)b

= b!(πq)`
2b(b−1)/2.
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Proof. Recall v =
√
πq. Using (3.1) and [Lu94, �34.1.3(a)], we have

[`b]!q,π/([`]
!
q,π)b =

√
π
`b(`b−1)/2−b`(`−1)/2

[`b]!v/([`]
!
v)b

=
√
π
`2b(b−1)/2

b!v`
2b(b−1)/2 = b!(πq)`

2b(b−1)/2.

The lemma is proved.

Below is a π-analogue of [Lu94, Lemma 34.1.4].

Lemma 3.3. Suppose that 0 ≤ r ≤ a < `. Then,

`−a−1∑
s=0

(−1)`−r+1+sπ(s+1
2 )+s(r−`)q−(`−r)(a−`+1+s)+s

`− r
s


q,π

= π(r2)−(l2)−a(r−l)q`(a−r)

a
r


q,π

.

Proof. Plugging v =
√
πq into [Lu94, Lemma 34.1.4] and using (3.1), we obtain

`−a−1∑
s=0

(−1)`−r+1+s
√
π
−(`−r)(a−`+1+s)+s+s(s−`+r)

q−(`−r)(a−`+1+s)+s

`− r
s


q,π

=
√
π
`(a−r)+r(r−a)

q`(a−r)

a
r


q,π

.

Rearranging the
√
π terms, we have

`−a−1∑
s=0

(−1)`−r+1+s
√
π
s(s+1)+2s(r−`)

q−(`−r)(a−`+1+s)+s

`− r
s


q,π

=
√
π
r(r−1)−`(`−1)−2a(r−l)

q`(a−r)

a
r


q,π

.

from which the desired formula is immediate.
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3.2 The quasi-classical algebras

De�nitions and lemmas

De�ne

`i = min{r ∈ Z>0 | r(i · i)/2 ∈ `Z}.

The next lemma follows by the de�nition of `i and the bar-consistency condition of I.

Lemma 3.4. For each i ∈ I1, `i has the same parity as `.

Then (I, �) is a new root datum by [Lu94, 2.2.4], where we let

i � j = (i · j)`i`j, for all i, j ∈ I.

Note that if ` is odd, then (I, �) is a super Cartan datum with the same parity decomposition

I = I0 ∪ I1 as for (I, ·) by Lemma 3.4; if ` is even, then (I, �) is a (non-super) Cartan datum

with I1 = ∅.

We shall write Y �, X� in this paper what Lusztig [Lu94, 2.2.5] denoted by Y ∗, X∗ respec-

tively, and we will use superscript � in related notation associated to (Y �, X�, I, �) below.

More explicitly, we set X� = {ζ ∈ X|〈i, ζ〉 ∈ `iZ, for all i ∈ I} and Y � = HomZ(X�,Z) with

the obvious pairing. The embedding I ↪→ X� is given by i 7→ i′� = `ii
′ ∈ X, while embedding

I ↪→ Y � is given by i 7→ i� ∈ Y � whose value at any ζ ∈ X� is 〈i, ζ〉/`i. It follows that

〈i�, j′�〉 = 2i � j/i � i.

If ` is odd, then (Y �, X�, · · · ) is a new super root datum satisfying (a)-(d) above and in

addition the bar-consistency condition (e). Indeed, we have 2 i�j
i�i = 2 i·j

i·i
`j
`i
∈ 2Z by Lemma 3.4,

whence (d), and i�i
2

= i·i
2
`2
i ≡ p(i) mod 2 by Lemma 3.4, whence (e). If ` is even, then

(Y �, X�, · · · ) is a new (non-super) root datum just as in [Lu94, 2.2.5].

The algebras ′f�, f� and Rf
� are de�ned in the same way as f using the Cartan datum (I, �),

and the algebra U� is de�ned in the same way as U based on the root datum (Y �, X�, ...).
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The algebra U̇�

The algebra U̇� is de�ned in the same way as U̇ using U� and (Y �, X�, ...), and so it also has

an Aπ-form AU̇
� and we can de�ne RU̇

� = Rπ ⊗Aπ AU̇�.

Remark 3.5. If ` is even, then Rf
� is a (non-super) algebra; if ` is odd, then the θi in Rf

� and

Rf for any given i have the same parity.

For i ∈ I, we denote

q�i = qi�i/2 = q
`2i
i , q�i = qi�i/2 = q

`2i
i , π�i = πi�i/2 = π

`2i
i . (3.6)

Lemma 3.6. Let i ∈ I1.

(a) If ` is odd, then π�i = πi.

(b) If ` is even, then π�i = 1.

Proof. Recall from Lemma 3.4 that `i must have the same parity as `. The claim on π�i follows

now from (3.6).

For each i ∈ I, we have

π�i q
�2
i = (πiq

2
i )
`2i = 1. (3.7)

Following Lusztig [Lu94], we will refer to the quantum supergroup Rf
� associated to (Y �, X�, · · · )

as quasi-classical; cf. (3.7).

Proposition 3.7. Let R be the fraction �eld of A′. The quasi-classical algebra Rf
� is isomor-

phic to ˜
Rf�, the R

π-algebra generated by θi, i ∈ I, subject to the super Serre relations:

∑
n+n′=1−〈i,j′〉�

(−1)n
′
(π�i )

np(j)+(n2)θ
(n)
i θjθ

(n′)
i = 0 (i 6= j ∈ I).

Proof. When πi = 1 or ` is even, π�i = 1 and q�i = ±1 for each i ∈ I. Hence, in this case the

lemma reduces to [Lu94, �33.2].
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Now let ` be odd and π = −1. We make use of the weight-preserving automorphism Ψ̇ of

RU̇
� (called a twistor) given in [CFLW, Theorem 4.3] when the base ring contains

√
−1. We

will only recall the basic property of Ψ̇ which we need, and refer to [CFLW] for details. Note

that for all i ∈ I, q�i is a power of
√
−1 with at least one of the q�i = ±

√
−1. Thus, ±

√
−1

will play the role played by the v in [CFLW, Theorem 4.3], which we will denote by ṽ in this

proof so as not to confuse it with the v de�ned in this paper. Recall Ψ̇ takes π to −π and ṽ

to
√
−1ṽ. When we specialize π = −1 and ṽ = ±

√
−1, we obtain an R-linear isomorphism of

that specialization of RU̇
�, denoted by RU̇

�|−1, with the (quasi-classical) modi�ed quantum

group corresponding to the specialization π = 1 and q�j = ±1, denoted by RU̇
�|1.

Write

. R−1f for the half quantum (super)group over R corresponding to the former (i.e., π = −1);

. R1f
� for the half (quasi-classical) quantum group over R corresponding to the latter (i.e.,

π = 1); cf. [Lu94, 33.2].

Recall that Rf
� is a direct sum of �nite-dimensional weight spaces Rf

�
ν , where ν ∈ Z≥0[I].

The weight-preserving isomorphism Ψ̇ above implies that

dimRπ(Rf
�
ν ) = dimR(R−1f

�
ν ) = dimR R1f

�
ν , for all ν.

As R1f
� is quasi-classical in the sense of [Lu94, 33.2], we have dimR R1f

�
ν = dimR R1fν for all ν,

by [Lu94, 33.2.2], where R1f is the enveloping algebra of the half KM algebra over R. Hence

we have

dimRπ(Rf
�
ν ) = dimR(R1fν), for all ν. (3.8)

Since the super Serre relations hold in Rf
� (cf. [CHW13, Proposition 1.7.3]) we have a

surjective algebra homomorphism ϕ : ˜
Rf� −→ Rf

� mapping θi 7→ θi for all i. Then ϕ maps

each weight space Rf̃
�
ν onto the corresponding weight space Rf

�
ν . As ˜

Rf� has a Serre-type
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presentation by de�nition, it follows by [KKO14, CHW14] that dimRπ(Rf̃ν) = dimR(R1fν) for

each ν. This together with (3.8) implies that dimRπ(Rf̃ν) = dimRπ(Rf
�
ν ). Therefore ϕ is a

linear isomorphism on each weight space and thus an isomorphism.

An analogue of Lusztig's Lemma 35.1.5

Below we provide an analogue of [Lu94, 35.1.5], which is a relation for (q, π)-binomial terms

when the arguments are divisible by `i.

Lemma 3.8. Assume that both n ∈ Z and t ∈ N are divisible by `i. Thenn
t


qi,πi

=

n/`i
t/`i


q�i ,π

�
i

.

(Setting π = 1 in the above formula recovers [Lu94, 35.1.5].)

Proof. By Lemma 3.1(b), we have

n
t


qi,πi

= π
t(n−(t−`i)/2)
i q

t(n+`i)
i

(
n/`i
t/`i

)
.

Note that π�i q
�
i

2 = (πq2)
i·i
2
`2i . Since (πq2)2` = 1 and ` divides i·i

2
`2
i by the de�nition of `i, we

have (π�i q
�
i

2)2 = 1. Hence by (3.6) and Lemma 3.1(b) with ` = 1 we have

n/`i
t/`i


q�i ,π

�
i

= π
t(n−(t−`i)/2)
i q

t(n+`i)
i

(
n/`i
t/`i

)
.

The lemma follows.
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Chapter 4

A Frobenius-Lusztig homomorphism

We now establish a Frobenius-Lusztig homomorphism between the quasi-classical covering

group and the quantum covering group at roots of 1, extending results in [Lu94, �35]. We also

formulate a Lusztig-Steinberg tensor product theorem in this setting.

Assumptions

Following [Lu94, 35.1.2], in this and following sections we shall impose the following assump-

tions:

(a) for any i 6= j ∈ I with `j ≥ 2, we have `i ≥ −〈i, j′〉+ 1.

(b) (I, ·) has no odd cycles.

4.1 A generating theorem for the Rπ-superalgebra Rf

We will prove below a generalization of [Lu94, Theorem 35.1.8].

Theorem 4.1. There is a unique Rπ-superalgebra homomorphism

Fr′ : Rf
� −→ Rf , Fr′(θ

(n)
i ) = θ

(n`i)
i ( for all i ∈ I, n ∈ Z>0).
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(Be aware that the two θi's above belong to di�erent algebras and hence are di�erent.

Theorem 4.1 is consistent with Remark 3.5.)

The rest of the section is devoted to a proof of Theorem 4.1. The same remark as in [Lu94,

35.1.11] allows us to reduce the proof to the case when R is the quotient �eld of A′, which we

will assume in the remainder of this and the next section.

Recall from (3.3) that π`q2` = 1 and πtq2t 6= 1 for 0 < t < `. By the de�nition of `i, we

have π`iq
2`
i = 1 and πtiq

2t
i 6= 1 for 0 < t < `i. Then [t]πqi ! is invertible in R

π, for 0 < t < `i.

The following is an analogue of [Lu94, Lemma 35.2.2] and the proof uses now Lemmas 3.1

and 3.2.

Lemma 4.2. The Rπ-superalgebra Rf is generated by the elements θ
(`i)
i for all i ∈ I and the

elements θi for i ∈ I with `i ≥ 2.

Proof. By de�nition the algebra Rf is generated by θ
(n)
i for all i ∈ I and n ≥ 0. We can write

n = a+ `ib, for 0 ≤ a < `i and b ∈ N. We note the following three identities in Rf :

θ
(a+`ib)
i = q`iabi θ

(a)
i θ

(`ib)
i , (4.1)

θ
(a)
i = [a]−1

qi,πi
θai , (4.2)

θ
(`ib)
i = (b!)−1(πiqi)

−`2i (
b
2)(θ

(`i)
i )b, (4.3)

where (4.1) follows by Lemma 3.1 and (4.3) follows by Lemma 3.2, respectively. (Note that a

sign in the power of vi in the identity (b) in [Lu94, proof of Lemma 35.2.2] is optional, but

the sign cannot be dropped from the power of qi in (4.3).) The lemma follows.

Proof of Theorem 4.1

The uniqueness part is clear.
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By Lemma 3.2 (with ` = 1), we have

[n]!q�i ,π�i = (πiqi)
`2i (

n
2)n!. (4.4)

We �rst observe that the existence of a homomorphism Fr′ such that Fr′(θi) = θ
(`i)
i implies

that Fr′(θ
(n)
i ) = θ

(n`i)
i for all n ≥ 0. Indeed, using (4.3)-(4.4) we have

Fr′(θ
(n)
i ) = ([n]q�i ,π�i !)

−1Fr′(θi)
n =

(
(πiqi)

`2in(n−1)/2n!
)−1

Fr′(θi)
n = θ

(n`i)
i .

Hence it remains to show that there exists an algebra homomorphism Fr′ : Rf
� → Rf such

that θi → θ
(`i)
i , for all i ∈ I. By Proposition 3.7 (also cf. [CHW13]), the algebra Rf

� has the

following de�ning relations:

∑
n+n′=1−〈i,j′〉�

(−1)n
′
(π�i )

np(j)+(n2)θ
(n)
i θjθ

(n′)
i = 0 (i 6= j ∈ I).

By (4.4) it su�ces to check the following identity in Rf : for i 6= j ∈ I,

∑
n+n′=1−〈i,j′〉`j/`i

(−1)n
′
π
`2i (np(j)+n(n−1)/2)
i (πiqi)

−`2i (
n
2)(πiqi)

−`2i (
n′
2 ) (θ

(`i)
i )n

n!
θ

(`j)
j

(θ
`i)
i )n

′

n′!
= 0,

which, by the identity (4.3), is equivalent to checking the following identity in Rf :

∑
n+n′=1−〈i,j′〉`j/`i

(−1)n
′
π
`2i (np(j)+n(n−1)/2)
i θ

(`in)
i θ

(`j)
j θ

(`in
′)

i = 0. (4.5)

It remains to prove (4.5). Set α = −〈i, j′〉. For any 0 ≤ t ≤ `i − 1, we set

gt =
∑
r,s

r+s=`jα+`i−t

(−1)rπ
`jrp(j)+r(r−1)/2
i q

r(`i−1−t)
i θ

(r)
i θ

(`j)
j θ

(s)
i ∈ Af .

This is basically f ′i,j;`j ,`jα+`i−t in [CHW13, 4.1.1(d)] in the notation of θ's. By the higher super
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Serre relations (see [CHW13, Proposition 4.2.4] and [CHW13, 4.1.1(e)]), we have gt = 0 for

all 0 ≤ t ≤ `i − 1. Set

g =

`i−1∑
t=0

(−1)tπ
t(t−1)/2
i q

`jαt+`it−t
i gtθ

(t)
i ,

which must be 0. On the other hand, setting s′ = s+ t, we have

(0 =) g =
∑
r,s′

r+s′=`jα+`i

cr,s′θ
(r)
i θ

(`j)
j θ

(s′)
i , (4.6)

where

cr,s′ =

`i−1∑
t=0

(−1)r+tπ
`jrp(j)+r(r−1)/2+t(t−1)/2
i q

r(`i−1−t)+`jαt+`it−t
i

s′
t


qi,πi

.

Taking the image of the identity (4.6) under the map Af → Rf , we have

∑
r,s′

r+s′=`jα+`i

φ(cr,s′)θ
(r)
i θ

(`j)
j θ

(s′)
i = 0 ∈ Rf .

For a �xed s′, we write s′ = a + `in, where a, n ∈ Z and 0 ≤ a ≤ `i − 1. Note by

Lemma 3.1(c) that

s′
t


qi,πi

= q−`inti

a
t


qi,πi

. Now using r + s′ = `jα + `i we compute

φ(cr,s′) = (−1)rq
r(`i−1)
i

`i−1∑
t=0

(−1)tπ
`jrp(j)+r(r−1)/2+t(t−1)/2
i q

t(s′−1)−`int
i

a
t


qi,πi

= (−1)rq
r(`i−1)
i

a∑
t=0

(−1)tπ
`jrp(j)+r(r−1)/2+t(t−1)/2
i q

t(a−1)
i

a
t


qi,πi

(a)
= δa,0(−1)`jα+`i−`inπ

`jrp(j)+r(r−1)/2
i q

(`i−1)(`jα+`i−`in)
i

(b)
= δa,0(−1)α`j/`i+1−nπ

`jrp(j)+r(r−1)/2−r(`i−1)/2
i . (4.7)
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The identity (a) above follows by the identity
∑a

t=0(−1)tπ
t(t−1)/2
i q

t(a−1)
i

a
t


qi,πi

= δa,0 (see

[CHW13, 1.4.4]), and (b) follows by the identity π
(`i−1)`i/2
i q

`2i−`i
i = (−1)`i+1 (which is an

i-version of (3.5) with the help of π`ii q
2`i
i = 1).

Inserting (4.7) into (4.6) and comparing with (4.5), we reduce the proof of (4.5) to veri-

fying that π
`2i (np(j)+n(n−1)/2)
i = π

`j`inp(j)+`in(`in−1)/2−`in(`i−1)/2
i , which is equivalent to verifying

π
`2inp(j)
i = π

`j`inp(j)
i . The latter identity is trivial unless both i and j are in I1; when both i and

j are in I1, the identity follows from Lemma 3.4. Therefore, we have proved (4.5) and hence

Theorem 4.1.

4.2 A Lusztig-Steinberg tensor product theorem

First, as set-up, we develop in this subsection the analogue of [Lu94, 35.3]; recall we are still

working under the assumption that R is the quotient �eld of A′.

Proposition 4.3. Let λ ∈ X�, i.e., 〈i, λ〉 ∈ `iZ for all i ∈ I. Let M denote the simple highest

weight module with highest weight λ in the category of Rπ-free weight U-modules, and let η be

a highest weight vector of Mλ.

(a) If ζ ∈ X satis�es M ζ 6= 0, then ζ = λ −
∑

i `inii
′, where ni ∈ N. In particular,

〈i, ζ〉 ∈ `iZ for all i ∈ I.

(b) If i ∈ I is such that `i ≥ 2, then Ei, Fi act as zero on M .

(c) For any r ≥ 0, let M ′
r be the subspace of M spanned by F

(`i1 )

i1
F

(`i2 )

i2
. . . F

(`ir )
ir

η for various

sequences i1, i2, . . . , ir in I. Let M
′ =
∑

rM
′
r. Then M

′ = M .

