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Abstract

Newer and more complex neural networks are being developed each day, these systems continue

to grow more intelligent and better at doing specific tasks. Yet, ever since the introduction of deep

neural networks (DNN), the black-box nature of such models makes it harder to understand or justify

the actions predicted. One of the key limitations of autonomous driving systems is the absence of

reasoning that users can easily interpret. This lack of clarity becomes especially problematic in high-

stakes, safety-critical scenarios such as when the vehicle encounters difficult road conditions. In

these scenarios, understanding how and why specific actions were taken could reassure the driver

not to worry.

This thesis explores the application of concept bottleneck layers (CBLs) to pre-trained autonomous

driving models, enabling the extraction of the reasoning behind each predicted control signal. In

addition, it presents a method to generate training data for the CBL with little manual effort. In this

framework, vision grounding and segmentation models are used to extract information from each

frame. These extractions are integrated to generate concept labels for the dataset used in training the

original model. This semi-automatic approach enables frequent concept adjustment without requiring

manual data relabeling or recollection.

To illustrate the feasibility of such an approach, experiments are conducted on a transformer-based

autonomous driving model with a set of extracted concepts for explanation. The results demonstrate

that the proposed approach can maintain similar or better accuracy than the original model while

providing a certain level of interpretability. The flexible structure of concept generation allows it to

handle as many concepts as needed as well as incorporate more complex concepts. This scalability

paves the way for future enhancements and refinements.
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1 Introduction

1.1 Background and motivation

Deep neural networks (DNNs) have shown significant improvement in recent years, leading to break-

throughs across various domains such as computer vision, natural language processing, etc. The

key components behind this success include the advancement in hardware, training techniques, and

most importantly, the dramatic increase in model size [44, 53]. It is now easy for a modern DNN

to contain billions or even trillions of parameters, allowing them to learn complex patterns from an

enormous amount of training data. As illustrated in Fig. 1, we can observe the exponential growth in

trainable parameters as new models are released. Various scaling laws [22] have been proposed to

describe the effect of larger models and larger data on their performance.

The rapid growth in model size brings both advantages and drawbacks. On the one hand, state-

of-the-art models have demonstrated remarkable improvements in performance across a wide range

of tasks, from natural language processing [63] to computer vision [60], providing more accurate

predictions with robust performance-even in worst-case scenarios [35]. On the other hand, the in-

crease in parameters introduces several challenges. Larger models demand significantly more data

and computational resources, increasing training time and higher costs. More importantly, people are

concerned about their lack of interpretability–these models are frequently referred to as ”black boxes”,

making it increasingly difficult to understand the rationale behind their decisions. This lack of inter-

pretability raises concerns, especially in high-risk, high-stakes domains such as finance, healthcare,

autonomous vehicles, and military applications [29].

Autonomous vehicles have surged in popularity over the past decade as they have taken advan-

tage of the rapid advancements in neural network architectures and designs. Models ranging from

earlier convolutional neural networks (CNNs) to more recent adoption of deep neural networks such

as transformers have significantly enhanced the perception, decision-making, and control capabilities

of these systems. However, as these models grow in complexity, so do concerns about their safety,

ethics, and trustworthiness. The lack of transparency makes it difficult to fully understand the rea-

soning behind critical decisions made by these systems–especially in life-or-death scenarios–leaving

many hesitant to fully entrust their safety to such vehicles.

Control is one of the most important components in autonomous driving systems, as it directly

affects the vehicle’s ability to navigate safely, smoothly, and effectively in dynamic environments. A

5



Fig. 1. Parameter size of popular models over time. (created by [14])

reliable control network enables decisions made by other modules, such as perception and planning,

to be translated into accurate physical actions, including steering, braking, and accelerating. Given

its central role, enhancing the interpretability of the control system can provide several key benefits.

It offers clear justifications for the vehicle’s driving actions; helps identify salient features that indicate

what input features the model is prioritizing; and enables real-time debugging and monitoring to detect

anomalies or failures as they occur. Together, these capabilities contribute to a more transparent

and accountable system, improving driver-model coordination by clarifying when and why human

intervention may be necessary. Ultimately, such transparency is at the heart of what society values

most.

1.2 Aims and objectives

In this work, we will present a method to improve the interpretability of pre-trained autonomous driving

models through the application of concept bottleneck layers (CBLs). In simplified terms, a special-

ized layer will be inserted into the model where each node of this layer corresponds to a human-

understandable concept. The pre-trained model takes in a consecutive sequence of images and the

previous control signal as input and predicts the next control signal. In this thesis, we refer control

signal as a pair of values representing the velocity and turning angle of the vehicle. The model’s

performance on the test set is then used as a baseline to compare with our modified models to deter-

mine their ability to maintain accuracy while enhancing interpretability. The paper also explores three

different setups of the CBL layer and compares their effectiveness.
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In addition to the proposed model, we will introduce a novel way of concept generation using vision

grounding and segmentation models for a fast and efficient way of providing training data for the CBL

as opposed to manual collection or labeling. Together, we demonstrate a framework that would be

able to apply CBL on any vision-based autonomous driving model and train it without manual concept

labeling. We would also offer ways to interpret the activation of concepts and how they would affect

the control signal prediction.

1.3 Thesis structure

The rest of the paper will be structured as follows. Chapter 2 introduces related works, discussing

previous attempts in various ways to improve interpretability in various settings. In addition, it covers

information about relevant models and works that will be used in this paper. The proposed model and

training method will be presented in Chapter 3. It contains details about model design and concept

generation. Chapter 4 will first provide a brief description of the dataset used to train the base model

as well as any pre-processing and hyperparameters used. Then we will present various tests and

metrics used to evaluate different variations of the CBL and discuss the findings from the experiments.

