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Abstract

Whole slide tissue histopathology images (WSIs) play a crucial role in tissue specimen
assessment and diagnosis of associated diseases. Recent technological progress in image
acquisition systems has led to an increasing accumulation of high-resolution histopathology
images. Nevertheless, employing these images to develop clinical decision support systems
has been hampered by the need for manual examination of WSIs, a subjective, labor-
intensive, time-consuming, and error-prone process. This creates a burgeoning demand
for new analytic approaches to analyze/pre-process such images. Furthermore, a content-
based representation allows the integrated study of histopathology images with other data
modalities enabling holistic and multi-modal analysis of human diseases. Deep learning
approaches have shown promising performance on feature extraction from images. However,
dealing with WSIs introduces new challenges, demanding more efficient approaches to learn
an informative representation of these images. This research aims to employ deep learning
approaches for representation learning of WSIs focusing on Barrett’s Esophagus (BE). In
this setting, three different approaches will be considered: Bag of Visual Words (BoVW),
Neural Image Compression (NIC), and Graph Neural Networks (GNN).

Index terms— Computational pathology, Deep learning, Representation learning, Whole-
slide histopathology images, Bag of visual words, Neural image compression, Graph neural
networks, Barrett’s esophagus
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1 | Introduction

Barrett’s esophagus (BE) is a potentially severe condition that results from damage to the
lining of the squamous esophageal mucosa because of gastroesophageal reflux disease. Its
diagnosis is based on the endoscopic and histologic findings of the columnar epithelium lining
the distal esophagus [2]. To increase sensitivity for dysplasia, guidelines recommend the
Seattle protocol, which involves taking four-quadrant random biopsies at 1–2 cm intervals [3].
However, this protocol does not permit real-time diagnosis or therapy and is labor-intensive,
leading to low adherence [4, 5]. Furthermore, numerous studies have documented inter-
observer variability among pathologists when diagnosing both low-grade [6,7] and high-grade
dysplasia [8], which are the stages through which BE progresses before becoming esophageal
cancer. Because the diagnosis of dysplastic and non-dysplastic BE can improve clinical care
and prevent disease complications, there is a clear need for an accurate diagnostic tool that
translates heterogeneous histopathology images into accurate and precise diagnostics. The
development of such a system in high-dimensional clinical research will support precision
medicine with improved diagnostics, predictions, treatments, and patient clinical outcomes.
The success of these systems relies on how well they extract morphological image features
and characterize the images’ visual content.

Whole slide tissue histopathology images (WSIs) are the gold standard for diagnosing
the presence, type, and progression of several diseases, including the most type of cancer [9]
and also some Gastrointestinal (GI) disorders including BE [10, 11]. WSIs being rich in
information and preserving the underlying tissue structure, provide a comprehensive view
of diseases and their effect on the tissue [9]. The advent of WSI scanners has made possible
the virtualizing and digitalizing of the whole glass slides [12]. This has led to an increased
accumulation of digital histopathology images. Thus, their utilization for clinical decision-
making needs to keep pace with the rise in their digitization rate. However, this has been
hampered by the need for manual examination of WSIs, a subjective, labor-intensive, time-
consuming, and error-prone process [13]. It creates a burgeoning need for developing new
analytic approaches for the automated analysis of histopathology images. The extracted
features from histopathology images can be combined with other data modalities and multi-
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1. Introduction 2

omics data to provide clinicians with more precise diagnostic, prognostic, and therapeutic
determinations.

Our main contribution in this dissertation is proposing models for representation
learning of esophageal WSIs. These deep learning based models encode WSIs using visual
words while capturing the spatial proximity information between local features and finally
provide an image-wise representation accordingly. At the same time, only the reported
diagnoses as image labels have been utilized for training. We provide experimental evidence
that employing visual words rather than patch-level representation vectors might be beneficial
for the classification of WSIs. Furthermore, the interpretability of models is improved
because the proposed models deal with a dictionary containing a finite number of visual
words. These models can be part of a clinical decision support system to assist practitioners
and pathologists in image-level interpretation tasks and diagnosis of different classes of BE.

