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Abstract—Container ports face the decision of 

investment into a variety of emerging technologies, 

including electric vehicles, autonomous equipment, and 

hydrogen-based power. This research paper presents a 

simulation-based optimization study of a port using 

simulation software to reduce carbon emissions and 

improve efficiency of operations of a maritime container 

port. Through capacity planning and electrification 

modeling, the port was provided with recommendations 

that will be used for 3-5 year-out planning focused on 

decreasing emissions and improving energy utilization. 

Research focused on reduction of operational emissions, 

existing simulations of ports, and emerging technologies 

including electric vehicles, liquid natural gas, hydrogen 

power. The methodology included modeling smaller 

sections of the port through simulation software. Use cases 

were extended to various forms of equipment and vehicles.  

 

Carbon emissions were also represented. These models 

allowed for the simulation of the effect of the changes in 

equipment and observation of resulting financial and time 

costs. Recommendations for the number of chargers and 

the number of additional vehicles to be purchased were 

also discussed. Use cases also allowed for the identification 

of beneficial expansion into electric vehicles according to 

fuel times and maintenance requirements, with 

consideration of financial constraints. Preliminary results 

revealed positive potential, both environmentally and 

economically, in regard to the transition towards 

electrification of heavy-duty port machinery and away 

from diesel-powered equipment. The findings of this study 

highlight the prospect of using simulation-based 

optimization to improve the sustainability of operations of 

the maritime container port and to reduce their overall 

carbon footprint. 
 

I. MOTIVATION 

With millions of tons of goods handled each year, ports are 

a significant center for global trade and business. Across 

international commerce and the global economy, ports 

stimulate surrounding local economies through increased 

trade and job opportunities. Subsequently, port operations 

give rise to substantial detrimental effects on their natural 

surroundings, entailing significant effects on the health of 

human beings, animals, and the purity of air and water 

reservoirs. Thus, there is a rising need to comprehend the 

environmental effects of port operations better and to create 

mitigation plans. Figure 1 describes an analysis of emissions 

at a maritime container port by both propane emissions and 

kWh usage at various terminals of the port.  

 
Fig. 1. Sample Analysis of Energy Factors at a Maritime Container Port  

 

The complex dynamics of port operations can be 

represented using simulation models, which are also useful 

for predicting the possible effects of various scenarios [1, 13–

18]. Researchers and stakeholders can learn more about how 

various variables, such as cargo volume, vessel traffic, and 

weather conditions, affect environmental effects of a port.  

 

Simulation models can be used, for instance, to examine the 

efficacy of various techniques for lowering air pollution and 

greenhouse gas emissions, such as different modes of 

transportation or emission control technology. Moreover, 

simulation models can assist in locating potential 

environmental impact hotspots, such as locations with high 

levels of noise or water pollution, where focused mitigation 

efforts may be most successful.  

 

Figure 2 describes several terminals of a maritime container 

port. Environmental awareness has led to new tasks in the 

management of port systems [2]. The negative effects of 

carbon emissions on public health emphasize the critical 

importance of reducing air pollutant concentrations. On an 

international scale, present-day initiatives include the “EU-

funded H2Ports project” which was designed to accelerate the 

“port industry towards low-carbon/zero-emission and safe 

operative models” [3]. Such enterprises include testing and 

validating hydrogen-powered solutions, with inputs sourced 

from “customers, hydrogen producers, suppliers, etc.” [3]. 

Other state-of-the-art initiatives include the Proteus plan, 

which incorporates cold ironing, electric propulsion charging, 

multipurpose energy storage via “charging of electric vehicles 

within the port”, and a refined “energy management system” 

[4].  
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Fig. 2. Maritime Container Port That Benefits into the Future from 

