




Abstract

Machine learning is being increasingly applied to many security and privacy sensitive tasks. Datasets,

as the raw material of the machine learning working flow, determine the properties of learned models.

In this dissertation, we aim to understand security and privacy implications of different types of

modifications made to training datasets. Specifically, we focus on the “small change” regime, where

the modification to the training dataset is minimal. We study the following points.

1. Security implications of malicious modifications to the dataset (also called poisoning attacks).

We study this scenario from both the view of the learner and the view of the adversary.

• From the view of the learner, we formally define the learnability under instance-targeted

poisoning attacks. Our main result shows that PAC learning and certification are achievable

if adversary’s budget scales sub-linearly with the sample complexity.

• From the view of the adversary, we prove the existence of polynomial-time adversaries

that can amplify any vulnerability with non-negligible chance of happening already.

2. Privacy implications of benign modifications to the dataset. Motivated to meet new legal

requirements, many machine learning methods are recently extended to support machine

unlearning, i.e., updating models as if certain examples are removed from their training sets,

and meet new legal requirements. We formalize (various forms of) deletion inference and

deletion reconstruction attacks, in which the adversary aims to either identify which record is

deleted or to reconstruct the deleted records. We then present successful deletion inference and

reconstruction attacks for a variety of machine learning models and tasks.

The results presented in the dissertation are primarily from the following three papers [1, 2, 3].
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Notation

Throughout the dissertation we use the following notation. We use calligraphic letters (e.g., X) for

sets. Let N = {0, 1, . . .} denote the set of integers, X the input/instance space, and Y the space of

labels. By YX we denote a set of all functions from X to Y. By H ⊂ YX we denote the set of

hypothesis functions from X to Y. We use 𝐷 to denote a distribution over X × Y. By 𝑒 ∼ 𝐷 we

state that 𝑒 is distributed/sampled according to distribution 𝐷. For a set S, the notation 𝑒 ∼ S

means that 𝑒 is uniformly sampled from S. By 𝐷𝑚 we denote a product distribution over 𝑚 i.i.d.

samples from 𝐷. By 𝐷X we denote the projection of 𝐷 over its first coordinate (i.e., the marginal

distribution over X).

Regarding machine learning, for a function ℎ ∈ YX and an example 𝑒 = (𝑥, 𝑦) ∈ X × Y, we

use ℓ(ℎ, 𝑒) to denote the loss of predicting ℎ(𝑥) ∈ Y while the correct label for 𝑥 is 𝑦. Loss will

always be non-negative, and when it is in [0, 1], we call it bounded. For classification problems,

unless stated differently, we use the 0-1 loss, i.e., ℓ(ℎ, 𝑒) = 𝟙[ℎ(𝑥) ≠ 𝑦]. We use S ∈ (X × Y)∗ to

denote a training “set”, even though more formally it is in fact a sequence. We use Lrn to denote

a learning algorithm that (perhaps randomly) maps a training set S ∼ 𝐷𝑚 of any size 𝑚 to some

ℎ ∈ YX . We call a learner Lrn proper (with respect to hypothesis class H) if it always outputs some

ℎ ∈ H . Lrn(S)(𝑥) denotes the prediction on 𝑥 by the hypothesis returned by Lrn(S). When Lrn is

randomized, by 𝑦 ∼ Lrn(S)(𝑥) we state that 𝑦 is the prediction when the randomness of Lrn is chosen

uniformly. For a randomized Lrn and the random seed 𝑟 (of the appropriate length), Lrn𝑟 denotes

the deterministic learner with the hardwired randomness 𝑟. For a hypothesis ℎ ∈ H , a loss function

ℓ, and a distribution 𝐷 over X × Y, the population (a.k.a. true) risk of ℎ over 𝐷 (with respect to

the loss ℓ) is defined as Risk(ℎ, 𝐷) = E𝑒∼𝐷 [ℓ(ℎ, 𝑒)], and the empirical risk of ℎ over S is defined as

Risk(ℎ,S) = E𝑒∼S [ℓ(ℎ, 𝑒)]. For a hypothesis class H , we say that the realizability assumption holds

for a distribution 𝐷 if there exists an ℎ ∈ H such that Risk(ℎ, 𝐷) = 0.

To add clarity to the text, we use a diamond “^” to denote the end of a technical definition.
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Chapter 1

Introduction

1.1 Machine learning and datasets

Machine learning applications are everywhere these days, from self-driving cars [5] to image/text

classification [6, 7], even helping judges in making legal decisions [8]. The role of machine learning in

our daily life seems to grow everyday. Consequently, malicious parties now have a lot more motivation

to heavily invest in making learning systems deviate from their prescribed schemes into algorithms

and final decisions that serve the interest of those entities. This has shifted the landscape towards

having much more focus on security and privacy aspects of machine learning, compared to traditional

machine learning that only deals with benign settings.

The fundamental task of machine learning is learning predictive models by generalizing from

empirical data. In its classic form, a learning algorithm or learner, denoted by Lrn, first takes a

collection of examples S = {𝑒1, . . . , 𝑒𝑚} as the input to the algorithm, where S is known as the

training dataset and each individual 𝑒𝑖 is known as the training example. (Supervised) learning

algorithms then generalize the knowledge from the training dataset, and try to minimize the error of

predicting the correct label with a machine learning model/predictor/hypothesis ℎ on test examples.

More specifically, the machine learning problem is defined with an input/domain set X and

a output/label set Y. A training example 𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖) is an instance-label pair, where instance

𝑥𝑖 ∈ X is the input to the model ℎ, and label 𝑦𝑖 ∈ Y is the expected output. We assume the

examples are generated by a distribution 𝐷, and the training dataset is an i.i.d. sample from 𝐷, i.e.,

S = {𝑒1, . . . , 𝑒𝑚} ∼ 𝐷𝑚. Furthermore, we assume a ground-truth labeling function 𝑓 exists, that for

each (𝑥𝑖 , 𝑦𝑖) ∼ 𝐷, we have 𝑦𝑖 = 𝑓 (𝑥𝑖). Then the learner Lrn is a (possibly randomized) function that

2



1.2 Modifications of datasets 3

takes a training dataset S as input, and returns a model ℎ ∼ Lrn(S) as output, where ℎ : X → Y.

The goal of machine learning is to make the predicted model ℎ close to the ground-truth labeling

function 𝑓 . More specifically, suppose a loss function ℓ(ℎ, 𝑒) is defined to measure the error of model

ℎ on example 𝑒 for the learning task. We then define the risk function Risk(ℎ, 𝐷) as the expected

loss of model ℎ, that is, Risk(ℎ, 𝐷) = E𝑒∼𝐷 [ℓ(ℎ, 𝑒)]. This (true/population) risk function measures

the quality of the predictions of the model ℎ over the data distribution 𝐷. Therefore, the goal of

machine learning is to minimize this risk.

In machine learning, the step of producing the model ℎ from training data is called the training

stage, and the step of predicting test data is called the testing stage. Note that from the process of

machine learning we just introduced, the learning algorithm Lrn has no direct knowledge about data

distribution 𝐷. The only input to the algorithm is the training data set S. As the raw material of

this working flow, training dataset determines the properties of the learned model. Even a single

example in the training dataset could be very important for the training of machine learning model

and could lead to large deviation in the predictions.

In this thesis, we focus on the security and privacy impact of modifications on the training

dataset, that is, how the action of adding, removing, or replacing examples in the training dataset

influence the security and privacy of the learned model. Modifications on the training dataset is

(not surprisingly) very common in the real practice. As it turn out that we will see even small

modifications could have strong impacts on the security and privacy of the learned models.

We start by describing different types of modifications and their potential implications.

1.2 Modifications of datasets

Modifications (or updates) on datasets are common. There are many possible causes of such

modifications, including the following cases.

• Data is constantly updated. For some learning tasks, data may be time-sensitive. As an

example, in active learning [9], the learning algorithm is constantly asking human labels for the

purpose of better learning. When a new label is returned, the dataset is updated to include this

new example. In this case, the training dataset is constantly modified (and so is the learned

model).

• Data owner requests modification on the dataset. The owner of the data (e.g., user

of online services) and the trainer of the machine learning model (e.g., service providers such
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as Google or Facebook) are often different parties. Data owners may request to remove their

data from the dataset. In fact, there are recent legal requirements (e.g., the European Union’s

GDPR [10] or California’s CCPA [11]) that aim to protect such right of the data owner to erase

their data.

• Malicious attack on the training dataset. Adversarial parties may want to modify the

training dataset to control the induced machine learning model. For example, in federated

learning [12, 13], multiple parties contribute to the training dataset. Each party sets up a local

model for their own data collection, and updates a centralized model with gradients from their

local model. As a result, the centralized model is trained with multiple datasets without direct

access to the datasets. A malicious party, in this scenario, can craft malicious inputs and add

them into the dataset in order to attack the centralized model.

In a summary, modifications on training datasets can be separated into two main categories by

the intention of the modification, namely,

• Malicious modifications. A malicious modification, named as a poisoning attack in the

literature, is made by an adversary that aims to induce erroneous behaviors from model.

• Benign modifications. Benign modifications, which is typically made by the learner, aims to

update the model into a newer version and to incorporate or remove information from model.

These different scenarios have different security and privacy implications . Therefore, we discuss

these two scenarios separately in the following sections.

1.3 Security implications of malicious modifications

Recently, the classic machine learning setting has been revisited by allowing adversarial manipulations

that tamper with the process, while the learner still aims to make correct predictions. In general,

adversarial tamperings can take place in both the training stage or the testing stage of models. In

the testing stage, adversaries can identify examples that is incorrectly predicted by the machine

learning models. Such attack is passive: Whether the attack is successful or not depends on the

machine learning algorithm and the predicted model.

Our interest in this thesis is on a form of training-stage attacks, also known as poisoning or

causative attacks [14, 15, 16, 17]. In particular, poisoning adversaries may partially change the
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training set S into another training set S′ in such a way that the “quality” of the returned hypothesis

ℎ′ by the learning algorithm Lrn, that is trained on S′ instead of S, degrades significantly.

Depending on the context, the way we measure the quality of the poisoning attack may differ.

For instance, the quality of ℎ′ may refer to the expected error of ℎ′ when test data points are

sampled from the distribution 𝐷. In the case, the adversary targets to maximize the population risk

Risk(ℎ, 𝐷) of the predicted model. It could also refer to the error on a particular test point 𝑥, known

to the adversary but unknown to the learning algorithm Lrn. In this setting, an adversary could craft

its strategy based on the knowledge of the target instance 𝑥, making the adversary more powerful.

For the first scenario, a classic result from statistical learning [18] shows that applying the

Empirical Risk Minimization (ERM) rule will lead to a Probably Approximately Correct (PAC)

algorithm that is robust to poisoning adversaries who could change 𝑏(𝑚) = 𝑜(𝑚) number of examples.

The latter scenario, which is the main focus of this thesis, is known as (instance) targeted

poisoning [14]. We then study this more challenging scenario from both the view of the learner Lrn

and the view of the adversary A, in Chapter 3 and Chapter 4 respectively.

1.4 Privacy implications of benign modifications

As described in Section 1.2, benign modifications are common in various application scenarios. We

want to study the security and privacy implications of these benign modifications. We will show that

in one specific type of modification - machine unlearning, the privacy implication of such modification

can be substantial.

There are a lot of reasons for users to keep their data private. Since many machine (especially

deep) learning applications use a huge amount of data, privacy concerns have long been raised about

their data usage. The concerns aggravate when machine learning techniques are applied to sensitive

fields, for example, medical profiles, financial data, and legal records. Leakage of user data in those

fields will have gruesome impact. Not surprisingly, many techniques have been proposed to enhance

the privacy of machine learning algorithms.

In the scope of our thesis we focus on machine unlearning. Machine unlearning refers to the

operation that forgets specific example in the model, as if it was never inside the training dataset.

When the owner of an example wants to withdraw the example from the model, the model shall be

updated to not include any information about that example, as if the data was never in the training

dataset. Recent legal requirements (e.g., the European Union’s GDPR [10] or California’s CCPA [11])

aim to make such privacy considerations mandatory. The question of how such privacy concerns
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can be formally modeled and enforced is the subject of ongoing study [19, 20, 21, 22]. In particular,

upon a deletion request for an example 𝑒 ∈ S, according to the machine unlearning framework the

learner will need to update the model ℎS = Lrn(S) to ℎ−𝑒 such that ℎ−𝑒 = Lrn(S \ {𝑒}) (ideally) has

the same distribution as training a model from scratch using S \ {𝑒}.

Initially, it might seem like a perfect deletion of an example 𝑒 from a model ℎS and releasing ℎ−𝑒

instead should help with preventing all the leakage about the particular deleted example 𝑒. After

all, we are removing 𝑒 from the learning process of the model accessible to the adversary. However,

the adversary now could potentially access both models ℎS and ℎ−𝑒, and so it might be able to

extract even more information about the deleted example 𝑒 compared to the setting in which the

adversary could only access ℎS or ℎ−𝑒 alone. As a simplified contrived example, suppose the examples

S = {𝑒1, . . . , 𝑒𝑛} are real-valued vectors, and suppose the ML model ℎS (perhaps upon many queries)

somehow reveals the summation
∑
𝑖∈[𝑛] 𝑒𝑖. In this case, if the set S is sampled from a distribution

with sufficient entropy, the trained model ℎS might potentially provide a certain degree of privacy

for examples in S. However, if one of the examples 𝑒𝑖 is deleted from ℎS , then because the updated

model ℎ−𝑒𝑖 also returns the updated summation
∑
𝑗≠𝑖 𝑒 𝑗 , then an adversary who extracts both of

these summations can reconstruct the deleted record 𝑒𝑖 completely. In other words, the very task of

deletion might in fact harm the privacy of the very deleted example 𝑒𝑖.

In this thesis we ask: How vulnerable are ML algorithms to leak information about the deleted

examples, if an adversary gets to interact with the models both before and after the deletion updates?

We will study the problem in Chapter 5.

1.5 Dissertation structure

In Chapter 2 we introduce related works, and how this dissertation advances the state-of-the-art

research. After that, in Chapter 3 we study the learnability of machine learning algorithms under

instance-targeted poisoning. Next, in Chapter 4 we study the power of polynomial-time instance-

targeted adversaries with very small budget size with the goal of targeted-error amplification. We

study the privacy implication of machine unlearning in Chapter 5. Finally, in Chapter 6 we summarize

the dissertation and discuss its broader impacts.



Chapter 2

Related work

Here we summarize the literature that is related to our dissertation.

2.1 Poisoning attacks

Studying poisoning attacks on machine learning models can be traced back to Barreno et al. [14],

which proposes the term poisoning attacks for the first time. Later, Biggio et al. [23] presented a

poisoning attack strategy on Support Vector Machine (SVM) classifiers, which crafts inputs and

inserts them in the training dataset by a gradient ascent method. Following their work, Mei and

Zhu [24] proposes a more general optimization framework that crafts poisoning inputs for machine

learning algorithms. Their method is optimal if the learning model is trained with a convex loss

function. Recently, data poisoning attacks are widely applied to different machine learning scenarios,

including recommendation systems [25], graph-based models [26] and federated learning [27].

A typical variant of poisoning attacks on recent state-of-the-art learning models is backdoor

attacks, which is a combination of training-stage adversary and testing-stage adversary. In a backdoor

attack, malicious parties injects malicious examples to induce specific malicious behavior in the

models. The model acts normal when its input is a benign sample, but acts maliciously (e.g., wrongly

returns some specific label) when the input includes the pre-defined trigger [28]. In image classification

tasks, the trigger is often some specific object, pattern, or texture. Badnets [29] first proposes the

backdoor attack on deep learning model in this manner, in which the poisoning samples is constructed

by adding the trigger on random benign samples. Chen et al. [30] proposes an attack with minimal,

human-unaware trigger. Following this direction, more recent works includes clean-label backdoor

[31, 32], dynamic backdoor [33], and distributed backdoor [34].

7
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Note that most proposed poisoning attacks are empirical, that is, gives no theoretical guarantee

on learner’s error or the attack’s performance.

Certification under poisoning attacks. Given a poisoning attack, the predictions of a learning

algorithm may or may not change. To this end, Steinhardt et al. [35] initiated the study of certification

against poisoning attacks, studying the conditions under which a learning algorithm can certifiably

obtain an expected low risk. To extend these results to the instance-targeted positing scenario,

Rosenfeld et al. [36] recently addressed the instance targeted (a.k.a., pointwise) certification with the

goal of providing certification guarantees about the prediction of specific instances when the adversary

can poison the training data. While the instance-targeted certification has sparked a new line of

research [37, 38, 39, 40] with interesting insights, the existing works do not address the fundamental

question of when, and under what conditions, learnability and certification are achievable under the

instance-targeted poisoning attack.

2.2 Privacy of machine learning models

The data-rich nature of machine learning poses a high requirement for preserving data privacy in

the model. Differential privacy [41, 42, 43] provides a framework to provably limit the information

that would leak about the used training examples. For deep learning, Abadi et al. [44] proposes

differentially Private Stochastic Gradient Descent (DP-SGD) algorithm, which allows the training of a

learning model with differentially private guarantee. However, applying differential privacy guarantee

to machine learning has a cost: major utility loss on the predicted model [45, 46, 47, 48, 49, 50].

A different angle to enhance data privacy in machine learning is to redesign the learning framework

so that that the learner is separated with the data. One such example is federated learning [13],

which sets up local models for each data collection, and updates the centralized model with gradients

from each local model. These methods are irrelevant to our topic here, as we focus on the privacy

implication of dataset modification on the predicted model, where model is considered as a black-box.

Membership inference attacks. A typical type of attack on the privacy of machine learning

model is membership inference attacks (MIA). Membership of an example is critical to the privacy of

a machine learning model. For example, the occurrence of an example in the dataset of a disease study

means the data owner has the specific disease [51]. Shokri et al. [4] first define membership inference

attacks on machine learning models. They use additional samples from the data distribution to train
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several shadow models, and then generate membership records of the samples used in training the

shadow models. They then train an attack model from the collected membership records to predict

the membership of a specific sample. Their method is later noted to succeed when the generalization

gap is large, i.e., highly overfitted. Long et al. [52] shows that even for well-generalized model, there

exist several examples that are more vulnerable than other examples and can be identified by the

adversary. Yu et al. [53] shows that if data augmentation is included in the model, apply membership

inference on the additional augmented data can improves the inference accuracy.

Machine unlearning In light of the recent attention to the “right to erasure” or the “right

to be forgotten,” also stressed by legal requirements such as GDPR and CCPA, a new line of

work has emerged with the goal of unlearning or simply deleting examples from machine learning

models [54, 55, 56, 22, 57, 58, 59, 60]. In this setting, upon a deletion request for a example 𝑒 ∈ S,

one needs to update the model ℎ to ℎ−𝑒 such that ℎ−𝑒 is (ideally) the same as training a model from

scratch using S \ {𝑒}. We call the deletion as perfect deletion when the ℎ−𝑒 = Lrn(S \ {𝑒}). These

machine unlearning literature propose various methods that focus on how to approach the perfect

deletion for different machine learning algorithms and tasks. Therefore, they mostly focus on the

property of the model after deletion ℎ−𝑒, seeing the machine unlearning process from a static point

of view.

In our work, we revisit the machine unlearning process from a dynamic point of view, that

an adversary could observe both ℎ and ℎ−𝑒. We then analysis the privacy implication from this

point of view. Similar to our work, recent interesting works of Salem et al. [61] and Chen et al.

[62] also study privacy of ML models under updates. The work of [61] focuses on online learning

where the model updates add content (rather than removing them) and uses generative models

to design their reconstruction attacks. The more recent work of [62], like this work, focuses on

deletion updates (i.e., machine unlearning) and is focused on inference attacks. In comparison,

our work has a more theoretical flavor and presents a variety of formal definitions (in both cases

of inference and reconstruction) that model various subtle aspects of the threat; in particular, we

give a comprehensive comparison with the deletion compliance framework of Garg et al [22] and,

consequently, to differential privacy (through the lens of deletion compliance) as positive ways to

prevent such attacks.

Data auditing One interesting concept related to our topic is data auditing, which can also be

view as a requirement posed by the data-protection regulations such as GDPR. Such data-protection
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regulations give users the right to know how their data is processed. Therefore, in data auditing,

users and the legal enforcement seek proof of how their data is processed. As an example, Ateniese et

al.[63] proposes a technique to acquire proof of the data possession on some untrusted cloud storage

services.

When comes machine learning services, things become more interesting. A good machine learning

model should protect data privacy, so private information about data should be kept from the

adversary. However, user would want proof for their data being processed by the model, which

contradicts the privacy requirement in some sense. For this topic, Song and Shmatikov [64] proposes

an auditing algorithm which learns and predict whether an example is part of the dataset. Their

scenario, however, is close to the membership inference where the auditor can be view as a variant of

a membership inference adversary. Can we design a framework that encode necessary information

into the model, that let the user and law enforcement to verify the membership of an example, but

not the adversary? It is an interesting potential future direction to consider.



Chapter 3

Learnability under targeted

poisoning

3.1 Introduction

Let H consists of a hypothesis class of classifiers ℎ : X → Y where X denotes the instances domain

and Y the labels domain. We would like to study the learnability of H under instance-targeted

poisoning attacks. But before discussing the problem in that setting, we recall the notion of PAC

learning without attacks.

Informally speaking, H is “Probably Approximately Correct” learnable (PAC learnable for short)

if there is a learning algorithm Lrn such that for every distribution 𝐷 over X ×Y, if 𝐷 can be learned

with H (i.e., the so-called realizability assumption holds) then with high probability over sampling

any sufficiently large set S ∼ 𝐷𝑚, Lrn maps S to a hypothesis ℎ ∈ H with “arbitrarily small” risk

under the distribution 𝐷. Lrn is called improper if it is allowed to output functions outside H , and it

is a distribution-specific learner, if it is only required to work when the marginal distribution 𝐷X on

the instance domain X is fixed e.g., to be isotropic Gaussian. (See Section 3.3 and Definition 3.3.5

for formal definitions.)

Suppose that before the example (𝑥, 𝑦) ∼ 𝐷 is tested, an adversary who is aware of (𝑥, 𝑦) (and

hence, is targeting the instance 𝑥) can craft a poisoned set S′ from S by arbitrarily changing up to 𝑏

of the training examples in S. Now, the learning algorithm encounters S′ as the training set and the

hypothesis it returns is, say, ℎ′ ∈ H in the proper learning setting. Now, the predicted label of 𝑥, i.e.,

𝑦′ = ℎ′(𝑥), may no longer be equal to the correct label 𝑦.

11
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Main questions. In this chapter, we would like to study under what conditions on the class

complexity H , budget 𝑏, and different (weak/strong) forms of instance-targeted poisoning attacks,

one can achieve (proper/improper) PAC learning. In particular, the learner’s goal is to still be

correct, with high probability, on most test instances, despite the existence of the attack. A stronger

goal than robustness is to also certify the predictions ℎ(𝑥) = 𝑦 with a lower bound 𝑘 on how much

an instance-targeted poisoning adversary needs to change the training set S to eventually flip the

decision on 𝑥 into 𝑦′ ≠ 𝑦. Here, we also keep an eye on when robust learners can be enhanced to

provide such guarantees, leading to certifiably robust learners.

We should highlight that all the aforementioned methods [36, 37, 38, 39, 40] mainly considered

practical methods that allow predictions for individual instances under specific conditional assumptions

about the model’s performance at the decision time that can be only verified empirically, but it is not

clear (provably) if such conditions would actually happen during the prediction moment. Here, we

avoid such assumptions and address the question of under what conditions on the problem’s setting,

the learnability is possible provably.

Our contribution. Our contributions are as follows.

Formalism. We provide a precise and general formalism for the notions of certification and PAC

learnability under instance-targeted attacks. These formalisms are based on a careful treatment of

the notions of risk and robustness defined particularly for learners under instance-targeted poisoning

attacks. The definitions carefully consider various attack settings, e.g., based on whether the

adversary’s perturbation can depend on learner’s randomness or not, and also distinguish between

various forms of certification (to hold for all training sets, or just most training sets.)

Distribution-independent setting. We then study the problem of robust learning and certification

under instance-targeted poisoning attacks in the distribution-independent setting. Here, the learner

shall produce “good” models for any distribution over the examples, as long as the distribution can

be learned by at least one hypothesis ℎ ∈ H (i.e., the realizable setting). We separate our studies

here based on the subtle distinction between two cases: Adversaries who can base their perturbation

also for a fixed randomness of the learner (the default attack setting), and those whose perturbation

would be retrained using fresh randomness (called weak adversaries). In the first setting, We show

that as long as the hypothesis class H is (properly or improperly) PAC learnable under the 0-1 loss

and the strong adversary’s budget is 𝑏 = 𝑜(𝑚), where 𝑚 is the number of samples in the training

set, then the hypothesis class H is always improperly PAC learnable under the instance-targeted

attack with certification (Theorem 3.4.4). This result is inspired by the recent work of [37] and
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comes with certification. We then show that the limitation on 𝑏(𝑚) = 𝑜(𝑚) is inherent in general, as

when H is the set of homogeneous hyperplanes, if 𝑏(𝑚) = Ω(𝑚), then robust PAC learning against

instance-targeted poisoning is impossible in a strong sense (Theorem 3.4.7). 𝑚. We then show that

if the adversary is “weak” and is not aware of learner’s randomness, if the hypothesis class H is

properly PAC learnable and the weak adversary’s budget is 𝑏 = 𝑜(𝑚), then H is also properly PAC

learnable under instance-targeted attacks (Theorem 3.4.3). This result, however, does not come with

certification guarantees.

Distribution-specific learning. We then study robust learning under instance-targeted poisoning

when the instance distribution is fixed. We show that when the projection of the marginal distribution

𝐷X is the uniform distribution over the unit sphere (e.g., 𝑑-dimensional isotropic Gaussian), the

hypothesis class consists of homogeneous half-spaces, and the strong adversary’s budget is 𝑏 = 𝑐/
√
𝑑,

then proper PAC learnability under instant-targeted attack is possible iff 𝑐 = 𝑜(𝑚) (see Theorems 3.4.10

and 3.4.11). Note that if we allow 𝑑 to grow with 𝑚 to capture the “high dimension” setting, then

the mentioned result becomes incomparable to our above-mentioned results for the distribution-

independent setting). To prove this result we use tools from measure concentration over the unit

sphere in high dimension.

Experiments. We empirically study the robustness of 𝐾 nearest neighbour, logistic regression,

multi-layer perceptron, and convolutional neural network on real data sets. We observe that methods

with high standard accuracy (such as convolutional neural network) are indeed more vulnerable to

instance-targeted poisoning attacks. This observation might be explained by the fact that more

complex models fit the training data better and thus the adversary can more easily confuse them at a

specific test instance. A possible interpretation is that models that somehow “memorize” their data

could be more vulnerable to targeted poisoning. In addition, we study whether dropout on the inputs

and also 𝐿2-regularization on the output can help the model to defend against instance-targeted

poisoning attacks. We observe that adding these regularization to the learner does not help in

defending against such attacks.

3.2 Related work

The concurrent work of Blum et al. [65] also studies instance-targeted PAC learning. In particular,

they formalize and prove positive and negative results about PAC learnability under instance-targeted

poisoning attacks, in which the adversary can add an unbounded number of clean-label examples

to the training set. In comparison, we formalize the problem for any prediction task and also for
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certification of results. Our main positive and negative results are, however, proved for classification

tasks and for adversaries who can change 𝑜(1) fraction of the data set. Other theoretical works

have also studied instance-targeted poisoning attacks (rather than learnability under such attacks)

using clean labels [66, 67, 68, 69, 70, 71, 72]. The work of Shafahi et al. [73] studied such (targeted

clean-label) attacks empirically, and showed that neural nets can be very vulnerable to them. Finally,

Koh and Liang [74] also studied clean label attacks empirically for non-targeted settings.

More broadly, some classical works in machine learning can also be interpreted as (non-targeted)

data poisoning [75, 76, 77, 18]. In fact, the work of Bshouty et al. [18] studies the same question as in

this chapter, but for the non-targeted setting. However, making learners robust against such attacks

can easily lead to intractable learning methods that do not run in polynomial time. Recently, starting

with the seminal results of [78, 79] and many follow up works (see the survey [16]) it was shown that

in some natural settings one can go beyond the intractability barriers and obtain polynomial-time

methods to resist non-targeted poisoning. In contrast, we focus on targeted poisoning. We shall also

comment that, while our focus is on instance-targeted attacks for prediction tasks, it is not clear how

to even define such (targeted) attacks for robust parameter estimation (e.g., learning Gaussians).

Regarding certification, Steinhardt et al. [35] were the first who studied certification of the

overall risk under the poisoning attack. However, the more relevant to our paper is the work by

Rosenfeld et al. [36] who introduced the instance-targeted poisoning attack and applied randomized

smoothing for certification in this setting. Empirically, they showed how smoothing can provide

robustness against label-flipping adversaries. Subsequently, Levine and Feizi [37] introduced Deep

Partition Aggregation (DPA), a novel technique that uses deterministic bagging in order to develop

robust predictions against general addition/removal instance-targeted poisoning. [38, 39, 40] further

developed randomized bagging/sub-sampling and empirically studied the intrinsic robustness of their

methods. predictions.

Finally, we note that while our focus is on training-time-only attacks, poisoning attacks can be

performed in conjunction with test time attacks, leading to backdoor attacks [29, 80, 81, 82, 83, 71].

