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Abstract

A quantum covering group U, is an algebra with parameters ¢ and 7 subject to 72 = 1
and it admits an integral form; it specializes to the usual quantum group at 7 = 1 and to
a quantum supergroup of anisotropic type at m = —1. In this dissertation, we establish the
Frobenius-Lusztig homomorphism and Lusztig-Steinberg tensor product theorem in the setting
of quantum covering groups at roots of 1, recovering Lusztig’s constructions for quantum
groups at roots of 1 when we specialize at ™ = 1.

We develop a theory of quantum symmetric pair (U,, U.), where U’ is a coideal subalgebra
of U,. When specializing at 7 = 1, the pair (U,, U%), reduces to a quantum symmetric pair
of G. Letzter and its Kac-Moody generalization by Kolb. We give a Serre presentation for U’
of quantum symmetric pairs (U,, U%) for quantum covering groups, introducing the ™-Serre
relations and 1" -divided powers. We also develop a quasi K-matrix in this setting, which leads
to a construction of icanonical bases for the highest weight integrable U,-modules and their
tensor products regarded as Ul-modules, as well as an 2canonical basis for the modified form
of the 1quantum group U’. Again, specializing at m = 1 we recover the Serre presentation of
U* by Chen-Lu-Wang and the canonical basis construction of Bao-Wang. The specialization

at m = —1 leads to new constructions for quantum supergroups.
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Chapter 1

Introduction

In representation theory, quantum groups are a key object of interest. Originally used by
Drinfeld and Jimbo to study integrable systems, quantum groups are deformations of universal
enveloping algebras of Lie algebras through the addition of a parameter ¢, yielding a richer
algebraic structure known as a Hopf algebra. Today, quantum groups have many interesting
applications such as knot invariants, modular representation theory, and categorification.

Categorification is the process of taking a familiar algebraic construction and adding a
layer of categorical structure. For instance, the homology groups of a manifold can be viewed
as a categorification of the Euler characteristic. This process allows us to cast a familiar
construction as the shadow of some higher structure, leading to deeper insights.

An important structure in the study of quantum groups and categorification are canonical
bases, which are bases for quantum groups with certain nice properties, such as enabling one to
write down a basis for any simple module (hence the word ‘canonical’). Another such property
is the positivity of structure constants for multiplication in symmetric type, which hints at
geometry and categorification (these two concepts are often intertwined). In fact, canonical
bases have a geometric origin — they arise as shadows of intersection cohomology sheaves.
Canonical bases are often used in working with integral forms of quantum groups, which is

a version over the ring A = Z[q, ¢"'] that is ubiquitous in categorification, where ¢ becomes



the shadow of a grading shift. Two important examples of categorification are the KLR
construction for quantum groups by M. Khovanov, A. Lauda and R. Rouquier using quiver
Hecke algebras, and Soergel bimodules for Hecke algebras by B. Elias and G. Williamson. In
this setting, canonical bases above arise as the shadow of indecomposables.

The work in this dissertation lies at the intersection of a few notions that are built on
this rich foundation of quantum groups. These include the quantum covering groups and
quantum symmetric pairs. In the first part, we will discuss constructions at roots of unity for
quantum covering groups. The second part will feature a Serre presentation, bar involution
and canonical basis for quantum symmetric pairs of quantum covering groups. A brief overview

of these notions are given in the following paragraphs.

Quantum covering groups

A quantum covering group U, introduced in [CHWI13| (cf. [HW15]) is an algebra defined
via a super Cartan datum I (a finite indexing set associated to Kac-Moody superalgebras
with no isotropic odd roots). U, depends on two parameters ¢ and 7, where 72 = 1. A
quantum covering group specializes at m = 1 to the quantum group above, and at 7 = —1 to
a quantum supergroup of anisotropic type (see [BKMO98]|). In addition to the usual Chevalley
generators, we have generators J; for each i € I. If one writes K; as ¢/, then analogously

hi . The parameter 7 can be seen as a shadow of a parity shift functor

we will have J; = =«
in .D. Hill and W. Wang’s (JHW15]) categorification of quantum groups by the spin quiver
Hecke superalgebras introduced in [KKT16|. Since then, further progress has been made on
the odd/spin/super categorification of quantum covering groups; see [KKO14| [EL16, BE17].

Just like for quantum groups, a theory of canonical bases for integrable modules of U,

and its modified (idempotented) form U, has been developed, in [CHW14] [CI14].



Quantum covering groups at roots of 1

A Drinfeld-Jimbo quantum group with the quantum parameter ¢ admits an integral Z[q, ¢']-
form; its specialization at g being a root of 1 were studied by G. Lusztig in [Lu90al, Lu90b],
[Lu94, Part V] and also by many other authors. In these works Lusztig developed the quantum
group version of Frobenius homomorphism and Frobenius kernel (known as small quantum
groups), as a quantum analogue of several classical concepts arising from algebraic groups
in a prime characteristic. The quantum groups at roots of 1 and their representation theory
form a substantial part of Lusztig’s program on modular representation theory, and they have
further impacted other areas including geometric representation theory and categorification.

The first part of this dissertation details generalizations of these constructions to quantum
covering groups in joint work with T. Sale and W. Wang [CSWI§]. In Theorem [4.5] we
formulate a Lusztig-Steinberg tensor product theorem for rf the half quantum group at a
root of unity, and then establish the Frobenius-Lusztig homomorphism between gf and its

quasi-classical counterpart zf°:

Theorem A (Theorem Frobenius-Lusztig homomorphism). There exists a homomor-
phism Fr : zpf — rf° which for all i € I, n sends the generators QE") to 02("/&) if ¢; divides n,

and to 0 otherwise.

We then show that the homomorphism Fr can be extended to the modified quantum
covering group in Theorem [4.8] We then use this to define the small quantum covering group

and show that it is a finite-dimensional Hopf algebra when U, is of finite type.

Quantum symmetric pairs

A quantum symmetric pair (U, U") is a quantization of the symmetric pair of enveloping
algebras (U(g),U(g?)) where § : g — g is an involution of the Lie algebra g. Originally
developed for applications in harmonic analysis for quantum group analogs of symmetric

spaces, G. Letzter developed a comprehensive theory of quantum symmetric pairs for all



semisimple g in [Le99]. The algebraic theory of quantum symmetric pairs was subsequently
extended to the setting of Kac-Moody algebras in |[Kol4]. The iquantum group U' is a
subalgebra of the quantum group U satisfying a coideal property; coideal subalgebras provide
important substructure for U, since Hopf subalgebras are rare ‘in nature’.

More recent developments have made it apparent that quantum symmetric pairs play
an important role in representation theory at large. In a series of groundbreaking papers,
H. Bao and W. Wang proposed a program of canonical bases for quantum symmetric pairs
IBW18al, BWI18b, BW18c|. They performed their program for the Type AIII/IV symmetric
pairs (slon,s(gly % gly)) and (sloyi1,5(gly % gly,,)) and applied it to tensor products of
their U'-modules, establishing a Kazhdan-Lusztig theory and irreducible character formula
for the category O of the ortho-symplectic Lie superalgebra osp(2n+1|2m), a feat for which
they were awarded the 2020 Chevalley prize in Lie Theory. Together with previously known
results, these recent developments suggest that quantum symmetric pairs allow as deep a
theory as quantized enveloping algebras themselves. In fact, U can be viewed as a special
type of quantum symmetric pair, the diagonal quantum symmetric pair (U ® U, +(U)) where
1= (w®1)A: U — U®U. It is thus reasonable to expect that many results about quantized
groups have their counterparts in the realm of quantum symmetric pairs.

A fundamental property of any quantum group U is the existence of a universal R-matrix,
an element in the completion of a tensor product of U with itself which gives rise to solutions
of the quantum Yang-Baxter equation for suitable representations of U. The existence of a
universal R-matrix is crucial to V. Drinfeld and M. Jimbo’s investigation into the theory of
quantum integrable systems [Dri87], [Jim85|, and has applications to the construction of knot
invariants [RT90]. The analog of the quantum Yang-Baxter equation for quantum symmetric
pairs is known as the boundary quantum Yang-Baxter equation, or the (quantum) reflection
equation cf. [Che84]. An an element providing solutions of the reflection equation in all
representations is called a ‘universal K-matrix’, a term first used in E. Sklyanin’s investigation

of quantum integrable models with non-periodic boundary conditions [SkI&S|, [KS92].



For a quantum group U with negative part U~ and postive part U™, the quasi R-matrix
for U is a canonical element in a completion of U~ ® U™ which appears as an intertwiner of
two bar involutions on A(U). The quasi R-matrix has a simpler expression than the universal
R-matrix, and is used in [Lu94, Part IV] to construct canonical bases for tensor products of
U and U. For quantum symmetric pairs an analogue intertwining the bar involutions on U?
and U, the quasi K-matriz is constructed for special cases in [BW18a] and more generally
in [BaK19|. An immediate application of the quasi K-matrix in [BW18al BW18bl BW18¢] is
the construction of canonical bases for tensor products of U-modules and U".

For the negative half U~ of the quantum group in rank one U = U,(sly), the Lusztig
divided powers are monomials in a single variable F', and they form the canonical basis for
U~. The canonical basis for U* in rank one is formed by the +-divided powers, introduced
in [BW18b, BW18c| and further explored in [BeW18]. Instead of being monomials, they are
polynomials in a single variable B. They give bases for finite-dimensional simple sly-modules,
and have two different formulas, B and B%n), depending on the parity of the corresponding
highest weight, which is a non-negative integer.

The -divided powers and their expansion formulas in [BeW18| formed a cornerstone of the
construction of the Serre presentation for quasi-split »-quantum groups established in H. Chen,
M. Lu and W. Wang in [CLWI18|. In [BWI18b, BW18c|, +-divided powers for i € I with 7i =1

were defined using the same formulas, and then shown to generate as an algebra the integral

form 4U* of the modified quantum group.

Serre presentation for :quantum covering groups

For quantum covering groups U, of super Kac-Moody type and a diagram involution 7, (quasi-
split) quantum symmetric pairs (U, U%) we define U’ with generators K,, J; (products of K;

and J; respectively which keep track of the g and 7 grading), and B; satisfying the embedding



formula

B; = F;+q; 'E;K;

The w1quantum covering group U is a right coideal subalgebra.

The -divided powers above have a generalization to U, the +"-divided powers BZ,(?) and
Bg%l) which are given in the formulas (7.31) and (7.32) below for i € I with 7¢ = ¢. The new
facets m and J of quantum covering groups are incorporated into these formulas, and when we
specialize at 7 = 1 and jz = 1, we obtain the ¢-divided powers above. The ¢"-divided powers

also satisfy a collection of expansion formulas which are instrumental in the following result:

Theorem B (Theorem Serre presentation for U ). U is generated by B; K,,, J;, subject

to a few standard relations and the following:

l—aij

fri=itj, > (—1)”7r?+(2)BZ-(%JFEBJ-BZ%Z%%) — 0. (B1)
n=0
n+(5 n —a; ri—n 1
If 7i ?é ?:7 Z/lfaiyn'(_l)nﬂi +(2)BZ( )B‘M,Bz(l iyri =) =— (BQ)
Tid; — g;

n=0

’ <q?iﬂ(7riqi_2; Wiqi_2>—ai,riBi(7ai’ﬂ)Zi —(7T2-qi2; Wiqz?)—ai,riBzgiaiYTi)ZTi) )

Relation is the ¢"-Serre relation — when 7 = 1, this specializes to the :-Serre relation in
[CLW18]. Note that here p; = 0 or 1, giving a collection of alternate presentations. Similar to
the proof therein (Theorem 4.8), the expansion formulas for the :"-divided powers mentioned
above can be used to reduce the proof of to a ¢g-binomial identity. The second relation

(B2]) specializes to [BaK15, Theorem 3.6]) when 7w = 1.

Quasi K-matrix and canonical basis for :quantum covering groups

As foreshadowed above above, the quasi K-matrix is a natural starting point in the investiga-
tion of a theory of canonical basis for U’. For regular quantum groups, the bar involutions 1),

on U* and v on U are not compatible; v, is not simply the restriction of 1) to the subalgebra



U". Thus, one can define a quasi K-matrix T that ‘intertwines’ these two bar involutions. In
the case of the diagonal quantum symmetric pair, the quasi K-matrix arises naturally from
Lusztig’s quasi R-matrix. An application of the quasi K-matrix is transforming involutive
based U-modules (U-modules with distinguished bases compatible with the bar-involution
on U), into involutive based U*-modules, compatible with the bar-involution ¢, on U". In the
quantum covering setting, the quasi R-matrix is constructed in [CHW13] Theorem 3.1.1]. In

this dissertation, we have the following generalization for quasi-split U’:

Theorem C (Theorem . There exists a unique family of elements Y, € (UJ), such that

Yo=1land T = Zu T, where p(u) is even, satisfying the following identity in I/J\W:
U, (u)Y = Ty(u), forallue UL

When we specialize at m = 1, we obtain the quasi K-matrix of [BW18a| and [BaK19|. In

rank one i.e. when [ is a single odd root, the quasi K-matrix takes on the form

T =Y (-m)f(rq— ¢ )™ 2k — 1LEY,

k>0

where [2k — 1] == [2k — 1], - [2k — 3], - ... - [1].

I
The quasi K-matrix T is invertible, and its inverse is obtained by applying the bar involu-
tion. Crucially, T has the property that it preserves the integrality of the A-forms of integrable
highest weight U’-modules and their tensor products. Using this property of integrality of
the action of their quasi K-matrix, Bao and Wang defined in [BW18a, BW18c| a new bar
involution on based U-modules (modules M with a distinguished basis B, and compatible
involution ) thus enabling the construction of +-canonical bases of these modules (which are
now based U’-modules) from their canonical bases. With the ¢"-divided powers above, these

constructions also lead to a theory of canonical basis for integrable based U’ -modules - exam-

ples include highest weight integrable modules and their tensor products (following [BW16]).



Here the integral form is now over A™ := Z"[q,¢"!], and we have a m-basis - a ‘signed’ basis
that for the half quantum group f specializes to the Lusztig-Kashiwara canonical basis when

m =1, and when m = —1 specializes to Lusztig’s signed basis [Lu94, Chapter 14].

Theorem D (Theorem [10.2)). Let (M, B) be a based U,-module whose weights are bounded
above. Assume the involution v, := T o ¢ of M preserves the A"-submodule 4M. The

U’-module M admits a unique m-basis B" := {b'|b € B}, which is #,-invariant and of the form

B=b+ Y b, for tyy €q'Z7g").

b'eB,b'<b

B' forms an A™-basis for the A™-lattice 4M (generated by B), and forms a Z™[q~!]-basis for

the Z™[q']-lattice M (generated by B).

We conclude by constructing a canonical basis for the modified form U;, generalizing

[BWISH, BWI8d:

Theorem E (Theorem |10.10). Let ¢, € X, and (b1,b3) € B x B. The set
B' = {0104 b|C, € X,, (b1, b2) € B x B}

forms a K(q)-basis of U* and an A™-basis of 4U*, where b1, b2 is Y,-invariant and is the

unique element by by = u € U* such that for all X\, x> 0 with X+ p = ¢,

u(m @ nu) = (019 b2)3, € LA ) = LA+ p).

Organization

The first part of the dissertation is organized as follows: In Chapter [2| we cover the founda-
tional details of quantum covering groups. In Section [3.1] we establish several basic properties

of the (g, m)-binomial coefficients at roots of 1, generalizing Lusztig [Lu94, Chapter 34|. In the

10



same chapter, we recall the definitions of the half quantum covering group grf and the whole
(respectively, the modified) quantum covering group U (respectively, RU) over some ring R”,
associated to a super Cartan datum. We give a presentation of U and a presentation of the
quasi-classical counterpart rf® of gf, generalizing [Lu94l 33.2|.

Our Chapter [ is a generalization of [Lu94, Chapter 35]. We establish in Theorem a
R™-superalgebra homomorphism Fr’ : zf° — gf, which sends the generators Ql(") to HZWZ')
for all ¢+ € I,n. This is followed by the Lusztig-Steinberg tensor product theorem for rf
which we prove in Theorem Next we establish in Theorem the Frobenius-Lusztig
homomorphism Fr : xf —» rf° which sends the generators 6™ to 6"/ if ¢; divides n, and
to 0 otherwise, for all © € I,n. We further extend the homomorphism Fr to the modified
quantum covering group in Theorem

Finally in Chapter [5) we formulate the small quantum covering groups and investigate its
Hopf algebra structure. In the finite type case corresponding to type B(0,n), we show that
the small quantum covering group is finite dimensional, and we compute its dimension.

In Part 2, we discuss key constructions for quasi-split quantum symmetric pairs (U, U%)
for quantum covering groups, dropping the subscript m. In Chapter [6] we introduce the
wquantum covering group U’, giving its structure and size. In the following chapter, we
introduce the 2"-divided powers and prove a handful of their expansion formulas, which we
will use to prove the validity of the +™-Serre relations in Chapter [§l The rest of Chapter
contains a statement and proof of the Serre presentation for quasi-split U, which uses an
approach inspired by |[CLWI18|, reducing the main result to the (g, 7)-binomial identity in
§8.3

In Chapter [9] we see that the Serre presentation enables the definition of a bar involution
on U’ (§9.1), and in the same chapter a quasi K-matrix T intertwining this bar involution is
constructed, and we show that T preserves the integral forms of various based modules and
their tensor products. Finally, in Chapter a theory of canonical basis for tensor products

of U-modules and U* is formulated, using a quasi R-matrix ©° for U* constructed from Y.

11



Notation

As a remark: we will drop the subscript 7 from U, and related notation in the following
chapters, so U will be understood to refer to the quantum covering group. We will explicitly

mention when we are referring to the usual quantum group e.g. when we specialize 7 = 1.

12



Part 1

Quantum Covering Groups at Roots of 1
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Chapter 2

Quantum Covering Groups

In this chapter, we will give an overview of the details of quantum covering groups. We will go
over basic notation, conventions and constructions that are fundamental to the main results

in the subsequent chapters.

2.1 Foundations and structure

We start by recalling the definition of a quantum covering group from [CHW13| starting with

a super Cartan datum and a root datum.

Super Cartan data

A Cartan datum is a pair (I,-) consisting of a finite set I and a symmetric bilinear form

v,V — v -V on the free abelian group Z[I] with values in Z satisfying
(a) d; =& € Zso;
(b) 2% € —Nfor i # j in I.

If the datum can be decomposed as I = Iy ][] I; such that

(C) [1 % (Z);

14



(d) 2 e2zZifi€ L,

then it is called a super Cartan datum; cf. [CHW13].
We denote the parity p(i) = 0 for ¢ € Iy and p(i) = 1 for i € I;. Following [CHW13|, we

will always assume a super Cartan datum satisfies the additional bar-consistent condition:
(e) & =p(i) mod2, foralliel.

This condition is always satisfied for super Cartan data of finite or affine type, with one
exception.

Note that (d) and (e) imply that
(f) i-je2Zforalli,j e I.

The ¢ € [ are called even, ¢ € I7 are called odd. We extend the parity function p : I —
{0,1} to the homomorphism p : Z[I] — Z. Then p induces a Zy-grading on Z[I]| which we
shall call the parity grading.

A super Cartan datum (7, -) is said to be of finite (resp. affine) type exactly when (I,-) is
of finite (resp. affine) type as a Cartan datum (cf. [Lu94, §2.1.3]). In particular, the only super
Cartan datum of finite type is type B(0,n) for n > 1; the corrresponding the Lie superalgebras
are the orthosymplectic Lie superalgebras osp(1]2n).

A root datum associated to a super Cartan datum (7, -) consists of

(a) two finitely generated free abelian groups Y, X and a perfect bilinear pairing (-,-) :
Y x X = Z:

(b) an embedding I C X (i — ¢') and an embedding I C Y (i +— 1) satisfying
(c) (i,5"y = 2L foralli,j € I

We will always assume that the root datum is X -regular (respectively Y -regular) image of the
embedding I C X (respectively, the image of the embedding I C Y) is linearly independent

in X (respectively, in V).