Finally, Chapter 5 closes the thesis and suggests directions for future work.
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2 Related Works

2.1 Explanation in Autonomous Driving

Some prior work in this area employs visualization techniques such as attention map [25], optical

flow [54], or transformation [43] to interpret neural network decisions. However, these visualizations

usually require the user to have extensive knowledge to understand their meaning. In addition, the

time required to infer information from these visualizations may be too long to be useful in real-world

driving scenarios.

Another approach to tackling such problems is through the use of language, particularly given

the rapid advancements in language models following the introduction of transformers. These de-

velopments have significantly improved the ability of models to understand, generate, and respond

to natural language with greater accuracy and efficiency. Modern large language models (LLMs)

demonstrate a certain level of contextual understanding and reasoning, making them promising tools

for generating explanations across various scenarios. Recent work [12] has extended these capabil-

ities to the multimodal domain, where vision-enabled LLMs can interpret visual content [4], describe

visual inputs [18], and provide spatially grounded explanations [8]. Studies have shown that such mul-

timodal LLMs can support tasks like interpreting a vehicle’s surroundings [56], explaining its actions

[21], assessing potential risks [31], and even planning future trajectories [50].

However, many of these models rely on additional fine-tuning [19, 51, 62] or architectural mod-

ifications [45]–such as language adapters or residual pathways–to achieve task-specific reasoning.

They often require large amounts of training data as well as extensive prompt engineering to elicit

desirable responses and behavior [56]. Therefore, future research is needed to make these models

more adaptable and efficient.

2.2 Interpretability in Neural Networks

Numerous prior studies [40] have explored interpretability in neural networks. A variety of approaches

have been developed to offer unique insights into model behavior. Feature attribution methods, such

as saliency maps [6] and integrated gradients [48], focus on identifying which input features most

influence a model’s predictions. Example-based approaches, like local interpretable model-agnostic

explanations (LIME) [42], generate local approximations of a model’s behavior around specific in-

stances. In output analysis, methods including feature ablation [59], partial dependency plots [15],

and counterfactual explanations [52] examine how changes in the input features affect the model’s

overall decisions. The neural activation approach focuses on interpreting the model at a lower level
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through methods like activation maximization [57], network dissection [2], or testing With concept

activation vectors (TCAV) [24], which aim to reveal which features or concepts a neural network is

using during its decision-making process. Lastly, visualization tools such as Lucid [16] enable the

direct visualization of neural network representations, providing insights into how the model operates

internally.

Concept-based models represent one approach to map human-comprehensible concepts to un-

known meanings extracted by the neural network [27]. In particular, a concept bottleneck layer (CBL)

is inserted before the prediction head, where each node in the CBL is associated with a predefined

concept. During training, only the weights associated with the layer are trained while the rest is frozen.

This design produces a lightweight and efficient training process. Since the model does not need to

learn complex feature representations from the beginning, it simply adjusts the mapping from the last

hidden layer to the CBL. This significantly reduces the computational time and cost required and it

is also easily adaptable to various base model architectures. In addition, the weights connecting the

CBL to the prediction layer provide insights into howmuch each concept contributes to each predicted

class. The magnitude of these weights indicates the strength of the influence of that concept, while

the sign indicates whether the concept has a positive or negative correlation with the prediction. How-

ever, most models that employ this structure are based on CNN or LLM [33, 58], where the outputs

are within a fixed set.

In the original concept bottleneck model, all information is forced to pass through the bottleneck

layer to associate with each individual concept. However, the performance of such a model depends

on the quality of the concepts generated. In fact, it is very difficult to summarize an extensive list of

concepts that limit the performance of CBM [58]. Various strategies have been proposed to address

this limitation, including the use of residual layer [46, 58]. In this paper, we also evaluate the effect of

CBL with different levels of residual connections in our setup.

One issue that remains for such a model is the need for data to train the CBL. Since concepts are

not decided initially (while training the original model) and can change frequently depending on the

task, the effort required for data collection is still significant. Previous works have demonstrated the

ability to generate relevant concepts dynamically using large language models and to utilize a vision

language model like CLIP [39] to extract concept labels from training data [33]. Their framework

eliminates the need for manually determining the list of concepts as well as the work required to label

training data for the CBM. Hence, dramatically improves the efficiency of training such models. In

their framework, the CBL weight is learned by transferring the activation of the concept when the

input images are passed through CLIP, and a sparse final layer is used to predict the object. Their

work demonstrates the viability of this approach for image classification tasks, which inspires our work
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to do something similar.

A previous study has already tried to incorporate the concept bottleneck model and the automatic

training process into an autonomous driving model. Echterhoff et al. demonstrates a similar way

of generating concepts relevant for driving from GPT-3.5 [34], and utilizing CLIP to calculate the

similarity between each individual concept and each frame. In their model, the concept activation

is then combined with various visual backbones, including ResNet [17], ViT [11], etc, and passed

through a Longformer [3] architecture before making the final prediction. Their work claims that the

activated concept can be used to explain the actions behind their model. However, their work focuses

solely on mapping activated concepts to predicted control variables by training a LongFormer model,

which does not guarantee that these concepts are actually used in the final decision-making process.

Moreover, since CLIP is trained for the image classification task, it is unable to extract many temporal

concepts related to autonomous driving, which further hinders its performance. To address these

issues, our work will try to not only find a better way to predict temporal concepts across frames but

also explain the effect of the activated concept on the final control signal prediction.