3.3 Definitions

Notation. For a hypothesis class H , we call a data set S ∼ 𝐷𝑚 𝜀-representative if ∀ℎ ∈

H , |Risk(ℎ, 𝐷) −Risk(ℎ,S)| ≤ 𝜀. A hypothesis class has the uniform convergence property, if there is

a function 𝑚 = 𝑚H
UC
(𝜀, 𝛿) such that for any distribution 𝐷, with probability 1 − 𝛿 over S ∼ 𝐷𝑚, it

holds that S is 𝜀-representative.
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For simplicity, we work with deterministic strategies, even though our results could be extended

directly to randomized adversarial strategies as well. We use A to denote an adversary who changes

the training set S into S′ = A(S). This mapping can depend on (the knowledge of) the learning

algorithm Lrn or any other information such as a targeted example 𝑒 as well as the randomness of

Lrn. By A we refer to a set (or class) of adversarial mappings and by A ∈ A we denote that the

adversary A belongs to this class. (See below for examples of such classes.) Our adversaries always

will have a budget 𝑏 ∈ N that controls how much they can change the training set S into S′ under

some (perhaps asymmetric) distance metric. To explicitly show the budget, we denote the adversary

as A𝑏 and their corresponding classes as A𝑏. Finally, we let A𝑏 (S) = {S′ | A𝑏 ∈ A𝑏 (S)} be the set

of all “adversarial perturbations” of S when we go over all possible attacks of budget 𝑏 from the

adversary class A.

Adversary classes. Here we define the main adversary classes that we use in this chapter. For

more noise models see the work of [77].

• R𝑒𝑝𝑏 (𝑏-replacing). The adversary can replace up to 𝑏 of the examples in S (with arbitrary

examples) and then put the whole sequence S′ in an arbitrary order. More formally, the

adversary is limited to (1) |S| = |S′ |, and (2) by changing the order of the elements in S, one

can make the Hamming distance between S′,S at most 𝑏. This is essentially the targeted

version of the “nasty noise” model introduced by [18].

• F 𝑙𝑖𝑝𝑏 (𝑏-label flipping). The adversary can change the label of up to 𝑏 examples in S and

reorder the final set.

• A𝑑𝑑𝑏 (𝑏-adding). The adversary adds up to 𝑏 examples to S and put them in arbitrary order.

Namely, the multi-set S′ has size at most |S| + 𝑏 and it holds that S ⊆ S′.

• R𝑒𝑚𝑏 (𝑏-removing). The adversary removes up to 𝑏 examples from S and puts the rest in

an arbitrary order. Namely, as multi-sets |S′ | ≥ |S| − 𝑏 and S′ ⊆ S.

• A𝑑𝑑R𝑒𝑚𝑏 (𝑏-adding-or-removing). The adversary can remove up to 𝑏 examples from S,

then add up to 𝑏 arbitrary examples, and then it puts the rest in an arbitrary order. Namely,

as multi-sets |S′ ∩ S| ≥ |S| − 𝑏 and |S′ \ S| ≤ 𝑏.1

1R𝑒𝑝𝑏 attacks are essentially as powerful as A𝑑𝑑R𝑒𝑚𝑏 attack, with the only limitation that they preserve the
training set size. Our results of Theorems 3.4.3 and 3.4.4 extend to A𝑑𝑑R𝑒𝑚𝑏 attacks as well, however we focus on
𝑏-replacing attacks for simplicity of presentation.
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We now define the notions of risk, robustness, certification, and learnability under targeted

poisoning attacks for prediction tasks with a focus on classification. We emphasize that in the

definitions below, the notions of targeted-poisoning risk and robustness are defined with respect to a

learner rather than a hypothesis. The reason is that, very often (and in many natural settings) when

the data set is changed by the adversary, the learner needs to return a new hypothesis, reflecting the

change in the training data,

Definition 3.3.1 (Instance-targeted poisoning risk). Let Lrn be a possibly randomized learner, A𝑏

be a class of attacks of budget 𝑏. For a training set S ∈ (X × Y)𝑚, an example 𝑒 = (𝑥, 𝑦) ∈ X × Y,

and randomness 𝑟, the targeted poisoning loss (under attacks A𝑏) is defined as2

ℓA𝑏
(S, 𝑟, 𝑒) = sup

S′∈A𝑏 (S)
ℓ(Lrn𝑟 (S′), 𝑒). (3.1)

For a distribution 𝐷 over X ×Y, the targeted poisoning risk is defined as

RiskA𝑏
(S, 𝑟, 𝐷) = E

𝑒∼𝐷
[ℓA𝑏
(S, 𝑟, 𝑒)] .

For a bounded loss function with values in [0, 1] (e.g., the 0-1 loss), we define the correctness of the

learner for the distribution 𝐷 under targeted poisoning attacks of A𝑏 as

CorA𝑏
(S, 𝐷) = 1 − RiskA𝑏

(S, 𝐷).

The above formulation implicitly allows the adversary to depend (and hence “know”) on the

randomness 𝑟 of the learning algorithm. We also define weak targeted-poisoning loss and risk by using

fresh learning randomness 𝑟 unknown to the adversary, when doing the retraining:

ℓwk
A𝑏
(S, 𝑒) = sup

S′∈A𝑏 (S)
E
𝑟
[ℓ(Lrn𝑟 (S′), 𝑒)], Riskwk

A𝑏
(S, 𝐷) = E

𝑒∼𝐷
[ℓwk
A𝑏
(S, 𝑒)] .

In particular, having a small weak targeted-poisoning risk under the 0-1 loss means that for most

of the points 𝑒 ∼ 𝐷 the decisions are correct, and the prediction on 𝑒 would not change under any

𝑒-targeted poisoning attacks with high probability over a randomized retraining. ^

We now define robustness of predictions, which is more natural for classification tasks, but we

state it more generally.

2Note that Equation 3.1 is equivalent to ℓA𝑏
(S, 𝑟 , 𝑒) = supA∈A𝑏

ℓ (Lrn𝑟 (A(S, 𝑟 , 𝑒)) , 𝑒), because we are choosing the
attack over S after fixing 𝑟 , 𝑒.
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Definition 3.3.2 (Robustness under instance-targeted poisoning). Consider the same setting as that

of Definition 3.3.1, and let 𝜏 > 0 be a threshold to model when the loss is “large enough”. For a data

set3 S and learner’s randomness 𝑟, we call an example 𝑒 = (𝑥, 𝑦) to be 𝜏-vulnerable to a targeted

poisoning (of attacks in A𝑏), if the 𝑒-targeted adversarial loss is at least 𝜏, namely, ℓA𝑏
(S, 𝑟, 𝑒) ≥ 𝜏.

For the same (S, 𝑟, 𝑒, 𝜏) we define the targeted poisoning robustness (under attacks in A) as the

smallest budget 𝑏 such that 𝑒 is 𝜏-vulnerable to a targeted poisoning, i.e.,

Rob𝜏A (S, 𝑟, 𝑒) = inf
{
𝑏 | ℓA𝑏

(S, 𝑟, 𝑒) ≥ 𝜏
}
.

If no such 𝑏 exists, we let Rob𝜏 (S, 𝑟, 𝑒) = ∞.4 When working with the 0-1 loss (e.g., for classification),

we will use 𝜏 = 1 and simply write RobA (·) instead. Also note that in this case, ℓ(Lrn𝑟 (S′), 𝑒) ≥ 1

is simply equivalent to Lrn𝑟 (S′) (𝑥) ≠ 𝑦. In particular, if 𝑒 = (𝑥, 𝑦) is an example and Lrn𝑟 (S) is

already wrong in its prediction of the label for 𝑥, then the robustness will be RobA (S, 𝑟, 𝑒) = 0, as no

poisoning will be needed to make the prediction wrong. For a distribution 𝐷 we define the expected

targeted-poisoning robustness as Rob𝜏A (S, 𝑟, 𝐷) = E𝑒∼𝐷 [Rob
𝜏
A (S, 𝑟, 𝑒)] . ^

We now formalize when a learner provides certifying guarantees for the produced predictions.

For simplicity, we state the definition for the case of 0-1 loss, but it can be generalized to other loss

functions by employing a threshold parameter 𝜏 as it was done in Definition 3.3.2.

Definition 3.3.3 (Certifying predictors and learners). A certifying predictor (as a generalization

of a hypothesis function) is a function ℎ : X → Y × N, where the second output is interpreted as

a claim about the robustness of the prediction. When ℎ(𝑥) = (𝑦, 𝑏), we define ℎpred (𝑥) = 𝑦 and

ℎcert (𝑥) = 𝑏. If ℎcert (𝑥) = 𝑏, the interpretation is that the prediction 𝑦 shall not change when the

adversary performs a 𝑏-budget poisoning perturbation (defined by the attack model) over the training

set used to train ℎ.5 Now, suppose A𝑏 is an adversary class with budget 𝑏 = 𝑏(𝑚) (where 𝑚 is

the sample complexity) and A = ∪𝑖A𝑖. Also suppose Lrn is a learning algorithm such that Lrn𝑟 (S)

always outputs a certifying predictor for any data set S ∈ (X × Y)★. We call Lrn a certifying learner

(under the attacks in A) for a specific data set S ∈ (X ×Y)★ and randomness 𝑟, if the following holds.

For all 𝑥 ∼ 𝐷, if Lrn𝑟 (S)(𝑥) = (𝑦, 𝑏) and if we let 𝑒 = (𝑥, 𝑦),6 then RobA (S, 𝑟, 𝑒) ≥ 𝑏. In other words,

to change the prediction 𝑦 on 𝑥 (regardless of 𝑦 being a correct prediction or not), any adversary

3Even though, in natural attack scenarios the set S is sampled from 𝐷𝑚, Definitions 3.3.1 and 3.3.2 are more
general in the sense that S is an arbitrary set.

4If the adversary’s budget allows it to flip all the labels, in natural settings (e.g., when the hypothesis class contains
the complement functions and the learner is a PAC learner), no robustness will be infinite for such attacks.

5When using a general loss function, 𝑏 would be interpreted as the attack budget that is needed to increase the loss
over the example 𝑒 (𝑥, 𝑦) (where 𝑦 is the prediction) to 𝜏.

6Note that 𝑦 might not be the right label
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needs a budget at least 𝑏. We call Lrn a universal certifying learner if it is a certifying learning for

all data sets S. For an adversary class A = ∪𝑏∈NA𝑏, and a certifying learner Lrn for (S, 𝑟), we define

the 𝑏-certified correctness of Lrn over (S, 𝑟, 𝐷) as the probability of outputting correct predictions

while certifying them with robustness at least 𝑏. Namely,

CCorA𝑏
(S, 𝑟, 𝐷) = Pr

(𝑥,𝑦)∼𝐷
[(𝑦′ = 𝑦) ∧ (𝑏′ ≥ 𝑏) where (𝑦′, 𝑏′) = Lrn𝑟 (S)(𝑥)] . ^

Remark 3.3.4 (On a potential weaker requirement for certifying learners). Definition 3.3.3 needs a

learner to produce a certifying model that is always correct in its robustness claims about its own

prediction, regardless of whether the prediction itself is correct or wrong. One can imagine a weaker

certification requirement in which the provided certified robustness guarantee is only required to

hold when the predicted label itself is correct. However, since a learner usually does not really know

whether its prediction is correct with full confidence, known methods for certified robustness already

achieve the stronger guarantee of in Definition 3.3.3. Also, if one uses that weaker requirement,

robust PAC learning and certified PAC learning (see Definition 3.3.5) become equivalent, as a learner

can simply output 𝑏 as its certifying guarantee when we know that robust PAC learning against

targeted 𝑏-budget poisoning attacks is possible.

The following definition extends the standard PAC learning framework of [84] by allowing targeted-

poisoning attacks and asking the leaner now to have small targeted-poisoning risk. This definition is

strictly more general than PAC learning, as the trivial attack that does not change the training set,

Definition 3.3.5 below reduces to the standard definition of PAC learning.

Definition 3.3.5 (Learnability under instance-targeted poisoning). Let the function 𝑏 : N → N

model adversary’s budget as a function of sample complexity 𝑚. A hypothesis class H is PAC

learnable under targeted poisoning attacks in A𝑏, if there is a proper learning algorithm Lrn such

that for every 𝜀, 𝛿 ∈ (0, 1) there is an integer 𝑚 where the following holds. For every distribution 𝐷

over X ×Y, if the realizability condition holds7 (i.e., ∃ℎ ∈ H ,Risk(ℎ, 𝐷) = 0), then with probability

1 − 𝛿 over the sampling of S ∼ 𝐷𝑚 and Lrn’s randomness 𝑟, it holds that RiskA𝑏
(S, 𝑟, 𝐷) ≤ 𝜀.

• Improper learning. We say that H is improperly PAC learnable under targeted A𝑏-poisoning

attacks, if the same conditions as above hold but using an improper learner that might output

functions outside H .8

7Note that realizability holds while no attack is launched.
8We note, however, that whenever the proper or improper condition is not stated, the default is to be proper.
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• Distribution-specific learning. Suppose D is the set of all distributions 𝐷 over X × Y such

that the marginal distribution of 𝐷 over its first coordinate (in X) is a fixed distribution 𝐷X

(e.g., isotropic Gaussian in dimension 𝑑). If all the conditions above (resp. for the improper

cases) are only required to hold for distributions 𝐷 ∈ D, then we say that the hypothesis class

H is PAC learnable (resp. improperly PAC learnable) under instance distribution 𝐷X and

targeted A𝑏-poisoning.

A hypothesis class is weakly (improperly and/or distribution-specific) PAC learnable under targeted

A𝑏-poisoning, if with probability 1 − 𝛿 over the sampling of S ∼ 𝐷𝑚, it holds that Riskwk
A𝑏
(S, 𝐷) ≤ 𝜀.

A hypothesis class is certifiably (improperly and/or distribution-specific) PAC learnable under

targeted A𝑏-poisoning, if we modify the (𝜀, 𝛿) learnability condition as follows. With probability

1 − 𝛿 over S ∼ 𝐷𝑚 and randomness 𝑟, it holds that (1) Lrn is a certifying learner for (S, 𝑟), and (2)

CCorA𝑏
(S, 𝑟, 𝐷) ≥ 1−𝜀. A hypothesis class is universally certifiably PAC learnable, if it is certifiably

PAC learnable using a universal certifying learner Lrn. We call the sample complexity of any learner

of the forms above polynomial, if the sample complexity 𝑚 is at most poly(1/𝜀, 1/𝛿) = (1/(𝜀𝛿))𝑂 (1) .

We call the learner polynomial time, if it runs in time poly(1/𝜀, 1/𝛿), which implies the sample

complexity is polynomial as well. ^

Remark 3.3.6 (Generalization to (𝜀, 𝛿)-PAC learning). Suppose 𝜀(𝑚), 𝛿(𝑚) are functions of 𝑚. Then

one can generalize Definition 3.3.5 to define (𝜀(𝑚), 𝛿(𝑚)) PAC learning (under the same settings of

Definition 3.3.5) for a given desired 𝜀(𝑚), 𝛿(𝑚). Then PAC learnability would simply mean 𝜀(𝑚), 𝛿(𝑚)

PAC learning for 𝜀(𝑚), 𝛿(𝑚) = 𝑜𝑚 (1) (i.e., 𝜀(𝑚), 𝛿(𝑚) both go to zero, when 𝑚 goes to infinity). This

more fine-grained definition allows one to study optimal error bounds in relation to adversary’s

budget 𝑏(𝑚) as well. We leave a more in-depth study of such relations for future work.

Remark 3.3.7 (On defining agnostic learning under instance-targeted poisoning). Definition 3.3.5

focuses on the realizable setting. However, one can generalize this to the agnostic (non-realizable)

case by requiring the following to hold with probability 1 − 𝛿 over S ∼ 𝐷𝑚 and randomness 𝑟,

RiskA𝑏
(S, 𝑟, 𝐷) ≤ 𝜀 + inf

ℎ∈H
Risk(ℎ, 𝑟, 𝐷).

Note that in this definition the learner wants to achieve adversarial risk that is 𝜀-close to the risk

under no attack. One might wonder if there is an alternative definition in which the learner aims

to “𝜀-compete” with the best adversarial risk. However, recall that targeted-poisoning adversarial

risk is not a property of the hypothesis, and it is rather a property of the learner. This leads to the
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following arguably unnatural criteria that needs to hold with probability 1 − 𝛿 over 𝑆 ∼ 𝐷𝑚 and 𝑟.

(For clarity the learner is explicitly denoted as super-index for RiskA𝑏
.)

RiskLrnA𝑏
(S, 𝑟, 𝐷) ≤ 𝜀 + inf

𝐿
Risk𝐿A𝑏

(S, 𝑟, 𝐷)

The reason that the above does not trivially hold is that Lrn needs to satisfy this for all distributions

𝐷 (and most S) simultaneously, while the learner 𝐿 in the right hand side can depend on 𝐷 and S.

3.4 Our results

We now study the question of learnability under instance-targeted poisoning. We first discuss our

positive and negative results in the context of distribution-independent learning. We then turn to

the setting of distribution-dependent setting. At the end, we prove some generic relations between

risk and robustness, showing how to derive one from the other.

3.4.1 Distribution-independent learning

We start by showing results on distribution-independent learning. We first show that in the realizable

setting, for any hypothesis class H that is PAC-learnable, H is also PAC learnable under instance-

targeted poisoning attacks that can replace up to 𝑏(𝑚) = 𝑜(𝑚) (e.g., 𝑏(𝑚) =
√
𝑚) number of examples

arbitrarily. To state the bound of sample complexity of robust learners, we first define the 𝜆(·)

function based an adversary’s budget 𝑏(𝑚).

Definition 3.4.1 (The 𝜆(·) function). Suppose 𝑏(𝑚) = 𝑜(𝑚). Then for any real number 𝑥, 𝜆(𝑥)

returns the minimum 𝑚 where 𝑚′/𝑏(𝑚′) ≥ 𝑥 for any 𝑚′ > 𝑚. Formally,

𝜆(𝑥) = inf
𝑚∈N

{
∀𝑚′ ≥ 𝑚, 𝑚′

𝑏(𝑚′) ≥ 𝑥
}
.

Note that because 𝑏(𝑚) = 𝑜(𝑚), we have 𝑚/𝑏(𝑚) = 𝜔𝑚 (1), so 𝜆(𝑥) is well-defined. ^

Claim 3.4.2 (When 𝜆 is polynomially bounded). If 𝑏(𝑚) = 𝑂 (𝑥1−𝑐) for any constant 𝑐 > 0, then

𝜆(𝑥) = 𝑂 (𝑚1/𝑐), which means 𝜆(·) is a polynomial function. For example, when 𝑏(𝑚) = 𝑂 (
√
𝑚), then

𝜆(𝑥) = 𝑂 (𝑥2).

Proof. As 𝑏(𝑚) = 𝑂 (𝑚1−𝑐), there exists a number 𝑚0 and a constant 𝑞, that for any 𝑚′ ≥ 𝑚0, we have

𝑏(𝑚′) ≤ 𝑞 · (𝑚′)1−𝑐, which indicates 𝑚′/𝑏(𝑚′) ≥ 𝑞 · (𝑚′)𝑐. By the definition of 𝜆(𝑥), we want to show
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that for any 𝑚 ≥ 𝜆(𝑥), we have 𝑚/𝑏(𝑚) ≥ 𝑥. Let 𝑚1 = (𝑥/𝑞)1/𝑐, then when 𝑥 ≥ 𝑞 ·𝑚𝑐0, we have 𝑚1 ≥ 𝑚0.

By Definition 3.4.1, 𝑚1/𝑏(𝑚1) ≥ 𝑞 · 𝑚𝑐1 = 𝑥. Therefore, 𝑚1 ∈ {∀𝑚′ ≥ 𝑚, 𝑚′/𝑏(𝑚′) ≥ 𝑥} ≥ 𝜆(𝑥). Since

𝑚1 = 𝑂 (𝑥1/𝑐), we have 𝜆(𝑥) = 𝑂 (𝑥1/𝑐). □

Theorem 3.4.3 (Proper learning under weak instance-targeted poisoning). Let H be the PAC

learnable class of hypotheses. Then, for adversary budget 𝑏(𝑚) = 𝑜(𝑚), the same class H is also

PAC learnable using randomized learners under weak 𝑏-replacing targeted-poisoning attacks. The

proper/improper nature of learning remains the same. Specifically, let 𝑚Lrn (𝜀, 𝛿) be the sample

complexity of a PAC learner Lrn for H . Then, there is a learner WR that PAC learns H under weak

𝑏-replacing attacks with sample complexity at most

𝑚WR (𝜀, 𝛿) = 𝜆
(
max

{
𝑚2

Lrn

(
𝜀,
𝛿

2

)
,
4

𝛿2

})
.

Moreover, if 𝑏(𝑚) ≤ 𝑂 (𝑚1−Ω(1) ), then whenever H is learnable with a polynomial sample complexity

and/or a polynomial-time learner Lrn, the robust variant WR will have the same features as well.

Proof of Theorem 3.4.3. We first clarify that if 𝑏(𝑚) ≤ 𝑂 (𝑚1−Ω(1) ), and if H is learnable with a

polynomial sample complexity, then the polynomial sample complexity of the robust variant simply

follows from Claim 3.4.2 and the formula for 𝑚WR (𝜀, 𝛿) as stated in the statement of the theorem.

Moreover, the polynomial-time nature of our learner (assuming H is polynomial-time learnable)

would be straightforward based on its description below.

The idea is to show that even a simple sub-sampling of the right size from the given training set S,

and then training a model over the sub-sample will do what we want. In particular, we will randomly

choose 𝑘 of the elements in S, call it subset S𝑘 , and then run any oracle learner for hypothesis class

H . Below, we will first describe how we choose 𝑘. We will then prove specific properties about the

designed learning algorithm, and finally we will analyze its robustness to weak instance-targeted

poisoning attacks (who do not know learner’s randomness for retraining). We call the new learner

WR, and denote the oracle that provides learners for H , simply as Lrn.

Let 𝑘 = 𝑘 (𝑚) =
√︁
𝑚/𝑏(𝑚). By the definition of 𝜆(𝑥), we have that ∀𝑚 ≥ 𝜆(𝑥), 𝑚/𝑏(𝑚) ≥ 𝑥. For

simplicity of notation we might write 𝑘 and 𝑏 where both are actually functions of 𝑚.

Let 𝑚Lrn (𝜀, 𝛿) be the sample complexity of the Lrn which returns a hypothesis with error 𝜀

for at least 1 − 𝛿 probability. We now show that when the sample complexity 𝑚 ≥ 𝑚WR (𝜀, 𝛿) =

𝜆(max{𝑚2
Lrn (𝜀, 𝛿/2), 4/𝛿

2}) the learner WR becomes an (𝜀, 𝛿)-robust PAC learner. Note that by the
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definition of 𝜆(·), we have

𝑚

𝑏(𝑚) ≥ max

{
𝑚2

Lrn

(
𝜀,
𝛿

2

)
,
4

𝛿2

}
.

We then have
√︁
𝑚/𝑏(𝑚) ≥ 𝑚Lrn (𝜀, 𝛿/2) and

√︁
𝑚/𝑏(𝑚) ≥ 2

𝛿
.

Warm up: PAC learnability without attack. It holds that 𝑘 =
√︁
𝑚/𝑏 ≥ 𝑚Lrn (𝜀, 𝛿/2). Hence,

WR(S) = Lrn(S𝑘) will be a PAC learner which returns a hypothesis of at most 𝜀 with at least 1− 𝛿/2

probability, in the case no attack happens.

Robustness under weak attacks. Now suppose an adversary can change up to 𝑏 of the examples

through a weak 𝑏-replacing attack. The probability that the subset S𝑘 intersects with any of the 𝑘

poisoned examples is at most

𝑝(𝑚) = 𝑘 · 𝑏
𝑚

=

√︂
𝑚

𝑏
· 𝑏
𝑚

=

√︂
𝑏

𝑚
≤ 𝛿

2
.

Therefore, with probability at least 1 − 𝑝(𝑚), none of the poison examples that are introduced by

the adversary will land in the subset S𝑘 . In this case by a union bound, when learner Lrn is an

(𝜀, 𝛿/2) PAC learner, learner WR will be a (𝜀, 𝛿/2 + 𝑝(𝑚)) PAC learner under weak 𝑏-replacing

instance-targeted poisoning attacks. As 𝛿/2+ 𝑝(𝑚) ≤ 𝛿, WR with at least 1− 𝛿 probability will return

a hypothesis that has at most 𝜀 risk under weak 𝑏-replacing attacks. □

The above theorem shows that targeted-poisoning-robust proper learning is possible for PAC

learnable classes using private randomness for the learner if 𝑏(𝑚) = 𝑜(𝑚). Thus, it is natural to ask

the following question: can we achieve the stronger (default) notion of robustness as in Definition 3.3.5

in which the adversarial perturbation can also depend on the (fixed) randomness 𝑟 of the learner?

Also, can this be a learning with certifications? Our next theorem answers these questions positively,

yet that comes at the cost of improper learning. Interestingly, the improper nature of the learner

used in Theorem (3.4.4) could be reminiscent of the same phenomenon in test-time attacks (a.k.a.,

adversarial example) where, as it was shown by [85], improper learning came to rescue as well.

Theorem 3.4.4 (Improper learning and certification under targeted poisoning). Let H be (perhaps

improperly) PAC learnable. If 𝑏-replacing attacks have their budget limited to 𝑏(𝑚) = 𝑜(𝑚), then

H is improperly certifiably PAC learnable under 𝑏-replacing targeted poisoning attacks. Specifically,

let 𝑚Lrn (𝜀, 𝛿) be the sample complexity of a PAC learner for H . Then there is a learner Rob that
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universally certifiably PAC learns H under 𝑏-replacing attacks with sample complexity at most

𝑚Rob (𝜀, 𝛿) = 576𝜆
©­­«max

𝑚
2
Lrn

( 𝜀
12
,
𝜀

12

)
,

1

4𝜀2
,
log

(
𝛿
2

)2(
2
√
3𝜀
3

)4 , log2 (
2
𝛿

)
576


ª®®¬ .

Moreover, if 𝑏(𝑚) ≤ 𝑂 (𝑚1−Ω(1) ) and H is learnable using a learner with a polynomial sample

complexity and/or time, the robust variant Rob will have the same features as well.

Before proving Theorem 3.4.3, we define the notion of majority ensembles.

Definition 3.4.5 (Majority ensemble). A majority ensemble model ℎens is defined over 𝑡 sub-models

{ℎ1, . . . , ℎ𝑡 } as follows.

ℎens (𝑥) = argmax
𝑦∈Y

𝑡∑︁
𝑖=1

𝟙[ℎ𝑖 (𝑥) = 𝑦] .

Where 𝟙[𝐸] is the Boolean indicator function that equals 1 if 𝐸 is true. If no strict majority vote

exists, then ℎens (𝑥) = ⊥ for some fixed output ⊥. ^

Proof of 3.4.4. Similar to the proof of Theorem 3.4.3, if 𝑏(𝑚) = 𝑂 (𝑚1−Ω(1) ), the relation between

polynomial sample complexity and polynomial time aspects of the certifying Rob in relation to the

base learner Lrn follows from Claim 3.4.2, the polynomial bound 𝑚Rob (𝜀, 𝛿), and the description of

our learner Rob below.

Recall that Lrn is a (𝜀′, 𝛿′) PAC learner and our goal is to show that we can obtain (𝜀, 𝛿)-

PAC learning under 𝑏-replacing targeted-poisoning attacks. We will indeed show how to achieve

(𝑂 (𝜀′ + 𝛿′), 𝑂 (𝜀′ + 𝛿′))-PAC learning under such attacks.

We first describe a learning method in which the 𝑏-replacing adversary is not allowed to reorder

the examples after changing 𝑏 of the examples in S. Our robust learner in this case is deterministic.

We will then discuss how one can retain the result by handling even when the adversary can reorder

the examples. Our robust learner for the latter case is randomized and uses a careful hashing method.

This learner is inspired by the randomized method first introduced in [37]. In comparison, (1) we

need to generalize the hashing method of [37] and carefully choose how to hash repeated examples in

the data set, and (2) we give a proof of generalization based on adversary’s budget.

Attacks that do not reorder the examples. We define the operation partition with size 𝑘

as repeatedly collecting first 𝑘 items in the data set S (which is defined as a sequence), that is,

when partition data set S = 𝑒1, 𝑒2, . . . , 𝑒𝑚 with size 𝑘, the first partition S1 will contain examples
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𝑒1, 𝑒2, . . . , 𝑒𝑘 , and the second partition S2 will contain examples 𝑒𝑘+1, 𝑒𝑘+2, . . . , 𝑒2𝑘 . Now, let 𝑡 =

𝑡 (𝑚) =
√︁
𝑏(𝑚) · 𝑚. RLrn proceeds as follows.

1. Partition the data set S into 𝑡 subsets S1, . . . ,S𝑡 with equal size 𝑚/𝑡.

2. For each subset S𝑖 where 𝑖 ∈ [𝑡], train a sub-model ℎ𝑖 = Lrn(S𝑖).

3. Returns ℎens that is the majority ensemble model of {ℎ1, . . . , ℎ𝑡 }.

If 𝑡 = 𝑡 (𝑚) =
√︁
𝑚 · 𝑏(𝑚), 𝜀′ = 𝜀/12, 𝛿′ = 𝜀/12, and 𝑝 = max{𝑚2

Lrn (𝜀/12, 𝜀/12),

144/𝜀2,− log(𝛿)/
(
2(𝜀/12)2

)
}, we show that 𝜆(𝑝) becomes an upper bound on the sample complexity

𝑚 of a robust PAC learner under 𝑏-replacing attacks. By the definition of the function 𝜆(·),

we have 𝑚/𝑏(𝑚) ≥ 𝑝. Therefore, we have
√︁
𝑚/𝑏(𝑚) ≥ 𝑚Lrn (𝜀/12, 𝜀/12),

√︁
𝑚/𝑏(𝑚) ≥ 12/𝜀, and√︁

𝑚/𝑏(𝑚) ≥ − log(𝛿)/
(
2(𝜀/12)2

)
. For simplicity of notation we might write 𝑡 and 𝑏 directly where

both are actually functions of 𝑚.

We start by showing the learner RLrn has the following two properties:

• PAC learnability of each sub-model without attack: Each set S𝑖 has 𝑚/𝑡 examples. Therefore,

eventually all the partition sets S𝑖 , 𝑖 ∈ [𝑡] will have enough examples for PAC learning.

Specifically, 𝑚/𝑡 =
√︁
𝑚/𝑏 ≥ 𝑚Lrn (𝜀/12, 𝜀/12).

