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Introduction

1.1 Thesis Justification

A central premise in modern cancer treatment is that better characterization
of the genetics of each cancer should lead to better treatments and therefore better
patient outcomes. Several improved high-throughput assays and functional
genomics analyses currently exist to probe and characterize cancers by pinpointing
specific genetic aberrations and their functional implications. But so far, few

unambiguously positive outcomes have been observed.

Among all cancer types, melanoma has one of the highest mutational
burdens. Although almost all melanomas are driven by mutated components of the
mitogen activated protein kinase (MAPK) pathway, the genetic complexity and
diversity of the disease creates multiple mechanisms to circumvent or overcome the
effects of pathway blockade. Consequently, almost all melanoma patients relapse
within 12 months of receiving treatment. Combination therapy has been shown to
be effective in overcoming relapses, and some research indicates that combination
therapy may be able to delay future relapses. However, effective combinations have
thus far proved to be difficult to identify and no known combination of targeted

agents provides more than a few months of additional life.

We employed a multipronged approach, combining functional genomics with
high-throughput combination screening, to develop classification methods aimed
not only at identifying effective therapeutic combinations, but also at determining

potential biomarkers for responsiveness to these combinations, and at discerning
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mechanisms of synergy for some of these combinations. The tools we have
developed for melanoma have also been applied to mantle cell lymphoma and

chronic lymphocytic leukemia, to substantial effect.

1.2 Introduction to melanoma

1.2.1 Melanoma is driven by the aberrant activation of the MAPK pathway
in the majority of patients
Incidence of malignant melanoma is increasing among multiple

demographics (Niezgoda et al,, 2015), indicating investigation of therapies is
becoming paramount. It is estimated that 132,000 new cases of melanoma will be
diagnosed annually, and that the United States will see approximately 10,000 deaths
from melanoma in the year 2015 (Niezgoda et al., 2015). In 2009, Stage IV
metastatic melanoma patients had a median survival of 8 to 18 months (Balch et al,,
2009) and modern therapies have only increased median survival times modestly
with more recent trials showing overall survivals averaging 18.3 months (Niezgoda
etal, 2015). At least 75% of cutaneous melanomas involve the activation of the

MAPK pathway by genetic lesions (Niezgoda et al,, 2015).

1.2.2 Activation of the MAPK pathway is accomplished through a cascade of
dimerizations and phosphorylations
The canonical MAPK pathway is crucial to the regulation of cell growth and

division of many normal and cancer cells (Lito et al., 2012). Under normal growth
conditions, receptor tyrosine kinases, such as erb-b2 receptor tyrosine kinase
(ERBB) family members, become activated by binding to extracellular ligands, such
as neuregulin 1 (NRG1) and neuregulin 2 (NRG2), and lead to the phosphorylation

of proteins that regulate rat sarcoma viral oncogene homolog (RAS) family
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members; neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), Kirsten rat
sarcoma viral oncogene homolog (KRAS) or Harvey rat sarcoma viral oncogene
homolog (HRAS), to adapt an active, guanosine triphosphate (GTP)-bound state
(Downward, 2003). GTP-bound RAS family members can then induce the
dimerization of the rapidly accelerating fibrosarcoma (RAF) family of kinases
(Wellbrock et al., 2004), which is required for the activation of RAF family members
(Farrar et al., 1996; Luo, 1996; Rushworth et al., 2006). The RAF kinase family
consists of A-Raf proto-oncogene, serine/threonine kinase (ARAF), B-Raf proto-
oncogene, serine/threonine kinase (BRAF), and Raf-1 proto-oncogene,
serine/threonine kinase (RAF1 or CRAF) (Lito et al.,, 2013). The binding of RAS
family members to RAF family members leads to translocation of the RAF family
member to the membrane and the adoption of an “open” conformation (Marais et
al,, 1997). The RAF member can then be phosphorylated on residues residing in its
N region, which is located near the C terminus (Fabian et al.,, 1993; Mason et al,,
1999). These phosphorylations release the autoinhibitory nature of this domain,
and are necessary for maximal kinase activity of RAF family members as well as for
the binding of mitogen activated protein kinase kinase 1 (MAP2K1) and subsequent
activation of MAP2K1 by phosphorylation on Serines 218 and 222 (Tran et al., 2005;
Udell et al.,, 2011; Zhang and Guan, 2000). Activated RAF kinases target the protein
kinases MAP2K1 and mitogen activated protein kinase kinase 2 (MAP2K2) for
activation, which in turn activate the mitogen activated protein kinase 1 (MAPK1)
and mitogen activated protein kinase 3 (MAPK3), leading to widespread activation

of multiple targets that induce growth and cellular division (Lito et al., 2012). To
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date, MAPK1 has been shown to have over 50 different substrates (Lito et al,, 2013),
including a host of negative feedback mechanisms that target regulators of RAS
family members and MAPK1 itself (Lito et al.,, 2012, 2013). MAPK1 and MAPK3
activation lead to the negative regulation of the MAPK pathway via proteins that
deactivate MAPK1, MAPK2, the ERBB family member epidermal growth factor
receptor (EGFR), RAF family members, and RAS family members (Hanafusa et al,,
2002; Lito et al., 2012). Members of the dual specificity phosphatases (DUSP) family
and sprouty (SPRY) family are responsible for the inhibition of MAPK1 and MAPK3

(Lito etal., 2012).

BRAFV600E js a mutated RAF kinase family member that appears frequently in
melanoma. The incidence of this mutation varies from 30% to 72% in studies of
melanoma patients (Niezgoda et al,, 2015) and the constitutively active form of
BRAFV600E has been observed in multiple cancer types (Davies et al., 2002; Tiacci,
2011). The BRAF kinase is activated by the mutation from valine to glutamate at
position 600 (BRAFV600E) (Curtin et al., 2005). The mutant BRAF activates the MAPK
pathway (Sumimoto et al., 2004), signals as a monomer (Poulikakos et al., 2010),
results in uncontrolled activation and expression of genes that are drivers of cell

growth and migration (Joseph et al., 2010; Solit et al., 2006).

BRAF harbors a few key differences from other RAF members that explain
the high frequency of BRAF mutations as drivers in cancer (Matallanas et al., 2011;
Wellbrock et al., 2004). RAF1 has been the primary family member studied in
determining the mechanism of RAF family member activation, and it has been

shown that RAF family members contain a high degree of sequence similarity
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(Matallanas et al., 2011; Wellbrock et al., 2004). However, RAF1 is more stringently
regulated than BRAF, as RAF1 requires multiple regulated phosphorylations to
achieve full activity. BRAF is constitutively phosphorylated on a serine residue in
the regulatory domain, and also contains a phosphomimetic aspartic acid within the
N region at a site homologous to a RAF1 phosphorylation site (Mason et al., 1999).
These variations allow BRAF to have a higher basal kinase activity than CRAF, which
explains why a single mutation in BRAF can create a constitutively active oncogenic

kinase (Wellbrock et al., 2004).

1.2.3 Vemurafenib is a potent inhibitor of mutant BRAF and is an
exceptional therapeutic agent for melanoma
Vemurafenib is a targeted therapeutic compound designed against the

BRAFV600E kinase (Bollag et al., 2010; Dibb et al., 2004). It functions by binding near
the dimerization site of the BRAF kinase proximal to the ATP binding cassette
(Bollag et al., 2010). This binding event induces a shift in the protein’s conformation
at the C alpha helix, inhibiting the mutant form of BRAF kinase from
phosphorylating its targets. Vemurafenib is extremely specific to its target (Joseph
etal,, 2010). This specificity was accomplished utilizing x-ray crystallographically
assisted design (Tsai et al., 2008). The importance of BRAFV600E a5 an oncogenic
driver is demonstrated by the rapid response of most BRAFV600E melanomas to the
BRAF inhibitors vemurafenib or dabrafenib (Chapman et al., 2011; Hauschild et al.,
2012). Over 50% of BRAFV600E melanomas showed objective response after

treatment (Chapman et al., 2011; Hauschild et al., 2012).
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Unfortunately, response to vemurafenib is not durable; most patients relapse
within 2 to 18 months of initial treatment (Flaherty et al., 2010, 2012a; Wagle et al,,
2011). Several mechanisms of acquired resistance have been identified in
melanoma. Mechanisms of resistance tend to involve the reactivation of the MAPK
pathway (Lito et al.,, 2013). These mechanisms are either dependent on RAF
dimerization (Johannessen et al., 2010; Montagut, 2008; Poulikakos et al., 2011;
Rajakulendran et al., 2009; Shi et al.,, 2012) or independent of RAF dimerization
(Antony et al., 2013; Wagle et al., 2011). There are also resistance mechanisms that
do not depend on the reactivation of the MAPK pathway (Lito et al., 2013; Miiller et
al, 2014). When melanomas with BRAFV600E are treated with RAF inhibitors, such as
vemurafenib, MAPK1 activity drops leading to a host of negative feedback
mechanisms that act upstream in the pathway being released (Lito et al., 2012). This
release from negative feedback allows resistant melanoma to adaptively respond in

a matter of hours, and rapidly diminishes response to treatment (Lito et al., 2013).

1.2.4 Dimerization dependent mechanisms of resistance to vemurafenib
treatment
Among the changes induced by the release of negative feedback due to

vemurafenib treatment, higher concentrations of activated RAS family members
contribute significantly to the adaptive response (Lito et al., 2013). As previously
mentioned, activated RAS family members can stimulate the formation of dimers of
RAF family members. Activation of RAF requires formation of homo- or
heterodimers of RAF family members (Farrar et al., 1996; Luo, 1996; Rushworth et
al,, 2006). In addition to RAS contributing to the formation of dimers of RAF family

members, vemurafenib will bind to wild type forms of the RAF family members,
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inducing RAF family members to dimerize. In the presence of activated RAS family
members, BRAFV600E /BRAFWT and BRAFWT/RAF1 dimers can form with one
monomer bound to vemurafenib, allowing for the other monomer, not bound to
vemurafenib to be activated by activated RAS, leading to reactivation of the MAPK
pathway (Poulikakos et al., 2010). Reactivation of the MAPK pathway is not limited
to release of feedback inhibition by vemurafenib treatment, but genetic lesions and
aberrant expression patterns have been identified that can also lead to the

dimerization of RAF family members (Lito et al.,, 2013).

As previously mentioned, activated RAS family members are necessary to
activate RAF family members in normal melanocytes (Downward, 2003). Typically,
NRAS is the predominant RAS family member responsible for normal activation in
cells of neural lineage, such as melanocytes (Lito et al., 2013). Mutation at position
61 puts NRAS into a constitutively active state, and NRASQ®¢1 is the second most
frequent driver of melanoma after BRAFV600E (Akbani et al., 2015). One of the first
genetic adaptations to vemurafenib therapy observed in cell lines and patient
samples were mutations in NRAS at position 61 (NRASQ¢1) (Nazarian et al., 2010).
Under treatment with vemurafenib, resistant lines containing BRAFV600E and
NRASQ61 utilize the constitutively active NRAS to overcome BRAFV600E inhibition.
The mutant NRAS promotes dimerization of other RAF family members,
independent of extracellular signals (Nazarian et al., 2010), resulting in reactivation

of the MAP Kinase pathway independent of BRAFV600E inhibition.

Another means by which RAS can be activated in the cell to induce

dimerization of RAF family members is via upregulation of Receptor Tyrosine
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Kinases (RTKs). Similarly to the NRASQ61 mutation, RTK activation, whether through
aberrant overexpression of the receptor or its ligand, or constitutive activation due
to a gain of function variant can drive melanoma in the absence of mutations in the
MAPK pathway (Akbani et al., 2015). As described earlier, extracellular growth
factors bind to RTKs and lead to the phosphorylation and activation of RAS
(Downward, 2003). In a number of studies, RTKs and their associated ligands are
observed to be upregulated in response to treatment with RAF inhibition (Lito et al.,
2012; Nazarian et al., 2010; Villanueva et al., 2010). Many melanomas harbor
biochemical aberrations in RTKs that can lead to their activation (Hartsough et al.,
2014; Rebecca and Smalley, 2014). These can be any number of genetic (Basu et al.,
2013; Prahallad et al., 2012) or epigenetic modulations (Halaban et al., 2009; Wang
et al., 2014) that allow for activation of RTK signaling pathways. In these cases, non-
mutated NRAS becomes activated as a consequence of RTK activation, other RAF
family members become activated, and inhibition of BRAFV600E is no longer

sufficient for inhibiting the MAP Kinase pathway and arresting tumor growth.

Accumulation of activated RAS, whether due to RTK activation or mutation to
NRASQ61, is not the only means by which RAF family members can dimerize (Lito et
al,, 2013). In a study of five vemurafenib resistant tumors, one sample contained a
BRAF splice variant that omitted exons 2-10. This omission was observed only in the
RNA sequencing data, not in the exome, indicating that this protein variant was due
to an alternative splicing event and not a genomic alteration (Wagle et al., 2014).
This splicing event allows for RAS independent dimerization of BRAF, and this

protein variant does not exclude the V600E substitution, which is present in exon 15
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(Greaves et al., 2013). Given the examples of resistant melanomas utilizing RAF
dimerization as means of overcoming RAF inhibition, it can be hypothesized that
any aberration that results in conditions that favor the dimerization of RAF family
members could lead to resistance (Lito et al., 2013). Each of the mechanisms that
drive dimerization of RAF family members also serve to reinforce the model that
vemurafenib is effective at inhibiting monomeric mutant BRAF only (Lito et al,,

2013).

1.2.5 Mechanisms of resistance to vemurafenib treatment independent of
RAF dimerization
Reactivation of the MAPK pathway following vemurafenib treatment

independent of dimerization of RAF family members can also be accomplished by
RAF-independent reactivation of the MAP Kinase pathway. Two mechanisms of
interest are mutated MAP2K1, and overexpression of mitogen-activated protein
kinase kinase kinase 8 (MAPK3K8). MAP2K1 gain of function variants allow for the
activation of MAPK pathway independent of phosphorylation by BRAF (Wagle et al.,
2011). MAP3K8 is a kinase that will also activate MAP2K1, similarly to BRAF
(Johannessen et al., 2010). In both cases, the MAPK pathway is becoming reactivated

at the level of MAP2K1, below BRAF.

1.2.6 Mechanisms of resistance to vemurafenib treatment independent of
MAPK pathway reactivation
Resistance to BRAFV600E inhibition can involve activation of alternative

growth pathways that can diminish dependence on the MAPK pathway (Hartsough
etal,, 2014; Held et al,, 2013; Kugel et al,, 2014; Roller et al., 2012). Generally,

BRAFV600E melanomas strongly depend on signaling through the mutated BRAFV600E
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kinase (Curtin et al., 2005; Sumimoto et al., 2004) but there have been observations
that melanomas circumvent dependence on BRAFV600E signaling by utilizing v-akt
murine thymoma viral oncogene homolog 1 (AKT1) signaling (Xing, 2012).
Mutations in the phosphatidylinositol 3-kinases (PI3K) and AKT pathway are
common in melanoma (Gray-Schopfer et al., 2007), and these pathways are capable
of inducing growth like the MAPK pathway (Atefi et al,, 2011). AKT signaling targets
multiple downstream pathways, including PI3K-AKT-mammalian target of
rapamycin (MTORC). Because the MAPK pathway and the PI3K/AKT signaling
pathway are the primary signal transduction pathways for growth in melanoma, it is
suspected that BRAFV600E melanoma require mechanisms to activate PI3K/AKT
signaling (Atefi et al.,, 2011; Goel et al.,, 2006). It has been shown that vemurafenib
treatment can induce PI3K/AKT signaling in resistant lines (Atefi et al., 2011;
Sanchez-Hernandez et al., 2011). In addition to activation of the AKT/PI3K signaling
pathway, other pathways are leveraged by melanomas to overcome vemurafenib
treatment including signal transducer and activator of transcription (STAT) family
members, the Hippo pathway effector YY1 associated protein 1 (YY1AP1), beta-
catenin, Bcl-2 homology domain 3 (BH3) proteins, autophagy and translational
regulation (Atkinson et al., 2015; Corcoran et al.,, 2013; Davies, 2012; Delmas et al,,
2015; Deuker et al., 2015; Gopal et al., 2014; Hartsough and Aplin, 2013; Hoeflich et
al,, 2012; Lassen et al,, 2014; Lin et al,, 2015; Ma et al.,, 2014; Pelletier et al., 2015;
Rebecca et al,, 2014; Schneider et al., 2014; Scortegagna et al., 2014, 2015; Shi et al,,

2014a; Silva et al,, 2014; Yadav et al., 2014). It is clear that given the various
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mechanisms of resistance, a means of determining sensitivity to treatment would be

of clinical significance.

1.2.7 Assessing sensitivity to vemurafenib
The capability of vemurafenib to reactivate the MAPK pathway via

dimerization mechanisms (Halaban et al., 2010; Michaelis et al.,, 2014) led to
investigations of tumor sensitivity to treatment with vemurafenib and the zygosity
of the BRAFV600E gllele (Sgndergaard et al.,, 2010). While associations between
sensitivity and copy number of the V60OE allele are weak (Sapkota et al., 2013;
Segndergaard et al., 2010), the zygosity status of the mutant BRAF allele does
modulate the adaptive response of the lines to treatment (Abel et al.,, 2013; Sapkota
etal, 2013; Sgndergaard et al., 2010). In a study of patient samples it was observed
that BRAFV600E homozygotes tend to be more sensitive to vemurafenib treatment
than BRAFV600E heterozygotes, and melanomas with BRAFWT tend to grow when in
the presence of vemurafenib (Halaban et al., 2010). The trend of sensitivity was
observed across a range of doses, but sensitivity did not correlate with basal levels
of BRAF or RAF1 protein (Halaban et al., 2010). In a study of melanoma cell lines, a
similar trend was observed between the zygosity status of the V60OE allele at the
BRAF locus and response to vemurafenib treatment (Sgndergaard et al., 2010);
however, in this study and the previous study, there were sensitive heterozygotes,
all of which contained some level of deletions at the phosphatase and tensin
homolog (PTEN) locus (Halaban et al., 2010; Sgndergaard et al., 2010). When both
studies examined the downstream effects, it was observed that vemurafenib

treatment arrests growth in all lines, but induces apoptosis only in the sensitive
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lines (Halaban et al,, 2010; Sgndergaard et al., 2010). A BRAF amplification occurred
in 4 out of 10 lines studied, but this amplification did not trend with sensitivity
(Sgndergaard et al., 2010). Given the weak associations between sensitivity and
zygosity, later investigations focused on gene expression profiling to identify

markers of sensitivity.

Microphthalmia-associated transcription factor (MITF) expression has been
the most heavily investigated marker linked to vemurafenib sensitivity. MITF is
strongly associated with the melanocyte lineage (Luciani et al.,, 2011; Osawa, 2009;
Pshenichnaya et al., 2012), and is a master transcription factor responsible for
inducing the transcription of melanocyte associated genes (Wellbrock et al., 2008).
Melanoma is a cancer of melanocytes, cells in the skin that generate melanin, the
pigment that provides protection from UV radiation and is responsible for hair and
skin color (Denecker et al., 2014). Melanoblasts, derived from the neural crest, are
the precursor cells for melanocytes and non-pigmented melanocyte stem cells
(Ernfors, 2010). Interestingly, MITF overexpression has been shown to repress the
ability of RAF inhibition to kill melanoma (Hertzman Johansson et al., 2013;
Johannessen et al., 2013) and serves as a marker of sensitivity to vemurafenib

treatment (Konieczkowski et al., 2014; Miiller et al., 2014).

Performing a near whole genome gain of function overexpression screen, it
was discovered that overexpressed MITF led to marked increase in resistance to
vemurafenib treatment (Johannessen et al., 2013). The observed resistance due to
MITF overexpression could be overcome via the addition of inhibitors of histone

deacetylases (HDAC), indicating that the resistance mechanism was converging on
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melanocyte lineage pathways to drive resistance to vemurafenib therapy
(Johannessen et al., 2013). To ascertain the significance of the result, the researchers
obtained patient samples to determine whether MITF expression levels were
sensitive to MAPK inhibition. They observed that MITF levels decreased as the
patients were treated with inhibitors of the MAPK pathway, and one patient that
relapsed had a marked increase of MITF expression in their sample. Taken together,
these results suggest that MITF overexpression is a mechanism of resistance to
vemurafenib therapy. However, a follow up study showed that there is a strong
correlation between MITF expression level (and its activity, as measured by
expression levels of MITF target genes) and sensitivity to vemurafenib treatment. A
whole genome screen of basal transcription levels of melanoma cell lines led to the
observation that MITF expression is the strongest correlated gene with sensitivity to
PLX4720 (Konieczkowski et al., 2014). MITF expression can be regulated by the
activity of MAPK1 (Johannessen et al., 2013). Basal MAPK signaling activity did not
account for the sensitivity to vemurafenib observed, and the correlation between
MITF activity and sensitivity to MAPK inhibition holds true only for a limited
number of drugs, including vemurafenib (Konieczkowski et al., 2014). Given the
seemingly inconsistent nature of MITF expression and its poorly understood

relationship with sensitivity to vemurafenib, more investigation is required.

A recent study that explored the relationship between MITF activity and
vemurafenib sensitivity more stringently classified the expression levels of MITF
within cell lines and the cell lines’ responses to treatment. Again, the researchers

observed that lines with high levels of MITF activity tend to be more sensitive to
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vemurafenib treatment (Miiller et al., 2014). Cell lines treated with chronic doses of
vemurafenib to generate resistant lines either maintained a high level of MITF
activity, described as MITFaca-maint or Jost MITF activity completely, described as
MITFacaloss (Miiller et al., 2014). Additionally, they report that the lines they worked
with effectively segregated into two groups -- low expressing MITF lines, described
as MITFendoldo and high expressing MITF lines, described as MITFendo.hi (Miiller et al.,
2014). They were able to determine that for lines that either acquire or lose MITF
activity, some (MITFacamaint Jines) are resistant to BRAF inhibition only, whereas
others (MITFacaloss ]ines) are resistant to MAPK pathway inhibition via targeted
therapy against multiple MAPK pathway members. Although this study served to
increase the understanding of MITF and its role in sensitivity, it is unclear how

clinically useful MITF would be as a marker of sensitivity.

1.2.8 Combination therapies have been utilized as a means to overcome
many resistance mechanisms observed in melanoma
Preventing the adaptive signaling response to RAF inhibition and

overcoming the mechanisms of resistance described above has become of supreme
importance in the clinical setting (Lito et al.,, 2013). Combination therapies can
overcome both intrinsic or acquired resistance (Van Allen et al., 2014). Many of the
mechanisms of intrinsic and acquired resistance are identical (Rebecca and Smalley,
2014), but acquired resistance mechanisms become manifested under the selective
pressure introduced by treatment (Rebecca and Smalley, 2014). Depending on the
mechanism of resistance, different combination strategies can be used.
Compensatory signaling has been overcome by using a secondary drug that targets

compensatory signaling pathways, such as targeting ERBB3 activity in vemurafenib
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treated melanomas (Kugel et al., 2014). Pathway reactivation can sometimes be
overcome by targeting a downstream target of the primary drug, such as targeting
MAP2K1 and BRAF in tandem (Flaherty et al.,, 2012a). In cases where a target
mutation occurs, rendering the compound less effective, such target compensation
can similarly be overcome by inhibiting downstream targets, such as targeting
MAP2K1 in splice variant BRAF melanoma (Poulikakos et al., 2011). Identifying

combinations is currently a resource intensive process.

There are systematic approaches for arriving at drug combinations; however,
current approaches have serious limitations. Established practice is to screen and
target oncogenic pathway genes/proteins that are upregulated in response to
primary drug treatment (Abel et al.,, 2013). The problem with this approach is that
expected MAPK and other known resistance pathways (PI3K, mTOR, apoptosis, cell
cycle, etc.) (Martz et al,, 2014) may not be the critical drivers of resistance, as we
observed in our previous study in melanoma (Roller et al., 2012). Additionally, these
candidate approaches tend to yield relatively little insight into the full response of

the cell to primary treatment.

A complementary option for identifying combinations is drug screening
based on a strategy that we (Roller et al., 2012) and other groups (Held et al., 2013)
have used. Having found that a combination of sorafenib and diclofenac yields a
synergistic cytotoxic response (Roller et al.,, 2012), we determined that the BRAF
kinase and COX2, respectively, were being specifically targeted by these two drugs
(Roller et al., 2012). With many available therapeutics to test, drug screening is a

comprehensive and powerful approach for uncovering effective /synergistic
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combinations, but it is time consuming and expensive, and does not always yield
mechanistic insights into resistance (Rebecca and Smalley, 2014). However, given
that the drug targets are frequently known, screening does generate hypotheses
that can be used to test mechanisms of resistance. Drug screening findings may also
suggest functional genomic profiling experiments that can help uncover
mechanisms of drug sensitivity, resistance, and synergy. We have observed that
functional genomic screening of high-throughput drug treated data provides the
most informative strategy for identifying drug combinations. We are able to identify
broadly the pathways being affected by treatment, and determined those pathways

as possible targets for secondary drugs in combinations through screening.

Screening for combinations, while time consuming and limited in its
explanatory power, is still useful for arriving at targets. We initially screened
compounds using a synthetic-lethality-based approach (Roller et al., 2012). To
assess synergistic interactions, we used the Bliss model of independence (Zhao et
al, 2014). We found that, in our melanoma screen, combinations that yielded
greater than 26% synergy scores were in the top 98% for all combinations at all
doses across our lines. In addition to the synergistic cytotoxicity of some
combinations, there are a number of other advantages to combinations. Side effects
might be reduced because drugs in combination are often effective at lower doses
than when used separately (Smit et al,, 2014). Lastly, combinations can overcome
various forms of resistance, as previously described (Rebecca and Smalley, 2014;

Smit et al., 2014).
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Two combinatorial strategies were initially proposed to overcome the
adaptive signaling response observed in BRAFV600E melanoma. The first strategy
involved targeting MEK in addition to BRAF (Lito et al., 2012). The second strategy
involved targeting RTKs in addition to BRAF (Straussman et al., 2012; Villanueva et
al, 2010; Wilson et al., 2012). Preclinical models demonstrated efficacy of the first
strategy (Lito et al,, 2012), and clinical trials showed longer median time to
progression for patients treated with the combination versus a monotherapy
(Flaherty et al,, 2012b). These findings were consistent with the paradigm that RAF
inhibition causes an adaptive signaling response, via release of feedback inhibition
of RAS and leading to reactivation of MAPK1. MAP2K1 inhibition combined with
BRAF inhibition would thus be expected to ablate the MAPK pathway to an extent
where MAPK reactivation is not possible (Lito et al.,, 2013). It has been observed that
patients with tumors already resistant to vemurafenib show no response to this
strategy (Falchook, 2012), and thus it must be employed in the setting of primary
treatment. It has also been observed that this strategy reduces the occurrences of
vemurafenib-dependent tumors, as well as the severity of vemurafenib-induced skin
rashes (Lito et al.,, 2013), and thus represents one of those rare situations where the
combination causes fewer side effects. Multiple clinical trials utilizing the strategy
described above have been undertaken to significant success (Niezgoda et al., 2015).
In January 2014, FDA approval of combined MAP2K1 and BRAF inhibition was
announced. Additionally, this combination has repeatedly outperformed BRAF
inhibitor monotherapy treatment of patients. However, this combination is not

effective in patients who have demonstrated resistance to BRAF inhibitor
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monotherapy (Niezgoda et al., 2015). Regrettably, this strategy resulted in only a

modest prolongation of survival (Niezgoda et al., 2015).

A second strategy has been proposed for overcoming the adaptive response
to BRAFV600E inhibition, which involves targeting RTKs to reduce the increase of
RAS activity that could activate other RAF family members, as described above (Lito
et al,, 2013). MAPK1 phosphorylation leads to the activation of negative regulators
of RAS, and RAF inhibition leads to a decrease in these negative regulators. It has
also been observed that RAF inhibition can lead to the activation of RTKs (Abel et al.,
2013). In untreated BRAFV600E melanoma, RAS activity is kept at a minimum, but
RTK activation can lead to its activation, and allow for RAS dependent RAF
dimerization to reactivate the MAPK pathway (Lito et al., 2013). Additionally, RTKs
can signal through multiple parallel growth pathways, leading to compensatory
signaling around the MAPK pathway (Corcoran et al., 2010; Prahallad et al., 2012;
Straussman et al.,, 2012; Villanueva et al., 2010; Wilson et al., 2012). A major
obstacle preventing the adoption of this combination strategy is that RTK activation
is extremely varied across cancer types, and even within melanoma samples (Lito et

al, 2013).

To better overcome mechanisms of resistance in the clinical setting, studies
have been undertaken to identify alternative combinations, combining BRAF
inhibition with phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), a
component of the PI3K-AKT-mammalian target of rapamycin (mTOR) pathway
(Atefi et al., 2011; Sullivan and Flaherty, 2013). However, the identification of novel

combination therapies is of clinical significance. Using a screening based strategy,
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Held et. al determined (Held et al., 2013), that V60OE BRAF mutant melanomas
respond synergistically to a combination of PLX4720 and lapatinib—a result that we
have confirmed (Roller et al., 2016). However, no hypothesis driven or genomic
profiling experiments followed the drug screen; consequently, these studies yielded

few insights into mechanisms of resistance or synergy.

In order (1) to determine mechanisms of resistance to PLX4720 and synergy
of some lines to lapatinib and (2) to help arrive at systematic approaches to better
predict which combinations might be effective/synergize, we followed these
successful studies with a functional genomics and genetics profiling of 12 BRAFV600E
melanoma cell lines. A multipronged genomics and functional genomics screening
strategy allows for rapid iterative generation of hypotheses and testing of these
hypotheses. As functional genomics data become cheaper and easier to produce,

rapid iterative hypothesis testing becomes a key component to advancing the field.

1.3 Mantle cell ymphoma and chronic lymphocytic leukemia, two B-cell

malignancies that benefit from combinatorial therapies

1.3.1 Introduction to mantle cell lymphoma (MCL) and chronic lymphocytic
leukemia (CLL) B-cell receptor (BCR) signaling pathway
MCL and CLL are B-cell malignancies that have poor prognoses; they are

dependent on the B-cell receptor (BCR) signaling pathway for growth (Byrd et al.,
2013; Pérez-Galan et al,, 2011; Swerdlow and Williams, 2002; Wang et al,, 2013).
The BCR signaling pathway begins with recognition of extracellular ligands by the
BCR (Dalporto, 2004). The BCR is a complex composed of multiple proteins; it

includes an antigen binding subunit, the membrane immunoglobulin (Ig), and a

28



signaling subunit (which consists of a disulfide-linked heterodimer of Ig alpha and
Ig beta) that associate in a non-covalent manner (Dalporto, 2004). A single
immunoreceptor tyrosine-based activation motif (ITAM) is present on each of Ig
alpha and Ig beta, and induces signal transduction following BCR aggregation
(Flaswinkel and Reth, 1994). BCR aggregation induces ITAM phosphorylation, most
likely by src-family kinases (Kurosaki, 1999). Following ITAM phosphorylation in
both Ig alpha and Ig beta, the spleen tyrosine kinase (SYK) is recruited and activated
by phosphorylation (Pao et al., 1998; Rowley et al., 1995). BCR expression at the cell

surface is required for development and survival (Kitamura et al., 1991, 1992).

Proper BCR pathway signal transduction requires the ordered activation of
three non-receptor protein tyrosine kinases. Traditionally, these are represented by
LYN proto-oncogene, Src family tyrosine kinase (LYN), SYK, and Bruton
agammaglobulinemia tyrosine kinase (BTK), which is required for BCR pathway
signal transduction (Dalporto, 2004). LYN and SYK are recruited and activated by
the BCR complex, following ligand recognition, and precede as well as influence BTK
activation. BTK activation is also dependent on the generation of specific
phospholipids by the action of PI3K (Gold et al., 2000; Scharenberg et al., 1998). The
creation of these phospholipids allows for the recruitment of BTK (Saito et al., 2001;
Scharenberg et al., 1998). Once LYN, SYK, and BTK have been activated,
phospholipase C, gamma 2 (phosphatidylinositol-specific) (PLCG2) is recruited and
activated, and an increase in intracellular [Ca?*] is effected (Dalporto, 2004). PLCG2
recruitment and activation leads to the creation of second messengers that induce

calcium ion mobilization. The calcium ion mobilization is required for activation of
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the nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)
(Dolmetsch et al., 1997; Saijo et al.,, 2002; Trushin et al.,, 1999). One of the second
messengers created by PLCG2 activity is diacyl-glycerol (DAG), which also activates
protein kinase C (PKC) isotypes, which in turn regulate proteins associated with the
MAPK pathway (Dalporto, 2004). The MAPK pathway is one of the primary
integration points of BCR signaling, and consists of three members: MAPK1,
mitogen-activated kinase 8 (MAPK8), and mitogen-activated kinase 11 (MAPK11)
(Dong et al.,, 2002; Johnson and Lapadat, 2002). The BCR facilitates the activation of
this pathway through the phospho-relay system described above. As seen in

melanoma, the MAPK pathway can lead to survival and proliferation.