2.3 End-to-End Autonomous Driving

End-to-end autonomous driving models are aimed at taking various sensor inputs (e.g., camera, Li-

DAR) and mapping them to control signals for the autonomous vehicle [7]. A typical architecture for

such models consists of a vision backbone and a prediction head. The vision backbone refers to the

core neural network used for feature extraction from input data (such as video) as well as making

critical decisions. Earlier work in this area [36] utilized convolutional neural networks (CNN) to predict

vehicle control from images and range sensor data. However, performance was limited due to the lack

of temporal dependency in the model. With the advancement of new neural network architectures,

recent studies have incorporated a variety of backbones ranging from recurrent neural networks [9,

10], transformers [13, 21], graph neural networks (GNN) [61], and multi-modal networks [37, 55].

Among these, Vision Transformers (ViT) have shown particular promise [28]. ViT divides the input

image into fixed-size patches and processes them like a sequence of tokens using self-attention. This

enables the model to effectively capture the temporal relationship between patches as well as global

contextual information more effectively than previous CNNs[11]. Building on ViT, the Video Vision

transformer (ViViT) extends the idea of totalizing patches of images across the entire input frames.

This allows the model to not only determine the spatial relationship between objects in each frame

but also the temporal relationship between them across multiple frames. As a result, it is able to

understand the movements of objects across time which is crucial for tasks like driving that require

drivers to foresee danger ahead[1].
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3 Method

In this chapter, we will present our framework that implements the concept bottleneck layer (CBL)

with a set of customizable concepts and minimal manual effort. Given a pre-trained autonomous

driving model with a visual backbone, our framework is able to integrate and train the CBL applied to

the model without the need to manually label concepts from the dataset in the following steps:

Step 1 Define the list of concepts that may affect driving behavior.

Step 2 Generate concept labels from training data.

Step 3 Insert a CBL into the base model.

Step 4 Learn the weights for CBL.

Step 5 Learn the weights for the prediction head (and residual layer).

Given the abundance of autonomous driving models capable of predicting multiple control com-

mands and/or over several future time steps, we chose to simplify our approach for the purpose of

this thesis. In particular, we will train a custom base model that focuses on the sole prediction of

control signals (velocity and turning angle) for one-time steps only. Having a custom model not only

provides for greater control over the architecture and training process but also allows more efficient

experimentation and iteration by removing unnecessary components.

We will cover the model design of the base model in Chapter 3.1, explaining the architecture

and implementation details as well as the training procedure. Chapter 3.2 will include the details of

creating the list of concepts and generating them from training data for Step 1 and 2. Afterwards, we

will discuss how CBL is applied to the base model (Step 3) in Chapter 3.3. Finally, we will introduce

the procedure to train the CBL (Step 4) and final model (Step 5) in Chapter 3.4.

3.1 Base Model

3.1.1 Design

Our base model takes inspiration from other works [13, 21] that utilize a video transformer network

[1, 32] as the backbone to encode the input video into a latent space. As illustrated in Fig. 2, we use

the ViViT model [1] pre-trained on the Kinetic-400 dataset [23] as the visual backbone. To adapt this
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Fig. 2. Structure of the base model. The CLS token embedding is obtained by passing input frames through

ViViT, which is then concatenated with the last control signal before passing an MLP where it predicts the

final control signal.

model to our prediction task, we replace the last fully connected (FC) layer for human action prediction

with a customized multi-layered perceptron (MLP) that predicts the control signal (velocity and turning

angle). In addition, we also concatenate the last control signal with the [CLS] token embedding before

they pass through the MLP, allowing the model to use previous control signals as extra features to

aid its decision. Therefore, our model takes in 32 image frames with dimension 224×224×3, passing

them through the ViViT to obtain the CLS token embedding of dimension 768, concatenating with a

2-dimensional last control signal input, and finally predicts the final control signal after passing through

the MLP.

We chose the ViViT as the backbone of our model for various reasons: First of all, as mentioned

earlier, ViViT utilizes the self-attention mechanism of transformers to capture long-range dependen-

cies across both spatial and temporal dimensions. This allows the model to not only understand the

relationship between objects within each frame but also track the movement of objects and their inter-

actions over time, which is essential for dynamic environments like autonomous driving. Moreover,

ViViT has demonstrated relatively strong performance on various benchmarks, making it a reliable

and compelling choice for our task. Furthermore, with ViViT’s modular and well-documented archi-

tecture design and its popularity in the field, it is very easy for us to implement and integrate it into our

own model.
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3.1.2 Training

The base model is trained using supervised learning. For each input X with corresponding control

signal Y = (V,A), the model predicts a control signal Y ′ = (V ′, A′). To calculate the loss, we

first transform both label and prediction into horizontal velocity Vh, V
′
h, and vertical velocity Vv, V

′
v

corresponding to the following equations:

Vh = V · sinA

Vv = V · cosA

V ′
h = V ′ · sinA′

V ′
v = V ′ · cosA′

Then the total loss L is computed as L = RMSE(Vh, V
′
h) + RMSE(Vv, V

′
v) + RMSE(A,A′) where

RMSE is the root mean squared error calculated as:

RMSE(Z,Z ′) =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(zi − z′i)
2

The n is the batch size. The transformation allows the turning angle and velocity to be converted

to the same scale for better results. The ablation study (in Appendix C) shows that the inclusion of

RMSE in the turning angle resulted in better performance.

3.2 Concepts Generation

Inspired by previous works that use pre-trained models such as CLIP to extract open-vocabulary

concepts [49], we want to find a way to allow concept generation using a flexible set of concepts as

well as an easy way to generate training data for the CBL without much manual effort.

3.2.1 Step 1: Define the list of concepts

In the original CBM paper [27], the set of concepts is determined by domain experts based on their

perceived importance to the task. However, for the thesis, our focus is on evaluating the validity of

the CBL structure in our model rather than optimizing for the best possible prediction. Therefore, we

selected a few concepts we believe are relevant to driving. We first separate concepts into two types:

boolean and numerical. The prior is simply a true or false question in the following format:

Is there [object] within the last [duration] of the input video?
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[object] in this case refers to things that we can see from the input image, like a pedestrian, a car, etc.