15



We also define a partial order < on the weight lattice X as follows: for A\, \ € X,
A < X if and only if X' — X € N[I]. (2.1)

The matrix A = (a;;) := (i,5) is a symmetrizable generalized super Cartan matriz: if
D = diag(d; | i € I), then DA is symmetric.
Let m be a parameter such that

7w =1.

For any @ € I, we set

¢=q"7  m=n.

Note that when the datum is consistent, m; = 77%; by induction, we therefore have 77(*) =

7vv/% for v € Z[I]. We extend this notation so that if v = 3 1;i € Z[[], then

Vi Vi
QV:||%Z> 7rI/:||7Tiz'
[ 1

For any ring R we define a new ring R™ = R[nx]/(7? — 1) (with 7 commuting with R). Below,
we will work over K(q)™ where K is a field of characteristic 0, and we will also consider algebras
over the ring A™, where A = Z[q,q7'].

Recall also the (g, 7)-integers and (g, m)-binomial coefficients in [CHW13]: we shall denote

[n]' = []ls] forneN,

s=1

16



and with this notation we have

m !
= % for 0 <n <m.
n|  [lm—=nl
n n
We denote by [n];, [m]}, and the variants of [n], [m]!, and with ¢ replaced by g;
m m

i

m
and 7 replaced by 7;, and the variant with ¢ replacing ¢°.

n
q2

For any i # j in I, we define the following polynomial in two (noncommutative) variables

x and y:

1—a;

<L

n . n 1 J— ai,
Fij(xay) — (_1)717_[_2 p(])+(2) J xny$1—aij—n‘ (22)

n=0 n
7

The quantum covering group

Let U denote the quantum covering group associated to the root datum (Y, X ...) introduced

in [CHW13|. By [CHW13| Proposition 3.4.2|, U is a unital K(q)"-superalgebra with generators
E, (iel), F (iel), J, (peY), K, (peyY),

subject to the relations (a)-(f) below for all i,j € I, u,p/ € Y:
B (el B Gel), Jy (weY), K, (ney),

with parity p(E;) = p(F;) = p(i) and p(K,) = p(J,) = 0, subject to the relations (a)-(f) below
foralli,je I, u,p €Y:
Ky = 1, KuKu’ = K;Hru’a (Rl)
Jop =1, Judw = Ty (R2)

17



JNK#/ = KH/J”, (RB)

KB =¢""EK,, JE=1""E.J, (R4)

K, F,=q¢ "IEK, J,F=1"E], (R5)

E,F; — np(i)p(j)FjE,- — 51‘,3'%7 (RG)

(g, m)-Serre relations F,;(E;, E;) = 0= F;(F;, F;), for all i # j. (R7)

where for any element v = ) v;i € Z[I] we have set K, = IL Kawiis J, = IL Jai- In
particular, K; = Ky, J, = Ja;i- Under the bar-consistency condition (e), J,=1foric Iy
while jl = J; for i € I5. Note that by the same condition a;; is always even for ¢ € I3, and so J;
is central for all i € I. As usual, denote by U, UT and U° the subalgebras of U generated by
{E;lie€I}, {F|i€I}and {J,, K,|pn € Y} respectively. Also denote U = {J;, K;|i € I}.
We endow U with a Z[I]-grading | - | by setting |E;| =1, |Fi| = —i, |Ju| =|K,| =0. The
parity on U is given by p(E;) = p(F;) = p(i) and p(K,) = p(J,) = 0.

The specialization at m = 1 of the algebra U, which we will denote by U|,—1, is a variant of
the usual Drinfeld-Jimbo quantum group with extra central elements J,,, with many properties
specializing to that of [Lu94|, cf. [CHW13|. The specialization at 7 = —1 of the algebra U/J
is naturally identified with a quantum group associated to the Cartan datum (I, -).

If we write F™ = F"/[n]! and E™ = E"/[n], for n > 1 and i > 1, then the (¢, 7)-Serre

relations (R7) can be rewritten as:

1—a;; ] "
S (P g pes ) g (23)
n=0
and
1—a;; ) n
(—1)ra" O E) g g gl g (2.4)

=0

3

By [CHW13|, Propositions 1.4.1, 3.4.1], the unital Q(q)"-superalgebra f is generated by 6;
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(1 € I) subject to the super Serre relations

n+n/:1_<i1j/>

for any ¢ # j in I; here a generator 6; is even if and only if ¢ € Iy. There is an A"-form for f,
which we call 4f. Tt is generated by the divided powers 95") =07/[n],, ., forallie I.n>1.
As R™ is an A™-algebra (cf. §3.1), by a base change we define pf = R™ ® 4= 4f.

The algebra U has an A™-form 4U. By a base change, we obtain RU = R™ ® 4= 4U. Let
rUT (resp. zU~) denote the subalgebra of U generated by the E™ = E!'/n]y, » (resp.
F; = F'/[n]y, ). As a R™-algebra gf is isomorphic to gU" (resp. gU~) via the map z — 2™
(resp. > z~), where ("))t = E™ (vesp. (8™)~ = ™.

Denote by X+ ={A € X | (i,\) € N, for all i € I}, the set of dominant integral weights.

For A € X, let M(\) be the Verma module of U, and we can naturally identify M(\) = f
as K(q)™-modules. The 4U-submodule 4M(\) can be identified with 4f as A™-free modules.
For A € X*, we define the integrable U-module V/(A\) = M(X)/Jy, where J, is the left f-
module generated by 0§i’A>+1 for all i € I. Let RM(X) = R™ @u= aM(N) for A € X, and
RV(A) = R™ @x AV(X) for A € XT.

The following lemmas on the twisted derivation (defined in [CHW13| §1.5]) will be impor-

tant tools for the construction of the quasi K-matrix in part 3. The first is from [CHW13|

Lemma 1.5.2]) (cf. [Lu94, Lemma 1.2.15] for the quantum group version):
Lemma 2.1. Let x € f, where v € N[I] is nonzero.
(a) If ri(x) =0 for all i € I, then x = 0.
(b) If ir(x) =0 for all i € I, then x = 0.
Just as in [BW18a], the following lemma will play a useful role (cf. [BW18al, Lemma 1.1])
Lemma 2.2. jror; =r;0;r foralli,jel
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Proof. Tt suffices to show this for homogeneous = € f,, using induction on the height of s;

for x = 1 both sides are identically 0, and from the inductive definition, we have

r;or(zy) = ir(x)r;(y) + 7Tzﬂ(y)p(j)qu\jrj (ir(2))y + Wp(x)p(i)q\xlix?«j (ir(y))

+ 7rp(r)'Jv(i)Jrzﬂ(ﬂ“(y))p(j)qlx\'ier(y)\'jrj ()i (y)

and

rori(zy) = r(x)r;(y) + Wp(y)p(j)qul-jir<rj(x))y + wp(’“")p(i)q|x"ixir(rj (1))

T P PEARE @O Gl 3@l (1) ()

Y

and since p(r(2)) = p(z) — p(k), the m powers in the last term of each of the two expressions
on the right is equal to p(z)p(i) + p(y)p(j) — p(i)p(j); similarly |ri(z)| = |2| — k so the ¢
powers are |x|-i+ |y|-j—1i-7, and so the two expressions agree by application of the inductive

hypothesis. [

Here, as in [CHW13]|, we will use the following conventions for the comultiplication:

AE)=E®1+JKoFE (icl) AF)=F®K ,+10F (Gecl), (2.5)

A(Ky) =K, 9K, (peY) Ay = Ju®@Jy (ney). (2.6)

2.2 The modified algebra U

In [Lu94, Chapter 23| a modified form of the quantum group is introduced, featuring or-
thogonal idempotents that behave like projections onto weight spaces. For quantum covering
groups, the modified form U is defined in [CFLW), Definition 4.2] to be the (non-unital) K(q)"-

algebra generated by the symbols 1y (the orthogonal idempotents), E;1) and F;1,, for A € X

20



and ¢ € I, subject to the relations:

1,1y =0\ n1y,
(E1)1y =0 Eily, 1y(Ely) = 0y ayi Eily,
(F1)1y = v FiLy,  1y(Fi1y) = 0w a—e Fil),
(EiFy — nPOPOE By = 635 [(3, M)
Zn+n':1—<i,j’) (_1)n/7rzl’p(j)+(7§/)

Zn+n,:1—<l‘7j/><_1)nlﬂ-1j’l p(j)+(2)ﬂ(n)Fjﬂ(n,)l>\ =0 (i #j),

1)\7

Vi, T

EMEEM1, =0 (i # ),

)

where 7,7 € I, \, X' € X, and we use the notation ryly = (x1yy)(y1,) for z,y € U. A more
in-depth treatment of U’ can be found in [CT14], and covers its tensor modules and canonical
bases (§3.3 and §4 of loc.cit. respectively).

The modified quantum covering group U admits an A"-form, 4U and so we can define

RU = R™ @~ AU. We will give here a presentation for rU.

Lemma 2.3. The modified quantum covering group rU is generated as an R™-algebra by
xT 12’ or equivalently by x~1 ', where x € gf,, 2’ € grf, and X\ € X, subject to the

following relations:

() 1A (0)
MN—(t+ oo | MHEN+3GN) _
:Zﬁ . )(ez(M ") Ly vrv—ir (0 )T,
>0 t
qi,7;

i, T4



Ty =12t 2Tl =117,
(1) (1yva™) = v '™, (27 1) (Avz™) = Sz 1z’
(1) (Ava") = vt (27 1) (Ava™) =6y v 1a iz 2’
(ro +r'2") 1, = ra®1, + 1’21y, where r,”’ € R".

Proof. This is proved in the same way as [Lu94, §31.1.3]. Let A be the R™-algebra with the
above generators and relations. All of these relations are known to hold in #U. The first three
are shown to hold in zU by a direct application of [CHWI3|, Lemma 2.2.3] as in [CI14, Lemma
4] while the remaining ones are clear. However, there was an error in the second relation of
[CI14, Lemma 4], so we derived that relation from [CHW13| Lemma 2.2.3] in [CSW1§|. We

have

Ki;M+N—(t+1
_ Z(_l)tﬂ,ng—t)(th)ftQ (HZ(Mft))Jr ( ) (91(N7t)),1)\7Mi/
t>0 t
- i,
LNty Mty g | (A = M = N4+t —1 .
=D (M) Ly-gren—e (0 )
>0 t
L qi,75
MN+#(i N — (¢ _ M+ N — (i, \) )\
= S gy Lo (80 ™)
t>0 t

Qi T

where in the last step, we used [CHW13, (1.10)] with a = M + N — (i, A). Hence the natural
homomorphism A —s zU is surjective. Let S be an R™basis of gf consisting of weight
vectors. Then {xT1,2'7|z,2’ € S,\ € X} can be seen to be an R™-basis for A, and it is

known to be one for zU (cf. [CI14, Lemma 5|). Thus, the natural homomorphism is, in fact,
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an isomorphism. O

Let A = Z"[q,q']. There is an A-subalgebra 4U generated by Ei(”)l)\,Fi(")l,\ fori e I

and n > 0 and A € X. Note that U is naturally a U-bimodule, and in particular we have
K1, =1,K, = q<h’>\>1)\, forall h €Y.

We have the mod 2 homomorphism Z — Zg, k + k, where Zy = {0,1}. Let us fix an

1 € I. Define

Ui,ev = @ U].)\, Ui,odd = @ U]_,\ (27)

At (hi,\) €27, At (hi \)€142Z
Then U = Ui,ev &b Ui70dd. Similarly, letting AULQV = Ui,ev ay U and AUi7odd = Ui,odd ay U,
we have 4U = AUi,ev S AUi,odd-
For our later use, with ¢ € I fixed once for all, we need to keep track of the precise value
(h;, \) in an idempotent 1, but do not need to know which specific weights \ are used. Thus
it is convenient to introduce the following generic notation

1 =17 for m € Z, (2.8)

7,m)

to denote an idempotent 1, for some A € X such that m = (h;,A). In this notation, the

identities in |CI14] (with a correction provided in [CSWI18|, Lemma 3.2|) can be written as
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follows: for any m € Z, a,b € Z>y, and 1 # j € 1,

Ei(a)]‘;:m = 1:,m+2aEi(a)7 F;(a)lzm = ]‘me2aFi(a); (29)
E]]"Zm = 1;,m+a¢j E] ‘F]]':,m = 1;,mfaij‘ij; (210)
min{a,b} . j a — b —m . .
Fl'(a)Ei(b) 1zm _ Z m b+j +<2) Ei(b—])Fi(a—])lzm; (2.11)
=0 J ,
min{a,b} 1 a—b+m . .
D D AL FOIECIL, (212
=0 J

i
From now on, we shall always drop the index ¢ to write the idempotents as 17,.

Remark 2.4. If v € U satisfies ul%, ; = 0 for all possible idempotents 15, | with k € Z (or

respectively, ul%, = 0 for all possible 15, with k € Z), then u = 0.

Convention

We impose a mild bar-consistent assumption on the super Cartan datum in this paper, fol-
lowing [HW15, [CHW14]|. This assumption ensures that the new super Cartain datum and
root datum arising from considerations of roots of 1 work as smoothly as one hopes. The
assumption turns out to be also most appropriate again for the existence of Frobenius-Lusztig

homomorphisms for quantum covering groups.

24



Chapter 3

Notation and formulas

In this chapter, we will introduce notation for the rest of this part, and establish several basic
formulas of the (g, 7)-binomial coefficients at roots of 1. They specialize to the formulas in
[Lu94, Chapter 34] at m = 1. We also describe a presentation for the quasi-classical counterpart

of modified quantum covering groups.

3.1 Identities for (¢, 7)-binomials at roots of 1

Let 7 and ¢ be formal indeterminants such that 72 = 1. Fix /7 such that /7~ = 7. In
contrast to earlier papers on the quantum covering groups [CHW13|, [CHWT4] [CEFLW! [CI14],
it is often helpful and sometimes crucial for the ground rings considered in this paper to
contain /7, and for the sake of simplicity we choose to do so uniformly from the outset. For

any ring S with 1, define the new ring
ST =5®y Z[ﬁ]
We shall use often the following two rings:

A=2Zlq,q", A" =Zg,q " V7l
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Let N={0,1,2,...}. For a € Z and n € N, we define the (q, 7)-integer

(mq)* —q~°

—— € A",
T —q

[a]gr =

and then define the corresponding (g, 7)-factorials and (g, 7)-binomial coefficients by

v H[i]qm a H?:l[a +1-— Z.LNF'

iil n [n]ij,ﬂ'

q?Tr

a
and we similarly define the v-factorials [n]! and v-binomial coefficients . We denote by

v
(Z) the classical binomial coefficients.

In the rest of this chapter, the notation v is auxiliary, and we will identify

v = /7,

and hence, for n,t € N,

(3.1)
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Fix ¢ € Z~o and let ¢/ = or 20 if £ is odd and let ¢/ = 2/ if { is even. Let

A = A/(f(q),

where A/(f(q)) denotes the ideal generated by the ¢'-th cyclotomic polynomial f(q); we denote
by € € A’ the image of ¢ € A. Take R to be an A’-algebra with 1 (and so also an 4-algebra).

Introduce the following root of 1 in R™:

q=+/mc € R". (3.2)
Then the element
vi=+rq € R"
satisfies that
v¥ =1, v¥#1 (forallteZ,(>t>0). (3.3)

Consider the specialization homomorphism ¢ : A™ — R™ which sends ¢ to q and /7 to /7.

n n
We shall denote by [n]q, and the images of [n],, and under ¢ respectively,

t t
q,7™ q,mT
and so on.

The following lemma is an analogue of [Lu94, Lemma 34.1.2|, which can be in turn recov-

ered by setting m = 1 below.

Lemma 3.1. (a) Ift € Z~¢ is not divisible by ¢ and n € Z is divisible by {, then
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(b) If ny € Z and t; € N, then we have

o = WZQtl(nlf(tlfl)/Q)qutl(erl) (n1> .

ot t

q77T

(¢c) Let n € Z and t € N. Write n = ng + ¢ny with ng,ny € Z such that 0 < ng < ¢ —1 and

write t = to + (t1 with to,t1 € N such that 0 < tq < ¢ —1. Then we have

n
= T q

t to
q,m q,m

n
f(no—to)t1+€2(nl—(tl—l)/Q)tl E(notl—nlto)—FZQ(nl-‘rl)h 0 (nl)

Proof. One proof would be by imitating the arguments for [Lu94, Lemma 34.1.2]. Below we
shall use an alternative and quicker approach, which is to convert [Lu94, Lemma 34.1.2] into
our current statements using (3.1]) via the substitution v = y/mq. Part (a) immediately follows

from |[Lu94, Lemma 34.1.2(a)|.

In
(b) By applying [Lu94, Lemma 34.1.2(b)| to "I and using (3.1]), we have
0ty

v

tna :ﬁ@tl(f"r@tl) tny :ﬁ52t1(n1tl)V£2t1(m+1)<nl)’
ot o b

q,7™ v

which can be easily shown to be equal to the formula as stated in the lemma.

(c) Note that

ﬁ(n—t)t _ ﬁf((no—to)tl-l—(nl—tl)to)ﬁZQ(nl—tl)h ﬁ(no—to)to. (34)
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n
By applying [Lu94, Lemma 34.1.2(¢)] to and using (3.1))-(3.4), we have

n ne |1
_ ﬁ( )t
t t
q,7 v
— \/%(nft)tvﬂ(noh—n1t0)+€2(n1+1)t1 o (nl)
t b
_ Wf((no—to)tﬁ(m—tl)to)ﬁfQ(nl—tl)h ﬁf(noh—n1t0)+€2(n1+1)t1
X qé(notl—n1t0)+£2(n1+1)t1 \/%(nO*tO)tO o ny
¢ b
0
— 71-[(”0—750)7514‘52(nl—(tl—l)/Q)tlqf(notl—n1t0)+€2(n1+l)t1 o ny )
t b
0
- q,ﬂ'
The lemma is proved. O

Note that, due to our choice of q = /7e, we also have an analogue of equation (e) in the

proof of [Lu94, Lemma 34.1.2]:

vOH = g2 (q) (3.5)

The following is an analogue of [Lu94l §34.1.3(a)].

Lemma 3.2. Let b > 0. Then
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Proof. Recall v = /mq. Using (3.1) and [Lu94] §34.1.3(a)|, we have

(O8] /([0 )0 = /POty

ﬂ_é%(b_l)/zblvﬂb(bfl)/Q _ b!<7rq)£2b(b71)/2.

The lemma is proved.
Below is a m-analogue of [Lu94, Lemma 34.1.4].

Lemma 3.3. Suppose that 0 < r < a < {. Then,

l—a—1
Z (_1)€—r+1+s,ﬂ_(S;I)+s('r—€)q—((—r)(a—ﬂ—&-l—&-s)—i—s _ ﬂ_(g)—(é)—a(r—l)qf(a—r)

s=0 S r
q,m™ q,7

Proof. Plugging v = /mq into [Lu94, Lemma 34.1.4] and using (3.1]), we obtain

l—a—1

—r s —(l—r)(a—L+1+5)+s+s(s—0+T) _(p—pr)(a— $)+s
Z (_1)12 +ts /r (e=r)( ) ( )q (U—7)(a—Ll+145)+
5=0

L(a—1)+r(r—a a—r
ﬁ( )+ ( )qe( )

Rearranging the /7 terms, we have

l—a—1
Z (_1)éfr+1+sﬁ5(5+1)+25(7’—€)qf(éfr)(af€+1+s)+s -r
s=0 S
q,m
r(r—1)—£(f—1)—2a(r—I a—r a
_ DD 200D
r

q?ﬂ-

from which the desired formula is immediate.
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3.2 The quasi-classical algebras

Definitions and lemmas

Define
C;=min{r € Zso | r(i-1)/2 € (Z}.