1.3.2 Inhibition of BTK signaling is a potent therapeutic strategy in MCL and
CLL

Ibrutinib is a potent inhibitor of BTK, a kinase downstream of BCR. This drug
has an exceptional overall response rate of 68% in patients with relapsed or
refractory MCL, and 83% in patients with relapsed or refractory CLL (Byrd et al,,
2013; Wang et al,, 2013). The highest response rates demonstrated by a single
agent therapy in MCL or CLL (Axelrod et al., 2014a). However, as with melanoma,
response to single agent therapy is not durable, and single agent therapy tends to
induce adaptive responses that lead to drug resistance (Garraway and Janne, 2012;
Gioeli et al,, 2011). Drug combinations that block adaptive signaling responses may
prolong progression-free survival and overall survival in MCL (Liu et al., 2012; Pott

etal,, 2010).
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The development of a B-cell receptor antagonist has been a huge advance for
the treatment of CLL (Woyach et al.,, 2014). As described above, BCR ligand
interaction will induce proliferation, apoptosis, or anergy (Dalporto, 2004). In CLL,
however, BCR ligand interactions induce proliferative and prosurvival signals
(Bernal, 2001; Deglesne, 2006). BTK is not typically mutated in CLL (Puente et al.,
2011; Wang et al,, 2011); however, it is usually constitutively active (Herman et al.,
2011; Honigberg et al., 2010). In vitro, ibrutinib irreversibly binds BTK, rendering
the kinase inactive, inducing modest apoptosis in CLL and stopping BCR signaling
(Herman et al., 2011; Ponader et al., 2012). Cases of relapse have been observed, but
it is expected that the frequency of resistant tumors will only increase as the drug is
prescribed to more patients (Woyach et al,, 2014). Currently, two mechanisms of
resistance have been observed. A mutation in BTK, a cysteine to serine change at
position 481 BTK4815 reduces the efficacy of the inhibitor by making the interaction
between drug and target reversible and greatly reducing the affinity. The resistant
mutations in PLCG2 allow for signal transduction from BCR independent of BTK,
and have no effect on the BTK interaction with Ibrutinib (Woyach et al.,, 2014). This
would suggest that, much like our melanoma studies, MCL and CLL possess many
attributes that would make them prime candidates for further study. Much like
melanoma, they have a well defined driver, with a targeted therapy available for the

driver, as well as resistant tumors available for further study.
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1.4 Integrative Analysis of Genomic and Functional Genomic Data Yield
Insights into Mechanisms of Sensitivity and Resistance of Cancer Cells to

Single and Combinatorial Drug Treatment

1.4.1 Functional genomics is key to the effective implementation of
personalized medicine in the clinic
Modern treatment of patients with cancer has been shown to be strongly

dependent on our ability to classify their tumors as accurately as possible and
prescribe appropriate treatments (Vaske et al,, 2010). Many functional genomics
analyses are currently available to ascertain the basal state of the cancer’s genome,
epigenome, transcriptome, and proteome. Additionally, we are able to ascertain the
cancer’s response to treatments in each of these assays and analyses, as well as
evaluate the cytotoxic response to treatment of the cancer via high-throughput
assays (Vaske et al., 2010). However, simple deductions from analyses of these high-
throughput assays have yielded weak results. As described previously, 50% of all
patients with BRAFV600E melanoma who are treated with vemurafenib relapse with
resistant disease within 12 months (Flaherty et al., 2010, 2012b; Wagle et al.,, 2011)
and resistance to ibrutinib treatment in MCL and CLL patients is becoming more
prevalent (Woyach et al.,, 2014). There has been limited success to effectively
integrate modern technologies in order to develop better diagnostic and prognostic

methods for patients (Vaske et al., 2010).

Genomic aberrations in cancer cells lead to the deregulation of growth
pathways, and allow the genesis of the tumor (Hanahan and Weinberg, 2000, 2011).

Genotype-phenotype associations are unclear because these genomic aberrations
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are often untested, novel, and many times unique to an individual cancer type, or
even to an individual patient (Vaske et al., 2010). High-throughput functional
genomics studies have made significant progress in better determining specific
genotype-phenotype associations (Alizadeh et al., 2000; Golub et al., 1999; van de
Vijver et al., 2002). These studies have been able to effectively establish gene
expression profiles for specific cancer types, and The Cancer Genome Atlas (TCGA)
project and others have furthered our understanding by highlighting the importance
of using the gene lists generated from gene expression microarray studies and
putting them in the context of pathway level analysis (Cancer Genome Atlas
Research Network, 2008; Parsons et al., 2008). Viewing gene expression studies in
the context of the pathways of which the genes were members allowed the
researchers to determine that the same pathways usually were affected in patients,
regardless of differences among patients in the aberrations found at the level of any
individual gene. Additionally, these various aberrations tended to have the same
effects on pathways, either activating or inhibiting a particular pathway (Cancer
Genome Atlas Research Network, 2008; Parsons et al., 2008). These findings would
indicate that even though cancers have varying genomic alterations, phenotypes
observed at the pathway level can be similar. Developing effective pathway
inhibition strategies may thus offer more promise than therapies targeted against

specific genetic drivers of cancer.

Early pathway centric analyses have focused on correlating gene expression
signatures with known phenotype or disease states and yielded promising results

(Allison et al.,, 2006; Dudoit and Fridlyand, 2002; Tusher et al,, 2001); they utilized
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analysis of variance and false discovery rates as parameters (Kerr et al., 2000;
Storey and Tibshirani, 2003) to identify sets of genes to investigate further. To
identify genes of significance in our studies, we used the R Bioconductor package
Limma (Gentleman et al., 2004; Smyth, 2004) and its built-in tools to perform one-
way ANOVA, T-tests, and paired T-tests. A one-way ANOVA calculates the variance
for each gene across all the samples. These variances are then subjected to an F-test,
which is used to determine whether there is at least one comparison between
samples, for that gene, that is significant. Genes that pass the F-test at a significance
threshold determined by false discovery rate correction are used as classifiers for
that experiment (Kerr et al.,, 2000). T-tests are used to identify genes where
comparisons between two samples (for example, a treatment and control for the
same cell line) show a difference between the means of the two samples that is
significantly different given the variance in the data of the samples (Smyth, 2004). A
paired T-test is similar to a standard T-test, but it is used to identify differences that
are of similar magnitude between paired samples (Smyth, 2004). As with the one-
way ANOVA, significance was determined for these comparisons using a false
discovery rate correction, which takes into account the number of comparisons
being made (Storey and Tibshirani, 2003). Classifying these sets of genes into
pathways was accomplished by utilizing overrepresentation-based statistical
methods. Gene Set Enrichment Analysis (Subramanian et al., 2005) and Gene
Ontology (Ashburner et al., 2000) were two of the first tools to utilize these
statistics. Genes are ranked either by copy number alterations or by differential

expression statistics, and pathways are ascribed significance based on how many
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genes from a given pathway are enriched in the top ranks of the list rather than the
bottom. An offshoot of the GSEA is the Mutational Signatures Database, which uses a
hypergeometric test on an unranked gene list. Genes of significance from the list are
identified by some cutoff determined by the researcher, as described above. This list
of genes is compared against the lists of genes for each pathway, and a p value is
calculated to determine whether the submitted list of genes shows an enrichment
for a pathway from the database (Subramanian et al., 2005). Overrepresentation
analyses do not account for interdependencies among genes from the same
pathway, and also assume that all genes equally contribute to affecting the
pathways. Biological networks do not typically follow these assumptions. This can
lead to overrepresentation analyses creating false negatives, by failing to identify
pathways with several small changes across the whole pathway, and the creation of
false positives, by identifying pathways that have only one gene or a few genes that
have been selected, and have little to no result on the product of the pathway (Vaske

etal., 2010).

Newer methods have been developed to better account for pathway topology
in evaluating the significance of a pathway, given a list of genes (Efroni et al., 2007).
Pathway topology can be obtained from a number of pathway databases, such as
Reactome (Joshi-Tope et al., 2005), KEGG (Ogata et al,, 1999), and the National
Cancer Institute Pathway Interaction Database. One of the methods developed to
take advantage of these databases is SPIA (Draghici et al., 2007). SPIA utilizes a
method similar to Google’s PageRank algorithm. A given gene’s significance is

dependent on the number of other genes it interacts with. When two genes have the
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same significance metric, the gene with more interactions would be ascribed a
greater significance in its ability to perturb a pathway. The weakness of SPIA is that
it only has the capability to interpret one data set, usually gene expression fold
changes (Vaske et al,, 2010). In our studies, we have obtained data on gene
expression, protein phosphorylation, exome sequences, DNA methylation, copy
number variations, and responses to treatment in many of these functional genomic
studies, as well as cytotoxic response to these treatments. Analyzing data sets in
isolation is insufficient to arrive at substantial hypotheses of mechanisms of
synergy. It has been shown (and we have observed) that ERBB3 is upregulated in
response to PLX4720 treatment and to Raf inhibition in general (Abel et al., 2013;
Kugel et al,, 2014; Lito et al,, 2012). It was determined that PLX4720 treatment
induces activation of FOXD3, and FOXD3 then mediates ERBB3 expression (Abel et
al,, 2013). Later, RPPA studies showed that PLX4720 treatment was also inducing
NRG1, and NRG1 ligation with ERBB3 was stimulating AKT/PI3K signaling, a
compensatory growth pathway that is parallel to the MAPK pathway (Kugel et al.,
2014). We observe a similar pattern of ERBB3 and NRG1 upregulation in response
to PLX4720 treatment, but we did not observe FOXD3 as a transcription factor
driving the adaptive response to PLX4720 treatment. We suggest that the
upregulation of the ErbB signaling pathway may be driven by ETS2, a known target
of MAPK signaling (Oikawa and Yamada, 2003), and its cofactors in lines that are
resistant to PLX4720. We were also able to identify this same pattern of
transcription factors in another experiment, using decitabine, a global inhibitor of

DNA methylation, which also led to the activation of the ErbB signaling pathway.
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Taken together, these results would indicate that lines resistant to PLX4720
treatment upregulate the ErbB signaling pathway through diverse transcription

factors.

1.4.2 Unsupervised hierarchical clustering is a powerful tool for identifying
common basal states and common responses to treatment
Unsupervised hierarchical clustering is a statistical method in which

similarity between samples within similar datasets can be investigated. We were
able to utilize clustering to great effect on many of our datasets. Similarity between
samples was calculated using the correlation distance metric. Correlation distance is
defined as (1 - the correlation between two samples), and it is used to find trends
between samples that are similar (Shimodaira, 2002; Suzuki and Shimodaira, 2006).
Identifying trends, rather than absolute magnitude, is extremely important because
genes that tend to be co-regulated display similar expression profiles across
treatment and cell types, function in similar or related pathways and do not tend to

have the same absolute level of expression.

In our studies, we have taken a synthetic lethal approach to identify drug
combinations that cause synergistic cytotoxicity in a number of cancer types,
utilizing the Bliss score of independence as a measure of synergy (Axelrod et al.,
2014a, 2014c, 2014b; Roller et al.,, 2012). In our melanoma screen of 12 BRAFV600E
mutants, we identified the combination of the vemurafenib analog PLX4720 in
combination with lapatinib as being a potent therapy that induces synergistic
cytotoxicity in six of the twelve lines assayed. Of note, the six lines that responded

synergistically were also the most resistant to treatment with PLX4720
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monotherapy, as determined by IC50 assessment. The lines that did not show
synergy were observed to be sensitive to monotherapy alone, potentially indicating
that, in a patient setting, these melanomas would not require the combination
initially and that any resistant recurrences would be sensitive to the combination.
When we applied unsupervised hierarchical clustering to the results of the synthetic
lethal drug screen, we observed that therapies that inhibited similar targets would
also perform well in similar combinations, or that some combinations were
synergistic in the same groups of lines, when the two combinations contained drugs
that inhibited similar targets (Roller et al., 2016). We observed that melanomas
tended to respond to the combination of BRAF and RTK inhibition, as noted, as a

potential combination therapy (Lito et al.,, 2013).

We were also able to determine, using unsupervised hierarchical clustering,
that cell lines that responded similarly to individual drugs and combinations have
similar underlying biochemical responses to the individual drugs and combinations.
For example, we identified a group of BRAFV600E melanomas that clustered together
in an assay of their cytotoxic responses to single and combination therapy. This
group of melanomas showed a synergistic response to the combination, and we
observed that they showed a broad activation of the ERBB/HER family signaling
pathway, under treatment with PLX4720, that was unobserved in the rest of our cell
lines. These results corroborated other studies of melanomas (Abel et al., 2013;
Kugel et al,, 2014), ; however we observed these responses at much lower dosages
of the drugs than had been reported in studies of monotherapy. The

proliferation/survival of cells with this compensatory signaling that we observed in
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this group of lines was effectively blocked in the presence of the combination

treatment, which represents a promising therapy for future clinical use.

Utilizing unsupervised hierarchical clustering, we were also able to use the
basal expression states of the lines to associate each cytotoxicity group with an
expression profile dependent on MITF activity. Contrary to other studies, we
observed that high MITF expressing lines show greater resistance to PLX4720
monotherapy (Konieczkowski et al., 2014), however we do not observe as large of a
dynamic range of MITF expression that was observed previously. Our panel of lines
is smaller and we use a different assay to determine cell viability. We have not yet
been able to determine the mechanism by which MITF activity influences response
to combination therapy, but, given the hypothesis that lineage influences RTK
activity (Lito et al,, 2013), we have been able to identify potential transcription
factors that may be part of the response, as described above. We propose that
interactions of BRAF zygosity and MITF transcriptional targets contribute to
determining a melanoma’s sensitivity to PLX4720 treatment and responsiveness to

the combination of RAF and RTK inhibition.
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2 Systems analysis of adaptive responses to MAP Kinase

pathway blockade in BRAF mutant melanoma.

2.1 ABSTRACT

Fifty percent of cutaneous melanomas are driven by activated BRAFV600E but
tumors treated with RAF inhibitors, even when they respond dramatically, rapidly
adapt and develop resistance. Thus, there is a pressing need to identify the major
mechanisms of intrinsic and adaptive resistance and develop drug combinations
that target these resistance mechanisms. In a combinatorial drug screen on a panel
of 12 treatment-naive BRAFV600E mutant melanoma cell lines of varying levels of
resistance to MAPK pathway inhibition we identified the combination PLX4720, a
targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ERBB family of
receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that
displayed the most resistance to PLX4720. To identify potential mechanisms of
resistance to PLX4720 treatment and synergy with lapatinib treatment we
performed a multi-platform functional genomics analysis to profile the genome as
well as the transcriptional and proteomic responses of these cell lines to treatment
with PLX4720. We found modest levels of resistance correlated with the zygosity of
the BRAF V600E allele and RTK mutational status. Layered over base-line resistance
was substantial upregulation of many ERBB pathway genes in response to BRaf
inhibition, thus generating the vulnerability to combination with lapatinib. The

transcriptional responses of ERBB pathway genes are associated with a number of
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transcription factors, including ETS2 and its associated cofactors that represent a
convergent regulatory mechanism conferring synergistic drug susceptibility in the

context of diverse mutational landscapes.

2.2 INTRODUCTION

The BRaf kinase is activated by mutation from Valine to Glutamate at
position 600 (V600E) in approximately 50% of cutaneous melanomas (Curtin et al,,
2005), resulting in uncontrolled activation of the MAP Kinase pathway and
expression of genes that are drivers of cell growth and migration (Joseph et al,,
2010; Solit et al,, 2006). The importance of BRAFV600E a5 an oncogenic driver is
demonstrated by the rapid response of most BRAFV600E mutant melanomas to the
BRaf inhibitors vemurafenib or dabrafenib (Chapman et al., 2011; Hauschild et al,,
2012): Over 50% of BRAFV600E mutant melanomas showed objective response after

treatment (Chapman et al., 2011; Hauschild et al., 2012).

Unfortunately, response to vemurafenib is not durable, with most patients
relapsing within 2 to 18 months of initial treatment (Flaherty et al., 2010, 20123;
Wagle et al.,, 2011). Several mechanisms of acquired resistance have been identified
in melanoma that has relapsed after treatment. For example, exogenous MITF
overexpression has been shown to repress the ability of BRaf inhibition to kill
melanoma (Hertzman Johansson et al,, 2013; Johannessen et al., 2013) and in cells
that display high MITF activity class III and class IV melanosomes can sequester
drugs (Halaban et al., 2009). In more recent studies, lack of MITF activity has been

implicated as an indication of resistance to BRaf inhibition (Konieczkowski et al.,
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2014; Miiller et al., 2014). Finally, a host of genomic alterations have been identified
that circumvent the targeted inhibition of BRaf, in most cases reactivating the MAP
Kinase pathway: BRAF splice variants facilitate dimerization with CRAF and result
in MEK activation (Poulikakos et al,, 2011); MEK can be activated by mutation or by
activation of COT (Johannessen et al., 2010); the cytotoxic effects of MAPK pathway
inhibition can be blunted by compensatory pathway activation, such as PI3K
activation (Van Allen et al., 2014); and the zygosity of the V600OE mutation is
associated with modulating response to treatment with vemurafenib (Abel et al,,
2013; Sapkota et al.,, 2013; Sgndergaard et al., 2010). Less is known about
mechanisms of intrinsic or adaptive resistance that can be manifested within a few

hours or days of treatment, and is the focus of the current investigation.

Combination therapies are predicted to overcome intrinsic, adaptive and
acquired resistance (Van Allen et al,, 2014). For resistance acquired following
relapse, DNA sequencing has uncovered mutational changes underlying resistance,
and created the possibility for targeted combination therapies. However, there has
been no systematic methodology established to predict effective combinations for
newly diagnosed disease because of the complexity of the genetic changes in
melanoma (Lawrence et al., 2014; Van Allen et al,, 2014) and the consequent
diversity of compensatory survival adaptations. Therefore, we and others (Held et
al,, 2013) have taken an empirical approach, performing high-throughput
combinatorial screens of drugs and tool compounds to identify the most effective
combinations of drugs or pathways for more durable melanoma treatment. We

screened a panel of 12 BRAFV600E mutant melanoma cell lines, with a wide range of
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intrinsic sensitivity to the BRaf inhibitor PLX4720, in combination with a library of
60 secondary drugs and tool compounds. We found that the 6 lines most resistant to
the BRaf inhibitor underwent synergistic cytotoxicity with lapatinib, an inhibitor of
ERBB family receptor tyrosine kinases. In order to determine mechanisms of
resistance to PLX4720 and synergy to lapatinib as well as help develop systematic
approaches to better predict which combinations might be effective/synergize, we
performed a functional genomics and genetics profiling of the 12 melanoma cell
lines. Our study reveals roles for mutant BRAF zygosity and mutations in RTKs in
determining basal drug resistance, and an overriding effect of expression of ERBB
family RTKs in response to PLX4720 treatment. Further analysis revealed
enrichment of transcription factors including ETS family members and their
associated co-factors as likely regulatory drivers of adaptive PLX4720 resistance,
providing a potential convergence point of adaptive resistance within the diversity

of response mechanisms.

2.3 RESULTS

2.3.1 Analysis overview.
In order to gain insights into the mechanisms of synergy and sensitivity, and

potentially to identify clinically relevant biomarkers, we broadly profiled our panel
of lines with multiple functional genomic and genetic assays (Figure 2.1). Analysis of
the basal transcriptome revealed differences in MITF expression level that
correlated weakly with drug sensitivity. Dividing the cell lines into groups based on
unsupervised clustering of all the single drug and combination cytotoxic responses

across a three by three dose response matrix yielded five phenotype groups.
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Strikingly, these cytotoxicity groupings closely mimicked the groupings observed in
the basal transcriptome based on a principal component analysis (PCA). The
transcriptional and proteomic responses to PLX4720 treatment were then analyzed
to identify molecular responses that were common between the cell lines in each
group. The lists of differentially expressed genes and phosphoproteins were
subjected to the Mutational Signatures Database (MSigDB) (Subramanian et al.,
2005) enrichment analysis and KEGG pathway enrichment analysis using Pathway
Express (Draghici et al., 2007) to identify transcription factors that putatively
regulate the genes in the pathways associated with response to PLX4720 and

synergy to PLX4720 and lapatinib.
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Figure 2.1 Functional genomic data generated and analysis workflow.

Flow-chart including transcriptome, proteome and exome data generated and
integrative analysis of these data sets. 12 cell lines basal states were assayed using
exome sequencing (1), gene expression arrays (2), and reverse phase protein arrays
(3). Variant calling and enriched gene variants were identified by cross referencing
our results with mutated genes associated with cancer identified by Lawrence et al
(Lawrence et al, 2014). Cell lines were exposed to PLX4720 and their responses were
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assayed with gene expression arrays and reverse phase protein arrays. Protein
response to treatment was correlated with cytotoxic effects of PLX4720 treatment to
identify proteins that might be mitigating the cytotoxic response. Cytotoxicity
(Cytotox) groups were identified by clustering the cytotoxicity data. Differential gene
expression responses to treatment within each cytotoxicity group were identified and
underwent both gene set and pathway enrichment analysis via MSigDB and Pathway
Express respectively. Pathway enrichment analysis revealed ErbB signaling as a key
response to treatment and gene set enrichment analysis revealed a number of
transcription factors that are enriched which putatively regulate ErbB signaling
pathway genes.

2.3.2 Analysis of the basal transcriptome yields groupings based on MITF
and drug synergy.

To determine whether the transcriptional profile of treatment-naive cells
could predict sensitivity to the drugs, singly or in combination, we classified the 12
cell lines based on unsupervised clustering of the basal transcriptome (Figure 2.2A).
Clusters I and II contained genes that were relatively high-expressed only in
SKMEL24 and VMM17, respectively, and, consequently, were not driving the

ordering of the cell lines.
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Figure 2.2 Clustering and PCA analysis of basal gene expression reveals MITF
expression and gene regulation separates melanoma cell lines.

We performed a one-way analysis of variance (ANOVA) and applied a 0.1% false
discovery rate (FDR) cutoff to identify genes with significantly varying expression
levels, and the genes (y-axis) and cell lines (x-axis) were organized by unsupervised
hierarchical clustering. Clustering the genes using the correlation distance and
average linkage yielded 91 gene clusters with the number of genes in each cluster
ranging from 1 to 73 when applying a cluster height cutoff of 0.41. Hierarchical
clustering of samples (x-axis) by genes (y-axis) of gene expression for significantly
varying genes across twelve melanoma cell lines (A). The largest cluster (cluster IV),
which contains MITF along with three others that contain cell line specific signatures
(clusters L, Il and 111) are highlighted as they were the only clusters with greater than
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20 genes. Cluster IV genes were analyzed using Ingenuity Pathway Analysis revealing
the cluster contains MITF as a regulatory hub and its target genes (B).Principal
component plot of basal expression across the twelve cell lines (C) separates cells
according to MITF expression along the first principal component (i.e., decreasing
MITF expression going from left to right) and BLISS score across the second principal
component.

Cluster III (49 genes) contained relatively highly expressed genes in DM331,
which is of interest because it is the most resistant line to PLX4720 treatment. A
subset of the genes in this cluster was also relatively high-expressed in A375, our
second most sensitive line to PLX4720 treatment. To identify the potential
functional significance of the genes within cluster III, we performed a MSigDB
enrichment analysis using the transcription factor gene set (Table 2.1). The top
result revealed a set of 9 genes (TBL1X, IL6, CST7, NRG1, CPA4, SERPINB7, STC2,
CALB2, RAB27B) that all contain the JUN motif in their promoter. Among these
genes, TBL1X and CALB2 were the only two that were expressed at a relatively high
level in both A375 and DM331 while the rest including NRG1 were highly expressed
in DM331 only. In other works, exposure to NRG1 has been shown to induce
resistance to PLX4720 treatment in A375 cells (Zhang et al., 2013). Despite the fact
that DM331 and A375 are at opposite ends of the range of sensitivity to PLX4720,
their transcriptional profiles are strikingly similar—placing them next to each other
in the clustering of cell lines (Figure 2.2A). Taken together, these results suggest that
high expression of NRG1 in DM331 contributes substantially to DM331’s intrinsic

resistance to PLX4720 treatment.

Table 2.1 MSigDB Table for Transcription Factor Enrichment for Clusters III

and IV
Enrichment

Gene Set Name Description Genes From Gene List In GeneSet Cluster
FDR g-value

TBL1X,IL6,CST7,NRG1,CPA4,SERPINB7,STC2,CALB2,RA

B27B Il

TGANTCA_VS$SAP1_C Motif TGANTCA; JUN 1.08E-03
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TGANNYRGCA_VSTCF Motif TGANNYRGCA;
11MAFG_01 NFE2L1 4.39E-03 TBL1X,IL6,CST7,NRG1,PPARG ]
Motif
VSTCF11MAFG_01 NNNNNATGACTCAGC 1.26E-02 TBL1X,IL6,CST7,PPARG ]
ANTTNNG; TCF11
V$GATA3_01 Motif NNGATARNG; 1.35E-02 BMP4,CYB5D1,EFEMP1,KRT80 ]
GATA3
RNGTGGGC_UNKNOW N TEE e 1.35E-02 NRG1,CPA4,BMP4,CYB5D1,TLE4,NMU ]
N Unknown gene
Motif
VSIPF1_Q4 GHNNTAATGACM; 1.35E-02 BMP4,EFEMP1,TLE4,RNF212 ]
IPF1
Motif
VSNFAT_Q4_01 NWGGAAANWN; 1.35E-02 SERPINB7,STC2,PTHLH,SOX9 ]
NFAT
VSNFE2_01 Motif TG,\‘CFTSZAGTCAY‘ 1.35E-02 TBL1X,IL6,CST7,CALB2 i
CTTTGA_VSLEF1_Q2 Motif CTTTGA; LEF1 1.65E-02 NRG1,PPARG,TLE4,PTHLH,SLC14A1,UCP2,COL5A1 ]
Motif
V$PBX1_02 NNCATCAATCAANNW 1.83E-02 TBL1X,TLE4,PTHLH ]
; PBX1
TATAAA_VSTATA_01 Motif TATAAA; TAF 1.83E-02 CPA4,PPARG,EFEMP1,TLE4,PTHLH,SOX9,CD24 ]
TGGAAA—\;iNFAT—Q4 Motif TGGAAA; NFAT 3.17E-02 TBL1X,IL6,NRG1,SERPINB7,BMP4,CYB5D1,SOX9,ALPK2 ]
CAGGTG_VSE12_Q6 Motif CAGGTG; TCF3 3.87E-02 NRGl,CPA4,STC2,BMP4,EgE5MP1,TLE4,PTHLH,FZDZ,SC I
TCANNTGAY_VSSREBP | Motif TCANNTGAY; 6.71E-03 PMEL,TRIM63,WDFY1,CAPN3,TYR,SLC24A5,CYP27A1 v
1_01 SREBF1
Motif
VSCEBPA_01 NNATTRCNNAANNN; 1.39E-02 MITF,SIRPA,GYPC,PROS1,TBC1D16 I\
CEBPA
. PMEL,TRIM63,MITF,SIRPA,GHR,APOLD1,GPR137B,DCT
TTGTTT_VSFOX04_01 Motif TTGTTT; MLLT7 1.56E-02 'DAAM?2,IGFBPL,UBL3,MLANA \Y)
Motif CAGCTG; PMEL,WDFY1,MITF,GHR,APOLD1,GPM6B,RRAGD,MBP,
CAGCTG_VS$AP4_Q5 REPIN 1.56E-02 BCAS3,LONRF1 I\
RGAGGAA:;(-WPUL Motif R(SSII:SGAARY" 1.56E-02 TRIM63,CAPN3,GPR137B,NAV2,GPR56,NDN v
TGCCAAR_VSNF1_Q6 Motif TGCCAAR; NF1 1.56E-02 MITF,GHR,DCT,TSPAN7,PI15,GJA3,ADCY1 I\
GGGAGGRR_VSMAZ_ Motif GGGAGGRR,; 1.63E-02 MITF,GYPC,GPR137B,GPM6B,NAV2,GPR56,TSPAN7,PI1 v
Q6 MAZ ' 5,SLC27A3,BHLHE41,LAMA1,GDF15
Motif
VSATF_B NTGACGTCANYS; 1.63E-02 MITF,DAAM2,GPM6B,TSPAN7 I\
Unknown gene
Motif
RGTTA“':xN&TT—VSH RGTTAMWNATT; 1.63E-02 MITF,IGFBP1,PLA1A \Y)
- TCF1
[ e 2.67E-02 MITF,DAAM2,GPM6B,TSPAN7 v
6 ATF3
V$PU1_Q6 Motif V\’S?DflGGAAG" 2.67E-02 SIRPA,NAV2,NDN,SLC27A3 v
Motif
VSHNF1_01 GGTTAATNWTTAMC 2.67E-02 MITF,IGFBP1,PLA1A,DAB2 I\
N; TCF1
GGGYGTGNY_UNKNO Motif GGGYGTGNY; 2.67E-02 MITF,APOLD1,UBL3,NAV2,PI15,LGALS3 v
WN Unknown gene
Motif
VSATF3_Q6 CBCTGACGTCANCS; 2.67E-02 MITF,DAAM2,GPM6B,TSPAN7 I\
ATF3
. PMEL,MITF,SIRPA,GYPC,PROS1,DAAM2,GPM6B,NDN,S
GGGCGGR_VS$SP1_Q6 Motif GGGCGGR; SP1 2.67E-02 LC27A3,BHLHEA1,GJB1, APOE, MLPH \Y)
Motif
VSATF_01 CNSTGACGTNNNYC; 2.67E-02 PMEL,DAAM2,GPM6B,TSPAN7 I\

Unknown gene
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VSCREBP1CJUN_01 Motif TGACGTYA; JUN 2.67E-02 MITF,DAAM2,GPM6B,TSPAN7 \%
Motif
VSNF1_Q6 NNTTGGCNNNNNNC 2.67E-02 TYR,DCT,NAV2,GJA3 \Y)
CNNN; NF1
VSCREB_01 Motif Z?SBCIGTMA" 2.67E-02 MITF,DAAM2,GPM6B,TSPAN7 v
Motif
VSNF1_Q6_01 NTGGNNNNNNGCCA 2.74E-02 TYR,DCT,NAV2,GJA3 \Y)
ANN; NF1
Motif
VSGR_Q6 NNNNNNCNNTNTGT 2.74E-02 MITF,DAAM2,RRAGD,MBP \%
NCTNN; NR3C1
Motif
VSAR_Q2 AGWACATNWTGTTCT 2.97E-02 APOLD1,DAB2,GJB1 \Y)
; AR
TGACCTY_VSERR1_Q2 Motn;;s::cw; 3.61E-02 MITF,SIRPA,DCT,UBL3,RRAGD, TSPAN7,ADCY1 v
TGAYRTCAgvsATF"'—Q b @y Li’s; RIS 4.32E-02 MITF,DAAM2,GPM6B,TSPAN7,GAPDHS 1\
TGANTCA_VS$AP1_C Motif TGANTCA; JUN 4.99E-02 MITF,DCT,BCAS3,GPR56,P115,LGALS3,GAPDHS \%

Clustering the expression profile of the 73 genes in Cluster IV separates our
cell lines into two distinct groups. When we inspect the content of the lines present
in either the right or left side of Cluster IV, the separation does not appear to be
driven by the lines synergy status (Figure 2.3). Ingenuity Pathway analysis of this
list of 73 genes revealed that cluster IV contained MITF as a hub with a number of
MITF target genes (Figure 2.2B) suggesting that the cell lines could be in different
cell lineage states with the MITF transcriptional program driving this separation. To
confirm whether MITF is a regulatory hub of cluster IV genes, we compared the
genes in cluster IV with MITF target genes identified by Strub et. al. via a ChIP-Seq
experiment (Strub et al.,, 2011) and observed an overlap of 33 of 73 (45%; p-value =
3.42 e-11; Figure 2.4). These results implicate MITF and the expression of its
associated targets as potentially driving lineage separation in our cell lines, but not

contributing consistently to drug sensitivity.