• Not many sub-models are under attack: An adversary who can replace 𝑏 examples in these 𝑡

sets, is indeed affecting only 𝑡/𝑏 fraction of the subsets, and 𝑡 =
√
𝑏 · 𝑚, 𝑏/𝑡 =

√︁
𝑏/𝑚 ≤ 𝜀/12.

The above arguments show that for each sub-model ℎ𝑖, we can guarantee (𝜀′, 𝛿′)-PAC learning using

the number of samples 𝑚Lrn (𝜀/12, 𝜀/12) that falls into the corresponding S𝑖. Then, we want to argue

that the ensemble ℎens, which is the majority applied to ℎ1, . . . , ℎ𝑡 , is indeed (𝑂 (𝜀′+𝛿′), 𝑂 (𝛿′+𝜀′))-PAC

learning even under 𝑏-budget changing adversaries (who do not reorder the new set S′).

We will first argue about why the obtained ensemble model without attack has small risk, and

once we do it, we argue why it has small risk even under 𝑏-replacing attacks who do not reorder the

output examples.

We start by showing that with high probability, most sub-models have small risk. One might be

tempted to use the union bound and conclude that with probability 1 − 𝑡 · 𝛿′ all of ℎ1, . . . , ℎ𝑡 have

risk at most 𝜀′, before arguing about the low risk of their majority. But this is a lose confidence

bound as 𝑡 · 𝛿′ can grow to be larger than one. Hence, we need a more careful analysis. In particular,

we use concentration bounds to conclude that with high probability most of the sub-models have

risk at most 𝜀′. Namely, using the Hoeffding inequality, we can conclude that with probability
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at least 1 − 𝑒−2𝑡 ·𝛿′2 , it holds that the fraction of ℎ1, . . . , ℎ𝑡 with risk at most 𝜀 is at most 2𝛿′.

When 𝑚 ≥ 𝑚Rob (𝜀, 𝛿), we have 𝑡 =
√︁
𝑚 · 𝑏(𝑚) ≥

√︁
𝑚/𝑏 ≥ − log(𝛿)/

(
2(𝜀/12)2

)
= − log(𝛿)/

(
2𝛿′2

)
. As

1 − 𝑒−2𝑡 ·𝛿′2 ≥ 1 − 𝑒−2· (− log(𝛿)/2𝛿′2) ·𝛿′2 = 1 − 𝛿. In that case, we can argue about the robustness of the

majority ensemble as follows.

Recall that at this stage we are assuming 1−2𝛿′ fraction of the models ℎ1, . . . , ℎ𝑡 have risk at most

𝜀. We claim that if we let 𝜀 = 3(2𝛿′ + 𝜀′), then with probability at least 1 − 𝜀′ over 𝑒 = (𝑥, 𝑦) ∼ 𝐷, it

holds that at least 2𝑡/3 of the sub-models ℎ1, . . . , ℎ𝑡 give the right answer 𝑦 on instance 𝑥. Otherwise

we can derive a contradiction as follows. Suppose more than 𝜀 fraction of the examples 𝑒 = (𝑥, 𝑦) ∼ 𝐷

have at least 𝑡/3 wrong answers among ℎ1, . . . , ℎ𝑡 , i.e., Pr(𝑥,𝑦)∼𝐷
[∑𝑡

𝑖=1 𝟙[ℎ𝑖 (𝑥) ≠ 𝑦] ≥ 𝑡/3
]
> 𝜀. Then,

when we pick both 𝑖 ∼ [𝑡], and 𝑒 = (𝑥, 𝑦) ∼ 𝐷 at random and get ℎ𝑖 (𝑥) as answer, we get a wrong

answer with probability more than 𝜀/3. On the other hand, this probability cannot be too large,

because at most 2𝛿′ fraction of 𝑖 ∼ [𝑡] give a model ℎ𝑖 with risk more than 𝜀′, and the rest have risk

at most 𝜀′, and hence we should have 𝜀/3 < 2𝛿′ + 𝜀′, which contradicts 𝜀 = 3(2𝛿′ + 𝜀′).

Now, we argue that essentially the same bounds above hold even if an adversary goes back and

changes 𝑏 of the examples among the all 𝑚 examples based on knowing a test example. The only

place in the proof that we need to modify is where we obtained 𝜀/3 ≤ 2𝛿′ + 𝜀′, while now we shall

allow the adversary to corrupt 𝑏 of the 𝑡 sub-models by planting wrong examples into their pool S𝑖.

This can only corrupt 𝑏/𝑡 fraction of the 𝑡 models, leading to the bound 𝜀 = 3(2𝛿′ + 𝑏/𝑡 + 𝜀′).

As a summary, with 𝜀′ = 𝜀/12 and 𝛿′ = 𝜀/12, when 𝑚Rob (𝜀, 𝛿) = 𝜆(𝑝) and 𝑡 =
√
𝑏 · 𝑚, the majority

learner is an (𝜀, 𝛿)-PAC learner to 𝑏-replacing attacks that do not reorder the examples, as with

probability at least 1 − 𝑒−2𝑡 𝛿′2 ≥ 1 − 𝛿, the robust risk of the learner is at most

3

(
2𝛿′ + 𝑏

𝑡
+ 𝜀′

)
= 3

(
2 · 𝜀

12
+

√︂
𝑏

𝑚
+ 𝜀

12

)
≤ 3

(
2 · 𝜀

12
+ 𝜀

12
+ 𝜀

12

)
= 𝜀.

Adding certification. Finally, we define a certifying model ℎcert that returns certifications larger

than 𝑏 with high probability. Let

ℎcert (𝑥) =
𝑡∑︁
𝑖=1

𝟙 {ℎ𝑖 (𝑥) = 𝑦′} −
𝑡

2

where 𝑦′ = ℎens (𝑥) and ℎ1, . . . , ℎ𝑡 are sub-models in ℎens. As the sub-models ℎ1, . . . , ℎ𝑡 are trained

with separate data sets, for any 𝑏′ < ℎcert (𝑥), the prediction of ℎens remains the same, indicates that
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ℎcert always gives correct certification. Now, from the previous analysis, we have

Pr
S

[
CCorR𝑒𝑝𝑏 (S, 𝐷) ≥ 1 − 𝜀

]
≥ 1 − 𝛿.

Therefore, H is certifiably PAC learnable under R𝑒𝑝𝑏 attacks with the aforementioned upper bound

on its sample complexity.

Attacks that might reorder the examples. The above learner was indeed deterministic, but

it leveraged on the fact that the adversary will not reorder the examples, hence most sub-models

are robust to adversarial perturbations. For the full-fledged 𝑏-replacing adversaries, we will use

randomness 𝑟 that (informally speaking) defines a hash function from X×Y to [𝑡]. The hash function

can either be a random oracle, or an 𝑚-wise independent function (for sake of a polynomial-time

learner). We then partition the training set S into 𝑡 subsets by using the hash function that looks at

individual examples to determine where they land among the 𝑡 subsets S1, . . . ,S𝑡 .

Because we did not make any assumptions about distribution 𝐷, the training set S could have

multiple instances of the same input if 𝐷 is concentrated on some examples. If we simply pick a

hash function ℎ to map X × Y to [𝑡], it might make the subsets unbalanced and thus lose the i.i.d.

property of the distributions generating subsets S𝑖.

We then slightly revise the rule to evenly distributed these examples as follows. For an example

𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖) in the training set S, let 𝑂𝑖 be the number of occurrence of the same example (𝑥𝑖 , 𝑦𝑖) in

S (0 if it’s the first occurrence). We then use a hash function family ℎ𝐾 : X × Y × [𝑚] → [𝑡], where

𝐾 is a key generated by 𝑟. The 𝑗-th occurrence of 𝑒𝑖 is then mapped into the partition 𝑡𝑖 where

𝑡𝑖 = ℎ𝐾 (𝑒𝑖 , 𝑗).

Following our assumption of the hash function being independently random on all elements in S,

each partition S𝑖 is now an i.i.d. sample of the same distribution. It is because each example in S𝑖

is independently and identically sampled from S, which is an i.i.d. sample of 𝐷. Therefore, with

enough number of examples in S𝑖, by the PAC learnablity of H , each sub-model ℎ𝑖 will be a PAC

learner. However, for a pair of (𝜀, 𝛿), it is not guaranteed that S𝑖 has enough number of examples

for (𝜀, 𝛿)-PAC learning, because we are using a probabilistic hashing. If some of the sub-models do

not have enough examples in their pool S𝑖, it is then hard to show the majority ensemble model

is a good model with error less than 𝜀. To handle this problem, we only train sub-models on the

partitions with enough number of examples.

We pick 𝑡 = 4
√︁
𝑏(𝑚) · 𝑚 be the number of subsets. RLrn proceeds as follows.
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1. For the 𝑗-th occurrence of the example 𝑒𝑖 ∈ S, add it into partition S𝑡𝑖 where 𝑡𝑖 = ℎ𝐾 (𝑒𝑖 , 𝑗).

2. For each subset S𝑖 that |S𝑖 | ≥ 𝑚/6𝑡 where 𝑖 ∈ [𝑡], train a sub-model Lrn(S𝑖).

3. Denote all the sub-models trained in Step 2 as ℎ1, ℎ2, . . . , ℎ𝑡′ .

4. Return ℎens, the majority ensemble model of {ℎ1, . . . , ℎ𝑡′}.

Here, the majority ensemble model will have 𝑡 ′ (instead of 𝑡) sub-models, and 𝑡 ′ ≤ 𝑡. We now

show that when 𝑝′ = max
{
𝑚2

Lrn (𝜀/12, 𝜀/12) , 1/4𝜀
2, log(𝛿/2)2/((2

√
3𝜀/3)4), log2 (2/𝛿)/576

}
with the

sample complexity bounded by 𝑚 ≥ 𝑚Rob (𝜀, 𝛿) = 576𝜆(𝑝′), RLrn is robust to 𝑏-replacing attacks that

can reorder the examples.

First, we prove that the majority of the partitions S𝑖 will have enough samples, specifically, at

least 𝑡 ′ ≥ 𝑡/4 sub-models will have 𝑚/6𝑡 examples with high probability.

To analyze the probability of 𝑡 ′ ≥ 𝑡/4, we first consider a simple bucket and ball setting. Consider

there are 2𝑡 examples (balls) and we partition them into 𝑡 subsets (buckets). Then the probability

that at least 𝑡/2 buckets are not empty is at least

1 −
(
𝑡

𝑡/2

) (
1

2

)2𝑡
= 1 −

(
𝑡

𝑡/2

) (
1

2𝑡

)
·
(
1

2𝑡

)
≥ 1 − 1

2𝑡
.

It is because if there are 𝑡/2 empty buckets, then all 2𝑡 balls should be in the other 𝑡/2 buckets. The

probability is then calculated by taking a union bound over all
( 𝑡
𝑡/2

)
choices of 𝑡/2 empty buckets in 𝑡

buckets.

Now, we have 𝑚 examples in total. We then consider 𝑚 examples as 𝑚/2𝑡 rounds of 2𝑡 examples.

Then for each round, at least 𝑡/2 subsets have at least one example with probability at least

1− 1/2𝑡 . Clearly, applying the union bound over all the rounds of examples gives the result that with

probability 1 − 𝑚/(2𝑡 · 2𝑡 ), every round makes at least 𝑡/2 buckets non-empty. Then, by a simple

counting argument, at the end at least 𝑡/4 buckets will have at least 𝑚/6𝑡 examples. (Otherwise, the

total number of examples would be fewer than (𝑡/2) (𝑚/3𝑡).)

We now prove some properties for RLrn. Let 𝜀′ = 𝛿′ = 𝜀
12 , when 𝑚 = 𝜆(𝑝′). Then, we have

• Not many sub-models are under attack: An adversary who can corrupt 𝑏 of these 𝑡/4 sets, is

indeed corrupting only 4𝑏/𝑡 fraction of them. We then have 4𝑏/𝑡 =
√︁
𝑏/𝑚 ≤ 𝛿′.

• PAC learnability of each sub-model without attack: The sub-model that has 𝑚/6𝑡 examples

have enough examples for PAC learning. 𝑚/6𝑡 =
√︁
𝑚/𝑏/24 ≥ 𝑚2

Lrn (𝜀/12, 𝜀/12).
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• Enough examples: With probability 1 − 𝑚/(2𝑡 · 2𝑡 ), at least 𝑡/4 subsets have at least 𝑚/6𝑡

examples. We have 𝑚/(2𝑡 · 2𝑡 ) < 1/2(log2 (2/𝛿)) = 𝛿/2

• Most sub-models have low risk: By Hoeffding’s inequality, with probability at least 1 − 𝑒−2𝑡 ·𝛿′2 ,

it holds that the fraction of ℎ1, . . . , ℎ𝑡′ with risk at most 𝜀′ is at most 2𝛿′. When 𝑚 ≥ 𝑚Rob (𝜀, 𝛿),

we have 𝑡 ′ ≥ 𝑡/4 ≥
√︁
𝑚/𝑏/4 ≥ − log(𝛿)/

(
8𝛿′2

)
In summary, we show that with probability at least 1 − 𝛿/2 , we have at least 𝑡/4 =

√︁
𝑚 · 𝑏(𝑚)

subsets, each subset has at least 𝑚Lrn (𝜀/12, 𝜀/12) examples, and we train an majority ensemble model

on it. We then follow the same analysis from the case that the attacks can not reorder the examples.

Therefore, with probability at least 1 − 𝛿/2, RLrn is a (𝜀, 𝛿/2)-PAC learner under 𝑏-replacing attacks.

By the union bound, RLrn is a (𝜀, 𝛿/2)-PAC learner under 𝑏-replacing attacks.

As a summary, ensemble learner RLrn achieves a bound similar to the sample complexity bound of

the non-reordering attacks. When 𝑚Rob (𝜀, 𝛿) = 576𝜆 (𝑝′), the majority learner is robust to 𝑏-replacing

attacks that can also reorder the examples.

Finally, when 𝑚 ≥ 576𝜆 (𝑝′), certifying model ℎcert (ℎens, 𝑥) =
∑𝑡′
𝑖=1 𝟙{ℎ𝑖 (𝑥) = 𝑦′} − 𝑡 ′/2 gets

Pr
S

[
CCorR𝑒𝑝𝑏 (S, 𝐷) ≥ 1 − 𝜀

]
≥ 1 − 𝛿

over data set S. Therefore, H is certifiably PAC learnable under R𝑒𝑝𝑏 attack. □

Extension to A𝑑𝑑R𝑒𝑚𝑏 attacks. The proofs of Theorems 3.4.3 and 3.4.4 extend to A𝑑𝑑R𝑒𝑚𝑏

attacks as well when 𝑏 = 𝑜(𝑚). This is because, at a high level, all we care about is that adversarial

“changes” (whether they are addition or removal of examples) either do not hit the sub-sampled

dataset (in Theorem 3.4.3) or hit few of the sub-samples (in Theorem 3.4.4).

We then show that limiting adversary’s budget to 𝑏(𝑚) = 𝑜(𝑚) is essentially necessary for obtaining

positive results in the distribution-independent PAC learning setting, as some hypothesis classes

with finite-VC dimension are not learnable under targeted poisoning attacks when 𝑏(𝑚) = Ω(𝑚) in a

very strong sense: any PAC learner (without attack) would end up having essentially a risk arbitrary

close to 1 under attack for any 𝑏(𝑚) = Ω(𝑚) budget given to a 𝑏-replacing adversary.

We use homogeneous halfspace classifiers, defined in Definition 3.4.6 below, as an example of

hypothesis classes with finite VC dimension. Then in Theorem 3.4.7, we show that the hypothesis

class of halfspaces are not distribution-independently robust learnable against Ω(𝑚)-label flipping

instance-targeted attacks.
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Definition 3.4.6 (Homogeneous halfspace classifiers). A (homogeneous) halfspace classifier ℎ𝜔 :

R𝑑 → {0, 1} is defined as ℎ𝜔 (𝑥) = Sign(𝜔 · 𝑥), where 𝜔 is a 𝑑-dimensional vector. We then call Hhalf

the class of halfspace classifiers Hhalf = {ℎ𝜔 (𝑥) : 𝜔 ∈ R𝑑}. For simplicity, we may use 𝜔 to refer to

both the model parameter and the classifier. ^

Theorem 3.4.7 (Limits of distribution-independent learnability of halfspaces). Consider the halfs-

paces hypothesis set H = Hhalf and we aim to learn any distribution over the unit sphere using H .

Let the adversary class be 𝑏-replacing with 𝑏(𝑚) = 𝛽 · 𝑚 for any (even very small) constant 𝛽. For

any (even improper) learner Lrn one of the following two conditions holds. Either Lrn is not a PAC

learner for the hypothesis class of half spaces (even without attacks) or there exists a distribution

𝐷 such that RiskF𝑙𝑖 𝑝𝑏 (S, 𝐷) ≥ 1 −
√
𝜎 with probability 1 −

√
𝜎 over the selection of S of sufficiently

large 𝑚 ≥ 𝑚Lrn (𝛽 · 𝜎/6, 𝜎/2), where 𝑚Lrn is the sample complexity of PAC learner Lrn.

Proof of Theorem 3.4.7. To prove the theorem, we select a distribution 𝐷 and an Ω(𝑚)-label flipping

adversary, that for any PAC learner Lrn, the targeted poisoning risk is high. We first prove the

theorem for the ERM rule, and then we discuss how it extends to any PAC learner.

Our scenario is in dimension 𝑑 = 3 with dimensions 𝑋,𝑌, 𝑍. Consider the following distribution

𝐷: For 𝑒 = (𝛼, 𝑐) ∼ 𝐷 where 𝛼 is a point in the 3-dimensional space and 𝑐 is a label in {+1,−1}, with

probability 1/2 we sample 𝛼 uniformly from the unit circle with 𝑧 = 1 (namely 𝑥2 + 𝑦2 = 1, 𝑧 = 1) and

we let label 𝑐 = +1 of the sampled point 𝛼. In addition, with probability 1/2 we sample 𝛼 uniformly

from the unit circle 𝑥2 + 𝑦2 = 1, 𝑧 = −1 and let label 𝑐 = −1. This distribution is realizable over the

halfspaces hypothesis set, as halfspace 𝜔 = (0, 0, 1) has 0 risk on 𝐷. In the following analysis, we

call an arc of one of the circles as an interval I. We then define the measure of the interval I as

the probability that a random example 𝛽 ∼ 𝐷 that falls into the interval. Clearly in our setting, an

interval I can be uniquely determined by fixing its measure 𝛽 and its center point 𝛼′. This scenario

is shown in Figure 3.1.

Now, assume the adversarial perturbation S′ = F 𝑙𝑖𝑝𝑏 (S) (that depends on 𝑒 = (𝛼, 𝑐)) wants to

fool the learner on the point 𝛼 = (𝑥, 𝑦, 𝑧). We now define the adversary A𝑏 (S), that with a data set

S ∼ 𝐷𝑚 and target point 𝛼, the adversary operates as the following.

• Pick an interval I of constant measure 𝛽/3 which is centered at 𝛼 ∈ I in the same circle where

𝛼 belongs.

• To make the attack realizable, pick another corresponding interval, where I ′ = {𝛼′ | −𝛼′ ∈ I}.

• For all (𝛼𝑖 , 𝑐𝑖) ∈ S, flip the label if 𝛼𝑖 ∈ (I ∪ I ′). Return the new set as S′.
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𝜔

𝜔′

𝐼

𝐼′

Figure 3.1: Example for proving Theorem 3.4.7. The red circle has label 1, and the blue circle has
label −1. 𝜔 is the ground-truth halfspace with 0 risk, and 𝜔′ is the halfspace that has 0 risk after
adversary make replacements.

In total I and I ′ has probability measure 2𝛽/3. Each example in S has probability 2𝛽/3 to fall

into I ∪ I ′. Then by the Hoeffding’s inequality,

Pr [|S ∩ S′ | ≤ (1 − 𝛽) · 𝑚] ≥ 1 − 𝑒− 𝑚
18 .

That is, with high probability A𝑏 (S) will modify less than 𝑏(𝑚) = 𝛽 · 𝑚 examples. We then

analyze how this adversary fools the learners.

ERM learner. We start from the case that the learner is the ERM learner. As I and I ′ are

symmetric to the origin (0, 0, 0), there exists a halfspace 𝜔′ ∈ Hhalf that passes all the endpoints of

arcs I and I ′, which then has 0 empirical risk on S′. With probability at least 1 − 2(1 − 𝛽/6)𝑚 ≈ 1,

S contains two examples from I that positioned at either side around 𝛼, that 𝜔 (and all other

hypothesis that correctly predicts 𝛼) will have non-zero risk on S′. Therefore, ERM will return a

hypothesis that incorrectly predicts 𝛼.

Extension to any proper PAC learner. We now prove that the same adversary can fool any

proper PAC learner with sufficiently large 𝑚. Let 𝐷 ′ be the “poisoned” distribution, that is, for

(𝛼1, 𝑐1) ∈ supp(𝐷 ′) and (𝛼1, 𝑐2) ∈ supp(𝐷). 𝑐1 =


−𝑐2 𝛼′ ∈ I ∪ I ′

𝑐2 Otherwise

. Then for S′ = A𝑏 (S), when

S ∼ 𝐷𝑚, S′ ∼ (𝐷 ′)𝑚.

Now, let 𝑚Lrn (𝜀1, 𝛿1) be the sample complexity of Hhalf on 𝐷 ′. When 𝑚 ≥ 𝑚Lrn (𝜀1, 𝛿1), on the

distribution 𝐷 ′, Lrn(S′) holds Risk(Lrn(S′), 𝐷 ′) ≤ 𝜀1 with probability at least 1 − 𝛿1.

Let 𝜀1 = 𝛽/4. Because hypothesis set H are halfspaces, the prediction region (the subset of all the

examples predicted for a specific label) is also a connected interval. Therefore, if Lrn(S′) incorrectly
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predicts 𝛼 on S′ (which is, correctly predicts 𝛼 on the original data set S), as 𝛼 is at the center of I,

at least half of I (and I ′ because of symmetry) is incorrectly predicted, i.e., Risk(Lrn(S′), 𝐷 ′) ≥ 𝛽/3.

This contradicts Risk(Lrn(S′), 𝐷 ′) ≤ 𝜀1 = 𝛽/4. Therefore, for the selected values of 𝜀1 and 𝛿1, with

a sufficiently large sample complexity 𝑚 ≥ 𝑚Lrn (𝛽/4, 𝛿1), the probability of 𝛼 being misclassified

becomes at least 1 − 𝛿1, which indicates the adversary succeeds with probability at least 1 − 𝛿1. By

averaging, with probability at least 1 −
√
𝛿1, we have RiskF𝑙𝑖 𝑝𝑏 (S, 𝐷) ≥ 1 −

√
𝛿1.

Extension to any improper PAC learner. Previous method cannot be directly applied to

improper PAC learners as we no longer have at least half of I is incorrectly predicted if 𝛼 is incorrectly

predicted. We now slightly revise A𝑏 (S) to fool improper PAC learners as well.

To fool an arbitrary improper PAC learner, the adversary will randomize the interval I. The

revised adversary A′
𝑏
(S, 𝛼) works as the following.

• Compute the interval I0 which is centered at 𝛼 with measure 𝛽/3.

• Uniformly pick a random point 𝛼𝑟 from I0.

• Pick the intervals I symmetrically around 𝛼𝑟 with measure 𝛽/3, and let I ′ = {𝛽 | − 𝛽 ∈ I}.

We have S′ = A′
𝑏
(S) where S ∼ 𝐷𝑚. Now, let 𝐷 ′I be the data distribution where the labels of

the examples in I and I ′ are flipped, we have S′ ∼ 𝐷 ′I
𝑚 as one can view the poisoned data set S′

as an i.i.d. sample from the poisoned distribution 𝐷 ′I , which is conditioned on I and I ′. I and I ′,

on the other hand, is conditioned on the poisoning target 𝛼.

Now, consider a different process that generates the variables in a different order, that the adversary

first uniformly picks a interval I among all the interval with measure 𝛽/3 (and its counterpart I ′),

and then uniformly samples an example 𝛼 inside I and I ′. Because the sampling is uniform, the

probability of picking a specific combination of I, I ′ and 𝛼 in the second process is equivalent to

the probability of picking this combination following the original process, i.e., pick a random 𝛼, and

then pick I conditioned on 𝛼. Because this equivalence, if 𝛼 is picked after the learner returns a

model learned from the data set S′ (since it is sampled from 𝐷 ′I′), the probability of whether Lrn(S′)

incorrectly predicts 𝛼 remains the same.

We now prove that when 𝑚 is sufficiently large, attacks succeed with high probability on improper

PAC learners. Let 𝑚Lrn (𝜀1, 𝛿1) be the sample complexity of Hhalf on 𝐷 ′I . When 𝑚 ≥ 𝑚Lrn (𝜀1, 𝛿1),

on the distribution 𝐷 ′, Lrn(S′) holds Risk(Lrn(S′), 𝐷 ′I) ≤ 𝜀1 with probability at least 1 − 𝛿1. Since

we can equivalently assume 𝛼 is sampled after Lrn(S′) is done, the probability of Lrn(S′) correctly
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predicts 𝛼 on 𝐷 ′I (which is, incorrectly predicts 𝛼 on 𝐷) is at least 1 − 𝜖1/(𝛽/3). Let 𝜖1 = 𝜎 · 𝛽/6

and 𝛿1 = 𝜎/2.

Therefore, for the selected values of 𝜀1 and 𝛿1, with 𝑚 ≥ 𝑚Lrn (𝜀1, 𝛿1), the probability of 𝛼 being

misclassified becomes at least 1− 𝜖1/(𝛽/3) − 𝛿1 = 1−𝜎/2−𝜎/2 = 1−𝜎. By averaging, with probability

at least 1 −
√
𝜎, we have RiskF𝑙𝑖 𝑝𝑏 (S, 𝐷) ≥ 1 −

√
𝜎. □

Remark 3.4.8 (On (𝜀, 𝛿)-PAC learning with 𝜀 = Ω(1)). Theorem 3.4.7 shows that if adversary’s

budget scales linearly with the sample complexity 𝑚, then one cannot get (𝜀, 𝛿) PAC learners that are

robust against instance-targeted poisoning attacks and that 𝜀, 𝛿 = 𝑜𝑚 (1). However, one can also ask

what is the minimum achievable error 𝜀(𝑚), perhaps as a function of adversary’s budget 𝑏(𝑚), even

when 𝑏(𝑚) = Ω(𝑚). For example, what would be the optimal learning error, if adversary corrupts

1% of the examples. The same proof of Theorem 3.4.7 shows that in this case, any learner that is

robust to instance-targeted R𝑒𝑝𝑏 attacks would need to have 𝜀(𝑚) = Ω(𝑏(𝑚)/𝑚). The reason is that

if 𝜀(𝑚) = 𝑜(𝑏(𝑚)/𝑚), then one can still choose 𝜎𝑚 = 𝑜𝑚 (1), while 𝜀(𝑚) = (𝑏(𝑚)/𝑚) · 𝜎(𝑚)/6, 𝛿(𝑚) =

𝜎(𝑚)/2 are both 𝑜𝑚 (1) as well.

Note that it was already proved by [18] that, if the adversary can corrupt 𝑏 = Ω(𝑚) of the

examples, even with non-targeted adversary, robust PAC learning is impossible. However, in that

case, there is a learning algorithm with error 𝑂 (𝑏/𝑚). So if, e.g., 𝑏 = 𝑚/1000, then non-targeted

learning is possible for practical purposes. On the other hand, Theorem 3.4.7 shows that any PAC

learning algorithm in the no attack setting, would have essentially risk 1 under targeted poisoning.

Remark 3.4.9 (Other loss functions). Most of our initial results in this chapter are proved for the

0-1 loss as the default for classification. Yet, the written proof of Theorem 3.4.3 holds for any loss

function. Theorem 3.4.4 can also likely be extended to other “natural” losses, but using a more

complicated “decision combiner” than the majority. In particular, the learner can now output a

label for which “most” sub-models will have “small” risk (parameters most/small shall be chosen

carefully). The existence of such a label can probably be proved by a similar argument to the written

proof of the 0-1 loss. However, this operation is not poly time.

3.4.2 Distribution-specific learning

Our previous results are for distribution-independent learning. This still leaves open to study

distribution-specific learning. That is, when the input distribution is fixed, one might able to prove

stronger results.
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We then study the learnability of halfspaces under instance-targeted poisoning on the uniform

distribution over the unit sphere. Note that one can map all the examples in the 𝑑-dimensional space

to the surface of the unit sphere, and their relative position to a homogeneous halfspace remains the

same. Hence, one can limit both 𝜔 and instance 𝑥 ∈ R𝑑 \ 0𝑑 to be unit vectors in S𝑑−1. Therefore,

distributions 𝐷X on the unit sphere surface can represent any distribution in the 𝑑-dimensional

space. For example, a 𝑑-dimensional isotropic Gaussian distribution can be equivalently mapped to

the uniform distribution over the unit sphere as far as classification with homogeneous halfspaces

is concerned. We note that when the attack is non-targeted, it was already shown by [18] that

whenever 𝑏(𝑚) = 𝑜(𝑚), then robust PAC learning is possible (if it is possible in the no-attack setting).

Therefore, our results below can be seen as extending the results of [18] to the instance-targeted

poisoning attacks.

Theorem 3.4.10 (Learnability of halfspaces under the uniform distribution). In the realizable setting,

let 𝐷 be uniform on the 𝑑 dimensional unit sphere S𝑑−1 and let adversary’s budget for R𝑒𝑝𝑏 (𝑚)

be 𝑏(𝑚) = 𝑐𝑚/
√
𝑑. Then for the halfspace hypothesis set Hhalf , there exists a deterministic proper

certifying learner CLrn such that the following

Pr
S∼𝐷𝑚

[
CCorR𝑒𝑝𝑏 (𝑚) (S, 𝐷) ≥ 1 − 2

√
2𝜋 · 𝑐 −

√
2𝜋𝑑 · 𝜀

]
is at least 1 − 𝛿 for sufficiently large sample complexity 𝑚 ≥ 𝑚H

UC
(𝜀, 𝛿), where 𝑚H

UC
is the sample

complexity of uniform convergence on Hhalf . So the problem is properly and certifiably PAC learnable

under 𝑏-replacing instance-targeted poisoning attacks.