One example of such a concept used in our model is “Is there any human within the last 1 second of

the input video?”. This concept is simply based on the intuition that drivers may pay more attention

and drive slowly if they see people nearby. The latter type expects some numerical results in the

following format:

Average/Total [measurement] of [object] within the last [duration] of the input video.

In this case, [measurement] can vary from ”number” - refer to the amount, “distance” - between pixels,

“score” - some percentage, etc. Some concepts used in our model under this category include: “Av-

erage number of vehicles within the last 1 second of the input video”, and “Average vertical distance

(measured in pixels) to the closest vehicle within the last 1 second of the input video”. We believe that

the first concept may be a measure of congestion level and hence affect the velocity of the vehicle,

while the second relates to the following distance, which also affects the speed of the vehicle.

Our list of concepts is structured as follows: 4 binary concepts relating to the existence of humans

or cars/vehicles within the last 2 or 1 second of the video; 4 numerical concepts relating to the number

of humans or cars/vehicles within the last 2 or 1 seconds; 2 numerical concepts relating to color of

traffic light within the last 0.5 seconds; 1 numerical concept measures the horizontal movement of

human within the last 2 seconds; 4 numerical concepts measuring the distance to closest human or

car/vehicle within the last 1 second; 1 numerical concept measuring size of closest car/vehicle within

the last 1 second. The full list of concepts we used and the reasons can be seen in the Appendix A.

3.2.2 Step 2: Generate Concept Label

Since our list of concepts associates with objects across different frames, a vision grounding and

segmentation tool is needed. We used Grounded SAM 2’s [20] tracking with a continuous id feature.

The model takes in a video input along with a grounding text prompt and generates bounding boxes

of objects for each frame, as well as assigning an object ID for each object, which can be used to

track them through multiple frames. Compared to other vision grounding tools [30, 41], Grounded

SAM 2 not only allows the use of open vocabulary to track objects but also makes it easy to detect

the movement of objects.

The following are our steps to generate concepts from the training data. For demonstration pur-

poses, we include how we obtain the concept “Average score of green traffic light in last 0.5 seconds”:

1. Determine the list of concepts and the physical objects that are relevant to the concepts. In this case,

we just need to focus on one object: the traffic light.
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2. For each scene, pass the item to track into the Grounded SAM 2 model to obtain object IDs and their

bounding boxes for each frame. In our case, we prompt Grounded SAM 2 with “traffic light” and run

for all training data.

3. For each data point, calculate a score/measure for each concept according tomeasurements obtained

in the previous step. In this example, since we are only interested in the last 0.5 seconds, we only look

at the last 6 frames of the 32 consecutive frames. First, we focus on the important traffic lights located

at the center of the frame, filtering out others. Then, for each traffic light, we calculate the percentage

of green pixels over the entire bounding box. Lastly, we average the value across all frames.

4. Normalize the score/measure obtained across all training scenes. This step is only taken if the concept

is numerical, which allows different concepts to be transformed into the same scale for balanced loss

in training and easier evaluation. To do so, we calculate the mean µi and standard deviation σi for

each concept i on the training set. Then we calculate the standard score (z-score) zi from the original

activation ai as:

ai =
ai − µi

σi

The resulting distribution should have a mean of 0 and a standard deviation of 1.

In the actual concept generation, the [object] prompt provided to Grounded SAM 2 may affect

the performance of the bounding box generation. For instance, our experiment found that prompting

with “road” in addition to concepts like “human” leads to more accurate results than “human” alone.

In addition, to mitigate the effect of wrong prediction from Grounded SAM 2, we only considered

objects that appear for more than half of [duration]. This approach is based on the observation that

misclassifications only happen in a few frames compared to correctly classified objects. Chapter 4

will contain an evaluation of our concepts on the actual dataset.

Fig. 3 contains an example containing a few frames from the output of Grounded SAM 2 when

prompted with “road” and “traffic light”. In this example, we can clearly see that the Grounded SAM

2 is able to mark all the traffic lights it detected from each frame, even when the traffic light is not

facing the ego vehicle. Therefore, we chose to filter only the top center region when generating traffic

light-related concepts. Furthermore, we can see that across the 3 frames displayed, Grounded SAM

2 labels the same objects with the same ID and color which allows for tracking across frames. It is

also worth noting that sometimes the object is lost and a new ID is assigned, hence it may have an

impact on the final performance.
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Fig. 3. Results of prompting ”road, traffic light”
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3.3 Step 3: Concept Bottleneck Layer Design

In most CBM papers [27, 33, 46, 58], the concept bottleneck layer is inserted between the final hid-

den layer and the output layer. However, this may not be suitable for a regression task as a linear

mapping between concepts and control signal is seemingly unlikely even with the addition of residual.

Therefore, the CBL in our model is inserted between the final layer of ViViT and the beginning of the

MLP. We believe that this will enable the non-linearity of MLP to better learn and predict the expected

control signals.

To understand how residuals affect the behavior of our model, we have designed three variations

of how CBL was applied to our model to determine their effects. Despite the variations, all the CBL

layers have 16 nodes corresponding to the list of concepts we decided on earlier.

3.3.1 Variation 1: Traditional CBL

As shown in Fig. 4a, this is the implementation of a conventional CBL where all information is forced

through the bottleneck. This design ensures that only concepts and the last control signal are the

only factors affecting the final prediction. Therefore, each individual concept is more likely to have an

effect on the final result. We will use this variation as a baseline to compare with the other 2 variations.