49




Lapatinib Dose

Low Medium High
100
75+
50 4
] lllll i=0000n
0__--—.---7_-7 - - —_—| . — ——
9
100
[0
O -
S 75
gso—
5% - ralli n-HlEnN
8 O__-—— ---__-7 -— - ---_ — [ | ———
2
100 -
75+
50 -
- |
vl = | mlles e w EElew
1T 1T 71T 717 71T 71T 71T 71T 71T 7177 T 71T 71T 717 71T 71T 71T 71T 71T 71771 T 1T 71T 71T 71T 71T 71T 1T 71T 71771
GI3IBIsLes=2sss 53IZIdsLes=sss 533I8IseLes=S3s3
<DE=L333°955S <L-z0555°55s <LE=2L835°5s3
S S =5 555 S S S5 555 S S S5 555
n w n w n n

wnipay Mo

8s0Q 02¢.¥X1d

ybIH

Figure 2.3 Bliss difference (Synergy score) for lines across 3 x 3 dose response

Synergy score (left y-axis) across all 12 cell lines (bottom x - axis) for escalating doses

of lapatinib (top x-axis) and PLX4720 (right y-axis). Synergy Score was calculated
using the Bliss model of independence. Synergy Score = Ccombination— (1 — (1 = Csecondary
prug) *(1 = Cprimary prug)) where Ccombination IS the observed cytotoxicity of the combination

treatment, Csecondary Drug IS the observed cytotoxicity of the secondary drug, and Cprimary

prug 1S the observed cytotoxicity of the primary drug.
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Cluster IV

Figure 2.4 Overlap of Cluster IV genes with genes that contain MITF binding
sites as identified by ChIP Seq

Number of overlapping genes (purple) between MITF ChIP Seq binding sites (blue) and
Cluster IV gene list (pink)

To assess the extent to which the MITF expression is associated with
response to PLX4720 treatment in our panel, we correlated MITF expression in each
of our lines with their respective IC50 values. We observed a modest anticorrelation
0f -0.40 between the MITF expression level of our lines, and their respective IC50

doses, consistent with Konieczkowski et al. (Konieczkowski et al., 2014). In our case,
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this result is largely driven by DM331, our most resistant line. When this line is
excluded, we observe essentially no correlation, 0.085, between MITF gene
expression and IC50 across the remaining eleven cell lines. Because our synergy
studies were performed over a dose range that included concentrations below the
IC50 (centered around IC20), we also examined the correlation of MITF expression
and cytotoxicity at the low, medium and high doses. We found a relatively strong
anticorrelation between MITF gene expression level and PLX4720 cytotoxicity
(excluding DM331): -0.79, -0.68 and -0.67 for our low, medium and high doses,
respectively. Notably, our PLX4720 doses, which were intended to assess drug
synergy, are much lower, 125 nM, in our studies compared to other studies which
tend use ~1uM PLX4720 (Halaban et al.,, 2009; Konieczkowski et al., 2014; Miiller et
al,, 2014; Sgndergaard et al., 2010). Thus, at low doses of PLX4720, we find lower
levels of MITF across our cell lines are associated with increased sensitivity to

PLX4720 treatment while at IC50 doses, we find essentially no correlation.

To analyze mechanisms of synergy between PLX4720 and lapatinib we
performed a principal components analysis (PCA) which reveals dominant sources
of variability in the first principal component as well as sub-dominant sources of
variability in the second and higher order principal components. As shown in the
PCA plot (Figure 2.2C), the separation along the first principal component (PC1) was
not associated with synergy, but appeared to be strongly correlated with MITF
expression level in our lines (correlation coefficient = -0.9). We observed an inverse
relationship between MITF expression level and AXL kinase expression level (Figure

2.5), a trend which has been observed previously (Johannessen et al., 2013;
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Konieczkowski et al., 2014). The separation that we observed along the second
principal component (PC2) segregated synergy and non-synergy cell lines, and was
highly correlated with the synergy score of the lines (correlation coefficient =

0.791).
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denoted with a “*” (A). Relative expression in Log2 of AXL (Red) and MITF (Blue) (B).
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The strong correlation of the second principal component with the Bliss
synergy score of the cell lines raised the possibility that the basal transcriptional
profile could yield insights into mechanisms of synergy and resistance. To explore
this possibility, we correlated each gene expression profile across cell lines with PC2
and identified pathways enriched for these genes using MSigDB enrichment
analyses (Subramanian et al.,, 2005). We input genes whose correlation with PC2
was greater than 0.8 or less than -0.8. Pathways that were enriched with genes that
were highly correlated with PC2 (Table 2.2) were cell cycle and GPCR signaling
associated pathways. Pathways that were enriched with genes that were highly
anticorrelated with PC2 also included GPCR signaling, neuroligand GPCRs and

cytokine-cytokine receptor interaction.

Table 2.2 Top 10 pathways from MSigDB enrichment analysis for genes that
have a negative or positive correlation coefficient with the second principal
component

c e Correlation
Gene Set Name Description Status with PC2
Genes involved in
REACTOME_GPCR_DOWNSTREAM_SIGNALING GPCR downstream Negative
signaling
Genes involved in .
REACTOME_SIGNALING_BY_GPCR Signaling by GPCR Negative
KEGG_OLFACTORY_TRANSDUCTION Olfactor‘y Negative
transduction
Genes involved in
REACTOME_OLFACTORY_SIGNALING_PATHWAY Olfactory Signaling Negative
Pathway
Genes involved in
REACTOME_GPCR_LIGAND_BINDIN Negati
CTOME_GPCR_LIG - G GPCR ligand binding egative
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION Neuroact.lvellgar)d— Negative
- - - - receptor interaction
Genes involved in
Class A/1 .
REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS ™ Negative
(Rhodopsin-like
receptors)
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION Cytokine-cytokine Negative
receptor interaction
REACTOME_NEURONAL_SYSTEM GBI Negative
Neuronal System
REACTOME_IMMUNE_SYSTEM Genes involved in Negative
Immune System
REACTOME_CELL_CYCLE Genes involved in Positive
= = Cell Cycle

55




REACTOME_CELL_CYCLE_MITOTIC Genes involved in Positive
- - - Cell Cycle, Mitotic

Genes involved in
REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES UELEEIET: Positive
- - - = = transport of small

molecules

Olfactory

KEGG_OLFACTORY_TRANSDUCTION .
- - transduction

Positive

REACTOME_IMMUNE_SYSTEM SEBlNTL Positive
= - Immune System

Genes involved in
Antigen processing:
REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION Ubiquitination & Positive
Proteasome
degradation

Genes involved in o
REACTOME_SIGNALING_BY_GPCR signaling by GPCR Positive

REACTOME_S_PHASE Genes involved in 5 Positive
- Phase

Genes involved in
REACTOME_ADAPTIVE_IMMUNE_SYSTEM Adaptive Immune Positive
System

Genes involved in
REACTOME_GPCR_DOWNSTREAM_SIGNALING GPCR downstream Positive
signaling

2.3.3 Grouping Cell Lines According to their Cytotoxicity Profiles is
Consistent with Their Transcriptome-based Grouping
Given the modest association between basal gene expression and synergy,

we wanted to determine if there was a phenotypic classification that better
correlated with the basal gene expression analyses. We re-examined the grouping of
the cell lines according to cytotoxic drug response over the low dose ranges used to
identify synergy. These analyses of cytotoxic responses to PLX4720, lapatinib and
the combination of the two drugs revealed that the lines that did not demonstrate
synergy had low synergy scores for fundamentally different reasons (detailed
below, Figure 2.3). To organize the cell lines according to drug cytotoxicity profiles,
we clustered the cell lines using their cytotoxicity values across drug treatments
(Figure 2.6A), again applying the Pearson correlation distance and average linkage.
This cytotoxicity based clustering yielded five distinct phenotypic groups. The

clustering of cell lines’ cytotoxic responses revealed a strong separation between
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the synergistic lines and the non synergistic lines with the exception of SKMEL24, a
synergistic line which grouped with the non synergistic lines. To verify the
robustness of the clustering in which averages of cytotoxicity values across
replicates were used, we generated box plots of all the cytotoxicity values (Figure
2.7). Both the trends with drug dose and actual cytotoxicity values were robustly
similar across cell lines within a cytotoxic group and noticeably distinct between
groups. Strikingly, cell lines within cytotoxic groups clustered according to their
basal transcriptome-based grouping in the principal component plot (Figure 2.5).
The five groups identified were: (1) Cytotoxicity group A (CGA), whose cells show
strong dose dependence on and relatively high cytotoxicity in response to PLX4720
treatment while lapatinib treatment is static across all doses, and its cytotoxicity is
moderate; (2) Cytotoxicity group B (CGB), which only contains DM331. This cell line
is almost completely resistant to PLX4720, and has relatively high expression of
NRG1, a known mechanism of PLX4720 resistance (Zhang et al., 2013). For this
reason we exclude it from further transcriptional group analyses; (3) Cytotoxicity
group C (CGC), in which cells respond to the drug combination but are resistant to
either drug alone; (4) Cytotoxicity group D (CGD), in which cells grow in the
presence of low dose lapatinib and have reduced response to combination at low
doses compared to other groups; and (5) Cytotoxicity group E (CGE), whose cells

grow in the presence of low dose lapatinib.

57



A
a a ERBB SIGNALING PATHWAY
:
R 2 ()
Tty 2 -
z f - - o
IP3
NONE LOW Z e e Profration
NONE MED = DG ellular targe
NONE HIGH e Recepr g
ubicuitylation 8! n
[ ] LOW NONE s
MED NONE Ca] Doe
HIGH NONE >
LOW Low 2 ® Migration
LOW MED o R
LOW HIGH NN rgiogenesis
MED Low T @-mg’m%
MED MED e Activation by EroB2
MED HIGH bl (e
HIGH LOW = Adiesion
HIGH MED (|
g X - [ >
HIGH HIGH ; g hECr (om0,
0O F T = |0 o £ © [0 v (N~ Migration / Invasion
EI:B8sesEsEs 0
SuECiElgdzSPSEE Dl
2 Tlolg " ssS| S5s .
& & ™ Protein synthesis
A B C D E TR sguling Differentiation
NRG3 P [(Bad }-——» Cellsuviva PRy
P Glion
Cytotoxicity NRG4 ——» Metibolisra L)m
Group FIP3 4p
PI3K-Akt Endometrial
Color Key N caor (oam ) ()
b ﬁm
3% 04012 812113
8 (c) Kanehisa Laboratories
o
-20 20 60
Value

Figure 2.6 Clustering by cytotoxicity reveals differential responses to PLX4720
treatment.

Clustering of cell lines (x-axis) according to cytotoxic responses to PLX4720, lapatinib,
and combination treatment at three doses for each individual drug and a three by
three dose response for the combination (y-axis) (A). Five groups were identified: CGA
(most left, 3 lines), CGB (near left, 1 line), CGC (center, 4 lines), CGD (near right, 2
lines), and CGE (far right, 2 lines). Pathway enrichment analysis of differential gene
expression to PLX4720 treatment identified ErbB signaling as being broadly activated
in CGC (B).
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Figure 2.7 Cytotoxic responses to single and combination drug treatments for
cell lines

Box plots of cytotoxic response to single drug treatment (top 2 rows) and escalating
PLX4720 doses of the combination drug treatment (bottom 3 rows). Doses along the
bottom refer to either the single drug treatment (top 2 rows), or the secondary drug
treatment dose for the combination drug treatment (bottom 3 rows). Red dots denote
negative cytotoxic responses, blue dots denote positive cytotoxic responses.

2.3.4 Exome Sequencing Reveals Mutations That Modulate Lineage-Based
Cytotoxicity Profiles
To determine whether the mutational landscape of the cell lines could

explain their grouping according to cytotoxicity profiles, we performed whole
exome sequencing on all twelve cell lines. We found a trend between the zygosity
status of the BRAF locus and response to treatment, with homozygous BRAF mutant
lines being more sensitive to BRaf inhibition, as has previously been reported in a
panel of cell lines by Sgndergaard et al (S¢gndergaard et al., 2010). The only
overlapping line between their study and ours was SKMEL28, and we confirm the

mutations that they observed. To expand this analysis, we obtained IC50 values to
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PLX4720 for 27 BRAFV600E melanoma cell lines in the Cancer Cell Line Encyclopedia
(Barretina et al,, 2012) and plotted the IC50 for each line in order, as well as lines in
our study, and colored the bars based on their zygosity status at the BRAF locus
(Figure 2.8A). We observed a trend between the zygosity and IC50, with five out of
six homozygous lines located in the left (more sensitive) half of the chart. The only
outlier was DM331, which we again excluded from our analysis. We obtained a p-
value = 0.049 using a permutation-based t-test comparing IC50 values of
homozygous versus heterozygous lines. We then generated box plots for the IC50
values for BRAFV600E/V600E melanomas, BRAFWT/V600E melanomas and BRAFWT/WT
melanomas. We observed a clear trend between the zygosity status and the
sensitivity to PLX4720 treatment (Figure 2.8B), similar to the findings of Halaban et
al. (Halaban et al., 2010). Lastly, we note that our study has a much larger
percentage of BRAFV600E/V600E melanomas compared to other studies, which could
explain why BRAF zygosity had a stronger association with sensitivity to PLX4720

treatment in our study compared to others.

60



BRAF STATUS . Homozygous . Heterozygous . Wild Type

40 w—
30 =
s
s
38
o 20 =
S
3
x
o
o
10—
. -----III...IIIIIIIIIIIIIIII
N N ® S 0V @9 o & 5L 2 T T 003 8% N QN T ¥R R ® 5 L kg ® S 2 - 8% % b &
s z £ ¥ g = 2 = s 2 o = T 4z35¢ 22 93 9% % 9 S S 28 x s T3 s 2
2 s s $ g3z :3 R g = € $oggezt 2 ) z s 3
=
Cell Line
15— ( ]
S 10 =
2 ([ ]
o
8
5 |
) ®
o 5 =
0 = —@
Homozygous Heterozygous Wild Type
BRAF STATUS
C Cellline BRAF Zygosity Cytotoxicity Group  Cytotoxicity Group Specific Mutated Genes Cell Line Specific Mutated Genes Cytotoxicity Group BRAF Zygosity Outlier Line Variants
DM331  Homozygous CGB N/A FGFR3, KDMSC N/A
DM13 Heterozygous CGC None HLA-A None
VMMSA  Heterozygous cGC None CNKSR1, MLL4, FAT1, DIAPH1, BCLAF1 None
VMM18  Heterozygous €GC None OR4A16, WASF3, MAP2K1, PPP2R1A None
SKMEL28  Homozygous c6C None SIRT4, APC, NOTCH1 ARID1A, PTEN, SACS, DNER, MYOCD, EGFR, MXRAS
SKMEL24  Heterozygous CGA None TNFRSF14, ERBB3 ANK3, CREBBP, MYOCD, MUC17, EGFR, ACO1, MXRAS
A375 Homozygous CGA None MTOR, CD1D, RUNX1, MAP3K1 ATM
HT144 Homozygous CGA None KEL, FAM166A ATM
VMM12  Heterozygous CGE ALK AKT1, KIT, CARD11, GUSB, TSC1 N/A
VMM17  Heterozygous CGE ALK GATA3, COL5A3, ADNP, MED23, CUL4B N/A
VMMI5  Heterozygous 6D EZHL EPHA2, INPPL1, MGA, p:::f;gi SMARCA4, MYCN, MET, N/A
OM6 Heterozygous 6D EZH1 NUP210L, TCP11L2, STX2, MLL2, ATPSB, FOXA1, MPO, N/A

PDCD2L, DNMT3A, FRMD7

Figure 2.8 Exome analysis reveals trend between zygosity of V60OE allele in
the BRAF locus and sensitivity to PLX4720.

Ranked IC50 values for BRAFV60E melanomas from our panel and the CCLE. For lines
in our panel that were also in the Cancer Cell Line Encyclopedia (Barretina et al.,
2012) (CCLE), we used the IC50 values from the CCLE. Lines from our panel are
denoted with “*”. Zygosity at the BRAF locus was assayed using IGV visualization of
BAM files. Lines found to be homozygous for the V60OE allele were colored blue, lines
found to be heterozygous for the V60OE allele were colored red, and lines found to be
wild type at the BRAF locus were colored green (A). Box plots of IC50 values for
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BRAFV600E/V600E (Homozygous), BRAFWT/V600E (Heterzygous), and BRAFWT/WT (Wild
Type), melanoma cell lines (B). Exome sequencing identifies potential causal variants.
Variants present in our lines were compiled using exome sequencing and cross
referenced with genes identified as being mutated across multiple cancer types
(Lawrence et al, 2014). BRAF zygosity, genes uniquely mutated in each drug
cytotoxicity group, and the genes uniquely mutated in each line are listed (C).

We then searched for genes that contained variants that were unique to
individual cytotoxicity groups and could be dominant drivers of drug sensitivity
within each group. We found that lines in both the CGE and CGD groups contained
unique genetic variants. Variants previously identified by dbSNP were removed, and
we further filtered the list by identifying novel nonsynonymous variants; nonsense
and missense variants only. The list of 10,000 variants was narrowed to 143
variants across 83 genes that were identified as being known drivers of cancer
(Lawrence et al., 2014). We imported the list of variants into polyphen2 (Adzhubei
et al.,, 2010), which identifies variants that may alter function. We identified
cytotoxicity group specific mutations in ALK and EZH1 that were predicted to be
damaging by polyphen2 in CGD and CGE cell lines, respectively. ALK is a receptor
tyrosine kinase that has been previously associated with multiple cancer types
(Lawrence et al., 2014; Soda et al,, 2007; Wagle et al,, 2011) and is an activating
mutation in many types of lung cancer (Wagle et al,, 2011). EZH1 is a histone
methyltransferase that deposits methyl groups on histone H3 lysine 27
(H3K27me3), which tends to yield repressed chromatin (Shen et al., 2008). EZH1
has been shown to maintain stem cell identity and pluripotency (Shen et al., 2008).
Importantly, EZH1 and EZH2 have been identified as candidate oncogenes in diffuse

large B cell lymphoma (Garapaty-Rao et al., 2013).
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While we found no cytotoxicity group specific variants in CGA and CGC cell
lines, BRAF zygosity potentially explains the response of three of the four CGC and
two of the three CGA cell lines to PLX4720 treatment respectively. Consequently, we
searched for genes that contained variants specifically in the cell lines that were
cytotoxicity group exceptions with regard to BRAF zygosity (SKMEL28 and
SKMEL24) that were not shared by other group members. We also identified
variants that were specific to SKMEL28 and SKMEL24, which could explain their

being placed in CGC and CGA groups, respectively.

In SKMELZ28, we found several genes that could explain its increased
resistance to PLX4720 treatment compared to other homozygous BRAF lines.
SKMELZ28, uniquely in our panel, contains a mutation in NOTCH1, a transmembrane
protein that has been shown to interact with membrane bound ligands (Rebay et al.,
1991) and it can also activate MAPK signaling and PI3K signaling in melanoma (Liu
et al.,, 2006). SKMELZ28 also contains notable variants in three tumor suppressors.
ARID1A and PTEN are mutated in SKMELZ28 but not in its cytotoxicity group
members. However, ARID1A is also mutated in VMM15, and PTEN is not mutated in
any other line. ARID1A is a SWI/SNF family member and potential tumor
suppressor in melanoma (Oike et al,, 2013). Lastly, SKMEL28 is the only line in our
panel with a mutation in APC, a tumor suppressor that antagonizes WNT signaling
(Lawrence et al., 2014) and has been shown to be nonfunctional in patients with
melanoma (Rubinfeld et al,, 1997). We hypothesize that this set of mutations in
growth pathways and tumor suppressors potentially explains SKMEL28’s resistance

to PLX4720 treatment, despite its homozygous BRAF status.
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In SKMEL24 we found a number of cell surface proteins that contain
mutations including TNFRSF14, DNER, ERBB3 and EGFR (Figure 2.8C). A loss of
function mutation in any of these proteins could limit SKMEL24 in its ability to
activate alternative growth pathways in the presence of BRaf inhibition, thereby,
potentially explaining its sensitivity to PLX4720 treatment despite its heterozygous
mutant BRAF status. When considering its set of cell line-specific variants, the
ERBB3 mutation is notable given that ERBB family members are lapatinib targets.
However, polyphen2 predicted this variant to be benign, with the 1077t residue
substituting an arginine for a tryptophan, so more analyses are required to

determine the significance of this variant.

Finally, we applied our search for genes that contained variants in only one
cell line in order to identify variants that could be driving cell line specific
cytotoxicity responses. DM331 is our most aberrant line in that it contains
homozygous BRAFV600E yet it is by far the most PLX4720 resistant cell line. We
found that FGFR3, which is known to activate Ras (Teven et al,, 2014),had a
potential function altering mutation in the kinase domain as identified by polyphen?2
(i.e., substituting an arginine (R) for a lysine (K) at residue 618). We also previously
observed its high expression of NRG1, a known contributor to PLX4720 resistance
(Zhang et al,, 2013) and find that its basal expression of EGFR is far higher than is
seen in the other lines (Roller et al., 2016). Taken together, we find evidence for the
hypothesis that the sensitivity of the lines to PLX4720 treatment can be explained in
part by a combination of zygosity at the BRAF locus and the mutational status of

various cell surface receptors.

64



2.3.5 Cytotoxic Group-Wise Analysis After PLX4720 Treatment Reveals
Broad ERBB Pathway Gene Up-regulation in Combination Sensitive
Cell Lines Only
Because basal gene expression analysis revealed modest associations with

drug sensitivity, we determined whether PLX4720 sensitivity and synergy with
lapatinib could be due to changes in gene expression induced by PLX4720
treatment. To test this hypothesis, we generated and analyzed transcriptional and
proteomic profiles for each of the cell lines 8 hours after PLX4720 treatment. Given
the robust grouping of the cell lines according to cytotoxic drug response, we
performed a group-wise analysis in order to gain power to detect subtle but
consistent changes in gene expression in response to PLX4720. Specifically, we
used a paired t-test within cytotoxicity groups on the transcriptional response to
PLX4720 treatment matching each treatment sample with a control (i.e., no drug
treatment) and applying a stringent 1% FDR cutoff. The CGA, CGC, CGD and CGE
groups (Figure 2.6A) showed 2614, 7310, 2383, and 2993 probes detecting
differential gene expression at a 1% FDR, respectively. When each of these gene lists
was put through a Pathway Express (Draghici et al., 2003; Khatri et al., 2002)
enrichment analysis, the top two pathways in all four groups were always leukocyte
transendothelial migration and cell adhesion molecules, and the third ranked
pathway in every group except CGC was adherens junctions (Table 2.3). Only CGC -
the group requiring both lapatinib and PLX4720 for maximal cytotoxicity -- had
upregulation of the noncanonical WNT and MAPK signaling pathways, which was
not observed in the other groups based on a Bonferroni corrected gamma p-value of

0.01. Notably,CGC and CGA have significant Bonferroni corrected p-values for the
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ErbB signaling pathway (5.60e-05 and 4.86e-04 respectively). Visualization of
differentially expressed genes in the ErbB signaling pathway across cytotoxicity
groups gave the most insight into a potential mechanism for synergy and resistance
(Figure 2.6B, Figure 2.9). In CGC, there is broad upregulation (red) of the ErbB
signaling pathway. Only in the CGC group do we observe the upregulation of
multiple ERBB family members. In CGA and CGD, only ERBB2 is upregulated, and in
CGE the ERBB family is not significantly affected by treatment at all. Consistent with
this result, Abel et al. have previously observed ERBB3 activation in response to
vemurafenib treatment (Abel et al., 2013). When we looked at the pathways in
cancer diagrams (Figure 2.10), we observed that in addition to the differences in
ErbB signaling pathway, WNT signaling (Figure 2.11), and MAPK signaling (Figure
2.12) were broadly affected in CGC only. In addition to the enrichment in ErbB
signaling in CGA, we also observe significant enrichments in apoptosis, a number of

cancer specific pathways, and p53 signaling pathways.

Table 2.3 Pathway express analysis results for differentially expressed genes
in response to PLX4720 treatment for all cytotoxicity groups.

Rank Pathway Name Corrected gamma p-value Cytotoxicity Group
Cell adhesion molecules
1 (CAMS) 1.01E-20 CGA
2 Leukocyte Franﬁendothelial 5 42E-09 CGA
migration
3 Adherens junction 8.72E-09 CGA
4 Pathways in cancer 1.22E-07 CGA
5 Antigen processing and 1.54E-07 CGA
presentation
6 Small cell lung cancer 5.22E-06 CGA
7 Circadian rhythm 1.78E-05 CGA
8 Prostate cancer 2.95E-05 CGA
9 Focal adhesion 1.33E-04 CGA
10 Whnt signaling pathway 3.63E-04 CGA
11 ErbB signaling pathway 4.86E-04 CGA
12 Colorectal cancer 5.39E-04 CGA
13 Non-small cell lung cancer 7.30E-04 CGA
14 Adipocytokine signaling 7 81E-04 CGA
pathway
15 Apoptosis 0.001349037 CGA
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16 Axon guidance 0.0019749 CGA
17 Basal cell carcinoma 0.004128721 CGA
18 Glioma 0.004281121 CGA
19 Pancreatic cancer 0.004878647 CGA
20 p53 signaling pathway 0.006613412 CGA
21 Jak-STAT signaling pathway 0.007037892 CGA
22 TGF-beta signaling pathway 0.00732704 CGA
23 MAPK signaling pathway 0.008094704 CGA
24 Phosphatidylinositol signaling 0.00895652 CGA
system
1 Leukocyte Frans:endothelial 9.24E-84 cGe
migration
Cell adhesion molecules
2 (CAMS) 1.44E-57 CGC
3 Cytokinej—cytokir.we receptor 2 85E-09 cGe
interaction
4 Pathways in cancer 7.25E-08 CGC
5 Neuroac:cive Iigarﬁd—receptor 2 46E-07 cGe
interaction
6 Focal adhesion 3.65E-07 CGC
7 MAPK signaling pathway 1.12E-06 CGC
8 Jak-STAT signaling pathway 1.43E-06 CGC
9 Melanoma 6.58E-06 CGC
10 Phosphatidylinositol signaling 6.74E-06 cae
system
11 ErbB signaling pathway 5.60E-05 CGC
12 Whnt signaling pathway 5.96E-05 CGC
13 Adherens junction 1.29E-04 CGC
14 Regulation of actin 1.47E-04 cae
cytoskeleton
15 Axon guidance 1.77E-04 CGC
16 Glioma 2.54E-04 CGC
17 Tight junction 2.59E-04 CGC
18 T cell receptor signaling 2 65E-04 cae
pathway
19 Calcium signaling pathway 3.60E-04 CGC
20 PPAR signaling pathway 6.17E-04 CGC
21 Olfactory transduction 7.30E-04 CGC
22 Non-small cell lung cancer 8.10E-04 CGC
23 Antigen processing and 8.37E-04 cGe
presentation
Complement and coagulation
24 0.001371042 CGC
cascades
25 Maturity onset diabetes of the 0.001557527 cac
young
26 Primary immunodeficiency 0.001938145 CGC
27 Natural killer ce.ll.mediated 0.002260202 cGe
cytotoxicity
28 Prostate cancer 0.002824351 CGC
29 mTOR signaling pathway 0.003802526 CGC
30 TGF-beta signaling pathway 0.004180151 CGC
31 Chronic myeloid leukemia 0.005022655 CGC
32 Hematopoietic cell lineage 0.005931458 CGC
33 Bladder cancer 0.005999586 CGC
34 p53 signaling pathway 0.006335204 CGC
35 Renal cell carcinoma 0.006659957 CGC
36 Thyroid cancer 0.007954554 CGC
37 Acute myeloid leukemia 0.008338527 CGC
1 Leukocyte .trans.endothelial 9.04E-133 GDC
migration
2 Cell adhesion molecules 7.63E-55 GDC

67




(CAMs)

3 Adherens junction 1.33E-16 GDC
4 Phosphatidylinositol signaling 1.99E-11 GDC
system
5 Parkinson''s disease 2.27E-07 GDC
6 Circadian rhythm 5.90E-07 GDC
7 Antigen processing and 7 82E-07 GDC
presentation
8 Alzheimer"s disease 2.74E-06 GDC
9 Pathways in cancer 1.07E-05 GDC
10 Huntington's disease 6.59E-05 GDC
11 p53 signaling pathway 0.001885117 GDC
12 Bladder cancer 0.004284906 GDC
13 Whnt signaling pathway 0.005947112 GDC
14 Pancreatic cancer 0.007062585 GDC
15 Colorectal cancer 0.008612032 GDC
Cell adhesion molecules
1 (CAMS) 2.23E-49 CGE
2 Leukocyte .trans.endothelial 2 65E-47 CGE
migration
3 Adherens junction 4.93E-10 CGE
4 Circadian rhythm 2.78E-06 CGE
5 Pathways in cancer 8.94E-06 CGE
6 Small cell lung cancer 3.51E-05 CGE
7 Prostate cancer 1.26E-04 CGE
8 Colorectal cancer 7.32E-04 CGE
9 Renal cell carcinoma 8.13E-04 CGE
10 Ubiquitin mec?iated 8.25E-04 CGE
proteolysis
11 Bladder cancer 0.001292046 CGE
12 Endometrial cancer 0.001582886 CGE
13 Thyroid cancer 0.00177535 CGE
14 Whnt signaling pathway 0.00250439 CGE
15 Basal cell carcinoma 0.002784422 CGE
16 E;')ithelialcellsigh.aling i.n 0.002814316 cGE
Helicobacter pylori infection
17 Focal adhesion 0.005403562 CGE
18 Shsa05131$ 0.005926249 CGE
19 Pathogen'ic Esc‘herichia coli 0.005926249 CGE
infection
20 RNA polymerase 0.006885467 CGE
21 Glioma 0.008172814 CGE
22 Pancreatic cancer 0.0093714 CGE
23 TGF-beta signaling pathway 0.0093714 CGE
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Figure 2.9 ErbB signaling pathway response to PLX4720 treatment for each

cytotoxici roup.

The responses for each group are CGD (top left), CGE (top right), CGA (bottom left),
and CGC (bottom right). Nodes in red denote an upregulation, nodes in blue denote a

downregulation.
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Figure 2.10 Pathways in cancer pathway response to PLX4720 treatment for
each cytotoxicity group.

The responses for each group are CGD (top left), CGE (top right), CGA (bottom left),
and CGC (bottom right). Nodes in red denote an upregulation, nodes in blue denote a
downregulation.
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Figure 2.11 Wnt signaling pathway response to PLX4720 treatment for each
cytotoxicity group.
The responses for each group are CGD (top left), CGE (top right), CGA (bottom left),

and CGC (bottom right). Nodes in red denote an upregulation, nodes in blue denote a
downregulation.
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CGD CGE

Figure 2.12 MAPK signaling pathway response to PLX4720 treatment for each
cytotoxicity group.

The responses for each group are CGD (top left), CGE (top right), CGA (bottom left),
and CGC (bottom right). Nodes in red denote an upregulation, nodes in blue denote a
downregulation.
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Given the striking, simple result that the ERBB pathway is broadly
upregulated in response to PLX4720 treatment only in the group of cell lines that
require treatment with the PLX4720 and lapatinib combination in order to achieve
an optimally cytotoxic response, we asked which transcription factors were likely
activated by mutant BRaf inhibition and targeting ERBB pathway genes. Using
MSigDB (Subramanian et al., 2005), we identified transcription factors whose motif
occurrence is significantly enriched at the promoters of genes that were
differentially expressed in each cytotoxicity group (Table 2.4). We found 45 unique
transcription factor binding motifs that are only present in CGC, among which were
an ETS family member and its associated cofactors, including ETS2, GATA1, and
POU2F1. Additionally, we saw a number of well-established oncogenic transcription
factor binding motifs, including Jun and Myb. Lastly, based on ChIP-seq data (Strub

etal,, 2011), we found that MITF targets a number of ERBB pathway genes (Ji et al,,

2015).