For example, when 𝑐 = 1/502, 𝜀 = 𝑐/(100
√
𝑑) and 𝛿 = 0.01, Theorem 3.4.10 implies that

Pr
S∼𝐷𝑚

[
CCorR𝑒𝑝𝑏 (𝑚) (S, 𝐷) ≥ 99%

]
≥ 99%.

Proof of Theorem 3.4.10. Without loss of generality, we assume 𝜔 = (1, 0, 0 . . . , 0) ∈ Hhalf denotes

the ground-truth halfspace, i.e., Risk(𝜔, 𝐷) = 0. Therefore, for any data set that is i.i.d. sampled

S ∼ 𝐷𝑚, Risk(𝜔,S) = 0. We denote 𝛽(𝑚) = 𝑏(𝑚)/𝑚 = 𝑐/
√
𝑑 be the fraction of replaced examples in

the data set, and for simplicity we may use 𝑏 and 𝛽 to represent 𝑏(𝑚) and 𝛽(𝑚) in the following

analysis.

We now show that hypothesis class Hhalf is properly and certifiably PAC learnable under instance-

targeted poisoning attacks on 𝐷. The general idea is to prove that for the majority of examples

𝑒 = (𝑥, 𝑦) ∼ 𝐷, the risk of any hypothesis that incorrectly predicts 𝑥 is large. Let A𝑏 (S) be an
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arbitrary adversary of budget 𝑏(𝑚). Since the adversary needs to fool the ERM algorithm, the

adversary needs to change the data set from S to S′, so that the empirical risk of a “bad” hypothesis

𝜔′, Risk(𝜔′,S′), is lower than the empirical risk of 𝜔, Risk(𝜔,S′). However, since the adversary can

only make 𝑏 changes, we have

Risk(𝜔,S′) ≤ Risk(𝜔,S) + 𝛽 = 𝛽, and Risk(𝜔′,S′) ≥ Risk(𝜔′,S) − 𝛽.

Also, according to the uniform convergence property of the hypothesis set, let 𝑚H
UC
(𝜀, 𝛿) be the

sample complexity of uniform convergence. Then with probability at least 1 − 𝛿 over S, we have

Risk(𝜔′, 𝐷) ≤ Risk(𝜔′,S) + 𝜀. Therefore, to fool ERM on 𝑥 with budget 𝑏, the adversary needs

∃𝜔′ ∈ Hhalf such that Risk(𝜔′, 𝐷) ≤ 2𝛽 + 𝜀 and 𝜔′(𝑥) ≠ 𝜔(𝑥). (3.2)

We then show that when 𝑚 ≥ 𝑚H
UC
(𝜀, 𝛿), for the majority of instances according to 𝐷, no such 𝜔′

exists if 𝐵 is sufficiently small.

The intersection of the halfspace 𝜔 and the 𝑑- dimensional sphere S𝑑−1, i.e., the “equator”, is a

(𝑑 − 1)-dimensional sphere. Suppose 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑), let 𝜃 be the angle between 𝑥, the origin, and

the halfspace 𝜔. There exists an unique 𝑥 ′ on the equator that has the minimal distance to the 𝑥

among all the points on the equator, and ∠𝑥𝑜𝑥 ′ = 𝜃 where 𝑜 stands for the origin {0, 0, . . . , 0}. For

any halfspace 𝜔1 where 𝑥 ′ is on 𝜔1, the angle between 𝜔 and 𝜔1 is at least 𝜃. Therefore, a halfspace

where 𝜔′(𝑥) ≠ 𝜔(𝑥) has the property that the angle between 𝜔′ and 𝜔 is at least 𝜃. In that case, since

the the risk of 𝜔′ on 𝐷 is at least Risk(𝜔′, 𝐷) ≥ 𝜃/𝜋. In the following analysis, we call an example 𝑥 ′

around angle 𝜃 ′ of a halfspace 𝜔′, if the angle between 𝑥 ′, the origin and halfspace 𝜔′ is less than 𝜃 ′.

As the distribution 𝐷 is uniform, the probability of an example fall into angle 𝜃 around the

halfspace 𝜔 can be calculated by measuring the size of the surface within angle 𝜃, which is then

upper bounded by the cylindrical surface size of a cylinder whose bottom is a (𝑑 − 1)-dimensional

unit ball and height is 2𝜃. Let 𝑆𝑑−1 denotes the surface of the (𝑑 − 1)-dimensional unit sphere, then

this cylinder surface has the size of 2𝜃𝑆𝑑−1. We further denote the surface of a 𝑑-dimensional ball as

𝑆𝑑. Therefore, the probability of a random example falls into the set within angle 𝜃 around 𝜔 can be

upper bounded by

Pr
(𝑥,𝑦)∼𝐷

[𝑥 is within angle 𝜃 around 𝜔] < 2𝜃𝑆𝑑−1
𝑆𝑑

<
𝜃
√
2𝑑
√
𝜋
.

The last inequality follow from the property of spheres. Now, let 𝜃0 = (2𝛽 + 𝜀)𝜋 = 2𝜋𝑐/
√
𝑑 + 𝜋𝜀,
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then 𝜃0
√
2𝑑/
√
𝜋 = 2

√
2𝜋 · 𝑐 +

√
2𝜋𝑑 · 𝜀. Therefore, we have for at least 1 − (2

√
2𝜋 · 𝑐 +

√
2𝜋𝑑 · 𝜀)

of all possible 𝑥, all halfspace 𝜔′ that 𝜔′(𝑥) ≠ 𝜔(𝑥) has Risk(𝜔′, 𝐷) > 2𝛽 + 𝜀, which according to

Equation 3.2, indicates that the adversary needs budget more than 𝑏 to change the prediction of 𝑥.

Finally, we define a certifying model ℎcert that returns certifications ≥ 𝑏 with high probability.

For input 𝑒 = (𝑥, 𝑦) and S, suppose 𝜔′ = Lrn(S), let 𝜃 ′ be the angle between 𝑥 and 𝜔′, then

ℎcert (𝑥) =


max

{
0,

(
𝜃′

2𝜋 −
𝜀
2

)
· 𝑚

}
𝜃′

𝜋
≥ 2𝛽 + 𝜀

0 Otherwise

.

Following our analysis, we have ℎcert (𝑥) > 𝑏 for all the examples that are not within angle 𝜃 ′ of

𝜔, which is with high probability. Also, for any 𝑥 that 𝜃 ′/𝜋 ≥ 2𝛽 + 𝜀, we have ∀𝜔′(𝑥) ≠ 𝜔(𝑥),

Risk(𝜔′, 𝐷) ≥ 𝜃 ′/𝜋. To flip the prediction on 𝑥, the adversary need to replace at least

𝛽′ ≥ min𝜔′∈H {Risk(𝜔′,S)}
2

≥ min𝜔′∈H {Risk(𝜔′, 𝐷) − 𝜀}
2

≥ 𝜃/𝜋 − 𝜀
2

=
𝜃 ′

2𝜋
− 𝜀
2

fractions of any S that is 𝜀-representative. Therefore, ℎcert gives a correct certification for all examples

for any S that is 𝜀-representative, and the certification result is larger than 𝑏 for the majority of

examples for any such S.

In summary, when 𝑏 = 𝑐𝑚/
√
𝑑 and 𝑚 ≥ 𝑚H

UC
(𝜀, 𝛿), with probability 1 − 𝛿, there are at least

1 − 2
√
2𝜋 · 𝑐 −

√
2𝜋𝑑 · 𝜀 of examples that are robust to any 𝑏-replacing instance-targeted poisoning

attacks. Therefore, the certifying learner CLrn(S)(𝑥) = (Lrn(S)(𝑥), ℎcert (𝑥)) gets

Pr
S∼𝐷𝑚

[
CCorR𝑒𝑝𝑏 (𝑚) (S, 𝐷) ≥ 1 − 2

√
2𝜋 · 𝑐 −

√
2𝜋𝑑 · 𝜀

]
≥ 1 − 𝛿.

Therefore, H is certifiably and properly PAC learnable under R𝑒𝑝𝑏 attacks. □

We also show that the above theorem is essentially optimal, as long as we use proper learning.

Namely, for any fixed dimension 𝑑, with budget 𝑏 = 𝑂 (𝑚/
√
𝑑), a 𝑏-replacing adversary can guarantee

success of fooling the majority of examples. Note that for constant 𝑑, when 𝑚 → ∞, this is just

a constant fraction of data being poisoned, yet this constant fraction can be made arbitrary small

when 𝑑 →∞.

Theorem 3.4.11 (Limits of robustness of PAC learners under the uniform distribution). In the

realizable setting, let 𝐷 be uniform over the 𝑑 dimensional unit sphere S𝑑−1. For the halfspace

hypothesis set Hhalf , if 𝑏(𝑚) ≥ 𝑐𝑚/
√
𝑑 for 𝑏-label flipping attacks F 𝑙𝑖𝑝𝑏, for any proper learner Lrn
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one of the following two conditions holds. Either Lrn is not a PAC learner for the hypothesis class of

half spaces (even without attacks), or for sufficiently large 𝑚 ≥ 𝑚Lrn (3𝑐/(10
√
𝑑), 𝛿), with probability

1 −
√
𝛿 + 2𝑒−𝑐2/18 over the selection of S we have

RiskF𝑙𝑖 𝑝𝑏 (S, 𝐷) ≥ 1 −
√︁
𝛿 + 2𝑒−𝑐2/18,

where 𝑚Lrn is the sample complexity of the learner Lrn.

For example, when 𝑐 = 20 and 𝛿 = 0.00009, we have RiskF𝑙𝑖 𝑝𝑏 (S, 𝐷) ≥ 99%.

Proof of Theorem 3.4.11. Let 𝜔 ∈ Hhalf denote the ground-truth halfspace, i.e., Risk(𝜔, 𝐷) = 0. We

now design an adversary that fools the learner Lrn within the budget 𝑏(𝑚). We start by proving the

theorem for the ERM rule, and then we discuss how it extends to any PAC learner.

According to the concentration of the uniform measure over the unit sphere S𝑑−1 (e.g., see [86]),

for any set of measure 0.5 on the sphere, its 𝜌-neighborhood 𝑇𝜌 (defined as the set of all the points

whose Euclidean distance less or equal to 𝜌) has measure

𝜇(𝑇𝜌) ≥ 1 − 2𝑒−𝑑𝜌2/2.

Therefore, for any halfspace 𝜔, the measure of samples that has 𝜌 distance to 𝜔 is at least

1 − 4𝑒−𝑑𝜌2/2.

Now, given an example 𝑥 and the training data set S, suppose 𝜃 is the angle between 𝑥 and 𝜔,

the adversary A𝑏 ∈ F 𝑙𝑖𝑝𝑏 act like this:

1. Rotate 𝜔 to 𝑥 by 𝜃. Let 𝜔′ denotes the result halfspace (where 𝑥 landed on).

2. Rotate 𝜔′ with another 𝜃 in the same direction to the halfspace 𝜔′′.

3. For any example from the data set S that is between 𝜔 and 𝜔′′, flip its label.

4. Return the data set as S′.

Let 𝜌0 = 𝑐/3
√
𝑑, then at least 1 − 2𝑒−𝑐2/18 of 𝑥 has at most 𝜌0 distance to 𝜔. The probability

measure of the surface between 𝜔 and 𝜔′′ is 2𝜃/𝜋, where 2𝜃/𝜋 ≤ 2 sin(𝜃) ≤ 2𝜌0. Let 𝑚H
UC
(𝜀, 𝛿) be

the sample complexity of uniform convergence. Then with probability at least 1 − 𝛿 over S, we have

Risk(𝜔′′,S) ≤ Risk(𝜔′′,D) + 𝜀 ≤ 2𝜌0 + 𝜀.

Let 𝜀 = 0.9𝜌0, then the adversary flips Risk(𝜔′′,S) · 𝑚 examples, which with probability 1 − 𝛿

we have Risk(𝜔′′,S) ≤ 2.9𝜌0 < 𝑏/𝑚. Now, the ERM learner will go for the hypothesis with the
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minimal error on S′, which is then 𝜔′′. As 𝜔′′(𝑥) ≠ 𝜔(𝑥), the ERM learner will give a wrong answer

on 𝑥. With probability 1 − 𝛿, the adversary will complete the attack within budget 𝑏 on at least

1 − 2𝑒−𝑐
2/18 examples, by the union bound, the adversary succeeds on 1 − 𝛿 − 2𝑒−𝑐

2/18 examples.

Finally, by an averaging argument, we have with probability 1−
√
𝛿 + 2𝑒−𝑐2/18, the adversary succeeds

with 1 −
√
𝛿 + 2𝑒−𝑐2/18 examples.

Extension to any proper PAC learner To extend the result to any proper PAC learner, we use

a similar proof as in Theorem 3.4.7. We show same A𝑏 can be extended to fool any proper PAC

learner with high probability.

Let 𝐷 ′ be the “poisoned” distribution, that for S′ = A𝑏 (S), we have S′ ∼ (𝐷 ′)𝑚. Then with

probability 1 − 𝛿, we have Risk(Lrn(S′),D ′) ≥ Risk(Lrn(S′),S′) − 𝜀. Now, let 𝑚Lrn (𝜀1, 𝛿1) be the

sample complexity of Lrn on 𝐷 ′. When 𝑚 ≥ 𝑚Lrn (𝜀1, 𝛿1), on the distribution 𝐷 ′, Lrn(S′) holds

Risk(Lrn(S′), 𝐷 ′) ≤ 𝜀1 with probability at least 1 − 𝛿1.

Let 𝜀1 = 0.9𝜌0 = 3𝑐/10
√
𝑑. Because hypothesis set H are halfspaces, the prediction region (the

subset of all the examples predicted for a specific label) is connected. Therefore, if Lrn(S′) incorrectly

predicts 𝑥 (which is, correctly predicts 𝑥 on the original data set S), as 𝑥 is on 𝜔′, at least half of

the surface between 𝜔 and 𝜔′′ is incorrectly predicted, i.e., Risk(Lrn(S′), 𝐷 ′) ≥ 𝜌0. This contradicts

Risk(Lrn(S′), 𝐷 ′) ≤ 𝜀1 = 0.9𝜌0. Therefore, with probability 1 − 𝛿1, the adversary will complete

the attack within budget 𝑏 on at least 1 − 2𝑒−𝑐2/18 examples, by the union bound, the adversary

succeeds on 1 − 𝛿1 − 2𝑒−𝑐
2/18 examples. Finally, by an averaging argument, we have with probability

1 −
√︁
𝛿1 + 2𝑒−𝑐2/18, the adversary succeeds with 1 −

√︁
𝛿1 + 2𝑒−𝑐2/18 examples.

□

3.4.3 Relating risk and robustness

Risk uses a worst-case budget to capture what an adversary can do, while robustness does so using

an average-case budget. Theorem 3.4.12 below relates the two notions of risk and robustness in the

context of targeted poisoning attacks and is inspired by results previously proved for adversarial

inputs that are crafted during test-time attacks ([87, 70]). In particular, Theorem 3.4.12 proves that

for 0-1 loss, it is equivalent to fully understand either of them to understand the other one and allows

to derive numerical values for one through the other.

Theorem 3.4.12 (From risk to robustness and back). Suppose S ∈ (X × Y)𝑚 is a training set,

Lrn is a learner, 𝐷 is a distribution over X × Y, A𝑏 is an adversary class with the budget 𝑏, and

A = ∪𝑏∈NA𝑏. Then the following relations hold.
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1. From robustness to risk. For any non-negative loss function, we have

RiskA𝑏
(S, 𝑟, 𝐷) =

∫ ∞

0

Pr
𝑒∼𝐷

[
Rob𝜏A (S, 𝑟, 𝑒) ≤ 𝑏

]
· d𝜏.

For the special case of 0-1 loss, this simplifies to RiskA𝑏
(S, 𝑟, 𝐷) = Pr𝑒∼𝐷 [RobA (S, 𝑟, 𝑒) ≤ 𝑏].

2. From risk to robustness. Suppose we use the 0-1 loss. Suppose 𝑏 is large enough such that

RiskA𝑛
(S, 𝑟, 𝐷) = 1, or equivalently CorA𝑖

(S, 𝑟, 𝐷) = 0 for 𝑖 ≥ 𝑏.9 Then, it holds that

RobA (S, 𝑟, 𝐷) = 𝑏 −
𝑏−1∑︁
𝑖=0

RiskA𝑖
(S, 𝑟, 𝐷)

=

𝑏−1∑︁
𝑖=0

CorA𝑖
(S, 𝑟, 𝐷)

=

∞∑︁
𝑖=0

CorA𝑖
(S, 𝑟, 𝐷).

In other words, if we could compute adversarial risks for all 𝑏, we can also compute the average

robustness by summing robust correctness.

Proof of Theorem 3.4.12. We write the proof for deterministic learners who do not have any ran-

domness, but the same exact proof works when a randomness 𝑟 exists and is fixed.

By Definition 3.3.2, for any threshold 𝜏 we have

Rob𝜏A (S, 𝑒) ≤ 𝑏 ⇐⇒ sup
S′∈A𝑏 (S)

{ℓ(Lrn(S′), 𝑒)} ≥ 𝜏

⇐⇒ ∃S′ ∈ A𝑏 (S), ℓ(Lrn(S′) (𝑥), 𝑦) ≥ 𝜏.

Also, the so-called expectation through CDF10 implies that for a non-negative function 𝑓 and a

distribution 𝐷, we have

E
𝑥∼𝐷
[ 𝑓 (𝑥)] =

∫ ∞

𝜏=0

Pr [ 𝑓 (𝑥) ≥ 𝜏] d𝜏 (3.3)

9For example, if the adversarial strategy allows flipping up to 𝑏 labels, then for 𝑏 = 𝑚 the adversary can flip all the
labels. For natural hypothesis classes and learning algorithms, changing all the labels allows the adversary to control
prediction on all points and so RiskA𝑏

(S, 𝐷) = 1.
10See https://en.wikipedia.org/w/index.php?title=Expected_value&oldid=1017448479\#Basic_properties as

accessed on May 16, 2021.
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Therefore, Part 1 can be proven as follows.

RiskA𝑏
(S, 𝐷) = E

𝑒∼𝐷

[
ℓA𝑏
(S, 𝑒)

]
(by Definition 3.3.1) = E

𝑒∼𝐷

[
sup

S′∈A𝑏 (S)
{ℓ(Lrn(S′), 𝑒)}

]
(by Equation 3.3) =

∫ ∞

𝜏=0

Pr
𝑒∼𝐷

[
sup

S′∈A𝑏 (S)
{ℓ(Lrn(S′), 𝑒)} ≥ 𝜏

]
· d𝜏

(by Definition 3.3.2) =

∫ ∞

𝜏=0

Pr
𝑒∼𝐷
[Rob𝜏A (S, 𝑒) ≤ 𝑏] · d𝜏.

We now prove Part 2. From Definition 3.3.2, RobA (S, 𝑒) ∈ N ∪ {∞}. We then have

∀𝑖 ∈ R,Pr [RobA (S, 𝑒) ≥ 𝑖] = Pr [RobA (S, 𝑒) ≥ ⌈𝑖⌉] , (3.4)

where ⌈𝑖⌉ is the ceiling function that returns the minimum integer above 𝑖. Furthermore, recall that

𝑏 is a large enough number that for any example 𝑒, ∀𝑖 ≥ 𝑏,RiskA𝑖
(S, 𝑒) = 1 and CorA𝑖

(S, 𝑒) = 0. We

have ∀𝑒,Pr [RobA (S, 𝑒) ≤ 𝑏] = 1, i.e., RobA (S, 𝑒) ≤ 𝑏. Then we conclude that,

RobA (S, 𝐷) = E
𝑒∼𝐷
[RobA (S, 𝑒)]

(by Equation 3.3) =

∫ ∞

𝜏=0

Pr
𝑒∼𝐷
[RobA (S, 𝑒) ≥ 𝜏] · d𝜏

(by Equation 3.4) =
∞∑︁
𝑖=0

Pr
𝑒∼𝐷
[RobA (S, 𝑒) > 𝑖]

= 𝑏 −
𝑏−1∑︁
𝑖=0

Pr
𝑒∼𝐷
[RobA (S, 𝑒) ≤ 𝑖]

(by Definition 3.3.2) = 𝑏 −
𝑏−1∑︁
𝑖=0

RiskA𝑖
(S, 𝐷)

(by Definition 3.3.1) =
𝑏−1∑︁
𝑖=0

CorA𝑖
(S, 𝐷) =

∞∑︁
𝑖=0

CorA𝑖
(S, 𝐷). □

3.5 Experiments

In this section, we study the power of instance-targeted poisoning on the MNIST dataset [88]. We

first analyze the robustness of 𝐾-Nearest Neighbor model, where the robustness can be efficiently

calculated empirically. We then empirically study the accuracy under targeted poisoning for multiple

other different learners. Previous empirical analysis on instance-targeted poisoning (e.g., Shafahi

et al. [73]) mostly focus on clean-label attacks. Here, we use attacks of any labels, which lead to
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Figure 3.2: Experiment of 𝐾-Nearest Neighbors on the MNIST dataset. (a) The trend of Robustness
Rob(Lrnknn,SMNIST,D) on attacks R𝑒𝑝, A𝑑𝑑, and R𝑒𝑚, with the increase of number of neighbors 𝐾.
(b) Accuracy of 𝐾-NN model under R𝑒𝑝𝑏 with different poisoning budget 𝑏.
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Figure 3.3: Accuracy of different learners under A𝑑𝑑𝑏 instance-targeted poisoning on the MNIST
dataset. (a) Compare different learners. (b) Compare dropout and regularization mechanics on
Neural Networks.

stronger attacks compared to clean-label attacks. We also study multiple models in our experiment,

while previous work mostly focus on neural networks, and we then compare the performance of

different models under the same attack.

𝐾-Nearest Neighbor (𝐾-NN) is non-parameterized model that memorizes every training example

in the dataset. This special structure of 𝐾-NN allows us to empirically evaluate the robustness to

poisoning attacks. The 𝐾-NN model in this section uses the majority vote defined below.

Definition 3.5.1 (𝐾-NN learner). For training dataset S and example 𝑒 = (𝑥, 𝑦), let N(𝑥) denote

the set of 𝐾 closest examples from S 𝑒. Then the prediction of the 𝐾-NN is

ℎKNN (𝑥) = argmax
𝑗∈Y

∑︁
(𝑥𝑖 ,𝑦𝑖) ∈N(𝑥)

𝟙[𝑦𝑖 = 𝑗] .

^

From our definition of poisoning attack and robustness, we can measure the robustness empirically

by the following lemma. Similar ideas can also be found in [40].
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Lemma 3.5.2 (Instance-targeted Poisoning Robustness of the 𝐾-NN learner). Let margin(ℎKNN, 𝑒)

be defined as 0 if ℎKNN (𝑥) ≠ 𝑦 and be defined as

∑︁
(𝑥𝑖 ,𝑦𝑖) ∈N(𝑥)

𝟙[𝑦𝑖 = 𝑦] − max
𝑗∈Y, 𝑗≠𝑦

∑︁
(𝑥𝑖 ,𝑦𝑖) ∈N(𝑥)

𝟙[𝑦𝑖 = 𝑗]

otherwise. We then have

RobR𝑒𝑝𝑏 (LrnKNN,S, 𝑒) =
⌈
margin(LrnKNN (S), 𝑒)

2

⌉
.

Proof of Lemma 3.5.2. Following Definition 3.5.1, the prediction for a sample 𝑥 totally depends on

the neighbor set N(𝑥). By definition, N(𝑥) is a subset of S. For the adversary class R𝑒𝑝𝑏 (which

can be extend to any adversary with budget 𝑏), they can only make at most 𝑏 changes to the set S,

which includes at most 𝑏 changes to N(𝑥).

For an example 𝑒 = (𝑥, 𝑦), to flip the prediction to 𝑦′, we need to change N(𝑥) to N ′(𝑥) such that∑
(𝑥𝑖 ,𝑦𝑖) ∈N′ (𝑥) 𝟙[𝑦𝑖 = 𝑦′] ≥

∑
(𝑥𝑖 ,𝑦𝑖) ∈N′ (𝑥) 𝟙[𝑦𝑖 = 𝑦]. However, we have ∀𝑦′ ≠ 𝑦,

∑︁
(𝑥𝑖 ,𝑦𝑖) ∈N(𝑥)

𝟙[𝑦𝑖 = 𝑦] −
∑︁

(𝑥𝑖 ,𝑦𝑖) ∈N(𝑥)
𝟙[𝑦𝑖 = 𝑦′]

≥ margin(ℎKNN, 𝑒).

At least
⌈
margin(LrnKNN (S) ,𝑒)

2

⌉
replacements needs to be made in this case. To make it work, the

adversary can replace the label of
⌈
margin(LrnKNN (S) ,𝑒)

2

⌉
examples of label 𝑦 in 𝑁 (𝑥) with 𝑦′. Therefore,

we have RobR𝑒𝑝𝑏 (LrnKNN,S, 𝑒) =
⌈
margin(LrnKNN (S) ,𝑒)

2

⌉
. □

Using Lemma 3.5.2, one can compute the robustness of the 𝐾-NN model empirically by calculating

the margin for every 𝑒 in the distribution. We then use the popular digit classification dataset MNIST

to measure the robustness.

In the experiment, we use the whole training dataset to train (60, 000 examples), and evaluate

the robustness on the testing dataset (10, 000 examples). We calculate the robustness under R𝑒𝑝𝑏,

R𝑒𝑚𝑏, and A𝑑𝑑𝑏 attacks. We measure the result with different number of neighbors 𝐾 present

the result in Figure 3.2a. We also measure the accuracy under poisoning of R𝑒𝑝𝑏 and report it in

Figure 3.2b. The results in Figure 3.2 indicates the following message. (1) From Figure 3.2a, when

the number of neighbors 𝐾 increases, the robustness also increases as expected. The robustness of
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𝐾-NN to R𝑒𝑝 and A𝑑𝑑 increases almost linearly with 𝐾. (2) The robustness to R𝑒𝑚 is much larger

than to R𝑒𝑝 and A𝑑𝑑. R𝑒𝑚 is a more difficult attack in this scenario. (3) From Figure 3.2b, when

the number of neighbors 𝐾 increases, the models’ accuracy without poisoning slightly decreases. (4)

From Figure 3.2b, 𝐾-NN keeps around 80% accuracy to 𝑏 = 100 instance-targeted poisoning when 𝐾

becomes large.

For general learners, measuring their robustness provably under attacks is harder because there

is no clear efficient attack that is provably optimal. In this case, we perform a heuristic attack

to study the power of A𝑑𝑑𝑏. The general idea is that for an example 𝑒 = (𝑥, 𝑦), we poison the

dataset by adding 𝑏 copies of (𝑥, 𝑦′) into the dataset with the second best label 𝑦′ in ℎ(𝑥), where 𝑏 is

the Adversary’s budget. We then report the accuracy under poisoning with different budget 𝑏 on

classifiers including Logistic regression, 2-layer Multi-layer Perceptron (MLP), 2-layer Convolutional

Neural Network (CNN), AlexNet and also 𝐾-NN in Figure 3.3a. We get the following conclusion:

(1) Models that have low risk without poisoning, such as MLP, CNN and AlexNet, typically have

low empirical error, which makes it less robust under poisoning. (2) 𝐾-NN with large 𝐾 have high

accuracy under poisoning compared to other models by sacrificing its clean-label prediction accuracy.

Finally, in Figure 3.3b we report on our findins about two regularization mechanics, dropout

and 𝐿2-regularization, on the Neural Network learner and whether adding them can provide better

robustness against instance-targeted poisoning A𝑑𝑑𝑏. We use a 2-layer Multi-layer Perceptron (MLP)

as the base learner and adds dropout/regularization to the learner. From the figure, we get the

following messages: (1) Dropout and regularization help to improve the accuracy without the attacks

(when 𝑏 = 0). (2) These mechanics don’t help the accuracy with the A𝑑𝑑𝑏 attacks. The accuracy

under attack is worse than the vanilla Neural Network. We conclude that these simple mechanics

cannot help the neural net to defend against instance-targeted poisoning.



Chapter 4

Error amplification of targeted

poisoning

Let 𝑃1, . . . , 𝑃𝑚 be 𝑚 parties that, perhaps interactively, share their (training) datasets S1, . . . ,S𝑚

one by one in 𝑚 rounds, and at the end a central algorithm Lrn deterministically produces a model

ℎ based on S = {S1, . . . ,S𝑚}. Now, suppose the adversary A𝑏 that can replace 𝑏 of the datasets

in S1, . . . ,S𝑚, where 𝑏 is the budget. Let 𝑡 ∈ {0, 1} be a bit, where 𝑡 = 1 if some “bad” Boolean

property holds over ℎ (e.g., failing to correctly classify a particular point 𝑥, leading to a targeted

poisoning attack [14, 89], or have certain level of overall risk). Suppose Pr[𝑡 = 1] = 𝜇 holds before

the attack (in this case 𝜇 can be a small value to begin with, something like 0.01 or 1/𝑚), in this

chapter we aim to answer the following question:

For an adversary A𝑏 that has budget 𝑏 = 𝑂 (
√
𝑚), i.e., changing the messages of 𝑂 (

√
𝑚)

of the parties, how much it can increase the probability Pr[𝑡 = 1] with? That is, can we

answer the question that for a certain 𝜇′, does an attack with budget 𝑏 = 𝑂 (
√
𝑚) exist,

that for any learning algorithm Lrn, we have Pr[𝑡 = 1] ≥ 𝜇′ after attack?