Electrification and Conversion to Hydrogen Energy  

II. PURPOSE AND SCOPE 

  There is a global opportunity to reduce emissions from 

operations at maritime container ports [5]. The study will 

focus on modeling various scales of operation and comparing 

the variables of operational equipment and their effect 

metrics. This will involve an assessment of the current state 

of emissions and sustainability practices in the industry, as 

well as identifying opportunities for improvement through the 

use of systems engineering, stakeholder engagement, and 

innovative clean energy technology. The study will explore 

the different equipment and processes involved in port 

operations, including TEU (twenty-foot equivalent unit) 

throughput, equipment charging and fueling, and 

transportation to and from the port. By analyzing the 

environmental impact of these activities and identifying areas 

for improvement, the study aims to reduce the carbon 

footprint of maritime container ports and contribute to a more 

sustainable future. Future plans for expansion in terms of 

equipment inventory and expanded territory necessitate the 

need to understand streamlined port equipment operations and 

incite adequate capacity planning. While inventory expansion 

is beneficial to improved operations, increased fixed and 

variable costs entail the need to mitigate overinvestment. 

III. BACKGROUND 

  The electric grid capacity needed for electrification is two to 

three times greater than the current grid infrastructure [6]. It 

is crucial to prioritize the sustainable expansion of the electric 

grid by utilizing a combination of clean energy sources, while 

gradually decreasing the reliance on fossil fuels. Different 

energy sources have varying fixed costs and inefficiencies 

that are often unaccounted. Despite increasing usage, solar 

energy is currently the most costly and inconsistent in many 

regions due to periodical lack of sun. Looking into the future, 

all green energy costs are expected to fall, making mass 

electrification more economically feasible. 2027 estimates 

regard geothermal energy as the cheapest renewable energy 

source at that time, with price decreasing to around 

$22.04/MWh [7].  

Currently, geothermal energy costs between $56-

$93/MWh, so costs are decreasing quickly across the industry 

[8]. The cheapest clean energy source at the present time is 

wind, with a cost of $26-$50/MWh. However, this is only 

expected to decrease to an average of $29.90/MWh for 

onshore wind by 2027, while offshore wind platforms are 

predicted to be about four times more expensive than onshore 

[7]. 

IV. TECHNICAL APPROACH 

A. Simulation Design of Utility Tractor Rig Model 

Figure 3 describes the Utility Tractor Rig (UTR) simulation 

design that has one set of sources, two sets of servers, and one 

sink. The figure describes that the model has ten chargers. The 

berth that is modeled as the source begins at the five Rail 

Mounted Gantry (RMG) cranes, according to the distribution: 

0.01 + Gamma(0.00356, 9.39) [9].  

 

Following the berth, the RMGs transfer the TEUs to the 

container stacks, where the UTRs are in service to then 

transfer the TEUs onward. Once at the stacks, the UTRs 

process the TEUs with a distribution of 

Random.Exponential(15) minutes, with a rate of 4 

moves/hour.  

 

 
Fig. 3. Simulation for Electrification for Utility Tractor Rig at Maritime 

Container Port 

The number of UTRs at each stack varies from 4-7, based 

on the number currently in service. The UTRs transfer the 

TEUs to a discharge location or are sent to the charging 

stations to replenish power. If sent to a charging station, the 

selected station is chosen based on the lowest current number 

of UTRs in the queue.  

In the electrification model, the processing of UTRs occurs 

at a standard rate of Random.Exponential(80/22) minutes if 

sent to the charging stations, using the Orange EV UTR data 

[10]. The processing of UTRs occurs with a rate of 

Random.Exponential(3) minutes if sent to the hydrogen 

refueling stations, using data provided by the Toyota and 

Fenix UTR [11].  



  

 

 
Fig. 4. Ship-to-Shore (STS) Cranes at a Maritime Container Port 

B. Simulation Design of Rail Mounted Gantry Model 

The RMG model is designed with a single source 

representing a ship, RMG cranes as servers, and container 

yard stacks as sinks. It is designed in isolation from other 

pieces of port equipment and their operations. The source 

connects to each server via a single one-way path that splits 

from a transfer node. Each server is connected to a sink by a 

single one-way path. At maximum, each container yard has 

two operational RMGs.  

 

Thus, in the scenarios with three operational RMGs, there 

are two separate container yards. In the scenarios with six 

operational RMGs, there are three separate container yards. 

Figure 5 describes the simulation of six operational RMGs 

scenario.  