In this dissertation, three different approaches will be applied for representation
learning of esophageal WSIs: Bag of Visual Words (BoVW), Cluster-Based Neural Image
Compression (CBNIC), and Cluster-Based Graph Convolutional Network (CBGCN). Each
model has two main steps: in the first step, unsupervised deep feature extraction approaches
(e.g., Convolutional Autoencoder (CAE) and Bidirectional Generative Adversarial Network
(BiGAN)) are exploited to extract local tissue-derived image features. The main reason
for applying an unsupervised approach is to avoid expensive and time-consuming image
annotation. Furthermore, employing an unsupervised approach makes it possible to detect
disease-associated image patterns unknown to pathologist annotators, especially in the case
of diseases whose etiology has not yet been well explored. In the second step, local image
features are aggregated to provide an image-level representation. The first step is the same
in all models, but the models introduce different aggregation mechanisms. The effectiveness
of each representation learning approach will be evaluated in a supervised paradigm for the
classification and localization of WSIs.

The remainder of this document is organized as follows: Chapter 2 briefly reviews the
literature on the analysis of WSIs. The dataset was employed in this dissertation, and local
feature quantization approaches are presented in Chapter 3. Chapters 4, 5, and 6 present
the BoVW, CBNIC, and CBGCN for representation learning of WSIs respectively. Finally,
Chapter 7 concludes this dissertation along with outlining future directions.



2 | Literature Review

There are some problems associated with conventional feature engineering approaches. First,
the combinatorial nature of the feature extraction process makes it expensive to hand-craft
features. Furthermore, the development of these features commonly relies on task/domain-
specific expertise, preventing them from adapting to new tasks or domains. Also, human bias
is an inseparable part of hand-crafted features. In recent years, deep learning approaches
have revolutionized the process of feature extraction tasks in the computer vision domain,
among others [14]. However, dealing with WSIs arises new challenges, demanding more
effective approaches to learn the representation of these images.

Some of the challenges regarding the analysis of whole-slide histopathology images
are as follows. First, WSIs are gigapixel images (typically 100, 000× 100, 000 RGB pixels),
and given the current technology, it is infeasible to directly train a CNN model on such
images due to steep computational requirements [9,15,16]. Also, image down-sampling as a
solution to this problem leads to the informative details loss at cell level [16]. Second, in most
cases, only the image-wise ground truth label is given because of the high cost of pixel-wise
annotation on high-resolution images [16]. Third, histopathology images are heterogeneous
and contain a large amount of biologically related spatial variation [9]. Furthermore, the
overall shape of the target regions might differ significantly from one image to another,
which makes their pattern difficult to learn, and hence to locate. Moreover, regions of
interest typically have visual appearances that are pretty similar to the surrounding tissues
and normal regions, making them much more difficult to distinguish from the background.
Fourth, while staining is crucial as it enables visualization of the microscopic structural
features in the biopsy, variation in the H&E staining process across different lab sites can
lead to variations in biopsy image appearance [9, 17, 18]. These variations introduce an
undesirable bias when the slides are used to train machine learning models.

Feature acquisition from high-resolution tissue tiles sampled from WSIs is considered
a potential solution to directly address some of the hurdles mentioned above and provide a
base for better solving other issues. In this approach, the WSI-wise representation is acquired
by combining the local image features extracted from sampled tissue tiles [19,20,21,22,23].

3



2. Literature Review 4

There is a rich body of literature investigating feature representation in the form of three
primary approaches: fully-supervised [24,25,26], weakly supervised [9,11,12,27,28,29], and
unsupervised feature learning [30,31,32,33,34].

Of these, the fully supervised feature learning approach requires a large amount of
accurately annotated data, which can be a labor-intensive, time-consuming, and error-prone
process. These challenges are abundantly clear in the classification and segmentation of
histopathology images, as accurate and complete annotations can be difficult even for expert
pathologists. On the opposite end of the annotation spectrum, unsupervised approaches
aim to learn a discriminative representation of WSIs from annotation-free histopathology
images. These methods extract the salient features from WSIs without requiring any image-
level diagnosis as an image label or region of interest annotated by experts. Finally, weakly
supervised methods have the advantages of both the fully supervised and unsupervised
approaches for feature learning [35]. Weakly supervised techniques exploit coarsely grained
annotated WSIs to simultaneously classify histology images and yield pixel-wise localization
scores, thereby identifying the corresponding regions of interest.