Related works. Recent works of [90, 72, 68, 91] showed that such a poisoning adversary with

budget 𝑏 = Ω(
√
𝑚) can always increase the probability 𝑝 to 1 − 𝑜(1) by performing attack. Another

line of work that tackles with computational aspects of robust machine learning, started with the

exciting works of [78, 79] that shows how to deal with outliers for certain statistical tasks, and

importantly do so in polynomial time. The distinction of our dissertation with this line of work on

robust statistics is that we care about computational aspects of the “attacker” while they care about

making the learning algorithms polynomial time.

43
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Connection to coin-tossing. Collective coin tossing [92] is a fundamental problem in cryptography

in which a set of 𝑚 parties aim to jointly produce a random bit 𝑡 that remains (close to) random even

if an adversary controls a subset of these parties. Interestingly, poisoning attacks on learners can

be reduced into attacks on the coin-tossing protocols. This connection was found first by [66]. Let

the training dataset S𝑖 for each party be the message of party 𝑃𝑖. Furthermore, suppose we define

a protocol, where the final bit output is exactly the indicator bit 𝑡 of the learners’ property, and

𝑝 = Pr[𝑡 = 1] be the probability that the protocol outputs 1. Since in the definition of the poisoning

setting, there is no restriction on S𝑖, the attack defined on a coin-tossing protocol can also be applied

to the datasets S𝑖. We now formally describe the attack in the coin-tossing setting as follow.

Problem setting in coin-tossing. Suppose Π is an 𝑚-round coin-tossing protocol between 𝑚

parties, where party 𝑃𝑖 sends a single message 𝑤𝑖 in round 𝑖 that could depend on all the previous

messages, and the final bit 𝑏 is a deterministic function of all messages.1 Now, suppose an adversary

aims to increase the probability of Pr[𝑡 = 1]. This is called a up-biasing attacks, as adversary can

increase the probability of outputting 1 (rather than either increasing or decreasing it). We deal with

𝑏-replacing adversaries who can replace 𝑏 of the messages as follows. Suppose messages 𝑤1, . . . , 𝑤𝑖−1

are already finalized and party 𝑃𝑖 is about to send 𝑤𝑖 in round 𝑖. The adversary will have a chance

to replace 𝑤𝑖, based on the knowledge of 𝑤𝑖.
2 Equivalently, we will think of the protocol as a

random process (𝑤1, . . . , 𝑤𝑚) with 𝑚 steps, and a 𝑏-replacing adversary will be allowed to override

the content of 𝑏 of the steps, in which case the rest of the random process will depend on the new

values. The goal of the adversary is to increase the probability of Pr[𝑡 = 1] for a Boolean function

𝑡 (𝑤1, . . . , 𝑤𝑚) = 𝑡 ∈ {0, 1}. Informally speaking, we would like to know what are the most robust

random process in this setting.

Up-biasing aspect. Studying up-biasing attacks is important due to several reasons. Firstly,

up-biasing attacks allow modeling adversaries who have a particular output preferred in mind. For

example, the coin tossing model’s output might determine whether a contract would be signed or

not. Then, a party who prefers signing the contract wants to increase the chance of outputting 𝑡 = 1.

Moreover, up-biasing attacks allow modeling “undesired” properties defined over random processes

and robustness of the process to be pushed into those events, and allow us to unifying the poisoning

attack into this setting.

1This is also called a single-turn protocol.
2This is also called the strongly adaptive replacement model [93].
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Previous attacks for arbitrary length messages. Kalai, Komargodski, and Raz [94] showed that

in the “many-replacement” regime where 𝑏 = Ω(
√
𝑚), a different attack in the binary setting of [95] can

be achieved in polynomial time.3 Building upon [94], Etesami, Mahloujifar and Mahmoody [90, 72]

showed how to extend this result to arbitrary message length and obtain (again up-biasing) attacks

in polynomial time, but again only when 𝑏 ≥ Ω(
√
𝑚). Finally, the recent works of Khorasgani, Maji,

Mukherjee, and Wang [97, 98] showed how to get one-directional attacks for large messages when

𝑡 = 1.

We summarize the difference of our result with the related work in Table 4.1.

Up-biasing Poly-time Corruption model Budget 𝑏 Rounds
[90, 72] ✓ ✓ Replacing Ω(

√
𝑚) Any

Our result ✓ ✓ Replacing Any Any

[99] - - Replacing 1 Any
[93] - - Replacing Ω(

√
𝑚) 1

[100, 101] - - Replacing Any 1
[94, 96] - - Adaptive Ω(

√
𝑚) Any

[97] - - Replacing 1 Any
[98] - - Adaptive 1 Any

Table 4.1: Summary of related attacks on single-turn coin tossing protocols. The achieved biases are
Ω(𝑏/

√
𝑚) when 𝑏 = 𝑂 (

√
𝑚) and are Ω(1) for larger 𝑏.

Why all previous attacks need 𝑏 = Ω(
√
𝑚) replacements. The up-biasing attacks of [90, 94, 72]

have a similar core that make them rely on many 𝑏 = Ω(
√
𝑚) number of replacments to lead to any

bias towards 1. These attacks first show that certain specific attacks with unlimited budget can

significantly bias the output of the function towards 1. Then, in the second step, they show that the

number of replacements of such ∞-replacing attacks will not be more than 𝑂 (
√
𝑚).

This method cannot be directly applied to any 𝑏 = 𝑜(
√
𝑚).

Connection to computational isoperimetry in product spaces. Let w ≡ (w1 × · · · ×w𝑛) be a

product distribution of dimension 𝑛, and let HD be the Hamming distance HD(𝑤, 𝑤′) = |
{
𝑖 | 𝑤𝑖 ≠ 𝑤′𝑖

}
|.

Then, a basic question in functional analysis is how quickly noticeable events expand under Hamming

distance. It is known, e.g., by results implicit in [102, 103] and explicit in [100, 101]4 that for a set S

has measure 𝜇, the 𝑘-expansion of it (i.e., the set of points with a neighbor in S of distance at most

3Interestingly, the main result of [94] focuses on unidirectional attacks and shows that the output of any single-turn
protocol can be attacked (only information theoretically) by a (standard) adaptive unidirectional adversary replacing
𝑏 = Ω(

√
𝑚) parties. The recent breakthrough of Haitner and Karidi-Heller [96] generalized the main result of [94] to

any general, perhaps multi-turn, protocol. Our focus here, however, is on single-turn protocols.
4A weaker version for uniform bits is known as the blowing-up lemma [104].
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𝑘) will have have measure at least 𝜇 + Ω(𝑏 · 𝜇/
√
𝑚) for 𝑏 = 𝑂 (

√
𝑚). The previous works of [90, 72]

introduced an algorithmic variant of the measure concentration phenomenon and showed how to

obtain polynomial time algorithms that achieve the following. Given a random point 𝑤 ∈ w, we can

find a neighbor of distance at most 𝑏 in S with probability 𝜇 + Ω(𝑏 · 𝜇/
√
𝑚). Their result above

only apply to the setting where 𝑏 ≥ Ω(
√
𝑚), and it remained open to obtain such computational

concentration for any small 𝑏 = 𝑜(
√
𝑚). For such small 𝑏, the problem is more suitable to be called

an isoperimetric problem, due to historic reasons. Here, a poly-time attacks on the coin-tossing

setting can also serve as a poly-time algorithm that gives an lower bound of the isoperimetry, hence

“computational isoperimetry”.

4.1 Preliminaries

Notation. We use calligraphic letters (e.g., X) for sets. All distributions and random variables

in this section are discrete. We use bold letters (e.g., w) to denote random variables that return a

sample from a corresponding discrete distribution. By 𝑤 ← w we denote sampling 𝑤 from the random

variable w. By Supp(w) we denote the support set of w. For an event S ⊆ Supp(w), the probability

function of w for S is denoted as Pr[w ∈ S] = Pr𝑤←w [𝑤 ∈ S] or simply as Pr[S] when w is clear

from the context. By u ≡ v we denote that the random variables u and v have the same distributions.

Unless stated otherwise, we denote vectors by using a bar over a variable. By (w1,w2, . . . ,w𝑚) we

refer to a sequence of 𝑚 jointly sampled random variables. For a vector (𝑤1 . . . 𝑤𝑚), we use 𝑤≤𝑖 to

denote the prefix (𝑤1, . . . , 𝑤𝑖), and we use the same notation w≤𝑖 for jointly distributed random

variables. For vector 𝑥 = 𝑢≤𝑖−1 and 𝑦 = 𝑢𝑖, by 𝑥𝑦 we denote the vector 𝑢≤𝑖−1 that appends 𝑢𝑖 as the

last coordinate of 𝑥. For a jointly distributed random variables (u, v), by (u | v = 𝑣) or we denote

the random variable u conditioned on v = 𝑣. When it is clear from the context, we simply write

(u | 𝑣) or u[𝑣] instead. By u × v we refer to the product distribution in which u and v are sampled

independently. HD(𝑢, 𝑣) = |{𝑖 | 𝑢𝑖 ≠ 𝑣𝑖}| denotes the Hamming distance for vectors of 𝑚 coordinates.

Random processes. Let w≤𝑚 ≡ (w1, . . . ,w𝑚) be a sequence of jointly distributed random variables.

We can interpret the distribution of w≤𝑖 as a random process in which the 𝑖th block 𝑤𝑖 is sampled

from the marginal distribution (w𝑖 | 𝑤≤𝑖−1) ≡ (w𝑖 | w≤𝑖−1 = 𝑤≤𝑖−1) ≡ w𝑖 [𝑤≤𝑖−1]. We also use w[·] to

denote an oracle sampling algorithm that given 𝑤≤𝑖 returns a sample from w[𝑤≤𝑖].

Attack model. Our adversaries replace a message/block in a random process. Namely, they observe

the blocks one by one and sometimes intervene to replace them with a new value. (The new values
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will subsequently change the way the random process will proceed.) Hence, we refer to them as

replacing adversaries. Such adversaries are equivalent to strongly adaptive corrupting adversaries as

defined in [93].

Definition 4.1.1 (Online replacing attacks on random processes). Let w≤𝑚 ≡ (w1, . . . ,w𝑚) be a

random process. Suppose Tam(𝑥, 𝜎) → (𝑥 ′, 𝜎′) is a (potentially randomized) algorithm with the

following syntax. It takes as input some (randomness,) 𝑥 and 𝜎, where 𝜎 is interpreted as a “state”,

and it outputs (𝑥 ′, 𝜎′). We call such algorithm an online replacing adversary and define the following

properties for it.

We define the following notions for w≤𝑚.

• The generated and output random processes under replacing attacks. Suppose Tam

is an replacing algorithm. We now define two random processes that result from running the

replacing adversary Tam to influence the original random process w. For 𝑖 = 1, 2, . . . , 𝑚, we first

sample 𝑢𝑖 ← (w𝑖 | w≤𝑖−1 = 𝑣≤𝑖−1), and then we obtain (𝑣𝑖 , 𝜎𝑖) ← Tam(𝑢𝑖 , 𝜎𝑖−1). If at any point

during this process Pr[w≤𝑖 = 𝑣≤𝑖] = 0, we will output 𝑢𝑖+1 = · · · = 𝑢𝑚 = 𝑣𝑖+1 = · · · = 𝑣𝑚 = ⊥. We

call (u, v) the jointly generated random processes under the attack. We also refer to 𝑢 as the

original values and 𝑣 as the output of the random process under the attack Tam.

• Online replacing. We call Tam a valid (online replacing) attack on w≤𝑚, if with probability 1

over the generation of 𝑢, 𝑣, it holds that none of the coordinates are ⊥ (i.e., Pr[w≤𝑖 = 𝑣≤𝑖] ≠ 0.)

In this section we always work with valid online replacing attacks, even if they are not called

valid.

• Budget of replacing attacks. Replacing adversary Tam has budget 𝑏, if

Pr[HD(u, v) ≤ 𝑏] = 1,

where (u, v) are the jointly generated random processes that are also jointly distributed.

• Algorithmic efficiency of attacks. If w≤𝑚 is indexed by 𝑚 as a member of a family of

joint distributions defined for all 𝑚 ∈ N, then we call an online or offline replacing algorithm

efficient, if its running time is at most poly(𝑀) where 𝑀 is the total bit-length representation

of any 𝑤 ∈ Supp(w≤𝑚). We would also consider efficiency where the replacing algorithm uses

an oracle. In particular, we say an attack Tamw [· ] with oracle access to sampler w[·] is efficient

if it runs in time poly(𝑀).
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^

We now recall the so-called Doob martingale of a (Boolean-output) random process.

Definition 4.1.2 (Doob martingale, partial averages, and their approximate variant). For random

process w≤𝑚 ≡ (w1, . . . ,w𝑚), let 𝑓 : Supp(w) ↦→ R, 𝑖 ∈ [𝑚], and 𝑤≤𝑖 ∈ Supp(w≤𝑖). Then we use

the notation 𝑓 (𝑤≤𝑖) = E𝑤←(w |𝑤≤𝑖) [ 𝑓 (𝑤)] to define the expected value of 𝑓 for a sample from w≤𝑚

conditioned on the prefix 𝑤≤𝑖 and refer to it as a partial-average of 𝑓 . In particular, using notation

𝑤≤0 = ∅, we have 𝑓 (∅) = E[ 𝑓 (w)] . The random process ( 𝑓 (w≤1), . . . , 𝑓 (w≤𝑚)) is called the Doob

martingale of the function 𝑓 over the random process w≤𝑚. For the same w≤𝑚 and 𝑓 (·), we call 𝑓 (·) an

(additive) 𝜀-approximation of 𝑓 (·), if for all 𝑤≤𝑖 ∈ Supp(w≤𝑖), it holds that 𝑓 (𝑤≤𝑖) ∈ 𝑓 (𝑤≤𝑖) ± 𝜀. ^

If one is given oracle access to ℓ samples from (w𝑖 | 𝑤≤𝑖), then by averaging them, one can obtain

(due to the Hoeffding inequality) an 𝜀-approximation of 𝑓 (𝑤≤𝑖) for with probability 1 − exp(−ℓ/𝜀2).

4.1.1 Useful facts

We use the following variant of the Azuma inequality which is proved in [105].

Lemma 4.1.3 (Azuma’s inequality for dynamic interval lengths (Theorem 2.5 in [105])). Let

t ≡ (t1, . . . , t𝑚) be a sequence of 𝑚 jointly distributed random variables such that for all 𝑖 ∈ [𝑚], and

for all 𝑡≤𝑖−1 ∼ t≤𝑖−1, we have

∃𝑡∗, Pr
𝑡𝑖∼t𝑖 |𝑡≤𝑖−1

[𝑡∗ + 𝜂𝑖 ≥ 𝑡𝑖 ≥ 𝑡∗ − 𝜂𝑖] = 1

and E[t𝑖 | 𝑡≤𝑖−1] ≥ 0. Then, we have

Pr

[
𝑚∑︁
𝑖=1

t𝑖 ≤ −𝑠
]
≤ e

−𝑠2
2

∑𝑚
𝑖=1

𝜂2
𝑖

Lemma 4.1.4 (Azuma’s inequality for dynamic interval lengths under approximate conditions). Let

t ≡ (t1, . . . , t𝑚) be a sequence of 𝑚 jointly distributed random variables such that for all 𝑖 ∈ [𝑚], and

for all 𝑡≤𝑖−1 ∼ t≤𝑖−1, we have

∃𝑡∗, Pr
𝑡𝑖∼t𝑖 |𝑡≤𝑖−1

[|𝑡𝑖 | ≥ 1] = 0

∃𝑡∗, Pr
𝑡𝑖∼t𝑖 |𝑡≤𝑖−1

[𝑡∗ + 𝜂𝑖 ≥ 𝑡𝑖 ≥ 𝑡∗ − 𝜂𝑖] ≥ 1 − 𝛾
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and E[t𝑖 | 𝑡≤𝑖−1] ≥ −𝛾. Then, we have

Pr

[
𝑚∑︁
𝑖=1

t𝑖 ≤ −𝑠
]
≤ e

−(𝑠−2𝑚𝛾)2
2

∑𝑚
𝑖=1

𝜂2
𝑖 + 𝑚 · 𝛾

Proof. If we let 𝛾 = 0, Lemma 4.1.4 becomes equivalent to Lemma 4.1.3. Here we sketch why Lemma

4.1.4 can also be reduced to the case that 𝛾 = 0 (i.e., Azuma inequality). We build a sequence t′
𝑖

from t𝑖 as follows: Sample 𝑡𝑖 ∼ t𝑖 | 𝑡≤𝑖−1, if |𝑡𝑖 − 𝑡∗ | ≤ 𝜂𝑖, output 𝑡 ′𝑖 = 𝑡𝑖 + 2𝛾 otherwise output 𝑡∗ + 2𝛾.

We have E[t′
𝑖
| 𝑡 ′≤𝑖−1] ≥ 0 and Pr[|𝑡 ′

𝑖
− 𝑡∗ − 2𝛾 | > 𝜏𝑖] = 0. Now we can use Lemma 4.1.4 for the basic

case of 𝛾 = 0 for the sequence t′
𝑖
and use it to get a looser bound for sequence t𝑖, using the fact that

∃𝑖 ∈ [𝑚], |𝑡𝑖 − 𝑡∗ | ≥ 𝜂𝑖 happens with probability at most 𝑚 · 𝛾. □

4.2 The attack

In this section, we design and analyze our 𝑏-replacing up-biasing attack on random processes. We

first describe our attack in an idealized model in which the partial-average oracle 𝑓 (·) and “maximum

child” of a prefix of the process are available for free. In Section 4.2.1, we show that our attack can

be made polynomial-time using an approximation of the partial-average oracle that can be obtained

in polynomial time.

Construction 4.2.1 (𝑏-replacing attack using exact oracles). This attack uses the exact partial-

average oracle 𝑓 (·) and another oracle that returns “the best choice” for the next block (see 𝑢∗
𝑖+1

defined below). The attack is also parameterized by a vector 𝜆≤𝑏 = (𝜆1, . . . , 𝜆𝑏) ∈ [0, 1]𝑏 for some

integer 𝑏 ≤ 𝑚 which is adversary’s budget. The attack will keep state 𝜎𝑖 = (𝑢≤𝑖 , 𝑣≤𝑖) where 𝑢≤𝑖 are the

original values and 𝑣≤𝑖 are the output values under attack.5 Having state (𝑢≤𝑖 , 𝑣≤𝑖) and for given 𝑢𝑖+1

the algorithm Tam will decide on whether to keep or replace 𝑢𝑖+1, using 𝑢∗𝑖+1 = argmax𝑢′
𝑖+1
𝑓 (𝑣≤𝑖 , 𝑢′𝑖+1),

𝑓 ∗ = 𝑓 (𝑣≤𝑖 , 𝑢∗𝑖+1), and 𝑑 = HD(𝑢≤𝑖 , 𝑣≤𝑖) as follows.

• (Case 0) If 𝑑 ≥ 𝑏, do not change 𝑢𝑖+1 and output 𝑣𝑖+1 = 𝑢𝑖+1.

• (Case 1) if Case 0 does not happen and 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1) < 𝑓 ∗ − 𝜆𝑑+1, then Tam[𝜆≤𝑏] (𝑢𝑖+1) will

return the output 𝑣𝑖+1 = 𝑢∗
𝑖+1 which is different from 𝑢𝑖+1.

• (Case 2) If Cases 0, 1 do not happen, do not change 𝑢𝑖+1 and output 𝑣𝑖+1 = 𝑢𝑖+1.

In all the cases above, Tam will also update the state as 𝜎𝑖+1 = (𝑢≤𝑖+1, 𝑣≤𝑖+1) .
5Attack would need 𝑣≤𝑖 and the “used part of the budget” HD(𝑢≤𝑖 , 𝑣≤𝑖). Both of these can be obtained from

𝜎𝑖 = (𝑢≤𝑖 , 𝑣≤𝑖).
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Notation. Suppose we run the attack Tam[𝜆≤𝑏] on random process w through the process described

in Definition 4.1.1. (In particular, 𝑢𝑖+1 will be sampled from (w𝑖+1 | w≤𝑖 = 𝑣≤𝑖).) We use (u(𝑏) , v(𝑏) )

to denote the jointly generated random processes under the attack Tam[𝜆≤𝑏]. (This notation allows

us to distinguish between the generated random processes under attacks with different budget.) We

sometimes use (u(∞) , v(∞) ) to denote (u(𝑚) , v(𝑚) ) as they are the same distributions. Also, let

𝜇𝑏 = E
(𝑢,𝑣)∼(u(𝑏) ,v(𝑏) )

[ 𝑓 (𝑣)]

denotes the expected value of 𝑓 over the sequence that is the output of 𝑏-replacing attack of

Construction 4.2.1. For 𝑏 = 0 we have and 𝜇0 = 𝜇 = E[ 𝑓 (w)].

Lemma 4.2.2 below shows that the increase in 𝜇𝑏 compared with 𝜇𝑏−1 can be related to the

“threshold parameter” 𝜆𝑏 and the probability that an attack with unlimited (or equivalently just 𝑚)

budget with threshold parameters 𝜆1, . . . , 𝜆𝑏, 𝜆
′
𝑏+1, . . . , 𝜆

′
𝑚 makes at least 𝑏 replacements.

Lemma 4.2.2. We have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 · Pr
(𝑢,𝑣)∼(u(∞) ,v(∞) )

[HD(𝑢, 𝑣) ≥ 𝑏] .

Proof. For any 𝑗 ∈ {0, 1, 2}, let 𝐶𝑏
𝑗
be the Boolean random variable over (𝑢𝑖+1, 𝜎𝑖) that determines

which case of the attack Tam with budget 𝑏 happens on prefix (𝑣≤𝑖 , 𝑢𝑖+1) where 𝑣≤𝑖 is the finalized

output prefix, 𝑢≤𝑖 is the original prefix and 𝑢𝑖+1 is the original sampled block at round 𝑖 + 1. For all

(𝑣≤𝑖 , 𝑢≤𝑖 , 𝑢𝑖+1) we have
∑2
𝑗=0 𝐶

𝑏
𝑗
(𝑢𝑖+1, 𝜎𝑖) = 1 because the cases complement each other.

In the rest of the proof, whenever 𝑢≤𝑖 and 𝑣≤𝑖 are clear from the context, we will use 𝐶𝑏
𝑗
(𝑢𝑖+1)

instead of 𝐶𝑏
𝑗
(𝑢𝑖+1, 𝜎𝑖). In the following, when the threshold parameters 𝜆1, . . . , 𝜆𝑏 are clear from the

context, we will use Tam instead of Tam[𝜆≤𝑏].

For all 𝑢≤𝑖 , 𝑣≤𝑖 ∈ Supp(u≤𝑖 , v≤𝑖) we have the following qualities for different cases of the attack.

• Case 0:

E
(𝑢𝑖+1 ,𝑣𝑖+1)∼(u𝑏𝑖+1 ,v

𝑏
𝑖+1) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ (
𝑓 (𝑣≤𝑖 , 𝑣𝑖+1) − 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1)

)
· 𝐶𝑏0 (𝑢𝑖+1)

]
= 0. (4.1)

• Case 1:

𝐶𝑏1 (𝑢𝑖+1) = (𝐶∞1 (𝑢𝑖+1) ∧HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏). (4.2)

This is because as long as the number of replacements is fewer than 𝑏, Case 1 of the attack

with budget 𝑏 would go through whenever Tam with budget of 𝑚 does so.
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• Case 2:

E
(𝑢𝑖+1 ,𝑣𝑖+1)∼(u𝑏𝑖+1 ,v

𝑏
𝑖+1) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ (
𝑓 (𝑣≤𝑖 , 𝑣𝑖+1) − 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1)

)
· 𝐶𝑏2 (𝑢𝑖+1))

]
= 0. (4.3)

This is correct because either 𝐶𝑏2 (𝑣≤𝑖 , 𝑢𝑖+1) = 0 or 𝑢𝑖+1 = 𝑣𝑖+1.

We define a notation 𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) = 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1). In the following We use the shorten

forms of E(u≤𝑖 ,v≤𝑖) and E(u,v) [𝑢≤𝑖 ,𝑣≤𝑖 ] to refer to E(𝑢≤𝑖 ,𝑣≤𝑖)∼(u≤𝑖 ,v≤𝑖) and E(𝑢,𝑣)∼(u,v) [𝑢≤𝑖 ,𝑣≤𝑖 ] . We have

E
(u(𝑏) ,v(𝑏) )

[ 𝑓 (𝑣)] − 𝜇 = E
(u(𝑏) ,v(𝑏) )

[
𝑚−1∑︁
𝑖=0

( 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖))
]

= E
(u(𝑏) ,v(𝑏) )

[
𝑚−1∑︁
𝑖=0

( 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1))
]

(by the definition of 𝑓 ) (4.4)

=

𝑚−1∑︁
𝑖=0

E
(u𝑏≤𝑖 ,v

𝑏
≤𝑖)

E
(u(𝑏) ,v(𝑏) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) ·

(
2∑︁
𝑗=0

𝐶𝑏𝑗 (𝑢𝑖+1)
)]

=

𝑚−1∑︁
𝑖=0

E
(u𝑏≤𝑖 ,v

𝑏
≤𝑖)

E
(u(𝑏) ,v(𝑏) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) · 𝐶𝑏1 (𝑢𝑖+1)

]
(by (4.3) and (4.1)) (4.5)

=

𝑚−1∑︁
𝑖=0

E
(u𝑏≤𝑖 ,v

𝑏
≤𝑖)

E
(u(𝑏) ,v(𝑏) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) · (𝐶 (∞)1 (𝑢𝑖+1) ∧ (HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏)

]
(by (4.2))

=

𝑚−1∑︁
𝑖=0

E
(u∞≤𝑖 ,v∞≤𝑖)

E
(u(𝑏) ,v(𝑏) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) · (𝐶∞1 (𝑢𝑖+1) ∧ (HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏))

]
. (4.6)

The last equality above holds, because for all 𝑢≤𝑖 , 𝑣≤𝑖 where HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏,

Pr[(u𝑏≤𝑖 , v𝑏≤𝑖) = (𝑢≤𝑖 , 𝑣≤𝑖)] = Pr[(u(∞)≤𝑖 , v
(∞)
≤𝑖 ) = (𝑢≤𝑖 , 𝑣≤𝑖)] .

The reason for this is that as long as we have not used the full budget 𝑏, the 𝑏-replacing attack will

behave as if its budget is infinite.

Similarly, for the adversary Tam with budget 𝑏 − 1 we have

E
(u(𝑏−1) ,v(𝑏−1) )

[ 𝑓 (𝑣)] − 𝜇 =

𝑚−1∑︁
𝑖=0

E
(u(∞)≤𝑖 ,v

(∞)
≤𝑖 )≤𝑖

E
(u(𝑏−1) ,v(𝑏−1) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[𝜂(𝑢≤𝑖+1, 𝑣≤𝑖+1)] . (4.7)

where 𝜂(𝑢≤𝑖+1, 𝑣≤𝑖+1) = 𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) ·
(
𝐶∞1 (𝑢𝑖+1) ∧ (HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏 − 1)

)
. Therefore, by combining

Equations (4.6) and (4.7) we have
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E
(u(𝑏) ,v(𝑏) )

[ 𝑓 (𝑣)] − E
(𝑢,𝑣)∼(u(𝑏−1) ,v(𝑏−1) )

[ 𝑓 (𝑣)] =

𝑚−1∑︁
𝑖=0

E
(u(∞)≤𝑖 ,v

(∞)
≤𝑖 )

E
(u(𝑏) ,v(𝑏) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) · 𝐶∞1 (𝑢𝑖+1) · (HD(𝑢≤𝑖 , 𝑣≤𝑖) = 𝑏 − 1)

]
≥
𝑚−1∑︁
𝑖=0

E
(u(∞)≤𝑖 ,v

(∞)
≤𝑖 )

[
𝜆𝑏 · E

(u(𝑏) ,v(𝑏) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝐶∞1 (𝑢𝑖+1) · (HD(𝑢≤𝑖 , 𝑣≤𝑖) = 𝑏 − 1)

] ]
= 𝜆𝑏 · Pr

(u(∞) ,v(∞) )
[HD(𝑢, 𝑣) ≥ 𝑏] .

The last equality above holds because whenever 𝐶 (∞)1 holds, we know that Tam will replace 𝑢𝑖+1

with 𝑣𝑖+1 ≠ 𝑢𝑖+1 and this makes the hamming distance of 𝑢≤𝑖+1 from 𝑣≤𝑖+1 equal to 𝑏. □

Now we prove the following lemma about the power of attacks with infinite budget. Claim 19

in [90] also prove a similar bound for their attack but our attack achieves a better bound because of

the fact that our attack has only one step in which the replacement might happen which allows us to

make a better use of Azuma’s inequality with dynamic interval (See Lemma 4.1.3).

Lemma 4.2.3. If 𝜇∞ = E(𝑢,𝑣)∼(u(∞) ,v(∞) ) [ 𝑓 (𝑣)] and 𝜆 = max𝑖∈[𝑛] 𝜆𝑖, then

𝜇∞ ≥ 1 − 𝑒−
2𝜇2

𝑚𝜆2 .

Proof. We define a sequence of random variables t = (t1, . . . , t𝑚), where 𝑡𝑖+1 = 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖) is a

random variable that is dependent on 𝑣≤𝑖+1. Then we have

E
(u(∞) ,v(∞) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖)]

≥ E
(u(∞) ,v(∞) ) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1) − 𝑓 (𝑣≤𝑖)] = 0.

Therefore, t defines a sub-martingale. Furthermore, we have

𝑓 ∗ ≥ 𝑓 (𝑣≤𝑖+1) ≥ 𝑓 ∗ − 𝜆.

Therefore, 𝑡𝑖 always falls in an interval of size 𝜆. Hence, applying the right variant of Azuma’s

Inequality (as stated in Lemma 4.1.3) over t, we have

Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣≤𝑚) = 0] = Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣) − 𝜇 ≤ −𝜇] = Pr
(u(∞) ,v(∞) )

[ 𝑚∑︁
𝑖=1

𝑡𝑖 ≤ −𝜇
]
≤ 𝑒−

2𝜇2

𝑚𝜆2 . (4.8)
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Now, leveraging the fact that 𝑓 outputs in {0, 1} and relying on Inequality (4.8), we have

Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣) = 1] = 1 − Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣) − 𝜇 ≤ −𝜇] ≥ 1 − 𝑒−
2𝜇2

𝑚𝜆2 .