The next lemma follows by the definition of ¢; and the bar-consistency condition of I.
Lemma 3.4. For each i € Iy, ¢; has the same parity as {.

Then (1,¢) is a new root datum by [Lu94, 2.2.4], where we let
ioj=(i-j)ll;, forallijel.

Note that if £ is odd, then (7, ¢) is a super Cartan datum with the same parity decomposition
I=1,Ul as for (I,-) by Lemma[3.4} if ¢ is even, then (I,0) is a (non-super) Cartan datum
with I; = 0.

We shall write Y°, X in this paper what Lusztig [Lu94] 2.2.5| denoted by Y*, X* respec-
tively, and we will use superscript ¢ in related notation associated to (Y°, X° I,¢) below.
More explicitly, we set X°® = {¢ € X|(i,() € (;,Z, for all i € I} and Y° = Homy(X°, Z) with
the obvious pairing. The embedding I < X° is given by i +— i'* = {;i’ € X, while embedding
I — Y?° is given by i — i® € Y° whose value at any ¢ € X° is (i,()/¢;. It follows that
(i, 5°) = 2i 0 jfioi.

If ¢ is odd, then (Y°, X° ---) is a new super root datum satisfying (a)-(d) above and in
addition the bar-consistency condition (e). Indeed, we have 25 = 2%5—] € 27 by Lemma
whence (d), and % = 22 = p(i) mod 2 by Lemma whence (e). If £ is even, then
(Y°, X°, ---)is a new (non-super) root datum just as in [Lu94l 2.2.5].

The algebras 'f°, £ and gf° are defined in the same way as f using the Cartan datum (7, ¢),

and the algebra U¢ is defined in the same way as U based on the root datum (Y°, X°, ...).
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The algebra U°
The algebra U° is defined in the same way as U using U® and (Y°, X°,...), and so it also has
an A™-form 4U° and we can define gU° = R™ @ 4= 4U°.

Remark 3.5. If ¢ is even, then gf° is a (non-super) algebra; if ¢ is odd, then the 6; in zf® and

rf for any given ¢ have the same parity.

For ¢ € I, we denote

2

. . 02 i 5
o 701/2 i01/2 _ qil7 70 = WZQZ/Q = T.". (36)

K? &>
q; =4 =dq;, q; =19

Lemma 3.6. Let 1 € 1.
(a) If 0 is odd, then w5 = ;.
(b) If ¢ is even, then w9 = 1.

Proof. Recall from Lemma [3.4] that ¢; must have the same parity as £. The claim on 7§ follows

now from (3.6]). O

For each ¢ € I, we have

mqf? = (mq)) = 1. (3.7)
Following Lusztig [Lu94|, we will refer to the quantum supergroup rf¢ associated to (Y°, X, ---)

as quasi-classical; cf. (3.7).

Proposition 3.7. Let R be the fraction field of A’. The quasi-classical algebra rf° is isomor-

phic to Rfﬂ the R™-algebra generated by 0;, © € I, subject to the super Serre relations:
S ) Bemee =0 (i€ D).
n+n/=1-(i,5")°

Proof. When m; =1 or / is even, my = 1 and q; = %1 for each ¢+ € /. Hence, in this case the

lemma reduces to [Lu94, §33.2].
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Now let ¢ be odd and 7 = —1. We make use of the weight-preserving automorphism ¥ of
7U° (called a twistor) given in [CFLW| Theorem 4.3] when the base ring contains v/—1. We
will only recall the basic property of ¥ which we need, and refer to [CFLW] for details. Note
that for all i € I, q° is a power of v/—1 with at least one of the q¢ = ++v/—1. Thus, +/—1
will play the role played by the v in [CELW, Theorem 4.3], which we will denote by ¢ in this
proof so as not to confuse it with the v defined in this paper. Recall U takes m to —7 and ©
to v/—10. When we specialize 7 = —1 and © = 4v/—1, we obtain an R-linear isomorphism of
that specialization of RfU®, denoted by zrU°|_1, with the (quasi-classical) modified quantum
group corresponding to the specialization m =1 and qj = £1, denoted by RUo\l.

Write

> r_, f for the half quantum (super)group over R corresponding to the former (i.e., 7 = —1);

> g, £¢ for the half (quasi-classical) quantum group over R corresponding to the latter (i.e.,
m=1); cf. [Lu94, 33.2].

Recall that gf° is a direct sum of finite-dimensional weight spaces grfS, where v € Z>[I].

The weight-preserving isomorphism ¥ above implies that

dimp~(gf)) = dimg(g_,f)) = dimg g, f;, for all v.

v v

As g, f° is quasi-classical in the sense of [Lu94) 33.2|, we have dimg g, = dimg, g, f, for all v,
by [Lu94l 33.2.2], where g, f is the enveloping algebra of the half KM algebra over R. Hence

we have
dimpgr (rf)) = dimg(g,f,), for all v. (3.8)

Since the super Serre relations hold in gf® (cf. J[CHW13, Proposition 1.7.3]) we have a
surjective algebra homomorphism ¢ : rfe — pf? mapping 6; — 6, for all .. Then ¢ maps

each weight space Rfjj onto the corresponding weight space gfS. As &f° has a Serre-type
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presentation by definition, it follows by [KKO14, [CHW14] that dime(Rf,,) = dimg(g,f,) for
each v. This together with (3.8) implies that dimg=(zf,) = dimg~(zfS). Therefore ¢ is a

linear isomorphism on each weight space and thus an isomorphism. O

An analogue of Lusztig’s Lemma 35.1.5

Below we provide an analogue of [Lu94, 35.1.5], which is a relation for (¢, 7)-binomial terms

when the arguments are divisible by ¢;.

Lemma 3.8. Assume that both n € Z and t € N are divisible by {;. Then

n n/l;

t t/e;

Qi qg,ms
(Setting m = 1 in the above formula recovers [Lu94, 35.1.5|.)

Proof. By Lemma [3.1](b), we have

Ll ) (n/ ) '
, £0,

Qi T

Note that 79q¢? = (7q?) 7%, Since (1q*)* = 1 and ¢ divides 21¢? by the definition of £;, we

have (79q¢?)? = 1. Hence by (3.6) and Lemma [3.1|(b) with ¢ = 1 we have

n/& _ 71_16(77,—(15—&)/2) qt(n—i—&) (n/£7,>
t/0; t/:

O O
q; 7y

The lemma follows. O
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Chapter 4

A Frobenius-Lusztig homomorphism

We now establish a Frobenius-Lusztig homomorphism between the quasi-classical covering
group and the quantum covering group at roots of 1, extending results in [Lu94, §35]. We also

formulate a Lusztig-Steinberg tensor product theorem in this setting.

Assumptions

Following [Lu94, 35.1.2], in this and following sections we shall impose the following assump-

tions:
(a) for any i # j € I with ¢; > 2, we have ¢; > —(i, ') + 1.

(b) (I,-) has no odd cycles.

4.1 A generating theorem for the R™-superalgebra gf

We will prove below a generalization of [Lu94, Theorem 35.1.8|.

Theorem 4.1. There is a unique R™-superalgebra homomorphism

Fr' : pf® — gf, FY(0™) = 05 ( for alli € I,n € Zsy).
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(Be aware that the two 6;’s above belong to different algebras and hence are different.
Theorem is consistent with Remark [3.5])

The rest of the section is devoted to a proof of Theorem The same remark as in [Lu94]
35.1.11] allows us to reduce the proof to the case when R is the quotient field of A’, which we
will assume in the remainder of this and the next section.

Recall from that 7/q%* = 1 and 7'q® # 1 for 0 < ¢t < £. By the definition of ¢;, we
have 7{q?" = 1 and 7/q}’ # 1 for 0 < ¢ < £;. Then [t]7 ! is invertible in R™, for 0 < ¢ < /;.

The following is an analogue of [Lu94, Lemma 35.2.2] and the proof uses now Lemmas
and

Lemma 4.2. The R™-superalgebra gf is generated by the elements Qyi) for allv € I and the

elements 0; for i € I with {; > 2.

Proof. By definition the algebra gf is generated by (91(”) for all i € I and n > 0. We can write

n=a+ b, for 0 < a < ¥; and b € N. We note the following three identities in gf:

an-l-fib) _ qfiabel(a)eyib) ’ (4 ].)
0 = [algL,.0%, (4.2)
0 = (b)) (mag,) " (0", (4.3)

where (4.1)) follows by Lemma and (4.3)) follows by Lemma respectively. (Note that a

sign in the power of v; in the identity (b) in [Lu94, proof of Lemma 35.2.2| is optional, but

the sign cannot be dropped from the power of q; in (4.3).) The lemma follows. m

Proof of Theorem 4.1

The uniqueness part is clear.
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By Lemma [3.2] (with ¢ = 1), we have

n

]l e = (ma)% G, (4.4)

We first observe that the existence of a homomorphism Fr’ such that Fr'(6;) = 6\ implies

that Fr'(6) = 6" for all n > 0. Indeed, using (&.3)-(.4) we have

FY'(0") = ([nlag.mo) 'EY(0,)" = ((miqs) "0 2nl) "R (0)" = 07",

7

Hence it remains to show that there exists an algebra homomorphism Fr’ : zf® — gf such
that 6; — 05&), for all i € I. By Proposition (also cf. [CHW13]), the algebra rf°® has the

following defining relations:

Z <_1)m(Wf)np(j)+(;)‘9§n)‘9j‘9§n/) =0 (Z 7&] € I)

’n’<|>’n’/217<7;7j/><>

By (4.4) it suffices to check the following identity in gf: for i # j € I,

02 (1) " ! 6(51) no 951) n'
Z (_1)n Wf?( p(5)+n( 1)/2)(Wiqi)—ff(g)(ﬂ_iqi)—ff(2)( i ') 0§Z])( i /‘) —0,
n. n.

nn'=1—(i,§')t; /4

which, by the identity (4.3), is equivalent to checking the following identity in gf:

2 : (_1)nlwé$(np(j)+n(n—1)/2)G(Zin)e(‘@-)e(ém/) -0 (4 5)
7 7 7 7 . )
n—l—n’:l—(i,j’)fj/&-

It remains to prove (4.5). Set a = — (7, 7"). For any 0 < ¢ < {; — 1, we set

g = Z (_1>r7r€jrp(j)Jrr(rfl)/qu(&—1—t)0§r)9('fj)9(5) c Af-

7 % 7 %

7‘+S:€;’Ii+gi—t
This is basically f;;, ;e in [CHWI13, 4.1.1(d)] in the notation of §’s. By the higher super
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Serre relations (see [CHW13, Proposition 4.2.4] and [CHW13| 4.1.1(e)|), we have g, = 0 for
all0 <t </, — 1. Set

g= (—1)m D et 0,

which must be 0. On the other hand, setting s’ = s + ¢, we have

0=)g= Y 000 (4.6)
r+s’ :Z/a—i-f
where

-1 y

r CLirp(f)+r(r—1)/2 —1)/2 r(l;—1—t)+L;at+L;t—

Cro = (-1) +t7Ti] p(§)+r(r—1)/2+t(t—-1)/ qi( )+ ot +Lit—t
t=0 t

qi T

Taking the image of the identity (4.6) under the map 4f — gf, we have

> o800 =0 € pf.

T Sl

7‘+s’:’Zjo<+€i

For a fixed s, we write s’ = a + ¢;n, where a,n € Z and 0 < a < ¢; — 1. Note by

S/

a
Lemma [3.1{(c) that = q; " . Now using r + s’ = {;a + {; we compute
t t
Qi qi,T
-1 . a
rréf i r(r—1)/24+t(t—1)/2 t(s'— lin
DCry) = (6:i=1) Z )i P(j)+r(r=1)/2+t(t-1)/ qf( 1)—tint
t
qi,7;
_ )y r(e _1)2 )i erp(j r(r—1)/24(t— 1)/2q§(a 1y |@
t
Qi
(@ 5. o (—1)serttimtin o) bl =1)/2 g () Gt ton
B) 5, o(— 1)t/ tetin arp (=D /20 1/2 (4.7)
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a
The identity (a) above follows by the identity Z?:o<_1)tﬂf(t_1)/2q§(‘1_1) -
t
e D2 Bt e
[CHW13| 1.4.4]), and (b) follows by the identity ; q (1t (which is an

i-version of (B.5)) with the help of 7¥q? = 1).
Inserting (4.7)) into (4.6) and comparing with (4.5)), we reduce the proof of (4.5) to veri-

Bl tn(n=1)/2) __Emp(i)+in(tin—1)/2—Ln(t-1) /2

7 A

fying that 7

Gnp(j) _

i =

j are in [y, the identity follows from Lemma Therefore, we have proved (4.5) and hence

, which is equivalent to verifying

lil;
T np(

s ) The latter identity is trivial unless both ¢ and j are in I;; when both ¢ and

Theorem [4.11 O

4.2 A Lusztig-Steinberg tensor product theorem

First, as set-up, we develop in this subsection the analogue of [Lu94, 35.3|; recall we are still

working under the assumption that R is the quotient field of A’.

Proposition 4.3. Let A € X°, i.e., (i, \) € (;Z for alli € I. Let M denote the simple highest
weight module with highest weight \ in the category of R™-free weight U-modules, and let n be

a highest weight vector of M*.

(a) If ¢ € X satisfies MS # 0, then ¢ = X\ — >, ling’, where n; € N. In particular,
(1,C) € L;Z for all i € 1.

(b) If i € I is such that {; > 2, then E;, F; act as zero on M.

(¢) For anyr >0, let M/ be the subspace of M spanned by Fi(fil)ﬂ(f?) . Fi(f”)n for various

sequences i1,%z,...,4, in 1. Let M' =" M. Then M' = M.

Proof. The proof is completely analogous to [Lu94]. All computations are similar except that
we are now working over R™ instead of R; and the results follow from Lemma [CHW13,
(4.1) and Proposition 4.2.4], and Lemma
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First, we show that

(d) E;M] =0, F;M] =0 for any i € [ such that ¢; > 2,
which is similarly proved by induction on r» > 0. The base case r = 0 follows from the fact that
(i, A)
t

= 0 since A € X° (using Lemma [3.1) and the fact that E;")Fm is an R™-linear

i, T

combination of FiEJ(-") and EJ(-nfl). For the inductive step, we want to show that EiFj(Zj)m =0

and E»Fj@j)m = 0 for any i,j € I such that ¢; > 2 and any m € M/_,(. For the first one

we use the fact that El-Fj(K"')m is an R™-linear combination of F’j-(é'j)Eim and F’]-K'j_l in the case
(i, A)

¢; > 2, and for {; = 1 we again use = 0 from Lemma (3.1} For the second one, we
t

i, T4
may use [CHWI13, (4.1) and Proposition 4.2.4] to write FiFj(éj)m as a R™-linear combination
of }WJ.(ej_T)FiFJ»(T)m for various r with 0 < r < ¢;, and for such r we have FZ-Fj(T)m = 0 by the

induction hypothesis.

Next, we may show by induction on r > 0 that

(e) BV M ¢ M!_, for any i € I,
; — ) : (OFAC)
(by convention M’, = 0); again for m’ € M;_, we can use the fact that E;"F;/'m’ is an

/

R™-linear combination of Fj(ej )Ei(éi)m (which is in M/_, by the induction hypothesis), and

elements of the form Fj(éj_t)Ei(&_t)m’ with ¢ > 0 and t < ¢;,¢t < {; (which as before are zero if
t</liorift=1¢ and t </;, by (d), and are in M,_, if t ={; = {;).

The statements (d), (e) together with Lemma [4.2]show that 3" M is an zU-submodules
of M, and by simplicity of M it follows that M = > M/, from which (a) and (b) also

follow. O

Corollary 4.4. There is a unique weight RU®-module structure on M (as in Propositz'on
in which the C-weight space is the same as that in the gU°-modules M, for any ¢ € X° C X,
and such that E;, F; € rf° act as Eféi), Y e rf. Moreover, this is a simple (R™-free) highest

7

weight module for rU® with highest weight A\ € X°.
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Proof. We define operators ¢;, f; : M — M for i € I by ¢; = Ei(e"'), fi = Fi(ei). Using
Theorem [4.1] we see that e; and f; satisfy the Serre-type relations of pf°.
If (¢ € X\ X° we have M¢ = 0 by Proposition [4.3|(a) above. If ( € X° and m € M¢, then

(i, \)

we have that (e;f; — fje;)(m) is equal to 0, ; -m plus an R™-linear combination of

l;
i, T
elements of the form F*'E“"(m) with 0 < t < ¢; (this follows by [CI14, Lemma 4]) which

are zero by Proposition [£.3|(b). Since (i, () € (;Z, we see from Lemma [3.8] that

l; 1

qi,Tq ;7

and so (e;f; — fie)m = 0;;[(i,N)/li]qe xo - m. We also have that e;(M¢) C M<T4" and
fi(M¢) C M¢47" Thus, we have a unital fU°-module structure on M, and by Proposition
4.3(c) this is a highest weight module of zU° with highest weight A and simplicity also follows

using Lemma [4.2]in the same argument as in [Lu94]. O

Now we are ready to state our analogue of the main result of [Lu94, 35.4] on a tensor
product decomposition. Let f be the R-subalgebra of rpf generated by the elements 6; for

various ¢ such that ¢; > 2. We have | = ®,f, where § = rf, N .

Theorem 4.5 (Lusztig-Steinberg tensor product theorem). The R™-linear map
X : rf® ®rf— &f, TRy Fr'(z)y

s an isomorphism of R™-modules.

Proof. First, we make the following statement which is similar to (but slightly less precise
than) [Lu94l 35.4.2(a)].
Claim. For any ¢ € [ and y € f,, there exists some a(y), b(y) € Z such that the difference

0y — 72 Py belongs to §.

41



For y = 4/y” one easily reduces the Claim to the same type of claim for ¢’ and y”. Hence
it suffices to show this Claim when y is a generator of § i.e. y = 6; where ¢; > 2. Recall our
assumption (a) in §4] that ¢; > —(i,5’) + 1. Hence, we may use the higher Serre relation in
[CHW13|, (4.1) and Proposition 4.2.4] (but with 6;’s instead of F}’s) to show that for some
a(j),b(7), the difference 05&)9]» - w;l(j)qf(j)ejef” is an R™-linear combination of products of the
form HET)QJH?Z'_T) with 0 < r < ¢;, which are contained in f by definition. The Claim is proved.

By Lemma , rf is generated by 91@) and 0; with ¢; > 2. The surjectivity of x follows
as the Claim allows us to move factors ¢; to the right which produces lower terms in f.

The injectivity is proved by exactly the same argument as in [Lu94, 35.4.2] using now

Proposition [4.3] and Corollary the details will be skipped. O

The following is an analogue of [Lu94, Proposition 35.4.4], which follows by the same
argument now using the anti-involution o of gf which fixes each 6, (cf. [CHW13, §1.4]). We

omit the detail to avoid much repetition.

Proposition 4.6. Assume that the root datum is simply connected. Then, there is a unique
A € X such that (i,\) = ¢; — 1 for all i. Let n be the canonical generator of gV (X\). The

map x — x~n is an R™-linear isomorphism §f — gV (A).

4.3 The Frobenius-Lusztig homomorphism

The following is a generalization of [Lu94, Theorem 35.1.7|. As with Theorem [4.1} we may

reduce the proof to the case when R is the quotient field of A" (cf. [Lu94, 35.1.11]).
Theorem 4.7. There is a unique R™-superalgebra homomorphism Fr : gf — rf® such that,

forallieI,neN,

if £; divides n,

0, otherwise.
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(We call Fr the Frobenius-Lustig homomorphism.)