 

 
Fig.5. Simulation of Capacity and Throughput of Rail Mounted Gantry 

Cranes at Maritime Container Port 

The processing rate used for each server is 0.01 + 

Gamma(0.00356, 9.39) Hours per Box and is based on 

distribution data from Hassan et al. [9]. The distribution was 

used for rubber-tire gantries (RTG) handling, and was thus 

adapted to RMGs in this simulation [9]. The processing rates 

for all operational RMGs is identical.  

 

A first-in-first-out (FIFO) order was assumed and used for 

the entry ranking rule at the transfer node for transport of 

containers from the ship to the RMGs. It was assumed that 

there were no delays with transferring entities from RMGs to 

the yard stacks, so the transfer-in time to the stacks was 0 

minutes.  

 

Though RMGs operate bidirectionally to load and offload 

containers, this simulation focuses on the offloading process. 

Seen in Figure 4, ship-to-shore (STS) cranes are the first piece 

of equipment to offload containers from the sources and then 

pass these on to the RMGs; however, this simulation does not 

include STS processing nor STS servers. Simulations were 

conducted with an initial capacity of 30,000 entities at the 

source. All scenarios assume that each hour of operation has 

equal cost association. It was also assumed in all scenarios 

that no other disruptions occur, and that all shift changes and 

meal breaks do not run overtime nor experience delays.  

 

Each piece of equipment was modeled in separation from 

one another; there was no joining of RMGs, utility trucks, and 

top picks into one integrative simulation.  

 

For RMGs, there were three areas of particular interest: 1) 

How does an increase in the number of RMGs affect the 

average container time in the system? 2) How does an 

increase in the number of RMGs impact queue lengths at 

individual RMGs and 3) How does doubling RMGs in 

operation at a single berth from 3 to 6 impact both average 

container time in system and queue lengths in a 24-hour 

workday versus a 5-day workweek (composed of 5, 24-hour 

workdays)? The average values for the workweek represent 

the average value for an entire week, and not of a single 24-

hour day within the week. Four sets of work schedules were 

created, and each set contained two scenarios of 3 vs. 6 RMGs 

in operation to produce a total of eight scenarios. Table I 

describes the influence of these scenarios.  

TABLE I. SCENARIO DESCRIPTIONS AND NUMBER OF SERVERS OF RAIL 

MOUNTED GANTRY CRANES AT MARITIME CONTAINER PORT 

Scenario Description 
Number of 
RMGs as 

Servers 
1 2 shift switches at 6-7 AM and 6-7 PM; 2 

meal breaks at 12-1 AM and 12-1 PM 
3 

2 2 shift switches at 6-7 AM and 6-7 PM; 2 

meal breaks at 12-1 AM and 12-1 PM 
6 

3 2 shift switches at 6-7 AM and 6-7 PM; 
Staggered 1-hour meal breaks at 11 AM, 

12 PM, and 1 PM 

3 

4 2 Shift switches at 6-7 AM and 6-7 PM; 
staggered 1-hour meal breaks at 11 AM, 

12 PM, and 1 PM 

6 

5 Full automation with offline hours 
between 6-7 AM and 6-7 PM 

3 

6 Full automation with offline hours 

between 6-7 AM and 6-7 PM 
6 

7 2 faster shift switches at 6-6:30 AM and 

6-6:30 PM; 2 meal breaks at 12-1 AM 

and 12-1 PM 

3 

8 2 faster shift switches at 6-6:30 AM and 

6-6:30 PM; 2 meal breaks at 12-1 AM 

and 12-1 PM 

6 

C. Simulation Design of Electric Shuttle Carrier Model  

The motivation for creating the electric vehicle model using 

simulation software is to provide a starting point for users 

who have specific knowledge of their electric shuttle carrier 

battery and the container arrival rate. The model serves as a 



  

baseline that can be adjusted to fit specific conditions, 

allowing users to determine the optimal number of shuttle 

trucks required to operate the system efficiently.  

 

The model serves as a valuable tool for users to build upon 

and refine to achieve outcomes suited for their specific needs. 