Proof. The proof is completely analogous to [Lu94]. All computations are similar except that

we are now working over Rπ instead of R; and the results follow from Lemma 3.1, [CHW13,

(4.1) and Proposition 4.2.4], and Lemma 4.2.
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First, we show that

(d) EiM
′
r = 0, FiM

′
r = 0 for any i ∈ I such that `i ≥ 2,

which is similarly proved by induction on r ≥ 0. The base case r = 0 follows from the fact that〈i, λ〉
t


qi,πi

= 0 since λ ∈ X� (using Lemma 3.1) and the fact that E
(n)
j Fiη is an Rπ-linear

combination of FiE
(n)
j and E

(n−1)
j . For the inductive step, we want to show that EiF

(`j)
j m = 0

and FiF
(`j)
j m = 0 for any i, j ∈ I such that `i ≥ 2 and any m ∈ M ′

r−1ζ. For the �rst one

we use the fact that EiF
(`j)
j m is an Rπ-linear combination of F

(`j)
j Eim and F

`j−1
j in the case

`j ≥ 2, and for `j = 1 we again use

〈i, λ〉
t


qi,πi

= 0 from Lemma 3.1. For the second one, we

may use [CHW13, (4.1) and Proposition 4.2.4] to write FiF
(`j)
j m as a Rπ-linear combination

of F
(`j−r)
j FiF

(r)
j m for various r with 0 ≤ r < `j, and for such r we have FiF

(r)
j m = 0 by the

induction hypothesis.

Next, we may show by induction on r ≥ 0 that

(e) E
(li)
i M ′

r ⊂M ′
r−1 for any i ∈ I,

(by convention M ′
−1 = 0); again for m′ ∈ M ′

r−1 we can use the fact that E
(li)
i F

(`j)
j m′ is an

Rπ-linear combination of F
(`j)
j E

(`i)
i m′ (which is in M ′

r−1 by the induction hypothesis), and

elements of the form F
(`j−t)
j E

(`i−t)
i m′ with t > 0 and t ≤ `i, t ≤ `j (which as before are zero if

t < `i or if t = `i and t < `j, by (d), and are in M ′
r−1 if t = `i = `j).

The statements (d), (e) together with Lemma 4.2 show that
∑

rM
′
r is an RU̇-submodules

of M , and by simplicity of M it follows that M =
∑

rM
′
r, from which (a) and (b) also

follow.

Corollary 4.4. There is a unique weight RU̇
�-module structure on M (as in Proposition 4.3)

in which the ζ-weight space is the same as that in the RU̇
�-modules M , for any ζ ∈ X� ⊂ X,

and such that Ei, Fi ∈ Rf
� act as E

(`i)
i , F

(`i)
i ∈ Rf . Moreover, this is a simple (Rπ-free) highest

weight module for RU̇
� with highest weight λ ∈ X�.
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Proof. We de�ne operators ei, fi : M → M for i ∈ I by ei = E
(`i)
i , fi = F

(`i)
i . Using

Theorem 4.1 we see that ei and fi satisfy the Serre-type relations of Rf
�.

If ζ ∈ X \X� we have M ζ = 0 by Proposition 4.3(a) above. If ζ ∈ X� and m ∈M ζ , then

we have that (eifj − fjei)(m) is equal to δi,j

〈i, λ〉
`i


qi,πi

·m plus an Rπ-linear combination of

elements of the form F `i−t
i E`i−t

i (m) with 0 < t < `i (this follows by [Cl14, Lemma 4]) which

are zero by Proposition 4.3(b). Since 〈i, ζ〉 ∈ `iZ, we see from Lemma 3.8 that

〈i, λ〉
`i


qi,πi

=

〈i, λ〉/`i
1


q�i ,π

�
i

and so (eifj − fjei)m = δi,j[〈i, λ〉/`i]q�i ,π�i · m. We also have that ei(M
ζ) ⊂ M ζ+`ii

′
and

fi(M
ζ) ⊂ M ζ−`ii′ . Thus, we have a unital RU̇

�-module structure on M , and by Proposition

4.3(c) this is a highest weight module of RU̇
� with highest weight λ and simplicity also follows

using Lemma 4.2 in the same argument as in [Lu94].

Now we are ready to state our analogue of the main result of [Lu94, 35.4] on a tensor

product decomposition. Let f be the R-subalgebra of Rf generated by the elements θi for

various i such that `i ≥ 2. We have f = ⊕νfν where f = Rfν ∩ f.

Theorem 4.5 (Lusztig-Steinberg tensor product theorem). The Rπ-linear map

χ : Rf
� ⊗R f→ Rf , x⊗ y 7→ Fr′(x)y

is an isomorphism of Rπ-modules.

Proof. First, we make the following statement which is similar to (but slightly less precise

than) [Lu94, 35.4.2(a)].

Claim. For any i ∈ I and y ∈ fν , there exists some a(y), b(y) ∈ Z such that the di�erence

θ
(`i)
i y − πa(y)

i q
b(y)
i yθ

(`i)
i belongs to f.
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For y = y′y′′ one easily reduces the Claim to the same type of claim for y′ and y′′. Hence

it su�ces to show this Claim when y is a generator of f i.e. y = θj where `j ≥ 2. Recall our

assumption (a) in �4 that `i ≥ −〈i, j′〉 + 1. Hence, we may use the higher Serre relation in

[CHW13, (4.1) and Proposition 4.2.4] (but with θi's instead of Fi's) to show that for some

a(j), b(j), the di�erence θ
(`i)
i θj−πa(j)

i q
b(j)
i θjθ

(`i)
i is an Rπ-linear combination of products of the

form θ
(r)
i θjθ

(`i−r)
i with 0 < r < `i, which are contained in f by de�nition. The Claim is proved.

By Lemma 4.2, Rf is generated by θ
(`i)
i and θj with `j ≥ 2. The surjectivity of χ follows

as the Claim allows us to move factors θj to the right which produces lower terms in f.

The injectivity is proved by exactly the same argument as in [Lu94, 35.4.2] using now

Proposition 4.3 and Corollary 4.4; the details will be skipped.

The following is an analogue of [Lu94, Proposition 35.4.4], which follows by the same

argument now using the anti-involution σ of Rf which �xes each θi (cf. [CHW13, �1.4]). We

omit the detail to avoid much repetition.

Proposition 4.6. Assume that the root datum is simply connected. Then, there is a unique

λ ∈ X+ such that 〈i, λ〉 = `i − 1 for all i. Let η be the canonical generator of RV (λ). The

map x 7→ x−η is an Rπ-linear isomorphism f −→ RV (λ).

4.3 The Frobenius-Lusztig homomorphism

The following is a generalization of [Lu94, Theorem 35.1.7]. As with Theorem 4.1, we may

reduce the proof to the case when R is the quotient �eld of A′ (cf. [Lu94, 35.1.11]).

Theorem 4.7. There is a unique Rπ-superalgebra homomorphism Fr : Rf −→ Rf
� such that,

for all i ∈ I, n ∈ N,

Fr(θ
(n)
i ) =


θ

(n/`i)
i , if `i divides n,

0, otherwise.
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(We call Fr the Frobenius-Lustig homomorphism.)

Proof. The proof proceeds essentially like that of [Lu94, Theorem 35.1.7]. Uniqueness is clear;

we need only prove the existence. By Theorem 4.5, there is an Rπ-linear map P : Rf −→ Rf
�,

such that for all ik ∈ I and for jp ∈ I where `jp ≥ 2

P (θ
(`i1 )

i1
...θ

(`in )
in

θj1 ...θjr) =


θi1 ...θin , if r = 0,

0, otherwise.

We now check that P is a homomorphism of Rπ-algebras. Because Rf is generated as an

Rπ-module by elements of the form x = θ
(`i1 )

i1
...θ

(`in )
in

θj1 ...θjr , we need to check that for any

such x,

P (xθj) = P (x)P (θj) (4.8)

for j ∈ I such that `j ≥ 2 and

P (xθ
(`i)
i ) = P (x)P (θ

(`i)
i ) (4.9)

for all i ∈ I. As (4.8) is obvious, we will concern ourselves with (4.9). Note that (4.9) is clear

when r = 0. Assume now r > 0. Let us write x′ = θ
(`i1 )

i1
...θ

(`in )
in

θj1 ...θjr−1 and θj = θjr so that

x = x′θj. For i = j, we have P (x)P (θ
(`i)
i ) = 0 and

P (xθ
(`i)
i ) = P (x′θiθ

(`i)
i ) = P (x′θ

(`i)
i θi) = P (x′θ

(`i)
i )P (θi) = 0,

where the third equality is due to (4.8). Now suppose that i 6= j. As `i > −〈i, j′〉, we may

use the higher order Serre relations for quantum covering groups (cf. [CHW13, (4.1) and

Proposition 4.2.4]) to write θjθ
(`i)
i as a linear combination of terms of the form θ

(m)
i θjθ

(n)
i

where m+ n = `i and m ≥ 1. Because of (4.2) and (4.8), P (x′θ
(m)
i θjθ

(n)
i ) = 0 for 1 ≤ m < `i,

and P (x′θ
(`i)
i θj) = 0.
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Now that we know that P is an Rπ-algebra homomorphism, it remains to compute P (θ
(n)
i )

for all n ∈ Z≥0. Write n = b`i + a, where 0 ≤ a < `i and b ∈ Z≥0. Using (4.1), (4.2) and (4.3),

for a > 0 we have

P (θ(b`i+a)) = q`iabi P (θ
(a)
i )P (θ

(b`i)
i ) = q`iabi ([a]!qi,πi)

−1P (θai )P (θ
(b`i)
i ) = 0.

Similarly, for a = 0 we have

P (θ
(b`i)
i ) = (b!)−1(πiqi)

−`2i (
b
2)P (θ

(`i)
i )b

= (b!)−1(π�i q
�
i )
−(b2)θbi = ([b]!q�i ,π�i )

−1θbi = θ
(b)
i ,

where, in the third equality we used Lemma 3.2, with ` = 1. Hence, P is the desired homo-

morphism Fr.

A Frobenius-Lusztig homomorphism for RU̇

We extend the Frobenius-Lusztig homomorphism Fr : Rf −→ Rf
� in Theorem 4.7 to RU̇. In

contrast to the quantum group setting, we have to twist Fr slightly on one half of the quantum

covering group.

Theorem 4.8. There is a unique Rπ-superalgebra homomorphism Fr : RU̇ −→ RU̇
� such that

for all i ∈ I, n ∈ Z, λ ∈ X,

Fr(E
(n)
i 1λ) =


π

(`i2)n/`i
i E

(n/`i)
i 1λ, if `i divides n and λ ∈ X�,

0, otherwise

(4.10)
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and

Fr(F
(n)
i 1λ) =


F

(n/`i)
i 1λ, if `i divides n and λ ∈ X�,

0, otherwise.

(We also call Fr in this theorem the Frobenius-Lustig homomorphism.)

Proof. Let Fr : Rf −→ Rf
� be the homomorphism from Theorem 4.7. Consider the homomor-

phism F̃r = ψ◦Fr, where ψ : Rf
� −→ Rf

� is the algebra automorphism such that θ
(n)
i 7→ πni θ

(n)
i .

The proof, much like that of [Lu94, Theorem 35.1.9], amounts to checking that for x, x′ ∈ Rf

the assignment

x+1λx
′− 7→ F̃r(x+)1λFr(x

′−), x−1λx
′+ 7→ Fr(x−)1λF̃r(x′+),

for λ ∈ X�, and

x+1λx
′− 7→ 0, x−1λx

′+ 7→ 0,

for λ ∈ X\X� satis�es the the appropriate relations. These are the relations of Lemma 2.3 for

RU̇ and for RU̇
�, using Lemma 3.8 to deal with the (q, π)-binomial coe�cients. The use of

the homomorphism F̃r (in place of Fr) on U+ is necessitated by the �rst and second relations

in Lemma 2.3. Both sides of the �rst relation are mapped to zero by Fr unless N,M ∈ `iZ
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and λ ∈ X�, so we focus on this case. Recalling q�i , π
�
i from (3.6), we have

Fr

∑
t≥0

π
MN−(t+1

2 )
i F

(M−t)
i

M +N + 〈i, λ〉

t


qi,πi

1λ+(M+N−t)i′E
(N−t)
i


=
∑
t≥0

π
MN−(t+1

2 )
i Fr(F

(M−t)
i )

M +N + 〈i, λ〉

t


qi,πi

1λ+(M+N−t)i′Fr(E
(N−t)
i )

=
∑

t≥0,t∈`iZ

(π�i )
(M/`i)(N/`i)−(t/`i+1

2 )π
t/`i(`i2)
i F

((M−t)/`i)
i

(M +N + 〈i, λ〉)/`i

t/`i


q�i ,π

�
i

· 1λ+(M+N−t)i′π
(N−t)/`i(`i2)
i E

((N−t)/`i)
i

= π
N/`i(`i2)
i

∑
t≥0,t∈`iZ

(π�i )
(M/`i)(N/`i)−(t/`i+1

2 )F
((M−t)/`i)
i

(M +N + 〈i, λ〉)/`i

t/`i


q�i ,π

�
i

· 1λ+(M+N−t)i′E
((N−t)/`i)
i

= π
N/`i(`i2)
i E

(N/`i)
i 1λF

(M/`i)
i

= Fr
(
E

(N)
i 1λF

(M)
i

)
,

where we have used π
−(t+1

2 )
i = (π�i )

−(t/`i+1
2 )π

t/`i(`i2)
i and Lemma 3.8 in the second equality above.

The veri�cation of the second relation of Lemma 2.3 is entirely similar, and the other

relations therein are straightforward.
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Chapter 5

Small quantum covering groups

In this chapter, we construct the small quantum covering group Ru and study its structure.

We end this part by giving a dimension formula for small quantum covering groups of �nite

type. Here, we take Rπ = Q(q)π, where q is as in (3.2).

5.1 De�nition and structure

Let Ru̇ be the subalgebra of RU̇ generated by Ei1λ and Fi1λ for all i ∈ I with `i ≥ 2 and

λ ∈ X. It is clear then, that Ru̇ is spanned by terms of the form x+1λx
′− where x, x′ ∈ f.

We follow the construction of [Lu94, �36.2.3] in extending RU̇ to a new algebra RÛ. Any

element of RU̇ can be written as a sum of the form
∑

λ,µ∈X xλ,µ where xλ,µ ∈ 1λRU̇1µ is zero

for all but �nitely many pairs λ, µ. We relax this condition in RÛ by allowing such sums to

have in�nitely many nonzero terms provided that the corresponding λ− µ are contained in a

�nite subset of X. The algebra structure extends in the obvious way. We de�ne Rû to be the

subalgebra of RÛ with xλ,µ ∈ 1λRu̇1µ.

Let 2˜̀be the smallest positive integer such that q2˜̀
= 1. Hence, ˜̀= 2` for ` odd and ˜̀= `
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for ` even. We de�ne the cosets

ca = {λ ∈ X | 〈i, λ〉 ≡ ai (mod 2˜̀), for all i ∈ I}, (5.1)

for a = (ai|i ∈ I) with 0 ≤ ai ≤ 2˜̀− 1. Note that there are at most (2˜̀)|I| such cosets and

they partition X. Moreover, for each coset c, 1c :=
∑

λ∈c 1λ is an element of Rû.

Let Ru (resp. Ru
′) be the Rπ-submodule of Rû generated by the elements x+1cx

′− (resp.

x−1cx
′+) where x, x′ ∈ f. The following is an analogue of [Lu94, Lemma 36.2.4].

Lemma 5.1. 1. For any u ∈ Ru and 0 ≤M ≤ `i − 1, F
(M)
i u lies in Ru.

2. We have Ru = Ru
′, and Ru is a subalgebra of Rû.

The algebra Ru is called the small quantum covering group.

Proof. We follow the proof in [Lu94]. We prove the �rst statement by induction on p, where

our u = E
(n1)
i1

...E
(np)
ip

x′−. The result is obvious for p = 0, so we now consider p ≥ 1 and rewrite

u as

u = 1c′E
(n1)
i1

x+
1 x
′−

where x1 = θ
(n2)
i2

...θ
(np)
ip

. When i 6= i1, the result is immediate, so we consider i = i1. In that

case, using the relations of Lemma 2.3, we have

F
(M)
i u =

∑
λ∈c′

∑
t≤n1,t≤M

π
MN+t〈i,λ〉−(t2)
i

n1 +M − 〈i, λ〉

t


qi,πi

· E(a1−t)
i 1λ−(n1+M−t)i′F

(M−t)
i x+

1 x
′−.

Fix µ ∈ c′. Then for any λ ∈ c′, n1 +M −〈i, λ〉 ≡ n1 +M −〈i, µ〉 mod(`i). Using Lemma
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3.1 and noting that t < `i, we have thatn1 +M − 〈i, λ〉

t


qi,πi

= q
−`it(〈i,λ〉−〈i,µ〉)
i

n1 +M − 〈i, µ〉

t


qi,πi

=

n1 +M − 〈i, µ〉

t


qi,πi

,

where we used in the second equality the condition that 〈i, λ〉 − 〈i, µ〉 ≡ 0 mod(2˜̀). Hence,

F
(M)
i u is equal to

∑
t≤n1,t≤M

π
MN+t〈i,µ〉−(t2)
i

n1 +M − 〈i, µ〉

t


qi,πi

E
(a1−t)
i (

∑
λ∈c′

1λ−(n1+M−t)i′)F
(M−t)
i x+

1 x
′−

=
∑

t≤n1,t≤M

π
MN+t〈i,µ〉−(t2)
i

n1 +M − 〈i, µ〉

t


qi,πi

E
(a1−t)
i 1c′′F

(M−t)
i x+

1 x
′−,

for some other c′′. Hence, F
(M)
i u ∈ Ru by induction. Finally, the second statement is shown

by repeated application of this result as in [Lu94, Lemma 36.2.4].

Hopf structure

Recall there are a comultiplication ∆ and an antipode S on U as de�ned in [CHW13, Lem-

mas 2.2.1, 2.4.1]. Write λUµ for the subspace of RU̇ spanned by elements of the form 1λx1µ,

where x ∈ RU and write pλ,µ for the canonical projection RU → λUµ. As in [Lu94, 23.1.5,

23.1.6], ∆ and S induce Rπ-linear maps

∆λ,µ,λ′,µ′ : λ+λ′Uµ+µ′ −→ λUµ ⊗ λ′Uµ′
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given by ∆λ,µ,λ′,µ′(pλ+λ′,µ+µ′(x)) = (pλ,µ ⊗ pλ′,µ′)(∆(x)), for λ, µ, λ′, µ′ ∈ X, and

Ṡ : RU̇ −→ RU̇

de�ned by Ṡ(1λx1µ) = 1−µS(x)1−λ for x ∈ RU. For example, ∆(Ei) = Ei ⊗ 1 + J̃iK̃i ⊗Ei in

RU, and hence we obtain

∆λ−ν+i′,λ−ν,ν,ν(Ei1λ) = pλ−ν+i′,λ−ν ⊗ pν,ν(Ei ⊗ 1 + J̃iK̃i ⊗ Ei) = Ei1λ−ν ⊗ 1ν .

This collection of maps is called the comultiplication on RU̇, and it can be formally regarded

as a single linear map

∆̇ =
∏

λ,µ,λ′,µ′∈X

∆̂λ,µ,λ′,µ′ : RU̇ −→
∏

λ,µ,λ′,µ′∈X
λUµ ⊗ λ′Uµ′ .