Proof. The proof proceeds essentially like that of [Lu94, Theorem 35.1.7]. Uniqueness is clear;
we need only prove the existence. By Theorem [4.5] there is an R™-linear map P : gpf — gf°,

such that for all i € I and for j, € I where £; > 2

Qil...ﬁin, if r= 0,
PO gmg. 0 ) =

11 in

0, otherwise.
We now check that P is a homomorphism of R™-algebras. Because grf is generated as an

R™-module by elements of the form = = 9§fi1)...0§fin)0ﬁ...ejy,, we need to check that for any

such z,

P(xz0;) = P(x)P(0;) (4.8)

for j € I such that ¢; > 2 and

P(z6!") = P(2)P(6") (4.9)

2

for all i € I. As (4.8)) is obvious, we will concern ourselves with (4.9). Note that (4.9)) is clear
when 7 = 0. Assume now r > 0. Let us write 2’ = (‘)gfil)...é’gfi")ejl...erfl and 0; = 0;. so that

x = 2'0;. For i = j, we have P(z)P(6%) = 0 and
P(x6\") = P(2/6,6%) = P(2'68;) = P(2'6))P(6;) = 0,

where the third equality is due to (4.8). Now suppose that ¢ # j. As ¢; > —(i,j'), we may
use the higher order Serre relations for quantum covering groups (cf. [CHW13] (4.1) and
Proposition 4.2.4]) to write 0,6*) as a linear combination of terms of the form 660"
where m +n = {; and m > 1. Because of and [{18), P('6™0;00") = 0 for 1 <m < £,
and P(2/6(76;) = 0.
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Now that we know that P is an R"-algebra homomorphism, it remains to compute P(Qi(n))

for all n € Z>o. Write n = bl; + a, where 0 < a < {; and b € Z>¢. Using (4.1, (4.2) and (4.3)),

for a > 0 we have

PO") = qp PO P0]")) = qi " ([aly, )~ PO PE) = 0.

2 Qi

Similarly, for a = 0 we have

POP) = () (i) G P01

1

— (o) (moad)~B)e? = ()]

< 0)
q; 7

o =0,

where, in the third equality we used Lemma with ¢ = 1. Hence, P is the desired homo-

morphism Fr. O

A Frobenius-Lusztig homomorphism for ;U

We extend the Frobenius-Lusztig homomorphism Fr : zgf — grf® in Theorem to RU. In
contrast to the quantum group setting, we have to twist Fr slightly on one half of the quantum

covering group.
Theorem 4.8. There is a unique R™-superalgebra homomorphism Fr : rU — rU® such that

forallie I,neZ,\ e X,

; EM1, . if ¢ divides n and A € X,
Fr(E™M1,) = (4.10)

0, otherwise
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and

Fl—(n/zi)l,\, if U; divides n and X\ € X°,
Fr(F™1,) =

7

0, otherwise.

(We also call Fr in this theorem the Frobenius-Lustig homomorphism.)

Proof. Let Fr: pf — gf® be the homomorphism from Theorem [4.7] Consider the homomor-
phism Fr = ¢oFr, where ¢ : zf° —» f° is the algebra automorphism such that 8§") — Wf@f”).
The proof, much like that of [Lu94, Theorem 35.1.9], amounts to checking that for z, 2’ € gf

the assignment
et 1,2 = Fr(a D1 Fr(z™), 271y — Fr(z7)1,Fr(2™),
for A € X°, and
2 1,2 =0, 2z 12" —0,

for A € X\ X°¢ satisfies the the appropriate relations. These are the relations of Lemma for
&U and for zU°, using Lemma to deal with the (q, 7)-binomial coefficients. The use of
the homomorphism Fr (in place of Fr) on U™ is necessitated by the first and second relations

in Lemma [2.3] Both sides of the first relation are mapped to zero by Fr unless N, M € (;,Z
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and A € X°, so we focus on this case. Recalling qf, 7¢ from (3.6]), we have

(%5) M+ N+ (i, \)

MN— ’ _
Z ; FM 1>\+(M+N—t)i’EZ‘(N t)
>0 t
qi,7T4
MN— t+1 M+N+<i,)\> _
t>0 t

i, T4

= 3 (e (15 ) par-oe) (M4 N+ (@A) /4

%

t>0,tel;Z e
a7y

(N )/ (4 s

(M N—ti T (3 )Ei((N 8)/t)

=) ST ey @are)= (1) plO0 /%) (M + N + (i, 1)/4,
t>0,tel;Z £/0,
q; 7y
D (v BT

_ MG gy | pore)

-

= Fr(EM 1, FM),
—("t ; (4 . .
where we have used 7, (29 = (Wf)_(wéﬂ)wz/g (2) and Lemmam the second equality above.

The verification of the second relation of Lemma is entirely similar, and the other

relations therein are straightforward. O
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Chapter 5

Small quantum covering groups

In this chapter, we construct the small quantum covering group ru and study its structure.
We end this part by giving a dimension formula for small quantum covering groups of finite

type. Here, we take R™ = Q(q)™, where q is as in (3.2)).

5.1 Definition and structure

Let ru be the subalgebra of RU generated by E;1, and F;1, for all ¢+ € I with ¢; > 2 and
A € X. It is clear then, that g1t is spanned by terms of the form z*1,2'~ where x, 2’ € f.
We follow the construction of [Lu94l §36.2.3] in extending =U to a new algebra =U. Any
element of RU can be written as a sum of the form Z/\#ex xy, where x, , € lARUlu is zero
for all but finitely many pairs A, u. We relax this condition in AU by allowing such sums to
have infinitely many nonzero terms provided that the corresponding A — u are contained in a
finite subset of X. The algebra structure extends in the obvious way. We define zu to be the
subalgebra of U with Zx, € Lygul,.

Let 20 be the smallest positive integer such that q2g — 1. Hence, { = 2¢ for £ odd and ¢ = ¢

47



for ¢ even. We define the cosets
={AeX|({i,\)=a; (mod?20), foralliel}, (5.1)

for a = (a;)i € I) with 0 < a; < 20 — 1. Note that there are at most (2¢)/"l such cosets and
they partition X. Moreover, for each coset ¢, 1. := ), . 1, is an element of gi.
Let gu (resp. ru') be the R™-submodule of it generated by the elements 1.2’ (resp.

27 1e2'") where x, 2’ € f. The following is an analogue of [Lu94, Lemma 36.2.4].

Lemma 5.1. 1. Foranyu € guand 0 < M < /{; — 1, FMy, lies in RU.

(2

2. We have ru = gi', and gu is a subalgebra of git.
The algebra ru is called the small quantum covering group.

Proof. We follow the proof in [Lu94]. We prove the first statement by induction on p, where
our u = E»("l)...Ei(:”):z:’_. The result is obvious for p = 0, so we now consider p > 1 and rewrite

21

u as

u = lcrEi(Tl)xf:z:’_

where x; = 01(;2)...95:”). When i # iy, the result is immediate, so we consider ¢ = ;. In that

case, using the relations of Lemma we have

F(MU_Z Z ]V[N—i—tz/\ (t) n1+M_<27)\>

Aec! t<ny <M t
qi,T;

. EZ'(al —t) 1)\—(n1+M—t)i’ E(]M—t)xii-x/— )

Fix g € ¢’. Then for any A € ¢/, ny + M — (i, \) = ny + M — (i, u) mod(¥¢;). Using Lemma
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and noting that ¢ < ¢;, we have that

i+ M= (0 A) —ta(in—iap) | M = )
t t

i, i,
ny + M — <Za M>
t

i, T4

where we used in the second equality the condition that (i, \) — (i, ) = 0 mod(2¢). Hence,

FMy s equal to

)

i —(t) [n1i+ M — (i, p _ _
Z 7TZMNH< o) o Ei(al t)(z 1>\—(n1+M—t)i’)Fz‘(M t)xfﬂf/_
t<ni t<M t \ec!
q;,7T;

_ Z ﬂ_MN-‘rt(i,p,)—(;) ni+ M — <Za M>
t<nq t<M t

E,L-(al -4 ]_C// F;(]W—t) {L’ii_ﬂf,_

Y

i, T4

for some other ¢”. Hence, Fi(M)u € ru by induction. Finally, the second statement is shown

by repeated application of this result as in [Lu94, Lemma 36.2.4]. O

Hopf structure

Recall there are a comultiplication A and an antipode S on U as defined in [CHW13, Lem-
mas 2.2.1, 2.4.1]. Write U, for the subspace of »U spanned by elements of the form 1,21,
where z € pU and write p, , for the canonical projection pU — ,U,. As in [Lu94 23.1.5,

23.1.6], A and S induce R™-linear maps

A aan Upp —>\U, @ v Uy
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given by Ao (Para e (€)) = (Pap @ pav ) (A(2)), for A, p, Ny € X, and
S : RU — RU

defined by 5’(1,\131#) =1_,5(x)1_, for x € gU. For example, A(E;) = E; @ 1 + J.K; ® E; in

rU, and hence we obtain
A)\*I/ﬁ»i’,)\*l/,l/,l/(Eil)\) = Prx—v+i' A—v ® pu,V(Ei ®1+ jzkz X Ez) = Ei]-)\fu X ]-1/-

This collection of maps is called the comultiplication on RU, and it can be formally regarded

as a single linear map

A = H AA%)\/»M/ : Rﬂ — H )\UN & )\/UH"

A, N €X A, N €X
A comultiplication A® on zU?® can be defined in the same way.

Proposition 5.2. The Frobenius-Lusztig homomorphism Fr is compatible with the comulti-

plications on gU and U, i.e., A° o Fr = (Fr ® Fr) o A.
(In the usual quantum group setting this was noted by |[Lu94, 35.1.10].)

Proof. It suffices to check on the generators Ei(n)l,\ and Fi(n)l,\. Let n = m¥; € (;,7, and recall
that Fr(E™"1,) = 7&(2) E"™1, in zU°. Using the formula (above [CHWI3, Proposition
2.2.9])

7

A<E'(m)) = Z (WiQi>pTEZ‘(p)<jiki)r ® B
p+r=m

we see that the nonzero parts in AQ(Fr(EZ»(mZi)lA)) computed via (4.10)) are of the form

%\ O r
71,52) (W?q?>(p+(z,u) ) i(P)ly ® Ez( )]_)\7”7 p+r=m
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for various v € X°, which coincides with Fr ® Fr applied to terms in A(Ei(me")l x)) of the form
(mig)) PN EPIL, @ BT, L, ptr=m,

where we note there is a factor contributing from (4.10)) which matches up with the previous

(pe(3)r _ ()m

part thanks to ; =m,; "’ ; the remaining terms are zero under Fr ® Fr since at least
one of the divided powers of F; appearing in either tensor factor must be not divisible by /;.

On the other hand, if n is not divisible by ¢;, then the right hand side will also be zero,
since all the non-zero parts of A(EZ-(")I »)) will have a tensor factor containing some divided
power of E; not divisible by ¢;.

F™1, can be verified similarly. O

The maps A and S restrict to maps on glt, which extend to R™-linear maps A and S on
gl in the obvious way. Henceforth, when we refer to A and S we mean the restrictions to RU.
Additionally, for any basis B of f consisting of weight vectors, with unique zero weight

element equal to 1, we define an R™-linear map ¢é : gu — R™ by:

r, ifb,0' =1and a=0,
e(rbt ' 1e,) =

0, otherwise.

where b0 € B, r € R™, and ¢, in (5.1).

Define the following elements:

K=Y q"M1,, J=) a1, 1= "1, (5.2)

AeX AeX AeX

Proposition 5.3.

1. The R™-algebra gu has a generating set { E;, F; ( for all i with 0; > 2), K;, J; ( for alli €
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n}.
2. (ru, A, é,8) forms a Hopf superalgebra.

Proof. The elements in (5.2)) can be written as

Ki = ch,ilm Jz = Zﬂ—c,ilca 1= Z 1C7

where we have defined q.; = q" and 7.; = 7% for any A\ € c. This implies that these

elements are also in ru. Moreover, we have

Lo =[]0 (1 + meidi) (1 + ag)l Ki + ag? K2 + ..+ g3 KT,
iel
This proves (1).

A direct computation using these generators shows that A, ¢ and S are given by the same
formulas as A, e and S, the former maps inherit the following properties of the latter: Aisa
homomorphism which satisfies the coassociativity (cf. [CHW13, Lemmas 2.2.1 and 2.2.3]), é is
a homomorphism (cf. [CHWT3|, Lemma 2.2.3|), and S(zy) = 7?@P®)S(y)S(z) (cf. [CHWI3,
Lemma 2.4.1]). Moreover, the image of A (respectively, S) lies in zu ® gu (respectively, pu).

Hence (2) holds. O

5.2 Dimension formulas for finite type

We consider the Cartan datum associated to the Lie superalgebra osp(1]2n), where n = |I|,

with the Dynkin diagram

O O O O O——e
1 2 n—1 n
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where the black node denotes the (only) odd simple root. We set

2, if ¢ is odd,
4, if i is even.

The above Cartan datum on [ is a super Cartan datum satisfying the bar-consistent condition

in the sense of §2.1]

Proposition 5.4. The small quantum covering group gu of type 0sp(1|2n) is a finite dimen-

stonal R™-module. In particular,

. £2n2 ~ £2n2 (4€)n7 fOT’ / Odd,
dimp~(ru) = acd(2, ()72 (20" = o
22712—_2”(25)”, for £ even,
when X is the weight lattice, and similarly,
62112 - €2n222n—1€n’ fO’f’ g Odd,
d‘ ks = 277,7 gn — ,
1mpg (Ru) ng(Q, 6)2n2_2n an

n—1pn
—22n2_2n2 . for £ even,

when X s the root lattice.

Proof. Note that ru is a f ® f°PP module with basis given by the 1. defined above. This basis
has at most (2/)" elements for any X. In particular, it has (20)" elements when X is the
weight lattice, and on=1¢n elements when X is the root lattice, as the root lattice is index 2 in
the weight lattice. Moreover, by Proposition [4.6] we have that dimpg-(f*) = dimg-(zrV (N)),
where A is the unique weight such that (i, \) = ¢; — 1 for each ¢ € I. Let V()\); (respectively,
V(A\)-1) be the quotient of the Verma module of highest weight A by its maximal ideal for the

quantum group (resp. quantum supergroup) to which the quantum covering group specializes

at m =1 (respectively, 7 = —1) with base field R = Q(e) (recall from §3.1] that ¢ is an ¢'-th
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root of unity). Because

RVAN) =@+ 1)rVIN) @ (r—=1)rVIN) ZV(A) 18 V(N

and the characters of V' (\); and V' (\)_; coincide for dominant weights (cf. [KKO14], [CHW14,

Remark 2.5]), we have

2

gn

dim g~ fi = dimp= RV(A) = dimpg V()\>1 = dimp ﬁt = ng(Q, g)n2—n

where f; is the (non-super) half small quantum group, i.e., f specialized at 7 = 1. The last

equality is due to [Lu90b, Theorem 8.3(iv)].
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Chapter 6

1Quantum Covering Groups

We will open this chapter with a short overview of the role that :-divided powers play for the
classical iquantum groups. Then, we will define the 1quantum covering groups and describe
their size and structure. We end by giving a change of parameters isomorphism, which is the
m-analogue of a construction in [CLWIS| that was instrumental in streamlining the proof of

main result there.

6.1 Quantum groups and :-divided powers

For a Drinfeld-Jimbo quantum group U with Chevalley generators E;, I}, Kiﬂ, 1 € I, we have
a familiar presentation, its Serre presentation, featuring the g-Serre relations among the F;’s

and Fy’s. In terms of divided powers F™ = F1/ [n],, (where [n];

4 are the quantum factorials,

which can be obtained from by setting m = 1, cf. [Lu94]), the g-Serre relations among

the F}’s has a compact form: for ¢ # j € I,
1—a;;
> (U EPEETTY <o, (6.1)

n=0

Let A: U — U ® U comultiplication for the quantum group U.
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Quantum symmetric pairs (U, U"), are deformations of classical symmetric pairs which
are defined using Satake diagrams, Dynkin diagrams with some nodes blackened and other
nodes connected in pairs by a diagram involution. The theory of quantum symmetric pairs
was systematically studied by Letzter for U of finite type (cf. [Le99, Le02]) and in Kac-Moody
type the theory was further developed by Kolb [Kol4|. The iquantum group U" is a (right)
coideal subalgebra of U: it satisfies the property that A : U* — U* ® U (the coideal property
). Main generators of U* are defined in terms of generators of U using an embedding formula

cf. (6.6):

B;=F,+GE K", foriel, (6.2)

where ¢ = (;);es, are parameters.

A rquantum group is called quasi-split (and respectively, split) if the underlying Satake
diagram contains no black node (respectively, is equipped with the trivial involution on the
Satake diagram). The origins of this terminology lie in the classical theory of real simple
Lie algebras. A quasi-split :quantum group takes only the generalized Cartan matrix and a
diagram involution 7 as its inputs. Examples of the split :quantum groups were appeared
previously in the literature (cf., e.g., [T93] [BasK05]) and are sometimes referred to as general-
ized g-Onsager algebras, cf. [BaB10]. We refer to [Kol4l Introduction, (1)] for more detailed
historical remarks.

In [CLW18], a Serre presentation with uniform relations for the quasi-split :quantum groups
of Kac-Moody type with general parameters is formulated precisely, generalizing the work of
Letzter in finite type and Kolb in Kac-Moody type for |a;;| < 3, cf. [Le02, Le03, Kol4]. A
centerpiece of the Serre presentation for U® is the ¢-Serre relations between B; and B; for

Ti =1 # j. These relations can be expressed with striking resemblance to the g-Serre relation

(6.1)): for any fixed p € Zy = {0,1},

1—a;;
n p(n 1—a;j—n
S (~1)"BlL BB T =0, (6.3)

n=0
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) are polynomials (compare Lusztig’s divided powers, which are

where the 1-divided powers Bfg
monomials) in B; which depend on a parity p arising from the parities of the highest weights
of highest weight U-modules when evaluated at the coroot h;. The i-divided powers were
introduced in [BW18a] and studied further in [BeW18]|, and are canonical basis elements for
(the modified form of) U® in the sense of [BW18b]. Writing the ¢-Serre relations in terms
of 1-divided powers provided a uniform reformulation of complicated case-by-case relations for
the cases |a;;| < 3 in [Kol4l BaK19|, which enabled the method of proof in [CLW18|, §4].

A precise formulation of the Serre presentation enabled the formulation of a bar involution
on a general iquantum group U’, which was predicted in [BW18al; it allows one to write down
the constraints that the parameters should satisfy, cf. [BaK15|. The bar involution on U is a
basic ingredient for the canonical basis for U* [BW18b, BW18c|. The divided powers are also

a key component in constructing the Frobenius-Lusztig homomorphism for :quantum groups

at roots of unity in [BaS19].

6.2 Definition and basic structure

Let (Y, X, (-,-),--+) be a root datum of (super) type (I,-). We call a permutation 7 of the set
I an involution of the Cartan datum (7,-) if 72 =id and 7i-7j =i - j for i, j € I. Note we
allow 7 = id. We will always assume that 7 extends to an involution on X and an involution
on Y (also denoted by 7), respectively, such that the perfect bilinear pairing is invariant under
the involution 7. The permutation 7 of I induces an K(g)-algebra automorphism of U, defined

by

T: B — Eri7 F;,— Fﬂ', Ky, — KTf“ for all 7 € ], hey. (64)
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Define

Y'={heY |r(h)=—h}. (6.5)
Just as in [CLW18], in the remainder of this dissertation we will only consider the quasi-
split case (corresponding to Satake diagrams without black nodes).