Table 2.4 MSigDB transcription factor enrichment results for differentially

expressed genes in response to PLX4720 for all cytotoxicity groups

Gene Set Name Description FDR g-value Rank Cytotoxicity
Group

CAGGTG_VS$E12_Q6 Motif CAGGTG; Gene TCF3 2.20E-79 1 CGC
TTGTTT_VS$FOX04_01 Motif TTGTTT; Gene MLLT7 2.86E-74 2 CGC
GGGAGGRR_VSMAZ_Q6 Motif GGGAGGRR; Gene MAZ 4.60E-69 3 CGC
AACTTT_UNKNOWN Motif AACTTT; Gene unknown 9.57E-68 4 CGC
TGGAAA_VSNFAT_Q4_01 Motif TGGAAA; Gene NFAT 1.67E-67 5 CGC
GGGCGGR_V$SP1_Q6 Motif GGGCGGR; Gene SP1 1.03E-58 6 CGC
CTTTGT_VSLEF1_Q2 Motif CTTTGT; Gene LEF1 1.36E-56 7 CGC
TATAAA_VSTATA_01 Motif TATAAA; Gene TAF 3.64E-52 8 CGC
CAGCTG_VS$SAP4_Q5 Motif CAGCTG; Gene REPIN1 4.14E-43 9 CGC
CTTTGA_VSLEF1_Q2 Motif CTTTGA; Gene LEF1 7.71E-42 10 CGC
GGGCGGR_VS$SP1_Q6 Motif GGGCGGR; Gene SP1 4.10E-118 1 CGA
GGGAGGRR_VSMAZ_Q6 Motif GGGAGGRR; Gene MAZ 3.78E-91 2 CGA
CTTTGT_VSLEF1_Q2 Motif CTTTGT; Gene LEF1 1.92E-81 3 CGA
CAGGTG_VS$E12_Q6 Motif CAGGTG; Gene TCF3 5.37E-78 4 CGA
TTGTTT_VSFOX04_01 Motif TTGTTT; Gene MLLT7 6.34E-72 5 CGA
AACTTT_UNKNOWN Motif AACTTT; Gene unknown 7.16E-71 6 CGA
TGGAAA_VSNFAT_Q4_01 Motif TGGAAA; Gene NFAT 3.23E-61 7 CGA
CACGTG_VSMYC_Q2 Motif CACGTG; Gene MYC 6.83E-55 8 CGA
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GATTGGY_VSNFY_Q6_01 Motif GATTGGY; Gene unknown 1.43E-54 9 CGA
CAGCTG_VS$AP4_Q5 Motif CAGCTG; Gene REPIN1 1.86E-52 10 CGA
GGGCGGR_VS$SP1_Q6 Motif GGGCGGR; Gene SP1 2.02E-111 1 CGE
SCGGAAGY_VSELK1_02 Motif SCGGAAGY; Gene ELK1 1.58E-75 2 CGE
GGGAGGRR_VSMAZ_Q6 Motif GGGAGGRR; Gene MAZ 1.41E-74 3 CGE
CAGGTG_VSE12_Q6 Motif CAGGTG; Gene TCF3 1.09E-71 4 CGE
CTTTGT_VSLEF1_Q2 Motif CTTTGT; Gene LEF1 1.10E-70 5 CGE
TTGTTT_VS$FOX04_01 Motif TTGTTT; Gene MLLT7 5.37E-66 6 CGE
AACTTT_UNKNOWN Motif AACTTT; Gene unknown 1.58E-59 7 CGE
TGGAAA_VSNFAT_Q4_01 Motif TGGAAA; Gene NFAT 1.59E-55 8 CGE
CACGTG_V$SMYC_Q2 Motif CACGTG; Gene MYC 4.92E-53 9 CGE
GATTGGY_VSNFY_Q6_01 Motif GATTGGY; Gene unknown 2.18E-44 10 CGE
GGGCGGR_VS$SP1_Q6 Motif GGGCGGR; Gene SP1 1.43E-98 1 CGD
CTTTGT_VSLEF1_Q2 Motif CTTTGT; Gene LEF1 2.27E-79 2 CGD
TTGTTT_VSFOX04_01 Motif TTGTTT; Gene MLLT7 1.34E-73 3 CGD
AACTTT_UNKNOWN Motif AACTTT; Gene unknown 6.03E-63 4 CGD
GGGAGGRR_VSMAZ_Q6 Motif GGGAGGRR; Gene MAZ 8.44E-59 5 CGD
TGGAAA_VSNFAT_Q4_01 Motif TGGAAA; Gene NFAT 3.34E-54 6 CGD
CAGGTG_VSE12_Q6 Motif CAGGTG; Gene TCF3 3.16E-51 7 CGD
SCGGAAGY_VSELK1_02 Motif SCGGAAGY; Gene ELK1 4.46E-44 8 CGD
CACGTG_VSMYC_Q2 Motif CACGTG; Gene MYC 1.28E-42 9 CGD
TGANTCA_VS$AP1_C Motif TGANTCA; Gene JUN 1.41E-41 10 CGD

We further analyzed transcription factor motifs that appear across multiple
cytotoxicity groups in order to identify those that were more strongly enriched in
CGC. For motifs that appeared in more than one group, we added the motif’s rank in
CGC to the motif’s rank in the other group subtracted from 100. For motifs that
appeared in more than the CGC and one other group, we calculated the arithmetic
mean of the 100 minus the other groups’ ranks, and added that to the CGC rank.
Using these averaged ranks summed with the rank for CGC, we found that CGC is
more enriched than any other group for an additional 28 transcription factor
binding motifs. We then found which of these transcription factors were associated
with the promoters of ErbB signaling pathway genes. To visualize the ERBB
pathway gene responses to PLX4720 treatment together with the transcription
factors that putatively regulate them in one view, we plotted the log2 fold change of
PLX4720 treated versus control of genes in the ErbB signaling pathway for each
cytotoxicity group (Figure 2.13 and Figure 2.14, Left) and identified transcription

factors that have predicted binding motifs for those genes (Figure 2.13 and Figure
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2.14, Right). There is a subset of these factors closest to the heat map including
LEF1, SP1, AP4, ETS2, and PAX4 that putatively target multiple upregulated genes in
the largest central cluster of the heat map. Additionally, ERBB family members
contain binding motifs for LEF1, SP1, AP4, NFAT, MAZ, and FOX04 at their
promoters. Notably, many of these factors have been associated with melanoma.
LEF1 has been shown to be highly expressed in proliferative cells in melanoma
(Eichhoffetal, 2011; Xu et al,, 2014). In a HMGB1 knockdown in melanoma, a
marked decrease in cell proliferation was observed mediated by p21 in a SP1
dependent manner (Li et al,, 2014). NFAT has been identified as a potential drug
target in melanoma using aminobisphosphonate zoledronic acid (Levin-Gromiko et
al,, 2014). Lastly, FOX04 activation can induce senescence in BRAFV600E mutants
(Keizer et al., 2010). Putting these results together, we find that transcription
factors associated with MAPK signaling including ETS family members and co-
factors along with factors that contain MAPK consensus sites (Diella et al., 2008) are
apparently activated in response to PLX4720 treatment in combination sensitive
cell lines to upregulate ERBB pathway genes, priming the cells for sensitivity to

lapatinib.
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Figure 2.13 Transcription factors associated with ERBB pathway upregulated
in combination sensitive cell lines treated with PLX4720.

Unsupervised clustering of gene expression response (log: fold change) to PLX4720
treatment (y-axis) of the ErbB signaling pathway genes of each cytotoxicity group (left
heat map). Transcription factors (x-axis) that have binding motifs in the promoters of
ErbB signaling pathway genes (black squares in binary matrix on right).
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Figure 2.14 Transcription factor enrichment of ErbB signaling pathway for all
lines

Unsupervised clustering of gene expression response to PLX4720 treatment (y-axis) of
the ErbB signaling pathway of each cell line (Left). Transcription factors were
identified that have binding motifs in the promoters of these genes (Right).
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2.3.6 Reverse Phase Protein Array Analysis Reveals Down-regulation of
Oncogenic Proteins Across Cytotoxicity Groups Eight Hours After
PLX4720 Treatment
To test our hypothesis that resistant lines upregulate ErbB signaling activity,

we performed reverse phase protein array analysis. We assayed approximately 132
protein epitopes across 105 different proteins sampling various oncogenic
pathways including MAPK, PI3K, ERBB, etc. eight hours after initial treatment with
PLX4720. We log2 transformed the normalized values, performed cytotoxic group-
wise paired t-tests as described above and applied a 5% FDR cutoff. We identified
36 differentially expressed phosphoproteins, one cleavage site, and two proteins,
whose total amount changed in response to PLX4720 treatment. Using these
epitopes, we plotted their fold changes for each group due to treatment with
PLX4720 in a heat map (Figure 2.15). Surprisingly, as shown in Figure 64, the
lapatinib and combination resistant (CGD) and lapatinib resistant (CGE) groups
display the strongest response to PLX4720 treatment with the majority of
phosphoprotein levels going down. Notably, while not statistically significant by our
stringent cutoff, the phosphoproteins in the other cytotoxicity groups displayed
similar but weaker trends as those in the two resistant groups. This result together
with the fact that we are assaying phosphoprotein levels eight hours after initial
drug treatment may indicate that we are observing the direct downstream response
of BRaf inhibition with minimal compensatory signaling being manifested at the
level of protein phosphorylation. Interestingly, the weaker reduction observed at
the protein level in combination sensitive (CGC) and PLX4720 sensitive (CGA) cells

may be due to delayed compensatory signaling, which includes transcription and
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translation (Joseph et al,, 2010). This combination of a direct response of PLX4720
(i.e.,, downregulation) and delayed compensatory signaling may explain why we do
not observe upregulation of proteins in the ERBB pathway 8 hours after PLX4720

treatment.
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Figure 2.15 Reverse phase protein array reveals stark changes to output of
RTK signaling pathways

Heat map of protein phosphorylation changes at 5% FDR across the four cytotoxicity
groups. (A). Correlating the response to treatment from the protein array with the
cytotoxicity identified ERBB4 total protein fold changes as being the most anti
correlated (B).

To see if there is a signature at the protein level indicating that RTK-
dependent signaling was being weakly but consistently downregulated in PLX4720
sensitive cell lines and upregulated in PLX4720 resistant cell lines in response to
PLX4720 treatment, we calculated the Pearson correlation coefficient between the
normalized log2 fold change (PLX4720 treated over untreated cells) and
cytotoxicity in response to PLX4720 treatment across cell lines (including DM331)
for each of the three doses separately. We found the change in total ERBB4 protein
levels in response to PLX4720 treatment is the most anticorrelated epitope with
PLX4720 cytotoxicity (Figure 2.15B). Other highly anticorrelated proteins were
ribosomal protein S6 kinase, the alpha inhibitor of NFkB, and VEGFR. The
significantly differentially phosphorylated proteins in response to PLX4720
treatment and this correlation analysis suggest that PLX4720 inhibition may be
broadly activating multiple RTKs beyond ERBB family members in CGC but reducing

their activity in the other groups.

2.4 DISCUSSION

Inhibition of BRaf signaling as a therapy for the 50% of cutaneous
melanomas that are mutant BRAFV600E js confounded by a wide variety of
mechanisms of resistance, both intrinsic and acquired. Thus, there is considerable

interest in understanding the general principles of resistance to BRaf inhibition so
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that druggable targets could be identified that would guide the development of
effective drug combinations. In a high throughput screen, we found that the
combination of the mutant BRaf inhibitor PLX4720 with the ERBB family inhibitor
lapatinib caused synergistic cytotoxicity in the six lines of our 12 cell-line panel that
showed the greatest intrinsic resistance to BRaf inhibition. By performing
hierarchical clustering of the cytotoxicity dose-response data, we identified five
different cytotoxicity groupings, reflecting extraordinary heterogeneity in biological
responses to drug treatment in this panel. Molecular profiling identified lineage
(reflected by MITF expression), BRAF zygosity and basal transcriptional differences
as modest determinants of resistance, with cell-line specific mutations in proto-
oncogenes and tumor suppressors and widespread transcriptional upregulation of
ERBB family members and other receptor tyrosine kinases in response to PLX4720
as being the most prominent drivers of resistance. Examination of the
transcriptional responses to PLX4720 treatment revealed the involvement of
transcription factors with the potential to be responsive to the MAP Kinase pathway,
providing a possible convergent mechanism underlying the diversity of phenotypic

responses.

2.4.1 Analysis of the basal state: cytotoxicity, transcriptome and genome.
Principal Component Analysis of the basal transcriptomes of the five

cytotoxicity groups revealed a correlation between drug synergy and the second
Principal Component. The strongest transcriptional correlation and anticorrelation
to synergy was among genes encoding cell surface receptors including GPCRs and

neuroactive ligand signaling GPCRs. Many GPCRs are capable of activating the MAP
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Kinase pathway, either directly or by transactivating RTKs utilizing neurotropin
(Delcourt et al.,, 2007; Lee and Chao, 2001; Lee et al., 2002), thus identifying a
potential mechanism for bypassing BRaf inhibition. Nevertheless, the broad and
diverse genes and pathways did not yield clear, concrete mechanistic insights into
drug response. The first Principal Component of the basal transcriptomic analysis
correlated with MITF expression, which has been implicated by several reports in
drug resistance and oncogenesis in melanoma (Hertzman Johansson etal., 2013;
Segndergaard et al., 2010; Thomas and Erickson, 2009). For example, Konieczkowski
et al. recently identified high MITF levels and MITF transcriptional target activity as
associated with increased sensitivity to PLX4720 treatment (Konieczkowski et al.,
2014). However, in our panel we obtained a very modest association between MITF
and IC50 for PLX4720, an association that was driven almost entirely by our single
most resistant cell line; when this line (DM331) was dropped from the analysis, no
association with MITF appeared. However the study by Konieczkowski et al.
(Konieczkowski et al., 2014) utilized 29 cell lines, many of which displayed lower
MITF expression levels than occurred in our panel; MITF gene expression levels
would be classified as MITF high for all our cell lines according to the criteria
established by Muller et al. (Miiller et al., 2014). Thus, the Konieczkowski study, by
dint of range of MITF expression and number of cell lines, was better powered to

detect a modest association.

The groupings of our cell lines according to cytotoxic response to drug
treatment and basal expression profile can be rationalized in part by BRAFV600E

zygosity status. The high proportion of homozygous BRAF mutants in our study (4
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out of 12) helps to highlight this tendency, and was strengthened by comparison
with data in the Cell Line Encyclopedia. As shown in and Figure 2.5, cell lines
(excluding SKMEL28 and SKMEL24) on the left of the PCA plot contain heterozygous
BRAFV600E mutations. Regarding cytotoxic response to vemurafenib treatment, the
cell lines tend to be more resistant on the left. Additionally, the cell lines on the top
of the PCA plot respond synergistically to the combination of vemurafenib and
lapatinib while those on the bottom do not. It has been shown that vemurafenib
binding to BRAFV600E paradoxically activates downstream MAPK signaling via
dimerization with non-mutant Raf and allosteric activation of the non-mutant
partner (Holderfield et al,, 2014). In a homozygous BRAFV600E cell line, opportunities
for this paradoxical activation are limited to the heterodimers with CRaf, which
could partially explain increased dependency on the output of the mutationally

activated BRaf.

Our results support the findings of Konieczkowski et al. (Konieczkowski et
al, 2014) that overexpression of BRAFV600E suppresses MITF gene expression: in
our cell lines, MITF levels tend to be lower in homozygous versus heterozygous
lines. We hypothesize that BRAFV600E Jevels are inhibiting MITF levels, which in that
sense may be acting more as a passenger. Nevertheless, MITF is a potent regulator
of melanoma lineage and to a large extent determines the basal transcriptional
profile, hence its association with the first Principal Component of our basal

transcriptional analysis.

Layered over and interacting with BRAFV600E zygosity and MITF levels in

affecting sensitivity to PLX4720, are mutations in additional oncogenes and tumor
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suppressor genes. Mutations in cell surface proteins and RTKs potentially explain
(1) cytotoxicity group-BRAF zygosity exceptions including SKMEL28 (homozygous
BRAF yet combination sensitive) and SKMEL24 (heterozygous BRAF yet PLX4720
sensitive), (2) lapatinib resistant cell lines, which are heterozygous BRAF and (3)
DM331, which is an outlier from a cytotoxic and transcriptional profile grouping
perspective. (1) In SKMELZ28, the most striking variant was the EGFR exception
mutation, which has previously been identified as a gain of function mutation (Basu
et al.,, 2013; Prahallad et al., 2012) and could explain this line’s resistance to
PLX4720 treatment despite being homozygous for BRAFV600E, [n SKMEL24 we found
a number of potentially damaging mutations in cell surface proteins including
TNFRSF14, ERBB3 and EGFR, which could limit SKMEL24’s ability to activate
alternative growth pathways in the presence of BRaf inhibition, thereby, potentially
explaining its sensitivity to PLX4720 treatment despite its heterozygous BRAF
status. The ERBB3 mutation is particularly interesting given that ERBB family
members are lapatinib targets; however, this mutation was not found to be
damaging by polyphen2 analysis and would require more study to determine if it
alters ERBB3 function. (2) Both lapatinib resistant cell lines contained a damaging
mutation in ALK, which is a receptor tyrosine kinase that has been previously
associated with multiple cancer types (Lawrence et al., 2014; Soda et al., 2007;
Wagle et al,, 2011) and is an activating mutation in many types of lung cancer
(Wagle et al., 2011). We hypothesize that the ALK mutation could be stimulating
growth, thereby explaining why the cells in the secondary resistant group are

resistant to lapatinib. (3) DM331 is an exception in that it is homozygous for
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BRAFV600E yet it is by far the most resistant cell line to PLX4720 treatment.
Additionally, its expression profile at the basal state most closely associates it with
A375, one of the most sensitive lines. However, A375 resistant lines have been
generated multiple times, indicating that its sensitivity is not immutable (Abel et al,,
2013; Johannessen et al., 2013). We find NRG1, an EGFR family ligand is highly
upregulated in DM331 only, and not in A375. On the other hand, addition of NRG1 to
A375 causes resistance to PLX4720. Combined with the robust expression of EGFR
in DM331 (Roller et al. In prepartion) this may explain the profound resistance of

DM331 to BRaf inhibition.

2.4.2 Adaptive responses to BRaf inhibition.
We observed broad upregulation of ErbB pathway gene expression 8 hours

after PLX4720 treatment, only in the group of cell lines that were sensitive to the
combination of PLX4720 and lapatinib. This result is consistent with that of other
groups that have found RAS (Nazarian et al,, 2010), ERBB3 (Abel et al., 2013; Held et
al,, 2013; Kugel et al., 2014) and other RTKs (Konieczkowski et al., 2014; Miiller et

al., 2014) upregulated in BRAFV600E melanoma in response to PLX4720 treatment.

Surprisingly, we observed a relatively strong downregulation of oncogenic
phosphoprotein levels after 8 hours of PLX4720 treatment in CGD and CGE cell lines
with a similar but much weaker downregulation of the same proteins in CGA and
CGC. We hypothesize that the downregulation observed at the protein level is the
direct result of PLX4720 treatment followed by delayed, compensatory signaling in
the combination and PLX4720 sensitive cell lines. As partial confirmation of this, we

found that ERBB4 total protein and VEGFR phosphorylation levels were
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anticorrelated with PLX4720 cytotoxic response across cell lines. This indicates that
treatment with PLX4720 induces receptor tyrosine kinase expression, most likely as
a compensatory survival mechanism in lines resistant to treatment as demonstrated
in other studies (Abel et al., 2013; Kugel et al,, 2014). This also potentially explains
the synergy between PLX4720 and lapatinib that we observe in a subset of cell lines.
Not only is ERBB family inhibition effective via lapatinib, but inhibition of other
receptor tyrosine kinases, via masitinib was also an effective inhibitor based on our
drug screen (Roller et al., 2016). It is possible that a “threshold” of RTK activity
needs to be reached in order to generate resistance, perhaps by activating Ras

signaling and MAP Kinase pathway reactivation.

Lastly, it appears that PLX4720 treatment potentially activates ETS family
transcription factors and co-factors to upregulate ERBB pathway genes as well as
those of other receptor tyrosine kinase signaling pathways. Abel et al. observed
(Abel et al., 2013) ERBB3 activation due to vemurafenib treatment; however they
saw activation via FOXD3. Chandarlapaty et al. (Chandarlapaty et al.,, 2011)
identified ERBB3 activation in response to AKT inhibition via phosphorylated
FOXO03 in cancer cell lines from multiple tumor types, which were resistant to AKT
inhibition. However, the correlation between changes in phosphorylated FOX03
induced by PLX4720 and PLX4720 cytotoxicity in our melanoma lines indicate that
FOXO03 phosphorylation is increased in the most sensitive lines suggesting
alternative regulatory programs in the BRAFV600E melanoma cell lines that we
studied. If FOXO03 phosphorylation activates ERBB3 as a compensatory mechanism

to BRaf inhibition, we would expect its log2 fold change to be anticorrelated with
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cytotoxic response to PLX4720, similar to the response of ERBB4. We do see FOX04
among the transcription factors whose motifs are enriched at the promoters of
upregulated ERBB pathway genes. Importantly, while previous studies have
observed ERBB3 upregulation in response to various inhibitors (Abel et al.,, 2013;
Chandarlapaty et al., 2011; Zhang et al., 2013), we find broad upregulation of ERBB

family members in response to PLX4720 treatment.

It has been noted that multiple receptor tyrosine kinases confer resistance to
many forms of treatment (Shtivelman et al.,, 2014). We find that inhibition of BRaf in
melanoma cell lines leads to compensatory signaling via ERBB family members,
which are RTKs. Consequently, we and others (Held et al., 2013) find the drug
combination vemurfenib and lapatinib to be highly synergistic in a subset of
BRAFV600E melanoma cell lines. Additionally, we have observed that inhibition of
other RTKs, also elicits a synergistic response when combined with BRaf inhibition.
Taken together, our results suggest RTK mediated signaling is an adaptive response
to mutant BRaf inhibition in melanomas and suggests combination therapy with

specific RTK inhibitors.

2.5 METHODS

2.5.1 Cell Culture and Generation of Transcriptome, Proteome and Exome
Data

2.5.1.1 Cell culture
SKMELZ2, SKMEL24, SKMEL28 cells (American Type Culture Collection),

A375,HT144, VMM5A, VMM39, VMM17, VMM18, VMM12, VMM15, DM13, DM6

DM122, DM331 (kind gift from Dr. Craig Slingluff, University of Virginia,
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Charlottesville, VA), and SLM2 (kind gift from Dr. Angela Zarling, University of
Virginia) were propagated in RPMI-1640 (Invitrogen) supplemented with 5% or
10% FBS (Gemini Bio-Products). All cultures were maintained in a humidified

chamber at 37°C with 5% CO-.

2.5.1.2 Cytotoxicity assays
Four hours after being plated in 96-well plates, cells were treated with

inhibitors or vehicle control in phenol red-free RPMI-1640 (Invitrogen) without
FBS and incubated for 3 days at 37°C. alamarBlue (Invitrogen) was added to wells
and incubated for 4 hours at 37°C. Fluorescence was measured at 560 nm
excitation/590 nm emission on a Synergy 2 plate reader (BioTek Instruments).

Mean results and SE were calculated for triplicate samples.

2.5.1.3 Gene array
Cells were plated and incubated overnight before being treated, in duplicate,

with inhibitors or vehicle control in phenol red-free RPMI-1640 without FBS for 8
hours at 37°C. Cells were placed on ice and rinsed with cold 1x PBS. Cells were
collected and RNA was isolated using the Qiashredder (Qiagen) and RNeasy Mini Kit
(Qiagen). RNA was quantified on the NanoDrop 2000 spectrophotometer (Thermo
Scientific) and RNA quality was inspected on a 1% agarose gel. Biotin labeled RNA

was hybridized to [llumina 3'IVT human HT-12 BeadChip arrays.

2.5.1.4 Reverse Phase Protein Array
Cells were plated in p60 dishes and incubated overnight to allow the cells to

adhere before being treated with inhibitors or vehicle control in phenol red-free
RPMI Medium 1640 without fetal bovine serum for 1, 8, or 24 hours. Cells were

washed and lysed in 1:1 2x Sample Buffer:Tissue Extraction Reagent (T-PER) (Life
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Technologies). Following lysis the samples were sonicated and centrifuged to clear.
Samples were diluted to requested concentration and sent to the lab of Emanuel

(Chip) Petricoin at George Mason University for Reverse Phase Array Analysis. Raw
sequencing reads were generated using a combination of Nimblegen v2 and Agilent

v1 capture probes.

2.5.1.5 Exome Sequencing
Cells were grown to 80% confluent, trypsinized, and collected in normal

growth media. Cells were centrifuged to pellet, wash with PBS, and centrifuged a
second time. DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen)
and quantified on the Nanodrop 2000 spectrophotometer (Thermo Scientific).
Exome sequencing was performed by Hudson Alpha Institute for Biotechnology

(Huntsville, Alabama).

2.5.2 Statistical Analysis of Functional Genomics and Genomics Data
[llumina microarray data was variance stabilized transformed (Federici et al.,

2013; Improta et al., 2011) using the lumi Bioconductor package in R (Du et al,,
2008). Genes that displayed significant variation in basal gene expression across all
twelve cell lines were identified using limma to perform one way ANOVA and derive
Benjamini-Hochberg False Discovery Rate (FDR) adjusted p-values (Gentleman et
al,, 2004; Smyth, 2004) and applying a 0.1% FDR threshold. Significantly varying
genes and cell lines were clustered using the R package pvclust (Suzuki and
Shimodaira, 2006) with the Pearson correlation distance measure and average
linkage. We assessed the significance of the clusters by performing 1000 iterations

of the clustering introducing random variations and assessing how much
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randomness was required to loose a specific branch. Cell lines were also clustered
according to cytotoxic response to 125 nM, 625 nM and 1250 nM of PLX4720 and
1000 nM, 2000 nM and 4000 nM of lapatinib and a three-by-three dose matrix of the
two drugs. We used pvclust with a correlation distance measure and average
linkage. We identified genes whose expression was significantly altered within each
cytotoxicity group of cell lines in response to PLX4720 treatment using limma to
perform paired t-tests whereby untreated and PLX4720 treated samples were
paired across all replicates and cell lines within a group and applying a 1% FDR
cutoff. Normalized log2 reverse phase protein array (RPPA) data was generated
using methods described in (Improta et al,, 2011). We performed a paired t-test
analysis described above (for gene expression data). Log2 fold change of proteins in
PLX4720 treated versus untreated cells were then correlated to cytotoxic response
of cell lines to each dose of PLX4720 using the Spearman correlation coefficient. We
summarized the three correlation coefficients across doses derived for each protein

by calculating the average value.

2.5.2.1 Statistical Analysis of Exome Data
Exome probes were genotyped using the Genome Analysis Toolkit and the

HG19 build as a reference genome. Single nucleotide variants were annotated by
SeattleSeq. Genes with novel variants were identified by removing variants
previously identified in dbSNP, or 1000Genomes. Novel variants were further
filtered by selecting only nonsense and missense mutations as identified by
SeattleSeq. The list of genes containing novel nonsynonymous variants were

selected by retaining only those that were identified by (Lawrence et al., 2014) as
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being significant drivers across multiple cancers. The list of novel, nonsynonymous
variants located in these genes were input to PolyPhenZ to determine the potential
functional severity of these nonsynonymous variants. Genes were identified that

uniquely contained variants in each cell line, and within each cytotoxicity group.

2.5.2.2 Pathway Enrichment Analysis
Gene sets found to be significant underwent pathway enrichment analysis via

Pathway Express and Gene Set Enrichment Analysis (GSEA) using MSigDB datasets.
Significant gene sets and pathways were identified as having a FDR enrichment
value of 0.05 for both tools. To ascertain significance of transcription factor binding
motifs, we identified motifs unique to the CGC. For motifs not unique to the CGC, we
summed the rank of CGC with 100 minus the rank of the other group. When multiple
groups contained the motifs, we averaged the ranks, then summed the rank of CGC

with 100 minus the averaged rank.
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3 Synergistic combination treatment of a subset of melanoma

3.1

involves cotargeting of the MAPK pathway and PI3K/AKT

signaling pathway via receptor tyrosine kinase inhibition

ABSTRACT

The majority of BRAFV600E melanomas demonstrate either acquired or intrinsic
resistance to vemurafenib therapy. The mechanisms of resistance can be
attributed in part to adaptive responses used by melanoma cells to overcome
the inhibition. Overcoming the adaptive response to vemurafenib therapy is of
paramount importance for the treatment of melanoma. We observe that the
combination of PLX4720, a vemurafenib analog, with secondary drugs
associated with the inhibition of receptor tyrosine kinases (RTKs), or the
PI3K/AKT signaling pathway shows pronounced ability to overcome the
adaptive response. We also observe that combining PLX4720 with these
secondary inhibitors leads to individualized responses in each cell line that
tend to involve the MAPK and PI3K/AKT signaling pathways via gene
expression microarray and reverse phase protein arrays. We were also able to
observe that epigenetic manipulation of PLX4720 resistant treatment naive
cell line led to its sensitization to RTK inhibition. Our observations point to the
importance of RTKs being used by melanomas to leverage adaptive responses

against PLX4720 treatment.
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3.2 INTRODUCTION

Approximately 50% of melanomas containing activating mutations in BRAF
respond to BRAF inhibitors such as vemurafenib and dabrafenib (Shtivelman et al,,
2014). A therapeutic response to BRAF inhibitors is only observed in 50-60% of
patients, and only 10% demonstrate a complete response. The responses are not
usually durable, with disease relapsing within 6 months (Chapman etal., 2011).
Recurrences will often appear at the same site as the original tumor (Wagle et al,,
2011), indicating that tumors are rapidly adapting to targeted therapy, even when
initial responses are robust. Extending duration of response is possible using a
combination of therapies that target MEK and BRAF, but recurrence is still observed

in patients (Wagle et al., 2014).

Mechanisms of resistance to BRAF inhibitors have been determined via
analysis of patient samples that demonstrate resistance to single agent therapy.
(Paraiso et al., 2010; Poulikakos et al., 2011; Shi et al., 2014b; Solit and Rosen, 2011;
Spagnolo et al., 2014; Van Allen et al., 2014; Wagle et al., 2014). Resistance
mechanisms almost always involve reactivation of the MAPK pathway, although
alternative mechanisms involving PI3Kinase, STATSs, HIPPO, beta-catenin, BH3
proteins, autophagy and translational regulation have also been observed (Atefi et
al, 2011; Atkinson et al,, 2015; Conway et al., 2011; Corcoran et al,, 2013; Davies,
2012; Delmas et al,, 2015; Deuker et al., 2015; Goldstein, 2004; Gopal et al,, 2014;
Hartsough and Aplin, 2013; Hoeflich et al,, 2012; Lassen et al,, 2014; Lin et al,, 2015;
Ma et al., 2014; Pelletier et al., 2015; Rebecca et al,, 2014; Schneider et al., 2014;

Scortegagna et al,, 2014, 2015; Shi et al., 20144a; Silva et al,, 2014; Thomas et al,,
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2014; Yadav et al.,, 2014). Resistant tumors utilize a host of different mechanisms, as
any pathway that activates growth will provide the tumor with a selective
advantage. It has been observed that metastases or varying regions of the tumor will
often employ different resistance mechanisms (Shi et al., 2014b; Straussman et al.,

2012; Van Allen et al,, 2014).

In the previous chapter, we observed that among the rapid responses to MAPK
blockade, an activation of the ERBB pathway was prominent (Capaldo et al., 2015).
A number of investigators (Lito et al., 2013; Rebecca and Smalley, 2014; Solit and
Rosen, 2014) have indicated that rapid adaptive responses, such as activation of the
ERBB pathway (Abel et al., 2013), are a significant component of intrinsic resistance,
and suggest that the adaptive responses drive selection of genetic and epigenetic
variants in which the MAPK pathway is reactivated. Therefore, these adaptive
responses need to be cataloged and analyzed in order to overcome resistant disease.
Cataloging the adaptive response could lead to the identification of novel targets for
the purpose of combination therapy, and increase the durability of the therapy.
ERBB pathway activation can induce MAPK pathway activation, but also can induce
activation of the PI3K pathway. In Chapter 2, we observed an upregulation of NRAS
and HRAS gene expression in response to PLX4720 treatment (Capaldo et al., 2015),
consistent with the findings of others (Nazarian et al., 2010), which has been shown
to activate both the MAPK and PI3K signaling pathways (Fattore et al., 2013;
McCubrey et al.,, 2006). Given the recurrence observed in patients treated with
combinations that retarget the MAPK pathway (Wagle et al., 2014), it is clear that

additional combinatorial strategies are required.
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Here, we show that synthetic lethal screening using the Bliss model for
synergy is an effective means for identifying promising combinations. Assaying
these combinations using high-throughput methods also allows for the
identification of additional targets for combinations, mechanisms of resistance, and
mechanisms of synergy. In our further study of melanoma, we demonstrate that
targeting members of the PI3K signaling pathway can inhibit the adaptive response
of PLX4720 treatment. Many have observed that PI3K signaling plays an important
role in melanoma resistance (Carnero et al., 2008; Villanueva et al., 2010), and in
this chapter we profile this response in a functional genomics manner. Through this
methodology, we are able to quantify the ablation of the adaptive response across

multiple readouts of the pathway.

The Weber lab conducted a targeted combinatorial chemical genetic screen
using as primary drugs either the vemurafenib analog PLX4720 or two other
inhibitors of the MAPK pathway in two-way combinations with 58 drugs or
clinically relevant tool compounds in 12 BRAFV600E melanoma cell lines (Roller et al.,
2016). We observed that half the lines showed synergistic benefit by combining
lapatinib or masitinib with PLX4720. Importantly, the lines that showed benefit
from this combination were those that were least sensitive intrinsically to BRAF
inhibition, indicating the importance of Receptor Tyrosine Kinase (RTK) signaling in
vemurafenib resistance, as shown previously (Capaldo et al., 2015; Held et al., 2013;
Langdon et al,, 2015; Nazarian et al., 2010; Wilson et al,, 2011, 2012; Yadav et al,,
2012). Effective drug combinations varied for each cell line, indicating that the

“wiring” of the signaling network and mechanisms of adaptive resistance differed
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for each line even though all were driven by BRAFV600E and 6 of the 12 showed
benefit from an RTK inhibitor. Protein pathway phosphorylation/activation
mapping via reverse phase protein arrays (RPPA) and gene expression analysis
confirmed that, even when cells were sensitive to the combination of PLX4720 and
lapatinib, the adaptive changes in intracellular signaling in response to BRAF
inhibition differed and the mechanism(s) by which lapatinib or masitinib were
synergistically cytotoxic differed. We propose that intrinsic and adaptive resistance
to BRAF inhibition in BRAFV600E melanomas occurs by multiple mechanisms that
differ substantially, dependent on the broader genetic and epigenetic landscape of
the cancer cells that shape the underlying architecture of cell signaling networks.
Because Receptor Tyrosine Kinases can activate multiple resistance pathways,
inhibitors of these receptors can play an important role in drug combinations in a
variety of genetic backgrounds and may be more useful in drug combinations than

inhibitors of individual intracellular signaling pathways.