□

Lemma 4.2.4. If 𝜆 = max𝑖∈[𝑏] 𝜆𝑖, then

Pr
(u(∞) ,v(∞) )

[HD(𝑢, 𝑣) ≥ 𝑏] ≥ 1 − 𝑒−
2𝜇2

𝑚𝜆2 − 𝜇𝑏−1.

Proof. First we have

Pr
(u(∞) ,v(∞) )

[
(
𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏

)
∨ (HD(𝑢, 𝑣) ≥ 𝑏)]

= Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣) = 1 ∨HD(𝑢, 𝑣) ≥ 𝑏]

≥ Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣) = 1]

= 𝜇∞ ≥ 1 − 𝑒−
2𝜇2

𝑚𝜆2 (by Lemma 4.2.3). (4.9)

On the other hand, by a union bound we have

Pr
(u(∞) ,v(∞) )

[
(
𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏

)
∨ (HD(𝑢, 𝑣) ≥ 𝑏)] ≤

Pr
(u(∞) ,v(∞) )

[ 𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏] + Pr
(u(∞) ,v(∞) )

[HD(𝑢, 𝑣) ≥ 𝑏] . (4.10)

The generated process under 𝑏 − 1 replacing attack is same as 𝑚-replacing attack as long as the

number of replacements is less than 𝑏. Therefore, it holds that

Pr
(u(∞) ,v(∞) )

[
(
𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏

)
] ≤ Pr

(u(𝑏−1) ,v(𝑏−1) )
[ 𝑓 (𝑣) = 1] = 𝜇𝑏−1. (4.11)

Now, combining Inequalities (4.9), (4.10) and (4.11) we get

Pr
(u(∞) ,v(∞) )

[HD(𝑢, 𝑣) ≥ 𝑏] ≥ 1 − 𝑒−
2𝜇2

𝑚𝜆2 − 𝜇𝑏−1.

□
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Corollary 4.2.5. If 𝜆 = max𝑖∈[𝑏] 𝜆𝑖, then we have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2𝜇2
𝑚𝜆2 − 𝜇𝑏−1

)
.

Proof. Combining Lemmas 4.2.4 and 4.2.2 we have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 · Pr
(u(∞) ,v(∞) )

[HD(𝑢, 𝑣) ≥ 𝑏] (by Lemma 4.2.2)

≥ 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2𝜇2
𝑚𝜆2 − 𝜇𝑏−1

)
(by Lemma 4.2.4).

□

Theorem 4.2.6. If 𝜆 = max𝑖∈[𝑏] 𝜆𝑖, then we have

𝜇𝑏 ≥ 𝜇 +
(
1 −

𝑏∏
𝑖=1

(1 − 𝜆𝑖)
)
·
(
1 − 𝑒

−2𝜇2
𝑚𝜆2 − 𝜇

)
.

In particular, by setting all 𝜆𝑖 =
𝜇√
𝑛
we get

𝜇𝑏 ≥ 𝜇 +
(
1 −

(
1 − 𝜇
√
𝑚

)𝑏)
·
(
1 − 𝑒−2 − 𝜇

)
.

Note that the choice of 𝜆𝑖 = 𝜇/
√
𝑚 above is not optimal when we want to maximize 𝜇𝑖. The

optimal choice does not have a compact closed form and leads to different 𝜆𝑖’s for different remaining

budgets.

Proof. We prove this by induction on 𝑏. The case of 𝑏 = 1 directly follows from Corollary 4.2.5. For

𝑏 > 1, by Corollary 4.2.5 we have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2𝜇2
𝑚𝜆2 − 𝜇𝑏−1

)
,

which implies that

𝜇𝑏 ≥ (1 − 𝜆𝑏) · 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2𝜇2
𝑚𝜆2

)
.

Now we can use the induction’s hypothesis and replace 𝜇𝑏−1 with 𝜇 +
(
1 − ∏𝑏−1

𝑖=1 (1 − 𝜆𝑖)
)
·
(
1 −

𝑒−2𝜇
2/(𝑚𝜆2) − 𝜇

)
which implies that

𝜇𝑏 ≥ 𝜇 +
(
1 −

𝑏∏
𝑖=1

(1 − 𝜆𝑖)
)
·
(
1 − 𝑒

−2𝜇2
𝑚𝜆2 − 𝜇

)
,
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and that proves the claim. □

4.2.1 Making the attack polynomial time

In this section, we explain why the attack of the Section 4.2 can be implemented in polynomial time.

In particular, we show how we can modify Construction 4.2.1 so that it runs in polynomial time, if

one can efficiently sample form the random process conditioned on any prefix. (This is true, e.g.,

when the random process models a single-turn coin tossing protocol, as the original protocol shall

run in polynomial time.)

At a high level, the proofs of this section closely follow the steps of the proofs in Section 4.2, and

in each step we show that the proof is robust to using “approximate” values for what we previously

assumed to be known exactly. Therefore, for a reader who is not primarily concerned with the

polynomial-time aspect of the attack, we suggest reading Section 4.2, which is simpler.

Note that the attack of Construction 4.2.1 is not polynomial time mainly because calculating

𝑓 (·) and 𝑓 ∗ (·) oracles is not a polynomial-time task. In order to make the attack polynomial time,

we first show that if the algorithm has access to the approximated version of these oracles, it still

can achieve almost the same bias towards 1. Then, we show that calculating the approximation of

these approximate oracles is actually possible in polynomial-time.

First, we first state our new construction that uses the approximate oracles.

Construction 4.2.7 (𝑏-replacing using approximate partial-average and maximum-child oracles).

This attack uses the approximate oracle 𝑓 (·) (see Definition 4.1.2) so that for all 𝑣≤𝑖 we have

| 𝑓 (𝑣≤𝑖) − 𝑓 (𝑣≤𝑖) | ≤ 𝜏. (4.12)

The attack also uses an additional oracle for returning an approximate best choice for next block,

such that

𝑢∗𝑖+1 ∈
{
𝑢
′
𝑖+1 | Pr

[
𝑓 (𝑣≤𝑖 , 𝑢𝑖+1) > 𝑓 (𝑣≤𝑖 , 𝑢

′
𝑖+1)

]
≤ 𝜏

}
(4.13)

and also let 𝑓 ∗ (𝑣≤𝑖) = 𝑓 (𝑢∗
𝑖+1) and 𝑑 = HD(𝑢≤𝑖 , 𝑣≤𝑖). The attack is parameterized by a vector

𝜆≤𝑏 = (𝜆1, . . . , 𝜆𝑏) ∈ [0, 1]𝑏 for some integer 𝑏 ≤ 𝑚 which is adversary’s budget. The attack will keep

a state 𝜎𝑖 = (𝑢≤𝑖 , 𝑣≤𝑖) where 𝑢≤𝑖 are the original values and 𝑣≤𝑖 are the output values under attack.

Having state (𝑢≤𝑖 , 𝑣≤𝑖) and for given 𝑢𝑖+1 the approximate attacker App will decide on whether to

keep or replace 𝑢𝑖+1, using 𝑢∗𝑖+1, 𝑓
∗, and 𝑑 = HD(𝑢≤𝑖 , 𝑣≤𝑖) as follows.

• (Case 0) If 𝑑 ≥ 𝑏 do nothing and output 𝑣𝑖+1 = 𝑢𝑖+1.
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• (Case 1) if Case 0 does not happen and 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1) < 𝑓 ∗ (𝑣≤𝑖) − 𝜆𝑧, then output 𝑣𝑖+1 = 𝑢∗
𝑖+1.

• (Case 2) If Case 0 and Case 1 not happen, do nothing and set 𝑣𝑖+1 = 𝑢𝑖+1.

In all the cases above, App will also update the state 𝜎𝑖+1 accordingly by setting 𝜎𝑖+1 = (𝑢≤𝑖+1, 𝑣≤𝑖+1)

.

Now we show that if conditions 4.12 and 4.13 hold, then the attack of Construction 4.2.7 can

achieve the desired bias.

Lemma 4.2.8. Let 𝜇𝑏 be the average of the output bit after applying the attack of Construction 4.2.7.

Then, for 𝜆 = max𝑖∈[𝑏] 𝜆𝑖 we have

𝜇𝑏 ≥ 𝜇 +
(
1 −

𝑏∏
𝑖=1

(1 − 𝜆𝑖)
)
·
(
1 − 𝑒

−2(𝜇−5𝑚𝜏)2
𝑚·𝜆2 − 𝜇

)
− 6𝑚 · 𝑏 · 𝜏.

In particular, by setting all 𝜆𝑖 =
𝜇√
𝑚

and 𝜏 ≤ min( 𝜇

10000𝑚 ,
𝜀

12·𝑚2 ) we get

𝜇𝑏 ≥ 𝜇 +
(
1 −

(
1 − 𝜇/√𝑚

)𝑏) · (1 − 𝑒−1.99 − 𝜇) − 𝜀/2.
Before proving the theorem above, we mention the following corollary about the power of

polynomial time attacks.

Theorem 4.2.9. For any 𝜀 there is a 𝑏-replacing Appw [.] attack with oracle access to the sampler

from random process that runs in time poly(𝑁/(𝜀 · 𝜇)) and achieves bias at least(
1 −

(
1 − 𝜇
√
𝑚

)𝑏)
· (1 − 𝑒−1.99 − 𝜇) − 𝜀,

where 𝑁 is the total bit representation of the process.

Proof. We shall only show how to implement the approximate oracles 𝑓 (·) and 𝑓 ∗ (·) in polynomial

time. Doing so is possible by continuing the random process (i.e., the coin flipping protocol) many

times and taking their average, which is possible to be done efficiently because the attack has oracle

access to the process (in the context of coin tossing, this is possible if the protocol is single turn and

turns in polynomial time). Using Chernoff-Hoefding bound, we can bound the probability of having

error | 𝑓 − 𝑓 | larger than 𝜏 to be at most 𝜀/4𝑚, by making poly(𝑚/(𝜀 · 𝜏)) random continuations.

We can also ensure the condition for 𝑓 ∗ to happen with probability at least 1 − 𝜀/4𝑚, by making

poly(log(𝑚/𝜀)/𝜏) samples. Of course, there is a chance of our approximation failing but that does
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not hurt the proof as we bound the probability of the failure for both type of queries by 𝜀/4𝑛 and in

total we make at most 2𝑚 such queries during the course of the protocol. Therefore, by union bound,

the final probability of any of these queries failing is at most 𝜀/2. In the worst-case, for the failure

scenarios the average becomes 0 and we lose an additive 𝜀/2 in the final bias. Since our attack at

each round makes poly(𝑚/(𝜀 · 𝜏)) random continuations, the running time of the attack given oracle

access to the sampler is equal to 𝑂 (poly(𝑚/𝜀 · 𝜏)) = 𝑂 (poly(𝑚/𝜀 · 𝜇)). □

Now we prove Lemma 4.2.8.

Proof of Lemma 4.2.8. The proof is similar to the proof of Theorem 4.2.6. We first need to show

that the approximate attack would achieve high bias, in the case of infinite number of replacements.

We start by showing a variation of Lemma 4.2.3 with the approximated oracle.

Lemma 4.2.10. Let 𝜆 = max𝑖∈[𝑚] 𝜆𝑖. Then, we have

𝜇∞ ≥ 1 − 𝑒−
2(𝜇−5𝑚𝜏)2

𝑚𝜆2 − 2𝜏𝑚

Proof. We define a sequence of random variables t = (t1, . . . , t𝑚), where 𝑡𝑖+1 = 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖) is a

random variable that is dependent on 𝑣≤𝑖.

Then we have

E
(u∞ ,v∞) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ 𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖)] ≥ E
(u∞ ,v∞) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ 𝑓 (𝑣≤𝑖 , 𝑢𝑖+1) − 𝑓 (𝑣≤𝑖) − 2𝜏] = −2𝜏. (4.14)

Therefore, t defines an approximate sub-martingale.

Furthermore, by the guarantee of 𝑓 ∗ and the way the attack works we have

Pr
(u∞ ,v∞) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[ 𝑓 ∗ (𝑣≤𝑖) ≥ 𝑓 (𝑣≤𝑖+1) ≥ 𝑓 ∗ (𝑣≤𝑖) − 𝜆] ≥ 1 − 𝜏 (4.15)

Therefore, 𝑡𝑖 always falls in an interval of size 𝜆 and by Applying the approximate Azuma’s inequality

(as stated in Lemma 4.1.4) over 𝑡𝑖, we have

Pr

[
𝑚∑︁
𝑖=1

𝑡𝑖 ≤ −𝜇 + 𝜏
]
≤ 𝑒−

2(𝜇−5𝑚𝜏)2
𝑚𝜆2 + 2𝑚𝜏.

Then we have

Pr[ 𝑓 (𝑣) = 1] ≥ Pr[ 𝑓 (𝑣) > 𝜏] = Pr
[∑︁

𝑡𝑖 ≥ 𝜏 − 𝜇
]
≥ 1 − 𝑒−

2(𝜇−5𝑚𝜏)2
𝑚𝜆2 − 2𝑚𝜏.
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□

We then have the approximated version of Lemma 4.2.2.

Lemma 4.2.11. We have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 · Pr
(𝑢,𝑣)∼(u(∞) ,v(∞) )

[HD(𝑢, 𝑣) ≥ 𝑏] − 4𝑚𝜏.

Proof. The proof is very similar to the proof of Lemma 4.2.2. The only difference is that in Equation

(4.4) we switch from 𝑓 to 𝑓 and we only loose 2𝜏𝑚 because of the approximation error. Namely,

��� E
(u𝑏 ,v𝑏) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑚∑︁
𝑖=1

(
𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖)

)]
− E
(u𝑏 ,v𝑏) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑚∑︁
𝑖=1

(
𝑓 (𝑣≤𝑖+1) − 𝑓 (𝑣≤𝑖)

) ] ��� ≤ 2𝜏𝑚. (4.16)

All other equations will remain the same because Equations 4.1, 4.2 and 4.3 still hold when we

use 𝑓 instead of 𝑓 .

This will change Equation (4.5) and will add an additive term of 2𝜏𝑚 and we have

E
(u𝑏 ,v𝑏)

[ 𝑓 (𝑣)] − 𝜇 ≥

𝑚−1∑︁
𝑖=0

E
(u∞≤𝑖 ,v∞≤𝑖)

[
E

(u𝑏 ,v𝑏)) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) ·

(
𝐶∞1 (𝑢𝑖+1) ∧ (HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏)

) ] ]
− 2𝑚𝜏.

Similarly, for 𝑏 − 1 we have

E
(u𝑏−1 ,v𝑏−1)

[ 𝑓 (𝑣)] − 𝜇 ≤

𝑚−1∑︁
𝑖=0

E
(u∞≤𝑖 ,v∞≤𝑖)

[
E

(u𝑏−1 ,v𝑏−1) [𝑢≤𝑖 ,𝑣≤𝑖 ]

[
𝑔(𝑣≤𝑖+1, 𝑢≤𝑖+1) ·

(
𝐶∞1 (𝑢𝑖+1) ∧ (HD(𝑢≤𝑖 , 𝑣≤𝑖) < 𝑏 − 1)

) ]
+ 2𝑚𝜏.

By subtracting the two inequalities above the proof of Lemma is complete. □

Lemma 4.2.12. If 𝜆 = max𝑖∈[𝑏] 𝜆𝑖, then

Pr
(u∞ ,v∞)

[HD(𝑢, 𝑣) ≥ 𝑏] ≥ 1 − 𝑒−
2(𝜇−5𝑚𝜏)2

𝑚𝜆2 − 2𝑚𝜏 − 𝜇𝑏−1.



4.2 The attack 59

Proof. The proof steps of this lemma are exactly as those of Lemma 4.2.4. First we have

Pr
(u∞ ,v∞)

[
(
𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏

)
∨ (HD(𝑢, 𝑣) ≥ 𝑏)]

= Pr
(u∞ ,v∞)

[ 𝑓 (𝑣) = 1 ∨HD(𝑢, 𝑣) ≥ 𝑏]

≥ Pr
(u∞ ,v∞)

[ 𝑓 (𝑣) = 1]

= 𝜇∞

(by Lemma 4.2.10) ≥ 1 − 𝑒−
2(𝜇−5𝑚𝜏)2

𝑚𝜆2 + 2𝑚𝜏. (4.17)

On the other hand, by union bound we have

Pr
(u∞ ,v∞)

[
(
𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏

)
∨ (HD(𝑢, 𝑣) ≥ 𝑏)]

≤ Pr
(u∞ ,v∞)

[ 𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏] + Pr
(u∞ ,v∞)

[HD(𝑢, 𝑣) ≥ 𝑏] . (4.18)

It also holds that

Pr
(u∞ ,v∞)

[
(
𝑓 (𝑣) = 1 ∧HD(𝑢, 𝑣) < 𝑏

)
] ≤ Pr

(u𝑏−1 ,v𝑏−1)
[ 𝑓 (𝑣) = 1] = 𝜇𝑏−1. (4.19)

Now, combining Inequalities 4.17, 4.18 and 4.19 we get

Pr
(u∞ ,v∞)

[HD(𝑢, 𝑣) ≥ 𝑏] ≥ 1 − 𝑒−
2(𝜇+5𝑚𝜏)2

𝑚𝜆2 − 2𝑚𝜏 − 𝜇𝑏−1,

which finishes the proof. □

Corollary 4.2.13. If 𝜆 = max𝑖∈[𝑏] 𝜆𝑖, then we have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2(𝜇−5𝑚𝜏)2
𝑚·𝜆2 − 2𝑚𝜏 − 𝜇𝑏−1

)
− 4𝑚 · 𝜏.

Proof. This corollary follows by combining Lemmas 4.2.11 and 4.2.12. □

Putting things together. Now that we have all the required Lemmas we can prove Theorem

using the exact same inductive argument of Theorem 4.2.6. The case of 𝑏 = 1 directly follows from
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Corollary 4.2.13. For 𝑏 > 1, by Corollary 4.2.13 we have

𝜇𝑏 ≥ 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2(𝜇−5𝑚𝜏)2
𝑚·𝜆2 − 2𝑚𝜏 − 𝜇𝑏−1

)
− 4𝑚 · 𝜏,

which implies that

𝜇𝑏 ≥ (1 − 𝜆𝑏) · 𝜇𝑏−1 + 𝜆𝑏 ·
(
1 − 𝑒

−2(𝜇−5𝑚𝜏)2
𝑚·𝜆2

)
− 6𝑚 · 𝜏.

Now we can use induction hypothesis and replace 𝜇𝑏−1 with

𝜇 +
(
1 −

𝑏−1∏
𝑖=1

(1 − 𝜆𝑖)
)
·
(
1 − 𝑒

−2(𝜇−5𝑚𝜏)2
𝑚·𝜆2 − 𝜇

)
− 6𝑚 · (𝑏 − 1) · 𝜏

which implies that

𝜇𝑏 ≥ 𝜇 +
(
1 −

𝑏∏
𝑖=1

(1 − 𝜆𝑖)
)
·
(
1 − 𝑒

−2(𝜇−5𝑚𝜏)2
𝑚·𝜆2 − 𝜇

)
− 6𝑚𝑏𝜏,

and that proves the claim.

□



Chapter 5

Privacy leakage of data deletion

5.1 Introduction

Machine learning algorithms, in their most basic settings, focus on deriving predictive models with

low error by using a collection of training examples S = {𝑒1, . . . , 𝑒𝑚}. However, a model ℎS trained

on set S might reveal (sensitive information about) the examples in S, potentially violating the

privacy of the individuals whose contributed those examples. Such exposure, particularly in certain

(e.g., medical/political) contexts could be a major concern. In fact, the ever-increasing use of machine

learning (ML) as a service [106] for decision making further heightens such privacy concerns. Recent

legal requirements (e.g., the European Union’s GDPR [10] or California’s CCPA [11]) aim to make

such privacy considerations mandatory. At the same time, a recent line of work [19, 20, 21, 22] aims

at (mathematically) formalizing such privacy considerations and their enforcement.

The work of Shokri et al. [4] demonstrated that natural and even commercialized ML models

do, in fact, leak a lot about their training sets. In particular, their work initiated the membership

inference framework for studying privacy attacks on ML models. In such attacks, an adversary with

input example 𝑒 and access to an ML model ℎS aims to deduce if 𝑒 ∈ S or not. In a bigger picture,

membership inference of [4] and many follow-up attacks [107, 108, 52, 109, 110, 111, 112, 61, 113, 114]

as well as model inversion attacks [115, 116, 117, 19] can all be seen as demonstrating ways to infer

or reconstruct information about the data sets used in the ML pipeline based on publicly available

auxiliary information about them [41, 118, 51, 119, 120, 121]. A more recent line of work studies the

related question of “memorization” in machine learning models set [122, 19, 123, 124].

On the defense side, differential privacy [41, 42, 43] provides a framework to provably limit the

61
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information that would leak about the used training examples. This is done by guaranteeing that

including or not including any individual example will have little statistical impact on the distribution

of the produced ML model. Consequently, any form of interaction with the trained model ℎ (e.g.,

even a full disclosure of it) will not reveal too much information about whether a particular example

𝑒 was a member of the data set or not. Despite being a very powerful privacy guarantee, differential

privacy imposes a challenge on the learning process [45, 46, 47, 48, 49, 50] that usually leads to major

utility loss when one uses the same amount of training data compared with non-private training

[47, 125]. Hence, it is important to understand the level of privacy that can be achieved by more

efficient methods as well.

Privacy in the presence of data deletion. The above mentioned attacks are executed in a

static setting, in which the model is trained once and then the adversary tries to extract information

about the training set by interacting with the trained model afterwards. However, this setting is not

realistic when models are dynamic and get updated. Clearly, if an ML model gets updated due to a

deletion request, we are no longer dealing with a static ML model.

It might initially seem like a perfect deletion of a example 𝑒 from a model ℎS and releasing ℎ−𝑒

instead should help with preventing leakage about the particular deleted example 𝑒. After all, we are

removing 𝑒 from the learning process of the model accessible to the adversary. However, the adversary

now could potentially access both models ℎS and ℎ−𝑒, and so it might be able to extract even more

information about the deleted example 𝑒 compared to the setting in which the adversary could only

access ℎS or ℎ−𝑒 alone. As a simplified contrived example, suppose the examples S = {𝑒1, . . . , 𝑒𝑚}

are real-valued vectors, and suppose the ML model ℎS (perhaps upon many queries) somehow reveals

the summation
∑
𝑖∈[𝑚] 𝑒𝑖. In this case, if the set S is sampled from a distribution with sufficient

entropy, the trained model ℎS might potentially provide a certain degree of privacy for examples in

S. However, if one of the examples 𝑒𝑖 is deleted from ℎS , then because the updated model ℎ−𝑒𝑖 also

returns the updated summation
∑
𝑗≠𝑖 𝑒 𝑗 , then an adversary who extracts both of these summations

can reconstruct the deleted record 𝑒𝑖 completely. In other words, the very task of deletion might in

fact harm the privacy of the very deleted example 𝑒𝑖. Hence, in this work we ask: How vulnerable

are ML algorithms to leak information about the deleted examples, if an adversary gets to interact

with the models both before and after the deletion updates?
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5.1.1 Our contribution

In this work, we formally study the privacy implications of machine unlearning. Our approach is

inspired by cryptographic definitions, differential privacy, and deletion compliance framework of

[22]. More specifically, our contribution is two-fold. First, we initiate a formal study of various

attack models in the two categories of reconstruction and inference attacks. Second, we present

practical, simple, yet effective attacks on a broad class of machine learning algorithms for classification,

regression, and text generation that extract information about the deleted example.

Below, we briefly go over new definitions, the relation between them, and the ideas behind our

attacks. In what follows, ℎS is the model trained on the set S, and ℎ−𝑒 is the model after deletion of

the example 𝑒 ∈ S. When the context is clear, we might simply use ℎ to denote ℎS and ℎdel to denote

the model after deletion1. We assume that the deletion is ideal, in the sense that ℎ−𝑒 is obtained by

a fresh retrain on S \ {𝑒}.2 The adversary will have access to ℎS followed by access to ℎ−𝑒.

Deletion inference. Perhaps the most natural question about data leakage in the context of

machine unlearning is whether deletion can be inferred. In membership inference attack, the job of

the adversary is to infer whether an example 𝑒 is a member of the used training set S or not by

interacting with the produced model ℎS. In this chapter, we introduce deletion inference attacks

which are, roughly speaking, analogous to membership inference but in the context where some

deletion is happening. More specifically, our definition does not capture whether the deletion is

happening or not, and our goal (in the main default definition) is only to hide which examples are

being deleted. In particular, we formalize the goal of a deletion inference adversary to distinguish

between a data example 𝑒 ∈ S that was deleted from an ML model ℎS and another example 𝑒′ ∈ S

(or 𝑒′ ∉ S) that is not deleted from S. We follow the cryptographic game-based style of security

definitions. (See Definition 5.3.1 for the formal definition.)

Given examples 𝑒0, 𝑒1, with the promise that one of them is deleted and the other is not, one can

always reduce the goal of a deletion inference adversary to membership inference by first inferring

membership of 𝑒0, 𝑒1 in the two models ℎ, ℎdel. However, given that the adversary has access to both

of ℎ, ℎdel, it is reasonable to suspect that much more can be done by a deletion inference adversary

than what can be done through a reduction to membership inference. In fact, this is exactly what

we show in Section 5.3.3. We show that when both models ℎ, ℎdel can be accessed, relatively simple

attacks can be designed to distinguish the deleted examples from the other examples by relying on

1Using ℎdel is particularly useful when we want to refer to the model after deletion, without explicitly revealing the
deleted example 𝑒.

2We suspect our attacks should have a good success rate on “approximate” deletion procedures (in which ℎ−𝑒 is
just close to the ideal version) as well. We leave such studies for future work.
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the intuition that a useful model is usually more fit to the training data than to other data. In

Section 5.3, we show the power of such attacks on a variety of models and real world data sets for

both regression and classification. In each case, we both study deletion inference adversaries who

know the full labeled examples 𝑒0, 𝑒1 (and infer which one of them are deleted) as well as stronger

attackers who only know the (unlabeled) instances 𝑥0, 𝑥1.

Deletion reconstruction. The second category of our attacks focus on reconstructing part or all

of the deleted example 𝑒. As anticipated, reconstruction attacks are stronger (and hence harder to

achieve) attacks that can be used for obtaining deletion inference attacks as well (see Theorem 5.4.2).

In all of our reconstruction attacks, the adversary is not given any explicit examples, and its goal

is to extract information about the features of the deleted instance. We now describe some special

cases of reconstruction attacks that we particularly study.

• Deleted instance reconstruction. Can an adversary fully or approximate find the features

of a deleted instance 𝑥 (where 𝑒 = (𝑥, 𝑦) is the deleted example)? We show that for natural data

distributions (both theoretical and real data) the 1-nearest neighbor classifier can completely

reveal the deleted instance, even if the adversary has only black-box access to the models before

and after deletion. In particular, we show that when the instances are uniformly distributed

over {0, 1}𝑑, and the model is the 1-nearest neighbor model, an adversary can extract virtually

all of the features of the deleted instance (see Section 5.4.1). We also present attacks on real

data for two major application settings: image classification and text generation.

– Deleted image reconstruction. We show similar attacks on 1-nearest neighbor over

the Omniglot dataset, where the job of the adversary is to extract visually similar pictures

to the deleted ones (see Section 5.4.3).

– Deleted sentence reconstruction. We then study deletion reconstruction attacks

on language models. Here, a language model gets updated to remove an input (e.g., a

sentence) 𝑒, and the job of the adversary is to find useful information about 𝑒. We show

that for simple language models such as bigram or trigram models, the adversary can

extract 𝑒 completely.

• Deleted label reconstruction. Suppose we deal with a classification problem. For a deleted

example (𝑥, 𝑦) = 𝑒, can an adversary who does not know the instance 𝑥 infer any information

about the label of the deleted point? We show that this is indeed possible with a simple idea

when the data set is not too large. In particular, the deletion of a point with label 𝑐 reduces

the probability that the new model outputs label 𝑐 in general, and using this idea we give

simple yet successful attacks. Now, suppose the adversary is somehow aware of the instance 𝑥
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of a deleted example (𝑥, 𝑦) = 𝑒. Can the adversary leverage knowing the instance 𝑥 to learn

more information about the label 𝑦, than each of the models ℎ, ℎdel alone provide? We show

that doing so is possible for linear regression. In particular, we show an attack using which one

can extrapolate a deleted point’s label to a higher precision than what is provided through the

original model ℎ or the model after deletion ℎdel. (See Section 5.4.4 for more details.)

Weak deletion compliance. The above results all deal with first defining attack models and then

presenting attacks within those frameworks. Next, we ask if it is possible to realize machine learning

algorithms with deletion mechanisms that offer meaningful notions of privacy for the deleted points.

We approach this question through the lens of the recent work of Garg et al. [22] in which they

provide a general “deletion complience” framework that provides strong definitions of private data

deletion. We first give a formal comparison between the framework of [22] with our attack models

and show that the deletion compliance framework of [22] indeed captures all of the above-mentioned

attack models. Furthermore, we also present a weakened variant of the definition of [22] that is

adapted to a setting where the fact that deletion happened itself is allowed to leak. We believe this is

a natural setting that needs special attention. For example, consider a text with redacted parts; this

reveals the fact that deletion has happened, but not necessarily the redacted text. We further weaken

the framework of [22] by only revealing to the adversary what can be accessed through black-box

access to the model and not the full state of the model. We show that even such weaker variants of

deletion compliance still capture all of our attacks, and hence is sufficient for positive results. This

means that, as shown by [22], differential privacy (with strong parameters) can be used to prevent

all attacks of this chapter. However, note that enforcing differential privacy comes with costs in

efficiency and sample complexity. Hence, it remains an interesting direction to find more efficient

schemes (both in terms of running time and sample complexity) that satisfy our weaker notions of

deletion compliance introduced in this chapter. See Section 5.5 for more discussions.