Definition 6.1. The quasi-split iquantum group, denoted by U or U, is the K(¢)-subalgebra

of U generated by
Bi=F+GEK ",  J(iel), K,(neY). (6.6)

Here the parameters

S = (Gi)ier € (K(Q>X)Ia (6.7)

are assumed to satisfy Conditions (6.8)—(6.10) below:

¢ = <iqi if Ti =4 and a;; # 0 for some j € I\ {i}; (6.8)
G = G if a;ri = 0; (6-9)
Gri = Mgy TG if agps 7 0. (6.10)

The conditions on the parameters ensure that U admits a suitable bar involution (dis-
cussed in detail in Chapter @ With the convention for the comultiplication as above, U’ is a
right coideal subalgebra of U, i.e., A : U* — U* ® U. We also note here that in [Kol4] and
[CLW18] an additional set of parameters r; is considered; in the setting of quantum covering
groups the only interesting case (k; # 0 for some ¢ € I) exists in rank 2 (osp(1]4)), and its
Serre presentation is a straightforward generalization of the non-covering case. Thus, we can

omit any discussion of k; from our considerations in the following chapters.
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6.2.1 Structure and size of U’

A few of the results on the structure and size of U* are collected here (cf. the non-super case
in [Kol4l §5-6]). First, we define the projections Py and 7, s similarly to [Kol4l §5.2|: by the

triangular decomposition [CHWT3|, Corollary 2.3.3],

U= Uuu,K,s5U),

A€Y

where Uy = (J, |p € Y) and S denotes the antipode of U. For any A € Y let
P)\ : U—>U+UJK)\S(U7) (611)

denote the projection with respect to this decomposition.
Similarly, let
Tap: U= USUUZ, (6.12)

denote the projection with respect to the decomposition

U= P U/U'U,

a,Beyt+

Because the embedding formulas for the :quantum covering groups follow the same form
as in [Kol4l (5.1)] (with X = () and s; = 0), we have the following technical lemma, proved

in the same way as in loc. cit.:
Lemma 6.2. Let 06,6 S Q+. ]f Wa,ﬁ(ﬂj(Bh BJ)) 7é 0 then >\ij —Qc Q® and >\ij - ﬁ S QG.
Using this, we also have the following results about U*":

Proposition 6.3. In U, we have Py, (Fi;j(B;, B;)) =0 for all i,j € I.
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Proposition 6.4. In U*, we have the relation

F,;(B;, B;) € > U B, for alli,jel. (6.13)
{J€j| Wt(J)<>\ij}
We now show that U’ has the same size as U™, cf [Kol4l §6.1-2|. For any multi-index
J = (j1,---,Jn), define wt(J) = >  «a;, and F; = F}, ... F; and B; = Bj,...B;,, and
define |J| = n. Let J be a fixed subset of U I" such that {F;|J € J} is a basis of

n€Ng

U-, and hence a basis of U’ as a left UtU"-module. Define a filtration F* of U~ by
F(U™) =span{F;|J € I",m < n} for all n € Ny. By the homogeneity of the (g, 7)-Serre
relations (2.3)), the set span{Fj;|J € J,|J| = n} forms a basis of F"(U~). Then, we have

the following proposition, cf. [Kol4, Proposition 6.2]:
Proposition 6.5. The set {B;|J € J} is a basis of the left (or right) Ut U -module U".

Proof. The argument is the same as the one in [Kol4, Proposition 6.2|, which is much simpler
for X = (): for L € I", one can obtain By € Y., UB; by an induction on n = wt(L)
and using the (g, m)-Serre relations. We thus have that {B;|J € J} spans U’. The fact
that {B,;|J € J} is linearly independent follows from the specific form of the generators B;

having ‘leading term’ F; and the triangular decomposition. O]

6.3 Change of parameters

In [CLW18] (also cf. [Kol4l Theorem 7.1]), a change-of-parameters isomorphism is used to give
a presentation of the «quantum group U¢ . In particular, it is shown that the K(qg)-algebra
UL, (up to some field extension) is isomorphic to U, o for some distinguished parameters ¢°,
i.e., ¢® = q; ' for all i € I such that 7i = i (cf. [Le02], [Kol4, Proposition 9.2]). The same
argument carries over to the quantum covering setting:

For given parameters ¢ satisfying (6.8)—(6.10]), let ¢® be the associated distinguished pa-
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rameters such that ¢ = ¢; if 74 # ¢, and

¢ =q ", if ri=1. (6.14)

Let Ul be the iquantum covering group with the parameters ¢ — for all i € I. Let F =

K(q)(a; | i € I such that 7¢ = i) be a field extension of K(g), where

a; = \/QiSi, for all 4 € I such that 77 = 1. (6.15)

Denote by pU! = F ®g(4) U: the F-algebra obtained by a base change.

Proposition 6.6. There exists an isomorphism of F-algebras

(bz : IFUEO — IFU27

Bi, if i 1,
B; — K,— K, (foralicel,peY"),

-1 . . .
a; "B, if Ti =1

In particular, this enables us to use the formulas for +"-divided powers in the next section

free of unwieldy coefficients.
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Chapter 7

v"-divided powers and expansion formulas

In this chapter we will define the ¢"-divided powers, which are generalizations of the +-divided
powers developed in [BeW18| to the quantum covering group setting. The ¢"-divided powers
can be thought of as a canonical basis for U* in rank one, which is just a polynomial ring over
K(g)™. They can be written down explicitly in terms of the Chevalley generators for U; these

expansion formulas will turn out to be crucial in the following sections.

7.1 The algebras U’ and U in rank one

Recall from [CHW13| 2.1] that the rank one quantum covering group U with a single odd
root i.e. type I = It = {1} is the K(q)™-algebra generated by E, F, K*' J, subject to the
relations: KK = K~'K =1, and

JK=KJ, JE=EJ, JF=FJ, J*=1,

KEK'=¢EK, KFK'=q?FK, (7.1)
-1
™ —q
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The rank one :quantum covering group U" is generated as a K(q)™-algebra by a single generator

B=F+q'EK

Lemma 7.1. There is an anti-involution s of the K-algebra U fizing the generators E, F, K*',.J

and sending ¢ — ¢~ .

Proof. We have

S(KEK')= K 'FK = ¢ *E =<(¢’F), <(KFK')= K 'FK =¢F =¢(q *F).

We also have

K—-K! K-K
S(EF —nFE) = FE — nEF =~ ~ :c(J 4,)
T —q ™ —4q

and so ¢ preserves all the relations in (|7.1]) (since .J is central). O

n

Note that ¢([n]) = 7" 1[n], and so ¢[n]' = 7r(2)[n]

The algebra U in rank one

Denote by U the modified quantum group of osp(1|2), as the odd rank one case of
Let 4U be the A-subalgebra of U generated by E™1,, F(™1, 1y, foralln > 0and \ € Z.

There is a natural left action of U on U such that K1, = ¢*1, and J1, = 7*1,. Denote by

AUeV = @ AU12)\7 AUodd = @ AU]-?)\—I-

AEZL AEZ

We have AU = AUeV ® AUOdd. By a base change we define Uev and Uodd accordingly so that
U — Uev S Ijodd-
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7.2 Recursive definition and closed form formulas

We have the following generalizations of the formulas for :divided powers developed in [BeW1§],
with the new additions of m and J highlighted in blue: the even ¢™-divided powers Bé") satisfy
and are in turn determined by the following recursive relations:
2a—1 2a
B-BPY = [24)BE?,

‘ (7.2)

B-BP = [2a + 1)BE**Y + [2a)JBE*V, fora > 1.

where [n] := [n],. here denotes the (g, m)-integer; for the remainder of this section these
subscripts will be suppressed.
Analogously, the odd :divided powers B™ satisfy (and are determined by) the following

1

recursive relations:

B- BP = [2a + 1BV,

(7.3)
B- B = [2a + 2] B 1 20 + 17 I BEY | for a > 0.
Solving these recursive formulas, we arrive at the following closed form formulas:
B _ B*(B? — [2]*J) - (B* — [2a — 4]*J)(B — [2a — 2]*J)
o 2a]' ’ (7.4)
eary _ BAB? = [22) - (B — [2a— 22J)(B — [2a]%)) |
B — , fora>0,
0 [2a 4 1]!
and
B _ (B* —nJ)(B* —7[3]2)) -+ (B — 7[2a — 1]*J)
T 2a]! ’ (7.5)
2 _ 2 _ 27y .. (P _ 12 .
B?aﬂ) _ B(B* —nJ)(B* —7[3]*]) -+ (B — 7w[2a — 1] J)’ for a > 0.
2a + 1]!

For example, B = 1, BYY = B, BY = B?/[2], and BYY = B(B* - J[2]?)/[3]!, and
BY =1,BY = B, BY = (B? — 7J)/[2] and B = B(B? — 7.J)/[3].
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7.3 Expansion formulas

In this subsection we will formulate a number of useful expansion formulas for Bé") and B%n)

in terms of the Chevalley generators for U, cf. [BeW18|. We set

. K2_7J .
E:=q¢'EK™,  h:= o B:=FE+F. (7.6)
Define, for a € Z,n > 0,
h:a n 4a+4i74K72 —J h:a
) q )
n i=1 q 1
Note that h = ¢[2] [h;0].
It follows from ([7.1)) that, for a € Z and n > 0,
. . h;a h;a+1 h;al| . . lhia—1
FE =h+nq %EF, F=F , E=F . (7.8)
n n n n
Also define for a € Z,n > 1,
h;a h:a N datdi—dpr—2 o2 g h:a
) 3 q mwq )
=1, =11 i = (1)
0 n i=1 q 1

Note h = q[2][h; 0] + 1. It follows from (7.1 and (7.9) that, for n > 0 and a € Z,

h;a hya+1 h;all . . |ha—1
F=F , EFE=F : (7.10)

n n n n
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Just as in the even case, we also have

h;a a—A—14+n .
1oy g = ¢V 1ox-1 € AUqda- (7.11)

n n
q2

Lemma 7.2. For n € N, we have

B — q*nQE(n)K*n_
Proof. Follows by induction on n, using (7.1) and (7.6). O

Lemma 7.3. The following formula holds for n > 0:

n_l)q373nK72 _ (Wq)lfnJ

FE™ = (rg )"EM™F + E 5
P-7

(7.12)

Proof. We shall prove the following equivalent formula by induction on n:
FEWL — (Wq_Q)nEnF + <q2 _ ﬂ_)—l[n]Em—l (q3—3nK—2 _ (Trq)l—nJ) )

The base case when n = 1 is covered by (7.8). Assume the formula is proved for FE™ Then

by inductive assumption we have

FE"™ = (ngH)"E"FE + (¢* — n) }n]E™ ! (¢ "K—> - (Wq)I*"J)E
= (mq )" EM(mq PEF + (¢ —m) " (K2 = J)) + (¢ = m) ' [n]E" (¢ K2 = (mq)' "))

— (ﬂq_z)"HE’"HF + <q2 . W)_l[n + 1]En(q—3nK—2 . (ﬂ'q)_nJ),

since [n+ 1] = (7¢)" + ¢ *[n] = mq[n] + ¢~ ™. The lemma is proved. O
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For n € N, we denote
bgrn) _ Z(Wq)fa(nfa)];(a)p(nfa). (7.13)

The EhF-formula for Bén)

h;a
Recall from ([7.7)).

n

Example 7.4. We computed the following examples of Bén), for2 <n < 4:

6 [2] T q Y 9
B3 — J[2)?B -
BY — —[3]![ PB4 4w lhs —1)F + g Bl 1),
B* — J[2]>°B? § § ;—1
BY = —[4][! "5 _ bD + 7qED[h; —1] + wq[h; =1]F® + E[h; —1]F + ¢°
2
Theorem 7.5. For m > 1, we have
m 2m—2c . 5 h’ 1 —-m
Bé2m) _ Z Z <7Tq> (22)—a(2m—2(:—a)E(a) F(2M7207a)’ (714)
c=0 a=0 C
m—12m—1-2¢ it . h’ 1—m
BEM =373 () () et o N (AT
c=0 a=0 &

Proof. We prove the formulae for Bén) by using the recursive relations (7.2]) and induction on

n. The base cases for n = 1,2 are clear. The induction is carried out in 2 steps.

(1) First by assuming the formula for Bgm_l) in ([7.15)), we shall establish the formula
(7.14)) for Bgm), via the identity [2m]Bé2m) =B- Bgm*l) in (7.2).
1)

Recall the formula ((7.15)) for BéQm_ . Using B = E + F and applying (7.12) to FE©® we
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have

m—12m—1—2c sei1 h 1—m
B. BéZm—l) _ Z (7rq)( A )—a(2m—1—2c—a)BEv(a) ’ F(2m—1—2c—a) (716)
c=0 a=0 C

EE@ + (rq 2)*E@F + Ele-b

— T

3-Bapr—2 _ (Wq)l_aj) h;1—m f(2m—1-2c—a)
q2

7/ N

c

— (7Tq> (2c2+1)7a(2m717207a)‘
c=0 a=0
. h;l1—m y h; —
[a + 1]E(“+1) Fm—1-2c—a) | (rq 2)*[2m — 2c — a]E(a) (2m—2c—a)
¢ c

(a—1) q373GK72 - (ﬂ-q)lia‘] h’ 1=m F(Qm—l—Qc—a)

m 2m—2c

2m 2m—1 “ o

[Qm] Bé ) =B Bé ) = Z E'( )fac<h)F(2 2 )7
c=0 a=0

where
: h;1—m
;c(h) = (7Tq) (2 ;1)_(0—1)(2771—20_(1) [a]
C
c h7 .
+ 7ra(7rq) (2 ;1)7a(2m717207a)72a[2m e a]
C

—3a [—2 —a -] —
() em—2e—a) K2 —(nq)~J |lil—m
¢ =7 c—1
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A direct computation gives us

h;l—m 2
(:C(h) = (Wq) ( 2 )*a(2m7207a) (7Tq)2m_a [a] + (7Tq) ( 2 )fa(2m7207a) )

+ (mq

f4mK72 _ —Bapr—2 _ —a h; 1—m
. <7Ta(ﬂ_q)2c—a[2m — 9 — CL] q J ( )1+a—2mq (WQ) )

q4c -1 q2 _— c—1

2c h’; 1 —m 2c

_ (ﬂ_q) ( 5 )—a(?m—Qc—a) (ﬂ_q)mea[a] + (7'('(]) ( o )—a(2m—20—a).
c
—4m -2 —3a 1—2 —a -1 —
a c—a q K —J cta—om q K= — Tq h, 1 m
: (7r (mq)**[2m — 2¢ — a] —————— + (mwq)****7*"[2¢] o (mq) )
¢ -1 ¢ -1 c—1

: hil—m : Bl —m

_ (ﬂ‘q) (22 )_a(2m—2c—a) (ﬂ_q)Qm—a[a] + (7TQ) (22 )_a(2m—20—a)q—a[2m . (l]
c c

2) _a(2m—2c—a — — h;1—m

= (mq)(3) =2 (g™~ [a] + q~*[2m — a])
c

. h;1—

_ (7Tq> (22 )fa(2m7207a) [2m] m
c
Hence we have obtained the formula (7.14]) for Bgm).
(2) Now by assuming the formula for Bgm) in ((7.14), we shall establish the following
formula (with m in (7.15)) replaced by m + 1)
m 2m+1-2c - h: —m
BéQm'H) _ Z Z (Wq)( C; )—a(2m+1—20—a)E(a) ’ F(2m+1-2c—a) (717)
c=0 a=0 C

Recall the formula for Bgm) in (7.14). Using B = F + F and applying (7.12) to FE® we

70



have

2m—2c h’ 1—

B. BéQm) — Z Z (ﬂ_q)(226)_a(2m—20—a)BE(a) F(2m—2¢:—a)
c=0 a=0 C
m 2m—2c ,
— Z (7Tq> ( 20)—a(2m—26—a)

We rewrite this as

m 2m—2c L1
_ Z —a(2m—2c—a) [a+ 1]E(a+1) h7 1—-m

c=0 a=0 C

F(?m—?c—a) (718)

. h; —m
+ (7Tq_2)a[2m +1—2c— a]E(a) F(2m+1—2c—a)

C

o @K~ (mg)' =) Bl —m

+E F(2m—2(:—a)

2
— T
q C

We shall use (7.2)), (7.18)) and (7.15)) to obtain a formula of the form

m 2m+1—2c¢
2m +1)BY™ Y = B. B®™ — [2m]JBE" Y Z > E@gr () FEmmesa - (719)
c=0 =0
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for some suitable g7 .(h). Then we have

Y h; 1—m
g;r,c<h) = (71'(]) (22 )7(a*1)(2m+1fzc,a) [a]

C

2c h, —-m

+ W“(ﬂq)(z)*a@m*%*a)ﬁa 2m +1— 2¢ — a
c

+ (mq) (7)) (@t @m+1-2e-a) ¢K 2 — (mg)~*J |1 —m
-
c—1

e h:1—m

— (Wq) (2 2 1>_a(2m+1—26—a) [2m]
c—1
C h/; _m .
= 7Ta(7TQ) (2 ;1)—0(2m+1—20—a) (Wq)—QC—a[Qm +1—2¢c— a,] + (7Tq) (2 ;1)_a(2m+1—20—a)X’
c
where
h;1—m
X = (ﬂq)2m+1—4c—a[a]
c
R - g [hl=m h;l1—m
—2m-+4a—4c q K ﬂ'q J 3 e ’
+(7TQ)2+ 4c+2 2_( ) _(ﬂ_q)l 4[2m]J
1 T c—1 c—1
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A direct computation allows us to simplify the expression for X as follows:

4c—4m -2
_ o2m+1—dc—aj, 14 K=-J
X = (oo TR
—3a g —2 _ —a h:1—m
—2m+a—dc+294 K Tq J —4c ’
e 1)
c—1

q—4mK—2_J h;l_m

— 2m—2c—a+1 D)

c—1

h; —m
— (7Tq)2m_26_a+1[20—|— a]
C

Hence, we obtain

c h; —m
gz;c(h) — ﬂ_a(ﬂ_q) (2 2+1)_a(2m+1—2c—a) (ﬂ_q)—2c—a[2m +1—2c— CL]
C
(2C+1)fa(2m+172c7a) 2m—2c—a+1 h’ -m
+ (mg)\ > (mq)™" " 2c + a
C
c h, —m
_ (7rq)(2 ;1),a(2m+17207a) [Qm + 1]
&

Recalling the identity ([7.19)), we have thus proved the formula (7.17)) for Bgmﬂ), and hence
completed the proof of Theorem ]

Reformulations of the expansion formulas for Bén)

We can apply the anti-involution ¢ in Lemma [7.1] to the formulas in Theorem [7.5] to obtain

the following F'hE-expansion formulas (cf. [BeW18, Proposition 2.7]):
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Proposition 7.6. For m > 1, we have

m 2m—2c . .
Bé2m) — Z (_1>cq3c+a(2m—20—a)F(a) h’ m-—c E(Qm—Qc—a)’
c=0 a=0 C
m—12m—1—2c . _
Bé2m 1) _ Z c c+a (2m—1—2c— a)F(a) h’ m-—c E(Qm—l—Qc—a)'
c=0 a= C

Proof. The involution ¢ in Lemma, fixes F, E, J, K~! and sends

. h;a h;l—a—n
Bé”) s W(Q)Bé”)7 = (—1)ng?n D , forallaeZ,neN.
n n

Applying ¢ to (7.14), we end up with (%) on the LHS and 7+ 2) on the RHS.

Dividing through by 7T(2;n), we see that the powers of 7 inside the double sum work out to
AT )HE) () 7 (B) e = potepera — g

Similarly for the odd power case (7.15)), the powers of 7 in the double sum work out to

nete=er¢ = 1. Thus, both formulas are identical to the non-super case in [BeW18|, Proposi-

tion 2.7]. u
For A € Z,
h;a N le—1— A+n )
12)\ = q n(e=1-%) ]-2)\ € Aer (720)
n n
q2
h;a
even though does not lie in 4U in general (cf. [BeW18]).
n

Thus, by the same argument as [BeW18, Proposition 2.8], we have the following refor-

mulation of Theorem the only difference here is the factor of 7, which comes from
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Lemma :

Proposition 7.7. For m > 1 and \ € 7Z, we have

m 2m—2c o
12>\ — Z Z 2(a+c)(m—a—XA)— 2acf(2c2+1) m—c—a—A E(a)F(Qm—Qc—a)]_Q)\’
c=0 a=0 C
Q2
(7.21)
m— —1—
BE" 15 = Z Z (7.22)
c=0 a=0
p (g erm—a—-2ac—a=() | T CTOT AT o) pame1 sy

Cc

In particular, we have Bé")lu € AUEV, for all n € N.