To investigate the epigenetic landscape of our resistant melanoma lines, we
utilized DNA methylation microarrays. DNA methylation is an epigenetic mechanism
thought to stabilize the silencing of genes (Thomas et al., 2014) and has been
observed to have functional significance in colorectal, gastric, and breast cancers (de
Araujo et al., 2015; Gazzoli et al., 2002; Pinheiro et al., 2010; Venkatachalam et al,,
2010; Wong et al., 2011). Limited work has been done in melanoma with regards to
DNA methylation state, but preliminary studies suggest that it plays a significant
role in mechanisms of resistance (de Araujo et al., 2015). It is uncertain as to

whether the adaptive response to vemurafenib treatment utilizes changes in DNA
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methylation, but it has been observed that DNA methylation profiles are associated
with clinical outcomes (Thomas et al., 2014). Multiple studies have observed that
chronic treatment with vemurafenib leads to upregulation of RTK in melanoma cell
lines (Konieczkowski et al., 2014; Miiller et al., 2014; Thomas and Erickson, 2009).
Our study of DNA methylation in melanoma showed that RTK pathways displayed a
loss of DNA methylation at their promoters, indicating that DNA methylation also
contributes to the activation of RTK signaling, which itself feeds into the reactivation
of the MAPK pathway. Taken together, these studies give further credence to the
importance of targeting the adaptome at multiple points to further increase

durability of the response.

3.3 RESULTS

3.3.1 High throughput cytotoxicity screening of melanoma reveals
synergistic combinations for treatment of cancer
As described in the previous chapter, we utilize a synthetic lethal screen in a

three by three dose format to identify synergistic combinations of targeted
therapies for further exploration in preclinical models. In a screen of the BRAFV600E
melanomas, we profiled compounds including a panel of MAPK pathway inhibitors;
PLX4720, a BRAFV600E inhibitor; RAF265, an inhibitor that targets BRAFWT,
BRAFV600E CRAF, and has activity against VEGFR2; and PD325901, a MEK1/2
inhibitor with a host of secondary drugs (Table 3.1). All three primary drugs yielded
combinations that displayed synergistic activity in vitro. Additionally, 14 of the
secondary drugs demonstrated synergy with all three primary drugs in at least one

cell line (Table 3.2). Performance of the combinations was assayed using the Bliss
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difference (Zhao et al,, 2014) as our synergy score. Each combination was assayed

across a 3 x 3 dose response matrix.

Table 3.1 Drugs used in melanoma screen, the targets, and the suppliers

Drug Target Supplier
AMPKi, compound C AMPK VWR
AZD-1152 Aurora kinase Selleck
BEZ235 PI3K Selleck
Bortezomib Proteasome LC Laboratories
Caffeine PDE VWR
Camptothecin Topoisomerase | Sigma
Celecoxib COX2 VWR
CGP57380 MNK1/2 VWR
Chloroquine Endosome VWR
CP-690550 JAK3 inhibitor LC Laboratories
Curcumin Broad VWR
D609 Pro-drug Phospholipase C LC Laboratories
Dasatinib SRC and BCR/ABL VWR
Debromohymeniadlisine (DBH) CHK1/2 Alexis
Diclofenac Sodium COX1and 2 VWR
DNA-PK inhibitor DNA-PK VWR
Doxorubicin Topoisomerase I Sigma
EGCG Broad Sigma
Etoposide Tubulin disassembly Sigma
Farnesylthiosalicylic acid (FTS) Ras Cayman Chemicals
FK506 Calcineurin Sigma
Flavopiridol CDK Enzo
Gefitinib EGFR LC Laboratories
Geldanamycin Hsp 90 VWR
Go06976 PKC VWR
H-89 PKA Sigma
HA-1077 dihydrochloride ROCK VWR
Imatinib Abl1, kit, PDFR LC Laboratories
Indirubin GSK3 VWR
Lapatinib EGFR and HER2/neu LC Laboratories
Masitinib mesylate (AB1010) PDGF, FGFR3, ckit LC Laboratories
Nilotinib BCR-abl LC Laboratories
0SU-03012 PDK LC Laboratories
Paclitaxel Tubulin disassembly LC Laboratories
PD173074 FGFR VWR
PD325901 MEK Pfiser
PF-562271 FAK Selleck
PI-103 PIK3CA Selleck
PJ34 Parp VWR
Picropodophyllotoxin (PPP) IGF1-R Sigma
PLX4720 BRaf gift from Plexxicon
Raf265 Raf Novartis
Roscovitine (CYC-202) CDK2, CDK1, CDK5 LC Laboratories
$31-201 STAT3 VWR
Suberoylanilide Hydroxamic Acid (SAHA) HDAC gift from Dr. David Jones, UVA
SANT-1 Hedgehog VWR
SB-202190 p38-alpha LC Laboratories
SB-431542 TGFBR1/ALK5, ACVR1B/ALK4 Sigma
SC-514 IKK2 VWR
Bosutinib (SKI-606) Tyrosine kinase LC Laboratories
Sorafenib Braf, VEGFR-2 and PDGFR-GE< LC Laboratories
SP600125 INK LC Laboratories
Staurosporine (K-252c) PKC, PKA, PKG LC Laboratories
Sunitinib KIT, VEGFR2, FLT3 LC Laboratories
Temsorilimus (CCI-779) mTOR LC Laboratories
Trichostatin A (TSA) HDAC Selleck

Vatalanib VEGFR-1 and VEGFR-2 LC Laboratories
VX-680/MK-0457 Aurora kinases, ABL kinase LC Laboratories
WP-1066 STAT5 Selleck
Y27632 Rho kinase Tocris

100




Table 3.2 Secondary drugs that demonstrated synergy in at least one cell line
when combined with one or more of the MAPK inhibtors

Secondary Drug Putative Targets
AMPKi AMPK
Staurosprine PKC, PKA, PKG
Lapatinib EGFR
Masitinib PDGF, FGFR3, c-kit
0SU-03012 PDK
PI1-103 PI3KCA
PJ34 PARP
Roscovitine CDK1,2,5
SAHA HDAC
SB-202190 p38/SAPK
Temsirolimus mTOR
Vatalanib VEGFR1 and 2
Caffeine PDE
Indirubin GSK3

To determine patterns of response across combinations, we took the
maximum observed synergy score across all doses for each line and allowed these
maximum synergy scores to undergo unsupervised hierarchical clustering using the
correlation distance (Figure 3.1). In total, we clustered 109 combinations. We
observed that PLX4720 was effective in combination with masitinib, another RTK
inhibitor like lapatinib; and with OSU-03012, an inhibitor of PDK. Lines that
demonstrated synergy between PLX4720 and lapatinib also tended to demonstrate
synergy between PLX4720 and masitinib, and PLX4720 and OSU-03012. PI-103, a
PI3K inhibitor, combined with any of the primary drugs also demonstrated in most

cases the synergy with observed in the aforementioned combinations.
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Figure 3.1 Synthetic lethal screen identifies synergistic combinations in
melanomas
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Heat map of maximum observed synergy scores for BRAF"¢0%E melanoma cell lines (x-
axis) for 109 combinations (y-axis). Synergy scores of 26% or greater are denoted with
an “*”. Clustering for cell lines and combinations was done using correlation distance
and average linkage. Data from the screen was generated by Devin Roller, in the
Weber lab at the University of Virginia.

When we examined the effectiveness of combinations across the panel of cell
lines, we observed multiple combinations that yielded synergistic effects in the
same lines. Given that PI3K, RTKs, and PDK are all constituents of the AKT pathway
(Carnero et al,, 2008; McCubrey et al.,, 2006), and that combining MAPK pathway
inhibition with inhibition of any one of these constituents is synergistic, would
suggest strongly that AKT signaling is a key adaptive response to MAPK pathway
inhibition. This would seem to indicate that basal levels of AKT signaling, and more
generally, RTK signaling, may contribute to the level of resistance to MAPK pathway
inhibition.

3.3.2 Basal signaling activity of the resistant lines when assayed by reverse
phase protein arrays does not significantly differ from the lines

sensitive to PLX4720
To determine the level of basal RTK signaling in our panel, we utilized

reverse phase protein arrays (RPPA) to quantify protein levels in individual cell
lines. We utilized one way ANOVA to determine epitopes on our array that were
differentially abundant across our lines at an FDR of 1% (Figure 3.2). Using a review
of the literature, we annotated epitopes that belong to the PI3K and MAPK signaling
pathways given their significance in the adaptive response to MAPK blockade. We
were able to identify some differential activity between the resistant and sensitive
lines in the PI3K pathway, but these differences are not maintained across all of the

resistant lines and sensitive lines, respectively. Given the lack of significant basal
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variation in the cell lines, we sought to determine if post treatment differences

tracked with sensitivity to PLX4720.
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Figure 3.2 Heat map of one way ANOVA analysis of basal phospho-epitopes
determined by RPPA.

Using a one way ANOVA test, we selected for epitopes that varied between cell lines at
a FDR of 1% or better. Unsupervised hierarchical clustering of row scaled epitopes’
intensities (y-axis) using correlation distance and average linkage is shown. Cell lines
were ordered from left to right by decreasing sensitivity to PLX4720. Unsupervised
clustering using correlation distance and average linkage of their epitopes’ intensities
did not order cell lines in proportion to drug sensitivity or driver oncogene. Pathway
membership is denoted along the y-axis by the presence of colored boxes for the MAPK
pathway (Green), PI3K pathway (Blue), stress (Purple), or STAT signaling (Yellow).

We determined the changes induced in the PI3K and MAPK pathway after
treatment with PLX4720 across all cell lines by calculating the fold change response
to PLX4720 treatment 8 hours after exposure and plotting the responses for each
cell line as a box plot (Figure 3.3, Panel A). This allowed us to observe the
distribution of effects due to treatment across the entire pathway. We observed a
weak correlation between responses in the MAPK pathway and sensitivity to
PLX4720, and we saw no evidence that responses in PI3K epitopes can differentiate
sensitive and resistant lines at 8 hours after exposure. Based on our gene expression
study (Chapter 2), we observed that many transcriptional responses were only
beginning to occur around 8 hours. Given these results, we sought to determine
whether treatment effects investigated at earlier and later time points could serve to
better differentiate sensitive and resistant lines, as well as determine what effects

the combination treatment had on responses.
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Figure 3.3 Changes in PI3 Kinase and MAP Kinase pathway protein
phosphorylations in response to drug treatment.

A. Whisker plot of normalized, log2 transformed RPPA fold changes (PLX4720 treated
over untreated) were plotted for MAPK pathway (green) and PI3K pathway (blue)
epitopes for 12 BRAF mutant and 4 BRAF wt melanoma cell lines. Epitopes were
selected from the arrays that were determined to be associated with the MAPK or PI3K
signaling pathways, as shown in Panel B. Lines are ordered from most to least sensitive
to PLX4720 treatment by IC50. B. Normalized, logZ2 transformed RPPA fold changes
(drug treated over untreated) were plotted for SKMEL24 (red) and VMMA5A (blue).
Epitopes were selected from the arrays that were determined to be associated with the
MAPK signaling pathway (left) or PI3K signaling pathway (right). Each facet of the
plot represents the fold changes induced by treatment with lapatinib, PLX4720, or the
combination (left to right) after 1, 8, or 24 hours (top to bottom). Samples were
prepared by Devin Roller, in the Weber lab at the University of Virginia

Again using RPPA analysis, we profiled responses at time points of 1, 8, and
24 hours after treatment with lapatinib alone, PLX4720 alone, or the combination
(Figure 3.3, Panel B). We chose to highlight two heterozygous cell lines, SKMEL24
and VMM5A, because both of these lines demonstrate synergy when exposed to the

combination of PLX4720 and lapatinib and they show different levels of resistance
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to PLX4720. VMM5A is among the most resistant melanoma cell lines; the resistance
of SKMELZ24 is close to the average resistance observed in our studies. We began by
looking at the RPPA responses to the treatment course in the MAPK pathway. In
SKMELZ24, lapatinib had no significant effect on the epitopes that map to members of
the MAPK signaling pathway. When exposed to PLX4720 alone, both lines showed a
marked downregulation of the phosphorylation levels in the MAPK pathway, with

very slight differences between the lines in the magnitudes of their responses.

We next examined the response of the PI3K signaling pathway to the
combination treatment course over time. The effects of lapatinib treatment
appeared to subside fairly quickly in SKMEL24; by 24 hours there was limited
perturbation of the phosphorylation level compared to the drastic downregulation
of phosphorylations at 1 and 8 hours in these cells. VMM5A shows very subdued
responses to lapatinib treatment at all time points. Phospho AKT on threonine 308
is the most drastic response we observe under treatment with lapatinib in
SKMELZ24. It rapidly loses phosphorylation at 1 hour, maintains the loss in
phosphorylation at 8 hours, and then drops back to approximately basal levels of
phosphorylation by 24 hours. This indicates that AKT phosphorylation is strongly

dependent on lapatinib treatment.

Treatment with PLX4720 generated downregulation of a battery of
phosphorylation sites in both lines at 1 hour, and this continued to drop for the
duration of the assay. The battery of phosphorylation sites in VMM5A is more
strongly inhibited compared to the inhibition of these sites in SKMEL24, but the

trends are similar. This battery of phosphorylation sites is even more strongly

108



downregulated under exposure to the combination, and the response of SKMEL24 at
24 hours now matches the magnitude of the response of VMMG5A to PLX4720
treatment at 24 hours. Additionally, the early phospho AKT response to lapatinib
treatment in SKMEL24 is unable to recover as we saw with cells treated solely with
lapatinib. VMM5A also shows a substantial reduction of AKT phosphorylation at all
time points. The RPPA data serve to show that the combination of PLX4720 and
lapatinib strongly inhibits the adaptive responses we observe under the conditions
for single drug treatment. Having observed the evidence in the RPPA response at 24
hours, we sought to determine if we could isolate the adaptive response at the level

of gene expression at 8 hours.

3.3.3 Cell lines show varying mechanisms of response after treatment with
single drugs or the combination.
The RPPA data at 24 hours suggests that synergistic effects can block the

previously observed adaptive response. To investigate the effects of lapatinib and
masitinib in combination with PLX4720 we profiled the gene expression responses
in five lines to each of the treatments 8 hours after exposure (Figure 3.4).
Unsupervised hierarchical clustering shows that each line responds uniquely
compared to any other line. A375 showed an extremely robust response to
treatment with PLX4720, which was expected given its strong sensitivity to the
drug. It showed very limited response to either of the secondary drugs alone, and
the addition of either lapatinib or masitinib ablates some of the responses to
PLX4720 treatment alone. HT144 showed little response except when exposed to
masitinib either alone or in combination with PLX4720. DM331, too, showed very

few significantly affected genes, however, it demonstrated a stronger response than
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HT144. SKMEL24 and SKMELZ28 showed the most robust responses to PLX4720
treatment alone and to the combinations. As with the other lines, very limited

response is observed to treatment with either of the secondary drugs alone.
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Figure 3.4 Each line shows unique pattern of transcriptional responses to
single and combination treatment for PLX4720, masitinib, and lapatinib

Using a moderated t-test, we identified differentially expressed genes 8 hours after
treatment. Log2 fold change response for genes (y-axis) underwent unsupervised
hierarchical clustering using correlation distance and average linkage. Cell lines were
exposed to treatment with PLX4720 alone (PvC), masitinib alone (MvC), lapatinib
alone (LvC), the combination of PLX4720 and masitinib (PMvC), or the combination of
PLX4720 and lapatinib (PLvC). Genes with an FDR better than 1% are denoted with
“*”_Samples were prepared by Devin Roller, in the Weber lab at the University of
Virginia

[t appears that each line demonstrates different blocks of genes responding
to the various treatments. Looking at each of the clusters, each line’s response
occupies an individual cluster; few genes demonstrated significant responses across
multiple lines. SKMELZ24 is the line most responsive across all treatments and has
the highest number of significant expression changes of any of the lines, both
upregulated and downregulated in response to treatment. Among this panel of cell
lines, SKMELZ24 is the only line that is heterozygous for the BRAF V600E allele. Our
finding (Chapter 2) that zygosity of the BRAF allele influences the ability of a line to
signal adaptively, may explain why SKMEL24 is showing a more robust adaptive

response than the other lines. However, SKMEL24, HT144, and A375 are all part of

the same cytotoxicity group; DM331 and SKMEL28 are in CGB and CGC respectively.

The combination of PLX4720 with lapatinib or masitinib appears strongly to
amplify the transcriptional response to PLX4720 treatment alone. It would appear
that the synergistic mechanisms of BRAF and RTK inhibition act in concert to ablate
the adaptive response observed in the previous chapter. To investigate further
whether the combination treatment blocks the adaptive response, we took the list of

differentially expressed genes in response to either combination treatment for each
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line through a pathway enrichment analysis using MSigDB (Table 3.3).
Unsurprisingly, A375 showed no pathways enriched for its set of differentially
expressed genes in response to combination treatment. HT144 showed only four
pathways, and none of them are associated with any of the responses we have been
discussing. DM331, SKMEL24, and SKMEL28 all show indications that MAPK
signaling, ErbB signaling, and p53 signaling are affected by the combination
treatment. These pathway results suggest that combination treatment is able to

block the adaptive response. The proximity of the targets of the drugs appears to be

influencing the response to treatment. As previously discussed, ErbB signaling

induces MAPK pathway signaling and PI3K/AKT signaling; in our screen, we do

observe that inhibition of PDK, a component of the PI3K/AKT pathway, can act as an

effective secondary drug target.

Table 3.3 MSigDB pathway enrichment of differentially expressed genes in

response to combination treatment of PLX4720 with either lapatinib or

masitinib
Gene Set Name Description Enrichment Genes From Gene List In Gene Set Cell Line
FDR g-value
Genes involved in
REACTOME_CHOLESTEROL_BIOS Cholesterol 3.80E-10 HMGCS1|MVK|MSMO1|SQLE HT144
YNTHESIS . .
biosynthesis
Genes involved in
REACTOME_METABOLISM_OF_LI Metabolism of
PIDS_AND_LIPOPROTEINS lipids and 3.81E-05 HMGCS1|MVK|MSMO1|SQLE HT144
lipoproteins
Terpenoid
KEGG_TERPENOID_BACKBONE_BI backbone 4.28E-04 HMGCS1|MVK HT144
OSYNTHESIS . .
biosynthesis
Steroid
KEGG_STEROID_BIOSYNTHESIS . . 4.28E-04 MSMO1|SQLE HT144
biosynthesis
PID_ERBB_NETWORK_PATHWAY |  ErbBreceptor 5.72E-07 HBEGF|NRG1|EREG | TGFA DM331
signaling network
Genes encoding
NABA_SECRETED_FACTORS secreted soluble 1.79E-04 HBEGF|NRG1|EREG|TGFA|CSF2|VEGFC DM331
factors
Genes involved in
REACTOME_SHC1_EVENTS_IN_ER SHC1 events in 1.79E-04 HBEGF|NRG1|EREG DM331
BB4_SIGNALING k .
- ERBB4 signaling
Genes involved in
REACTOME_GRB2_EVENTS_IN_E GRB2 events in 1.79E-04 HBEGF|NRG1|EREG DM331
RBB2_SIGNALING . .
= ERBB2 signaling
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KEGG_ERBB_SIGNALING_PATHW
AY

ErbB signaling
pathway

1.79E-04

HBEGF|NRG1|EREG | TGFA

DM331

NABA_MATRISOME

Ensemble of genes
encoding
extracellular
matrix and
extracellular
matrix-associated
proteins

2.35E-04

HBEGF|NRG1|EREG| TGFA|CSF2|VEGFC
[PLAU|COL13A1

DM331

PID_TCR_CALCIUM_PATHWAY

Calcium signaling
in the CD4+ TCR
pathway

2.83E-04

CSF2|FOSL1|PTGS2

DM331

NABA_MATRISOME_ASSOCIATED

Ensemble of genes
encoding ECM-
associated
proteins including
ECM-affilaited
proteins, ECM
regulators and
secreted factors

2.83E-04

HBEGF|NRG1|EREG | TGFA|CSF2 | VEGFC
[PLAU

DM331

PID_ERBB4_PATHWAY

ErbB4 signaling
events

4.42E-04

HBEGF|NRG1|EREG

DM331

REACTOME_NUCLEAR_SIGNALIN
G_BY_ERBB4

Genes involved in
Nuclear signaling
by ERBB4

4.42E-04

HBEGF|NRG1|EREG

DM331

PID_AP1_PATHWAY

AP-1 transcription
factor network

1.07E-04

IL8|FOSL1|EGR1|CCND1|GJAL|NR3C1

SKMEL24

PID_NFAT_TFPATHWAY

Calcineurin-
regulated NFAT-
dependent
transcription in
lymphocytes

2.25E-04

IL8|FOSL1|EGR1|PTGS2|EGR3

SKMEL24

KEGG_CYTOKINE_CYTOKINE_REC
EPTOR_INTERACTION

Cytokine-cytokine
receptor
interaction

7.99E-04

IL8|PDGFA|IL1B|IL1A|CXCL1|CCL20| TN
FRSF11B| TNFRSF12A

SKMEL24

NABA_MATRISOME

Ensemble of genes
encoding
extracellular
matrix and
extracellular
matrix-associated
proteins

1.15E-03

IL8|PDGFA|IL1B|IL1A|CXCL1|CCL20|SE
MAS5A|SEMA4B | CLEC2B| SERPINBS | THB
S2|CTGF|ABI3BP| CRISPLD2

SKMEL24

PID_FRA_PATHWAY

Validated
transcriptional
targets of AP1

family members
Fral and Fra2

1.34E-03

IL8|FOSL1|CCND1|GJA1

SKMEL24

BIOCARTA_PPARA_PATHWAY

Mechanism of
Gene Regulation
by Peroxisome
Proliferators via
PPARa(alpha)

6.83E-03

PTGS2 |PDGFA|NR2F1|CITED2

SKMEL24

BIOCARTA_NTHI_PATHWAY

NFkB activation by
Nontypeable
Hemophilus
influenzae

1.02E-02

IL8|NR3C1|IL1B

SKMEL24

BIOCARTA_INFLAM_PATHWAY

Cytokines and
Inflammatory
Response

1.45E-02

IL8|PDGFA[IL1A

SKMEL24

NABA_MATRISOME_ASSOCIATED

Ensemble of genes
encoding ECM-
associated
proteins including
ECM-affilaited

1.45E-02

IL8|PDGFA|IL1B|IL1A| CXCL1| CCL20|SE
MASA | SEMA4B | CLEC2B | SERPINBS

SKMEL24
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proteins, ECM
regulators and
secreted factors

PID_REG_GR_PATHWAY

Glucocorticoid
receptor
regulatory
network

1.45E-02

IL8|EGR1|NR3C1|VIPR1

SKMEL24

BIOCARTA_CELLCYCLE_PATHWAY

Cyclins and Cell
Cycle Regulation

4.62E-05

CDKN2A|CCND1|CCNA1|CDK6

SKMEL28

PID_AP1_PATHWAY

AP-1 transcription
factor network

4.62E-05

CDKN2A|CCND1|FOSL1|FOS|EGR1

SKMEL28

BIOCARTA_G1_PATHWAY

Cell Cycle: G1/S
Check Point

4.62E-05

CDKN2A|CCND1|CCNA1|CDK6

SKMEL28

PID_CMYB_PATHWAY

C-MYB
transcription
factor network

7.12E-05

CDKN2A|CCND1|CCNA1|CDK6 | CEBPB

SKMEL28

PID_FRA_PATHWAY

Validated
transcriptional
targets of AP1

family members
Fral and Fra2

8.84E-05

CDKN2A|CCND1|FOSL1|PLAUR

SKMEL28

SA_REG_CASCADE_OF_CYCLIN_E
XPR

Expression of
cyclins regulates
progression
through the cell
cycle by activating
cyclin-dependent
kinases.

2.22E-04

CDKN2A|CCND1|CCNA1

SKMEL28

PID_TAP63_PATHWAY

Validated
transcriptional
targets of TAp63
isoforms

2.96E-04

CDKN2A|GDF15|AEN|TFAP2C

SKMEL28

BIOCARTA_SPRY_PATHWAY

Sprouty regulation
of tyrosine kinase
signals

4.71E-04

SPRY2|SPRY1|SPRY4

SKMEL28

PID_RB_1PATHWAY

Regulation of
retinoblastoma
protein

4.87E-04

CDKN2A|CCND1|CDK6|CEBPB

SKMEL28

KEGG_JAK_STAT_SIGNALING_PA
THWAY

Jak-STAT signaling
pathway

5.92E-04

CCND1|SPRY2|SPRY1|SPRY4|SPRED2

SKMEL28

In both the RPPA and gene expression responses, we observe an intriguing

phenomenon. Responses of genes and proteins to single drugs appear to be

amplified by treatment with a secondary drug. This trend is apparent across all

times sampled by RPPA, as well as being apparent in the gene expression results,

regardless of the secondary drug compound. This indicates that the pathways

targeted by these drugs are contributing to this observed response, specifically the

combined inhibition of MAPK signaling with RTK driven signaling such as AKT or

ErbB signaling. Having observed the pronounced responses in the transcriptome
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and proteome, we sought to investigate if these responses were reflected at other

levels of transcriptional regulation.

3.3.4 PLX4720 treatment, lapatinib treatment, or the combination
treatment does not drive responses in DNA methylation
To interrogate other levels of transcriptional regulation, we turned to DNA

methylation microarrays. As previously discussed, changes in DNA methylation
often serve to silence tumor suppressors and have been observed in multiple
cancers, including melanoma (de Araujo et al,, 2015). To ascertain the effects of
treatment on DNA methylation status, we profiled the basal methylome of our cell
lines, and DM331 was subjected to the same panel of treatments as performed for
gene expression. We were unable to observe any significant alterations in DNA
methylation loci under any treatment conditions for DM331 (Figure 3.5). This
indicates that MAPK pathway inhibition or RTK inhibition are insufficient to induce
changes in DNA methylation at 8 hours. As with our other analyses of functional
genomics data, we were curious to know whether DNA methylation status serves as
a marker of sensitivity or synergy in our panel, as other studies had shown that DNA
methylation is an effective profiling tool for patient outcome (de Araujo et al,, 2015;

Conway etal.,, 2011; Thomas et al., 2014).
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Figure 3.5 DNA methylation status of DM331 does not significantly change in
response to single or combination treatment

DNA methylation was assayed in DM331 after 8 hours exposure to lapatinib (lap)
alone, PLX4720 (plx) alone or the combination of the two drugs (lap+plx). DNA
methylation beta values were normalized and logit transformed prior to a moderated
t-test being applied to identify differentially methylated loci. No loci were found to be
differentially methylated in response to treatment, and logit distributions (derived
from M values) were plotted to demonstrate the lack of a distribution shift. Samples
were prepared by Devin Roller, in the Weber lab at the University of Virginia.

Observing no significant response in the DNA methylome of DM331 or
SKMELZ24 in response to treatment, we profiled all twelve BRAFV600E melanomas to
determine if methylation status associated with any of our previously observed
phenotypes. We began by performing a principal components analysis on the
methylome of all twelve lines to determine if the basal methylation state could be
used to distinguish lines that demonstrate synergy to the combination of PLX4720
and lapatinib. DNA methylation status does not appear to segregate lines based on

their synergy status, as evidenced by the distribution of the synergistic lines in the
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PCA plot (Figure 3.6). We were astonished to observe that in another functional
genomic profile, DM331 very closely matched the profile of A375. This indicates that
if DM331 basal methylation is allowing for its more robust adaptive response, it is

restricted to a small number of differentially methylated loci.

We observed that DM6 appears to contribute the most variation along the
first principal component. It is the only line on the left side of the plot, indicating
that its basal methylation state is extremely different from any of the other lines. We
sought to determine the nature of this difference by plotting the distribution of beta
values for all twelve cell lines (Figure 3.7). Here we are able to observe that DM6 is
globally hypomethylated to the point of having almost no methylated loci. Loss of
DNA methylation is often associated with invasive phenotypes. When we
reexamined the exome of DM6, we do observe a mutation in DNMT3A, which could
be preventing the maintenance of DNA methylation in this cell line. We wondered if
removing DM6 because of its outlier nature with regards to its global

hypomethylation could better refine our analysis.
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Figure 3.6 DM6 has a unique DNA methylation profile based on its separation

in the principal component analysis

Principal component analysis of basal DNA methylation M values across 12 melanoma
cell lines. Lines that demonstrate synergy to the combination of PLX4720 and lapatinib
are colored blue, and lines that do not show synergy are colored red. The DNA
methylation state of DM6 is driving the vast amount of separation between the lines
along the first principal component. As with the gene expression and exome profiling
of the lines, DM331 and A375 have very few differences. Samples were prepared by

Devin Roller, in the Weber lab at the University of Virginia.
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Figure 3.7 Separation of DM6 in PCA is attributed to its globally
hypomethylated state

Beta values were obtained for all twelve melanoma cell lines and the density of the
values were plotted for each cell line. DM6 appears to suffer from global
hypomethylation which is most likely driving its strong separation along the first
principal component. DM6 contains a nonsynonymous variant in DNMT3A, which
could inhibit its ability to maintain methylated loci and explain its global
hypomethylation. Samples were prepared by Devin Roller, in the Weber lab at the
University of Virginia.

Following removing DM6 from the analysis, we still were unable to observe

segregation of lines into phenotypic groups outlined elsewhere. We were intrigued
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that the DNA methylation analysis revealed relatively little about the nature of lines
given the success we had had with other functional genomics assays. The DNA
methylome does not appear to be altered by treatment with PLX4720, lapatinib, or
the combination. The basal methylation profiles of the lines fail to stratify them into
any distinct groups. Other studies have shown that loss of methylation at the EGFR
locus is a known mechanism or resistance (Wang et al.,, 2014), so we sought to
determine whether forced loss of methylation would enable sensitive lines to

become resistant via RTK upregulation.

3.3.5 Global hypomethylation induced by decitabine treatment sensitizes
DM331 to lapatinib treatment
Literature has suggested that resistant melanomas show sensitivity to

decitabine treatment (Halaban et al., 2009) and that resistant melanomas leverage
epigenetic switches to induce RTK signaling (Wang et al., 2014). Given the weak
response of DM331 to PLX4720 treatment (Figure 3.8A), we sought to evaluate the
effects of decitabine treatment on PLX4720 sensitivity. Using decitabine at sublethal
doses we knocked down DNA methylation globally in DM331 and A375. We chose
these two lines because of their aforementioned similarity across multiple genomic
and functional genomic profiles, and the fact that they differ greatly in sensitivity to
PLX4720 (Figure 3.8A). We began by determining a dose of decitabine treatment
that inhibited DNMT activity, but did not cause any cytotoxic effects (Figure 3.8B).
Once we obtained an appropriate dose - sublethal but still inhibitory of DNMT
activity - we exposed DM331 and A375 to this dose of decitabine coupled with the
high dose of PLX4720 with an escalating dose of lapatinib. Astoundingly, we

observed that DM331 no longer demonstrated a synergistic effect from the
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combination of PLX4720 and lapatinib. A375 however, demonstrated no significant
change in its response to combination treatment at any dose (Figure 3.8C and 3.8D).
We became even more astonished when we observed that decitabine treatment
does not change DM331 response to PLX4720 treatment (Figure 3.8E), but

sensitized it to lapatinib treatment (Figure 3.8F).
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Figure 3.8 Global knockdown of DNA methylation sensitizes DM331 to
lapatinib treatment

(A) Cell lines cytotoxic response 72 hours after treatment with 125nM PLX4720 were
profiled. (B) DM331 cells were treated with 37.5nM 5-Aza-2'-deoxycytidine for 48
hours. Total protein was isolated and immunoblot analysis was conducted for DMNT
and tubulin. Quantification of DMNT is shown. (C) DM331 or (D) A375 cells were
treated with 5-Aza-2'"-deoxycytidine(37.5 nM or 75 nM) every other day for 10 days.
On day 7, 5-Aza-2'-deoxycytidine treated cells (gray bars) and control cells that have
received no 5-Aza-2'-deoxycytidine treatment (black bars) were plated in 96 well
plates and treated with 1250 nM PLX4720 and lapatinib (1 uM, 2 uM, or 4 uM).
Metabolic activity was read out using alamarBlue (n=3). Following 7 days of 37.5 nM
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5-Aza-2'-deoxycytidine or control treatment DM331 were treated with (E) PLX4720
(125 nM, 625 nM, 1250 nM), (F) lapatinib (1 uM, 2 uM, or 4 uM) or vehicle control for
3 days or and metabolic activity was read out using alamarBlue (n=3). Samples and
figure panels were prepared by Devin Roller, in the Weber lab at the University of
Virginia.