3.3.2 Variation 2: CBL with Residual

Displayed in Fig. 4b, this variation incorporates the CBL alongside a residual layer of the same dimen-

sion which is 16 in this case. The addition of residual provides a pathway for information to bypass

the bottleneck, allowing latent features that cannot be described by the list of features to still have

an effect on the final decision while retaining the effect of CBL. Papers [46, 58] have shown that the

addition of residuals is able to result in better prediction than those without. In this thesis, we would

also like to compare with the base model to determine if this will also apply to our task.

3.3.3 Variation 3: CBL with Original Mapping

The last variation of CBL can be seen as an extension to variation 2, where instead of a residual

layer, we retain the original connection between ViViT to MLP in addition to the connection from CBL

to MLP. Illustrated in Fig. 4c, the CLS token embedding is concatenated with CBL output as well

as the last control signal and passed into the MLP. Therefore, the CBL functions as a specialized

feature extractor, extracting interpretable concepts from the latent space and utilizing them to aid the
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prediction. Compared to variation 2, we believe that this setup can result in better accuracy on the

final prediction due to the increase in the information that bypasses the CBL. However, at the same

time, each concept may have the least effect on the final outcome for the same reason among the 3

variations.

3.4 Training

Following the steps proposed by the original paper [27], training is separated into two parts: training

CBL and training prediction head to map from CBL to the final prediction. This approach enables the

model to first adjust the mapping from the last hidden layer to the CBL, then use it for prediction.

3.4.1 Step 4: Training CBL

To train the CBL, we first freeze the backbone(ViViT)’s weight. Then we calculate the loss between

the predicted concept from the base model and the true concept generated in the previous steps.

The loss calculation is separated into two categories depending on the type of concept. For boolean

concepts like ”Is there any human within the last 1 second of the input video?”, we use binary cross-

entropy error (BCE) with the label. Given the true label Y = {yi|yi ∈ {0, 1}} and predicted probabilities

Y ′ = {y′i|0 ≤ y′i ≤ 1}, BCE is calculated as:

BCE(Y, Y ′) = − 1

n

n∑︂
i=1

[yi · log(y′i) + (1− yi) · log(1− y′i)]

Where n is the number of samples within each batch. For numerical concepts such as ”Average

score of traffic light (in the top center region) being green within the last 0.5 seconds,” we calculate

the RMSE compared to the labels generated.

Since the CBL in all three variations refers to the same set of concepts and is all mapped from

the CLS token produced by ViViT. We only need to train CBL for one variation and apply the same

weights to the other variations.

3.4.2 Step 5: Training MLP Prediction Head (and Residual)

After the loss converges in the previous step, we will begin the second part of the training. In this

step, in addition to freezing the backbone, we will also freeze the CBL weight that was just trained

to prevent it from diverging from concept activations. Therefore, only the prediction head (MLP) and

residual (if applicable) are trained. For the loss calculation, we use the same method as our base

model training in subsubsection 3.1.2 as it leads to the best performance.
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(a) Variation 1: Traditional CBL

(b) Variation 2: CBL with Residual

(c) Variation 3: CBL with Original Mapping

Fig. 4. Three CBL designs (a) Traditional CBL, (b) CBL with Residual, (c) CBL with Original Mapping
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4 Experiment and Results

In this chapter, we first discuss the training process, hyperparameters used, as well as the dataset

that we used to train our base model. Then we assess the generated concept labels from this dataset

using our proposed method. Afterward, we evaluate the performance of our model after the applica-

tion of CBL in terms of control signal prediction and its interpretability in terms of concept prediction.

Last but not least, we compare the three variations of our model and determine each of their strengths

and weaknesses.

4.1 Dataset

We use the NuScenes dataset [5] both for training the base model and to generate concept labels to

train our model after the application of CBL. The NuScenes dataset is an open-source, large-scale

dataset designed for autonomous driving research. It contains 15 hours of driving data which is

separated into 1000 scenes, each lasting around 20 seconds. These scenes are carefully selected to

cover a wide variety of realistic and challenging conditions, including various road conditions, traffic

conditions, weather, time of day, etc. It was collected in both Boston and Singapore, which drive on

opposite sides of the road. The dataset includes information collected from 6 cameras, 1 LiDAR, and

5 radars mounted on the ego vehicle, providing an all-around view of the surroundings during driving.

At the same time, IMU and GPS information are also provided for better understanding and tracking

of the ego vehicle.

For our models, we take the native 12Hz RGB video recorded by the front camera as the primary

input. For the control signal, we use the velocity and turning angle in the vehicle motion message

released from the CAM bus expansion, recorded at 2Hz. One remaining problem is that these two

sensors are not synced, therefore, we match the timestamp of each control signal with the closest that

of the frame. Then, for each matched frame, we will treat it as the last frame used for predicting the

matching control signal. In other words, each matched frame is an end frame of the 32 consecutive

frames we used as the input to our model, and the past control signal before thematched control signal

is also used. In our base model as well as all CBMs based on it, only the last control signal is used

- meaning that the model accepts the 32 consecutive images {imaget−31, framet−30, . . . , framet}

along with 1 velocity and 1 turning angle (vt−1, at−1) and predicts the next velocity and turning angle

(vt, at). Since our model is finetuned from the Kinetic-400 dataset, we pre-process every frame with

the corresponding pre-processor to the desired shape for our model.

20



4.2 Training on NuScenes

To train the NuScenes dataset, we first take advantage of the predefined train, validation, and test

splits. Then we filter out scenes that do not contain the control signal from the CAN bus expansion.

The model is trained using Adam [26] with a learning rate of 1e−5 and weight decay of 1e−5 and with

a batch size of 8. For each scene in training, we applied the alignment described above and drew

one random segment (32 frames, around 2.66s) from all potential endframes, resulting in 8 segments

from 8 different scenes for each batch. Then, for validation, we reduce the batch size to 1 but use all

the potential endframes each scene has to obtain the loss on all possible validation data. The same

is done for the test set to evaluate the performance of each model in the end.