A comultiplication ∆̇� on RU̇
� can be de�ned in the same way.

Proposition 5.2. The Frobenius-Lusztig homomorphism Fr is compatible with the comulti-

plications on RU̇ and RU̇
�, i.e., ∆̇� ◦ Fr = (Fr⊗ Fr) ◦ ∆̇.

(In the usual quantum group setting this was noted by [Lu94, 35.1.10].)

Proof. It su�ces to check on the generators E
(n)
i 1λ and F

(n)
i 1λ. Let n = m`i ∈ `iZ, and recall

that Fr(E
(m`i)
i 1λ) = π

(`i2)m
i E

(m)
i 1λ in RU̇

�. Using the formula (above [CHW13, Proposition

2.2.2])

∆(E
(m)
i ) =

∑
p+r=m

(πiqi)
prE

(p)
i (J̃iK̃i)

r ⊗ E(r)
i

we see that the nonzero parts in ∆̇�(Fr(E
(m`i)
i 1λ)) computed via (4.10) are of the form

π
(`i2)m
i (π�i q

�
i )

(p+〈i,ν〉�)rE
(p)
i 1ν ⊗ E(r)

i 1λ−ν , p+ r = m
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for various ν ∈ X�, which coincides with Fr⊗Fr applied to terms in ∆̇(E
(m`i)
i 1λ)) of the form

(πiqi)
(p`i+〈i,ν〉)(r`i)E

(p`i)
i 1ν ⊗ E(r`i)

i 1λ−ν , p+ r = m,

where we note there is a factor contributing from (4.10) which matches up with the previous

part thanks to π
(`i2)p+(`i2)r
i = π

(`i2)m
i ; the remaining terms are zero under Fr⊗ Fr since at least

one of the divided powers of Ei appearing in either tensor factor must be not divisible by `i.

On the other hand, if n is not divisible by `i, then the right hand side will also be zero,

since all the non-zero parts of ∆̇(E
(n)
i 1λ)) will have a tensor factor containing some divided

power of Ei not divisible by `i.

F
(n)
i 1λ can be veri�ed similarly.

The maps ∆̇ and Ṡ restrict to maps on Ru̇, which extend to Rπ-linear maps ∆̂ and Ŝ on

Rû in the obvious way. Henceforth, when we refer to ∆̂ and Ŝ we mean the restrictions to Ru.

Additionally, for any basis B of f consisting of weight vectors, with unique zero weight

element equal to 1, we de�ne an Rπ-linear map ê : Ru→ Rπ by:

ê(rb+b′−1ca) =


r, if b, b′ = 1 and a = 0,

0, otherwise.

where b, b′ ∈ B, r ∈ Rπ, and ca in (5.1).

De�ne the following elements:

Ki =
∑
λ∈X

q〈i,λ〉1λ, Ji =
∑
λ∈X

π〈i,λ〉1λ, 1 =
∑
λ∈X

1λ. (5.2)

Proposition 5.3.

1. The Rπ-algebra Ru has a generating set {Ei, Fi ( for all i with `i ≥ 2), Ki, Ji ( for all i ∈
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I)}.

2. (Ru, ∆̂, ê, Ŝ) forms a Hopf superalgebra.

Proof. The elements in (5.2) can be written as

Ki =
∑
c

qc,i1c, Ji =
∑
c

πc,i1c, 1 =
∑
c

1c,

where we have de�ned qc,i = q〈i,λ〉 and πc,i = π〈i,λ〉 for any λ ∈ c. This implies that these

elements are also in Ru. Moreover, we have

1c =
∏
i∈I

(2˜̀)−1(1 + πc,iJi)(1 + q−1
c,iKi + q−2

c,iK
2
i + ...+ q1−˜̀

c,i K
˜̀−1
i ).

This proves (1).

A direct computation using these generators shows that ∆̂, ê and Ŝ are given by the same

formulas as ∆, e and S, the former maps inherit the following properties of the latter: ∆̂ is a

homomorphism which satis�es the coassociativity (cf. [CHW13, Lemmas 2.2.1 and 2.2.3]), ê is

a homomorphism (cf. [CHW13, Lemma 2.2.3]), and Ŝ(xy) = πp(x)p(y)Ŝ(y)Ŝ(x) (cf. [CHW13,

Lemma 2.4.1]). Moreover, the image of ∆̂ (respectively, Ŝ) lies in Ru⊗ Ru (respectively, Ru).

Hence (2) holds.

5.2 Dimension formulas for �nite type

We consider the Cartan datum associated to the Lie superalgebra osp(1|2n), where n = |I|,

with the Dynkin diagram

© © . . . © © . . . © > •
1 2 n− 1 n
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where the black node denotes the (only) odd simple root. We set

i · i =


2, if i is odd,

4, if i is even.

The above Cartan datum on I is a super Cartan datum satisfying the bar-consistent condition

in the sense of �2.1.

Proposition 5.4. The small quantum covering group Ru of type osp(1|2n) is a �nite dimen-

sional Rπ-module. In particular,

dimRπ(Ru) =
`2n2

gcd(2, `)2n2−2n
(2˜̀)n =


`2n2

(4`)n, for ` odd,

`2n2

22n2−2n
(2`)n, for ` even,

when X is the weight lattice, and similarly,

dimRπ(Ru) =
`2n2

gcd(2, `)2n2−2n
2n−1 ˜̀n =


`2n2

22n−1`n, for ` odd,

`2n2

22n2−2n
2n−1`n, for ` even,

when X is the root lattice.

Proof. Note that Ru is a f⊗ fopp module with basis given by the 1c de�ned above. This basis

has at most (2˜̀)n elements for any X. In particular, it has (2˜̀)n elements when X is the

weight lattice, and 2n−1 ˜̀n elements when X is the root lattice, as the root lattice is index 2 in

the weight lattice. Moreover, by Proposition 4.6, we have that dimRπ(f±) = dimRπ(RV (λ)),

where λ is the unique weight such that 〈i, λ〉 = `i − 1 for each i ∈ I. Let V (λ)1 (respectively,

V (λ)−1) be the quotient of the Verma module of highest weight λ by its maximal ideal for the

quantum group (resp. quantum supergroup) to which the quantum covering group specializes

at π = 1 (respectively, π = −1) with base �eld R = Q(ε) (recall from �3.1 that ε is an `′-th
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root of unity). Because

RV (λ) = (π + 1)RV (λ)⊕ (π − 1)RV (λ) ∼= V (λ)1 ⊕ V (λ)−1

and the characters of V (λ)1 and V (λ)−1 coincide for dominant weights (cf. [KKO14], [CHW14,

Remark 2.5]), we have

dimRπ f
± = dimRπ RV (λ) = dimR V (λ)1 = dimR f±1 =

`n
2

gcd(2, `)n2−n

where f1 is the (non-super) half small quantum group, i.e., f specialized at π = 1. The last

equality is due to [Lu90b, Theorem 8.3(iv)].
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Part II

Quantum Symmetric Pairs for Quantum

Covering Groups
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Chapter 6

ıQuantum Covering Groups

We will open this chapter with a short overview of the role that ı-divided powers play for the

classical ıquantum groups. Then, we will de�ne the ıquantum covering groups and describe

their size and structure. We end by giving a change of parameters isomorphism, which is the

π-analogue of a construction in [CLW18] that was instrumental in streamlining the proof of

main result there.

6.1 ıQuantum groups and ı-divided powers

For a Drinfeld-Jimbo quantum group U with Chevalley generators Ei, Fi, K
±1
i , i ∈ I, we have

a familiar presentation, its Serre presentation, featuring the q-Serre relations among the Ei's

and Fi's. In terms of divided powers F
(n)
i = F n

i /[n]!qi (where [n]!qi are the quantum factorials,

which can be obtained from �3.1 by setting π = 1, cf. [Lu94]), the q-Serre relations among

the Fi's has a compact form: for i 6= j ∈ I,

1−aij∑
n=0

(−1)nF
(n)
i FjF

(1−aij−n)
i = 0. (6.1)

Let ∆ : U→ U⊗U comultiplication for the quantum group U.
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Quantum symmetric pairs (U,Uı), are deformations of classical symmetric pairs which

are de�ned using Satake diagrams, Dynkin diagrams with some nodes blackened and other

nodes connected in pairs by a diagram involution. The theory of quantum symmetric pairs

was systematically studied by Letzter forU of �nite type (cf. [Le99, Le02]) and in Kac-Moody

type the theory was further developed by Kolb [Ko14]. The ıquantum group Uı is a (right)

coideal subalgebra of U: it satis�es the property that ∆ : Uı → Uı ⊗U (the coideal property

). Main generators of Uı are de�ned in terms of generators of U using an embedding formula

cf. (6.6):

Bi = Fi + ςiEτiK̃
−1
i , for i ∈ I, (6.2)

where ς = (ςi)i∈I , are parameters.

A ıquantum group is called quasi-split (and respectively, split) if the underlying Satake

diagram contains no black node (respectively, is equipped with the trivial involution on the

Satake diagram). The origins of this terminology lie in the classical theory of real simple

Lie algebras. A quasi-split ıquantum group takes only the generalized Cartan matrix and a

diagram involution τ as its inputs. Examples of the split ıquantum groups were appeared

previously in the literature (cf., e.g., [T93, BasK05]) and are sometimes referred to as general-

ized q-Onsager algebras, cf. [BaB10]. We refer to [Ko14, Introduction, (1)] for more detailed

historical remarks.

In [CLW18], a Serre presentation with uniform relations for the quasi-split ıquantum groups

of Kac-Moody type with general parameters is formulated precisely, generalizing the work of

Letzter in �nite type and Kolb in Kac-Moody type for |aij| ≤ 3, cf. [Le02, Le03, Ko14]. A

centerpiece of the Serre presentation for Uı is the ı-Serre relations between Bi and Bj for

τi = i 6= j. These relations can be expressed with striking resemblance to the q-Serre relation

(6.1): for any �xed p ∈ Z2 = {0, 1},

1−aij∑
n=0

(−1)nB
(n)
i,aij+p

BjB
(1−aij−n)
i,p = 0, (6.3)
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where the ı-divided powers B
(m)
i,p are polynomials (compare Lusztig's divided powers, which are

monomials) in Bi which depend on a parity p arising from the parities of the highest weights

of highest weight U-modules when evaluated at the coroot hi. The ı-divided powers were

introduced in [BW18a] and studied further in [BeW18], and are canonical basis elements for

(the modi�ed form of) Uı in the sense of [BW18b]. Writing the ı-Serre relations (6.3) in terms

of ı-divided powers provided a uniform reformulation of complicated case-by-case relations for

the cases |aij| ≤ 3 in [Ko14, BaK19], which enabled the method of proof in [CLW18, �4].

A precise formulation of the Serre presentation enabled the formulation of a bar involution

on a general ıquantum group Uı, which was predicted in [BW18a]; it allows one to write down

the constraints that the parameters should satisfy, cf. [BaK15]. The bar involution on Uı is a

basic ingredient for the canonical basis for Uı [BW18b, BW18c]. The ıdivided powers are also

a key component in constructing the Frobenius-Lusztig homomorphism for ıquantum groups

at roots of unity in [BaS19].

6.2 De�nition and basic structure

Let (Y,X, 〈·, ·〉, · · · ) be a root datum of (super) type (I, ·). We call a permutation τ of the set

I an involution of the Cartan datum (I, ·) if τ 2 = id and τi · τj = i · j for i, j ∈ I. Note we

allow τ = id. We will always assume that τ extends to an involution on X and an involution

on Y (also denoted by τ), respectively, such that the perfect bilinear pairing is invariant under

the involution τ . The permutation τ of I induces an K(q)-algebra automorphism ofU, de�ned

by

τ : Ei 7→ Eτi, Fi 7→ Fτi, Kh 7→ Kτh, for all i ∈ I, h ∈ Y. (6.4)
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De�ne

Y ı = {h ∈ Y | τ(h) = −h}. (6.5)

Just as in [CLW18], in the remainder of this dissertation we will only consider the quasi-

split case (corresponding to Satake diagrams without black nodes).

De�nition 6.1. The quasi-split ıquantum group, denoted by Uı
ς or U

ı, is the K(q)-subalgebra

of U generated by

Bi := Fi + ςiEτiK̃
−1
i , J̃i (i ∈ I), Kµ (µ ∈ Y ı). (6.6)

Here the parameters

ς = (ςi)i∈I ∈ (K(q)×)I , (6.7)

are assumed to satisfy Conditions (6.8)�(6.10) below:

ςiqi = ςiqi if τi = i and aij 6= 0 for some j ∈ I \ {i}; (6.8)

ςi = ςτi if ai,τ i = 0; (6.9)

ςτi = πiq
−ai,τi
i ςi if ai,τ i 6= 0. (6.10)

The conditions on the parameters ensure that Uı admits a suitable bar involution (dis-

cussed in detail in Chapter 9). With the convention for the comultiplication as above, Uı is a

right coideal subalgebra of U, i.e., ∆ : Uı −→ Uı ⊗U. We also note here that in [Ko14] and

[CLW18] an additional set of parameters κi is considered; in the setting of quantum covering

groups the only interesting case (κi 6= 0 for some i ∈ I) exists in rank 2 (osp(1|4)), and its

Serre presentation is a straightforward generalization of the non-covering case. Thus, we can

omit any discussion of κi from our considerations in the following chapters.
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6.2.1 Structure and size of Uı

A few of the results on the structure and size of Uı are collected here (cf. the non-super case

in [Ko14, �5�6]). First, we de�ne the projections Pλ and πα,β similarly to [Ko14, �5.2]: by the

triangular decomposition [CHW13, Corollary 2.3.3],

U =
⊕
λ∈Y

U+UJKλS(U−),

where UJ = 〈Jµ |µ ∈ Y 〉 and S denotes the antipode of U. For any λ ∈ Y let

Pλ : U→ U+UJKλS(U−) (6.11)

denote the projection with respect to this decomposition.

Similarly, let

πα,β : U→ U+
αU

0U−−β (6.12)

denote the projection with respect to the decomposition

U =
⊕

α,β∈Y +

U+
αU

0U−−β.

Because the embedding formulas for the ıquantum covering groups follow the same form

as in [Ko14, (5.1)] (with X = ∅ and si = 0), we have the following technical lemma, proved

in the same way as in loc. cit.:

Lemma 6.2. Let α, β ∈ Q+. If πα,β(Fij(Bi, Bj)) 6= 0 then λij − α ∈ QΘ and λij − β ∈ QΘ.

Using this, we also have the following results about Uı:

Proposition 6.3. In U, we have Pλij(Fij(Bi, Bj)) = 0 for all i, j ∈ I.
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Proposition 6.4. In Uı, we have the relation

Fij(Bi, Bj) ∈
∑

{J∈J | wt(J)<λij}

U0′

ΘBJ for all i, j ∈ I. (6.13)

We now show that Uı has the same size as U−, cf [Ko14, �6.1�2]. For any multi-index

J = (j1, . . . , jn), de�ne wt(J) =
∑n

i=1 αj, and FJ = Fj1 . . . Fjn and BJ = Bj1 . . . Bjn , and

de�ne |J | = n. Let J be a �xed subset of
⋃
n∈N0

In such that {FJ | J ∈ J } is a basis of

U−, and hence a basis of U′ as a left U+U0′-module. De�ne a �ltration F∗ of U− by

Fn(U−) = span{FJ | J ∈ Im,m ≤ n} for all n ∈ N0. By the homogeneity of the (q, π)-Serre

relations (2.3), the set span{FJ | J ∈ J , |J | = n} forms a basis of Fn(U−). Then, we have

the following proposition, cf. [Ko14, Proposition 6.2]:

Proposition 6.5. The set {BJ | J ∈ J } is a basis of the left (or right) U+U0′-module Uı.

Proof. The argument is the same as the one in [Ko14, Proposition 6.2], which is much simpler

for X = ∅: for L ∈ In, one can obtain BL ∈
∑

J∈J U0′
ΘBJ by an induction on n = wt(L)

and using the (q, π)-Serre relations. We thus have that {BJ | J ∈ J } spans Uı. The fact

that {BJ | J ∈ J } is linearly independent follows from the speci�c form of the generators Bi

having `leading term' Fi and the triangular decomposition.

6.3 Change of parameters

In [CLW18] (also cf. [Ko14, Theorem 7.1]), a change-of-parameters isomorphism is used to give

a presentation of the ıquantum group Uı
ς,κ. In particular, it is shown that the K(q)-algebra

Uı
ς,κ (up to some �eld extension) is isomorphic to Uı

ς�,0 for some distinguished parameters ς�,

i.e., ς� = q−1
i for all i ∈ I such that τi = i (cf. [Le02], [Ko14, Proposition 9.2]). The same

argument carries over to the quantum covering setting:

For given parameters ς satisfying (6.8)�(6.10), let ς� be the associated distinguished pa-
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rameters such that ς�i = ςi if τi 6= i, and

ς�i = q−1
i , if τi = i. (6.14)

Let Uı
ς� be the ıquantum covering group with the parameters ς� = for all i ∈ I. Let F =

K(q)(ai | i ∈ I such that τi = i) be a �eld extension of K(q), where

ai =
√
qiςi, for all i ∈ I such that τi = i. (6.15)

Denote by FU
ı
ς = F⊗K(q) U

ı
ς the F-algebra obtained by a base change.

Proposition 6.6. There exists an isomorphism of F-algebras

φı : FU
ı
ς� −→ FU

ı
ς ,

Bi 7→

 Bi, if τi 6= i,

a−1
i Bi, if τi = i;

Kµ 7→ Kµ, ( for all i ∈ I, µ ∈ Y ı),

In particular, this enables us to use the formulas for ıπ-divided powers in the next section

free of unwieldy coe�cients.
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Chapter 7

ıπ-divided powers and expansion formulas

In this chapter we will de�ne the ıπ-divided powers, which are generalizations of the ı-divided

powers developed in [BeW18] to the quantum covering group setting. The ıπ-divided powers

can be thought of as a canonical basis for Uı in rank one, which is just a polynomial ring over

K(q)π. They can be written down explicitly in terms of the Chevalley generators for U; these

expansion formulas will turn out to be crucial in the following sections.

7.1 The algebras Uı and U̇ in rank one

Recall from [CHW13, 2.1] that the rank one quantum covering group U with a single odd

root i.e. type I = I1 = {1} is the K(q)π-algebra generated by E,F,K±1, J , subject to the

relations: KK−1 = K−1K = 1, and

JK = KJ, JE = EJ, JF = FJ, J2 = 1,

KEK−1 = q2EK, KFK−1 = q−2FK,

EF − πFE =
JK −K−1

πq − q−1
.