Given the sensitization of DM331 to lapatinib treatment when exposed to
sublethal doses of decitabine, we assayed the DNA methylation response to
decitabine treatment and observed that both DM331 and A375 demonstrate global
hypomethylation (Figure 3.9). We conclude that the level of hypomethylation is
extremely significant; DM331 appears to be losing more methylated loci at a global
level in response to decitabine treatment than A375. We wanted to determine the

mechanism by which DM331 becomes more sensitive to lapatinib treatment, so we

profiled its gene expression response to decitabine treatment.
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Figure 3.9 Global knockdown of DNA methylation using decitabine is more
robust in DM331 than A375

Lines were treated with decitabine as described in Figure 3.8 or with vehicle control.
After treatment, cells were harvested and DNA methylation was assayed using the
lllumina 450K DNA methylation bead chip. Beta values were plotted for A375 (red) or
DM331 (blue) after treatment with decitabine (5aza, solid line) or vehicle control
(Control, dashed line). Samples were prepared by Devin Roller, in the Weber lab at the
University of Virginia.
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3.3.6 Decitabine treatment induces the same group of transcription factors
that are induced by PLX4720 treatment in lines that respond
synergistically to the combination of PLX4720 with lapatinib
We exposed DM331 and A375 to the same dose of decitabine treatment as in

our cytotoxicity assays to determine the mechanism by which sublethal doses of
decitabine were sensitizing DM331 to lapatinib treatment. We identified a number
of differentially expressed genes in both lines, but also observed very few genes that
showed significant response in both lines (Figure 3.10). We took the list of
differentially expressed genes for each line through a pathway and transcription
factor enrichment analysis to determine the broad changes that treatment with
decitabine may be affecting. We observed an upregulation of genes associated with
the same transcription factors that we saw controlling the ErbB signaling pathway
in our other lines, indicating the decitabine treatment potentially induces the ErbB
signaling response in a manner similar to that of PLX4720 treatment (Table 3.4).
This suggests that the sensitivity to lapatinib induced by PLX4720 treatment is
induced similarly by decitabine treatment. This result also may explain the observed
loss of synergy; if the ErbB pathway is already induced by decitabine, then PLX4720
cannot effect these changes any further. Taken together, these observations imply
that there is an upper limit to the adaptive response a cell line is able to utilize.
DM331 does not end up being excessively responsive to repeated targeting of the

ErbB signaling pathway.
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Figure 3.10 Decitabine treatment in DM331 induces significant alterations to
its gene expression profile

Heat map of log2 fold changes induced by decitabine treatment in A375 and DM331.
Fold changes are ordered by magnitude in DM331, with fold changes having a FDR or
1% or better being marked with “*”. Samples were prepared by Devin Roller, in the
Weber lab at the University of Virginia.

Table 3.4 MSigDB transcription factor enrichment results for genes

differentially expressed in DM331 after treatment with decitabine.

Gene Set Description Enrichment FDR g-value Significant genes in gene set
Name
GGGAGG Motif GGGAGGRR; 1.53E-12 COL1A1,VGF,H3F3B,SERPINB2,CADM1,ID3,COL1A2,POU3F2,T
RR_VSM MAZ MEMB88,SLCO2A1,HAPLN1,NFKBIA,P4HA1,5100A4,FLNC,HCFC
AZ_Q6 1R1,CD68,FERMT3,1L24,PADI3,VASN,STAG1,JUP,RCOR2,KCNM
A1,CXXC5,SOX15,ERBB3,YARS,PKP4,LAMAS5,DAGLA,MDK,EHB
P1,SLC39A11,PPM1A,UBR4,PNKD,AHNAK,PLAT,INHBE,CLIP3,V
AMPS8,EFEMP2,CCNE1,RAB31,TAGLN,SCD,GMFG,ANKRD11,PR
R16,SELM,TRMT11,QPRT,PLAUR
TATAAA Motif TATAAA; TAF 3.53E-12 COL1A1,VGF,H3F3B,SERPINB2,CADM1,ID3,COL1A2,POU3F2,T
_VSTATA MEM88,SLCO2A1,HAPLN1,NFKBIA,P4HA1,5S100A4, TUBA4A,CP
_01 A4,KRT8,DCAKD,BMP5,5100A2, TFAP2A,LCP1,LAPTM5,CRABP2
,SOX2,TNF, TNFSF10,GPC6,SERPINE1,CCL5,ICK,CD24,THBS2,1G
FBP4,HIST1IH2BK,ACTG2,HIST1H2BD,VCAM1,NDUFA7,APCDD
1L
TGANTC Motif TGANTCA; JUN 1.73E-11 COL1A1,VGF,H3F3B,SERPINB2,FLNC,HCFC1R1,CD68,FERMTS3, |
A_VSAP L24,PADI3,VASN,TUBA4A,CPA4,KRT8,DCAKD,BMP5,5S100A2,E
1C NO3,NRIP3,LAMC2,SFN,CALB2,IL6,RCAN1,CSPG4,PDGFRB,TFB
1M,COL7A1,MMP9,HCLS1,1SG20,PLAU,C190rf33,F3,MMP1,T
MA4SF19
CAGGTG Motif CAGGTG; TCF3 5.22E-11 COL1A1,VGF,CADM1,1D3,COL1A2,POU3F2,TMEM88,SLCO2A1,
_VSE12_ FLNC,STAG1,JUP,RCOR2,KCNMA1,CXXC5,SOX15,ERBB3,YARS,
Q6 PKP4,LAMAS,DAGLA,MDK, TUBA4A,CPA4,KRT8,TFAP2A,LCP1,L
APTM5,CRABP2,ENO3,NRIP3,LAMC2,SFN,HIF1A,SPRY2,DPYSL
3,F2RL1,DEF6,GAD1,SKP2,CLDN7,PITX1,MFNG,ATF5,CHCHD3,
LTB,OLFML2A,C1QTNF1,RAC2,FAM162A,RBM47,SPINT2,POD
XL,LRIG1,SCG5
AACTTT_ | Motif AACTTT; Gene 9.19E-10 CADM1,ID3,COL1A2,POU3F2,HAPLN1,NFKBIA,HCFC1R1,STAG
UNKNO unknown 1,JUP,RCOR2,KCNMA1,CXXC5,EHBP1,SLC39A11,PPM1A,UBR4,
WN DCAKD,BMP5,TFAP2A,SOX2, TNF, TNFSF10,GPC6,ENO3,CALB2,
HIF1A,SPRY2,DPYSL3,F2RL1,KYNU,EFNB2,SPHK1,FLRT3,SAP30,
DACT1,SLC6A15,PCK2,LRP8, TMEM47,RILPL1,PTGS2,CAPS,SOX
18,PSAT1
GGGTGG Motif GGGTGGRR; 9.54E-09 COL1A1,CADM1,ID3,TMEM88,HAPLN1,FLNC,HCFC1R1,STAG1,
RR_VSP PAX4 JUP,RCOR2,S0X15,PNKD,AHNAK,PLAT,INHBE,CLIP3,TUBA4A,D
AX4_03 CAKD,SERPINE1,NRIP3,IL6,HIF1A,SPRY2,KYNU,EFNB2,SPHK1,D
DIT4,COL6A3,QPCT,ARHGDIB,MAP1LC3A,HK2,FOLR1,HYAL1
TGGAAA | Motif TGGAAA; NFAT 9.54E-09 VGF,CADM1,COL1A2,HAPLN1,NFKBIA,FLNC,HCFC1R1,CD68,ST
_VSNFAT AG1,KCNMA1,ERBB3,YARS,PKP4,EHBP1,PNKD,VAMPS8,BMPS5,
_Q4 01 SOX2,TNF,TNFSF10,CCL5,IL6,RCAN1,CSPG4,HIF1A,SPRY2,DEF6
,GAD1,SKP2,KYNU,FLRT3,FAM107B,TMEM97,CCL2,ANGPTL2,
PLAC1,EFHD1,HLA-B,TNFRSF1B,ISG15,IL23R,PYGB
TTGTTT_ | Motif TTGTTT; MLLT7 3.11E-07 COL1A1,H3F3B,CADM1,ID3,COL1A2,TMEM88,HAPLN1,CD68,S
VSFOXO TAG1,JUP,CXXC5,ERBB3,EHBP1,PNKD,BMP5,TFAP2A,SOX2,ICK
4 01 ,CD24,LAMC2,PDGFRB,TFB1M,HIF1A,CLDN7,PITX1,FLRT3,SAP
30,DACT1,DDIT4,FAM107B,TMEM97,EVL,SLC12A8,BIK,LRRC1
7,TMPRSS15,HMGB2,INSIG1,HSPA2,EXOC4,TSEN15

GGGCGG | Motif GGGCGGR; SP1 3.11E-07 COL1A1,VGF,CADM1,COL1A2,POU3F2,TMEM88,NFKBIA,P4HA
R_VS$SP1 1,HCFC1R1,FERMT3,STAG1,JUP,KCNMA1,CXXC5,ERBB3,YARS,
Q6 LAMAS,DAGLA,EHBP1,SLC39A11,PPM1A,PNKD,AHNAK,PLAT,E

FEMP2,CCNE1,RAB31,50X2,TNF,GPC6,ENO3,RCAN1,CSPG4,C
OL7A1,DEF6,GAD1,CLDN7,MFNG,ATF5,CHCHD3,SAP30,5LC6A
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15,PCK2,LYPD3,MTHFD1L,CLDN11,CLIC3,MAEL,ASNS,SUSD2,K
RT7

RYTTCCT Motif RYTTCCTG; 4.34E-07 VGF,ID3,HAPLN1,FERMT3,IL24,YARS,SLC39A11,VAMPS,LCP1,T
G_VSETS ETS2 HBS2,IGFBP4,PDGFRB, TFB1M,MMP9,HCLS1,DEF6,LTB,DDIT4,
2.8 COL6A3,QPCT,ARHGDIB,CCL2,EVL,GTSF1,CSF2,ACSLS,KLRC2,T

NFRSF6B

3.4 DISCUSSION

3.4.1 High throughput screening of combinations reveals pathway
dependencies for melanoma
In our panel of BRAFV600E melanoma we identified a number of combinations

that demonstrated synergy across a panel of cell lines. The majority of the
synergistic combinations we identified were dependent on inhibiting the MAPK and
PI3K signaling pathway. Previously, other groups have identified the significance of
these pathways (Carnero et al., 2008; Chandarlapaty et al., 2011; Kugel et al,, 2014;
McCubrey et al,, 2006) and their reciprocity under conditions of inhibition of one
pathway or the other. Here, we show that synergistic combinations are strongly
dependent on inhibiting both pathways simultaneously. We are especially intrigued
by the dependence of melanomas on RTK signaling previously observed by others
(Abel et al,, 2013; Held et al,, 2013; Molhoek et al,, 2011; Nazarian et al., 2010).
Inhibiting specific RTKs appeared to be a very successful strategy for generating
combinations, as evidenced by lapatinib, masitinib, and PI-103 all showing synergy.
RTKs can induce MAPK and PI3K signaling depending on the context of the
activation (McCubrey et al,, 2006), and the observed synergy from targeting PDK1, a
protein that sits above both pathways (Scortegagna et al., 2015) suggests that
combinations which target RTK signaling in conjunction with MAPK signaling yield

effective and consistent synergies.
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3.4.2 Targeting proximal pathways with drug combinations induces
potentiative responses in the proteome and transcriptome
Given the evidence that combining RTK inhibition with MAPK pathway

inhibition often yields synergies, we utilized RPPA to examine the effects on the
proteome in response to treatment. For our analysis of treatment response, we
selected two lines heterozygous for the BRAF V600E allele to study in depth, and
explicitly looked at their responses in the MAPK signaling pathway and the PI3K
pathway. We see many potentiative responses when comparing combination
responses to single drug responses. We also observed that PLX4720 has a
pronounced effect on AKT phosphorylation, what appears to be an adaptive
response. As expected, based on the work presented in Chapter 2, under treatment
with the combination, we observe the ablation of this purported adaptive response.
Taken together, these results indicate that proximal drug targets tend to induce
potentiative responses. Investigating the response trends further leads us to a gene

expression analysis.

In our transcriptional analysis of the responses of the BRAFV600E melanomas
to PLX4720 treatment with lapatinib and masitinib, we again observed that the
targeting of proximal pathways elicits a potentiative pattern in the gene expression
profiles. We were able to further investigate lines that respond to the combination
synergistically and lines that do not. SKMEL24 and SKMEL28 both show excessive
numbers of genes that demonstrated potentiative responses to combination
treatment. We also observed that most significant responses were limited to each

line individually. It appeared that every line had a unique set of responses that were
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induced by treatment. Though most lines showed similar patterns of responses in

the genes, these changes were not typically significant for multiple lines.

Unexpectedly, A375 showed ablation of PLX4720 treatment effects in the
transcriptome when treated with the combination. Given the small number of lines
we screened, it is unclear whether this potentiation effect should be more or less
prevalent given the treatment. We also were able to determine, following the exome
analysis approach we present in Chapter 2, that our transcriptome treatment course
included four lines homozygous for the BRAF V600E allele. It is telling that
SKMELZ24, the only line heterozygous for this allele, was also the most responsive
line (based on the number of genes differentially expressed). It is unclear as to
whether the zygosity of the allele is strongly influencing the transcriptional
responses we observed. The changes observed in response to treatment in the
proteome and transcriptome led us to investigate whether the DNA methylome was

also being affected by treatment.

3.4.3 Combination of PLX4720 and lapatinib induces no appreciable
changes in the methylome
We profiled the methylome in DM331 and SKMEL24 after treatment with the

combination, but observed no significant changes in the methylation levels in any of
their loci. This would seem to indicate that the methylome is not driving the
adaptive response, nor is it the mechanism of synergy. However, we sought to

determine if the methylome was a predictor of sensitivity to PLX4720.

When we profiled the methylomes of the twelve BRAFV600E melanomas, we

observed the strong contribution of DM6 to the separation along the first principal
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component. We explored this further and observed that DM6 is globally
hypomethylated, and were able to identify a variant in DMNT3A, a DNA methyl
transferase. This variant could explain the inability of DM6 to maintain its
methylation. Removing DM6 from the methylation analysis did not serve to capture
any groups of lines that showed phenotypes we had identified in Chapter 2. The lack
of change in methylation status after treatment with our combination as well as the
lack of separation of our lines by methylome status perplexed us, as others had
shown that loss of methylation at particular loci constitutes a mechanism of
resistance to MAPK pathway inhibition (Wang et al., 2014). Given the diversity in
our panel of cell lines, we wondered whether forced loss of methylation could
recapitulate the resistance mechanism, and if our combination could overcome the

resistance.

The observed similarities between DM331 and A375 at the transcriptome
and exome and differnces in sensitivity to PLX4720 treatment made these two lines
prime candidates for the forced methylation loss experiment. In the transcriptome
and exome profiles, these two lines were always among the most similar. We again
observed their similarities in the profiling of the methylome. We became interested
in isolating the mechanisms by which DM331 exhibits its strong resistance to
PLX4720 treatment and its synergistic response to the combination, whereas A375
- nearly identical to DM331 in exome, transcriptome, and methylome - is among the
most sensitive to PLX4720 treatment, and does not demonstrate any appreciable

increase in its response to the combination. These two lines demonstrate the
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significance that every line can respond differently, even when their functional

genomic profiles are extremely similar.

We examined the effects of global demethylation in DM331 and A375 and
were astonished to observe that DM331 became sensitive to lapatinib treatment
under these conditions. A375 showed no response to the same protocol. The
sensitization of DM331 to lapatinib by decitabine treatment prevented DM331 from
demonstrating synergy in the presence of the combination. Most interestingly,
treatment with decitabine induces the same set of transcription factors that we
observed being induced by PLX4720 treatment. It is possible that there is a limit of
adaptations that cells can undergo. Because decitabine induces an adaptive
response similar to PLX4720, it might not be possible for DM331 to adapt again. The
other possibility is that methylation is the mechanism of adaptation, however we do
not observe any appreciable changes in methylation in response to any of the
treatments. We note that the limit of this analysis is that we assayed one cell line at

one time point, 8 hours after treatment with PLX4720, lapatinib, or the combination.
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3.5 METHODS

3.5.1 Cell culture and cytotoxicity data generation

3.5.1.1 Melanoma cell culture
SKMELZ2, SKMEL24, SKMEL28 cells (American Type Culture Collection),

A375,HT144, VMM5A, VMM39, VMM17, VMM18, VMM12, VMM15, DM13, DM6
DM122, DM331 (kind gift from Dr. Craig Slingluff, University of Virginia,
Charlottesville, VA), and SLM2 (kind gift from Dr. Angela Zarling, University of
Virginia) were propagated in RPMI-1640 (Invitrogen) supplemented with 5% or
10% FBS (Gemini Bio-Products). All melanoma cultures were maintained in a
humidified chamber at 37°C with 5% CO-. Inhibitors were obtained from the
following sources: Lapatinib (LC Laboratories), 5-Aza-2'-deoxycytidine (decitabine)

(Sigma). PLX4720 was a gift from Plexxikon.

3.5.1.2 Cytotoxicity assays
Four hours after being plated in 96-well plates, cells were treated with

inhibitors or vehicle control in phenol red-free RPMI-1640 (Invitrogen) without
FBS and incubated for 3 days at 37°C. alamarBlue (Invitrogen) was added to wells
and incubated for 4 hours at 37°C. Fluorescence was measured at 560 nm
excitation/590 nm emission on a Synergy 2 plate reader (BioTek Instruments).

Mean results and SE were calculated for triplicate samples.
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3.5.2 Generation of transcriptome, proteome, DNA methylome and exome
data

3.5.2.1 Gene array
Cells were plated and incubated overnight before being treated, in duplicate,

with inhibitors or vehicle control in phenol red-free RPMI-1640 without FBS for 8
hours at 37°C. Cells were placed on ice and rinsed with cold 1x PBS. Cells were
collected and RNA was isolated using the Qiashredder (Qiagen) and RNeasy Mini Kit
(Qiagen). RNA was quantified on the NanoDrop 2000 spectrophotometer (Thermo
Scientific) and RNA quality was inspected on a 1% agarose gel. Biotin labeled RNA

was hybridized to [llumina 3'IVT human HT-12 BeadChip arrays.

3.5.2.2 Methylation array
Control cells were grown to 80% confluence, trypsinized, collected in a 15 ml

conical tube, and centrifuged to pellet. Cell pellet was washed twice in PBS,
centrifuged, and stored at -80°C. DNA was isolated from cells using the DNeasy
Blood and Tissue Kit (Qiagen, Valencia, CA) and profiled using the Illumina

Methylation 450K array.

3.5.2.3 Reverse Phase Protein Array
Cells were plated in p60 dishes and incubated overnight to allow the cells to

adhere before being treated with inhibitors or vehicle control in phenol red-free
RPMI Medium 1640 without fetal bovine serum for 1, 8, or 24 hours. Cells were
washed and lysed in 1:1 2x Sample Buffer:Tissue Extraction Reagent (T-PER) (Life
Technologies). Following lysis the samples were sonicated and centrifuged to clear.
Samples were diluted to requested concentration and sent to the lab of Emanuel

(Chip) Petricoin at George Mason University for Reverse Phase Array Analysis.
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3.5.3 Statistical Analysis of Functional Genomics Data
[llumina microarray data was variance stabilized transformed (Federici et al.,

2013; Improta et al., 2011) using the lumi Bioconductor package in R (Du et al,,
2008). Significantly varying genes and cell lines were clustered using the R package
pvclust (Suzuki and Shimodaira, 2006) with the Pearson correlation distance
measure and average linkage. We identified genes whose expression was
significantly altered for each cell lines in response to treatment using limma to
perform moderated t-tests and applying a 1% FDR cutoff. [llumina DNA methylation
array data underwent normalization using SWAN and was logit transformed using
minfi as described here (Aryee et al.,, 2014). A moderated t-test was performed as
above to determine differentially methylated loci in response to treatment.
Normalized log2 reverse phase protein array (RPPA) data was generated using
methods described in (Improta et al,, 2011). We performed a moderated t-test
analysis described above (for gene expression data) and found a number of

differentially phosphorylated sites at a FDR of 1%.

3.5.3.1 Pathway Enrichment Analysis
Gene sets found to be significant underwent pathway enrichment analysis via

Pathway Express and Gene Set Enrichment Analysis (GSEA) using MSigDB datasets.
Significant gene sets and pathways were identified as having a FDR enrichment

value of 0.05 or less for both tools.
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4 Combination therapy in melanoma and B cell malignancies
demonstrates significant ability to overcome adaptive

survival signaling responses

4.1 ABSTRACT

Combination therapy is able to block adaptive survival responses induced by
single drug therapy in BRAFV600E melanoma. Here, we show that combination
therapy extends to other preclinical models of melanoma, and is effective at
blocking the adaptive response in B-cell malignancies induced by single drug
therapy using both in vitro and ex vivo models. We also observe that combinations
are not only able to induce amplification of single drug responses (potentiative), but
are also capable of inducing novel responses at both the gene and potentially the
pathway level (emergent). We show that the combination of sorafenib and
diclofenac is an effective therapy for the treatment of multiple types of melanoma,
and the efficacy of this combination is agnostic with respect to genetic drivers. We
also observe that there exist a panel of combinations that are effective for in vitro
models of mantle cell lymphoma and the synergistic response is maintained in ex

vivo models of mantle cell lymphoma and chronic lymphocytic leukemia.

4.2 INTRODUCTION

As discussed previously, melanoma recurrence occurs in roughly half of all
patients during treatment (Chapman et al., 2011). In chapter 2, we identified an

adaptive response induced by PLX4720 treatment in resistant cell lines that
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leverages reactivation of the MAPK pathway through RTK signaling. In chapter 3, we
showed that the adaptive response is effectively blocked by the inhibition of RTK
signaling using lapatinib or masitinib, which shut down the reactivation of the
MAPK pathway. We observed that the combination of these compounds elicited a
potentiative response, indicating that for the combination PLX4720 with either
lapatinib or masitinib, the second drug amplifies the effects of the first. This
suggests that some cases of resistance involving reactivation of the pathway may be
overcome through the increased inhibition of the pathway by using a secondary

drug that targets a different member of the pathway.

Combination therapy has shown moderate success in melanoma (Chapman
et al.,, 2014), however, much like single drug targeted therapy, responses to
combination therapy have thus far not been durable (Fattore et al,, 2015). In
Chapter 3, we demonstrated the effectiveness of a screening strategy in BRAFV600E
melanoma for identifying synergistic combinations. Therefore, we sought to
determine the efficacy of our screening strategy in other types of melanoma, not
driven by BRAFV600E, We were able to determine that the combination of sorafenib
and diclofenac elicited a synergistic response across multiple types of melanoma
(Roller et al., 2012). Sorafenib, similar to PLX4720, will inhibit BRaf, however, it is
not as selective as PLX4720 and will target multiple kinases (Keating and Santoro,
2009). Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which inhibits
cyclooxygenases (Dastidar et al,, 2000). The efficacy of the combination of sorafenib
and diclofenac did not correlate with RAF or RAS mutation status. Additionally, we

observe that contrary to the potentiative response observed for PLX4720 and RTK
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inhibition, application of sorafenib with diclofenac in vitro yielded an emergent
response in gene expression profiling. Significant levels of differential expression for
some genes were only observed when both drugs were present, rather than the

second drug amplifying the response of the first drug.

Lastly, we sought to apply our screening strategy in other cancer models
available to us. Focusing on the B-cell malignancies, mantle cell lymphoma (MCL)
and chronic lymphocytic leukemia (CLL), we were able to apply our screening
strategy to identify a number of combinations found to be effective in both in vitro
and ex vivo models. As with the combinations in melanoma, combinations for B-cell
malignancies showed both potentiative and emergent responses. Research by
others into combinatorial drug screening is focusing more on this phenomenon. In a
study dealing with treatment of lines with combination therapy and the interactions
between single and combination treatments (Cappuccio et al., 2015), the authors
postulate that there are a limited number of patterns of response to single and
combination treatments, and argue for the idea of positive synergy, and emergent
positive synergy, whose definitions match our interpretations of potentiative and

emergent responses.

As discussed in Chapter 1, CLL and MCL have poor prognoses, similar to
melanoma, as well as being driven by the activation of a single growth pathway in a
substantial portion of the patient population (Herman et al., 2011; Pérez-Galan et al,,
2011). In melanoma, the aberrantly activated pathway is the MAPK pathway, in B-
cell malignancies, it is the BCR pathway (Byrd et al., 2013; Pérez-Galan et al,, 2011;

Swerdlow and Williams, 2002; Wang et al., 2013). In addition to the parallels of
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cancer prognosis and propagation, melanoma and CLL and MCL also have potent
targeted therapies that have been used to great effect in the patient population.
Ibrutinib, a targeted therapy that inhibits Bruton’s Tyrosine Kinase (BTK), a
component of the BCR signaling pathway, shows overall response rate of 68% in
patients with relapsed or refractory MCL, and 83% in patients with relapsed or
refractory CLL (Axelrod et al,, 2014a). As with melanoma, single agent therapy is
not durable for CLL and MCL, as it induces adaptive responses, however, drug
combinations that block adaptive signaling responses may increase both
progression-free survival and overall survival in MCL (Liu et al,, 2012; Pott et al,,

2010).

Following the screening strategy utilized effectively in melanoma, the Weber
lab was able to identify a number of drugs that when combined elicit a synergistic
response in preclinical models of CLL and MCL (Axelrod et al., 2014a). [brutinib
combined with ABT-199, an inhibitor of BCL2; or carfilzomib, or bortezomib, both of
which are proteasome inhibitors, showed cytotoxic synergy. The combination of
ibrutinib with ABT-199 presented the most striking results, showing rapid
induction of apoptosis, and was characterized more than the other combinations. In
addition the combination was found to be effective across ex vivo models derived
from patients resistant to ibrutinib treatment, indicating its potential as a clinical

treatment.
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4.3 RESULTS

4.3.1 Sorafenib and diclofenac yield synergistic responses in melanoma
regardless of primary driver mutations
A synthetic lethal drug screen was performed with a panel of melanoma to

include BRAFV600E, NRASQ6IR and BRAFWT/NRASWT melanomas. Given the multitude
of driver mutations in melanoma (Hodis et al,, 2012), we sought to determine if
there were combinations of drugs that would be effective regardless of the genetic
background, but still in the context of activated MAPK pathway. In this screen, we
were able to identify the combination of sorafenib and diclofenac as a synergistic
combination in cell lines of all three varieties, BRAFV600E, NRASQ61R and
BRAFWT/NRASWT (Roller et al,, 2012). DM331, our most resistant BRAFV600E Jine to
PLX4720 treatment, SLM2, a BRAFWT/NRASWT melanoma, and VMM39, a NRASQ61R
melanoma all showed synergistic responses to this combination. The combination of
sorafenib and diclofenac was the most effective across multiple lines. Even more
astounding, was the combination showed synergy regardless of the driver mutation

present in the melanoma.

We next wanted to determine how sorafenib and diclofenac induced synergy
in our panel, and evaluate the similarity of the responses across different drivers.
Using microarrays, we assayed the gene expression of two lines, VMM39 and SLM2
to determine how the treatment of sorafenib alone, diclofenac alone, and the
combination were altering the transcriptional profiles of the lines (Figure 4.1). We
observed that there were four types of responses; genes downregulated by the

combination in VMM39, but weakly in SLM2; genes downregulated in both VMM39
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and SLM2; genes that have varied expression profiles between VMM39 and SLM2;
and genes that are upregulated by the combination in VMM39 and SLM2. We
wanted to determine what pathways these changes in gene expression might be
associated with, so we performed a gene ontology enrichment analysis. We noted
that a number of genes were associated with survival-related GO terms. Taken
together, these observations suggest that the combination of sorafenib and
diclofenac induces synergistic cytotoxicity at the gene expression level by affecting
genes associated with survival. We observed that the responses that we were
inducing across all three lines involved the induction of genes associated with GO
terms of apoptosis and the negative regulation of survival. Unlike the screen
discussed previously, sorafenib and diclofenac are not very specific targeted
therapies. We wanted to ascertain the molecular targets of the drugs in this context,
so we sought to identify more specific targeted compounds that would phenocopy
the combination of sorafenib and diclofenac. Through a series of drug substitutions,
we were able to determine that sorafenib was acting at least in part as a Raf/MAP
Kinase inhibitor, and diclofenac was primarily acting as a Cox2 inhibitor (Roller et

al, 2012).
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Figure 4.1 The effect of drug combinations on genome-wide gene expression.

Total RNA was isolated from cells (VMM39 and SLMZ2) 24 hours following inhibitor
treatment (dimethyl sulfoxide vehicle, sorafenib and diclofenac, both alone and in
combination), conducted in duplicate. nRNA abundance was measured by Illumina
HT-12 microarray. Genes exhibiting statistically significant (FDR < 0.1%) inhibitor-
induced changes were clustered hierarchically by average linkage of scaled cosine
correlation similarity, delineating 4 major response patterns: A, genes strongly
downregulated by combination inhibition in VMM39, but weakly (or not at all) in
SLM2. B, genes downregulated by combination inhibition in both VMM39 and SLM2,
with varying magnitude. C, genes with widely disparate basal expression levels
between VMM39 and SLMZ that are dysregulated by combination inhibition. D, genes
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that are upregulated by combination inhibition in either/both VMM39 and SLM2.
Black boxes to the left of HUGO gene names denote those genes having annotated
associations with survival-related GO terms. Samples were prepared by Devin Roller, in
the Weber lab at the University of Virginia

When we examined the broader trends of the gene expression responses to
the single and combination treatments of sorafenib and diclofenac, we observed a
result dissimilar to what we saw from the combination of PLX4720 and RTK
inhibitors. Neither treatment with sorafenib or diclofenac alone appeared to yield a
robust adaptive transcriptional response as we had observed with PLX4720. Neither
cell line showed excessive cytotoxicity in response to sorafenib or diclofenac
treatment alone, indicating there are adaptive responses, which are preventing
apoptosis. We had observed that RTK inhibition appears to potentiate the
transcriptomic response to BRaf inhibition in the context of treatment with
PLX4720; in this case, Cox2 inhibition and multikinase inhibition appear to cause
the emergence of new genes not affected by either drug, sorafenib or diclofenac,
alone. The mechanism is unknown by which the inhibition of these two targets
synergistically induces the apoptosis we observe in our panel of melanomas. The
effectiveness of the previous combination of PLX4720 with lapatinib, and the
effectiveness of this combination of sorafenib and diclofenac, suggest that
synergistic combinations could be arrived upon regardless of the proximity of nodes
in biochemical pathways between the targets. This observation suggests a number
of further investigations regarding the effectiveness of proximal and distal targets,
as well as whether potentiative or emergent responses are more desirable in a
clinical setting. Our current experience with these combinations suggests that

proximal combinations yield potentiating responses, and distal combinations yield
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emergent responses, but more work is required to prove the hypothesis.
Additionally, it is unclear as to whether these phenomena that we observe are a

result of focusing on melanoma or growth driven by the MAPK pathway.

4.3.2 Synthetic lethal screening approach identifies secondary drugs that,
when used in conjunction with ibrutinib, yield highly synergistic
cytotoxic responses in MCL cell lines.

To evaluate our methodology and conclusions from our melanoma studies,

we turned towards B-Cell malignancies and sought to identify any parallels. Using a
synthetic lethal screening strategy, the Weber lab was able to arrive at a number of
targeted therapies, that, when combined with ibrutinib, showed synergistic
response in MCL cell lines JVM2 and Z138. Ibrutinib is an inhibitor targeting BTK, a
downstream effector of the BCR signaling pathway. In this screen, we used ABT-
199, a BCL2 inhibitor; bendamustine, an alkylating agent; carfilzomib, a proteasome
inhibitor; bortezomib, a proteasome inhibitor; geldanamycin, an HSP90 inhibitor;
panobinostat, a non-selective histone deacetylase inhibitor; SC514, an IKK
inihibitor; PD325901, a MEK1/2 inhibitor; PD0332991, a CDK inhibitor;
enzastaurin, a PKC beta inhibitor; R788, a Syk inhibitor; temsirolimus, an mTOR
inhibitor; dasatinib, a BCR/ABL and Src family tyrosine kinase inhibitor; and
idelalisib, a PI3K inhibitor (Table 4.1). For each combination across the three by
three dose format, the synergy scores, as determined by the Bliss test of

independence, were subjected to unsupervised hierarchical clustering (Figure 4.2).