Additionally, the versatility of the model makes it a resource 

for researchers and industry professionals looking to optimize 

the performance of electric shuttle trucks at maritime 

container ports [15]. The Electric Shuttle Carrier model 

incorporates an interarrival rate of containers into the system 

with a distribution of 0.01 + Random.Gamma(0.00356, 9.39) 

[9]. A FIFO order was assumed for the processing of the 

TEUs. The simulation model is designed with the ability to 

incorporate additional shuttle trucks should there be a need. 

This enables the simulation to provide an accurate 

representation of the system's performance at different 

conditions such as one, five, or ten shuttle carriers. The 

Electric Vehicle SimBit [12] was utilized for this model as it 

enables the user to simulate the charging and discharging of 

electric vehicles in the model.  

 

Furthermore, it allows the user to specify the battery 

capacity and the charge rate of the electric vehicle, as well as 

the power output of the charging station. This SimBit can be 

utilized in the electric vehicle model to simulate the charging 

and discharging of the shuttle trucks' batteries, providing 

valuable data on their performance and energy usage. The 

SimBit also enables the user to set a charging threshold, 

allowing the shuttle trucks to automatically charge when their 

battery level falls below a specified level. This feature is 

particularly useful in the electric vehicle model, where the 

shuttle trucks' batteries need to be charged to keep the system 

running efficiently.  

 

The model includes the ability to visualize the shuttle trucks 

carrying containers to the stack yard and going to charge when 

their battery level falls below 20%. Figure 6 describes the 

movement of containers and the shuttle trucks across the 

system. It enables users to identify any bottlenecks or 

inefficiencies in the system and make adjustments 

accordingly. 

 

 
Fig. 6. Simulation of Electric Shuttle Carriers at Maritime Container Port 

D. Simulation Design of Hydrogen Top Pick Model   

Figure 7 describes that the simulation consists of a single 

source, six total servers and one sink. 

 

The TEUs were assigned an interarrival time according to 

the distribution 0.01 + (0.03*Random.Beta(5.26, 3.49)) TEUs 

per hour. TEUs are then transferred to the stacks at the dock. 

The Top Picks then transport the TEUs from the stacks to the 

discharge location according to the distribution 

Random.Uniform(2, 2).  

 

Once a Hydrogen Top Pick runs low on fuel, it is directed 

to one of two available fuel stations for refueling. The fuel 

station refuels the Top Picks according to the distribution 

Random.Uniform(15, 15). The Top Picks then return to the 

dock and continue processing TEUs to the discharge location. 

Top Picks refuel at 10% remaining fuel percentage.   
 

Fig. 7. Simulation of Hydrogen Fueled Top Picks at Maritime Container 

Port 

V. RESULTS 

A. Results of UTR Model  

  The first simulation models the UTR system with hydrogen 

fuel stations. Three separate use cases are run, each containing 

a different number of fuel stations (ranging from 1-3). Table 

II describes an overview of the data collected from the 

simulations. 

TABLE II. HYDROGEN UTILITY TRACTOR RIG MODEL AT MARITIME 

CONTAINER PORT 

Number of Fuel 

Stations 
Number In Fuel 

Queue 
Time in Fuel Queue 

(Minutes) 

1 0.0047 0.29 
2 0.0002 0.05 
3 0.0009 0.0103 

 
  From the model, it can be concluded that there is minimal 

difference among the fuel stations. Due to the fact that the 



  

UTRs are able to be refilled at such a fast rate (mean of 3 

minutes), there is no need to allocate additional expenditures 

towards extra fuel stations. As such, one fuel station is the 

optimal number if hydrogen UTRs are to be put in use.  

  The next set of simulations are run using the electric 

powered UTR model. These simulations differ in the number 

of charging stations, ranging from 6-10, and the number of 

UTRs currently in service, ranging from 21-35. Table III 

describes the data collected from the model with 21 UTRs in 

use. When 21 UTRs are in use, 10 chargers are the preferred 

amount to implement when accounting for efficiency. The 

average number in the charging queue for 10 chargers is 23% 

lower than the next best option, and the average time in the 

charging queue is 18% faster than the next best option. Table 

IV describes the electric powered UTR model with 28 UTRs 

in use. 