After extracting the patch-wise feature representations, they are aggregated to provide
an image-level representation. In the literature, different aggregation approaches have
been proposed including bag of visual words [31, 36, 37, 38, 39], graph neural networks
[40,41,42,43,44], neural image compression [15,45], attention-based neural networks [46,47],
etc.



3 | Local Features Extraction

3.1 Esophageal Biopsies Dataset

This study utilizes previously published preliminary data to apply deep learning techniques
for detecting BE and dysplasia in Hematoxylin and Eosin (H&E) stained biopsies. All
patients in the study conducted by Shah et al. [48] (years 2014–2016) underwent targeted
biopsy or mucosal resection and Seattle protocol biopsies. To increase the sample size, a
retrospective chart review was conducted to identify and retrieve biopsy slides of patients
who had undergone upper endoscopies for BE surveillance (years 2016–2019). These patients
all underwent high-definition white-light endoscopy (HD-WLE), narrow-band imaging (NBI),
and acetic acid chromoendoscopy followed by targeted biopsies/mucosal resection, and Seattle
protocol biopsies. All biopsy specimens were fixed in formalin. Samples were embedded to
exhibit the full mucosal thickness. The paraffin blocks were sectioned at three microns to
create biopsy slides that were stained with hematoxylin and eosin. All suspected diagnoses
of dysplasia or malignancy required a consensus of two or more pathologists. For patients
included in Shah et al.’s study [48], a blinded expert pathologist also reviewed all biopsy
specimens. Blinded and unblinded pathology results were prospectively recorded.

This study was approved by the Hunter Holmes McGuire Veterans Affairs Medical
Center Institutional Review Board and the University of Virginia Institutional Review Board
for Health Science Research (IRB-HSR #21328).

Tissue images were digitized at 40× magnification via scanning of biopsy slides using
a Hamamatsu NanoZoomer S360 Digital slide scanner C13220 [49]. A total of 387 whole-slide
images from 133 unique patients were collected. WSIs increased to 650 after pre-processing
and cropping; 115 whole-slide images from 13 patients were selected to train deep models to
extract patch-level image features in all three feature learning approaches, and the rest of the
dataset was used for model evaluation. To train deep models in fully supervised approaches,
these WSIs were manually pixel-wise annotated to highlight each class’s examples within
each whole-slide image (see Figure 3.1).

5



3. Local Features Extraction 6

Figure 3.1: An example of the annotation process on a typical whole-slide image (WSI). Red,
green, and yellow highlighted areas indicate areas that were annotated and from which labeled
patches were taken. Squamous tissue (green arrowhead), non-dysplastic Barrett’s with Goblet cells
(yellow arrowhead), and dysplastic tissue with crowding and hyperchromasia (lower zoomed section)
were all present within the same whole-slide image.

3.2 Data Preparation

It is worth noting that the same dataset is used to evaluate different approaches in this
dissertation. Since the final goal is evaluating our models on WSIs, each WSI constitutes
a single training data point. In this setup, our dataset consists of only a few hundred
WSIs, and the risk of over-fitting is considerable when training a deep model with millions
of parameters. Furthermore, training a CNN requires images of the same size; however,
usually, WSIs, even in a single dataset, have different sizes. Resizing these images as a
solution to this issue arises some other hurdles such as resolution and scale variation.

To have enough images of the same size for CNN training, we first employed a sliding
window method on each WSI at 40× magnification to generate very large patches of size
5000×5000 pixels. We assume that each large patches have all image features of the original
corresponding WSI to consider them as new WSIs with the same label as the original ones.