(7.1)
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The rank one ıquantum covering groupUı is generated as aK(q)π-algebra by a single generator

B = F + q−1EK−1.

Lemma 7.1. There is an anti-involution ς of the K-algebraU �xing the generators E,F,K±1, J

and sending q 7→ q−1.

Proof. We have

ς(KEK−1) = K−1EK = q−2E = ς(q2E), ς(KFK−1) = K−1FK = q2F = ς(q−2F ).

We also have

ς(EF − πFE) = FE − πEF =
JK −K−1

πq−1 − q
= ς

(
JK −K−1

πq − q−1
,

)

and so ς preserves all the relations in (7.1) (since J is central).

Note that ς([n]) = πn−1[n], and so ς[n]! = π(n2)[n].

The algebra U̇ in rank one

Denote by U̇ the modi�ed quantum group of osp(1|2), as the odd rank one case of �2.2.

Let AU̇ be the A-subalgebra of U̇ generated by E(n)1λ, F
(n)1λ,1λ, for all n ≥ 0 and λ ∈ Z.

There is a natural left action of U on U̇ such that K1λ = qλ1λ and J1λ = πλ1λ. Denote by

AU̇ev =
⊕
λ∈Z

AU̇12λ, AU̇odd =
⊕
λ∈Z

AU̇12λ−1.

We have AU̇ = AU̇ev ⊕ AU̇odd. By a base change we de�ne U̇ev and U̇odd accordingly so that

U̇ = U̇ev ⊕ U̇odd.
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7.2 Recursive de�nition and closed form formulas

We have the following generalizations of the formulas for ıdivided powers developed in [BeW18],

with the new additions of π and J highlighted in blue: the even ıπ-divided powers B
(n)

0
satisfy

and are in turn determined by the following recursive relations:

B ·B(2a−1)

0
= [2a]B

(2a)

0
,

B ·B(2a)

0
= [2a+ 1]B

(2a+1)

0
+ [2a]JB

(2a−1)

0
, for a ≥ 1.

(7.2)

where [n] := [n]q,π here denotes the (q, π)-integer; for the remainder of this section these

subscripts will be suppressed.

Analogously, the odd ıdivided powers B
(n)

1
satisfy (and are determined by) the following

recursive relations:

B ·B(2a)

1
= [2a+ 1]B

(2a+1)

1
,

B ·B(2a+1)

1
= [2a+ 2]B

(2a+2)

1
+ [2a+ 1]πJB

(2a)

1
, for a ≥ 0.

(7.3)

Solving these recursive formulas, we arrive at the following closed form formulas:

B
(2a)

0
=
B2(B2 − [2]2J) · · · (B2 − [2a− 4]2J)(B − [2a− 2]2J)

[2a]!
,

B
(2a+1)

0
=
B2(B2 − [2]2J) · · · (B2 − [2a− 2]2J)(B − [2a]2J)

[2a+ 1]!
, for a ≥ 0,

(7.4)

and

B
(2a)

1
=

(B2 − πJ)(B2 − π[3]2J) · · · (B − π[2a− 1]2J)

[2a]!
,

B
(2a+1)

1
=
B(B2 − πJ)(B2 − π[3]2J) · · · (B − π[2a− 1]2J)

[2a+ 1]!
, for a ≥ 0.

(7.5)

For example, B
(0)

0
= 1, B

(1)

0
= B, B

(2)

0
= B2/[2], and B

(3)

0
= B(B2 − J [2]2)/[3]!, and

B
(0)

1
= 1, B

(1)

1
= B,B

(2)

1
= (B2 − πJ)/[2] and B

(3)

1
= B(B2 − πJ)/[3]!.
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7.3 Expansion formulas

In this subsection we will formulate a number of useful expansion formulas for B
(n)

0
and B

(n)

1

in terms of the Chevalley generators for U, cf. [BeW18]. We set

Ě := q−1EK−1, h :=
K−2 − J
q2 − π

, B := Ě + F. (7.6)

De�ne, for a ∈ Z, n ≥ 0,

h; a

n

 =
n∏
i=1

q4a+4i−4K−2 − J
q4i − 1

, [h; a] =

h; a

1

 . (7.7)

Note that h = q[2] [h; 0].

It follows from (7.1) that, for a ∈ Z and n ≥ 0,

FĚ = h+ πq−2ĚF,

h; a

n

F = F

h; a+ 1

n

 ,
h; a

n

 Ě = Ě

h; a− 1

n

 . (7.8)

Also de�ne for a ∈ Z, n ≥ 1,

u

w
v
h; a

0

}

�
~ = 1,

u

w
v
h; a

n

}

�
~ =

n∏
i=1

q4a+4i−4K−2 − πq2J

q4i − 1
, Jh; aK =

u

w
v
h; a

1

}

�
~ . (7.9)

Note h = q[2]Jh; 0K + 1. It follows from (7.1) and (7.9) that, for n ≥ 0 and a ∈ Z,

u

w
v
h; a

n

}

�
~F = F

u

w
v
h; a+ 1

n

}

�
~ ,

u

w
v
h; a

n

}

�
~ Ě = Ě

u

w
v
h; a− 1

n

}

�
~ . (7.10)
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Just as in the even case, we also have

u

w
v
h; a

n

}

�
~12λ−1 = q2n(a−λ)

a− λ− 1 + n

n


q2

12λ−1 ∈ AU̇odd. (7.11)

Lemma 7.2. For n ∈ N, we have

Ě(n) = q−n
2

E(n)K−n.

Proof. Follows by induction on n, using (7.1) and (7.6).

Lemma 7.3. The following formula holds for n ≥ 0:

FĚ(n) = (πq−2)nĚ(n)F + Ě(n−1) q
3−3nK−2 − (πq)1−nJ

q2 − π
. (7.12)

Proof. We shall prove the following equivalent formula by induction on n:

FĚn = (πq−2)nĚnF + (q2 − π)−1[n]Ěn−1
(
q3−3nK−2 − (πq)1−nJ

)
.

The base case when n = 1 is covered by (7.8). Assume the formula is proved for FĚn. Then

by inductive assumption we have

FĚn+1 = (πq−2)nĚnFĚ + (q2 − π)−1[n]Ěn−1
(
q3−3nK−2 − (πq)1−nJ

)
Ě

= (πq−2)nĚn(πq−2ĚF + (q2 − π)−1
(
K−2 − J

)
) + (q2 − π)−1[n]Ěn

(
q−1−3nK−2 − (πq)1−nJ

)
= (πq−2)n+1Ěn+1F + (q2 − π)−1[n+ 1]Ěn

(
q−3nK−2 − (πq)−nJ

)
,

since [n+ 1] = (πq)n + q−1[n] = πq[n] + q−n. The lemma is proved.
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For n ∈ N, we denote

b(n)
π =

n∑
a=0

(πq)−a(n−a)Ě(a)F (n−a). (7.13)

The ĚhF -formula for B
(n)

0

Recall

h; a

n

 from (7.7).

Example 7.4. We computed the following examples of B
(n)

0
, for 2 ≤ n ≤ 4:

B
(2)

0
=
B2

[2]
= b(2)

π + πq[h; 0],

B
(3)

0
=
B3 − J [2]2B

[3]!
= b(3)

π + πq3[h;−1]F + πq3Ě[h;−1],

B
(4)

0
=
B4 − J [2]2B2

[4]!
= b(4)

π + πqĚ(2)[h;−1] + πq[h;−1]F (2) + Ě[h;−1]F + q6

h;−1

2

 .
Theorem 7.5. For m ≥ 1, we have

B
(2m)

0
=

m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)Ě(a)

h; 1−m

c

F (2m−2c−a), (7.14)

B
(2m−1)

0
=

m−1∑
c=0

2m−1−2c∑
a=0

(πq)(
2c+1

2 )−a(2m−1−2c−a)Ě(a)

h; 1−m

c

F (2m−1−2c−a). (7.15)

Proof. We prove the formulae for B
(n)

0
by using the recursive relations (7.2) and induction on

n. The base cases for n = 1, 2 are clear. The induction is carried out in 2 steps.

(1) First by assuming the formula for B
(2m−1)

0
in (7.15), we shall establish the formula

(7.14) for B
(2m)

0
, via the identity [2m]B

(2m)

0
= B ·B(2m−1)

0
in (7.2).

Recall the formula (7.15) for B
(2m−1)

0
. Using B = Ě + F and applying (7.12) to FĚ(a) we
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have

B ·B(2m−1)

0
=

m−1∑
c=0

2m−1−2c∑
a=0

(πq)(
2c+1

2 )−a(2m−1−2c−a)BĚ(a)

h; 1−m

c

F (2m−1−2c−a) (7.16)

=
m−1∑
c=0

2m−1−2c∑
a=0

(πq)(
2c+1

2 )−a(2m−1−2c−a)·

(
ĚĚ(a) + (πq−2)aĚ(a)F + Ě(a−1) q

3−3aK−2 − (πq)1−aJ

q2 − π

)h; 1−m

c

F (2m−1−2c−a)

=
m−1∑
c=0

2m−1−2c∑
a=0

(πq)(
2c+1

2 )−a(2m−1−2c−a)·[a+ 1]Ě(a+1)

h; 1−m

c

F (2m−1−2c−a) + (πq−2)a[2m− 2c− a]Ě(a)

h;−m

c

F (2m−2c−a)

+ Ě(a−1) q
3−3aK−2 − (πq)1−aJ

q2 − π

h; 1−m

c

F (2m−1−2c−a)

 .

We reorganize the formula (7.16) in the following form

[2m] ·B(2m)

0
= B ·B(2m−1)

0
=

m∑
c=0

2m−2c∑
a=0

Ě(a)fa,c(h)F (2m−2c−a),

where

fπa,c(h) = (πq)(
2c+1

2 )−(a−1)(2m−2c−a)[a]

h; 1−m

c


+

πa(πq)(2c+1
2 )−a(2m−1−2c−a)−2a[2m− 2c− a]

h;−m

c


+q(

2c−1
2 )−(a+1)(2m−2c−a) q

−3aK−2 − (πq)−aJ

q2 − π

h; 1−m

c− 1


 .
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A direct computation gives us

fπa,c(h) = (πq)(
2c
2 )−a(2m−2c−a)(πq)2m−a[a]

h; 1−m

c

+ (πq)(
2c
2 )−a(2m−2c−a)·

·
(
πa(πq)2c−a[2m− 2c− a]

q−4mK−2 − J
q4c − 1

+ (πq)1+a−2m q
−3aK−2 − (πq)−a

q2 − π

)h; 1−m

c− 1


= (πq)(

2c
2 )−a(2m−2c−a)(πq)2m−a[a]

h; 1−m

c

+ (πq)(
2c
2 )−a(2m−2c−a)·

·
(
πa(πq)2c−a[2m− 2c− a]

q−4mK−2 − J
q4c − 1

+ (πq)2c+a−2m[2c]
q−3aK−2 − (πq)−a

q4c − 1

)h; 1−m

c− 1


= (πq)(

2c
2 )−a(2m−2c−a)(πq)2m−a[a]

h; 1−m

c

+ (πq)(
2c
2 )−a(2m−2c−a)q−a[2m− a]

h; 1−m

c


= (πq)(

2c
2 )−a(2m−2c−a)((πq)2m−a[a] + q−a[2m− a])

h; 1−m

c


= (πq)(

2c
2 )−a(2m−2c−a)[2m]

h; 1−m

c

 .
Hence we have obtained the formula (7.14) for B

(2m)

0
.

(2) Now by assuming the formula for B
(2m)

0
in (7.14), we shall establish the following

formula (with m in (7.15) replaced by m+ 1)

B
(2m+1)

0
=

m∑
c=0

2m+1−2c∑
a=0

(πq)(
2c+1

2 )−a(2m+1−2c−a)Ě(a)

h;−m

c

F (2m+1−2c−a). (7.17)

Recall the formula for B
(2m)

0
in (7.14). Using B = Ě +F and applying (7.12) to FĚ(a) we
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have

B ·B(2m)

0
=

m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)BĚ(a)

h; 1−m

c

F (2m−2c−a)

=
m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)·

·
(
ĚĚ(a) + (πq−2)aĚ(a)F + Ě(a−1) q

3−3aK−2 − (πq)1−aJ

q2 − π

)h; 1−m

c

F (2m−2c−a).

We rewrite this as

B ·B(2m)

0
=

m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a) ·

[a+ 1]Ě(a+1)

h; 1−m

c

F (2m−2c−a) (7.18)

+ (πq−2)a[2m+ 1− 2c− a]Ě(a)

h;−m

c

F (2m+1−2c−a)

+Ě(a−1) q
3−3aK−2 − (πq)1−aJ

q2 − π

h; 1−m

c

F (2m−2c−a)

 .

We shall use (7.2), (7.18) and (7.15) to obtain a formula of the form

[2m+ 1]B
(2m+1)

0
= B ·B(2m)

0
− [2m]JB

(2m−1)

0
=

m∑
c=0

2m+1−2c∑
a=0

Ě(a)gπa,c(h)F (2m+1−2c−a), (7.19)
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for some suitable gπa,c(h). Then we have

gπa,c(h) = (πq)(
2c
2 )−(a−1)(2m+1−2c−a)[a]

h; 1−m

c


+ πa(πq)(

2c
2 )−a(2m−2c−a)−2a[2m+ 1− 2c− a]

h;−m

c


+ (πq)(

2c−2
2 )−(a+1)(2m+1−2c−a) q

−3aK−2 − (πq)−aJ

q2 − π

h; 1−m

c− 1


− (πq)(

2c−1
2 )−a(2m+1−2c−a)[2m]

h; 1−m

c− 1


= πa(πq)(

2c+1
2 )−a(2m+1−2c−a)(πq)−2c−a[2m+ 1− 2c− a]

h;−m

c

+ (πq)(
2c+1

2 )−a(2m+1−2c−a)X,

where

X = (πq)2m+1−4c−a[a]

h; 1−m

c


+ (πq)−2m+a−4c+2 q

−3aK−2 − (πq)−aJ

q2 − π

h; 1−m

c− 1

− (πq)1−4c[2m]J

h; 1−m

c− 1

 .
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A direct computation allows us to simplify the expression for X as follows:

X =
(
(πq)2m+1−4c−a[a]

q4c−4mK−2 − J
q4c − 1

+ (πq)−2m+a−4c+2 q
−3aK−2 − (πq)−aJ

q2 − π
− (πq)1−4c[2m]

)h; 1−m

c− 1


= (πq)2m−2c−a+1[2c+ a]

q−4mK−2 − J
q2 − 1

h; 1−m

c− 1


= (πq)2m−2c−a+1[2c+ a]

h;−m

c

 .
Hence, we obtain

gπa,c(h) = πa(πq)(
2c+1

2 )−a(2m+1−2c−a)(πq)−2c−a[2m+ 1− 2c− a]

h;−m

c


+ (πq)(

2c+1
2 )−a(2m+1−2c−a)(πq)2m−2c−a+1[2c+ a]

h;−m

c


= (πq)(

2c+1
2 )−a(2m+1−2c−a)[2m+ 1]

h;−m

c

 .
Recalling the identity (7.19), we have thus proved the formula (7.17) for B

(2m+1)

0
, and hence

completed the proof of Theorem 7.5.

Reformulations of the expansion formulas for B
(n)

0

We can apply the anti-involution ς in Lemma 7.1 to the formulas in Theorem 7.5 to obtain

the following FhĚ-expansion formulas (cf. [BeW18, Proposition 2.7]):
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Proposition 7.6. For m ≥ 1, we have

B
(2m)

0
=

m∑
c=0

2m−2c∑
a=0

(−1)cq3c+a(2m−2c−a)F (a)

h;m− c

c

 Ě(2m−2c−a),

B
(2m−1)

0
=

m−1∑
c=0

2m−1−2c∑
a=0

(−1)cqc+a(2m−1−2c−a)F (a)

h;m− c

c

 Ě(2m−1−2c−a).

Proof. The involution ς in Lemma 7.1 �xes F, Ě, J,K−1 and sends

B
(n)

0
7→ π(n2)B

(n)

0
,

h; a

n

 7→ (−1)nq2n(n+1)

h; 1− a− n

n

 , for all a ∈ Z, n ∈ N.

Applying ς to (7.14), we end up with π(2m
2 ) on the LHS and π(a2)+(2m−2c−a

2 ) on the RHS.

Dividing through by π(2m
2 ), we see that the powers of π inside the double sum work out to

π(2m−2c−a
2 )+(a2)−(2m

2 )π(2c
2 )+a = πa+cπc+a = 1.

Similarly for the odd power case (7.15), the powers of π in the double sum work out to

πc+a−aπc = 1. Thus, both formulas are identical to the non-super case in [BeW18, Proposi-

tion 2.7].

For λ ∈ Z, h; a

n

12λ = q2n(a−1−λ)

a− 1− λ+ n

n


q2

12λ ∈ AU̇ev, (7.20)

even though

h; a

n

 does not lie in AU in general (cf. [BeW18]).

Thus, by the same argument as [BeW18, Proposition 2.8], we have the following refor-

mulation of Theorem 7.5; the only di�erence here is the factor of πa, which comes from
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Lemma 7.2):

Proposition 7.7. For m ≥ 1 and λ ∈ Z, we have

B
(2m)

0
12λ =

m∑
c=0

2m−2c∑
a=0

πa(πq)2(a+c)(m−a−λ)−2ac−(2c+1
2 )

m− c− a− λ
c


q2

E(a)F (2m−2c−a)12λ,

(7.21)

B
(2m−1)

0
12λ =

m−1∑
c=0

2m−1−2c∑
a=0

(7.22)

πa(πq)2(a+c)(m−a−λ)−2ac−a−(2c+1
2 )

m− c− a− λ− 1

c


q2

E(a)F (2m−1−2c−a)12λ.

In particular, we have B
(n)

0
12λ ∈ AU̇ev, for all n ∈ N.

The ĚhF -formula for B
(n)

1

Recall that Jh; 0K =

u

w
v
h; 0

1

}

�
~.

Example 7.8. We have the following examples of B
(n)

1
, for 2 ≤ n ≤ 4:

B
(2)

1
=
B2 − πJ

[2]!
= b(2)

π + πqJh; 0K,

B
(3)

1
=
B3 − πJB

[3]!
= b(3)

π + πq−1Jh; 0KF + πq−1ĚJh; 0K,

B
(4)

1
=

(B2 − πJ [3]2)(B2 − πJ)

[4]!
= b(4)

π + πqĚ(2)Jh;−1K + πqJh;−1KF (2) + ĚJh;−1KF + q6

u

w
v
h;−1

2

}

�
~ .
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Theorem 7.9. For m ≥ 0, we have

B
(2m)

1
=

m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)Ě(a)

u

w
v
h; 1−m

c

}

�
~F (2m−2c−a), (7.23)

B
(2m+1)

1
=

m∑
c=0

2m+1−2c∑
a=0

(πq)(
2c−1

2 )−1−a(2m+1−2c−a)Ě(a)

u

w
v
h; 1−m

c

}

�
~F (2m+1−2c−a). (7.24)

Proof. As in [BeW18], we prove the formulae for B
(n)

1
by induction on n. The base case for

n = 1 is clear. The induction is carried out in 2 steps.