Table 4.1 Secondary drugs used in combination with ibrutinib

Drug Target Relationship to BCR pathway Doses used
Idelalisib (GS-1101, CAL-101) PI3K Proximal 0.3125,0.625,1.25uM
Dasatinib LYN Proximal 6.25,25,100uM
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Enzastaurin PKC Proximal 2.5,5,10uM
SC-514 IKK Proximal 6.25,12.5,25uM
R-788 SYK Proximal 0.6,1.35,2.85uM

Temsirolimus mTOR Proximal 31.2,62.5,125nM

PD-0332991 CDK Distal 125,250,500nM

PD-325901 MEK Distal 6.25,12.5,25nM

Geldanamycin Chaperone Distal 3.9,7.8,15.6nM

Panobinostat HDAC Distal 1,2,4nM

Bortezomib Proteasome Distal 1,1.5,2nM

Carfilzomib Proteasome Distal 1.3,2.6,5.2nM

ABT-199 BCL-2 Distal 0.75,1.25,2.5uM
Bendamustine DNA replication Distal 3.125,6.25,12.5uM

We observed a striking relationship between the effectiveness of the

secondary drugs in combination with ibrutinib (Figure 4.2). The most synergistic

secondary drugs were all inhibitors of target proteins that are not directly tied to

BCR signaling (Reviewed in Chapter 1). The least synergistic secondary drugs were

all targeted inhibitors of members of the BCR signaling pathway, for example,

idelalisib. This indicates that for MCL and potentially other B-Cell malignancies,

drug combinations should target proteins that are components of different

pathways. This runs contrary to results in melanoma that repeated insults to the

MAPK pathway, the primary growth pathway in our melanoma cell lines and the

analogous pathway to BCR signaling, are an effective strategy for overcoming

resistance. We next wanted to determine the pathways that are being affected by

the treatment to induce apoptosis.
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Figure 4.2 Screening with targeted secondary agents identifies drug
combinations that synergize with ibrutinib.

Fourteen secondary drugs were combined with ibrutinib in two MCL cell lines (Z138
and JVM2). Cell lines were exposed to 6, 12 and 21 uM ibrutinib and three doses of
secondary agents in a 3 x 3 format for 72 h. Percent cytotoxicity was measured with an
alamarBlue assay, and percent synergy assessed by the Bliss independence

method. Unsupervised hierarchical clustering of the percent synergy values for all drug
combinations at all concentration combinations in the 3 x 3 dosing matrix in Z138 and
JVM_Z cells is shown. Samples were prepared by Mark Axelrod and Vicki Gordon, in the
Weber lab at the University of Virginia.
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4.3.3 Transcriptomic responses to combination treatments reveal potential
mechanisms of synergistic cytotoxic effects.
To ascertain the transcriptional responses of the cell lines to these

combination treatments, we performed a gene expression array 6 hours post
treatment with ibrutinib at two doses in combination with single doses of
carfilzomib, idelasib, and ABT-199. At a FDR threshold of 1%, we identified a
number of genes differentially expressed in all drug treatments in both cell lines,
when compared to control (Figure 4.3). Across the two MCL lines we studied, only
JVM2 under high dose ibrutinib treatment showed a robust adaptive gene
expression response. Much like sorafenib treatment in our non-mutant BRAF
melanoma lines, and PLX4720 treatment in our BRAFV600E Jines, each line displays
mostly unique responses to treatment. Additionally, the response to the secondary
drugs is extremely limited, again, similar to the result of laptinib, masitinib, and
diclofenac treatment in our melanoma panels. Lastly, we do observe blocks of genes
responding in kind after treatment with the combination, across each of the
different secondary drugs. Each of these secondary drugs target different pathways,
which would seem to indicate that we are observing a readout of synergistic
cytotoxicity, rather than observing the mechanisms that result in synergistic

cytotoxicity.
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Figure 4.3 Synergistic combinations in MCL lines exhibit strong
transcriptional responses of an emergent nature

Moderated t-test was used to identify differentially expressed genes in response to
treatment with ibrutinib alone at a low (low.Ibrut) and high (high.Ibrut) dose, CAL101
(CAL101) alone, Carfilzomib alone (CARF), ABT199 (ABT) alone, or combinations of
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ibrutinib with each of the secondary drugs in two MCL cell lines (JVM2, Z138). Samples
were exposed to treatments for 8 hours. Differentially expressed genes with a FDR or
1% or better are denoted with “*”. Samples were prepared by Vicki Gordon, in the
Weber lab at the University of Virginia.

We focused our analyses of the transcriptomic response in JVM2 to the
combination of ibrutinib with idelasib, chosen because, although it was one of the
least effective ibrutinib combinations from a cytotoxicity perspective (Figure 4.2), it
was the combination treatment that yielded the highest number of differentially
expressed genes. We took the list of differentially expressed genes and performed a
pathway enrichment analysis using MSigDB (Table 4.2). Among the top pathways,
we see MAPK pathway signaling and p53 signaling. Since idelasib is a PI3K inhibitor,
upregulation of MAPK signaling is not unexpected. It is well documented that
inhibiting PI3K signaling will often upregulate MAPK signaling, and the reverse has
also been observed, even in our melanoma cell lines when treated with PLX4720,
inducing the adaptive signaling response (Chandarlapaty et al,, 2011; Kugel et al,,
2014). The p53 responses are also expected; even though the combination of
ibrutinib and idelasib is not synergistic, it is still cytotoxic, which could require the
induction of p53 signaling to induce apoptosis. Transcription factor enrichment
analysis reveals forkhead box family members, ETS family members and their
cofactors, and the NFkB and STAT transcription factors. Given the similar
enrichments of ETS family and forkhead box family members that we observed in
melanoma, it is not unexpected to observe that enrichment here, considering the
previously-mentioned enrichment of MAPK signaling present in the pathway
enrichment. The combination of p53 induction coupled with the potentially robust

MAPK signaling induction could explain the poor synergistic response of the
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combination of ibrutinib with idelasib. These results seem to indicate the induction

of both apoptosis and growth at the same time.

Table 4.2 MSigDB pathway enrichment results for differentially expressed
genes in response to treatment with Ibrutinib and secondary drugs in JVM2

Gene Set Name Description FDR g-value Secondary Drug
REACTOME_IMMUNE_SYSTEM Genes involved in Immune System 3.51E-10 Idelasib
REACTOME_CYTOKINE_SIGNALI | Genes involved in Cytokine Signaling in .

NG_IN_IMMUNE_SYSTEM Immune system 4.38E-09 Idelasib
REACTOME_INTERFERON_SIGN
CTOME_ ON_SIG Genes involved in Interferon Signaling 4.38E-09 Idelasib
ALING
KEGG—P53-SIG£YALING—PATHW p53 signaling pathway 4.38E-09 Idelasib
REACTOME_INTERFERON_GAM Genes involved in Interferon gamma X
MA_SIGNALING signaling 3.138-07 el
REACTOME_INTERFERON_ALPH Genes involved in Interferon
iy - 4.57E-06 Idelasib
A_BETA_SIGNALING alpha/beta signaling elast
KEGG_MAPK_SIGNALING_PATH MAPK signaling pathway 1.04E-05 Idelasib
WAY
KEGG_CYTOKINE_CYTOKINE_RE . . . . .
CEPTOR_INTERACTION Cytokine-cytokine receptor interaction 4.80E-05 Idelasib
PID_HIV_NEF_PATHWAY NS ISR (RS GG et ESeie) 7.19E-05 Idelasib
- - - TNF-alpha
PID_P53_DOWNSTREAM_PATH
- - - Direct p53 effectors 7.67E-05 Idelasib
WAY
REACTOME_IMMUNE_SYSTEM Genes involved in Immune System 1.61E-07 Carfilzomib
KEGG—P53-SIG£YALING—PATHW p53 signaling pathway 1.97E-07 Carfilzomib
KEGG_JAK_STAT_SIGNALING_P o N
ATHWAY Jak-STAT signaling pathway 3.77E-06 Carfilzomib
KEGG_CYTOKINE_CYTOKINE_RE . . . . ; .
CEPTOR_INTERACTION Cytokine-cytokine receptor interaction 4.98E-06 Carfilzomib
PID_MYC_ACTIV_PATHWAY Valldate.d t.argets of C_MYC 4.98E-06 Carfilzomib
- - - transcriptional activation
REACTOME_CYTOKINE_SIGNALI | Genes involved in Cytokine Signaling in . .
NG_IN_IMMUNE_SYSTEM Immune system 2.178-05 Carfilzomib
BIOCARTA_HIVNEF_pATHWAY | MV Nef: negat'vaeFffeCtor of Fas and 2.70E-05 Carfilzomib
KEGG—TYPE—I}?JI:BETES-MELLI Type | diabetes mellitus 2.97E-05 Carfilzomib
REACTOME_TRANSMEMBRANE Genes involved in Transmembrane
TRANSPORT_OF_SMALL_MOL 2.97E-05 Carfilzomib
- — = transport of small molecules
ECULES
REACTOME_UNFOLDED_PROTEI Genes involved in Unfolded Protein . .
N_RESPONSE Response 3.14E-05 Carfilzomib
REACTOME_CYTOKINE_SIGNALI | Genes involved in Cytokine Signaling in
NG_IN_IMMUNE_SYSTEM Immune system 2.36€-07 ABT-199
REACTOME—:\:_T:ZFERON—SIGN Genes involved in Interferon Signaling 3.57E-07 ABT-199
REACTOME_IMMUNE_SYSTEM Genes involved in Immune System 3.57E-07 ABT-199
KEGG—P53-SIG£YALING—PATHW p53 signaling pathway 9.42E-07 ABT-199
KEGG_CYTOKINE_CYTOKINE_RE . . . "
CEPTOR_INTERACTION Cytokine-cytokine receptor interaction 4.78E-06 ABT-199
KEGG_MAPK_SIGNALING_PATH
- - - MAPK signaling pathway 3.43E-05 ABT-199
WAY
KEGG_INTESTINAL_IMMUNE_N Intestinal immune network for IgA
ETWORK_FOR_IGA_PRODUCTI production 3.438-05 ABT-199
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ON
REACTOME_INTERFERON_ALPH Genes involved in Interferon
iy - 1.71E-04 ABT-199
A_BETA_SIGNALING alpha/beta signaling
PID_CD8_TCR_PATHWAY TCR signaling '"c':;'lf‘#xef;ve b8+ T 1.18E-03 ABT-199
KEGG_SYSTEMIC_LUPUS_ERYTH .
EMATOSUS Systemic lupus erythematosus 1.18E-03 ABT-199

4.3.4 The combination of carfilzomib with ibrutinib appears to induce an
extremely strong and robust apoptotic response via p53 signaling.
We next sought to examine the transcriptional responses induced by the

combination of ibrutinib and carfilzomib in the JVM2 cell line at the pathway level of
response. The pathway enrichment results were extremely striking: we observed
multiple pathways associated with p53 and its ability to effect apoptosis. Even more
intriguing was that the combination of carfilzomib with ibrutinib involved the
response of many genes that were emergent in their response to the combination
(Figure 4.3). When we focused exclusively on the genes that were emergent in the
combination, we still observe the p53 response (driven by downregulation of cyclin
D2 and cyclin E1, which had log?2 fold changes of -0.60 and -0.27 respectively; and
upregulation of cyclin G2, with a log2 fold change of 0.47). We also observe a
significant induction (log2 fold change of 0.34) of GADD45A, a growth arrest and
DNA damage inducible protein. Contrary to the response we observe in the
combination of idelasib with ibrutinib, we see no induction of alternative growth
pathways. This would agree with our assessment of the more synergistic nature of
the combination ibrutinib with carfilzomib. Comparing the two combinations
demonstrates the significance of using combinations that target different pathways.
With idelasib, the BCR growth pathway is targeted at two points, BTK and PI3K. This

heavy inhibition of the BCR pathway appears to cause apoptosis, but also induces
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the growth response via MAPK pathway signaling, an adaptive response similar to
PLX4720 treatment in melanoma. Utilizing carfilzomib, an inhibitor of the
proteasome, in conjunction with BTK inhibition appears to yield a much stronger

apoptotic response, avoiding the induction of alternative growth pathways.

4.3.5 The combination of ABT-199 and ibrutinib induces a transcriptional
response similar to the combination of idelasib and ibrutinib.
When we sought to categorize the pathways affected by the combination of

high dose ibrutinib with ABT-199 in the emergent genes, we again discovered that
this combination centers on apoptosis via p53 induction. Even though this
combination is the most robust as scored by Bliss, the response in JVM2 is very
similar to its response to the combination of idelasib and ibrutinib in terms of the
pathways induced by the treatments. Again we see an enrichment of p53 associated
pathways and PI3K pathways. Additionally, when we perform a pathway
enrichment analysis only on emergent genes, we lose the enrichment in p53
pathways, but maintain the PI3K pathway enrichment. We also appear to maintain
similar transcriptional programs in both combinations, with enrichments in
forkhead box family members and in transcription factors with MAPK pathway
consensus sequences (Diella et al., 2008). These results were very unexpected, as
the combination with ABT-199 was one of the most synergistic combinations, far
more effective than the combination with idelasib. Across all three combinations, we
observe enrichment in p53-associated pathways. This is unusual as all three
secondary drugs target different pathways. We would expect different pathways
enriched for different combinations due to the different targets of the secondary

drugs. In our profiling, we appear to only be observing the end result of cytotoxicity
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in all three combinations. This would seem to indicate that our gene expression
profiling is not sufficient to capture the adaptive response, if any, in our model of B-
Cell malignancies. The combination of ABT-199 and ibrutinib, being the most
synergistic combination and showing similar responses to treatment of the other
combinations became our primary focus. We wanted to determine the protein
signaling changes being induced by treatment to potentially further elucidate the

mechanisms of cytotoxicity and synergy.

4.3.6 The apoptotic response to the combination of ABT-199 and ibrutinib
is very swift, and is apparent when observed at the protein level.
To ascertain responses to these treatments at the protein level, we used a

reverse phase protein array, examining the responses of approximately 100
proteins at 1, 3, 6, and 24 hours for all single and combination treatments (Figure
4.4). In the JVM line, we were able to see evidence of apoptosis as early as 3 hrs in
response to ABT-199 treatment alone. At 3 hours, signals of ABT-199's apoptosis-
triggering effects were most apparent via increases in cleaved caspase family
members. When observing the combination treatment at 3 hours, induction of
apoptosis appears even stronger. Levels of cleaved caspase family members are
even higher than in ABT-199 treatment alone. This increase persists at every time
point from 3 hours to 24 hours post treatment. Lastly, combination treatment
significantly lowers the phosphorylation levels of multiple receptor tyrosine kinases
responsible for triggering growth and survival, as well as levels of many members of

the downstream effectors of these growth pathways.
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Figure 4.4 ABT199 treatment appears to induce apoptosis very swiftly

Moderated t-test was performed on normalized, log2 transformed RPPA levels. Log2
fold changes were plotted for JVMZ2 cells treated with ibrutinib alone (Ibrut), ABT199
alone (Abt), or the combination (IACombo). Responses were assayed at 1, 3, 6, and 24
hours. Fold changes with a FDR of 1% or better are denoted with “*”. Samples were
prepared by Vicki Gordon, in the Weber lab at the University of Virginia.

These results indicate that observing the response to the combination in the
transcriptome at 6 hours might be misleading. Given the strong apoptotic results at
3 hours, it is very apparent that transcriptional responses at 6 hours could be
heavily contaminated with dead cells and apoptotic byproducts. Additionally, it
implies that the adaptive response in the transcriptome would be occurring much

earlier than previously assayed.
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4.3.7 Transcriptomic response to ibrutinib and ABT-199 combination
reveals little insight into the mechanism of synergy.
Given the striking result that apoptosis is triggered as early as 3 hours post

treatment, we wanted to investigate the effects on the transcriptome at this time.
We performed another gene expression array, again on JVM2, and on two other MCL
cell lines, Mino and Jeko (Figure 4.5). As with Z138, JVM2 shows a marked increase
in the number of genes that respond to treatment compared to the other cell lines’
responses. We examined the transcription factors that contain potential binding
sites in the genes in JVM2 that are significantly affected by ABT-199 treatment, and
observe a number of factors associated with MAPK signaling, including ELK1 and
ETS2, both of which are ETS family members; SP1, an ETS family cofactor; and
NFAT, a target of the MAPK pathway. As discussed in the previous chapter, ETS
transcription factors are the primary family affected by MAPK signaling. We next
wanted to ascertain which pathways are most affected by ABT-199 treatment. As
previously observed, apoptosis, via the p53 signaling pathway, is among the most
significant effects of ABT-199 treatment (FDR = 1.6 e -3). But we also observe ABT-
199 effects on a number of receptor tyrosine kinase pathways, including ErbB
signaling, PDGF signaling, and glucocorticoid receptor signaling. We also observe
effects on a number of cell cycle associated pathways and cell stress pathways, such
as oxidative phosphorylation and protein metabolism. Taken together, these
pathways, specifically p53 and oxidative phosphorylation, would seem to indicate

strong induction of an apoptotic response to ABT-199 treatment.
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Figure 4.5 Transcriptomic responses to Ibrutinib and ABT at time of apoptosis

Moderated t-test was used to identify differentially expressed genes in response to
treatment with ibrutinib (IvC), ABT199 (AvC) alone, the combination of ibrutinib with
ABT199 (IAvC), or a measure of synergy (IAvIA) defined in methods in JVMZ2 (JVM),
Mino, and Jeko MCL cell lines. Differentially expressed genes with a FDR or 1% or
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better are denoted with “*”. Samples were prepared by Vicki Gordon, in the Weber lab
at the University of Virginia.

More strikingly, we see little to no significant responses to other single
treatments at 3 hours in any of the lines. We do observe a much stronger
combination response at 6 hours in JVM2 compared to the other lines, and the genes
affected mostly appear to be responding opposite to the ABT-199 response at 3
hours. It would appear, as we saw in our melanoma studies, that JVM2 is attempting
to overcome single drug treatment utilizing an adaptive response. We see a limited
induction of growth pathways in the form MAPK signaling and the apparent
transcriptional response of MAPK pathway activation. Given the strong in vitro
response of MCL cell lines to the combination of ABT-199 and ibrutinib, we sought

to ascertain the effectiveness of this combination in patient samples.

4.3.8 Patient samples show significant responses to the combination of
ABT199 and ibrutinib in vitro.
We began our studies by assaying for cleaved PARP, an indicator of apoptotic

response, in a number of CLL and MCL patient samples as well as in normal patient
tissue: for ibrutinib treatment alone, ABT-199 treatment alone, and the
combination (Figure 4.6). As we saw in cell lines, we observe minimal apoptosis in
response to ibrutinib treatment alone, a marked increase in cleaved PARP with the
treatment of the samples with ABT-199, and, with treatment by the combination, a
striking increase in cleaved PARP, beyond the increase observed with ABT-199
alone. This observation strongly indicates that the combination of ABT-199 and
ibrutinib would be useful for patients stricken with either CLL or MCL. We rank-

ordered the patient samples from most to least responsive to the combination, and
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observed that even patients who showed limited response to either ibrutinib or
ABT-199 alone were responsive to the combination. However, patient samples that
were most resistant to ibrutinib also appeared to be the most resistant to the

combination.
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Figure 4.6 Ibrutinib combined with ABT-199 shows strong response is ex vivo
models of patient samples

Cleaved PARP was assayed as a means of determining apoptotic effects of ibrutinib
alone, ABT199 alone, or the combination in patient samples. Levels of cleaved PARP
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have been normalized to levels of cleaved PARP observed in the patient samples under
no treatment condition. Samples were prepared by Vicki Gordon, in the Weber lab at
the University of Virginia.

Having determined that patient samples respond to the combination, we
sought to examine the responses in patient samples and assay the similarity in these
responses to the responses observed in cell lines. Three samples were taken
through further analyses to determine the similarity. These three were MCL0020,
the most responsive patient sample to the combination; CLL0O021, one of the patient
samples most resistant to ibrutinib treatment, resistant to ABT-199 treatment, and
among the least responsive to the combination; and CLL0026, a patient sample that
was extremely resistant to ibrutinib treatment alone but somewhat responsive to
ABT-199 treatment and to the combination treatment. We felt that these three
samples were a fair representation of the variation in responses to treatment that

we observed for all patient samples.

4.3.9 Patient sample transcriptomic response to the combination yields
similar results to cell line models.
Given the responses observed in the gene expression array and protein array

for the cell lines, we decided that gene expression would be the best avenue for
studying the patient sample responses. The protein array analysis did demonstrate
the rapid induction of apoptosis, but it does not provide sufficient analytes to
undergo extensive pathway analysis. We began with an analysis of the patient
samples’ responses to the single and combination treatments (Figure 4.7). In
MCL0020, we see a very robust response to ABT-199 and combination treatment,
and a weak response to ibrutinib treatment alone, which mirrors its cleaved PARP

assay results. Additionally, we observe a number of emergent responses to the
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combination treatment. When looking at the genes that are differentially expressed
after combination treatment, we observe high numbers of micro and small nucleolar
RNA molecules, a response we do not often observe. As before, we wanted to
determine the specific pathways and transcription factors being induced by
treatment (Table 4.3). We observe a significant enrichment only in the p38 gamma
and p38 delta signaling pathway. This enrichment is due to MAPK12, MAPK13 and
STMN1 being differentially expressed in response to combination treatment. This
pathway is associated with the stress response, which could be a potential
indication of apoptosis. We also observe pathways associated with Pol I, packaging
of telomere ends, and mitotic recombination. Notably, dysregulation of telomers can
lead to apoptosis (Ci et al., 2015). Performing the transcription factor binding site
enrichment analysis, we identify multiple transcription factors that contain MAPK
consensus sequences, as we observed before, including NFAT and MAZ. We also
observe enrichment for NFkB and associated cofactors; STAT family members
STATS5A and STAT®6; and a number of forkhead box transcription factor family

members, including FOXA1, FOXA2, FOXD3, and FOXO4.
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Figure 4.7 Ex vivo response to combination in patient samples is extremely
pronounced
Moderated t-test was used to identify differentially expressed genes in response to

treatment with ibrutinib (IbrutinibvControl), ABT199 (ABTvControl) alone, or the
combination of ibrutinib with ABT199 (IAvControl) in patient samples. Differentially
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expressed genes with a FDR or 1% or better are denoted with “*”. Samples were

prepared by Vicki Gordon, in the Weber lab at the University of Virginia.

Table 4.3 MSigDB enrichment results for ex vivo study on patient samples

exposed to ibrutinib and ABT-199

Gene Set Name Description FDR g-value Patient
Number
REACTOME_AMYLOIDS Genes involved in Amyloids 5.20E-21 CLL_0026
REACTOME_RNA_POL_I_PROMO Genes involved in RNA Polymerase | Promoter Opening 1.04E-20 CLL_0026
TER_OPENING
REACTOME_MEIOTIC_RECOMBIN Genes involved in Meiotic Recombination 4.77E-19 CLL_0026
ATION
REACTOME_RNA_POL_I_TRANSC Genes involved in RNA Polymerase | Transcription 5.54E-19 CLL_0026
RIPTION
KEGG_SYSTEMIC_LUPUS_ERYTHE Systemic lupus erythematosus 1.34E-18 CLL_0026
MATOSUS
REACTOME_PACKAGING_OF_TEL Genes involved in Packaging Of Telomere Ends 8.94E-18 CLL_0026
OMERE_ENDS
REACTOME_MEIOSIS Genes involved in Meiosis 8.94E-18 CLL_0026
REACTOME_RNA_POL_I_RNA_P Genes involved in RNA Polymerase I, RNA Polymerase Ill, and 1.47€-17 CLL_0026
OL_III_AND_MITOCHONDRIAL_T Mitochondrial Transcription
RANSCRIPTION
REACTOME_DEPOSITION_OF_NE Genes involved in Deposition of New CENPA-containing 1.38E-16 CLL_0026
W_CENPA_CONTAINING_NUCLE Nucleosomes at the Centromere
OSOMES_AT_THE_CENTROMERE
REACTOME_MEIOTIC_SYNAPSIS Genes involved in Meiotic Synapsis 5.06E-16 CLL_0026
KRCTCNNNNMANAGC_UNKNOW Genes with promoter regions [-2kb,2kb] around transcription 1.73E-11 CLL_0026
N start site containing motif KRCTCNNNNMANAGC. Motif does
not match any known transcription factor
TTTNNANAGCYR_UNKNOWN Genes with promoter regions [-2kb,2kb] around transcription 2.76E-09 CLL_0026
start site containing motif TTTNNANAGCYR. Motif does not
match any known transcription factor
GTGACGY_VSE4F1_Q6 Genes with promoter regions [-2kb,2kb] around transcription 3.79E-05 CLL_0026
start site containing the motif GTGACGY which matches
annotation for E4F1: E4F transcription factor 1
VS$SRF_01 Genes with promoter regions [-2kb,2kb] around transcription 8.88E-05 CLL_0026
start site containing the motif ATGCCCATATATGGWNNT which
matches annotation for SRF: serum response factor (c-fos serum
response element-binding transcription factor)
TATAAA_VSTATA_01 Genes with promoter regions [-2kb,2kb] around transcription 7.91E-04 CLL_0026
start site containing the motif TATAAA which matches
annotation for TAF<br> TATA
V$SRF_Q5_01 Genes with promoter regions [-2kb,2kb] around transcription 1.09E-03 CLL_0026
start site containing the motif CCAWATAWGGMNMNG which
matches annotation for SRF: serum response factor (c-fos serum
response element-binding transcription factor)
CGTSACG_VSPAX3_B Genes with promoter regions [-2kb,2kb] around transcription 3.85E-03 CLL_0026
start site containing the motif CGTSACG which matches
annotation for PAX3: paired box gene 3 (Waardenburg
syndrome 1)
TGANTCA_VSAP1_C Genes with promoter regions [-2kb,2kb] around transcription 7.82E-03 CLL_0026
start site containing the motif TGANTCA which matches
annotation for JUN: jun oncogene
VSSRF_C Genes with promoter regions [-2kb,2kb] around transcription 1.16E-02 CLL_0026
start site containing the motif DCCWTATATGGNCWN which
matches annotation for SRF: serum response factor (c-fos serum
response element-binding transcription factor)
VSSRF_Q4 Genes with promoter regions [-2kb,2kb] around transcription 1.16E-02 CLL_0026
start site containing the motif SCCAWATAWGGMNMNNNN
which matches annotation for SRF: serum response factor (c-fos
serum response element-binding transcription factor)
PID_P38_GAMMA_DELTA_PATH Signaling mediated by p38-gamma and p38-delta 7.34E-03 MCL_0020
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WAY

CAGGTG_V$E12_Q6

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif CAGGTG which matches
annotation for TCF3: transcription factor 3 (E2A immunoglobulin
enhancer binding factors E12/E47)

5.34E-06

MCL_0020

CTTTGT_VSLEF1_Q2

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif CTTTGT which matches
annotation for LEF1: lymphoid enhancer-binding factor 1

1.52E-04

MCL_0020

TGGAAA_VSNFAT_Q4_01

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif TGGAAA which matches
annotation for NFAT<br> NFATC

8.18E-04

MCL_0020

CTTTGA_VSLEF1_Q2

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif CTTTGA which matches
annotation for LEF1: lymphoid enhancer-binding factor 1

2.09E-03

MCL_0020

GGGAGGRR_VSMAZ_Q6

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif GGGAGGRR which matches
annotation for MAZ: MYC-associated zinc finger protein (purine-
binding transcription factor)

5.71E-03

MCL_0020

GCANCTGNY_V$SMYOD_Q6

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif GCANCTGNY which matches
annotation for MYOD1: myogenic differentiation 1

5.71E-03

MCL_0020

TGANTCA_V$AP1_C

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif TGANTCA which matches
annotation for JUN: jun oncogene

7.14E-03

MCL_0020

VSHNF3B_01

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif KGNANTRTTTRYTTW which
matches annotation for FOXA2: forkhead box A2

7.14E-03

MCL_0020

VSHNF6_Q6

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif HWAAATCAATAW which matches
annotation for ONECUT1: one cut domain, family member 1

8.67E-03

MCL_0020

VSHNF1_01

Genes with promoter regions [-2kb,2kb] around transcription
start site containing the motif GGTTAATNWTTAMCN which
matches annotation for TCF1: transcription factor 1, hepatic; LF-
B1, hepatic nuclear factor (HNF1), albumin proximal factor

9.71E-03

MCL_0020

We next analyzed samples from the two CLL patients. As stated previously,

when we used the cleaved PARP assay results, we observed that CLL0021 was one

of the most resistant to ibrutinib treatment, was resistant to ABT-199 treatment,

and was among the least responsive to the combination. CLL0026, too, was

extremely resistant to ibrutinib treatment alone, but was somewhat responsive to

ABT-199 treatment and to the combination treatment.

These responses are also evident in the gene expression analysis of the

patient samples’ responses to the single and combination treatments. Despite the

significant response of CLL0O021 to combination ABT-199 and ibrutinib treatment,

no significant transcriptional responses to the combination were observed. The

genes affected by treatment were extremely limited as well; only 18 genes and 3
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genes, respectively, were affected by ABT-199 and ibrutinib treatment. In contrast,
CLLO026 demonstrated a significant transcriptional response to the combination
treatment. Indeed this was the only gene list for the CLL patient samples that
allowed for a pathway and transcription factor analysis. The vast majority of the
pathways implicated by this combination response are associated with immune
system responses, including interleukin signaling and T cell signaling. However, p53
signaling, HIV induced apoptosis, caspase mediated apoptosis, T cell apoptosis, and
the granzyme A mediated apoptosis pathway are all present in the list of pathways
induced in CLL0026 by the combination treatment. The vast majority of these
apoptosis associated pathways appear to contain CDKN1A, granzyme A, and caspase
8. All three of these genes are upregulated by a log2 fold change of 1.5 or better.
These findings suggest that the upregulation of these proteins in response to the
combination treatment is what drives the apoptotic response we observe in

CLLOO26.

Given the apoptotic responses for these patient samples, the results of the
gene expression analysis are expected. MCL0020 shows the strongest apoptotic
response to the combination in the cleaved PARP assay, and shows robust
differential gene expression. The CLL patient samples demonstrated resistance to
treatment given the lower levels of cleaved PARP, and the weaker differential gene
expression corroborates this. The pathway enrichment that we observe for the
differential gene expression shows there are responses observed in both the patient
samples and cell lines, which indicates the efficacy of the combination and its

mechanism of action is consistent between cell lines and patient samples.
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4.4 DISCUSSION

4.4.1 Distal combinations induce unique patterns of response in individual
cell lines and induce emergent responses
In our second transcriptional study of melanoma, we examined the

combination of sorafenib and diclofenac. As we saw with the lines treated with
PLX4720 and lapatinib or masitinib, each of the lines we assay exhibited unique
transcriptional responses to the combination. However, we see very few
potentiative responses, but rather the combination induces gene expression
changes that do not appear in response to either drug alone. These emergent
responses might be dependent on the very distal nature of the pathway targets of
sorafenib and diclofenac. Like PLX4720, sorafenib targets the MAPK pathway by
inhibiting multiple kinases associated with that pathway, and as mentioned early,
we determined via compound substitution that diclofenac appears to be targeting
Cox1 and Cox2. Unlike the interplay between the MAPK pathway and the ErbB
signaling pathway, the interactions between these two pathways are not well
studied. As a result, it is unclear as to the mechanism by which the combination
induces these emergent responses to cause apoptosis. The combination of sorafenib
and diclofenac is also effective across multiple melanoma drivers. It is well
documented that PLX4720 is effective only in BRAFV600E melanomas (Halaban et al,,
2010; Poulikakos et al,, 2010, 2011; Sgndergaard et al.,, 2010), and that it can
activate melanomas lacking this genetic lesion. We observed this ourselves in
multiple assays, where we see activation of the MAPK pathway in response to

PLX4720 treatment for melanomas with BRAFWT, This makes sorafenib and
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diclofenac a very attractive combination for adaptation in the clinic, as it does not

appear to be dependent on the genomic status of the melanoma.

Our results of the MCL screen strongly argue for the apparent superior
effects of combinations that target distal rather than proximal targets in MCL. In our
MCL panel, distal combinations vastly outperformed proximal combinations in
terms of the Bliss difference. We observed that the lines demonstrated greater
synergy to combinations that targeted distal pathways rather than proximal
pathways; the combination of ibrutinib and ABT-199 vastly outperforming any of
the combinations that targeted downstream targets of the BCR signaling pathway. In
melanomas, we observed that the distal combination of sorafenib and diclofenac
demonstrated synergy in multiple types of melanoma. However, it is unclear as to
whether we have assayed enough lines to fully evaluate the efficacy of distal and
proximal drug combinations. In our screens, we tend to have more proximal

combinations than distal.