The EhF-formula for B."

I

1

Recall that [h; 0] =

Example 7.8. We have the following examples of B%n), for2 <n <4:

B —nJ
B = N b + mq[[h; 0],
B3 . B -
By = [S]TJ = b + 7 [h; 0] F + g~ E[h; 0]
2 2)(B? _ 5 §
Bgl) _ (B WJ[?EL]?( mJ) = bW 4+ 7gE@[h; 1] + nq[h; —=1]F® + E[h; —1]F + ¢°
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Theorem 7.9. For m > 0, we have

m 2m—2c L1
¥ ~aem2e0) o) LT pomsea) (7.23)
c=0 a=0 C
m 2m+1-—2c¢ .1
2m+1 _ Z Z 202 1)—1—a(2m+1—2c—a)E(a) h’ L=m F(2m+1_20_a), (724)
c=0 a=0 ¢

Proof. As in [BeW1S8]|, we prove the formulae for B ) by induction on n. The base case for

n = 1 is clear. The induction is carried out in 2 steps.

(1) First by assuming the formula for BQm) in ([7.23), we shall establish the formula (7.24])
for B(Qm+1 , via the identity [2m + 1]B(2m+1) B- B?m) in (7.3).
Recall the formula (7.23)) for BT 2m), Using B = E + F and applying (7.12) to FE©® we

have
m 2m—2c
e . h;1
B. BéQm) _ Z Z (WQ)(22) (2m—2c a)BE(a) m F(Qm—Qc—a) (725)
c=0 a=0 C
m 2m—2c ,
— Z (ﬂ_q)(;) a(2m—2c—a)
c=0 a=0
3—3a 2 l1—a —
E’E’(a) + <7Tq )aE(a)F + E(a 1)q K- (7Tq> J h;1 F(2m 2c—a)
¢ - c
m 2m—2c ,
5 e
c=0 a=0
. h;l—m . h; —m
[a + I]E(““) [ (2m—2c—a) + (Wq—Q)a[Qm +1—2¢— a]E(a) F(2m41-2c—a)
C C
+ E(afl) q3—3aK—2 — (ﬂ-q)l_a‘] h’ L=m F(2m72cfa)

2
— T
q C
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We reorganize the formula (7.25) in the following form

m 2m+1-—2c
L o Y S UV
c=0 a=0

where

¢ h;1 —
£7 (h) = (mq)(3)~(@a-DEm+1-2e=a) ) m

C

c h; —m
4 7Ta<7'rq) (22 )7a(2m7207a)72a[2m 4+1—92— (l]

C

() (5 )~ -2e- KT — (mg) ™) fii1—m
2 _
Y c—1
A direct computation gives us
(2671)717a(2m+172cfa) 2m+1— h’ 1—m (QCfl)flfa(2m+172cfa)
£oc(h) = (mq)\ 2 (mq)™ ] + (mq)' 2 -
c
—4mK—2 _ 2J
. <7ra(7rq)2‘:_a[2m +1—2¢c—d a . 17rq
q —

—3a -2 _ —a h 1 - m
a— mq K ﬂ—q )
+ (mq)2te? (mq) )

2 _
q T c—1

c— h; 1 —
_ (Trq) (2 2 1)_1_a(2m+l—2c—a) <7Tq)2m+1_a’[a] m
C
e h;1—m
n (7rq) (2 ; 1)_1_a(2m+1—26—a)q7a[2m +1— CL]
C
c— h; 1 —
— (ﬂ-q) (2 2 1>—1—a(2m—&-1—2c—a) [Qm + 1] m
C
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Hence we have obtained the formula (7.24]) for B?mﬂ).

(2) Now by assuming the formula for B} Cm+) in ([7.24), we shall establish the following

formula (with m in (7.23)) replaced by m + 1)

m—+12m—+2—2c¢

2m+2) Z Z 7Tq a(2m+2—2c— a)E( a)

h’ —-m F(2m+2—2c—a)' (726)

Cc

Recall the formula ((7.24)) for B?mﬂ). Using B = E + F and applying (7.12) to FE® we

have
B(2m+1 _ Zm: Qmi% (*5 1)—1—a(2m+1—2c—a)BE(a) hil—m F(2mA41-2c—a)
c=0 a=0 &
m 2m+1—20
_ Z 2(2 1)—1—a(2m+1—2c—a).
c=0 a=0

F(2m+172cfa) .

s . . 3-3a g —2 __ 1-a h/’ 1—m
: (EE(“) +(rg 2 B 4 e H () J)

¢ -

C

We rewrite this as

m 2m+1-2c - hil—m
B. B%Qerl) _ Z Z (7I'q)< < )_1—a(2m+1—20—a) . [Cl + 1]E(a+l) ) F(2m+1—2c—a)
c=0 a=0 c
(7.27)
. h; —m
+ (7rq_2)a[2m 12— 92— a]E(a) F(2m+2—2c—a)
C
+E(a—1) q3*3CLK*2 — (ﬂ-q)lia‘] h’ L=m F(2m+1—2c—a)
¢ —m .
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We shall use (7.3)), (7.27) and ((7.23) to obtain a formula of the form

m+1 2m+2—2c¢
2m+2) BV = B.BP™ Y _r(2m41]7BE™ Z Z E@gr (h)FEmt22em0) (7 9g)

for some suitable g7 .(h). Then we have

2¢—1 h; 1—
g7, (h) = (mq) (5 )1tz |82

+ ﬂ-a(ﬂ-q) (2@2—1)_1—a(2m+1—20—a)—2a[2m + 2 o 2C o a]

+ (rq) (2 )1t @mez—2e-) 4 “Baf-2 _ (nq)0] |h;1—m

¢ - c—1
o h;:1—m
_ (7rq) (2 - 2)_a(2m+2—2c—a) [Qm + 1]
c—1
c h7 —m c
_ 7Ta(7Tq) (22)7a(2m+272c7a)(ﬂ_q)_QC_a[Qm 49— 92— a] i (71'(])(22 )7a(2m+272cfa)x7r7
C
where
h;1—m
XT = (7rq)2m+2_4c_a[a}
C
—Sapr-2 —ay (th;1—m h;1—m
+ <7Tq>72m+374c+aq - (7q) . (7Tq)3’4c[2m 1]
. c—1 c—1
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A direct computation allows us to simplify the expression for X™ as follows:

4cf4me2 _ 7rq2J

= (e

q4c -1
a2 —eJ h;1—m
+ (ﬂ_q)f2m+374c+aq ; (mq) _ (ﬂ_q)374c[2m + 1])
¢or c—1
—4mK—2_ 2J h;l_m
_ (Wq>2m+272cfa[20 + CL] q : Tq
c—1
g c—1
h; —m
_ (Wq)2m+2—20—a[20 + CL]
C
Hence, we obtain
c h; —m
g () = (mq)(3)mo@me2=2ea)g=2cafgpy 49— 9c — g
C
(26> —a(2m+2—2c—a) 2m+2—2c—a h7 -m
+ (mq)'> (mq) [2¢ + d]
C

. h; —m
_ (7rq) (22 )_a(2m+2—20—a) [2m + 2]

C

where the last equality uses the general identity ¢~ '[k — 1] + (mq)*"1[l] = [k]. Recalling the

identity ([7.28)), we have proved the formula ([7.26) for B§2m+2), and hence completed the proof
of Theorem [7.9] O

Reformulation of the expansion formulas for B%")

Just as with the even parity case, we can apply the anti-involution ¢ in Lemma to the

formulas in Theorem to obtain the following F'hE-expansion formulas:
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Proposition 7.10. For m > 0, we have

m 2m—2c . o
(Qm) Z Z c —c+a(2m 2c— a)F(a) h’ L+m—c E(Qm—Qc—a),
c=0 a=0 (&
m 2m+1—2c¢ . .
2m+1) Z Z c c+a (2m+1—2c— a)F(a) h’ l+m—c E(2m+1—20—a).
C

Proof. This time < fixes F, E, J, K~! and sends

B s B, = (=1)"g? , forallaeZ, neN.

The rest of the calculation is very similar to the even case above, and we obtain as before

formulas that are formally the same as the non-super case, though there are factors of m and
hya+1
J contained in . O
n

For A\ € Z, recall from that we have

h;a a—A—14+n .
1oy g = ¢?"@™V 1ox-1 € AUqda- (7.29)

n n
q?

Hence, by a similar argument to the even parity case, we have the following reformulation

of Theorem [7.9] (the extra factor of 7 comes from Lemma [7.2)):
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Proposition 7.11. For m > 0 and X € Z, we have

(2m) e 2 A)—2 2y | —C—a—A 2m—2
B gy = Y w(mwg)Hetmme o acta~ (%) E@ p@m-2c-a)y,
c=0 a=0 C )
q
m 2m+1-—2c¢

‘B§2m+1)12>\_1 _ Z Z
c=0 a=0

(a+c)(mfa7)\)72ac+2af(226) m-—c—a—-A+1 E(a)F(2m+1—2C—a)

7T“(7rq)2 Toy_1.

C

In particular, we have B%")ln,l € AUodd, for alln € N.

7.4 Definition for arbitrary U’

Let U* = U! be an 1quantum group with parameter g, for a given root datum (Y, X, (-,-),...).

Definition 7.12. For i € [ with 7¢ # 4, imitating Lusztig’s divided powers, we define the

divided power of B; to be
B™ .= B™/Im]\, forallm >0,  when i Ti. (7.30)

For i € I with 7¢ = i, the /" -divided powers are defined to be

1| BII (B2 — Gqil2j — 127;) if m =2k +1, (.31
L 3 |
iml; H?:l(BZZ —qqi[25 — 1)2;) if m = 2k;
4

k 2 92 T .
m 1 B;ll._ BZ‘ — G, i2]it]i 1fm:2k+1,
Bi(ﬁ) _ ) Hj_l( ai[27] N) (7.32)

|
m; 1, (B? — amqi[2j — 2120)  if m = 2k.
\

When we specialize ; = 1 and .J; = 1, we obtain the i-divided powers in [CLW18] from the

formulas above. In the case when the parameter ¢; = ¢; ' for 7i = 4, this is the rank one case
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described above, and all formulas and results there hold for Bi(%). Using we note that we
can obtain U* with general parameters g; from this special case by the rescaling isomorphism

therein.
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Chapter 8

A Serre presentation for U’

We are now ready to state and prove one of the main results in this dissertation, a Serre
presentation for U’, which parallels the main result in [CLWI18]|, Theorem 3.1. In addition
to a handful of standard relations, this presentation also features two novel relations: for
Ti # 1, a Serre-type relation between B; and B,; with a ‘correction term’ ( below) and
for 7o = i # j, a Serre-type relation, the +™-Serre relations between B; and B;, which can be

neatly written in terms of the i"-divided powers ((8.7) below).

8.1 Statement of the result

Denote
(a;x)9 =1, (a;7), = (1—a)(1—ax) - (1 —az" "), foralln>1.

Theorem 8.1. Fix p;, € Zy for each i € I. The K(q)"-algebra U* has a presentation with

generators B;, J; (tel), K, (pneY?") and the following relations (8.1)-(8.7): for u,p/ € Y
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and i # j €1,

J; is central, (8.1)
KK =1, KK,=FK,.,, (8.2)
K,B; — q; "™ BK, =0, (8.3)
[BZ‘7 BJ] :0, Zf Q5 = 0 and Ti 7é j, (84)
1—aij ) N
(e OB BBt <o, i, 5.5)
n=0
1—a; " 1
1y O g g L 56)
n=0 T — g;
-(qf g %) g BT LK) —(mqf;Wiq?)_ai,TiBi(*“i’Ti)LKJ@*), if i #
1—a;; "
(—1)"7{*(2)B%WBJ-B%;“W") =0, ifri=i#] (8.7)

i
o

Proof. Granting first that and both hold in U’ the same argument used in [CLW18§]|
is also applicable here in this setting. The main ingredients are the results in §6.2.1] above;
we have a generalization of [Kol4l Theorem 7.1| when X (corresponding to the black nodes)
is empty.

Thus, the remaining work lies in showing that both and holds in U*. We
will do so in the subsequent sections, in Proposition of §8.2] and Theorem of §8.4]

respectively. O

Before moving on, we will display here the Serre presentation for split U’, which takes on

a particularly simple form (recall that a quasi-split :«quantum group U is split if 7 = id):

Theorem 8.2. Fixz p, € Zsy, for each i € I. Then the split 1quantum group U" has a Serre
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presentation with generators B; (i € I) and relations

1—ay;

S (cyral Wp gl — g

i i,ai;+pi I 70,p;

Moreover, U admits a K(q)-algebra anti-involution o which sends B; — B; for all i.

Proof. This follows from Theorem [8.1] by noting that Y* = () and 7i = i for all i € I. O

8.2 Serre relation when 7i # ¢

In this section we will show that holds, following [BaK15, §3.5]. Recall the projections

P\ and g defined above, which are also in [BaK15].

Proposition 8.3. If 7i # i, the following relation holds in U.:

S~ @ pp plen - L

s migi — q; "

. (C]fT (miq; % Wiqi_2)—ai,ﬂ3i(_ai’ﬂ)jz‘fNQfN(T_il —(miq}; Wiqz-z)—ai,fiBf_ai’Ti)JNTJNQJNQ_I) :
Proof. Recall now that ¢ and j = 7(i) # ¢ must have the same parity, and if both i and j are
even roots there is nothing to prove. Thus, we may assume that ¢ and j are odd roots, and
so by the bar-consistency condition m = 1 — a;; is odd. Also set \;; = m -4 + j and with the
notation above set ()_,,, =id ® (P_,, o ) as the vector space endomorphism of U ® U.

By a construction parallel to [Kol4, (7.8)], for Y = F};(B;, B;) we have the relation

Cii(c) = —([d®e) 0 Q@ (A(Y) — Y @ K_y,). (8.8)
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Just as in loc. cit., we can compute A(Y) from the formulas

AB)=B @K'+ 1®F, +Z ® E;K;'

A(BJ) :BJ®K;1+1®F}+§]ZJ®E1K;1
where Z;, = JT(;C)KT(;C)K,JI for k =1, 7, and so we have that

Qx,(A(Y) =Y @ K)\,) = (;B" ' Z; + a; B ' Z;) @ K_»,, (8.9)

where a; and a; can be determined explicitly using the commutation relations

Z;B; =q, """V B, Z,

710

For instance,

m Mk |m
a; B Z; @ Koy, = Q_x, <Z(_1)kﬁl(2)+
k=0 k '
m—k—1
> (Blo K1 e BB T e KT (G20 BT (BE @ K;k))
=0

m—1— —(m+1)k—2(m—k—I1-1 m—
-1 Qi ! Z'Wfqz' (k=2 )Bi 1<ij ® K_x;,

i

where the extra factors of m; come from multiplying out 1® F; and B '@ K™ '=* and
Bf @ K}, and ;Z; ® E;K; ' and Bf ® K} respectively since multiplication in U® U is defined

according to the rule (a ® b)(c ® d) = m*®P)gc @ bd. A further factor of 7; comes from the
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following:

(m—k— (m— JiK; — K; 1
Qn, (K, " YREKT K = Qy,, (K, Y <7TZEF ——1>Kj ien
7T’qu (:Zz
- - — K"K
Tiq; — 4,
Note that m — 1 = —a,; is always even (by bar-consistency), and so 7{"~! = 1. Thus,
m K [ ] m—k—1
_ (—1)]“7%(2) m (m—1)k—2(m—1)_{ 21
aj _ (7‘(‘- o —1) qz s
=0 \Midi — 4 k1l =0
X I

(2) M| e yk—2m—1) (migZ)™ " — 1

Z (m b i ma? — 1

k=0 iqi — qz k iq;

This time, we may use [CHW13|, (1.12)], which after applying the bar involution yields

m k m—1
Zwi(2)qi_k(m ) = T+ (g 2)=): (8.10)
k=0 ' 7=0
in particular,
m k m
Z%(Q)qfk(m K (-1)" =0;
k=0 k|
and
m m—1
—k(m—1) m ]+1 -2 -2
Zﬂ_ 4; quz H 1 - 7T7,q1 ) = (7T1Qz y T34, )m7
k=0 k §=0

(Recall that (z;2),, := [[/~,(1 —2/)) and so (remembering that 7" = 7; since m is odd) we
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have

Wiqi_Q(m_l)(Wz‘qg)m

(Mg i m = 15 (M@ i e (8.11)
qi(miq;i — q; 1)2 2

CLJ':

o . 5)+k .
Similarly, for a; we have additional factors of TFZ-(Q) from the super-Serre relations and 7!

from the tensor product multiplication:

m k—1
) k m
a; = L_l Z —1)"375.(2)% qik—l)(mﬂ)ﬂlgqi—m
Tiq; — qz‘ k=0 k A iy
T S N)+k | k1) (ma1) 1 — (mig; 2)F
= D SRl I I e B
g — 4 T, k 1 —mg;
i (g (1) 5 k(m+1) | _
- ) e S5 gl | (g
7T7,QZ qz k=0 k '
4 ) k(m—1) |
= ot o A | ()
7Tzqz qz k=0 k’ .
g " 2 2 " 2 2
= 1 (Wiqi y T4 )m - 0) = —,(Wiqi y T4, )ma
(miqi — q; 1>2 ( (miqi — q; 1)2

this time using [CHW13| (1.12)] directly (without the need for applying the bar involution).

Putting this together with and applying —id ® e, we obtain

—1 —-m m— - - m—
Gl = = (meqis mq) ) B 6 Zi + qi(miq; s mig )m BT G Z5). (8.12)

Dividing through by [m]} and simplifying yields the version with divided powers presented in

Theorem O]
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8.3 A (¢, m)-binomial identity

We state and prove here a (g, 7)-binomial identity that will be crucial to the proof of Propo-

sition [R.7 in the next section: for

w € Z, u,l € Zsy, with u,? not both 0, (8.13)

we define

T(w,u,0)gr (8.14)
J4
c,e,r>0 t=0
cte+r=u 2|(t+w—r)

wH+t—4 u—1+“’+2t_r w+2t_r—€

7Tlt+r+e+(;) (Wq)ft(uufl)ﬂuu)(c,e)
t T C e
q? q?
4
c,e,r>0 t=0
ctetr=u 2A(t+w—r)
— wht—r=1 wht—r—1 _
Alttet(3) (mg)~HEru=D+(Eru-1)(c=0) wHt =4 |u+ > /
t T C e
q? q2

When we specialize at 7 = 1, we have T(w,u,?),1 = T(w,u,l) as defined in |[CLW18|

(3.18)].

Proposition 8.4 (JCLWI18|, Theorem 3.6). The identity T (w,u, ) = 0 holds, for all integers
w,u, l as in (8.13).

As pointed out in [CLWIS], a direct proof of this proposition proved challenging. Instead,
the authors approached this by first introducing a more general g-binomial identity in several

more parameters. This general identity specialized to the one above and satisfied certain

recurrence relations, thus completing the proof with an inductive argument (details in §5 of
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[CLW18]). Fortunately for us, we can sidestep the complicated process above for the analogous

result here in our setting by making a deft substitution and leveraging the earlier result:
Proposition 8.5. The identity T'(w,u,l),~ = 0 holds, for all integers w,u, ¢ as in (8.13).

Proof. By a substitution of ¢ — /7q in T'(w, u, ), we obtain

2 _lu—uw
T(w, u, )] gy ymg = N T(w,u, ) yr

and so the result follows from Proposition O

8.4 Proof of the 1"-Serre relations

This section is devoted to a proof of the following theorem:

Theorem 8.6. The 1"-Serre relations (8.7)),

1—ay;

> (—1)”7r?+(2)B£%+EBjBf7lﬁ:aij_n) =0, ifri=i#j.

n=0
hold in the rquantum covering group U".