(1) First by assuming the formula for B
(2m)

1
in (7.23), we shall establish the formula (7.24)

for B
(2m+1)

1
, via the identity [2m+ 1]B

(2m+1)

1
= B ·B(2m)

1
in (7.3).

Recall the formula (7.23) for B
(2m)

1
. Using B = Ě + F and applying (7.12) to FĚ(a) we

have

B ·B(2m)

1
=

m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)BĚ(a)

u

w
v
h; 1−m

c

}

�
~F (2m−2c−a) (7.25)

=
m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)·

(
ĚĚ(a) + (πq−2)aĚ(a)F + Ě(a−1) q

3−3aK−2 − (πq)1−aJ

q2 − π

)u

w
v
h; 1−m

c

}

�
~F (2m−2c−a)

=
m∑
c=0

2m−2c∑
a=0

(πq)(
2c
2 )−a(2m−2c−a)·[a+ 1]Ě(a+1)

u

w
v
h; 1−m

c

}

�
~F (2m−2c−a) + (πq−2)a[2m+ 1− 2c− a]Ě(a)

u

w
v
h;−m

c

}

�
~F (2m+1−2c−a)

+ Ě(a−1) q
3−3aK−2 − (πq)1−aJ

q2 − π

u

w
v
h; 1−m

c

}

�
~F (2m−2c−a)

 .
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We reorganize the formula (7.25) in the following form

[2m+ 1]B
(2m+1)

1
= B ·B(2m)

1
=

m∑
c=0

2m+1−2c∑
a=0

Ě(a)fπa,c(h)F (2m+1−2c−a),

where

fπa,c(h) = (πq)(
2c
2 )−(a−1)(2m+1−2c−a)[a]

u

w
v
h; 1−m

c

}

�
~

+

πa(πq)(2c
2 )−a(2m−2c−a)−2a[2m+ 1− 2c− a]

u

w
v
h;−m

c

}

�
~

+(πq)(
2c−2

2 )−(a+1)(2m+1−2c−a) q
−3aK−2 − (πq)−aJ

q2 − π

u

w
v
h; 1−m

c− 1

}

�
~

 .

A direct computation gives us

fπa,c(h) = (πq)(
2c−1

2 )−1−a(2m+1−2c−a)(πq)2m+1−a[a]

u

w
v
h; 1−m

c

}

�
~ + (πq)(

2c−1
2 )−1−a(2m+1−2c−a)·

·
(
πa(πq)2c−a[2m+ 1− 2c− a]

q−4mK−2 − πq2J

q4c − 1

+ (πq)2+a−2m q
−3aK−2 − (πq)−a

q2 − π

)u

w
v
h; 1−m

c− 1

}

�
~

= (πq)(
2c−1

2 )−1−a(2m+1−2c−a)(πq)2m+1−a[a]

u

w
v
h; 1−m

c

}

�
~

+ (πq)(
2c−1

2 )−1−a(2m+1−2c−a)q−a[2m+ 1− a]

u

w
v
h; 1−m

c

}

�
~

= (πq)(
2c−1

2 )−1−a(2m+1−2c−a)[2m+ 1]

u

w
v
h; 1−m

c

}

�
~ .
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Hence we have obtained the formula (7.24) for B
(2m+1)

1
.

(2) Now by assuming the formula for B
(2m+1)

1
in (7.24), we shall establish the following

formula (with m in (7.23) replaced by m+ 1)

B
(2m+2)

1
=

m+1∑
c=0

2m+2−2c∑
a=0

(πq)(
2c
2 )−a(2m+2−2c−a)Ě(a)

u

w
v
h;−m

c

}

�
~F (2m+2−2c−a). (7.26)

Recall the formula (7.24) for B
(2m+1)

1
. Using B = Ě + F and applying (7.12) to FĚ(a) we

have

B ·B(2m+1)

1
=

m∑
c=0

2m+1−2c∑
a=0

(πq)(
2c−1

2 )−1−a(2m+1−2c−a)BĚ(a)

u

w
v
h; 1−m

c

}

�
~F (2m+1−2c−a)

=
m∑
c=0

2m+1−2c∑
a=0

(πq)(
2c−1

2 )−1−a(2m+1−2c−a)·

·
(
ĚĚ(a) + (πq−2)aĚ(a)F + Ě(a−1) q

3−3aK−2 − (πq)1−aJ

q2 − π

)u

w
v
h; 1−m

c

}

�
~F (2m+1−2c−a).

We rewrite this as

B ·B(2m+1)

1
=

m∑
c=0

2m+1−2c∑
a=0

(πq)(
2c−1

2 )−1−a(2m+1−2c−a) ·

[a+ 1]Ě(a+1)

u

w
v
h; 1−m

c

}

�
~F (2m+1−2c−a)

(7.27)

+ (πq−2)a[2m+ 2− 2c− a]Ě(a)

u

w
v
h;−m

c

}

�
~F (2m+2−2c−a)

+Ě(a−1) q
3−3aK−2 − (πq)1−aJ

q2 − π

u

w
v
h; 1−m

c

}

�
~F (2m+1−2c−a)

 .
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We shall use (7.3), (7.27) and (7.23) to obtain a formula of the form

[2m+2]B
(2m+1)

1
= B·B(2m+1)

1
−π[2m+1]JB

(2m)

1
=

m+1∑
c=0

2m+2−2c∑
a=0

Ě(a)gπa,c(h)F (2m+2−2c−a), (7.28)

for some suitable gπa,c(h). Then we have

gπa,c(h) = (πq)(
2c−1

2 )−1−(a−1)(2m+2−2c−a)[a]

u

w
v
h; 1−m

c

}

�
~

+ πa(πq)(
2c−1

2 )−1−a(2m+1−2c−a)−2a[2m+ 2− 2c− a]

u

w
v
h;−m

c

}

�
~

+ (πq)(
2c−3

2 )−1−(a+1)(2m+2−2c−a) q
−3aK−2 − (πq)−aJ

q2 − π

u

w
v
h; 1−m

c− 1

}

�
~

− (πq)(
2c−2

2 )−a(2m+2−2c−a)[2m+ 1]

u

w
v
h; 1−m

c− 1

}

�
~

= πa(πq)(
2c
2 )−a(2m+2−2c−a)(πq)−2c−a[2m+ 2− 2c− a]

u

w
v
h;−m

c

}

�
~ + (πq)(

2c
2 )−a(2m+2−2c−a)

Xπ,

where

Xπ = (πq)2m+2−4c−a[a]

u

w
v
h; 1−m

c

}

�
~

+ (πq)−2m+3−4c+a q
−3aK−2 − (πq)−aJ

q2 − π

u

w
v
h; 1−m

c− 1

}

�
~− (πq)3−4c[2m+ 1]

u

w
v
h; 1−m

c− 1

}

�
~ .
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A direct computation allows us to simplify the expression for Xπ as follows:

Xπ =

(
(πq)2m+2−4c−a[a]

q4c−4mK−2 − πq2J

q4c − 1

+ (πq)−2m+3−4c+a q
−3aK−2 − (πq)−aJ

q2 − π
− (πq)3−4c[2m+ 1]

)u

w
v
h; 1−m

c− 1

}

�
~

= (πq)2m+2−2c−a[2c+ a]
q−4mK−2 − πq2J

q4c − 1

u

w
v
h; 1−m

c− 1

}

�
~

= (πq)2m+2−2c−a[2c+ a]

u

w
v
h;−m

c

}

�
~ .

Hence, we obtain

gπa,c(h) = (πq)(
2c
2 )−a(2m+2−2c−a)q−2c−a[2m+ 2− 2c− a]

u

w
v
h;−m

c

}

�
~

+ (πq)(
2c
2 )−a(2m+2−2c−a)(πq)2m+2−2c−a[2c+ a]

u

w
v
h;−m

c

}

�
~

= (πq)(
2c
2 )−a(2m+2−2c−a)[2m+ 2]

u

w
v
h;−m

c

}

�
~ ,

where the last equality uses the general identity q−l[k − 1] + (πq)k−1[l] = [k]. Recalling the

identity (7.28), we have proved the formula (7.26) for B
(2m+2)

1
, and hence completed the proof

of Theorem 7.9.

Reformulation of the expansion formulas for B
(n)

1

Just as with the even parity case, we can apply the anti-involution ς in Lemma 7.1 to the

formulas in Theorem 7.5 to obtain the following FhĚ-expansion formulas:
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Proposition 7.10. For m ≥ 0, we have

B
(2m)

1
=

m∑
c=0

2m−2c∑
a=0

(−1)cq−c+a(2m−2c−a)F (a)

u

w
v
h; 1 +m− c

c

}

�
~ Ě(2m−2c−a),

B
(2m+1)

1
=

m∑
c=0

2m+1−2c∑
a=0

(−1)cqc+a(2m+1−2c−a)F (a)

u

w
v
h; 1 +m− c

c

}

�
~ Ě(2m+1−2c−a).

Proof. This time ς �xes F, Ě, J,K−1 and sends

B
(n)

1
7→ B

(n)

1
,

u

w
v
h; a

n

}

�
~ 7→ (−1)nq2n(n−1)

u

w
v
h; 2− a− n

n

}

�
~ , for all a ∈ Z, n ∈ N.

The rest of the calculation is very similar to the even case above, and we obtain as before

formulas that are formally the same as the non-super case, though there are factors of π and

J contained in

u

w
v
h; a+ 1

n

}

�
~.

For λ ∈ Z, recall from 7.11 that we have

u

w
v
h; a

n

}

�
~12λ−1 = q2n(a−λ)

a− λ− 1 + n

n


q2

12λ−1 ∈ AU̇odd. (7.29)

Hence, by a similar argument to the even parity case, we have the following reformulation

of Theorem 7.9 (the extra factor of πa comes from Lemma 7.2):
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Proposition 7.11. For m ≥ 0 and λ ∈ Z, we have

B
(2m)

1
12λ−1 =

m∑
c=0

2m−2c∑
a=0

πa(πq)2(a+c)(m−a−λ)−2ac+a−(2c
2 )

m− c− a− λ
c


q2

E(a)F (2m−2c−a)12λ−1,

B
(2m+1)

1
12λ−1 =

m∑
c=0

2m+1−2c∑
a=0

πa(πq)2(a+c)(m−a−λ)−2ac+2a−(2c
2 )

m− c− a− λ+ 1

c


q2

E(a)F (2m+1−2c−a)12λ−1.

In particular, we have B
(n)

1
12λ−1 ∈ AU̇odd, for all n ∈ N.

7.4 De�nition for arbitrary Uı

Let Uı = Uı
ς be an ıquantum group with parameter ς, for a given root datum (Y,X, 〈·, ·〉 , . . .).

De�nition 7.12. For i ∈ I with τi 6= i, imitating Lusztig's divided powers, we de�ne the

divided power of Bi to be

B
(m)
i := Bm

i /[m]!i, for all m ≥ 0, when i 6= τi. (7.30)

For i ∈ I with τi = i, the ıπ-divided powers are de�ned to be

B
(m)

i,1
=

1

[m]!i

 Bi

∏k
j=1(B2

i − ςiqi[2j − 1]2i J̃i) if m = 2k + 1,∏k
j=1(B2

i − ςiqi[2j − 1]2i J̃i) if m = 2k;
(7.31)

B
(m)

i,0
=

1

[m]!i

 Bi

∏k
j=1(B2

i − ςiπiqi[2j]2i J̃i) if m = 2k + 1,∏k
j=1(B2

i − ςiπiqi[2j − 2]2i J̃i) if m = 2k.
(7.32)

When we specialize πi = 1 and J̃i = 1, we obtain the ı-divided powers in [CLW18] from the

formulas above. In the case when the parameter ςi = q−1
i for τi = i, this is the rank one case
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described above, and all formulas and results there hold for B
(n)
i,p . Using 6.3, we note that we

can obtain Uı with general parameters ςi from this special case by the rescaling isomorphism

therein.
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Chapter 8

A Serre presentation for Uı

We are now ready to state and prove one of the main results in this dissertation, a Serre

presentation for Uı, which parallels the main result in [CLW18], Theorem 3.1. In addition

to a handful of standard relations, this presentation also features two novel relations: for

τi 6= i, a Serre-type relation between Bi and Bτi with a `correction term' ((8.6) below) and

for τi = i 6= j, a Serre-type relation, the ıπ-Serre relations between Bi and Bj, which can be

neatly written in terms of the iπ-divided powers ((8.7) below).

8.1 Statement of the result

Denote

(a;x)0 = 1, (a;x)n = (1− a)(1− ax) · · · (1− axn−1), for all n ≥ 1.

Theorem 8.1. Fix pi ∈ Z2 for each i ∈ I. The K(q)π-algebra Uı has a presentation with

generators Bi, J̃i (i ∈ I), Kµ (µ ∈ Y ı) and the following relations (8.1)�(8.7): for µ, µ′ ∈ Y ı
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and i 6= j ∈ I,

J̃i is central, (8.1)

KµK−µ = 1, KµKµ′ = Kµ+µ′ , (8.2)

KµBi − q−〈µ,αi〉i BiKµ = 0, (8.3)

[Bi, Bj] =0, if aij = 0 and τi 6= j, (8.4)

1−aij∑
n=0

(−1)nπ
np(j)+(n2)
i B

(n)
i BjB

(1−aij−n)
i = 0, if j 6= τi 6= i, (8.5)

1−ai,τi∑
n=0

(−1)nπ
n+(n2)
i B

(n)
i BτiB

(1−ai,τi−n)
i =

1

πiqi − q−1
i

(8.6)

·
(
q
ai,τi
i (πiq

−2
i ; πiq

−2
i )−ai,τiB

(−ai,τi)
i J̃iK̃iK̃

−1
τi −(πiq

2
i ; πiq

2
i )−ai,τiB

(−ai,τi)
i J̃τiK̃τiK̃

−1
i

)
, if τi 6= i,

1−aij∑
n=0

(−1)nπ
n+(n2)
i B

(n)
i,aij+pi

BjB
(1−aij−n)
i,pi

= 0, if τi = i 6= j. (8.7)

Proof. Granting �rst that (8.6) and (8.7) both hold inUı, the same argument used in [CLW18]

is also applicable here in this setting. The main ingredients are the results in �6.2.1 above;

we have a generalization of [Ko14, Theorem 7.1] when X (corresponding to the black nodes)

is empty.

Thus, the remaining work lies in showing that both (8.6) and (8.7) holds in Uı. We

will do so in the subsequent sections, in Proposition 8.3 of �8.2 and Theorem 8.6 of �8.4

respectively.

Before moving on, we will display here the Serre presentation for split Uı, which takes on

a particularly simple form (recall that a quasi-split ıquantum group Uı is split if τ = id):

Theorem 8.2. Fix pi ∈ Z2, for each i ∈ I. Then the split ıquantum group Uı has a Serre
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presentation with generators Bi (i ∈ I) and relations

1−aij∑
n=0

(−1)nπ
n+(n2)
i B

(n)
i,aij+pi

BjB
(1−aij−n)
i,pi

= 0.

Moreover, Uı admits a K(q)-algebra anti-involution σ which sends Bi 7→ Bi for all i.

Proof. This follows from Theorem 8.1 by noting that Y ı = ∅ and τi = i for all i ∈ I.

8.2 Serre relation when τi 6= i

In this section we will show that (8.6) holds, following [BaK15, �3.5]. Recall the projections

Pλ and π0,0 de�ned above, which are also in [BaK15].

Proposition 8.3. If τi 6= i, the following relation holds in Uı
ς :

1−ai,τi∑
n=0

(−1)nπ
n+(n2)
i B

(n)
i BτiB

(1−ai,τi−n)
i =

1

πiqi − q−1
i

·
(
q
ai,τi
i (πiq

−2
i ; πiq

−2
i )−ai,τiB

(−ai,τi)
i J̃iK̃iK̃

−1
τi −(πiq

2
i ; πiq

2
i )−ai,τiB

(−ai,τi)
i J̃τiK̃τiK̃

−1
i

)
.

Proof. Recall now that i and j = τ(i) 6= i must have the same parity, and if both i and j are

even roots there is nothing to prove. Thus, we may assume that i and j are odd roots, and

so by the bar-consistency condition m = 1− aij is odd. Also set λij = m · i+ j and with the

notation above set Q−λij = id⊗ (P−λij ◦ π0,0) as the vector space endomorphism of U⊗U.

By a construction parallel to [Ko14, (7.8)], for Y = Fij(Bi, Bj) we have the relation

Cij(c) = −(id⊗ ε) ◦Q−λij(∆(Y )− Y ⊗K−λij). (8.8)
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Just as in loc. cit., we can compute ∆(Y ) from the formulas

∆(Bi) = Bi ⊗K−1
i + 1⊗ Fi + ςiZi ⊗ EjK−1

i

∆(Bj) = Bj ⊗K−1
j + 1⊗ Fj + ςjZj ⊗ EiK−1

j

where Zk = Jτ(k)Kτ(k)K
−1
k for k = i, j, and so we have that

Q−λij(∆(Y )− Y ⊗Kλij) = (ajB
m−1
i ςjZj + aiB

m−1
i ςiZi)⊗K−λij (8.9)

where ai and aj can be determined explicitly using the commutation relations

ZjBi = q
−(m+1)
i BiZj, ZiBi = qm+1

i BiZi.

For instance,

ajB
m−1
i ςjZj ⊗K−λij = Q−λij

( m∑
k=0

(−1)kπ
(k2)+k

i

m
k


i

·
m−k−1∑
l=0

(Bl
i ⊗K−li )(1⊗ Fi)(Bm−1−k−l

i ⊗K−(m−1−k−l)
i )(ςjZj ⊗ EiK−1

j )(Bk
i ⊗K−ki )

)

=
m∑
k=0

(−1)kπ
(k2)+k

i πi

(πiqi − q−1
i )

m
k


i

m−k−1∑
l=0

πm−1−l
i · πki q

−(m+1)k−2(m−k−l−1)
i Bm−1

i ςjZj ⊗K−λij ,

where the extra factors of πi come from multiplying out 1⊗Fi and Bm−1−k−l
i ⊗Km−1−k−l

i and

Bk
i ⊗Kk

i , and ςjZj⊗EiK−1
j and Bk

i ⊗Kk
i respectively since multiplication in U⊗U is de�ned

according to the rule (a ⊗ b)(c ⊗ d) = πp(b)p(c)ac ⊗ bd. A further factor of πi comes from the
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following:

Q−λij(K
−(m−k−1)
i FiEiK

−1
j K−ki ) = Q−λij(K

−(m−k−1)
i

(
πiEiFi − πi

JiKi −K−1
i

πiqi − q−1
i

)
K−1
j K−ki )

=
πi

πiqi − q−1
i

K−mi K−1
j .