For our base model, we trained it for around 2500 epochs on one A100-80GB GPU until the model

mostly converged. Then we trained the CBL layer embedding for about 1700 epochs using the same

GPU until convergence. Since all three models use the same mapping from ViViT to the CBL layer,

the same learned weights are applied to all three models. Lastly, we trained each variation on the

same GPU for around 700, 500, and 900 epochs respectively before converging.

4.3 Generated Concept

To evaluate the quality of the generated concepts fromNuScenes, we randomly selected a few scenes

from the training data and observed the activation of concepts across the frames. Fig. 5 is an example

where we show matched frames from the training video and the generated concept label. We can see

that as the ego vehicle approaches a human crossing the road, the activation of Concept 11: “Average

horizontal movement of human within the last 2 seconds of the input video” increases. Then, when the

human leaves the camera’s view (shown in the last two frames), the concept activation drops quickly.

We believe such a concept can be used to help the car slow down as it approaches the human and

then speed up after the activation lowers.

The second example we selected is a scene involving a traffic light change. As illustrated in Fig. 6,

for the first three frames, the traffic light is red, and for the last three frames, the traffic light is green.

At the same time, we can observe a similar pattern for activation of Concept 9: “Average score of

traffic light (in the top center region) being red + yellow within the last 0.5 second” and Concept 10

“Average score of traffic light (in the top center region) being green within the last 0.5 second”. We

can see clearly that concept 9 (red light)’s activation is high for the first three frames and goes down

quickly afterward. On the other hand, the activation for concept 10 (green light) is low at a red light

and high at a green light. This example further demonstrates the success of our concept generation

process in terms of extracting the correct label from the dataset.
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Fig. 5. Activation of Concept 11: “Average horizontal movement of human within the last 2 seconds of the

input video” generated from Grounded SAM 2

To further verify the effectiveness of our concept generation process, we randomly selected 100

segments from random training scenes and manually evaluated each of the concepts’ activation. As

a result, we obtained 99% accuracy for binary concepts and 90% for numerical ones.

4.4 Control Signal Prediction

Table 1 displays the RMSE of predicted velocity, turning angle, and their sum for the base model and

the three models after the application of CBL. For our base model, we are able to achieve an RMSE

of 1.20 for velocity and 8.92 for turning angle. The unit of measurement used by NuScenes is km/h

and ◦, which means that our base model is able to predict the control signal quite well. It is surprising

that both Variations 2 and 3 are able to outperform the base model with lower loss in velocity and

turning angles. Variation 1, on the other hand, is not able to reach the same level of accuracy as

the base model. This is likely due to the missing residual layer that makes it difficult for the model to
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(d) (e) (f)

Fig. 6. Activation of Concept 9: “Average score of traffic light (in top center region) being red + yellow within

the last 0.5 second” and Concept 10: ”Average score of traffic light (in top center region) being green within

the last 0.5 second” generated from Grounded SAM 2

Table 1. Loss of each model. RMSE of predicted velocity, turning angle, and total of the base model and

three models after insertion of CBLs.

Model
Loss (RMSE)

Velocity Turning Angle Total

Base 1.1959 8.9248 10.1207

CBL Variation 1 1.3369 9.7711 11.1081

CBL Variation 2 1.0471 8.7653 9.8125

CBL Variation 3 1.0689 8.6687 9.7376

better predict the control signal. Comparing Variation 2 and 3, it is difficult to decide which one has

a better result, with Variation 2 having a lower RMSE in predicted velocity and Variation 3 having a

lower RMSE in predicted turning angle.
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4.5 Concept Prediction

In order to determine the effectiveness of the bottleneck layer, we run our model on the test set and

compare the predicted concepts with the generated ones. For the binary concepts, we calculate

the accuracy and RMSE for the numerical concepts. For binary concepts, we obtained an average

accuracy of 91.05% with a minimum of 79.03% and a maximum of 99.63% and an average RMSE of

0.7533 with a minimum of 0.5070 and a maximum of 0.9625. It seems that our model is able to grasp

simpler boolean concepts more effectively. One reason might be due to the inherent characteristics of

boolean concepts being easier to predict. In addition, the CBL’s single-layer design lacks the capacity

for complex non-linear mapping from the latent space, further limiting its ability to predict numerical

concepts. Another potential cause for such a result is within the designs of visual transformers. In

particular, the mechanism within transformers simply associates or attends between input tokens

rather than counting the occurrence of individual objects unless they are explicitly trained [38]. Yet

since the training of CBL requires the backbone to be frozen, a better base model that incorporates

various counting mechanisms may be needed. Furthermore, the normalization process could make

the concepts harder to predict. In particular, the standard score (z-score) works best when the original

data is normally distributed which may not be the case for all numerical concepts. Therefore, more

refined techniques should be used to convert data into a more normalized shape before normalization

or different techniques should be used depending on the actual distribution of the dataset.

A potential solution to such a problem is to convert numerical concepts to binary by assigning

a threshold that can assign “on/off” to each of the concepts. For instance, if the value of Concept

10: “Average score of traffic light (in the top center region) being green within the last 0.5 second”

is changed into “Is traffic light (in the top center region) green within the last 0.5 seconds?” and the

original score can then be compared with the threshold to determine whether this concept is true or

false. This could therefore be a direction for future work to improve the performance of our model.