TABLE III. ELECTRIC UTILITY TRACTOR RIG MODEL AT MARITIME 

CONTAINER PORT (21 UTRS) 

 

TABLE IV. ELECTRIC UTILITY TRACTOR RIG MODEL AT MARITIME 

CONTAINER PORT (28 UTRS) 

Number of Charging 

Stations 
Number In Charging 

Queue 
Time in Charging Queue 

(Hours) 

6 3.32 4.73 
7 2.41 4.07 
8 1.91 3.67 
9 1.12 2.72 

10 0.96 2.33 
 

  When 28 UTRs are in use, 10 chargers are the preferred 

amount to implement to maximize efficiency. The average 

number in the charging queue for 10 chargers is 14% lower 

than the next best option, and the average time in the charging 

queue is 14% faster than the next best option. Table V 

describes the electric powered UTR model with 35 UTRs in 

use. 

TABLE V. ELECTRIC UTILITY TRACTOR RIG MODEL AT MARITIME 

CONTAINER PORT (35 UTRS) 

Number of Charging 

Stations 
Number in Charging 

Queue 
Time in Charging Queue 

(Hours) 

6 2.45 3.60 
7 2.30 4.16 
8 1.99 3.86 
9 1.26 3.14 

10 0.95 2.82 

 
  When 35 UTRs are in use, 10 chargers are preferred when 

accounting for efficiency. The average number in the 

charging queue for 10 chargers is 25% lower than the next 

best option, and the average time in the charging queue is 10% 

faster than the next best option. 

B. Results of Hydrogen Top Pick Model   

The Hydrogen Top Pick model uses one, two, and three 

charging stations within the system. Table VI describes the 

average TEU time in the system, number of Top Picks in the 

fuel queue, and the total time in the fuel queue for each of the 

three scenarios. 

TABLE VI. RESULTS FOR HYDROGEN FUELED TOP PICK MODEL AT 

MARITIME CONTAINER PORT 

Number of Fuel 

Stations 
Average TEU Time in 

System (Hours) 
Number in 

Fuel Queue 
Time in Fuel 

Queue (Minutes) 

1 0.923 0.0387 0.538 
2 0.896 0.00491 0.0114 
3 1.456 0.00096 0.0038 

 
In the first scenario, the average TEU time in the system is 

approximately 0.9 hours with each Top Pick waiting an 

average of 0.5 minutes to begin hydrogen fueling. The second 

scenario with two fuel stations improves performance on all 

three calculated metrics. In this scenario, the total TEU time 

in the system falls to its minimum along with the other two 

metrics.  

 

This output data shows that the time that machinery waits 

to be fueled for reuse decreases by 97.8% when an additional 

fuel station is added. When three hydrogen fuel stations are 

added, the average TEU time in the system increases by over 

60%. Using two fuel stations might be preferred. Utilization 

of hydrogen fuel stations was also analyzed. It was found that 

in a system with one fuel station, the station has an average 

long-run utilization of 5.4%.  

 

For systems with two and three fuel stations, the average 

long-run utilization of the fuel stations is 8% and 5.7% 

respectively. This further reinforces the conclusion that 

implementation of two fuel stations may be preferred as low 

utilization may indicate that the system is overstaffed or that 

there are inefficiencies in the handling process. 

VI. CONCLUSIONS 

Future work will verify and validate server processing rates 

and refine the several assumptions descried above. Varying 

simulation run times will be explored to accommodate 

planning on a five-year horizon. Additionally, scenarios 

should be elaborated to include the bidirectionality of RMG 

frameworks, and container loading operations can be 

simulated. The effort will perform integration of different 

types of port equipment, cranes, and railway as well as semi-

automated pieces of equipment.  

Number of Charging 

Stations 
Number In Charging 

Queue 
Time in Charging Queue 

(Hours) 

6 2.30 4.41 
7 1.95 3.82 

8 1.45 3.23 

9 1.31 3.30 

10 1.01 2.72 
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