Note that m− 1 = −aij is always even (by bar-consistency), and so πm−1
i = 1. Thus,

aj =
m∑
k=0

(−1)kπ
(k2)
i

(πiqi − q−1
i )

m
k


i

m−k−1∑
l=0

q
−(m−1)k−2(m−1)
i πliq

2l
i

=
m∑
k=0

(−1)kπ
(k2)
i

(πiqi − q−1
i )

m
k


i

q
−(m−1)k−2(m−1)
i

(πiq
2
i )
m−k − 1

πiq2
i − 1

.

This time, we may use [CHW13, (1.12)], which after applying the bar involution yields

m∑
k=0

π
(k2)
i q

−k(m−1)
i

m
k


i

zk =
m−1∏
j=0

(1 + (πiq
−2
i )jz); (8.10)

in particular,

m∑
k=0

π
(k2)
i q

−k(m−1)
i

m
k


i

(−1)k = 0;

and

m∑
k=0

π
(k2)
i q

−k(m−1)
i

m
k


i

(−πiq−2
i )k =

m−1∏
j=0

(1− (πiq
−2
i )j+1) = (πiq

−2
i ; πiq

−2
i )m,

(Recall that (x;x)m :=
∏m

j=1(1− xj)) and so (remembering that πmi = πi since m is odd) we
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have

aj =
πiq
−2(m−1)
i (πiq

2
i )
m

qi(πiqi − q−1
i )2

(πiq
−2
i ; πiq

−2
i )m =

qi

(πiqi − q−1
i )2

(πiq
−2
i ; πiq

−2
i )m. (8.11)

Similarly, for ai we have additional factors of π
(k2)+k

i from the super-Serre relations and πli

from the tensor product multiplication:

ai =
πi

πiqi − q−1
i

m∑
k=0

(−1)kπ
(k2)+k

i

m
k


i

k−1∑
l=0

q
(k−1)(m+1)
i πliq

−2l
i

=
πi

πiqi − q−1
i

m∑
k=0

(−1)kπ
(k2)+k

i

m
k


i

q
(k−1)(m+1)
i

1− (πiq
−2
i )k

1− πiq−2
i

=
πi(πiqi)

(πiqi − q−1
i )2

q
−(m+1)
i

m∑
k=0

(−1)kπ
(k2)
i πki q

k(m+1)
i

m
k


i

(1− (πiq
−2
i )k)

=
qi

(πiqi − q−1
i )2

q
−(m+1)
i

m∑
k=0

(−1)kπ
(k2)
i q

k(m−1)
i

m
k


i

((πiq
2
i )
k − 1)

=
q−mi

(πiqi − q−1
i )2

(
(πiq

2
i ; πiq

2
i )m − 0

)
=

q−mi
(πiqi − q−1

i )2
(πiq

2
i ; πiq

2
i )m,

this time using [CHW13, (1.12)] directly (without the need for applying the bar involution).

Putting this together with 8.9 and applying −id⊗ ε, we obtain

Cij(c) =
−1

(πiqi − q−1
i )2

(q−mi (πiq
2
i ; πiq

2
i )mB

m−1
i ςiZi + qi(πiq

−2
i ; πiq

−2
i )mB

m−1
i ςjZj). (8.12)

Dividing through by [m]!i and simplifying yields the version with divided powers presented in

Theorem 8.1.
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8.3 A (q, π)-binomial identity

We state and prove here a (q, π)-binomial identity that will be crucial to the proof of Propo-

sition 8.7 in the next section: for

w ∈ Z, u, ` ∈ Z≥0, with u, ` not both 0, (8.13)

we de�ne

T (w, u, `)q,π (8.14)

=
∑
c,e,r≥0
c+e+r=u

∑̀
t=0

2|(t+w−r)

πlt+r+e+(t2)(πq)−t(`+u−1)+(`+u)(c−e)

`
t


w + t− `

r


u− 1 + w+t−r

2

c


q2

w+t−r
2
− `

e


q2

−
∑
c,e,r≥0
c+e+r=u

∑̀
t=0

2-(t+w−r)

πlt+c+(t2)(πq)−t(`+u−1)+(`+u−1)(c−e)

`
t


w + t− `

r


u+ w+t−r−1

2

c


q2

w+t−r−1
2

− `

e


q2

.

When we specialize at π = 1, we have T (w, u, `)q,1 = T (w, u, `) as de�ned in [CLW18,

(3.18)].

Proposition 8.4 ([CLW18], Theorem 3.6). The identity T (w, u, `) = 0 holds, for all integers

w, u, ` as in (8.13).

As pointed out in [CLW18], a direct proof of this proposition proved challenging. Instead,

the authors approached this by �rst introducing a more general q-binomial identity in several

more parameters. This general identity specialized to the one above and satis�ed certain

recurrence relations, thus completing the proof with an inductive argument (details in �5 of
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[CLW18]). Fortunately for us, we can sidestep the complicated process above for the analogous

result here in our setting by making a deft substitution and leveraging the earlier result:

Proposition 8.5. The identity T (w, u, `)q,π = 0 holds, for all integers w, u, ` as in (8.13).

Proof. By a substitution of q 7→
√
πq in T (w, u, l), we obtain

T (w, u, l)|q 7→√πq =
√
π
u2−lu−uw

T (w, u, `)q,π,

and so the result follows from Proposition 8.4.

8.4 Proof of the ıπ-Serre relations

This section is devoted to a proof of the following theorem:

Theorem 8.6. The ıπ-Serre relations (8.7),

1−aij∑
n=0

(−1)nπ
n+(n2)
i B

(n)
i,aij+pi

BjB
(1−aij−n)
i,pi

= 0, if τi = i 6= j.

hold in the ıquantum covering group Uı.

The general strategy will rely on applying a few reductions to reduce (8.7) to the (q, π)-

binomial above, which vanishes as we saw in Proposition 8.5. Using the isomorphism φ in

Proposition 6.6, the ıSerre relations for Uı
q−1
i

is transformed into the ıSerre relations (8.7)

for Uı
ς with general parameters. Hence just as in [CLW18], we will work with the ıquantum

groups with distinguished parameters, Uı = Uq−1
i
, as a �rst reduction of the ıSerre relations.

A subsequent `reduction by equivalence' as in �4.1 of [CLW18] can be applied, further reducing

(8.7) to
1−aij∑
n=0

(−1)nB
(n)
i,aij+p

FjB
(1−aij−n)
i,p = 0 (8.15)

for each p ∈ Z2, where i ∈ I such that τi = i, j 6= i.
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Now �x i = 1 and j = 2. Note that when p(1) is even, there are no additional formulas to

prove since π1 = 1. Thus, we may assume that p(1) is odd, and so due to the bar-consistency

condition ([CHW13, 1.1(d)]) we must have a12 ∈ −2N. Hence, it is su�cient to prove that:

Proposition 8.7. Suppose that a12 = −2m ∈ −2N. Then,

2m+1∑
n=0

(−1)nπ
np(2)+(n2)
1 B

(n)

1,0
F2B

(2m+1−n)

1,0
= 0, and (8.16)

2m+1∑
n=0

(−1)nπ
np(2)+(n2)
1 B

(n)

1,1
F2B

(2m+1−n)

1,1
= 0. (8.17)

Proof. Just as in [CLW18, �4], we will show that (8.16) holds by showing that

2m+1∑
n=0

(−1)nπ
np(2)+(n2)
1 B

(n)

1,0
F2B

(2m+1−n)

1,0
1?2λ = 0. (8.18)

for all λ, using Remark 2.4.

Using Proposition 7.7 to expand B
(n)

1,0
and B

(2m+1−n)

1,0
and (2.11) to collect the factors of

E1, we have (cf. [CLW18, (4.15)])
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2m+1∑
n=0

(−1)nπ
np(2)+(n2)
1 B

(n)

1,0
F2B

(2m+1−n)

1,0
1?2λ = (8.19)

2m∑
n=0,2|n

m−n
2∑

c=0

n
2∑

e=0

2m+1−n−2c∑
a=0

n−2e∑
d=0

min{a,n−2e−d}∑
r=0

· πa+d+ap(2)+ad+(r2)+(n2)
1 (π1q1)(a+c+d+e)(2m+1−n−2λ−2a−2c−2d−2e)+d

·

a+ d− r

d


q1

2m+ 2− n− 2λ− 2e− d− 3a− 4c

r


q1

m− n
2 − λ− c− a

c


q21

·

m+ 1− n
2 − λ− e− d− 2a− 2c

e


q21

E
(a+d−r)
1 F

(n−2e−d−r)
1 F2F

(2m+1−n−2c−a)
1 1?2λ

−
2m+1∑
n=1,2-n

m+ 1−n
2∑

c=0

n−1
2∑

e=0

2m+1−n−2c∑
a=0

n−2e∑
d=0

min{a,n−2e−d}∑
r=0

· πa+d+(a+1)p(2)+a+ad+(r2)+(n2)
1 (π1q1)(a+c+d+e)(2m+1−n−2λ−2a−2c−2d−2e)−a−2c

·

a+ d− r

d


q1

2m+ 2− n− 2λ− 2e− d− 3a− 4c

r


q1

m+ 1−n
2 − λ− c− a

c


q21

·

m+ 1−n
2 − λ− e− d− 2a− 2c

e


q21

E
(a+d−r)
1 F

(n−2e−d−r)
1 F2F

(2m+1−n−2c−a)
1 1?2λ.

By the same series of substitutions as detailed in [CLW18], we may collect the q- and

q2-binomial factors and the π1 factors into a sum S(y, u, `, λ)π (the rest can be factored out)

to obtain

2m+1∑
n=0

(−1)nπ
np(2)+(n2)
1 B

(n)

1,0
F2B

(2m+1−n)

1,0
1?2λ =

∑
`,y,u≥0;u+`>0
`+y+2u≤2m+1

(8.20)

π
(l+y)p(2)+l+(y2)
1 (π1q1)(`+u)(2m+1−2λ−2`−3u−y)S(y, u, `, λ)πE

(`)
1 F

(y)
1 F2F

(2m+1−`−y−2u)
1 1?2λ,

where S(y, u, `, λ)π is a sum over n (with a di�erence when 2|n and 2 - n as above) and over
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c, e, r ≥ 0, c+ e+ r = u cf. [CLW18, 4.16].

Then, using the new variables t := −u−y−e+ c+n and w := 2m+2−2λ−2l−4u−y in

�4.4 of [CLW18], we have that S(y, u, `, λ)π = T (w, u, `)q,π. Thus, the right-hand side vanishes

by Theorem 8.5 and so (8.16) holds.

Just as in [CLW18], a similar argument shows that (8.17) holds.
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Chapter 9

Bar involution and quasi K-matrix

The Serre presentation for Uı enables the de�nition of a bar involution ψı on Uı, which is

not simply the restriction of the bar involution ψ on U. For instance, Bi has the image

Fi + ciEτiK
−1
i under the embedding Uı ↪→ U, and ψı �xes Bi, but ψ(Fi + ciEiK

−1
i ) =

Fi + ciEτiJiKi.

In this section, we will construct a quasi K-matrix Υ that `intertwines' these two bar

involutions (the quasi K-matrix goes by the name `intertwiner' in [BW18a, Chapter 2]). The

quasi K-matrix has the property that its action is integral, in the sense that it preserves the

Aπ-forms (i.e. integral forms) of certain integrable highest weight U-modules and their tensor

products. This property will be used in the development of a theory of canonical bases for Uı

in the next section, cf. [BW18b, BW18c].

9.1 Bar involution on Uı

Recall the three conditions (6.8)�(6.10) on ςi in De�nition 6.1. We may now conclude the

existence of the bar involution for the quasi-split ıquantum group Uı := Uı
ς , granting that

these conditions on ςi are satis�ed:

Proposition 9.1. Assume that the parameters ςi, for i ∈ I, satisfy the conditions (6.8)�(6.10),
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which we recall here:

(6.8) ςiqi = ςiqi, if τi = i and aij 6= 0 for some j ∈ I \ {i};

(6.9) ςi = ςi = ςτi, if τi 6= i and ai,τ i = 0;

(6.10) ςτi = πiq
−ai,τi
i ςi, if τi 6= i and ai,τ i 6= 0.

Then there exists a K-algebra automorphism : Uı → Uı (called a bar involution) such that

q = πq−1, Kµ = JµK
−1
µ , Bi = Bi, for all µ ∈ Y ı, i ∈ I.

Proof. Under the assumptions, the ı-divided powers B
(n)
i in (7.30) and B

(n)
i,p , for p ∈ Z2, in

(7.31)-(7.32) are clearly bar invariant. It follows by inspection that all the explicit de�ning

relations for Uı in (8.1)-(8.7) are bar invariant. The extra factor of πi in (c) comes from

applying to the right hand side of (8.6).

9.2 Quasi K-matrix

The goal of this section is the construction of a quasi K-matrix for quasi-split Uı that `inter-

twines' the bar involutions ψı for Uı and ψ for U, which do not agree:

Theorem 9.2. There exists a unique family of elements Υµ ∈ U+
µ such that Υ0 = 1 and

Υ =
∑

µ Υµ where p(µ) is even, satisfying the following identity in Û:

ψı(u)Υ = Υψ(u), for all u ∈ Uı. (9.1)

Among other things, carrying out the rank one computation was instructive for identifying

the condition that Υ has no odd part, so we will cover that before going into a proof of the

general case.
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Quasi K-matrix for rank 1 (a single odd root)

We know that when we specialize Υ to the non-super rank one case by setting π = 1, we

will obtain the formulas given in [DK18, Lemma 2.6] or [BW18a, (4.1)] (note that a change

from E to F in the second reference is required, since the convention there for the embedding

formula for B is di�erent). Thus, the general form of Υ is given by

Υ =
∑
N≥0

aNE
(N).

where aN ∈ K(q)π. From the �rst identity in [CHW13, Lemma 2.2.3] with M = 1, we have

E(N)F − πNFE(N) = πN−1

K; 1−N

1

E(N−1) = πE(N−1) (πq)1−NJK − qN−1K−1

πq − q−1
.

We need to separate the computation for the condition BΥ = ΥB when N is even from when

N is odd. When N = 2k is even, we have

a2k(E
(2k)F − πNFE(2k)) = a2k−2(cq2K−1EE(2k−2) − cEE(2k−2)JK)

and so using [CHW13, Lemma 2.2.3] and comparing coe�cients of E(2k−1)JK and E(2k−1)K−1

respectively yield the (over-determined) system of solutions

a2k = −cπq2(πq − q−1)q1−2k[2k − 1]a2k−2

and

a2k = −cπq2(πq − q−1)q2k−1q2(1−2k)[2k − 1]a2k−2.
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Hence for k even,

a2k = (−cπq2)k(πq − q−1)kq−k
2

[2k − 1]!!

where [2k − 1]!! = [2k − 1] · [2k − 3] · . . . · [1] (normalization: a0 = 1).

For N = 2k + 1 odd, we also obtain an over-determined system of two solutions:

a2k+1 = (−cπq2)(πq − q−1)q−2k[2k]a2k−1

= (−cπq2)k+1(πq − q−1)k+1q−2(k+1
2 )[2k]!!a−1

where [2k]!! = [2k] · [2k − 2] · . . . · [2]. Since a−1 = 0, we see that Υ has no odd part.

So we have (cf. [DK18, Lemma 2.6] when π = 1)

Υ =
∑
k≥0

(−cπq2)k(πq − q−1)kq−k
2

[2k − 1]!!E(2k).

An equivalent, systematic approach to the de�nition of Υ involves the twisted derivations

de�ned by Lusztig in [Lu94, 1.2.13], and can be found in [BaK19, Proposition 6.3] or [DK18,

Lemma 3.8]. For quantum covering algebras the twisted derivations ri and ir is de�ned in

[CHW13, �1.5]. Following this, we may de�ne Υ to be the (unique) solution to the system of

equations:

1r(Υ) = −cπq2(πq − q−1)EΥ, and (9.2)

r1(Υ) = −cπq2(πq − q−1)ΥE, (9.3)

The existence of such a solution, and hence the existence of Υ, can be veri�ed just as in
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[DK18, Lemma 3.8], using the fact that 1r(E
(2k)) = q2k−1E(2k−1) for the �rst equation:

1r(Υ2k) = 1r(a2kE
(2k))

= a2kq
2k−1E(2k−1)

= −cπq2(πq − q−1)a2k−2[2k − 1]
EE(2k−2)

[2k − 1]

= (−cπq2)(πq − q−1)EΥ2k−2,

and using r1(E(2k)) = q2k−1E(2k−1)(= 1r(E
(2k))) for the second. Note that this de�nition also

implies that Υ has no odd part, because

1r(Υ2k+1) = 1r(a2k+1σE
(2k+1))

= a2k+1q
2kσE(2k)

= −cπq2(πq − q−1)a2k−1π[2k]Eσ
E(2k−1)

[2k]

= π(−cπq2)(πq − q−1)EΥ2k−1,

and Υ−1 = 0. The equivalence of the de�nition with the previous construction is a direct

application of [CHW13, Proposition 2.2.2], which is a π-analogues of [Lu94, Proposition 3.1.6].

Remark 9.3. When attempting to directly apply [CHW13, Proposition 2.2.2], we ran into the

following issue: since Bi = Fi + ciEiJiKi in U, we would like to have Υ =
∑

µ Υµ ∈ Û+

satisfying

(Fi + ciEiK
−1
i )Υ = Υ(Fi + ciEiJiKi),

but on the other hand we have

FiΥµ −ΥµFi = Υµ−2iciEiJiKi − ciEiK−1
i Υµ−2i

for which Proposition 2.2.2 is inadmissible when p(µ) = 1, a factor of πi is missing.
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Borrowing inspiration from [BKK00], we attempted a workaround by introducing a parity

operator σ to our algebra such that

σEi = πp(i)Eiσ, σFi = πp(i)Fiσ, σKµ = Kµσ and σJµ = Jµσ

and separating odd and even parts Υ = Υ0 + σΥ1, but when carrying out the computation

above we �nd that the terms with σ vanish anyway, and so conclude that Υ must have no

odd terms.