The general strategy will rely on applying a few reductions to reduce (8.7) to the (q,m)-
binomial above, which vanishes as we saw in Proposition Using the isomorphism ¢ in

Proposition , the sSerre relations for U!_, is transformed into the :Serre relations (8.7)

k3

for UL with general parameters. Hence just as in [CLW18], we will work with the :quantum

groups with distinguished parameters, U* = U -1, as a first reduction of the 1Serre relations.

q

A subsequent ‘reduction by equivalence’ as in §4.1 of [CLW18| can be applied, further reducing

D) to

1—a;j;

n n l—aij—n
ST (-1)"BIL FBL T =0 (8.15)
n=0

for each p € Z,, where ¢ € I such that 71 =i, j # 1.
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Now fix i = 1 and j = 2. Note that when p(1) is even, there are no additional formulas to
prove since m; = 1. Thus, we may assume that p(1) is odd, and so due to the bar-consistency

condition (JCHW13| 1.1(d)]) we must have a;5 € —2N. Hence, it is sufficient to prove that:

Proposition 8.7. Suppose that a1 = —2m € —2N. Then,

2m+1
n np(2)+’§ n 2m+1—n

> (-1)rm ( >B§76)F2B§76 )~ 0, and (8.16)
n=0

2m+1 (2)+<n)

n NP n 2m+1—n
(=TT B B BETTY < 0, (8.17)
n=0

2m+1 (2)+(n)
Sy T B RBET Y1, = 0. (8.18)

for all A, using Remark [2.4]
. o (n) (2m+1—n)
Using Proposition 7.7 to expand B 5 and B and (2.11) to collect the factors of
Ey, we have (cf. [CLW18, (4.15)])
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2m+1
S (—1ymr @) g g gl g (8.19)

2m M=% F 2m+l— —2¢ min{a,n—2e—d}
n=0,2|n ¢=0 e=0 a= d=0 r=0
a+d+ap(2)+ad+ n oy o o o7
m () (2) (7qu1) (a+ct+d+e)(2m+1—n—21—2a—2c—2d—2e)+d

a+d—r 2m+2—-—n—2\—2e —d — 3a — 4c m-—g—-—A—c—a

d T c
- @ a q

m+1—2—-XN—e—d—2a—2c —) ~(n—2e—d—r m+1-n—2c—a
. E£a+d )Ff 2e—d >F2F1<2 +l-n—2c—a)qx

2
€ 2
L b
2m4+1 M+ "5 21 —n—2¢ n—2e min{a,n—2e—d}
n=12tn ¢=0 e=0 a=0 r=0

a+d+(a+1)p(2)+atad+ (2) + (’;) (

. )(a+c+d+e)(2m+1—n—2/\—2a—20—2d—26)—a—2c
1

141

a+d—r 2m+2—-—n—2\—2e —d —3a — 4c m—l—l_T"—)\—c—a

d r c
- q1 q1 q7
m+ist —N—e—d—2a—2c
2 E£a+d T)F(Tl 2e—d— T)F F(2m+1 n—2c—a) 2)\

€ 2
L ¢

By the same series of substitutions as detailed in [CLW18]|, we may collect the ¢- and

¢*-binomial factors and the 7, factors into a sum S(y,u, £, \), (the rest can be factored out)

to obtain
2m—+1 (2)+(n)
> (=1 BURBYT T = Y (8.20)
n=0 £y,u>0;u+€>0

Fy+2u<2m+1

Y
ﬂ(l+y)p(2)+l+<2)(ﬂ_lql)(€+u)(2m+1—2)\—2€—3u—y)S(y’u 0 0), B9 FW y pem 1=ty

1 2)\7

where S(y,u,?, \), is a sum over n (with a difference when 2|n and 2 { n as above) and over
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c,e,r > 0,c+e+1r=ucf. [CLWIS, 4.16].
Then, using the new variables t := —u—y—e+c+nand w:=2m+2-2\—-2[—-4u—yin
§4.4 of [CLW18|, we have that S(y,u, ¢, \) = T'(w,u, (), . Thus, the right-hand side vanishes

by Theorem and so (8.16]) holds.
Just as in [CLW18], a similar argument shows that (8.17)) holds. O
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Chapter 9

Bar involution and quasi K-matrix

The Serre presentation for U* enables the definition of a bar involution v, on U’, which is
not simply the restriction of the bar involution i on U. For instance, B; has the image
F;, + ciETiKl-_l under the embedding U — U, and v, fixes B;, but ¢ (F; + c,-EiKi_l) =
F, +¢ELJ K.

In this section, we will construct a quasi K-matrix T that ‘intertwines’ these two bar
involutions (the quasi K-matrix goes by the name ‘intertwiner’ in [BW18al Chapter 2|). The
quasi K-matrix has the property that its action is integral, in the sense that it preserves the
A7-forms (i.e. integral forms) of certain integrable highest weight U-modules and their tensor
products. This property will be used in the development of a theory of canonical bases for U*

in the next section, cf. [BW18b, BW18¢|.

9.1 Bar involution on U’

Recall the three conditions (6.8)—(6.10) on ¢; in Definition We may now conclude the
existence of the bar involution for the quasi-split :quantum group U* := U{, granting that

these conditions on ¢; are satisfied:

Proposition 9.1. Assume that the parametersg;, fori € I, satisfy the conditions f,
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which we recall here:
(6.8) <@ = <iqi, if Ti =i and a;; # 0 for some j € I\ {i};
69 =< =cu ifri#iand a;-; = 0;

(6.10) <. = mq;, 7', if Ti # i and a;.; # 0.

Then there exists a K-algebra automorphism —: U* — U" (called a bar involution) such that
G=mq ", E:JMKIf, B;=DB;, foralpeY'iel.

Proof. Under the assumptions, the :-divided powers Bl-(n) in (7.30) and Bi(%), for p € Zy, in
(7.31)-(7.32) are clearly bar invariant. It follows by inspection that all the explicit defining
relations for U in (8.1)-(8.7) are bar invariant. The extra factor of 7; in (c) comes from

applying — to the right hand side of (8.6). O

9.2 Quasi K-matrix

The goal of this section is the construction of a quasi K-matrix for quasi-split U’ that ‘inter-

twines’ the bar involutions " for U* and ¢ for U, which do not agree:

Theorem 9.2. There exists a unique family of elements T, € Uj such that Yo = 1 and

T = Zu T, where p(p) is even, satisfying the following identity in U:
U, (u)Y =TY(u), for allu e U (9.1)

Among other things, carrying out the rank one computation was instructive for identifying
the condition that T has no odd part, so we will cover that before going into a proof of the

general case.
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Quasi K-matrix for rank 1 (a single odd root)

We know that when we specialize T to the non-super rank one case by setting 7 = 1, we
will obtain the formulas given in [DKI8, Lemma 2.6] or [BW18a, (4.1)] (note that a change
from FE to F in the second reference is required, since the convention there for the embedding

formula for B is different). Thus, the general form of T is given by
T = (ZNE(N).

where an € K(g)™. From the first identity in [CHW13|, Lemma 2.2.3] with M = 1, we have

K:1-N EN-) _ - pv) (rq)""NJK — qN—lK—l.

EMNFE — gNFEWN) = gN-1
1 Tq—q

We need to separate the computation for the condition BY = T B when N is even from when

N is odd. When N = 2k is even, we have
age(EPVF — aNFE®Y) = ag_y(cq’ K 'EE®*? —eEEP 2 JK)

and so using [CHW13, Lemma 2.2.3] and comparing coefficients of E*~Y JK and E®—1) K1

respectively yield the (over-determined) system of solutions
ag, = —enq’(mq — ¢ ') g" 2k — 1ag,—

and

Qop = —C7Tq2(7Tq o q—l)q2k:—1q2(1—2k:) [2]{? _ 1]a2k—2-
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Hence for k even,
agr = (—emq®) (mq — ¢ )Fq ™ 2k — 1]"

where [2k — 1)" = [2k — 1] - [2k — 3] - ... - [1] (normalization: ag = 1).

For N = 2k + 1 odd, we also obtain an over-determined system of two solutions:

asp1 = (—emg®) (g — ¢~ )g > 2k asg—1

k+1

= (—erg®)" (g — q71>k+1q—2( ! )[Qk]”&q

where [2k]" = [2k] - [2k — 2] - ... - [2]. Since a_; = 0, we see that T has no odd part.

So we have (cf. [DKI8| Lemma 2.6] when 7 = 1)
T =) (—erg®)(rq — g g 2k — 1) EC.
k>0

An equivalent, systematic approach to the definition of T involves the twisted derivations
defined by Lusztig in [Lu94l 1.2.13], and can be found in [BaKK19, Proposition 6.3] or [DK18|,
Lemma 3.8]. For quantum covering algebras the twisted derivations r; and ;r is defined in
[CHW13| §1.5]. Following this, we may define T to be the (unique) solution to the system of

equations:

1r(Y) = —crng*(mq — ¢ )EY, and (9.2)

ri(Y) = —eng(mq — ¢ HTE, (9.3)

The existence of such a solution, and hence the existence of T, can be verified just as in
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[DK18, Lemma 3.8], using the fact that ;7(E®¥) = ¢?*=1 EC*=1 for the first equation:

1T(T2k) = 17’(a2kE(2k))

— qgpg? 1 EED

. EE(2k72)
= —C7Tq2(7rq —q 1)a2k_2[2]{7 - 1]m

= (—eng®)(mqg — ¢ ) ET oo,

and using r (E®0) = 21 ECk=1(= r(E*)) for the second. Note that this definition also

implies that T has no odd part, because

17"(T2k+1) = 17’(Cl2k+10E(2k+1))

= a2k+1q2k0'E(2k)

= —cn®(mq — ¢ Vage_17[2k]|Eo
= m(—cmg®)(mq — ¢ ) ET a1,

and T_; = 0. The equivalence of the definition with the previous construction is a direct

application of [CHW13, Proposition 2.2.2|, which is a m-analogues of [Lu94, Proposition 3.1.6].

Remark 9.3. When attempting to directly apply [CHW13, Proposition 2.2.2|, we ran into the
following issue: since B; = F; + ¢;E;J;K; in U, we would like to have T = Zu T, € U+
satisfying

(Fi + ¢ E;K; DY = Y(F; + 6B J;K;),

but on the other hand we have
EY, —T,F=7, 2cEJK; — CiEiKi_lTu—2i

for which Proposition 2.2.2 is inadmissible when p(u) = 1, a factor of 7; is missing.
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Borrowing inspiration from [BKKQQ], we attempted a workaround by introducing a parity

operator o to our algebra such that
0B = Y0, oF, =190, oK,= K, and 0J, = J,0

and separating odd and even parts T = T + 011, but when carrying out the computation
above we find that the terms with ¢ vanish anyway, and so conclude that T must have no

odd terms.

Quasi K-matrix for quasi-split U’

We will now prove Theorem for general quasi-split U’. First, using [CHW13|, Proposi-

tion 2.2.2| the condition that T = 3" o?WY, € Ut satisfies the identity
(F+ ¢ EK; )Y = Y(F, + GE JK;)
is the equivalent to the conditions that T, satisfy both of the following system of equations

Ti(T,u) = —(ﬂ'qu — qil)(CZ‘ﬂ'iqg)TH,QiEi, and (94)

)

ir(Y,) = —(mgi — ¢ ) (em@) ) BT o, (9.5)

here we have used the the bar-consistency condition i.e. p(i) = d; (mod 2), which gives us
the identification wf(i) = 7P = gp()p,

With this, we can use the methods in [BW18al §2.4] (cf. also [BaK19, §6.2]) to construct Y.
Recall the non-degenerate symmetric bilinear form (-, -) on the algebra 'f defined in [CHW13),

Proposition 1.4.1].
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Just as in [BW18a), (2.11)-(2.14)], the system (9.4)—(9.5)) is equivalent to

(Tp, Eiz) = —ciqi (1 — mig; ") (Y puaiy i7(2)) (9.6)

(Tp, 2Ei) = =i (1 — mig; *) (Y pumais 7i(2)), (9.7)

which we can see from the brief computation

04) = (r:(TL),2) = —(migs — ¢ ") (e} ) (T p—2:Ei, 2)
(1.4.1)

= (T, 2E) = —(miqs — ;") (emiq?) (B, Ei)* (T i, 1i(2))

— (9.6);

for (0.4) < (9.6), and a similar one for (9.5) < (0.7).

Thus we may inductively define T} and T} in ‘f*, the non-restricted dual of 'f, such that

T5(1) =ThH(1) =1 and

Ti(Eiz) = —ciq) (1 —mg; 2) 7' T3 (i (2)) (9.8)

Th(zE) = —ciq) (1 — mg; 2) ' TR(ri(2)). (9.9)

Note that for all 7, j € I, we have from ,r(1) = 0 and ;,7(E;) = ¢;; that

TZ(EZ) =0 and T*L<E1EJ) = —CZQ?<1 — Wq;Z)il(Sij,

and similarly for T7%.
Lemma 9.4. Let 'f, denote the p weight space in the weight space-decomposition of 'f. For

x €'f,, if either p(p) or ht(p) is odd, then Y7 (z) = Th(x) =0

Proof. We show this for odd p(u) by induction on ht(u) (the statement for odd ht(u) is

similar). The base cases ht(x) = 1, 3 are given above. For homogeneous such z € 'f,, * = E;z
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for some z € 'f, so ;r(2) € 'f,_; where p(v — i) is odd (p(v) and p(i) have opposite parity since
p(p) = p(v) +p(i) is 0dd), and so by induction hypothesis, T (;r(z)) = 0, and hence by (0.8)),
T (z) = 0 as well (similarly for YF). O

Lemma 9.5. We have T7 = T%.

Proof. We will show that 17 (z) = T}(x) for all homogeneous = € 'f, by induction on ht(su),
using Lemmal[2.TJabove. The base cases ht(|z|) = 0 or 1 are trivial from the definition. Suppose
that the identity holds for all homogeneous elements with height no greater than k for k > 1,
and let z = E;2'E; with ht(|z|) = k + 1 > 2 for some i, j € I. Let & = —cpqi(1 — meq;, %)~

Then,

T (B By) = &Y (ir(2' Ej))

= & (Y@ By + 7O (0 ()
and

Tr(Eir'Ej) = §T3(ri(Eix'))

= & (Th(Bir;(@) + 770 19T  (a'ry () )

The second terms of both of the final expressions above vanish unless ¢ = j, in which case
they are both equal (by application of the induction hypothesis to 2’ of height k£ — 1), so it

remains to show that

&T*L(ZT‘(SL’/)EJ) = ng}:z(Eﬂ“] (SL’/))

This can be done by applying the induction hypothesis to ;,r(z')E; and E;r;(z’) to obtain

ET (1) Ey) = &5l (2) Ey) & 66,75y 0 ()
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and

§GTr(Birj(2)) = G (B (2) = &1 6r o rj(2")),

and so from the fact that r; o ,r = ;r or; by Lemma and the induction hypothesis since

rjor(a’) = rorj(a’) € flp—i—; the desired result follows. O

Thus, we can denote T7 = T} by T*.

Let I = (S;;), the ideal generated by the Serre relators S;; := Fj;(E;, E;) (where F}; is
defined above in (2.2)), so that the half quantum group U™ is isomorphic to 'f/I. We will
now show that Y* vanishes on I, and so descends to an element in (U™1)* the unrestricted

dual of UT.
Lemma 9.6. T*(I) =0 and hence Y* belongs in (UT)*.

Proof. For finite type corresponding to B(0,n), |S;;| has height 3 when (4, j) # (n,n—1), and
p(Spn—1) is odd, so by , we have that T*(S;;) = 0. By the same induction argument in
[IBW18al Lemma 2.17], this holds for the ideal I = (S;;) they generate, and so T*(I) = 0.
For quasi-split U" in general, we need to show that Y*(.5;;) = 0 for general Serre relators.
With Lemma this is already addressed for the case ht(S;;) odd, and so it remains to show

this for ht(S;;) even. This can be done by showing that terms of the form
T*(ESESEY) for j # i and a+b+ 1 even (9.10)

vanish by induction using or (0.9). For instance if a > 1, we use to show that

(using & = —cxqi (1 — mrq;, %)t as above)

T (E{E;E!) = &YX (i (BY ' E;EY))
= V(BB EY + 7l gl i el g (BY))

= V(BB EY + 7l gl el g (BY))
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and each of the two terms are of the form (9.10)), and so we can apply the induction hypothesis
(the base case Y*(E;E;) = 0 for i # j is computed above, and for if we are not in the base

case and ¢ = 1 we must therefore have b > 1 and so we can use on the other side. O
With these lemmas, we can now construct Y in the same way as [BW18al, Theorem 2.10]:

Proof of Theorem[9.2, Let B = {b} be a basis of U~ such that B, = BNUY, is a basis for

U7, and let B* = {b*} be the dual basis of B with respect to (-,-) and let

Ti=> T @)=Y T,cU" (9.11)

beB m

(recall that there are no terms here with p(u) = 1). As functions on U™, we have (T,-) = T*,

and T = 1. Also Y satisfies the identities in (9.4) and (9.5]) by construction, since T* satisfies
the equivalent identities in and (9.9)).

From this construction we also see that r;(Y,) is determined by T, with weight v < pu.

Together with Lemma [2.1] this implies the uniqueness of T. m
As in [BW18al, Corollary 2.13], it follows that Y is invertible, and in fact T = Y1 :
Corollary 9.7. We have Y -T = 1.

Proof. Multiplying T~! on both sides of the identity (9.1)) in Theorem 9.2 we have

T h@) =2(u)Y™Y,  Yue U

T o(u) = z(ﬂ)Til, Vu e U

Hence T (in place of T) satisfies the identity (9.1) as well. Hence, by the uniqueness of T
in Theorem M we must have T = Y. O
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9.3 Integrality of the action of T

In this section we will prove an integrality property for T: in particular, we will show that T
preserves the integral forms of various based modules and their tensor products, with Section 6

of [BW18c| as a general outline; see also Section 2 of [BW16].

Definitions

We will define based U-modules (M, B(M)) in the same way as [BWI16, §2] i.e. M is an
integrable U-module with a distinguished basis B(M) satisfying conditions (a)—(d) of [Lu94,
27.1.2|, with integrality replacing the finite-dimensionality.

Remark 9.8. We will note here that the use of the term ‘basis’ in the context of quantum
covering groups will be understood to refer to a m-basis in the sense of [CI14] §2.6]. A m-basis
of an R™-module M is also an R-basis of M. In Theorem 1 of loc. cit., a m-basis of f is given;
when 7 = 1 this specializes to the Lusztig-Kashiwara canonical basis, and when 7 = —1, this

specializes to the signed basis of [Lu94, Chapter 14].

For the remainder of this section and the following chapter we will suppress the superscript
7 for A™ when referring to integral forms of algebras and modules, so e.g. 4U refers to 4~U
and 4 M refers to 4= M. We will find useful in this section the following analogue of [BW16],

Lemma 2.2]:
Lemma 9.9. Let (M, B(M)) be a based U-module and let A € X. Then,
1. for b € B(M), the K(q)"-linear map m : U1z — M @ M(}), u = u(b®ny)),
restricts to an A™-linear map m, : 42U~ lm — AM @ = AM(N);
2. we have e gy M(AU ™ L) = aM @ar aAM(A).

Proof. The proof is the same as the one for [BW16, Lemma 2.2]: The comultiplication has the
same form as [BW16, (2.1)], the filtration on 4f is the same, and the appropriate analogue to

IBW16, (2.2)] can be obtained from [Cl14, (3.2)-(3.3)]. O
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Remark 9.10. Many of the results for based U-modules for U of Kac-Moody type established
in [BW16, §2| also apply for quantum covering algebras. In particular, with straightforward
modifications, the same arguments therein give us versions of Lemma 2.3 (Corollary

below), Theorem 2.7, Theorem 2.9 and Proposition 2.11.