In our melanoma and B-Cell malignancy studies in this chapter, we do not
observe the robust adaptive response to primary drug therapy we observed in
BRAFV600E melanomas treated with PLX4720. This is an indication that neither
sorafenib treatment in melanoma nor ibrutinib treatment in B-Cell malignancies
leverage pathway reactivation in response to treatment. Given the nature of the
distal nature of the more successful secondary drugs in the MCL screen, there is a
strong argument that resistance to ibrutinib therapy utilizes pathway bypass rather

than pathway reactivation.
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In a recent paper dealing with treatment of lines with combination therapy
and the interactions between single and combination treatments (Cappuccio et al.,
2015), the authors postulate that there are a limited number of patterns of response
to single and combination treatments, and argue for the idea of positive synergy,
and emergent positive synergy, whose definitions match our interpretations of
potentiative and emergent responses, respectively. This is evidence that we are not
the only group observing these responses. However, we are the first to link these

types of responses to the nature of the targets of the drugs.
4.5 METHODS
4.5.1 Cell culture and cytotoxicity data generation

4.5.1.1 Melanoma cell culture
SKMELZ2, SKMEL24, SKMELZ28 cells (American Type Culture Collection),

A375,HT144, VMM5A, VMM39, VMM17, VMM18, VMM12, VMM15, DM13, DM6
DM122, DM331 (kind gift from Dr. Craig Slingluff, University of Virginia,
Charlottesville, VA), and SLM2 (kind gift from Dr. Angela Zarling, University of
Virginia) were propagated in RPMI-1640 (Invitrogen) supplemented with 5% or
10% FBS (Gemini Bio-Products). All melanoma cultures were maintained in a
humidified chamber at 37°C with 5% CO-. Inhibitors were obtained from the
following sources: Lapatinib (LC Laboratories), 5-Aza-2'-deoxycytidine (decitabine)

(Sigma). PLX4720 was a gift from Plexxikon.

4.5.1.2 MCL cell culture
JVM2, Z138, Jeko-1 and Mino cells were obtained from ATCC. JVM2 cells were

cultured in RPMI 1640 (Invitrogen, Carlsbad, CA, USA) with 10 mM HEPES
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(Invitrogen), 1 mM sodium pyruvate (Invitrogen), and 10% FBS (Gemini,
Sacramento, CA, USA). Z138 cells were cultured in Iscove’s medium (Invitrogen)
with 10% horse serum. Jeko-1 and Mino cells were cultured in RPMI 1640
(Invitrogen) with 15% FBS (Invitrogen). All small molecule inhibitors for the initial
screen were purchased from Selleck (Houston, TX, USA), with the exceptions of
ABT199 (Active Biochemicals, Hong Kong, China), PD325901 (Pfizer, La Jolla, CA,
USA), and SC-514 (EMD Biosciences). The cleaved PARP-FITC antibody and Annexin
V / PI staining kit used for flow cytometry was from BD Biosciences (San Jose, CA,

USA). MTS proliferation kit was purchased from Promega (Madison, WI, USA).

4.5.1.3 Patient sample generation
Specimens of peripheral blood or bone marrow aspirates were obtained from

patients with MCL or CLL after obtaining informed consent in heparinized tubes.
This project was approved by the Institutional Review Board at The University of
Virginia. Peripheral blood mononucleated cells were isolated by the Biorepository
and Tissue Research Facility. Cells were cultured in the following media: RPMI (Life
Technology) with 10% fetal calf serum (Hyclone), 100mM HEPES (Life Technology),
Non-essential amino acids (Life Technology), IL2 (Peprotech) and CpG (Invivogen).

The tumor cells were immediately treated in vitro with the specific drugs.

4.5.1.4 Cytotoxicity assays
Four hours after being plated in 96-well plates, cells were treated with

inhibitors or vehicle control in phenol red-free RPMI-1640 (Invitrogen) without
FBS and incubated for 3 days at 37°C. alamarBlue (Invitrogen) was added to wells

and incubated for 4 hours at 37°C. Fluorescence was measured at 560 nm
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excitation/590 nm emission on a Synergy 2 plate reader (BioTek Instruments).

Mean results and SE were calculated for triplicate samples.

4.5.1.5 Flow Cytometric analyses:
Cleaved PARP: Cells were plated at a density of 1x10° cells/well (JVM2) and

8x10°5 cells/well (Z138) in 6 well plates. Cells were treated for 72 hours as described
in the text, and then stained as previously described using cleaved PARP FITC
antibody. Annexin V/PI: 1x10° pretreated cells were washed with cold phosphate-
buffered saline (PBS) and stained with an Annexin VFITC and propidium iodide in
accordance with the manufacture’s procedure (BD PharMingen, San Diego, CA, USA).
Cells were assayed using a FACScantoll flow cytometer system (BD Biosciences)

interfaced to FACS Diva software (v 6.0), and analyzed with Flow Jo (v7.2.1).

4.5.2 Generation of transcriptome, proteome, DNA methylome and exome
data

4.5.2.1 Gene array
Cells were plated and incubated overnight before being treated, in duplicate,

with inhibitors or vehicle control in phenol red-free RPMI-1640 without FBS for 8
hours at 37°C. Cells were placed on ice and rinsed with cold 1x PBS. Cells were
collected and RNA was isolated using the Qiashredder (Qiagen) and RNeasy Mini Kit
(Qiagen). RNA was quantified on the NanoDrop 2000 spectrophotometer (Thermo
Scientific) and RNA quality was inspected on a 1% agarose gel. Biotin labeled RNA

was hybridized to [llumina 3'IVT human HT-12 BeadChip arrays.

4.5.2.2 Reverse Phase Protein Array
Cells were plated in p60 dishes and incubated overnight to allow the cells to

adhere before being treated with inhibitors or vehicle control in phenol red-free
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RPMI Medium 1640 without fetal bovine serum for 1, 8, or 24 hours. Cells were
washed and lysed in 1:1 2x Sample Buffer:Tissue Extraction Reagent (T-PER) (Life
Technologies). Following lysis the samples were sonicated and centrifuged to clear.
Samples were diluted to requested concentration and sent to the lab of Emanuel

(Chip) Petricoin at George Mason University for Reverse Phase Array Analysis.

4.5.3 Statistical Analysis of Functional Genomics
[llumina microarray data was variance stabilized transformed (Federici et al.,

2013; Improta et al., 2011) using the lumi Bioconductor package in R (Du et al,,
2008). Significantly varying genes and cell lines were clustered using the R package
pvclust (Suzuki and Shimodaira, 2006) with the Pearson correlation distance
measure and average linkage. We identified genes whose expression was
significantly altered for each cell lines in response to treatment using limma to
perform moderated t-tests and applying a 1% FDR cutoff. [llumina DNA methylation
array data underwent normalization using SWAN and was logit transformed using
minfi as described here (Aryee et al.,, 2014). A moderated t-test was performed as
above to assay for differentially methylated loci in response to treatment.
Normalized log2 reverse phase protein array (RPPA) data was generated using
methods described in (Improta et al,, 2011). We performed a moderated t-test
analysis described above (for gene expression data) and found a number of

differentially phosphorylated sites at a FDR of 1%.

4.5.3.1 Pathway Enrichment Analysis
Gene sets found to be significant underwent pathway enrichment analysis via

Pathway Express and Gene Set Enrichment Analysis (GSEA) using MSigDB datasets.
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Significant gene sets and pathways were identified as having a FDR enrichment

value of 0.05 or less for both tools.

4.6 ACKNOWLEDGMENTS

Sections of this chapter were adapted from Combinatorial drug screening
and molecular profiling reveal diverse mechanisms of intrinsic and adaptive
resistance to BRAF inhibition in V60OE BRAF mutant melanomas (Roller et al.,
2016), Synthetic lethal screening with small-molecule inhibitors provides a pathway
to rational combination therapies for melanoma (Roller et al., 2012), and
Combinatorial drug screening identifies synergistic co-targeting of Bruton's tyrosine

kinase and the proteasome in mantle cell lymphoma (Axelrod et al., 2014a).
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5 Future Directions

5.1 Combination therapy can overcome resistance to targeted monotherapy
in melanoma, chronic lymphocytic leukemia, and mantle cell lymphoma

Our work has reiterated a known flaw in the use of targeted monotherapies:
rapid emergence of resistance or its presence even at the outset. In BRAFV600E
melanoma, we observed that inhibiting mutant BRaf with PLX4720 induces a strong
adaptive response via the ErbB signaling pathway, leading to the activation of the
PI3K pathway and the reactivation of the MAPK pathway. Across multiple drug
screens using a synthetic lethal paradigm, we have identified a number of
combinations that overcome resistance, both acquired and intrinsic, in a synergistic
manner. Again, in our screen of BRAFV600E melanoma, we determined that targeting
the ErbB signaling pathway blocked the adaptive response, allowing the lines to

respond to the therapy.

For a subset of these combinations, we have identified potential mechanisms
of resistance to the monotherapies, as well as potential mechanisms of synergistic
response to the combinations. We have developed pipelines for analysis, in parallel,
of gene expression, DNA methylation, and protein levels and posttranslational
modifications, and identified methods of synthesizing the results, across the

multiple datasets, into a coherent result.

In the case of melanoma (Chapter 2), we confirmed that PLX4720 treatment
induces compensatory signaling that can lead to further cell growth. Other groups

have identified this adaptive signaling response (Abel et al., 2013; Lito et al., 2012,
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2013), but we observe it at a systems level. We were able to determine that this
response was likely mediated by a transcription factor network that contains MAPK
pathway phosphorylation sites, indicating that the inhibition of the pathway induces
an adaptive growth response dependent on downstream targets of the pathway
(Section 2.3.5). Among the pathways that this group of transcription factors targets
is the ErbB signaling pathway, which explains why inhibiting RTKs in combination
with Raf inhibition works synergistically in melanomas and gives insight as to
mechanisms of other Raf driven cancers that are not responsive to Raf inhibitor
monotherapy: Raf inhibition induces RTK activation; RTK inhibition prevents the

adaptive response (Section 2.3.5; Section 2.3.6).

In our studies of B-cell malignancies (Chapter 4), specifically mantle cell
lymphoma and chronic lymphocytic leukemia, we again observe that combinations
are an effective means for overcoming intrinsic resistance. Additionally, we were
able to demonstrate the effectiveness of the combinations not only in cell lines, but
in patient samples as well (Section 4.3.8). Both MCL and CLL can be driven by the
overactivation of the BCR pathway, leading to growth and pro survival pathways.
Ibrutinib, an inhibitor of BTK, serves to limit the ability of MCL and CLL to drive
those pathways. However, in our cell lines and patient samples we observe varying
levels of resistance to ibrutinib monotherapy. When we performed our synthetic
lethal screen of drug combinations in MCL lines, we observed that combining
ibrutinib with ABT-199 provides by far the most effective result and that the
effectiveness of the combinations as measured by synergy score is somewhat

dependent on the distance between the targets of the drugs. Some combinations of
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drugs that repeatedly targeted the BCR pathway performed worse than
combinations including drugs that targeted proteins tangentially connected to the
BCR pathway, such as was the case of ibrutinib combined with ABT-199 (Section

43.2).

5.2 The adaptive response to primary drugs reveals potential targets for
secondary drug treatment

In our BRAFV600E melanoma screen, we identified three secondary drugs that
resulted in synergistic effects when combined with PLX4720: 0SU-03012, an
inhibitor of PDK1, but has been observed to have other targets (Booth et al., 2012);
lapatinib, an inhibitor of ErbB family members; and masitinib, an inhibitor of
PDGFR, VEGFR and KIT (Section 3.3.1). The targets of these three drugs are all
upstream activators or known members of the PI3K signaling pathway. Like the
MAPK pathway, the PI3K pathway is responsible for driving growth and survival

(Carnero et al,, 2008; McCubrey et al., 2006).

Treating our panel of BRAFV600E melanomas with PLX4720 revealed that
ErbB signaling was activated in lines resistant to the treatment (Section 2.3.5); our
combination screen demonstrated the effectiveness of targeting ErbB signaling as a
means to synergistically kill cancer cell lines that are resistant to monotherapy
(Section 3.3.1). When we looked for other pathways that are activated by Raf
inhibition treatment, we observed that noncanonical MAPK signaling, noncanonical
WNT signaling, and PI3K signaling pathways are induced (Section 2.3.5). Given that

we know blocking the ErbB adaptive response yields synergy, it would be
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interesting to determine whether inhibitors that target these alternative adaptive
responses would also elicit synergistic responses. In our BRAFV600E melanoma
screen (Section 3.3.1), we did observe that inhibition of the PI3K signaling pathway

was effective at inducing synergy in a subset of the cell lines.

Clinical trials have been performed using inhibitors that target BRaf and MEK
in combination to help limit the reactivation of the MAPK pathway (Flaherty et al.,
2012b), and this combination is now the standard of care. Our results suggest that a
more effective strategy would be to inhibit targets that engage parallel growth
pathways e.g. RTKs (Section 3.3.1). Further combination studies could be done to
determine whether this hypothesis holds true under clinical scrutiny. Additionally,
the combination of BRaf and MEK inhibition appears to be effective only in patients
who have not yet been exposed to targeted BRaf inhibition alone (Flaherty et al,,
2012b). This would seem to be further evidence that it may be more effective to

target parallel pathways that are a part of the adaptive response.

Regarding gene expression analysis, we have not yet investigated the
adaptive responses to sorafenib in our pan melanoma study (Section 4.3.1), or
ibrutinib in our B-cell malignancy study (Section 4.3.2). However, given the
combinations that we have identified in the various screens, we have the capability
to focus our analysis on the pathways targeted by the secondary drug. In our study
of sorafenib and diclofenac, our protein substitution studies revealed that sorafenib
is acting at least in part on MAP Kinase signaling, and diclofenac is inhibiting
cyclooxygenase signaling (Section 4.3.1). Cyclooxygenases are proteins that have

been widely implicated in many cancers, but their exact role is still under
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investigation. Cyclooxygenases may function significantly in the inhibition of
apoptosis and immune surveillance, the promotion of angiogenesis, the elevation of
cancer invasiveness and metastasis, and the modulation of cell differentiation
(Roller et al., 2012). Lack of detailed knowledge of cyclooxygenase functions in
cancer makes it unclear as to what adaptive response we should be looking for in
the case of sorafenib treatment. However, we can use knowledge of the pathways
induced by Raf inhibition from our studies in PLX4720 to help connect the specific
mechanisms or downstream effects of cyclooxygenase that are being affected by

diclofenac treatment.

As previously mentioned, the most effective combination for the MCL screen
was ABT-199 combined with ibrutinib (Section 4.3.2). It has been observed that the
BCR signaling pathway does interact tangentially with the apoptosis pathway (Saba
and Wiestner, 2014). ABT-199 targets BCL2, a prominent member of the apoptotic
program, and manipulation of BCL2 activity has been shown to strongly influence
the tendency of a cell to either evade or enter apoptosis. Again, we have not yet
investigated the mechanism or mechanisms by which an adaptive response to
ibrutinib could be ablated by ABT-199 treatment, but given the role of BCL2 in

apoptosis, it is possible that we are reinforcing apoptotic signaling.

Given our work in BRAFV600E melanoma, it becomes apparent that more
exploration of adaptive responses is required to accurately enumerate mechanisms
of resistance to monotherapy and synergistic response to combinations. Future
work will require the isolation of these adaptive responses by functional genomic

assays and evaluation of these hypotheses by biochemical follow ups, such as
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western blots and RT-PCR. Identifying effective combinations will alone provide a

wealth of results for clinicians to act upon.

5.3 Integrative analysis revealed significant insights into the adaptive
response in melanoma

Initial analysis of the gene expression response to PLX4720 in BRAFV600E
melanoma was unable to identify differential responses to treatment based on
established phenotypes. Lines demonstrating synergy did not appear to respond
any differently to the treatment than lines that did not demonstrate synergy. Nor
did stratifying the cell lines based upon the basal transcriptome (Section 2.3.2) or
the basal methylome (Section 3.3.4) reveal significant insights. While we were able
to determine that a subset of our lines contained higher expression of MITF, a
master regulator for melanocyte lineage (Garraway et al., 2005), the dynamic range
of this variation was much lower than what other groups had reported
(Konieczkowski et al., 2014; Miiller et al., 2014), and thus was insufficient to be a
useful predictor in our studies. Attempting to segregate the lines based on the
zygosity status of the V60OE allele also did not serve as a means to predict which

lines would respond in a synergistic manner to the combination (Section 2.3.4).

Reclassifying the lines using unsupervised hierarchical clustering of the lines’
responses to single and combination treatments allowed five groups of cell lines to
be classified according to cytotoxic responses. Using these five cytotoxicity groups,

we were able to identify a number of differential responses in the transcriptome and
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proteome, and to explain the stratifications of the lines at a basal state in the

transcriptome and exome (Section 2.3.5).

[t cannot be stressed enough that appropriate classification of the lines was
integral to effectively evaluating and arriving at hypotheses for validation. Our
differential analyses at the cell line level revealed very little information about the
adaptive response. It was only by combining the lines from the point of view of their
cytotoxic responses that we were able to observe the compensatory pathway of
ErbB signaling, and identify the additional adaptive responses in WNT, PI3K, and the

noncanonical MAPK signaling pathways (Section 2.3.5).

Integrative analysis was also essential to validating our hypothesis regarding
the mechanism of synergy for the combination of PLX4720 and lapatinib. Fold
changes induced by combination treatment in each line affected completely
different sets of genes. Very few genes were induced in multiple lines. Taking each
set of differentially expressed genes through a pathway enrichment analysis
revealed that the lines responding synergistically were all leveraging ErbB signaling,
PI3K signaling, and p53 signaling (Section 3.3.2). These pathways are a strong
indication that the combination therapy prevented the adaptive response, as

evidenced by their enrichments for all of the lines that demonstrate synergy.

We also observed the adaptive response and its inhibition in our RPPA study
on SKMEL24 and VMMS5A. Here we observed a knockdown of phospho AKT at 1
hour after lapatinib treatment, which was maintained at 8 hours. By 24 hours, levels

of AKT phosphorylation had returned to approximately basal levels. Under
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treatment with the combination, however, the initial knockdown persisted for the
duration of the study (Section 3.3.3). These observations show that adaptive

responses can be effectively overcome by combinatorial therapies.

Examining the mechanisms of DM331 resistance and synergy also benefited
from integrative analysis. DM331 and A375 share nearly identical genomic (Section
2.3.4), transcriptomic (Section 2.3.2), and methylomic states (Section 3.3.5). Their
responses to PLX4720 treatment show no similarities. This is unfortunate, as it
demonstrates that response to treatment may not be identifiable in the basal state.
We observe a similar result when we examine the PCA plot of the BRAFV600E
melanomas (Section 2.3.2). There we observed that although the CGC and CGD
groups have very little separation along the first principal component they exhibit

very different responses to the combination.

Examining the methylome in DM331 after treatment with lapatinib alone,
PLX4720 alone, or the combination, revealed no significant changes in methylation
levels at any loci (Section 3.3.5). However, we observed that globally knocking down
methylation induced sensitivity to lapatinib in DM331, but had no effect on A375.
Pursuing the effects of this treatment with decitabine on the transcriptome revealed
that DM331 induces a similar transcriptional response to the one we observe in CGC
in response to PLX4720 treatment. This is a confusing result, as it indicates that
either the adaptive response is dependent on changes in DNA methylation or that
lines have a limited ability to adapt to drug treatments. If the adaptive response
were dependent on DNA methylation, we might have expected changes in

methylation when treated with the drugs alone, but such changes were not
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observed. If cells have a limited ability to adapt, then we would expect lines resistant
to BRAF inhibition to respond to higher doses of BRAF inhibition, or to BRAF and

MEK inhibition, but again this appears not to be the case.

5.4 Emergent and potentiative combination responses appear dependent on
proximity of drug targets

In our exploration of responses to combinations across melanoma, CLL and
MCL, we observed a rather interesting phenomenon in the gene expression data. In
BRAFV600E melanoma, lines exposed to the combination of PLX4720 and lapatinib
showed a pattern of gene expression responses to the combination that was an
amplification or potentiation of the response to PLX4720 treatment alone; lapatinib
treatment alone elicited very minimal effects. Examination of the pathways targeted
by this combination revealed that ErbB family members, the targets of lapatinib, can
lead to the activation of BRAF, the target of PLX4720. We suspect that, due to the
proximal nature of these two targets, inhibiting both will lead to an amplified
inhibition of the downstream targets of both these pathways, which could explain
the apparent amplification in responses at the gene expression level. That
amplification could also be entirely dependent on the mechanism of action.
PLX4720 treatment induces ErbB signaling, and blocking that adaptive signaling
increases the inhibitory response (Section 3.3.2). We acknowledge that data on drug
combination responses are more limited than data on single drug treatments, so
evaluating the mechanisms of a proximal potentiating response remains

preliminary.
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In the other combinations we examined (sorafenib and diclofenac in
multiple types of melanomas, and Ibrutinib and ABT-199 in MCL), we observed
emergent responses: substantial responses to the combination were observed
where no responses had been observed after the single drug treatments. We were
able to determine, in the case of the sorafenib and diclofenac combination
treatment, that we were targeting MAP Kinase pathway and cyclooxygenase
signaling, respectively; it has been observed that cyclooxygenases can induce Raf
signaling via a PGE1-dependent signaling cascade (Section 4.3.1). In the case of the
MCL study, ibrutinib targets BTK, and ABT-199 targets BCL-2. These targets have
very distal associations so far as we are aware. However, again we observed an
emergent response to the combination: genes that showed no response to either

drug now having strong responses to the blockade in combination (Section 4.3.4).

5.5 Combinations composed of distal drug pairs may perform better than
combinations composed of proximal drug pairs

In addition to observing variations in response due to proximal and distal
drug pairs, we observed in MCL that distal drug pairs performed better than
proximal drug pairs. Likewise, in melanoma, a distal drug pair was able to
demonstrate synergy regardless of driver mutation status. These two examples
would seem to argue that distal drug pairs can be more effective than proximal drug

pairs.

In the case of MCL, the primary driver is the overactivation of the BCR

pathway (Saba and Wiestner, 2014; Swerdlow and Williams, 2002). Feedback
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inhibition of the BCR pathway has not been observed as part of the adaptive
response in MCL (Axelrod et al., 2014a), in contrast to observations of melanoma. In
melanoma, it is well documented that feedback activation essentially turns the
pathway back on after it has been inhibited. This reactivation is a strong component

of the melanoma’s robust adaptive response to BRAF inhibition.

As previously discussed, distal drug combinations tend to induce emergent
responses; proximal drug combinations tend to induce potentiative drug responses.
Generally, it is currently unclear as to how these patterns relate to cellular
phenotypes. Again, given the results of our MCL and melanoma screens, we suggest
that emergent responses are more desirable. It is our hypothesis that emergent
responses do not depend strongly on adaptive responses or feedback loops for their
effectiveness, making it more difficult for the cells to overcome the combination.
Intriguingly, the emergent combinations for MCL and melanoma both converged on
either downregulating survival genes/pathways, or upregulating apoptosis
genes/pathways. Targeting distal pathways that cancer cells depend on for growth
and survival may result in acute cellular stress and apoptosis. Much more work

must be done to test this hypothesis.

Clinical trials of combined BRAF and MEK inhibition in melanoma indicate
that the combination is not effective in patients who are already resistant to BRAF
monotherapy (Flaherty et al., 2012b). We have not yet examined transcriptional
profiles of this combination, but MEK is downstream of BRAF, and we think the

responses here would mirror our work in MCL with ibrutinib combined with
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idelalisib, another combination that targets two nodes in the same pathway

(Axelrod et al,, 2014a).

5.6 Transcription factor enrichment analysis reveals a strong role for ETS
family members in the adaptive response

Among our analyses we saw the emergence of a transcription factor network
in response to PLX4720 treatment in CGC (Section 2.3.5), and in response to
decitabine treatment in DM331 (Section 3.3.7). In both of these cases we saw the
induction of the ErbB signaling pathway, and a sensitization to lapatinib treatment.
[t is unclear why a BRaf inhibitor would activate a battery of responses similar to
those activated by global DNA methylation knockdown. It is even more
confounding, given that treatment with PLX4720, lapatinib, or the combination, did
not induce any noticeable methylation changes in DM331. Ideally, we would profile
these potential transcription factor binding sites with ChIP Seq experiments to
determine the true occupancy of these factors, both at a basal level, and in response
to single and combination treatment. It should be noted that the tool we use for
transcription factor enrichment analysis, MSigDB (Subramanian et al., 2005), may
be biased towards specific motifs, which could be driving our observation that these

transcription factors are enriched after two different treatments in melanoma.

The expectation is that in BRaf mutant melanomas there is an extremely high
basal level of MAPK activity due to the mutant BRaf kinase. This persistent activity
floods the cells with negative feedback regulators of the pathway, including factors

that limit the activity of the pathway’s downstream transcription factors. With
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inhibition of mutant BRaf, these negative feedback mechanisms become attenuated,
allowing for the release of inhibition. The transcription factors are now free to act,
and induce the activation of ErbB and other alternative growth pathways, such as
PI3K. As a result of this induction, lapatinib is now effective at shutting down this

parallel pathway, leading to the observed synergistic cytotoxicity.

Being able to effectively and accurately identify the transcription factors
mediating the adaptive response would allow for better combination therapies. At
present, focus on transcription factors as drug targets is extremely dubious. First of
all, because they lack enzyme activity and function by protein-protein and protein-
DNA binding, they until recently have been considered “undruggable.” In addition,
transcription factors are ubiquitous across many cell types; inhibiting them can lead
to excessive and insurmountable side effects. If it were possible to identify the
transcription factors that mediate a particular adaptive response, it might become
possible to target the negative regulator of the factor, such as the kinase or
phosphatase responsible for releasing the transcription factor from inhibition.

These would be much more appealing targets for inhibition.

5.7 Observed adaptive responses to secondary drugs are blocked due to
combination treatment

In our RPPA analysis of PLX4720, lapatinib, and combination treatment of
VMM5A and SKMEL24, we observe a case of a secondary drug inducing an adaptive
response (Section 3.3.3). We determined that phospho AKT compensates its down

regulation by lapatinib treatment, but under combination treatment the lines no
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longer demonstrate the adaptive response. Throughout this study, our approach to
adaptive responses followed from the hypothesis that the primary drug induces a
response and the secondary drug targets this response. The RPPA study shows that

this is a simplification of the true complexities of the situation.

In our MCL screen, we see ABT-199, as a secondary drug, having significant
effects on responses to treatment (Section 4.3.2). Both ibrutinib and ABT-199 are
extremely effective monotherapies, but for the purposes of this study, we focused on

ibrutinib. It is clear that ABT-199 warrants further consideration as a primary drug.

In melanoma, we ran across repeated examples of RTK inhibitors performing
synergistically with MAPK pathway inhibition (3.3.1). It is clear that RTK inhibition
is a very effective means of cancer therapy, as is evidenced by its widespread use
against other cancers. Recent studies show that pan RTK inhibition is substantially

more effective than combining up to six targeted therapies (Langdon et al,, 2015).

Taken together, these observations indicate that many secondary drugs
warrant further exploration as primary drugs. For all of our studies, we chose
specific primary drugs, and combined them with a broad panel of secondary drugs.
It would be beneficial to design screens where all drugs are treated as members of
combination without labeling them as secondary or primary, especially as the

library of inhibitors becomes broader.
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5.8 Leveraging phenocopying observed in previous screens could result in
better screen designs

In our melanoma screen, we had a substantial number of secondary drugs
that targeted the same pathway at different levels (Section 3.3.1). This strategy
might no longer be ideal. In our melanoma studies, we considered a high number of
synergistic combinations that contained secondary drugs targeting the same
pathways. If the goal is to identify novel combinations for treatment, future screens

ought to cover as many pathways as possible.

We observed lines in which a particular pathway inhibition was not effective,
but another one was. This would seem to indicate that there is an optimum level of
redundancy for discovering new combinations. It remains unclear whether our
study was too redundant, and/or whether we missed promising combinations
because we did not have an appropriate inhibitor for a specific cell line (Section

3.3.1).

A better screen design might involve a multilevel screening strategy. A high
level screen would seek to use promiscuous drugs that target pathways very
broadly in combination. Any combinations that demonstrate significant synergy
could then be further investigated using more targeted compounds. Effectively, this
would allow for high-throughput screening of pathway inhibition, followed by

screening of specific mechanisms of synergy.
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5.9 Computational integration of data could reveal additional specific
mechanisms of resistance and synergy

PARADIGM is a computational tool designed to integrate functional genomics
data and estimate the activities of individual pathways (Vaske et al., 2010).
Throughout our studies, we have integrated datasets in order to elucidate the
biology underlying the responses we are observing. However, we are limited in our
ability to truly combine the interactions of the different datasets. PARADIGM is one

of many tools that currently exist to integrate and extrapolate data.

The adaptive response to PLX4720 treatment has been widely reported and
confirmed in the melanoma literature (Kugel et al., 2014). The question is, what
other pathways and targets remain unknown, and whether computational
integration would reveal such novel pathways of interest and new targets. Screening
is a very practical approach to understanding mechanisms of synergy and
resistance. Limiting one's screen to FDA approved compounds allows for quick
iteration through combinations and advancement to clinical trials. However, in
melanoma we observed, in addition to ErbB pathway activation post PLX4720
treatment, activation of noncanonical Wnt and noncanonical MAPK signaling
(Section 2.3.5). It would be ideal to determine what roles these pathways play in the
adaptive response, and whether targeting them with drugs would be more or less

effective than targeting ErbB signaling.
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5.10 Future analyses

The melanoma and the MCL and CLL screening projects both produced a
substantial amount of data. In the former, we assembled SNP chip data and gene
expression data for a number of lines exposed to sorafenib and diclofenac. Further
exploration of the sorafenib and diclofenac response in melanomas would allow for
better characterization of the adaptive responses. In our first analysis, we limited
our pathway enrichment analyses to a gene ontology enrichment analysis (Section
4.3.1). We were able to see that the combination induces the expression of many
genes associated with apoptosis and cell survival. This result is lacking in

description compared to our other analyses with pathway enrichments.

Additionally, DM331 is among the lines we treated with sorafenib and
diclofenac. Given the unique nature of DM331 and the extent of data we have
available on its responses to various perturbations, it would be interesting to
determine if sorafenib also induces the adaptive response we see under PLX4720

and decitabine treatment.

It is also unclear as to what pathways are induced under sorafenib and
diclofenac treatment. We did not observe a strong adaptive response to diclofenac
treatment, therefore it is uncertain as to what the downstream effects of
cyclooxygenase inhibition are. Lacking this information, it is difficult to determine
its role in the mechanism of synergy (Roller et al., 2012). Work is ongoing to
determine mechanisms by which diclofenac is effective in cancer therapy

(Pantziarka et al., 2016). It is possible that a deeper analysis of sorafenib and
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diclofenac responses might help elucidate the pathways in which cyclooxygenases

play a critical role.

In addition to the sorafenib and diclofenac data, SNP chip data exists for 16
melanoma cell lines. These data would allow us to determine the copy number
variation present in our melanoma samples. It is entirely possible that the effects we
observe in regards to zygosity of the V600E allele in BRAF are more strongly
associated with copy number. There are a number of sensitive heterozygous BRAF
lines whose mechanism of sensitivity is completely unknown. It is possible that they
have the dosage of the mutant allele could be contributing to this sensitivity.
Because the adaptive response is dependent on WT BRAF binding with PLX4720
and another RAF monomer, any conditions that affect the binding event would

modulate the adaptive response.

Another potential mechanism of resistance driven by copy number could be
increases in RTKs. As discussed throughout, RTKs contribute significantly to
resistance and adaptive responses of melanoma. Higher dosages of RTKs can make
cells extremely sensitive to ligand binding. DM331 has extremely high basal levels of
EGFR protein and transcript (Section 2.3.2). It is possible that it has copy number
gains in EGFR. This would account for the robust resistance of the line to PLX4720
treatment, and its apparent lack of response. If the adaptive response is already

turned on, it is not required to be further engaged.

MCL patient sample 20 presents a unique case to study the rise of in vivo

resistance to ibrutinib monotherapy. MCL_0020 responded well to ibrutinib
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treatment initially, but then relapsed and became extremely resistant (Section
4.3.5). Each time the patient came into the clinic, blood samples were taken and
stored. For the case of the ex vivo gene expression study, those cells were obtained
after the patient had been treated with ibrutinib. Examined from this context, it
would be extremely informative to examine the changes in gene expression and

responses to treatments for each of the patient samples available to study.

5.11 Conclusions

In this document, we have demonstrated the efficacy of combination therapy
at overcoming the adaptive response to monotherpy in resistant melanoma, and
MCL and CLL. Treating melanomas with PLX4720 induced the expression of the
ErbB signaling pathway. Treating melanomas with PLX4720 and lapatinib, an
inhibitor of Erbb family members, ablated the response and led to synergistic
cytotoxicity. MCL and CLL are B-cell malignancies with generally poor prognoses.
Ibrutinib initially proved to be a miracle drug, but resistant patients soon came into
clinics. Here, we have identified a number of secondary drugs, notably ABT-199, that
synergistically and swiftly induce apoptosis in MCL cell lines and in MCL and CLL

patient samples.

We demonstrated that integrative analysis of multiple datasets serves to
inform results and interpretations. For example, combining exome data with
methylome data for melanoma revealed that a mutation in DNMT3A was driving the

strong separation in the basal methylation data. Pathway enrichment analysis of
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protein and gene expression data served to validate our hypothesis of compensatory

signaling, and the mechanisms of synergy.
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