Quasi K-matrix for quasi-split Uı

We will now prove Theorem 9.2 for general quasi-split Uı. First, using [CHW13, Proposi-

tion 2.2.2] the condition that Υ =
∑

µ σ
p(µ)Υµ ∈ Û+ satis�es the identity

(Fi + ciEiK
−1
i )Υ = Υ(Fi + ciEiJiKi)

is the equivalent to the conditions that Υµ satisfy both of the following system of equations

ri(Υµ) = −(πiqi − q−1
i )(ciπiq

2
i )Υµ−2iEi, and (9.4)

ir(Υµ) = −(πiqi − q−1
i )(ciπiq

2
i )EiΥµ−2i, (9.5)

here we have used the the bar-consistency condition i.e. p(i) ≡ di (mod 2), which gives us

the identi�cation π
p(i)
i = πp(i)

2
= πp(i)πi

With this, we can use the methods in [BW18a, �2.4] (cf. also [BaK19, �6.2]) to construct Υ.

Recall the non-degenerate symmetric bilinear form (·, ·) on the algebra ′f de�ned in [CHW13,

Proposition 1.4.1].
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Just as in [BW18a, (2.11)-(2.14)], the system (9.4)�(9.5) is equivalent to

(Υµ, Eiz) = −ciq3
i (1− πiq−2

i )−1(Υµ−2i, ir(z)) (9.6)

(Υµ, zEi) = −ciq3
i (1− πiq−2

i )−1(Υµ−2i, ri(z)), (9.7)

which we can see from the brief computation

(9.4) ⇐⇒ (ri(Υµ), z) = −(πiqi − q−1
i )(ciπiq

2
i )(Υµ−2iEi, z)

(1.4.1)⇐⇒ (Υµ, zEi) = −(πiqi − q−1
i )(ciπiq

2
i )(Ei, Ei)

2(Υµ−2i, ri(z))

⇐⇒ (9.6);

for (9.4) ⇐⇒ (9.6), and a similar one for (9.5) ⇐⇒ (9.7).

Thus we may inductively de�ne Υ∗L and Υ∗R in ′f∗, the non-restricted dual of ′f , such that

Υ∗L(1) = Υ∗R(1) = 1 and

Υ∗L(Eiz) = −ciq3
i (1− πiq−2

i )−1Υ∗L(ir(z)) (9.8)

Υ∗R(zEi) = −ciq3
i (1− πiq−2

i )−1Υ∗R(ri(z)). (9.9)

Note that for all i, j ∈ I, we have from ir(1) = 0 and ir(Ej) = δij that

Υ∗L(Ei) = 0 and Υ∗L(EiEj) = −ciq3
i (1− πq−2

i )−1δij,

and similarly for Υ∗R.

Lemma 9.4. Let ′fµ denote the µ weight space in the weight space-decomposition of ′f . For

x ∈ ′fµ, if either p(µ) or ht(µ) is odd, then Υ∗L(x) = Υ∗R(x) = 0

Proof. We show this for odd p(µ) by induction on ht(µ) (the statement for odd ht(µ) is

similar). The base cases ht(µ) = 1, 3 are given above. For homogeneous such x ∈ ′fµ, x = Eiz
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for some z ∈ ′fν so ir(z) ∈ ′fν−i where p(ν− i) is odd (p(ν) and p(i) have opposite parity since

p(µ) = p(ν) +p(i) is odd), and so by induction hypothesis, Υ∗L(ir(z)) = 0, and hence by (9.8),

Υ∗L(x) = 0 as well (similarly for Υ∗R).

Lemma 9.5. We have Υ∗L = Υ∗R.

Proof. We will show that Υ∗L(x) = Υ∗R(x) for all homogeneous x ∈ ′fµ by induction on ht(µ),

using Lemma 2.1 above. The base cases ht(|x|) = 0 or 1 are trivial from the de�nition. Suppose

that the identity holds for all homogeneous elements with height no greater than k for k ≥ 1,

and let x = Eix
′Ej with ht(|x|) = k + 1 ≥ 2 for some i, j ∈ I. Let ξk = −ckq3

k(1− πkq−2
k )−1.

Then,

Υ∗L(Eix
′Ej) = ξiΥ

∗
L(ir(x

′Ej))

= ξi

(
Υ∗L(ir(x

′)Ej) + πp(x
′)p(i)q|x

′|·iΥ∗L(x′ir(Ej))
)

and

Υ∗R(Eix
′Ej) = ξjΥ

∗
R(rj(Eix

′))

= ξj

(
Υ∗R(Eirj(x

′)) + πp(x
′)p(j)q|x

′|·jΥ∗R(x′rj(Ei))
)
.

The second terms of both of the �nal expressions above vanish unless i = j, in which case

they are both equal (by application of the induction hypothesis to x′ of height k − 1), so it

remains to show that

ξiΥ
∗
L(ir(x

′)Ej) = ξjΥ
∗
R(Eirj(x

′)).

This can be done by applying the induction hypothesis to ir(x
′)Ej and Eirj(x

′) to obtain

ξiΥ
∗
L(ir(x

′)Ej) = ξiΥ
∗
R(ir(x

′)Ej)
(9.9)
= ξiξjΥ

∗
R(rj ◦ ir(x′))
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and

ξjΥ
∗
R(Eirj(x

′)) = ξjΥ
∗
L(Eirj(x

′))
(9.8)
= ξiξjΥ

∗
L(ir ◦ rj(x′)),

and so from the fact that rj ◦ ir = ir ◦ rj by Lemma 2.2, and the induction hypothesis since

rj ◦ ir(x′) = ir ◦ rj(x′) ∈ ′f|x′|−i−j the desired result follows.

Thus, we can denote Υ∗L = Υ∗R by Υ∗.

Let I = 〈Sij〉, the ideal generated by the Serre relators Sij := Fij(Ei, Ej) (where Fij is

de�ned above in (2.2)), so that the half quantum group U+ is isomorphic to ′f/I. We will

now show that Υ∗ vanishes on I, and so descends to an element in (U+)∗, the unrestricted

dual of U+.

Lemma 9.6. Υ∗(I) = 0 and hence Υ∗ belongs in (U+)∗.

Proof. For �nite type corresponding to B(0, n), |Sij| has height 3 when (i, j) 6= (n, n−1), and

p(Sn,n−1) is odd, so by 9.4, we have that Υ∗(Sij) = 0. By the same induction argument in

[BW18a, Lemma 2.17], this holds for the ideal I = 〈Sij〉 they generate, and so Υ∗(I) = 0.

For quasi-split Uı in general, we need to show that Υ∗(Sij) = 0 for general Serre relators.

With Lemma 9.4 this is already addressed for the case ht(Sij) odd, and so it remains to show

this for ht(Sij) even. This can be done by showing that terms of the form

Υ∗(Ea
i EjE

b
i ) for j 6= i and a+ b+ 1 even (9.10)

vanish by induction using (9.8) or (9.9). For instance if a > 1, we use (9.8) to show that

(using ξk = −ckq3
k(1− πkq−2

k )−1 as above)

Υ∗(Ea
i EjE

b
i ) = ξiΥ

∗(ir(E
a−1
i EjE

b
i ))

= Υ∗(ir(E
a−1
i Ej)E

b
i + π

p(ai+j)
i q(ai+j)·iEa−1

i Ej ir(E
b
i ))

= Υ∗(ir(E
a−1
i )EjE

b
i + π

p(ai+j)
i q(ai+j)·iEa−1

i Ej ir(E
b
i ))
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and each of the two terms are of the form (9.10), and so we can apply the induction hypothesis

(the base case Υ∗(EiEj) = 0 for i 6= j is computed above, and for if we are not in the base

case and a = 1 we must therefore have b > 1 and so we can use 9.9 on the other side.

With these lemmas, we can now construct Υ in the same way as [BW18a, Theorem 2.10]:

Proof of Theorem 9.2. Let B = {b} be a basis of U− such that Bµ = B ∩U+
−µ is a basis for

U+
−µ, and let B∗ = {b∗} be the dual basis of B with respect to (·, ·) and let

Υ :=
∑
b∈B

Υ∗(b∗)b =
∑
µ

Υµ ∈ Û+ (9.11)

(recall that there are no terms here with p(µ) = 1). As functions on U+, we have (Υ, ·) = Υ∗,

and Υ0 = 1. Also Υ satis�es the identities in (9.4) and (9.5) by construction, since Υ∗ satis�es

the equivalent identities in (9.8) and (9.9)).

From this construction we also see that ri(Υµ) is determined by Υν with weight ν ≺ µ.

Together with Lemma 2.1, this implies the uniqueness of Υ.

As in [BW18a, Corollary 2.13], it follows that Υ is invertible, and in fact Υ = Υ−1 :

Corollary 9.7. We have Υ ·Υ = 1.

Proof. Multiplying Υ−1 on both sides of the identity (9.1) in Theorem 9.2, we have

Υ−1ı(u) = ı(u)Υ−1, ∀u ∈ Uı.

Applying the bar involution to the above identity and replacing u by u, we have

Υ
−1
ı(u) = ı(u)Υ

−1
, ∀u ∈ Uı.

Hence Υ
−1

(in place of Υ) satis�es the identity (9.1) as well. Hence, by the uniqueness of Υ

in Theorem 9.2, we must have Υ
−1

= Υ.
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9.3 Integrality of the action of Υ

In this section we will prove an integrality property for Υ; in particular, we will show that Υ

preserves the integral forms of various based modules and their tensor products, with Section 6

of [BW18c] as a general outline; see also Section 2 of [BW16].

De�nitions

We will de�ne based U-modules (M,B(M)) in the same way as [BW16, �2] i.e. M is an

integrable U-module with a distinguished basis B(M) satisfying conditions (a)�(d) of [Lu94,

27.1.2], with integrality replacing the �nite-dimensionality.

Remark 9.8. We will note here that the use of the term `basis' in the context of quantum

covering groups will be understood to refer to a π-basis in the sense of [Cl14, �2.6]. A π-basis

of an Rπ-module M is also an R-basis of M . In Theorem 1 of loc. cit., a π-basis of f is given;

when π = 1 this specializes to the Lusztig-Kashiwara canonical basis, and when π = −1, this

specializes to the signed basis of [Lu94, Chapter 14].

For the remainder of this section and the following chapter we will suppress the superscript

π for Aπ when referring to integral forms of algebras and modules, so e.g. AU refers to AπU

and AM refers to AπM . We will �nd useful in this section the following analogue of [BW16,

Lemma 2.2]:

Lemma 9.9. Let (M,B(M)) be a based U-module and let λ ∈ X. Then,

1. for b ∈ B(M), the K(q)π-linear map πb : U−1|b|+λ −→ M ⊗M(λ), u 7→ u(b ⊗ ηλ)),

restricts to an Aπ-linear map πb : AU
−1|b|+λ −→ AM ⊗Aπ AM(λ);

2. we have
∑

b∈B(M) πb(AU
−1|b|+λ) = AM ⊗Aπ AM(λ).

Proof. The proof is the same as the one for [BW16, Lemma 2.2]: The comultiplication has the

same form as [BW16, (2.1)], the �ltration on Af is the same, and the appropriate analogue to

[BW16, (2.2)] can be obtained from [Cl14, (3.2)-(3.3)].
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Remark 9.10. Many of the results for based U-modules for U of Kac-Moody type established

in [BW16, �2] also apply for quantum covering algebras. In particular, with straightforward

modi�cations, the same arguments therein give us versions of Lemma 2.3 (Corollary 9.15

below), Theorem 2.7, Theorem 2.9 and Proposition 2.11.

De�nition 9.11. Just as in De�nition 3.10 of loc. cit., we de�ne AU̇
ı to be the set of elements

u ∈ U̇ı, such that u ·m ∈ AU̇ for all m ∈ AU̇. Then AU̇
ı is an Aπ-subalgebra of U̇ı which

contains all the idempotents 1ζ (ζ ∈ Xı), and AU̇
ı =

⊕
ζ∈Xı AU̇

ı1ζ .

Moreover, for u ∈ U̇ı, we have u ∈ AU̇ if and only if u · 1λ ∈ AU̇ for each λ ∈ X (cf.

[BW18b, Lemma 3.20])

Theorem 9.12. For any i ∈ I and µ ∈ Xı, there exists an element B
(n)
i,ζ ∈ AU̇

ı1ζ. In

particular, these elements satisfy the following 2 properties:

1. ψı(B
(n)
i,ζ ) = B

(n)
i,ζ ;

2. B
(n)
i,ζ 1λ = F

(n)
i 1λ +

∑
a<n F

(a)
i AU

+1λ, for 1λ ∈ AU̇ı with λ = ζ.

De�nition 9.13. Let ′AU̇
ı be the Aπ-subalgebra of AU̇

ı generated by the ıdivided powers

B
(n)
i,ζ (i ∈ I) for all n ≥ 1 and ζ ∈ Xı.

Recall for λ ∈ X, we denote byM(λ) the Verma module of highest weight λ (see [CHW13,

�2.6]). We denote the highest weight vector by ηλ. The following is an analogue of [BW18c,

Lemma 6.3].

Lemma 9.14. Let (M,B(M)) be a based U-module. Let λ ∈ X. Then,

1. for b ∈ B(M), the K(q)-linear map πb : U̇ı1|b|+λ −→ M ⊗ M(λ), u 7→ u(b ⊗ ηλ)),

restricts to an Aπ-linear map πb : ′AU̇
ı1|b|+λ −→ AM ⊗Aπ AM(λ);

2. we have
∑

b∈B(M) πb(
′
AU̇

ı1|b|+λ) = AM ⊗Aπ AM(λ).
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Proof. Recall ′AU̇
ı ⊂ AU̇

ı. Part (1) follows from De�nition 9.11. Part (2) is proven in the

same way as loc. cit. By part (1) we have
∑

b∈B(M) πb(
′
AU̇

ı1|b|+λ) ⊂ AM ⊗Aπ AM(λ), and

AU
− has the increasing �ltration

Aπ = AU
−
≤0 ⊆ AU−≤1 ⊆ · · · ⊆ AU−≤N ⊆ · · ·

where AU
−
≤N is the Aπ-span of {F (a1)

i1
. . . F

(an)
in
|a1 + . . .+an ≤ N, i1, . . . , in ∈ I}, which induces

an increasing �ltration {AM(λ)≤N} on AM(λ).

We can prove by induction on N that AM ⊗Aπ AM(λ)≤N ⊂
∑

b∈B(M) πb(
′
AU̇

ı1|b|+λ): Let

b⊗
(
F

(a1)
i1

. . . F
(an)
in

ηλ
)
∈ AM ⊗Aπ AM(λ)≤N . Since the form of ∆

(
B

(a1)
i1,ζ

)
has a `leading term'

1⊗F (a1)
i1,ζ

plus terms lower in �ltration degree, we can use Theorem 9.12 to conclude that with

appropriately chosen ζ ∈ X ı (see [BW16, Lemma 2.2]), we have

B
(a1)
i1,ζ

(
b⊗

(
F

(a2)
i2

. . . F
(an)
in

ηλ
))
∈ b⊗

(
F

(a1)
i1

. . . F
(an)
in

ηλ
)

+ AM ⊗Aπ AM(λ)≤N−1.

The lemma follows.

For λ ∈ X+, we abuse the notation and denote also by ηλ the image of ηλ under the

projection pλ : M(λ) → L(λ). Note that pλ restricts to pλ : AM(λ) → AL(λ). The next

corollary follows from Lemma 9.14.

Corollary 9.15. Let λ ∈ X+, and let (M,B(M)) be a based U-module. Then,

1. for b ∈ B(M), the K(q)-linear map πb : Uı1|b|+λ −→M ⊗L(λ), u 7→ u(b⊗ ηλ), restricts

to an Aπ-linear map πb : ′AU
ı1|b|+λ −→ AM ⊗Aπ AL(λ);

2. we have
∑

b∈B(M) πb(
′
AU

ı1|b|+λ) = AM ⊗Aπ AL(λ).
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Integrality of actions of Υ

We now show that the quasi K-matrix Υ ∈ Û+ induces a well-de�ned K(q)π-linear map on

M ⊗ L(λ):

Υ : M ⊗ L(λ) −→M ⊗ L(λ), (9.12)

for any λ ∈ X+ and any weight U-module M whose weights are bounded above.

Recall [BW18b, �5.1] that a Uı-module M equipped with an anti-linear involution ψı is

called involutive (or ı-involutive) if

ψı(um) = ψı(u)ψı(m), for all u ∈ Uı,m ∈M.

Proposition 9.16. Let (M,B) be a based U-module whose weights are bounded above. We

denote the bar involution on M by ψ. Then M is an ı-involutive Uı-module with involution

ψı := Υ ◦ ψ. (9.13)

Proof. Just as in [BW18c], since the weights of M are bounded above, the action of Υ : M →

M is well de�ned. The rest of the argument is analogous to the one found in the proof of

[BW18b, Proposition 5.1] (also [BW18a, Proposition 3.10]): using Theorem 9.2, we have

ψı(um) = Υψ(um) = Υψ(u)ψ(m) = ψı(u)Υψ(m) = ψı(u)ψı(m)

as required.

Let (M,B) be a based U-module whose weights are bounded above. Assume Υ : M →M

preserves the Aπ-submodule AM .

Proposition 9.17. The K(q)π-linear map ψı := Υ ◦ ψ preserves the Aπ-submodule AM ⊗Aπ

AL(λ), for any λ ∈ X+.

108



Proof. The proof is again very similar: the U-module M ⊗ L(λ) is involutive with the invo-

lution ψ := Θ ◦ ( ⊗ ), where Θ is the quasi R-matrix de�ned in [CHW13, Theorem 3.1.1].

It follows by a direct analogue of the argument in [BW16, Proposition 2.4] that ψ preserves

the AAπ-submodule AM ⊗Aπ AL(λ).

The argument will be reproduced here: the statement is that for λ ∈ X+ and (M,B(M))

be a based U-module, the K(q)-linear map

Θ : M ⊗ L(λ)→M ⊗ L(λ)

preserves the Aπ-submodule AM ⊗Aπ AL(λ).

We will write for ⊗ , which preserves the Aπ-lattice AM ⊗Aπ AL(λ). Thus, any

x ∈ AM ⊗Aπ AL(λ) can be recognized as x = x′ for some x′ ∈ AM ⊗Aπ AL(λ). By Lemma 9.9,

x′ =
∑

i πbi(u
′
i) (a �nite sum), for some bi ∈ B(M) and u′i ∈ AU−1|bi|+λ. Since AU−1|bi|+λ is

preserved by the bar involution on U̇, we have u′i = ui for some ui ∈ AU−1|bi|+λ. Hence,

x = x′ =
∑
i

ui(bi ⊗ ηλ).