Another issue contributing to the reduced concept prediction performance is the backbone’s failure

to capture certain concepts during its initial training. If such information is not encoded into the latent

features by the backbone, it becomes impossible for the CBL to map them to the corresponding

concepts. Since the CBL training process does not involve fine-tuning the backbone, recovering

these missing features is particularly challenging. Furthermore, concepts that are poorly learned

or inaccurately represented can introduce noise into the model, leading to meaningless activations

that negatively impact the overall prediction performance. To mitigate this issue, future work could

consider filtering out concepts with low prediction accuracy or high loss, and retaining those with

reliable performance when training the second stage (the prediction head) of the model. This selective

training approach could enhance the model’s final prediction quality by focusing on more trustworthy
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(a) (b)

Fig. 7. Change in activation of concept 9: ”Average score of traffic light (in top center region) being red +

yellow within the last 0.5 second”

and informative concept representations.

A detailed table showing the results obtained for each individual concept is presented in Appendix

B. In our evaluation, we found that the RMSE for Concepts 9 and 10 is the lowest among other

numerical concepts. These correspond to the activations of red+yellow or green traffic lights within

the last 0.5 seconds of the video. Therefore, we focus more on analysis using this concept which is

expected to yield better results than other concepts.

4.6 Effect of Concept

In traditional CBL design, the mapping from CBL to the final prediction can be used to explain the

contribution of each concept. However, since our CBL is not placed directly before the final layer,

we need another way to verify its contribution. To do so, we first provide an input to the model and

obtain the concept prediction as well as the control signal prediction. Then we apply a small change

to the activation of a certain concept and observe the relative behavior. In Fig. 7, we used Fig. 6c

as the base input and plotted the change in the prediction of the three variations after small changes

in the activation of Concept 9: ”Average score of traffic light being red + yellow within the last 0.5

second”. From the predicted velocity (Fig. 7a), we can see that all three models predict velocity to

decrease when the activation increases. This corresponds to how the vehicle needs to slow down

and stop before a red light. The slopes for variations 1 and 2 are steeper compared to variation 3

which indicates that the significance of the concept is greater for Variations 1 and 2 compared to 3

as we expected in the model design. On the other hand, the turning angle (Fig. 7b) should not be

affected much by the existence of red light. Variations 2 and 3 are able to follow this behavior as

their turning angle changes slightly across the change in activations. A similar result is shown when
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we manipulate the activation of Concept 10: ”Average score of traffic light (in the top center region)

being green within the last 0.5 second” instead. In this case (Fig. 8), we can see that the increase in

activation of the green traffic light led to an increase in velocity for both Variations 1 and 2.

We also conducted an extensive study on the sensitivity of all concepts across the test set. In

particular, we obtained the activation of each individual concept for each input to our model. Then we

manually edit each concept’s activation similarly to what we did above. For a binary concept, we flip

between true and false; for a numerical concept, we record both adding to and subtracting from the

activation value. Then we let our model predict the control signal using the entire set of manipulations

we did (we only edit the activation of a single concept at a time). Finally, we compare the intervened

results with the original results and average them across all test set data. For binary concepts (1 - 4)

which correspond to the existence of a human or a car/vehicle within the last 2 or 1 seconds, we found

that changing its activation from true to false is more likely to cause an increase in velocity among

the three models. However, most results were deemed inconclusive due to their heavy dependency

on the original prediction and concept activation. There are still valid findings from this experiment.

For instance, we see that Variation 1 is able to show the highest sensitivity compared to the other

two variations. Moreover, we found that the manipulation of concept 9 (red traffic light) and concept

10 (green traffic light) produces the most consistent change across test scenes. For Variation 1, an

increase in activation of the red traffic light (concept 9) causes a decrease in velocity for 60.44% of test

data, and a decrease in activation causes an increase in velocity for 62.40%. Similarly, an increase

in activation of green traffic light (concept 10) causes an increase in velocity for 73.86% of test cases,

and a decrease in activation causes a 72.8% decrease in velocity. Again, we want to emphasize

that these are not conclusive results; for instance, a low activation of a green light can still happen

when there is no traffic light detected and hence may not necessarily be associated with a decrease

in velocity.

4.7 Comparison of CBL designs

It is clear from the various results that Variation 1: CBL with no residual led to the worst performance

among all three variations. Not only does it perform poorly in terms of predicting control signals, but

it produces unreasonable changes in prediction when concepts are manually intervened. In contrast,

both Variations 2 and 3 with different levels of residual are able to maintain and even outperform

the base model after the insertion of the bottleneck layer. Despite both models still suffering from

the poor accuracy of the bottleneck layer, some level of interpretability can be achieved through the

intervention study on the change of prediction caused by the activation of different concepts. The

same study also demonstrates that Variation 2 may offer a clear relationship between the activation
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Fig. 8. Change in activation of concept 10: ”Average score of traffic light (in top center region) being green

within the last 0.5 second”

of concepts and the final prediction due to the limited size of the residual.
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5 Conclusion and future work

5.1 Conclusion

In this thesis, we presented a framework for applying a concept bottleneck layer with a flexible list

of concepts to an autonomous driving model as an attempt to improve interpretability. Evaluation of

the generated concepts has demonstrated our framework’s ability to successfully extract meaningful

concept labels from the training data with minimal manual effort. Despite the relatively low accuracy

in numerical concepts learned by our CBL, the model is still capable of outperforming the base model

in control signal prediction tasks with the help of residual connections. Furthermore, our intervention

experiment also verified that changes in individual concept activations led to coherent changes in

model predictions. Overall, our framework shows promising potential in improving interpretability in

autonomous driving models and provides a viable direction for future research.

5.2 Future work

While our framework shows promising results, there are several areas open for future exploration:

5.2.1 Improving Concept Prediction Accuracy

As mentioned in Chapter 4.5, transforming numerical concepts into binary ones by setting a threshold

could improve the accuracy of the concept. The nature of binary concepts makes it easier for the

model to apply a linear mapping between the embedded latent space and the concept bottleneck

layer. Moreover, in cases where the backbone either lacks the necessary information or fails to learn

the relevant latent features that correspond to certain concepts, specialized architectures could be

explored to better adapt the mapping from input to the concept.