Motivation behind the attacks. At a high level, our result is relevant in any context in which

(1) the users who provide the data examples care about their privacy and prefer not to reveal their

participation in the data set S (2) the system aims to provide the deletion operation, perhaps due to

legal requirements. Condition (1) essentially holds in any scenario in which membership inference

constitutes a legitimate threat. In scenarios where conditions (1) and (2) hold, if the adversary

maintains continuous access to the machine learning model (e.g., when the model is provided as

public service) then all the attacks studied in this chapter are relevant to practice and would model

different adversarial power.

Our security games model attacks in which the adversary aims to infer (or reconstruct) deletion
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of a random example from a dataset. Real world adversaries are stronger in the sense that they

could have a specific target in mind before making their queries to the online model. Moreover, real

world adversaries usually have a lot of auxiliary information (e.g., as those exploited in the attacks

on privacy on users in the Netflix challenge [126]) while our attackers have a minimal knowledge

about the distribution from which the data is sampled.

Having a diverse set of security games and attacks is analogous to having many different security

games and notions in cryptography (such as CPA and CCA security for encryption) to model different

attack scenarios. Informally speaking, and at a very high level, one can also think of the very strong

deletion compliance of [22] as “UC security” [127], while our other security games/notions model

weaker security criteria.

5.2 Related work

Chen et al [62] study a setting similar to our attacks. They show attacks that, given access to two

models – one trained on a dataset S and another on S \ {𝑒} – determine whether a given input 𝑒′ is

equal to the deleted item 𝑒. This is close to our notion of deletion inference, though not quite the

same. They show that their attacks perform much better than plain membership inference on the

first model. Our result differs from that of [62] in the following respects:

1. In addition to deletion inference, we also show various kinds of reconstruction attacks in a

variety of models with different reconstruction goals.

2. Their attacks are constructed by running sophisticated learning algorithms on the posteriors

corresponding to deleted and not deleted samples. While this results in attacks that work quite

well, these attacks have little explanatory power – it is not clear what enables them, and it is

hard to tell what the best way to prevent them is. Our attacks, on the other hand, make use of

simple statistics of the outputs of the models.

3. They show that certain measures like publishing only the predicted label or using differential

privacy can stop their attacks from working, but this is far from showing that such measures

prevent all possible attacks. In order to prove security against all attacks, a formalization of

what entails such security is necessary. We provide formal definitions of privacy and formally

build a connection to the deletion compliance framework of [22], which, as corollary, implies

that differential privacy can provably prevent any possible deletion inference attack.

The work of Salem et al [61] also studies a related setting. In their case, a model is updated by the

addition of new samples, rather than by deletion, and they show attacks that partially reconstruct
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either the new sample itself or its label. These attacks are constructed by training generative models

on posteriors of various samples from a shadow model. It is possible that their attacks can be used

when data is deleted as well. In fact, our attacks can also potentially be adapted to be applied

when the data is added rather than deleted (but the security game needs to change to formally allow

this). They also present a cursory discussion of possible defences against their attacks, suggesting

that adding noise to the posteriors or differential privacy might work. The distinction of our result

from theirs is along the same lines as above – our attacks are simpler and more transparent, and

our formalization allows us to identify strategies for provable security against arbitrary attacks by

proving the relation of our attacks and the deletion compliance of [22]. On the attack side, our result

studies the attack landscape with much more granularity by studying very specific attacks that aim

to only reconstruct (or infer) the instances, or their labels, or leverage the knowledge of the instance

to better approximate the labels.

Notation of Deletion Fix a learner Lrn, training set S, and model ℎ ∼ Lrn(S). We use ℎ−𝑒 ∼

DelS (ℎ, 𝑒) to denote the “ideal” data deletion procedure [55] that outputs ℎ−𝑒 ∼ Lrn(S \ {𝑒}) using

fresh randomness for Lrn if needed. (Hence, if 𝑒 ∉ S, then DelS (ℎ, 𝑒) simply returns a fresh retraining

on S.) In general, Del needs to know the training set on which ℎ is trained, or it needs a data

structure that keeps some information about S in addition to ℎ. Whenever S is clear from the

context, we might simply write ℎ−𝑒 ∼ Del(ℎ, 𝑒).

5.3 Deletion inference attacks

In this section, we describe a framework of attacks on machine unlearning (i.e., machine learning

with deletion option) schemes that can infer the deleted examples. Such attacks are executed by

adversaries who first access the model before deletion followed by having access to the model after

deletion. In each case, we will first formally explain our threat model. We also provide theoretical

intuition behind our attacks and report experimental findings by implementing those attacks.

Threat model. We define a security game that captures how well an adversary can tell which

element is being deleted from the training set. Note that our (default) definition is not aiming to

hide the fact that something is being deleted, and the only thing we try to hide is which element is

being deleted. We use a definition that is inspired by how (CPA or CCA) security of encryption

schemes are defined through indistinguishability-based security games [128, 129].
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Definition 5.3.1 (Deletion inference). Let Lrn be a learner, Del be a deletion mechanism for Lrn,

and 𝑆𝑚 be a distribution on datasets of size 𝑚. The adversary A and the challenger Chal interact as

follows.

1. Sampling the data and revealing the challenges. Chal picks a dataset {𝑧1, . . . , 𝑧𝑚} = S ∼

𝑆𝑚 of size 𝑚. Chal picks two indices 𝑖 ≠ 𝑗 ∈ [𝑚] at random and sends 𝑒0 = 𝑧𝑖 , 𝑒1 = 𝑧 𝑗 to A.

2. Oracle access before deletion. Chal trains ℎ ∼ Lrn(S). A is then given oracle access to ℎ,

and finally instructs moving to the next step.

3. Random selection and deletion. Chal picks 𝑏 ∼ {0, 1} at random and lets ℎdel ∼ Del(ℎ, 𝑒𝑏).

4. Oracle access after deletion. The adversary A is now given oracle access (only) to ℎdel.

5. Adversary’s guess. The adversary sends out a bit 𝑏′ to Chal and wins if 𝑏′ = 𝑏.

The scheme (Lrn,Del) is called 𝜌 insecure against deletion inference for data distribution 𝑆𝑚,

if there is a PPT adversary A whose success probability in the game above is at least 𝜌. (Note

that achieving 𝜌 = 1/2 is trivial.) Now, consider a modified game in which the adversary is given

only the instances (𝑥0, 𝑥1) where 𝑒0 = (𝑥0, 𝑦0), 𝑒1 = (𝑥1, 𝑦1). We call this game the instance deletion

inference. If an adversary has success probability at least 𝜌 in the instance deletion inference game,

then the scheme (Lrn,Del) is called 𝜌 insecure against instance deletion inference for distribution

𝑆𝑚. Similarly, we define label deletion inference, in which only the labels (𝑦0, 𝑦1) are revealed to the

adversary, and 𝜌-insecurity against such attacks accordingly. To contrast with instance and label

deletion inference, we might use example deletion inference attack to refer to our default deletion

inference attacks. ^

Note that winning in an instance or label deletion inference game is potentially harder than

winning the normal variant (with full examples revealed to the adversary) as the adversary can

always ignore the full information given to it. Hence, showing successful instance deletion inference

attacks is a stronger (negative) result. We empirically study the power of attacks in all these attack

models.

Other variants of Definition 5.3.1. Definition 5.3.1 can be seen as a weak definition of privacy

for deletion inference. The following list describe variants of Definition 5.3.1 that are either directly

weaker, or our attacks can be adapted to in a rather straightforward way.

• Two-challenges vs. one challenge. Definition 5.3.1 includes two challenge examples and

asks an adversary to find out which one is the actual deleted one. An alternative definition
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would only reveal one example to the adversary and asks it to tell if the example is deleted or

not.3

• Deletion-revealing vs. deletion-hiding. Definition 5.3.1 does not aim to hide the fact

that a deletion has happened. An alternative definition could even aim to capture hiding the

deletion itself by sampling the non-deleted example outside the dataset.

• Random vs. chosen challenges. Definition 5.3.1 asks the adversary to distinguish between

a random pair of challenge examples, one of which is deleted. In a stronger attack model, the

adversary is allowed to choose the challenge examples.

• Auxiliary information. Definition 5.3.1 does not explicitly give any extra information about

other examples 𝑒𝑏, 𝑏 ∉ {𝑖, 𝑗} to the adversary, while a real-word adversary might have such

knowledge.

• Multiple deletions vs. one deletion. Definition 5.3.1 does not allow more than one deletion

to happen, while in general users might request multiple deletions to happen over time. In

fact, in Section 5.3.3, we use this variant of the attacks to test our attacks on large data

sets and compare the result with deletion inference attacks that are obtained by reduction to

membership inference.

In Section 5.5, we discuss stronger security definitions that once satisfied would prevent the attack

of Definition 5.3.1 and all the variants above as special cases of the Deletion Compliance framework

of Gar et al. [22]. In particular, the definitions of this section (including Definition 5.3.1) model

weaker security guarantees than that of Deletion Compliance framework of [22], which makes our

attack results of this section stronger.

Our deletion inference attacks. We propose two variants of attacks: (1) (example) deletion

inference attack of Del-Inf-Exm which uses both instances and their true labels, and (2) instance

inference attack of Del-Inf-Ins which only uses the instances, without knowing the true labels. (In the

next subsection, we also show how to find the deleted label, which can be seen as a form of “label

reconstruction”and is stronger than label inference attacks.)

Attack Del-Inf-Exm using labeled examples. Our example inference attack Del-Inf-Exm is

parameterized by a loss function ℓ and proceeds by first computing the loss for both examples 𝑒0, 𝑒1

on both models ℎ, ℎdel. Then, this attack identifies the deleted example by picking the example that

leads to a larger increase in its loss when we go from ℎ to ℎdel. The intuition behind our attack is

that the examples in the dataset are optimized (to a degree depending on the learning algorithm) to

3If one can sample from the set S the two attack models can be shown to be equivalent using standard hybrid
arguments when the adversary’s success probability is negligible in security parameter. This is similar to how it is
done for CPA/CCA security games in cryptography.
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have small loss, while examples outside the dataset are not so. Therefore, once an example goes from

inside the dataset to outside, it incurs a larger increase in loss. We now define the attack formally.

Algorithm 1 (Attack Del-Inf-Exm). The attack is defined with respect to a loss function ℓ. For any

example 𝑒, we define the loss increase of 𝑒 as: 𝛿(𝑒, ℎ, ℎdel) = ℓ(ℎdel, 𝑒) − ℓ(ℎ, 𝑒). The adversary is given

two labeled examples 𝑒0 = (𝑥0, 𝑦0) and 𝑒1 = (𝑥1, 𝑦1) and also has oracle access to ℎ followed by access

to ℎdel. The attack proceeds as follows.

1. Query ℎ on both 𝑥0, 𝑥1.

2. After getting access to ℎdel, query ℎdel on both 𝑥0, 𝑥1.

3. Compute loss increases 𝛿(𝑒0, ℎ, ℎdel) and 𝛿(𝑒1, ℎ, ℎdel), and let 𝛼 = 𝛿(𝑒0, ℎ, ℎdel) − 𝛿(𝑒1, ℎ, ℎdel).

4. Output 0 if 𝛼 > 0, output 1 if 𝛼 < 0, and output a uniformly random bit 𝑏′ ∈ {0, 1} if 𝛼 = 0. ^

Connection to label memorization [124] . At a high level, Del-Inf-Exm can be seen as generalizing

the notion of memorization by Feldman [124] from the 0-1 loss to general loss functions. More

formally, if we use the 0-1 loss, then for 𝑒 ∈ S, the expected value Eℎdel∼Del(ℎ,𝑒) 𝛿(𝑒, ℎ, ℎdel) would

become equal to mem(Lrn,S, 𝑒) defined in [124] to measure how much the learner Lrn is memorizing

the labels of its training set. , and Using this intuition, our adversary picks the example that is most

memorized by the model.

The following lemma further formalizes the intuition behind our attack Del-Inf-Exm, so long as

the the learning algorithm is the ERM rule.

Lemma 5.3.2. Let ERM be the empirical risk minimization learning rule using a loss function

ℓ. Let ℎ = ERM(S), ℎ−𝑒 ∼ Del(ℎ, 𝑒) for 𝑒 ∈ S, and S−𝑒 = S \ {𝑒}. Let 𝛿𝑒 = 𝛿(𝑒, ℎ, ℎ−𝑒), and let

𝛿−𝑒 = E𝑒′∼S−𝑒 [𝛿(𝑒′, ℎ, ℎ−𝑒)] be the expected value of loss increase for examples that remain in the

dataset. Then the following two hold.

1. 𝛿−𝑒 ≤ 0.

2. 𝛿𝑒 ≥ −(𝑚 − 1) · 𝛿−𝑒 where 𝑚 = |S|. (In particular, by Part 1, it also holds that 𝛿𝑒 ≥ 0.)

Proof. The first item of the lemma holds simply because we are using the ERM rule. Namely, ℎ−𝑒

minimizes the empirical loss over S−𝑒 = S \ {𝑒}. Therefore:

𝛿−𝑒 = RiskS−𝑒 (ℎ−𝑒) − RiskS−𝑒 (ℎ) ≤ 0.
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Having proved the first part, the second part also follows due to using the ERM rule. In particular,

suppose for sake of contradiction that 𝛿𝑒 < −(𝑚 − 1) · 𝛿−𝑒, where 𝑚 = |S|. Then,

ℓ(ℎ, 𝑒) + (𝑚 − 1) · RiskS−𝑒 (ℎ) > ℓ(ℎ−𝑒, 𝑒) + (𝑚 − 1) · RiskS−𝑒 (ℎ−𝑒).

Then, this implies

RiskS (ℎ) =
ℓ(ℎ, 𝑒) + (𝑚 − 1) · RiskS−𝑒 (ℎ)

𝑛

>
ℓ(ℎ−𝑒, 𝑒) + (𝑚 − 1) · RiskS−𝑒 (ℎ−𝑒)

𝑚
= RiskS (ℎ−𝑒).

However, the this contradicts that the ERM rule outputs ℎ on training set S. □

Proposition 5.3.2 shows that whenever (1) 𝛿−𝑒 = E𝑒′∼S−𝑒 [𝛿𝑒′] < 0 and (2) 𝛿(𝑒′, ℎ, ℎ−𝑒) for 𝑒′ ∈ S−𝑒

is concentrated around its mean 𝛿−𝑒, then for a random 𝑒′ ∈ S−𝑒, the attack Del-Inf-Exm of Algorithm

1 would likely identify the deleted example correctly. Even though, in general we are not able to

prove when these two conditions hold, our experiments confirm that these conditions indeed hold in

many natural scenarios, leading to the success of Del-Inf-Exm of Algorithm 1.

Attack Del-Inf-Ins using instances only. We now discuss our attack that does not rely on knowing

the true labels 𝑦0, 𝑦1. The intuition is that, even if we do not know the true labels, when an example

𝑒 is deleted from the dataset, the change in the predicted label for 𝑒 is likely to be more than that of

other examples that stay in the dataset. The reason is that for the remaining examples, the model is

still trying to keep their prediction close to their correct value, but this optimization is not done

for the deleted example 𝑒. Hence, our adversary would pick the candidate example that leads to

larger change in the output label (not necessarily the loss). Hence, the attack is more natural to be

used for regression tasks, even though it can also be used for classification if one uses the confidence

parameters instead of the final labels.

Algorithm 2 (Attack Del-Inf-Ins). The attack is parameterized by a distance metric dis over Y (e.g.,

Y = R and dis(𝑦0, 𝑦1) = |𝑦0 − 𝑦1 |). The adversary is given two instances 𝑥0, 𝑥1, and it has oracle

access to ℎ followed by ℎdel. The attack then proceeds as follows.

1. Query the models (in the order of accessing them) to get ℎ(𝑥0), ℎ(𝑥1), ℎdel (𝑥0), ℎdel (𝑥1), and

let 𝛽 = |ℎ(𝑥0) − ℎdel (𝑥0) | − |ℎ(𝑥1) − ℎdel (𝑥1) |.

2. Return 0 if 𝛽 > 0, return 1 if 𝛽 < 0, and return a random answer in {0, 1} if 𝛽 = 0. ^
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5.3.1 Experiments: Deletion inference attacks on regression

Now we apply our attack Del-Inf-Exm (Algorithm 1) and attack Del-Inf-Ins (Algorithm 2) on multiple

regression models including Linear Regression, Lasso regression, SVM Regressor, Decision Tree

Regressor, and Neural Network Regressor4.

Experiment details. Table 5.1 includes the details of all the datasets we used in the deletion

inference experiments and also in other experiments later. We use two regression datasets Boston

and Diabetes. For training the original model ℎ, we use a random subset with 90% of the dataset.

Here we describe the hyperparameters of target models.

• MLP: We use multiple layer perceptron with two hidden layers. We set the size of hidden

layers as (20, 2). We use LBFGS as the optimization algorithm to train the model, and we

train 200 epochs on the model.

• SVM: We use the default SVMRegressor in Scikit-learn. Specifically, we use RBF kernel with

𝐶 = 1.0.

• Decision tree: For the decision tree model, we use the default DecisionTreeRegressor in

Scikit-learn. Specifically, we use Gini impurity to split the leafs and do not set a limit on the

tree size.

• Linear regression: We use the default LinearRegression in Scikit-learn.

• Lasso regression: We use the Lasso class in Scikit-learn with 𝛼 = 0.1.

The experiment follows the security game of Definition 5.3.1. To ensure the perfect deletion,

ℎdel is obtained by a full re-training with the dataset without the deleted example. For the attack

Del-Inf-Exm, we use squared loss, which is defined as ℓ(ℎ, (𝑥, 𝑦)) = (ℎ(𝑥) − 𝑦)2. Finally, we repeat

the security game of Definition 5.3.1 1000 times and take the average success probability of the

adversaries.

Results. The result is shown in Table 5.2. In most cases, our adversary gets more than 90% success

probability in the deletion inference.

No. Samples No. Features Label Predict

Regression
Boston [130] 506 14 Real The median house price
Diabetes [131] 442 10 Real Disease progression

Classification
Iris [132] 150 4 3 types The type of iris plants
Wine [133] 178 13 3 types Wine cultivator
Breast Cancer [134] 569 30 Binary Benign/malignant tumors
1/12MNIST[88] 5000 784 10 types Digit between 0 to 9
CIFAR-10 [135] 60000 3072 10 classes Image classification
CIFAR-100 [135] 60000 3072 100 classes Image classification

Table 5.1: Descriptions of the datasets used in deletion inference.

4Implementation of the methods are from the python library Scikit-learn.
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Boston Diabetes
Learning Method Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins
Linear regression 99.8% 99.1% 99.8% 99.3%
SVM 93.9% 89.1% 99.2% 100.0%
Lasso regression 98.8% 97.1% 99.3% 98.3%
Decision tree 100.0% 100.0% 100.0% 100.0%
MLP 80.4% 78.3% 72.2% 72.3%

Table 5.2: Success probabilities of various attacks on regressors for different datasets.

5.3.2 Experiments: Deletion inference attacks on classification

In this experiment, we apply Del-Inf-Exm and Del-Inf-Ins on classification tasks. In our experiments,

we use different models, including logistic regression, support vector machine (SVM), Decision tree,

random forest, and multi-layer perceptron (MLP). For the hyperparameters, we use

• MLP: Similar with regression, we use multiple layer perceptron with two hidden layers. For

classification, we set the size of hidden layers as (20, 10). The reason behind is that the output

layer of classification tasks have more neurons. We use LBFGS as the optimization algorithm

to train the model, and we train 200 epochs on each model.

• SVM: We use the default SVMClassifier in Scikit-learn. Specifically, we use the RBF kernel

with 𝐶 = 1.0.

• Decision tree: We use the default DecisionTreeClassifier in Scikit-learn. Specifically, we use

Gini impurity to split the leafs and do not set a limit on the tree size.

• Random forest: We use the default RandomForestClassifier in Scikit-learn, which generates

10 trees in the forest. For each tree, its hyperparameter is the same with the decision tree

classifier above.

• Logistic Regression and Linear regression: We use the default LogsticRegression class

from Scikit-learn.=

Experiment details. We use datasets Iris, Wine, Breast Cancer, and 1/12MNIST. (The details

of the datasets are shown in Table 5.1.) Similarly to attacks on regression, We pick a random 90%

fraction of the dataset to train the model, and we do a full retrain to obtain ℎdel. The difference

compared to the case of regression is that the label space Y is now a finite set. In this experiment, we

assume the output of any hypothesis function ℎ ∈ H is a multinomial (confidence) distribution over

Y, and this probability is available to the adversary. This assumption is realistic as many machine

learning applications have the confidence as part of the output [106], and this is also the default

setting of many adversarial machine learning researches [4, 52]5. To formally fit the attack into the

5The model in this scenario is still considered as black-box in most machine learning adversarial literature, but
someone may argue it is not fully black-box.
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framework of Definition 5.3.1, we can extend the set Y to directly include any such multinomial

distribution as the actual output “label”.

For Del-Inf-Exm, we use the negative log likelihood loss function ℓ(ℎ, (𝑥, 𝑦)) = − log (Pr[ℎ(𝑥) = 𝑦]).

We then repeat the security game of Definition 5.3.1 1000 times to approximate the winning

probability.

Results. We present the result of attacks Del-Inf-Exm and Del-Inf-Ins on three classification datasets

in Table 5.3. As anticipated, the success rates Del-Inf-Exm are noticeably larger than those of

Del-Inf-Ins.

Datasets → Iris Wine Breast Cancer 1/12 MNIST
Learning Method ↓ Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins Del-Inf-Exm Del-Inf-Ins
Logistic Regression 88.3% 86.8% 80.8% 76.1% 69.1% 60.6% 72.9% 56.6%
Decision Tree 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
SVM 70.5% 60.3% 76.9% 66.7% 73.8% 57.3% 72.3% 62.0%
Random Forest 89.2% 89.1% 83.3% 78.1% 89.2% 85.7% 89.9% 84.5%
MLP 92.9% 55.5% 54.2% 51.1% 83.5% 67.7% 62.5% 59.0%

Table 5.3: Success probabilities of the attacks Del-Inf-Exm and Del-Inf-Ins on classifiers for different
datasets.

5.3.3 Attacking large models and datasets

In this section, we aim to show that our deletion inference attacks can be scaled to work with large

datasets and models. We first formally describe how deletion inference attacks can be obtained

through black-box reductions to membership inference attacks. We then demonstrate the power of

our attacks on datasets of the same size as those of [4] and compare the power of our direct deletion

inference to doing reduction to the membership inference attack of [4]. We show that using our

method can lead to significantly stronger results than making a black-box use of membership inference

attacks.

5.3.4 How to reduce deletion inference to membership inference

One can always reduce the task of deletion inference to the task of membership inference. In

particular, if we had a perfect membership inference oracle, we could use it to infer whether a given

example is deleted or not by calling the membership inference oracle on the two models ℎ, ℎdel.

Algorithm 3 below shows an intuitive way to reduce deletion inference (DI) to imperfect member-

ship inference (MI) in a black-box way. Specifically, suppose the membership inference adversary

𝑀 (𝑒, ℎ) → {0, 1} returns 1 if (it thinks) 𝑒 is a member of the dataset that is used to obtain the

model ℎ. Then, if a deletion inference adversary wants to find out whether 𝑒 is deleted from the
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model ℎ to reach the model ℎdel, it can simply run 𝑀 (𝑒, ℎdel) and output what it outputs. Note that

there is no need to run 𝑀 (𝑒, ℎ), as the adversary of Definition 5.3.1 is given the promise that both

𝑒0, 𝑒1 are members of the initial dataset S. Then the only question is how to combine the answers

𝑀 (𝑒0, ℎdel), 𝑀 (𝑒1, ℎdel), which Algorithm 3 decides in a natural way.

Algorithm 3 (From membership to deletion inference). Given examples 𝑒0 = (𝑥0, 𝑦0), 𝑒1 = (𝑥1, 𝑦1)

and models ℎdel, the reduction from deletion inference to membership inference proceeds as follows:

1. Perform two membership inferences to obtain 𝑏0 = 𝑀 (𝑒0, ℎdel) and 𝑏1 = 𝑀 (𝑒1, ℎdel).

2. Return 0 if 𝑏0 = 0, 𝑏1 = 1, return 1 if 𝑏1 = 1, 𝑏0 = 0, and return a random bit if 𝑏0 = 𝑏1. ^

Using confidence probabilities. An alternative reduction to Algorithm 3 can use the confidence

probabilities of 𝑀 (𝑒0, ℎdel) and 𝑀 (𝑒1, ℎdel) instead of their final (rounded) values. In this variant,

the reduction returns 0 if the confidence difference of 𝑀 (𝑒0, ℎdel) − 𝑀 (𝑒0, ℎ) to output zero is more

than the confidence difference of 𝑀 (𝑒1, ℎdel) − 𝑀 (𝑒1, ℎ) to output zero.

5.3.5 Experiments with large data, and comparison with reduction to

membership inference

We now evaluate our deletion inference attacks Del-Inf-Exm and Del-Inf-Ins on large dataset and

large neural networks. In our experiment, we use CIFAR-10 and CIFAR-100 datasets [135] as the

training dataset, which are standard datasets for the evaluation of image classifiers, especially for

deep learning models.

To better compare the success of our attacks with [4] we use a variant attack of Definition 5.3.1

in which multiple deletions happen (as explained in one of the variants following Definition 5.3.1).

One advantage of this experiment setting is that the attack of [4] needs to train “attack models” for

each victim model, and hence having multiple different deletions lead to multiple full training of

attack models for [4] which is very expensive to run. However, in the multiple-deletion attack setting,

one needs to only train the attack models of [4] twice to compare each execution of our attack with a

reduction to [4].

Setting of our attack. The success probability is then calculated by taking the average over 20

rounds of full experiment. In each round of experiment, we first train a deep model with 𝑚 examples,

where 𝑚 varies from 15, 000, 20, 000, 25, 000, and 29, 540 (29, 540 is picked to match the scenario of

[4]). We then randomly remove a batch of 100 examples in the training dataset, and train a new

model without those 100 examples. As a reference, we pick another 100 random examples that



5.3 Deletion inference attacks 76

remains in the dataset. The success probability is calculated over every pairs (in total, 10, 000 pairs)

of the deleted and reference examples, i.e., one deleted examples and one remaining example is given

to the deletion inference adversaries Del-Inf-Exm and Del-Inf-Ins. We then measure the fraction of

all pairs in which our adversary correctly predicts the deleted example. We evaluate our results on

two deep neural network models: 1. A convolutional neural network that includes two convolutional

layers (called smallCNN below), similar to the network used in [4]. 2. VGG-19 network (called VGG

below) that has 19 layers in total, which is well-known for its power for image classification tasks.

Baseline settings for comparison. We compare our attacks with reductions to the membership

inference attack in [4]6, i.e., reduction with label only and reduction with confidence probabilities.
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Figure 5.1: Trend of success probabilities of attacks Del-Inf-Exm and Del-Inf-Ins on smallCNN
models trained with different number of examples are shown; (a) uses dataset CIFAR-10 and (b) uses
dataset CIFAR-100 dataset. The success probabilities are also compared with two baseline attacks
that are obtained by reductions to the membership inference attack of [4].

Results. In Figure 5.1 and 5.2, we analyze the success probabilities of our deletion inference

adversaries Del-Inf-Exm and Del-Inf-Ins on smallCNN model and VGG model. Our attack is able to

correctly predict most of the deletions in the deep learning models, even when a batch of examples

is deleted at the same time. Furthermore, note that for the membership inference attack of [4] to

work, the adversary needs to have the label of the target instance and also make many queries to

the target model for training an attack model (or many auxiliary data examples to train a similar

model). On the other hand, our attack is extremely simple, and Del-Inf-Ins even does not require the

label of the example.

Remark 5.3.3 (About using reduction to MI as baseline). Here we comment on the limitations of

membership inference as a baseline attack, as membership inference is not tuned to distinguishing

6We implemented [4] attack. [4] reports their membership inference attack achieves 71% success rate on a CNN
model with two convolutional layers that is trained with CIFAR-10 dataset with 15, 000 random examples. Our
implementation of membership inference attack achieves 74% success rate on smallCNN model (which also has two
convolutional layers) and 88% success rate on VGG model, which are trained on a subset of CIFAR-10 dataset with
15, 000 random examples. The success rate matches the number reported in their work.



5.4 Deletion reconstruction 77

90.33%
88.50%

87.06%
85.76%86.06%

82.24% 79.64%
80.38%

81.92%

78.71%
77.33%

75.37%

83.46%
83.21%

81.22%

74.30%
70%

75%

80%

85%

90%

95%

100%

15000 20000 25000 29540

DelInfLbl
DelInfIns
Reduction label only
Reduction with probability

(a)

98.10%
97.25% 97.23%

95.94%

96.75%
95.76%

94.80%
93.66%

85.99% 85.89%
85.00%

83.65%

90.25% 89.53%

87.27% 87.10%

80%

85%

90%

95%

100%

15000 20000 25000 29540

DelInfLbl
DelInfIns
Reduction label only
Reduction with probability

(b)

Figure 5.2: Trend of success probabilities of attacks Del-Inf-Exm and Del-Inf-Ins on VGG models
trained with different number of examples are shown; (a) uses dataset CIFAR-10 and (b) uses dataset
CIFAR-100 dataset. The success probabilities are also compared with two baseline attacks that are
obtained by reductions to the membership inference attack of [4].

between two points (one of which is guaranteed to be in the training set). Indeed, membership

inference attackers only get only one instance as input, while our formalization of deletion inference

gets two inputs. However, please note that we compare our deletion inference attackers to reductions

to membership inference adversaries. The reduction is allowed to call the MI adversary multiple

times. Indeed our reduction of the previous subsection calls the MI adversary twice, and this change

makes the reduction to MI (which is a DI adversary itself) powerful enough to be able to win the DI

inference game with probability close to 1, so long as its (regular) MI oracle wins its own game with

probability close to 1.