From [CHW13, Theorem 3.1.1], the quasi R-matrix for has the property that

uΘ(m⊗m′) = Θ(u(m⊗m′)),

for u ∈ U̇, m ∈M and m′ ∈ L(λ). Taking m = bi = bi and m
′ = ηλ = ηλ, this gives

u(bi ⊗ ηλ) = Θ(u(bi ⊗ ηλ))

since Θ(bi⊗ηλ) = bi⊗ηλ (which follows from the fact that Θ lies in a completion of U−⊗U+,
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cf. [CHW13, Theorem 3.1.1]). Hence,

Θ(x) =
∑
i

Θ(u(bi ⊗ ηλ)) = ui(bi ⊗ ηλ) =
∑
i

πbi(ui),

where the latter lies in AM ⊗A AπL(λ) by Lemma 9.9, which completes the proof.

Regarded as Uı-module M ⊗ L(λ) is ı-involutive with the involution ψı := Υ ◦ ψ. We can

now prove that ψı preserves the Aπ-submodule AM ⊗Aπ AL(λ).

By Corollary 9.15(2), for any x ∈ AM ⊗Aπ AL(λ), we can write x =
∑

k uk(bk ⊗ ηλ), for

uk ∈ ′AU̇ı and bk ∈ B. Since M ⊗ L(λ) is ı-involutive, we have

ψı(x) =
∑
k

ψı(uk)ψı(bk ⊗ ηλ) =
∑
k

ψı(uk)Υψ(bk ⊗ ηλ) =
∑
k

ψı(uk)(Υbk ⊗ ηλ), (9.14)

where for the last equality we used the fact ∆(Υ) ∈ Υ⊗1 +U⊗U+
>0 (from the formulas (2.5)

for ∆ and (9.1) for Υ directly), together with the fact that ψ(bk ⊗ ηλ) = Θ(bk ⊗ ηλ) = bk ⊗ ηλ

since Θ =
∑

ν Θν , where Θν = U−ν ⊗U+
ν and Θ0 = 1⊗ 1. By assumption we have Υbk ∈ AM

and it follows by de�nition of ′AU̇
ı that ψı(uk) ∈ AU̇ı. Applying Corollary 9.15(2) again to

(9.14), we see that ψı(x) ∈ AM ⊗Aπ AL(λ), and so the proposition follows.

Corollary 9.18. The quasi K-matrix Υ preserves the Aπ-submodule AM ⊗Aπ AL(λ). In

particular, Υ preserves the Aπ-submodule AL(λ) of L(λ).

Proof. Recall that Υ = ψı ◦ ψ. The corollary follows from Proposition 9.17 and the fact that

ψ preserves the Aπ-submodule AM ⊗Aπ AL(λ).

Corollary 9.19. Let λi ∈ X+ for 1 ≤ i ≤ `. The involution ψı on the ı-involutive Uı-module

L(λ1)⊗ . . .⊗ L(λ`) preserves the Aπ-submodule AL(λ1)⊗Aπ . . .⊗Aπ AL(λ`).

Proof. The module L(λ1)⊗. . .⊗L(λ`) is a basedU-module whose weights are bounded above,

and so the corollary follows by applying Proposition 9.17 consecutively.

For �nite type, the quasi K-matrix Υ is itself integral:
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Corollary 9.20. Assume (U,Uı) is of �nite type. Write Υ =
∑

µ∈ZΠ Υµ. Then we have

Υµ ∈ AU+ for each µ.

Proof. This follows directly from Corollary 9.18, by applying Υ to the lowest weight vector

ξ−w0λ ∈ AL(λ), for λ� 0 (i.e., λ ∈ X+ such that 〈i, λ〉 � 0 for each i).
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Chapter 10

Canonical basis on Uı

In this chapter, we will de�ne based modules for the ıquantum covering groups, and develop

canonical basis for these modules using the properties for the quasi K-matrix Υ established

in the previous chapter.

10.1 Canonical basis for Uı-modules

We call a Uı-module M a weight Uı-module if M admits a direct sum decomposition M =

⊕λ∈XıMλ such that, for any µ ∈ Y ı, λ ∈ Xı, m ∈Mλ, we have Kµm = q〈µ,λ〉m. We will make

the following de�nition of based Uı-modules (based on [BWW18, De�nition 1]).

De�nition 10.1. Let M be a weight Uı-module over K(q)π with a given K(q)π-basis Bı. The

pair (M,Bı) is called a based Uı-module if the following conditions are satis�ed:

1. Bı ∩Mν is a basis of Mν , for any ν ∈ Xı;

2. The Aπ-submodule AM generated by Bı is stable under AU̇ı;

3. M is ı-involutive; that is, the Kπ-linear involution ψı : M → M de�ned by ψı(q) =

q−1, ψı(b) = b for all b ∈ Bı is compatible with the U̇ı-action, i.e., ψı(um) = ψı(u)ψı(m),

for all u ∈ U̇ı,m ∈M ;
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4. Let A = K[[q−1]]π ∩K(q)π. Let L(M) be the A-submodule of M generated by Bı. Then

the image of Bı in L(M)/q−1L(M) forms a Kπ-basis in L(M)/q−1L(M).

We shall denote by L(M) the Z[q−1]π-span of Bı; then Bı forms a Z[q−1]π-basis for L(M).

We also de�ne based Uı-submodules and based quotient Uı-modules in the obvious way.

By a standard argument using [Cl14, Lemma 9] (cf. [Lu94, Lemma 24.2.1]), we have the

following generalization of [BW18c, Theorem 6.12] (cf. [BW18b, Theorem 5.7]): Let ≤ be the

partial order de�ned in (2.1) i.e. λ ≤ λ′ if and only if λ′ − λ ∈ N[I].

Theorem 10.2. Let (M,B) be a based U-module whose weights are bounded above. Assume

that the Aπ-submodule AM is preserved by the involution ψı of M .

1. The Uı-module M admits a unique basis (called the ı-canonical basis) Bı := {bı|b ∈ B},

which is ψı-invariant and of the form

bı = b+
∑

b′∈B,b′<b

tb;b′b
′, for tb;b′ ∈ q−1Zπ[q−1]. (10.1)

2. Bı forms an Aπ-basis for the Aπ-lattice AM (generated by B), and forms a Zπ[q−1]-basis

for the Zπ[q−1]-latticeM (generated by B).

3. (M,Bı) is a based Uı module, and we call Bı the ı-canonical basis of M .

Recall the based U-module L(λ, µ) := U(ηλ ⊗ ηµ) ⊂ L(λ)⊗ L(µ).

Corollary 10.3. Let λ, µ ∈ X+, and w ∈ W .

1. L(λ)⊗ λ(µ) is a based Uı-module, with the ıcanonical basis de�ned as Theorem 10.2.

2. L(λ, µ) is a based Uı-submodule of L(λ)⊗ λ(µ).

Proof. It su�ces to verify the assumptions of Theorem 10.2. It is clear both L(wλ, µ) and

L(λ) ⊗ L(µ) have weights bounded above. It follows from Corollary 9.19 that ψı preserves
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the Aπ-submodule AL(λ)⊗A AL(µ), hence also AL(wλ, µ). Therefore both L(λ)⊗ L(µ) and

L(wλ, µ) are based Uı-modules. It is immediate that L(wλ, µ) is a based Uı-submodule of

L(λ)⊗ λ(µ).

Next, we will develop canonical basis for tensor products of based Uı-modules. A �rst

step in this direction is the construction of quasi R-matrix Θı for Uı from the quasi K-matrix

in Chapter 9.

The quasi R-matrix Θı for Uı

Let Û⊗U be the completion of the K(q)π-vector space U⊗U with respect to the descending

sequence of subspaces

U⊗U−U0
( ∑

ht(µ)≥N

U+
µ

)
+ U+U0

( ∑
ht(µ)≥N

U−µ
)
⊗U, for N ≥ 1, µ ∈ ZI.

We have the obvious embedding of U ⊗ U into Û⊗U. By continuity the K(q)π-algebra

structure onU⊗U extends to a K(q)π-algebra structure on Û⊗U. Recall the quasiR-matrix

Θ de�ned in [CHW13, Theorem 3.1.1] which lies in Û⊗U. It follows from Theorem 9.2 that

Υ−1 ⊗ id and ∆(Υ) are both in Û⊗U.

We de�ne

Θı = ∆(Υ) ·Θ · (Υ−1 ⊗ id) ∈ Û⊗U. (10.2)

Proposition 10.4 (cf. [BW18a, Proposition 3.2]). For any b ∈ Uı, we have in Û⊗U the

following identity:

∆(ψı(b)) ·Θı = Θı · (ψı ⊗ ψ) ◦∆(b)
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Proof. Let b ∈ Uı. Using the intertwiner relations, we make the following calculation:

Θı · (ψı ⊗ ψ) ◦∆(b) = ∆(Υ) ·Θ · (Υ−1 ⊗ 1) · (ψı ⊗ ψ) ◦∆(b)

= ∆(Υ) ·Θ · (ψ ⊗ ψ) ◦∆(b) · (Υ−1 ⊗ 1) using Theorem 9.2

= ∆(Υ) ·∆(ψ(b)) ·Θ · (Υ−1 ⊗ 1) using [CHW13, Theorem 3.1.1]

= ∆(ψı(b)) ·∆(Υ) ·Θ · (Υ−1 ⊗ 1) using Theorem 9.2 again,

thus proving the proposition.

We can write

Θı =
∑
µ∈NI

Θı
µ, where Θı

µ ∈ U⊗U+
µ . (10.3)

Lemma 10.5. The �rst and second tensor factors of each term in Θı
µ ∈ U ⊗U+

µ share the

same parity.

Proof. As we saw above, p(Υ) = p(Υ−1) = 0 and so ∆(Υ) has the property that the �rst and

second tensor factors of its terms share the same parity. By [CHW13, Theorem 3.1.1(b)], Θν

also has this property, and so Θı = ∆(Υ) ·Θ · (Υ−1 ⊗ id) does as well.

The following result is an analogue of [Ko17, Proposition 3.6], which �rst appeared in

[BW18a, Proposition 3.5] for the quantum symmetric pairs of (quasi-split) type AIII/AIV.

Lemma 10.6. We have Θı
µ ∈ Uı ⊗U+

µ , for all µ. In particular, we have Θı
0 = 1⊗ 1.

Proof. For any i ∈ I one has

∆(Bi) = Bi ⊗K−1
i + 1⊗ Fi + ciJi ⊗ EiK−1

i .

Hence Proposition 10.4 implies that

(
Bi ⊗K−1

i + 1⊗ Fi + ciJi ⊗ EiK−1
i

)
·Θı = Θı ·

(
Bi ⊗ JiKi + 1⊗ Fi + ciJi ⊗ JiKiEi

)
.
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Rearranging this we obtain

Θı(1⊗ Fi)− (1⊗ Fi)Θı = (Bi ⊗K−1
i + ciJi ⊗ EiK−1

i )Θı −Θı(Bi ⊗ JiKi + ciJi ⊗ JiKiEi)

(10.4)

Recall [CHW13, Proposition 2.2.2(a)] concerning the skew-derivation ri. In each level µ

the left hand side is the sum of terms of the form

(
(Θı

µ)1 ⊗ (Θı
µ)2

)
(1⊗ Fi)− (1⊗ Fi)

(
(Θı

µ)1 ⊗ (Θı
µ)2

)
= (Θı

µ)1 ⊗ (Θı
µ)2Fi − πp1i (Θı

µ)1 ⊗ Fi(Θı
µ)2 where pk := p((Θı

µ)k), k = 1, 2

= (Θı
µ)1 ⊗ [(Θı

µ)2, Fi], since πp1i = πp2i by Lemma 10.5

= (Θı
µ)1 ⊗

(
ri((Θ

ı
µ)2)JiKi −K−iπp2−p(i)i ir((Θ

ı
µ)2)

πiqi − q−1
i

)
by [CHW13, Proposition 2.2.2(a)]

Comparing this to terms on the right hand side of (10.4) with a factor of 1⊗ JiKi, we see

that

(1⊗ ri)(Θı
µ) = −(πiqi − q−1

i )Θı(Bi ⊗ 1 + ciq
2
i Ji ⊗ Ei) (10.5)

Then, the same induction argument as in [Ko17, Proposition 3.6] completes the proof, this

time using our Lemma 2.2 above as the appropriate analogue in the quantum covering group

setting.

The following is an version of [BWW18, Lemma 3], used in the proof of the next theorem:

Lemma 10.7. We have Θı
µ ∈ AπU⊗A AU+

µ for all µ.

Proof. Since the de�nition of Θı has the same form, the argument is analogous to the proof

of [BWW18, Lemma 3]; we have integrality of Θ by [CHW13, Theorem 3.1.1], and integrality

of the action of Υ in Theorem 9.20.
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Theorem 10.8. Let M be a based Uı-module, and λ ∈ X+. Then ψı
def
= Θı ◦ (ψı ⊗ ψ) is an

anti-linear involution on M ⊗L(λ), and M ⊗L(λ) is a based Uı-module with a bar involution

ψı.

Proof. The anti-linear operator ψı = Θı ◦ (ψı ⊗ ψ) : M ⊗ L(λ) → M ⊗ L(λ) is well de�ned

thanks to Lemma 10.6 and the fact that the weights of L(λ) are bounded above. Then entirely

similar to [BW18a, Proposition 3.13], we see that ψ2
ı = 1 and M ⊗ L(λ) is ı-involutive in the

sense of De�nition 10.1(3).

The proof that ψı preserves the Aπ-submodule AM ⊗Aπ AL(λ) is the same as the proof

of Proposition 9.17. By assumption, (M,Bı(M)) is a based Uı-module. For any b ∈ Bı(M),

de�ne

πb : AU̇
ı → AM ⊗Aπ AL(λ), u 7→ u(b⊗ ηλ).

Then, πb is well de�ned, since by De�nition 9.11 and the following remark the coproduct

preserves the integral forms, that is, ∆(u)(1µ ⊗ 1ν) preserves AM ⊗Aπ AL(λ), for any µ ∈ X ı

and ν ∈ X.

Note that ψı(b⊗ηλ) = b⊗ηλ for any b ∈ Bı(M). Following the proof of Lemma 9.14, we have∑
b∈Bı(M) πb(

′
AU̇

ı) = AM ⊗Aπ AL(λ). Hence we also have
∑

b∈Bı(M) πb(AU̇
ı) = AM ⊗Aπ AL(λ),

since ′AU̇
ı ⊂ AU̇ı. By the same argument as before, we may conclude that ψı preserves the

A-submodule AM ⊗Aπ AL(λ).

We write B = {b−ηλ|b ∈ B(λ)} for the canonical basis of L(λ). We can now conclude that:

1. for b1 ∈ Bı, b2 ∈ B, there exists a unique element b1♦ıb2 which is ψı-invariant such that

b1♦ıb2 ∈ b1 ⊗ b2 + q−1Zπ[q−1]Bı ⊗ B;

2. we have b1♦ıb2 ∈ b1 ⊗ b2 +
∑

(b′1,b
′
2)∈Bı×B,|b′2|<|b2|

q−1Zπ[q−1] b′1 ⊗ b′2;

3. Bı♦ıB := {b1♦ıb2 | b1 ∈ Bı, b2 ∈ B} forms a K(q)π-basis for M ⊗ L(λ), an Aπ-basis for

AM ⊗A AπL(λ), and a Zπ[q−1]-basis for L(M)⊗Zπ [q−1] L(λ);

4. (M ⊗ L(λ),Bı♦ıB) is a based Uı-module,
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following the same arguments as for [BWW18, Theorem 4] i.e. using Lemma 10.6 and

Lemma 10.7 and [Cl14, Lemma 9].

10.2 Canonical basis on U̇ı

In this section, we formulate the main de�nition and theorems on canonical bases for the

modi�ed ıquantum groups. The formulations specialize at π = 1 to [BW18c, Section 7],

which are in turn generalizations of the �nite type counterparts in [BW18b, Section 6].

The modi�ed ıquantum groups

Recall the partial order ≤ on the weight lattice X in (2.1). The following proposition is a

version of [BW18c, Proposition 7.1] in the quantum covering case.

Proposition 10.9. Let λ, µ ∈ X+.

1. The ı-canonical basis of the Uı-module Lı(λ, µ) := L(λ+ µ) is the basis

Bı(λ, µ) =
{

(b1♦ζıb2)ıλ,µ|(b1, b2) ∈ Bı × B
}
\{0},

where (b1♦ζıb2)ıλ,µ is ψı-invariant and lies in

(b1♦ζb2)(ηλ ⊗ ηµ) +
∑

|b′1|+|b′2|≤|b1|+|b2|

q−1Z[q−1](b′1♦ζb′2)(ηλ ⊗ ηµ).

2. We have the projective system
{
Lı(λ+ ντ , µ+ ν)

}
ν∈X+ of Uı-modules, where

πν+ν1,ν1 : Lı(λ+ ντ + ντ1 , µ+ ν + ν1) −→ Lı(λ+ ντ , µ+ ν), ν, ν1 ∈ X+,
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is the unique homomorphism of Uı-modules such that

π(ηλ+ντ+ντ1
⊗ ηµ+ν+ν1) = ηλ+ντ ⊗ ηµ+ν .

3. The projective system in (2) is asymptotically based in the following sense: for �xed

(b1, b2) ∈ Bı × B and any ν1 ∈ X+, as long as ν � 0, we have

πν+ν1,ν1

(
(b1♦ζıb2)ıλ+ντ+ντ1 ,µ+ν+ν1

)
=
(
(b1♦ζıb2)ıλ+ντ ,µ+ν

)
.

Proof. Claim (1) is just a reformulation of Corollary 10.3. Claim (2) follows by the same

proof as [BW18b, Proposition 6.12], replacing the R-matrix therein with the one using the

R-matrix from [CHW13, Theorem 3.1.1]. Claim (3) is the same as [BW18b, Proposition 6.16],

and in the quasi-split case here, we can do without the mild modi�cation needed in [BW18c]

since the module L(ντ + ν) is �nite dimensional.

The proof in the following version of [BW18c, Theorem 7.2] (see also [BW18b, Theorem

6.17]) rests solely on a version of Proposition 10.9; the same arguments thus lead to the

ı-canonical basis for U̇ı:

Theorem 10.10. Let ζı ∈ Xı and (b1, b2) ∈ B ×B.

1. There is a unique element u = b1♦ıζıb2 ∈ U̇ı such that

u(ηλ ⊗ ηµ) = (b1♦ζıb2)ıλ,µ ∈ Lı(λ, µ) := L(λ+ µ),

for all λ, µ� 0 with λ+ µ = ζı.

2. The element b1♦ıζıb2 is ψı-invariant.

3. The set Ḃı = {b1♦ıζıb2

∣∣ζı ∈ Xı, (b1, b2) ∈ B × B} forms a K(q)π-basis of U̇ı and an

Aπ-basis of AU̇ı.
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