5.2.2 Expand the List of Concepts

In our thesis, we used a simple set of 16 concepts to demonstrate the ability of our framework. In

reality, there could be a large set of concepts that can be used for the interpretation of a model’s

behavior in autonomous driving. In particular, a domain expert may be invited to produce an extensive

list of concepts that are relevant to driving. An alternate approach could be to automatically generate

relevant concepts through the use of large language models, as demonstrated in other works [33].
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5.2.3 Better Concept Label Generation

Our current approach uses Grounded SAM 2 to extract bounding boxes for relevant objects from

input video frames and applies simple algorithms to generate concept scores based on the movement

of these bounding boxes. However, there are several limitations associated with this method. For

instance, Grounded SAM2may produce incorrect predictions—for example, it frequently misclassifies

various signs as stop signs. To address this, more specialized detection algorithms, such as dedicated

traffic sign detectors, could be employed to improve object classification accuracy. Moreover, an

ensemble of multiple grounding algorithmsmay be used together to ensure the accuracy of the objects

detected.

Additionally, in our current method for calculating movement-based scores, we treat the input

image as a flat plane and use only the 2D x and y coordinates to estimate object motion. A more

accurate approach would incorporate scene geometry and camera calibration to infer 3D movement,

which could provide more precise and reliable concept scores.

5.2.4 Better training for the residual layer

Residual in CBM is important to allow information that is not categorized by concepts to aid in predic-

tion. However, there are also concerns that the residual could contain all the necessary information,

including those defined by the CBL layer. Hence, themodel may choose to use all information from the

residual instead of the activation of the concept. Some research [47] of concept bottleneck in large

language models suggests a way to apply adversarial training for the residual layer. Their paper

shows that this procedure would force the residual layer to forget information related to the concept,

thereby forcing the model to use the output of the CBL.

Since our model did not control the residual layer, we believe that such a procedure could also be

applied to our model, especially for variation 3, to strengthen the effect of CBL.
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Appendices

A Chosen Concepts

Here are the list of concepts we used for our model and reasons for choosing them

1. Is there vehicle/car within the last 2 seconds

2. Is there vehicle/car within the last 1 second

3. Is there people within the last 2 seconds

4. Is there people within the last 1 second

5. Average number of vehicle/car within the last 2 seconds

6. Average number of vehicle/car within the last 1 second

7. Average number of people within the last 2 seconds

8. Average number of people within the last 1 second

9. Average score of traffic light (in top center region) being red + yellow within the last 0.5 second

10. Average score of traffic light (in top center region) being green within the last 0.5 second

11. Average horizontal movement of human within the last 2 seconds

12. Average vertical distance (vertical pixels from bottom edge) to closest vehicle/car within the

last 1 second

13. Average vertical distance (vertical pixels from bottom edge) to closest people within the last 1

second

14. Average distance (pixels from bottom center) to closest vehicle/car within the last 1 second

15. Average distance (pixels from bottom center) to closest people within the last 1 second

16. Average area (numbers of pixel) of closest vehicle/car within the last 1 second

The first 4 binary concepts are simple checks for the existence of a human or car/vehicle in front of

the ego vehicle. We chose these concepts following human intuition that we may pay more atten-

tion and be slower if we see things in front of us than if we see a clear road. The 5-8 concepts are

counting the average number of humans or cars/vehicles which is also based on the intuition for
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Table 2. Accuracy of binary concept

Concept Number 1 2 3 4

Accuracy /% 99.63 98.97 86.55 79.03

Table 3. RMSE of numerical concept

Concept Number 5 6 7 8 9 10

RMSE 0.7810 0.7934 0.7015 0.7235 0.5070 0.5420

Concept Number 11 12 13 14 15 16

RMSE 0.8250 0.9625 0.8921 0.9234 0.7122 0.6763

driving. For instance, if there are a lot of car, then it probably means the road is congested hence

we need to reduce speed. Similarly, for humans, if there are many humans around, drivers would

typically drive slowly to prevent accidents from happening.

B Full loss on concept

In order to determine how much our CBL learns the concept activation from the dataset, we evalu-

ate its accuracy (for binary concept) and root mean squared error (RMSE) (for numerical concept).

The accuracy is calculated as the sum of instances where predicted activation (true or false) matches

the label across the test set over the entire test set size. From Table 2, we can see that concept 1

about the existence of a vehicle has the highest accuracy, while concept 4 about the existence of a

human shows the lowest accuracy. We think one explanation for this result is that vehicles/cars are

probably the most common object that is present in the driving dataset. In addition, the majority of

scenes contain cars which may result in high accuracy even if the model always predicts true.

The RMSE is calculated in the same ways during training. Since all of the numerical concepts were

normalized to µ = 0, σ = 1, an initial impression from Table 3 shows a poor result across all numer-

ical concepts. Comparing among all concepts of this type, we can see that concept 9 and 10 have

the least RMSE. They correspond to the score given to the traffic light being red+yellow and green.

Therefore, we focus on the evaluation of these two concepts in our thesis.

C Ablation study on base model

During the development of our base model, we evaluated the effect of concatenation of previous

control signals as well as the loss function used. Fig. 9 shows that the model with no control signal

is given (pink) shows worse results during training compared to the addition of a previous control

signal. This is not really a surprise for us, as it is common to think that previous velocity and turning
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Fig. 9. Loss on validation set during training

angle should help with the next prediction. The purple and green then compare the results after the

addition of the RMSE of the turning angle into the total loss calculation. It is clear from the graph

that such an addition is able to massively decrease the RMSE on the turning angle and produce a

better performance in the end. Therefore, for our base model, we decided to include the last control

signal as well as using the RMSE of horizontal and vertical velocity, with the addition of the RMSE

of turning angle.
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