5.4 Deletion reconstruction

Section 5.3 focused on attacks that infer which of the two given examples is the deleted one. A

more devastating form of attack aims to reconstruct the deleted example by querying the two models

(before and after deletion). In this section, we show how to design such stronger attacks. We propose

two types of reconstruction attacks on the deleted example. The first one focuses on reconstructing

the deleted instance, while the second one focuses on reconstructing the deleted label. Both types of

attacks follow the same security game which is explained in the definition below.

Definition 5.4.1 (Deletion reconstruction attacks). Let Lrn be a learning algorithm, Del be a

deletion mechanism for Lrn, and 𝑆𝑚 be a distribution over (X × Y)𝑚. Consider the following game

played between the adversary A and challenger Chal.

1. Sampling the data and random selection. Chal picks a dataset {𝑒1 . . . 𝑒𝑚} = S ∼ 𝑆𝑚 of

size 𝑚. It also chooses 𝑖 ∼ [𝑚] at random.
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2. Oracle access before deletion. The challenger Chal trains ℎ ∼ Lrn(S). The adversary A is

then given oracle access to ℎ. At the end of this step, the adversary instructs moving to the

next step.

3. Deletion. The challenger obtains ℎ−𝑒𝑖 ∼ Del(ℎ, 𝑒𝑖).

4. Oracle access after deletion. The adversary A is now given (only) oracle access to ℎ−𝑒𝑖 .

5. Adversary’s guess. Adversary outputs a guess 𝑒.

For a similarity metric dis defined on (X × Y), the adversary A is called a (𝜌, 𝜀)-successful deletion

reconstruction attack if it holds that Pr[dis(𝑒, 𝑒𝑖) ≤ 𝜀] ≥ 𝜌. For bounded dis(·, ·) ∈ [0, 1] and an

adversary A, we define the expected accuracy of A as 1 − E[dis(𝑒, 𝑒𝑖)]. ^

Deleted instance/label reconstruction attacks. One can use Definition 5.4.1 to capture attacks

in which the goal of the adversary is to only (perhaps partially) reconstruct the instance 𝑥 or the

label 𝑦. In case of approximating 𝑥, we can use a metric distance dis that is only defined over X and

ignores the labels of 𝑒 and 𝑒𝑖. We refer to such attacks as deleted instance reconstruction attacks.

Similarly, by using a proper metric distance defined only over Y, we can use Definition 5.4.1 to

obtain deleted label reconstruction attacks. Finally, to completely find 𝑒 (resp. 𝑥 or 𝑦) we use the 0-1

metric dis(𝑒, 𝑒′) = 𝟙[𝑒 ≠ 𝑒′] (resp. 𝟙[𝑥 ≠ 𝑥 ′] or 𝟙[𝑦 ≠ 𝑦′]).

Theorem 5.4.2 (From reconstruction to inference). Let Lrn be a learning algorithm, Del be a deletion

mechanism for Lrn, dis be a distance metric over (X × Y), and 𝑆𝑚 be a distribution over (X × Y)𝑚.

Suppose there is a (𝜌, 𝜀)-successful PPT reconstruction adversary against the scheme (Lrn,Del), and

Pr[dis(𝑒0, 𝑒1) > 2𝜀] ≥ 1 − 𝛿 where the probability is over sampling 𝑒0, 𝑒1 from the sampled dataset

S ∼ 𝑆𝑚.7 Then, (Lrn,Del) is (𝜌 − 𝛿)-insecure against deletion inference over distribution 𝑆𝑚.

Proof of Theorem 5.4.2. We give a polynomial time reduction. In particular, suppose 𝐵 is a (black-

box) adversary that shows the (𝜌, 𝜀) insecurity of the scheme (Lrn,Del) against deletion reconstruction

attacks. We design an adversary A against deletion inference (as in Definition 5.3.1) as follows. Given

(𝑒0, 𝑒1) as challenges, first ignore (𝑒0, 𝑒1) and using oracle access to models ℎ, ℎdel, run 𝐵 to obtain 𝑒

as approximation of the deleted example. Output 0 if dis(𝑒0, 𝑒) ≤ 𝜀, else output 1 if dis(𝑒1, 𝑒) ≤ 𝜀,

otherwise output uniformly in {0, 1}.

We now analyze the reduction above. With probability at least 𝜌 over the execution of the attack

𝐵, it holds that dis(𝑒, 𝑒𝑏) ≤ 𝜀, where 𝑒𝑏 is the deleted example. Also, with probability 1 − 𝛿 it holds

7For example, when 𝑆𝑚 consists of 𝑚 i.i.d. samples from 𝐷, 𝑒0, 𝑒1 are simply two independent samples from 𝐷.
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that dis(𝑒0, 𝑒1) > 2𝜀. By a union bound, we have that with probability at least 𝜌 − 𝛿 both of the

conditions above happen at the same time, in which case the adversary A outputs the correct answer

𝑏. □

Due to the theorem above, all the reconstruction attacks below can be seen as strengthening of

deletion inference attacks.

5.4.1 Experiments: Deletion reconstruction of instances for nearest neigh-

bor

In this experiment, we consider a classification clustering task in high dimension. The previous work

[124, 136] studied the same setting and showed that machine learning models sometimes need to

memorize their training set in order to learn with high accuracy. In this setting, we extend the

attacks of [124, 136] into two directions to obtain deletion reconstruction attacks: (1) we obtain

polynomial time attacks that extract instances rather than proving mutual information between the

model and the examples, (2) we show a setting where the extraction is enabled after the deletion.

Roadmap and the leakage of the deletion. We develop polynomial-time reconstruction attacks

that crucially leverage the deletion operation. However, in order to analyze our attacks, we first

limit ourselves to the so-called singleton setting in which each label appears at most once for an

example in the dataset (Section 5.4.2). Focusing on this case allows us to provide theoretical ideas

that support our attacks. However, our attacks in the singleton case are also able to extract instances

even without deletion. Hence, in the singleton case, our attacks can be seen as leakage of the model ℎ

itself, even without deletion. Note that such attacks can still be used for deletion reconstruction, they

do not reflect the extra leakage of the deletion operation. Nevertheless, we next experimentally show

(Section 5.4.3) that virtually the same polynomial-time attacks succeed even when the labels are

not unique on the real world dataset Omniglot. In particular, when we have many repeated labels

(perhaps even as neighbor cells), then our simpole attacks do not extract the instances from access

to either of ℎ, ℎdel, and it is needed to have access to both models to find the “vanished” Voronoi cell

before extracting the center of the cell.

We now our polynomial-time deletion reconstruction attack for the case of 1-nearest neighbor

models. We work with instance space X = {0, 1}𝑑.8 We also assume the learner Lrn runs a 1-nearest

neighbor algorithm. Namely for ℎ = Lrn(S) where S = {(𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚)}, we have ℎ(𝑥) = 𝑦 𝑗

where 𝑗 = argmin𝑖 dis(𝑥, 𝑥𝑖).
8We use binary features because it is more general and that other features can also be represented in the form of

binary strings.
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We propose the following attack Del-Ins-Rec that aims to reconstruct the deleted instance 𝑥𝑖.

Algorithm 4 (Attack Del-Ins-Rec). Suppose the adversary is given oracle access to ℎ followed by

oracle access to ℎdel, along with an auxiliary set of instances T , |T | = 𝑚. (For example, T could

simply be 𝑚 independent samples different from the original training set S.) The attack then proceeds

as follows:

• For all 𝑥 ∈ T query the model ℎ.

• Then for all 𝑥 ∈ T , query the model ℎdel.

• Create the set of points in the “deleted region”: T ′ = {𝑥 | ℎ(𝑥) ≠ ℎdel (𝑥), 𝑥 ∈ T }.

• Return the majority for each coordinate; namely, return 𝑥 = (𝑡 ′1, . . . , 𝑡 ′𝑑), where ∀𝑖 ∈ [𝑑],

𝑡 ′𝑖 = argmax
𝑡 ∈{0,1}

∑︁
(𝑡1 ,...,𝑡𝑑) ∈T′

𝟙[𝑡𝑖 = 𝑡] . ^

Intuition behind the attack. The intuition behind the attack of Algorithm 4 is that instances

like 𝑥 whose prediction label changes during the deletion process should belong to the Voronoi cell

centered at 𝑥𝑖, where (𝑥𝑖 , 𝑦𝑖) is the deleted example. Then the algorithm heuristically assumes that

when we pick 𝑥 at random conditioned on changed labels, then they give a pseudo-random distribution

inside the Voronoi cell of 𝑥𝑖. In the next section we show that for a natural case called singletons, in

which the labels are unique, this intuition carries over formally. We then experimentally verify our

attack for the general case (when labels can repeat) on a real data set.

5.4.2 Theoretical Analysis for Uniform Singletons

In this section, we focus on a theoretically natural case to analyze the attack of Algorithm 4. We

refer to this case as the uniform singletons which is also studied in [124, 136] and is as follows. First,

we assume that instances are uniformly distributed in {0, 1}𝑑, secondly, we assume that the labels

are unique (i.e., without loss of generality, the labels 𝑦1, . . . , 𝑦𝑚 are just 1, . . . , 𝑛). The following

lemma shows that in this case, the attack of Algorithm 4 never converges to wrong answers for any

coordinate of the instances.

Lemma 5.4.3 (Non-negative correlations). Let S = {𝑥1, . . . , 𝑥𝑚} where ∀𝑖, 𝑥𝑖 ∈ {0, 1}𝑑, and suppose

ℎ(𝑥) = argmin𝑖 dis(𝑥, 𝑥𝑖), and we break ties by outputting the smallest index 𝑖, if multiple nearest

neighbors exist. Suppose C𝑖 = {𝑥 | ℎ(𝑥) = 𝑖} be the Voronoi cell centered at 𝑥𝑖. Let 𝑥 [ 𝑗] be the 𝑗 ’th bit
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of 𝑥. Then, for every 𝑖 ∈ [𝑚] and every 𝑗 ∈ [𝑑], we have

Pr
𝑥∼C𝑖
[𝑥 [ 𝑗] = 𝑥𝑖 [ 𝑗]] ≥

1

2
.

Proof of Lemma 5.4.3. Let C 𝑗 ,𝑡
𝑖

= {𝑥 ∈ C𝑖 | 𝑥 [ 𝑗] = 𝑡} be the subset of C𝑖 that has 𝑡 in its 𝑗 ’th coordi-

nate.

We claim that by flipping the 𝑗 ’th bit of every 𝑥 ∈ C 𝑗 ,1−𝑥𝑖 [ 𝑗 ] , we obtain a vector 𝑥 ′ ∈ C 𝑗 ,𝑥𝑖 [ 𝑗 ] . The

reason is as follows. (1) By definition, the 𝑗 ’th bit of 𝑥 ′ is indeed 𝑥𝑖 [ 𝑗]. (2) It holds that ℎ(𝑥 ′) = 𝑖,

which means 𝑥 ′ ∈ 𝐶𝑖. The reason for (2) is that, by flipping the 𝑗 ’th bit of 𝑥, 𝑥 ′ gets one step closer

to 𝑥𝑖 compared to how far 𝑥 was from 𝑥𝑖. Therefore, if 𝑥𝑖 was the nearest neighbor of 𝑥, it would also

be the nearest neighbor of 𝑥 ′ as well. A boundary case occurs if multiple points are the nearest points

of 𝑥, but the same tie breaking rule still assigns 𝑥𝑖 as the nearest neighbor of 𝑥 ′. Since the mapping

from 𝑥 to 𝑥 ′ is injective, it also gives an injective mapping from
���C 𝑗 ,1−𝑥𝑖 [ 𝑗 ]𝑖

��� to ���C 𝑗 ,𝑥𝑖 [ 𝑗 ]𝑖

���. This proves
that ���C 𝑗 ,𝑥𝑖 [ 𝑗 ]𝑖

��� ≥ ���C 𝑗 ,1−𝑥𝑖 [ 𝑗 ]𝑖

��� ,
which is equivalent to Pr𝑥∼C𝑖 [𝑥 [ 𝑗] = 𝑥𝑖 [ 𝑗]] ≥ 1/2. □

5.4.3 Deleted Image Reconstruction for 1-NN

We now show that the simple attack of Algorithm 4 can be used to reconstruct visually recognizable

images even when the distribution is not normal and labels are not unique. Hence, we conclude that

the actual power of this attack goes beyond the theoretical analysis of the previous section. We use

the Omniglot [137] dataset, a symbol classification dataset specialized for few-shot learning. The

dataset includes handwritten symbols from multiple languages.

Experiment details. We binarize each pixel of the dataset to remove the noise in gray-scale. The

input space is X = {0, 1}𝑑, where 𝑑 = 11025 is the number of pixels. We assume the Omniglot

dataset is divided into two parts: (1) a training subset which contains 140 symbols from 30 different

languages. The languages serve as the class label in the dataset in our experiments,9 and (2) a

fixed test set with another 140 examples from each language which is provided to the adversary

as auxiliary information. The learning algorithm Lrn is the 1-nearest neighbor predictor, which

for a dataset S always returns the label (i.e., the language) of the nearest example in the dataset

9Note that in the original dataset, the labels reflect the character, but to demonstrate the leakage of deletion rather
than the mere leakage of datasets alone, we use the labels that represent the languages to increase the frequency of the
labels.
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ℎ(𝑥 ′) = argmin𝑦{dis(𝑥, 𝑥 ′) | (𝑥, 𝑦) ∈ S}. We use Algorithm 4 as the attack, which simply takes

majority on each pixel over the instances that fall into the disagreement region of the two models

(before and after deletion). We run the security game of Definition 5.4.1 with 100 random images

from the dataset as the deleted image.

Comparison with reconstruction attacks without deletion. As a comparison to further

highlight the leakage that happens due to the deletion, we also run a similar reconstruction attack

without deletion. Suppose for a moment that labels were unique. Then, to reconstruct instance 𝑥,

the attacker aims to extract the image 𝑥 from the data set with label 𝑦, where 𝑦 is the label of 𝑥. To

do that, the reconstruction attacker can run the same exact attack as our deletion reconstruction, as

follows: it tests all the images in the test dataset on the model and records every image with label 𝑦.

The attacker then generate a reconstruction image by taking the majority of the images with label 𝑦

on every pixel.

When the labels are unique, this reconstruction attack can reconstruct the instances used by a

1-NN just like how our deletion reconstruction attack does and succeeds. However, in our case labels

are not unique. Hence, we use this attack as the baseline to show how much our deletion inference

attack is in fact extracting information that is the result of the deletion operation.

The result of our deletion reconstruction and the baseline (non-deletion) reconstruction attacks

are shown in Figure 5.3. Our deletion reconstruction algorithm reconstructs 40 out of 100 images,

due to page limit, 33 of them is shown in Figure 5.3. As is clear from the pictures, the non-deletion

reconstruction attack gives no meaningful result in our setting. More concretely, for 35 of the 40

images the label of the deletion reconstruction attack obtains the the correct label when fed back into

the nearest neighbor classifier, while only 1 of the images generated by the attack without deletion

obtains the correct label.

5.4.4 Known-instance label reconstruction

In this section, we study attacks in which the adversary knows the instance 𝑥 of the deleted record

𝑒 = (𝑥, 𝑦) and wishes to approximate the true label 𝑦 by querying the models ℎ and ℎdel. The goal is

to beat the correctness of both models for true label 𝑦. This means that, in case the two models

were supposed to hide the label (perhaps if it was a sensitive information to know very precisely) the

data removal process, in this case, clearly goes against the goal of hiding 𝑦 in its exact form.
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Figure 5.3: 33 reconstruction examples on Omniglot dataset. In the figure, Row 1 is the result from
the attack without deletion, Row 2 is the result from the deletion reconstruction attack, and Row 3
is the deleted example, which is the target of the attack.

Definition 5.4.4 (Known-instance label reconstruction). This definition is identical to Definition

5.4.1 with the only difference that the adversary is now given 𝑥𝑖 (but not 𝑦𝑖) in Step 2 of the

attack. ^

Even though one can define the success criteria of the attackers of Definition 5.4.4 the same way

as those of Definition 5.4.1, such attacks are only interesting if they can beat the precision of the

answers provided by the two models ℎ, ℎdel, as anyone (including the adversary) could query those

models on the point 𝑥𝑖, once 𝑥𝑖 is revealed. Our experiments show that such “accuracy boosting”

attacks are indeed sometimes possible in the presence of deletion operations.

We propose a simple attack LabelApp in Construction 5 below. LabelApp makes an estimation on

𝑦 based on the output of the two models.

Algorithm 5 (Attacker LabelApp). This attack is parameterized by 𝜆 > 0. Given sample 𝑥, models

ℎ and ℎdel, and a constant 𝜆, the label reconstruction adversary LabelApp proceeds as follows:

1. Query to obtain 𝑦 = ℎ(𝑥) and 𝑦′ = ℎdel (𝑥).

2. Return 𝑦 = 𝑦 + 𝜆 · (𝑦 − 𝑦′). ^

Intuition behind the attack. Similar to the attacks of Section 5.3 (see Proposition 5.3.2), the loss

of the deleted sample will increase after the deletion. For simplicity, suppose the loss is mean squared

error. In this case, when the learner follows the ERM rule, we have |𝑦′ − 𝑦 |2 ≥ |𝑦 − 𝑦 |2. Therefore,

moving from 𝑦′ towards 𝑦 makes the prediction closer to the actual label 𝑦. Consequently, using

a small positive 𝜆 could lead to less loss. The best value of 𝜆 in each different scenario could be

empirically estimated by a similar size dataset that is individually sampled by the attacker.
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Experiment details. We perform the attack on linear regression models. We test the attack on

two classic regression datasets, the Boston Housing Price Dataset [130] and the diabetes dataset

[131]. For each dataset, we train the model ℎ with the whole dataset. The adversary returns an

approximation 𝑦. |𝑦 − 𝑦 |2 will denote the distance of the prediction by the adversary, and we use

min( |ℎ(𝑥) − 𝑦 |2, |ℎdel (𝑥) − 𝑦 |2) as the baseline value to compare the quality of adversary’s prediction.

Results. We calculate the average distance of 𝑦𝑖 and 𝑦𝑖 with different 𝜆 values. Our results (in

Table 5.4) show that there exists a 𝜆 value for each dataset, such that can reduce the the estimated

loss by around 70%.

Best 𝜆 Models Adversary %
Boston 17.5 21.897 7.149 30%
Diabetes 30 2859.7 829.8 28%

Table 5.4: Result of the label reconstruction Attack on Logistic Regression. The column Models
lists the average of the minimum distance of the predictions of the two models ℎ, ℎdel. The column
Adversary lists the average distance of the prediction of the adversary and the real prediction, and
the percentage shows the percentage of the improvement in the prediction compared with the better
of the predictions of the two models ℎ, ℎdel.

5.5 Weak deletion compliance

In Sections 5.3 and 5.4, we studied attacks on data privacy under data deletion. The definitions of

those sections provide weak guarantees on what adversary cannot do, hence they are suitable for

stronger negative results. In this section, we investigate the other side; namely, positive results that

can prevent attacks of Sections 5.3 and 5.4 and provide strong guarantees about what adversary

can(not) learn about the data that is being updated through deletion requests. In particular, we

observe that the deletion compliance definition of Garg, Goldwasser and Vasudevan [22] would

prevent attacks of Sections 5.3 and 5.4. More precisely, we show that even a weaker variant of the

[22] definition would prevent the attacks of Sections 5.3 and 5.4.

Components of deletion compliance definition. The “deletion compliance” framework of Garg,

Goldwasser and Vasudevan [22] provides an intuitive way of capturing data deletion guarantees in

general systems that collect and process data. This framework models the world by three interacting

parties – the data collector DatCol, the deletion-requester DelReq, and the environment Env. All

components are the same as those of [22], however, we will work with a modified DelReq and a

different indistinguishability guarantee.
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• Data collector (learner) DatCol represents the algorithm that collects the records (training

examples) and processes data according to a (learning) mechanism. For example DelReq might

accept up to 𝑚 data storage requests and up to 𝑏 data deletion requests.

• Deletion requester (user) DelReq is a special honest user who only stores two particular examples

𝑒0, 𝑒1 and will delete one of them later. The timing of such requests are stated below. In the

original [22], the deletion requester just stores one record 𝑒 and delete it, or that it might never

store 𝑒 in the first place. At a high level, their DelReq is designed so that one can define privacy

that even hides the deletion itself, while our variant is designed for a weaker definition that

does not hide the deletion itself.

• Environment (adversary) Env models the “rest of users” who might not be honest and who

are interested in finding out what DelReq is deleting. The interaction between Env and

DatCol,DelReq is defined by the interfaces of DatCol,DelReq.

Interaction of the components. We letU model a universe of records. For example, U = Supp(𝐷)

for a distribution over labeled examples X×Y. We now describe the restrictions on how the components

interact with each other. Other than the below-mentioned restrictions, the parties run in PPT.

• DatCol accepts instructions A𝑑𝑑 (𝑒),Del(𝑒),Eval(𝑥). The interpretation of these instructions

are as follows. A𝑑𝑑 (𝑒) adds the record 𝑒 ∈ U to the set of records stored at DatCol. Del(𝑒)

removes 𝑒 from the set stored by the data collector, and Eval(𝑥) returns the evaluation of the

“current model” stored by DatCol (which is the result of learning over the set stored at DatCol)

on 𝑥 and returns the answer.

• As in [22], we also require that only Env can send messages to DelReq. At some point in the

execution of the system Env sends DelReq the following messages, which is followed by messages

from DelReq to DatCol as described below.

1. (A𝑑𝑑, 𝑒0, 𝑒1): DelReq sends A𝑑𝑑 (𝑒0),A𝑑𝑑 (𝑒1) to DatCol.

2. Del: DelReq will send Del(𝑒) to DatCol where 𝑒 ∈ {𝑒0, 𝑒1}. By DelReq𝑏 we refer to the

instantiation of DelReq that sends Del(𝑒𝑏) to DatCol.

Weak deletion compliance. For our purposes, we consider a different weaker definition (compared

to that of [22]) that still captures all attacks of Section 5.3 and 5.4. To start, we define two worlds,

World 0 and World 1, corresponding to the instantiation of DelReq by DelReq0 and DelReq1.
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Definition 5.5.1 (Weak deletion compliance). Let the interactive algorithms DatCol,Env,DelReq

be, in order, the data collector, the environment, and the deletion requester (interactive) algorithms

limited to interact as described above. We call DatCol 𝜀 deletion compliant, if no PPT Env can

detect whether it is in World 0 (with DelReq0) or World 1 (with DelReq1) with advantage more than

𝜀. If this holds under the restriction that Env makes at most (𝑏 − 1) deletion requests during the

execution, then DatCol is said to be 𝜀-weak deletion-compliant for up to 𝑏 deletions ^

Comparison with [22]. The key differences between our Definition 5.5.1 and that of [22] are as

follows. In each case, we state the property of our definition in contrast to that of [22].

• Hiding the state of DatCol from adversary. The definition of [22] focuses on scenarios

where the data collector’s state might be revealed at some point in the future (e.g., due to a

subpoena). However, in this work we focus on hiding the information that is leaked from the

data collector (about deleted record) through interaction with the adversary.

• Not aiming to hide the deletion itself. Whereas plain deletion-compliance asks that

deletion make the world look as though the deleted data were never present in the first place,

here we only ask that it not be revealed which record was deleted. For instance, a data collector

that is weak deletion-compliant might still reveal the number of deletions it has processed,

as long as the data that is deleted is not revealed. While weaker than deletion-compliance

definition of [22], our notion is fit for hiding the deleted record among the records in the training

set, and still giving a more general and stronger definition than Definition 5.3.1.

We now formally discuss why Definition 5.5.1 captures the attacks of Section 5.3 and 5.4. Recall

that Definition 5.3.1 was already shown in Theorem 5.4.2 to be a stronger notion than instance and

label reconstruction attacks (Definition 5.4.1). Hence, we just need to show that Definition 5.5.1 is

stronger than Definition 5.3.1.

Theorem 5.5.2 (Deletion inference from compliance). Let Lrn be a learner, Del be a deletion

mechanism for Lrn, 𝐷 be a distribution over labeled examples, and U = Supp(𝐷) be the universe of

records. The data collector DatCol answers queries as follows.

1. DatCol does not respond any Del or Eval queries till receiving 𝑚 A𝑑𝑑 (·) queries, which we refer

to as S.

2. DatCol permutes S and gets ℎ ∼ Lrn(S).

3. Then it answers Eval(𝑒) = ℎ(𝑒) queries arbitrarily.
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4. Then it accepts one Del(𝑒), and lets ℎ−𝑒 = Del(ℎ, 𝑒).

5. Then it continues answering Eval(𝑒) = ℎ(𝑒) queries.

If DatCol is (2𝜀 − 1)-deletion compliant (as in Definition 5.5.1) against PPT adversaries with oracle

access to 𝐷, then the scheme (Lrn,Del) is 𝜀-secure against deletion inference (as in Definition 5.3.1).

Proof of Theorem 5.5.2. We give a proof by reduction. Suppose A breaks the membership inference

security game of Definition 5.3.1 with probability (1 + 𝜀)/2. We construct an environment Env that

𝜀-distinguishes DelReq0 from DelReq0 with advantage 𝜀 that proceeds as follows:

1. Env plays the role of the challenger from Definition 5.3.1 and picks a data set {𝑒1, . . . , 𝑒𝑚} = S ∼

𝑆𝑚 of size 𝑚. Env passes this to the DatCol and picks 𝑖 ≠ 𝑗 ∈ [𝑚] at random as the challenge

records.

2. Next, Env instantiates A and provides it with the records 𝑒𝑖 , 𝑒 𝑗 and oracle access to ℎ (through

DatCol). At the end of this step, the adversary instructs moving to the next step.

3. Env passes (𝑒𝑖 , 𝑒 𝑗 ) to DelReq (which will then request the deletion of one of the two records).

4. Env actives the A again and it is again provided oracle access to ℎ (through DatCol). At the

end of this step, the adversary’s output is included in the output of the environment.

The view of the adversary A in the above experiment is identical to its view as part of Definition 5.3.1.

Thus, the output of A will correctly (with probability greater than 𝜖) identify whether DelReq requests

the deletion of record 𝑒𝑖 or record 𝑒 𝑗 . This allows us to conclude that the view of the Env changes

depending of whether DelReq requests deletion of 𝑒𝑖 or 𝑒 𝑗 . □

Using the same three components described in Section 5.5 (with a different DelReq), [22] defines

the notion of deletion-compliance. Here the ideal world is the same as the real world in all respects

except that DelReq is not allowed to communicate with DatCol as represented in Fig. 5.4. (The

restriction of DelReq not being able to send messages to Env was imposed in order for this ideal world

to be well-defined, by excluding cases where Env sends to DatCol messages that depend non-trivially

on DelReq’s records.) [22] calls DatCol to be 𝜀-deletion-compliant if, for any Env and DelReq, the

joint distributions of the state of DatCol and view of Env in the real and ideal world are 𝜀-close in

the statistical distance, denoted by notation ≈𝜀. That is,

(𝑠𝑡𝑎𝑡𝑒𝐷 , 𝑣𝑖𝑒𝑤𝐸) ≈𝜀 (𝑠𝑡𝑎𝑡𝑒Ideal𝐷 , 𝑣𝑖𝑒𝑤Ideal
𝐸 ).

The above (strong) definition from [22] captures the intuition that a system is deletion-compliant if

the state of the world after its deleting a record is similar to what it would have been if the record
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Figure 5.4: The real and ideal worlds for (strong) deletion compliance

Figure 5.5: The worlds for weak deletion-compliance

had never been part of the system in the first place. Note that this requirement of 𝜀-closeness in

statistical distance is more relaxed than the kind of closeness of distributions required by differential

privacy, and so DP can be used to satisfy these requirements. [22] showed how to obtain their strong

deletion compliance based on differentially private mechanisms.

To contrast with Figure 5.4, in Figure 5.5 we have depicted the more symmetric worlds that are

behind our Definition 5.5.1. In particular, Definition 5.5.1 requires that no PPT Env can distinguish

between World 0 and World 1 of Figure 5.5 by more than advantage 𝜀.



Chapter 6

Conclusion

In this dissertation we study the security and privacy implications of both malicious and benign

modifications.

6.1 Security implications of malicious modifications

To analyze the security implication of poisoning attacks, we give theoretical analyses from both the

viewpoint of the learner and the view of the adversary.

• From the learner’s viewpoint, we formally define learnability under instance-targeted poisoning

attacks. We show that when the budget of the adversary scales sub-linearly with the sample

complexity, (improper) PAC learnability and certification are achievable. In contrast, when the

adversary’s budget grows linearly with the sample complexity, the adversary can potentially

drive up the expected 0-1 loss to one for any PAC learner.

Still there are many open leads here. One main thing is to connect this result with specific

learning algorithms such as deep neural networks. In real practice, the learner Lrn is often not

a PAC learner. In that case, one may ask how to robustly learn from the dataset.

• From the adversary’s viewpoint, we show that adversary can amplify a vulnerability of the

machine learner. Specifically, given any small budget 𝑏 and let the probability that vulnerability

happens be 𝜇, the generic amplification attack can achieve a bias that is at least Ω(𝜇𝑏/
√
𝑚).

We show a generic result here. For specific learners and datasets, it is possible to guarantee a

larger bias for amplification attacks, leaving room for future studies.

89
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6.2 Privacy implications of benign modifications

To study the privacy implication of benign modifications, we demonstrate privacy leakage of (perfect)

machine unlearning. We presented various attacks that infer or extract information about the

deleted examples for a machine learning scheme when unlearning happens. Our various leakage

attacks demonstrate that the unlearning operation could come at an extra cost in privacy loss. In

particular, we introduced deletion inference and deletion reconstruction attacks that are reminiscent

of membership and data reconstruction attacks in the traditional setting where no updates are applied

to the model. Many intriguing questions remain open. Most prominently, it remains open to find

efficient learning methods with high accuracy that allow deletion with provable privacy guarantees.

Since differential privacy comes at the cost of utility loss, we hope to find an efficient and effective

algorithm that satisfies weak deletion compliance, which will solve the privacy leakage with minimal

cost.
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