Definition 9.11. Just as in Definition 3.10 of loc. cit., we define 4U* to be the set of elements
uw € U, such that u-m € 4U for all m € 4U. Then 4U* is an A™-subalgebra of U* which
contains all the idempotents 1. (¢ € X,), and 4U* = Dex, AU

Moreover, for u € UZ, we have u € 4U if and only if u-1, € AU for each A € X (cf.

[BW18bl Lemma 3.20])

Theorem 9.12. For any ¢« € [ and p € X,, there exists an element BZ-(Z) € AUzlg. In

particular, these elements satisfy the following 2 properties:

(n) (n)
1. 4,(BY) = BYY;

2. BIV1, = 1, + %0, F{Y U1y, for 1, € 4U" with X = ¢.

a<n

Definition 9.13. Let :4U’ be the A™-subalgebra of 4U* generated by the divided powers
BY(iel)foralln>1and (€ X,

Recall for A € X, we denote by M (X) the Verma module of highest weight A (see [CHW13|,
§2.6]). We denote the highest weight vector by 7. The following is an analogue of [BW18c,
Lemma 6.3].

Lemma 9.14. Let (M, B(M)) be a based U-module. Let A € X. Then,

1. for b € B(M), the K(q)-linear map m : U'lp—s — M @ M()), u — u(b® m)),

[ol+

restricts to an A"-linear map m, gUllm —> AM @ = AM(N);

2. we have Y ) (', U Igs) = aM @ax aAM(A).
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Proof. Recall /,U* C 4U". Part (1) follows from Definition Part (2) is proven in the
same way as loc. cit. By part (1) we have >, pp Wb(gUllm) C AM @ = AM(N), and

AU~ has the increasing filtration
,4”:AU;0 gAU;1 C... QAU;N cC...

where 4U_y is the A™-span of {Fi(lal) o Fif'”)\al +...4a, < N,iy,..., i, € I}, which induces
an increasing filtration { 4M (X)<ny} on oM (N).
We can prove by induction on N that 4aM ®ax aAM(N)<n C D pepan Wb(%Ullm): Let

b® (Fl-(lal) e Fiﬁfn)nA) € AM @ AM(X)<n. Since the form of A(Bz‘(f,lg)) has a ‘leading term’

1® E(ffé) plus terms lower in filtration degree, we can use Theorem [9.12|to conclude that with

appropriately chosen ¢ € X" (see [BW16, Lemma 2.2|), we have
B (be (F  Fm)) € be (F L F8m) + aM @4 aM (Vw1

The lemma follows. O

For A € Xt we abuse the notation and denote also by 7, the image of 1, under the
projection py : M(A) — L(A). Note that py restricts to py : 4M(X\) — 4L(\). The next

corollary follows from Lemma [0.14]
Corollary 9.15. Let A € X, and let (M, B(M)) be a based U-module. Then,

1. for b € B(M), the K(q)-linear map m : U'lyry — M ® L(A), u— u(b®mny), restricts

to an A™-linear map m, : hUllm —> AM @ = 4L(N);

2. we have e gy M (AU lps) = aM ®@ax aL(N).
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Integrality of actions of T

We now show that the quasi K-matrix T € U* induces a well-defined K(g)™-linear map on
M ® L(\):
T:M®LO) — ML), (9.12)

for any A € X and any weight U-module M whose weights are bounded above.
Recall [BW18b] §5.1] that a U’-module M equipped with an anti-linear involution 1, is

called involutive (or 1-involutive) if
U,(um) = ¥, (u)p,(m), for allu € U, m € M.

Proposition 9.16. Let (M, B) be a based U-module whose weights are bounded above. We

denote the bar involution on M by 1. Then M is an i-involutive U'-module with involution

b, =T o1, (9.13)

Proof. Just as in [BW18c|, since the weights of M are bounded above, the action of T : M —
M is well defined. The rest of the argument is analogous to the one found in the proof of

[BW18b, Proposition 5.1] (also [BW18al Proposition 3.10]): using Theorem [9.2] we have

(um) = Tip(um) = Tp(u)(m) = Yu(u)Tep(m) = P (u)i,(m)

as required. N

Let (M, B) be a based U-module whose weights are bounded above. Assume T : M — M

preserves the A™-submodule 4M.

Proposition 9.17. The K(q)™-linear map 1, := Y o preserves the A™-submodule s M ® g=
AL(XN), for any A € XT.
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Proof. The proof is again very similar: the U-module M ® L(\) is involutive with the invo-
lution ¢ := © o (T ® 7), where © is the quasi R-matrix defined in [CHW13| Theorem 3.1.1].
It follows by a direct analogue of the argument in [BW16, Proposition 2.4| that v preserves
the AA™-submodule g4M ® 4= 4L()).

The argument will be reproduced here: the statement is that for A € X+ and (M, B(M))

be a based U-module, the K(g)-linear map
©: M®L\) — M L\

preserves the A™-submodule g4 M ® 4= 4L()).
We will write  for ® , which preserves the A™-lattice 4M ® 4~ 4L(\). Thus, any
1 € AM @ 4= AL()\) can be recognized as x = 2’ for some 2’ € 4 M @4~ 4L(N\). By Lemma

' =), m,(u;) (a finite sum), for some b; € B(M) and u; € 4U 1, 4. Since 4U 1,4y is

)

preserved by the bar involution on U, we have u] = 7; for some u; € 4U™ 1,42 Hence,
i

From [CHWI3| Theorem 3.1.1], the quasi R-matrix for has the property that

uO(m @m') = Oim e m’)),
for u e U, m € M and m’ € L(\). Taking m = b; = b; and m’ = 1, = 7, this gives

u(b; @ ny) = O(u(b; @My))

since O(b; @) = b; @7 (which follows from the fact that O lies in a completion of U~ @ U™,
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cf. [CHW13| Theorem 3.1.1]). Hence,

Z@ (b @) = wi(bi @) = Z?Tb u;),

where the latter lies in 4M ® 4 4= L(\) by Lemma , which completes the proof.

Regarded as U’-module M ® L(A) is w-involutive with the involution v, := YT o). We can
now prove that v, preserves the A™-submodule 4M ® = 4L(\).

By Corollary [9.15(2), for any « € 4M ®.4~ 4L(\), we can write © = >_, u (b @ ny), for

uy, €, U and by, € B. Since M ® L()) is +-involutive, we have

= Z Uy (ur)h, (b @ M) = Z¢2<uk)'rw(bk ® M) = Z P (ug) (Yo, @ M), (9.14)

k

where for the last equality we used the fact A(T) € T®1+U® U, (from the formulas
for A and for T directly), together with the fact that ¥ (by @ n)) = O(br, @ ) = by @ My
since © =) O,, where ©, = U, ® U} and ©g = 1 ® 1. By assumption we have Yb, € 4M
and it follows by definition of ’ Uz that 1, (uz) € 4U". Applying Corollary [0.15(2) again to
(9-14)), we see that ¢, (z) € 4M ®a= 4L()), and so the proposition follows. O]

Corollary 9.18. The quasi K-matriz Y preserves the A™-submodule sM @y~ 4L(N). In

particular, Y preserves the A™-submodule 4L(\) of L(\).

Proof. Recall that T = 1), o 1. The corollary follows from Proposition and the fact that

Y preserves the A™-submodule 4 M ® 4= 4L(N). m

Corollary 9.19. Let \; € X for 1 <1i < /(. The involution v, on the 1-involutive U'-module

L(A) ®...® L(A\) preserves the A™-submodule 4L(\1) @ar ... @ax aL(Ag).

Proof. The module L(A)®...® L(\,) is a based U-module whose weights are bounded above,

and so the corollary follows by applying Proposition [9.17] consecutively. ]

For finite type, the quasi K-matrix T is itself integral:
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Corollary 9.20. Assume (U,U") is of finite type. Write T = ZpeZH Y,. Then we have

Y, € AU" for each p.

Proof. This follows directly from Corollary 9.18, by applying T to the lowest weight vector
& wor € aAL(N), for A >0 (i.e., A € Xt such that (i, \) > 0 for each 7). O
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Chapter 10

Canonical basis on U"

In this chapter, we will define based modules for the :quantum covering groups, and develop
canonical basis for these modules using the properties for the quasi K-matrix T established

in the previous chapter.

10.1 Canonical basis for U-modules

We call a U-module M a weight U’-module if M admits a direct sum decomposition M =
@rex, M) such that, for any € Y, A € X,, m € M,, we have K,,;m = ¢ Mm. We will make

the following definition of based U*-modules (based on [BWW18| Definition 1|).

Definition 10.1. Let M be a weight U'-module over K(¢)™ with a given K(q)"-basis B’. The

pair (M,B") is called a based U’-module if the following conditions are satisfied:
1. B*'N M, is a basis of M, for any v € X,;
2. The A™-submodule 4M generated by B® is stable under AU

3. M is s-involutive; that is, the K™-linear involution v, : M — M defined by ¢,(q) =
¢~ 1,1, (b) = b for all b € B is compatible with the U-action, i.e., ¥,(um) = b, (u)i,(m),

for all u € U, m € M;
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4. Let A =K[[g7]]"NK(q)™. Let L(M) be the A-submodule of M generated by B*. Then
the image of B" in L(M)/q 'L(M) forms a K™-basis in L(M)/q 'L(M).

We shall denote by £(M) the Z[q~!]™-span of B’; then B forms a Z[¢'|™-basis for L(M).
We also define based U'-submodules and based quotient U*-modules in the obvious way.

By a standard argument using [CI14, Lemma 9| (cf. |[Lu94, Lemma 24.2.1]), we have the
following generalization of [BW18c, Theorem 6.12] (cf. [BWI18b, Theorem 5.7]): Let < be the
partial order defined in ie. A < X if and only if ' — X € N[I].

Theorem 10.2. Let (M,B) be a based U-module whose weights are bounded above. Assume

that the A™-submodule 4M is preserved by the involution v, of M.

1. The U'-module M admits a unique basis (called the 1-canonical basis) B' := {b'|b € B},

which s Y,-tnvariant and of the form

b'=b+ Z tb;b/b/7 fOT' tb;b’ S q_lZ’T[q_l]. (10.1)

YEBY <b

2. B" forms an A™-basis for the A™-lattice AM (generated by B), and forms a Z™[q']-basis

for the Z™[q']-lattice M (generated by B).
3. (M, B") is a based U" module, and we call B" the 1-canonical basis of M.
Recall the based U-module L(A, i) := U(ny ® n,) C L(N) @ L(p).
Corollary 10.3. Let \,p € X*, and w € W.
1. L(N) @ M) is a based U'-module, with the rcanonical basis defined as Theorem [10.3,
2. L(\, ) is a based U'-submodule of L(\) @ \(j).

Proof. 1t suffices to verify the assumptions of Theorem It is clear both L(wA, ) and
L(\) ® L(p) have weights bounded above. It follows from Corollary that 1, preserves
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the A™-submodule 4L(\) ® 4 4L(1), hence also 4L(wA, p). Therefore both L(A\) ® L(u) and
L(wA, ) are based U'-modules. It is immediate that L(wA, ) is a based U’-submodule of
L(X) @ A(u). O

Next, we will develop canonical basis for tensor products of based U’-modules. A first
step in this direction is the construction of quasi R-matrix ©* for U’ from the quasi K-matrix

in Chapter [9

The quasi R-matrix ©' for U’

Let UT®\U be the completion of the K(q)™-vector space U® U with respect to the descending

sequence of subspaces

UgUU( > UH+UU( Y U,)®U, for N>1,pcZl
ht(p)>N ht(p)>N
We have the obvious embedding of U ® U into UaU. By continuity the K(g)™-algebra
structure on U® U extends to a K(¢g)™-algebra structure on U ® U. Recall the quasi R-matrix
© defined in [CHW13| Theorem 3.1.1] which lies in U ® U. It follows from Theorem [9.2] that
T~! ®id and A(Y) are both in UxU.
We define

—

0'=A(T)-6-(T'®id) cUs U. (10.2)

Proposition 10.4 (cf. [BW18a. Proposition 3.2]). For any b € U’, we have in U® U the
following identity:
A (b)) - ©" = O"- (¢, @ ¢) 0 A(b)
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Proof. Let b € U". Using the intertwiner relations, we make the following calculation:

O (Y@ ¥) o A(D) =A(Y)- O (T @ 1) (h ® ¥) 0 A(D)
=A(1)-0- (@)oo A(b)- (Y '®1) using Theorem
=A(T)-A@(b)-0- (Y ' ®1) using [CHWI13, Theorem 3.1.1]

= A(,(b)) - A(Y)-©- (TP ®1) using Theorem [9.2) again,

thus proving the proposition. O

We can write

=) o where ©, € U® U}, (10.3)

o
HeENT
Lemma 10.5. The first and second tensor factors of each term in ©, € U® U:[ share the

same parity.

Proof. As we saw above, p(T) = p(Y™!) = 0 and so A(T) has the property that the first and
second tensor factors of its terms share the same parity. By [CHW13| Theorem 3.1.1(b)|, ©,

also has this property, and so ©' = A(T) -0 - (T7! ®id) does as well. O

The following result is an analogue of [Kol7, Proposition 3.6], which first appeared in

[IBW18al, Proposition 3.5] for the quantum symmetric pairs of (quasi-split) type AIII/AIV.
Lemma 10.6. We have ©}, € U’ ® U:, for all p. In particular, we have O =1® 1.

Proof. For any i € I one has
Hence Proposition implies that

(BioK '"+10F+¢J;@ K ') -0'=0" (B;® J;K; + 1@ F; + &J; ® ;K E;).
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Rearranging this we obtain

O1®F) - (10 F)0 = (B;o K, ' +c¢J;® B;iK; 10" — 0'(B; ® J;K; + ¢J; ® JiK;E;)
(10.4)

Recall [CHW13|, Proposition 2.2.2(a)| concerning the skew-derivation r;. In each level u

the left hand side is the sum of terms of the form

(€)1 ®(6))2)(1® Fy) — (1® F)((©,)1 @ (6),)2)
— (01 (0))aF, — T(6))1 ® F(6)), where py == p((©))), k = 1,2
=(0,)1 ®[(©})2, F], since " = ” by Lemma[10.5)

; @7, Jsz _ K—z’ P2—P(i)i @z
= (O )1 ® (T (O):) Wfl al “)2)) by [CHW13, Proposition 2.2.2(a)]
miq; — g;

Comparing this to terms on the right hand side of (10.4) with a factor of 1 ® J;K;, we see

that
(L@r)(©)) = —(mq — ¢; )O"(B; ® 1 +Tg; J; @ Ej) (10.5)

Then, the same induction argument as in [Kol7, Proposition 3.6] completes the proof, this
time using our Lemma above as the appropriate analogue in the quantum covering group

setting. O
The following is an version of [BWW1S, Lemma 3], used in the proof of the next theorem:

Lemma 10.7. We have ©}, € 4=U ®@4 AU} for all p.

Proof. Since the definition of ©® has the same form, the argument is analogous to the proof
of [BWWI18|, Lemma 3|; we have integrality of © by [CHW13, Theorem 3.1.1], and integrality
of the action of T in Theorem O
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Theorem 10.8. Let M be a based U'-module, and X € X. Then 1), oo (¥, ® ) is an

anti-linear involution on M ® L(\), and M ® L(\) is a based U*-module with a bar involution
(e

Proof. The anti-linear operator ¢, = ©" o (¢, ® ) : M ® L(\) — M & L(\) is well defined
thanks to Lemmal[l0.6]and the fact that the weights of L()) are bounded above. Then entirely
similar to [BW18al, Proposition 3.13], we see that ¢? = 1 and M ® L(])) is i-involutive in the
sense of Definition [10.1}(3).

The proof that ¢, preserves the A™-submodule 4 M ® 4= 4L()) is the same as the proof
of Proposition By assumption, (M,B*(M)) is a based U'-module. For any b € B'(M),
define

Ty 0 AU =AM @.ar 4L(N),  u = u(b@mny).

Then, 7, is well defined, since by Definition and the following remark the coproduct
preserves the integral forms, that is, A(u)(1, ® 1,) preserves 4M ®a~ 4L(N), for any p € X*
and v € X.

Note that ¢,(b®n,) = b&n, for any b € B*(M). Following the proof of Lemma[9.14] we have
D beB (M) (', U") = M @ 4= 4L(\). Hence we also have > bem (M) (4 UY) = AM @ 4= 4L(N),
since £4U2 c 4U" By the same argument as before, we may conclude that ), preserves the
A-submodule 4M ® 4= 4L(\).

We write B = {bn,|b € B(X\)} for the canonical basis of L(A). We can now conclude that:

1. for by € B, by, € B, there exists a unique element b;<>,bo which is 1,-invariant such that
bl<>lb2 € by ®by+ q_lZ”[q_l]IB%’ & B;
2. we have b;$,by € by ® by + > q Y2 g7 b @ b
(b1 ,b5) EB" X B, b} | <|bo |
3. BB = {b:00by | by € B, by € B} forms a K(g)™-basis for M ® L(\), an A™-basis for
AM @4 4= L(X), and a Z™[q~"]-basis for L(M) Qzx(g-1) L(N);
4. (M ® L()),B*¢,B) is a based U'-module,
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following the same arguments as for [BWWIS8, Theorem 4] i.e. using Lemma and
Lemma and |CI14, Lemma 9. O

10.2 Canonical basis on U’

In this section, we formulate the main definition and theorems on canonical bases for the
modified :quantum groups. The formulations specialize at 7 = 1 to [BW18c, Section 7|,

which are in turn generalizations of the finite type counterparts in [BWI18b, Section 6].

The modified :quantum groups

Recall the partial order < on the weight lattice X in (2.1). The following proposition is a

version of [BW18c, Proposition 7.1] in the quantum covering case.
Proposition 10.9. Let \,up € X ™.

1. The 1-canonical basis of the U'-module L'(\, p) := L(X + p) is the basis

B'(A, 1) = { (0106023l (b1, b2) € B' x BI\{0},

where (b1<><1b2)f\7u is Y,-invariant and lies in

(biOch)m @)+ > q ZgT B O) (1A @ 1)
b7 |46 [<[b1[+]b2]

2. We have the projective system {LZ()\ +vTu+ 1/)} of U'-modules, where

veX+

Tpiman - LN+ + v, p+v+uv) — LN+ v, u+v), vy €XT,
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is the unique homomorphism of U'-modules such that
ﬂ-(77>\+l/7+1/f @ 77#+l/+l/1> =Mt @ Nyu+v-

3. The projective system in (2) is asymptotically based in the following sense: for fized

(by,b2) € B* x B and any 1, € X, as long as v > 0, we have
7rl/+l/171/1 ((blofsz)l)\—l—lﬁ—‘rV{#—i-y—i—yl) = ((b1<>Czb2)i\+V‘r,u+y)'

Proof. Claim (1) is just a reformulation of Corollary [10.3] Claim (2) follows by the same
proof as [BWI18b, Proposition 6.12], replacing the R-matrix therein with the one using the
R-matrix from [CHWI3| Theorem 3.1.1]. Claim (3) is the same as [BW18bl Proposition 6.16],
and in the quasi-split case here, we can do without the mild modification needed in [BW18¢]

since the module L(v™ + v) is finite dimensional. O

The proof in the following version of [BW18c, Theorem 7.2| (see also [BW18bl, Theorem
6.17]) rests solely on a version of Proposition the same arguments thus lead to the

1~canonical basis for U
Theorem 10.10. Let (, € X, and (by,bs) € B X B.

1. There 1s a unique element u = b1<>22b2 e U* such that
U(UA ® T],U) = (bl<>C1,b2)2)\,,u < Lz(/\7 :U’) = L(/\ + :u)a

for all A\, >0 with A+ p = (.
2. The element 6102162 15 Y, -tnvariant.

3. The set B* = {bloglbg}g} € X,,(by,by) € B x B} forms a K(q)™-basis of U* and an
A" -basis of 4U".
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