3. Local Features Extraction 7

Figure 3.2: The structue of Convolutional Autoencoder (CAE)

Large patches with less than 50% tissue sections were discarded. Image augmentation was
also performed by horizontal flipping, random 90-degree rotations, and image mirroring
during training to prevent CNNs from over-fitting. Then, we again employed the sliding
window method, this time on the large patch at 40× magnification to generate tissue tiles
of size 200× 200 pixels. The tissue tiles were resized to 128× 128 pixels.

A common issue that causes bias while training the model on histopathological images
is color variation. This issue, which originates from various sources, including differences
in raw materials, staining protocols, and digital scanners [18], should be addressed and
resolved as an essential pre-processing step before any analyses. Various solutions, such as
color balancing [50], gray-scale, and stain normalization, have been proposed in the published
literature to address the color variation issue. In this study, we used Deep Convolutional
Gaussian Mixture Model (DCGMM) [51] to address the color variation issue.

3.3 Quantization of Local Image Features

We consider CAE and BiGAN to extract tile-level features.

3.3.1 Convolutional Autoencoder

An autoencoder (see Figure 3.2) is a type of artificial neural network used to learn efficient
data codings in an unsupervised manner. The aim of an autoencoder is to learn a representation
for a set of data, typically for dimensionality reduction [52]. Generally speaking, autoencoders
consists of two parts; encoder and decoder. Encoder f(.) is a function parameterized by
ψ that maps input x to a hidden space z; z = fψ(x) and a decoder is function g(.)

parameterized by φ that produces a reconstruction x′ = gφ(z). The optimal weights for
encoder and decoder are derived from equation 3.1.
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Figure 3.3: The structue of Bidirectional Generative Adversarial Network (BiGAN) [1]

f∗, g∗ = arg min
ψ,φ

‖x− gφ(fψ(x))‖2 = arg min
ψ,φ

‖x− x′‖2 (3.1)

3.3.2 Bidirectional Generative Adversarial Network

As shown in the Figure 3.3 the BiGAN [1, 53] consists of three networks: a generator G,
which maps a latent variable z ∼ N (0, I) to generated images x′:

z ∼ p(z) = N (0, I)
G−−−−→ x′ = G(z) ∼ p(x | z) (3.2)

an encoder E, which maps each image x sampled from the empirical data distribution q(.)
to embedding space z′:

x ∼ q(x)
E−−−−→ z′ = E(x) ∼ q(z | x) (3.3)

and a discriminator D which during an adversarial minimax game is trained to discriminate
joint samples of the data and the corresponding latent variable from the encoder (x, E(x))

from joint samples of the generator (G(z), z) that are drawn form q(x, z) and p(x, z)

respectively. While encoder and generator networks are trained to fool the discriminator.
The optimal functions are derived from equation 3.4.

E∗, G∗, D∗ = arg min
E,G

max
D
{logD(x, E(x)) + log (1−D(G(z), z))}

= arg min
E,G

max
D
{logD(x, z′) + log (1−D(x′, z))}

(3.4)
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3.4 Architecture of Feature Extractors

In CAE architecture, ResNet18 was employed as an encoder. We removed fully connected
layers from the original network and employed the ResNet backbone as a feature extractor,
followed by a dense layer that received the flattened output of the feature extractor. The
decoder comprised convolutional and up-sampling layers to increase the size of the feature
maps and get back the original size of the input image. The size of embedding space is a
critical parameter. When the embedded layer’s size is large, the network is not forced to
learn informative features. On the other hand, selecting a small value for the latent space
size makes it impossible for the model to reconstruct the input images. In this study, we set
the size of embedding layer to 256.

In BiGAN, the encoder consists of six 2D convolutional layers, which maps each tissue
tile to an embedding vector size of 256. The generator is composed of 6 deconvolutional
layers to map input signals into generated image space. In both networks, the rectified linear
unit (ReLU) [14] was employed as the activation function.



4 | Bag of Visual Words

4.1 Background

The Bag of Visual Words (BoVW) approach or dictionary learning was inspired by the
bag-of-words scheme proposed initially for text categorization and text retrieval [31]. In
this setting, an image is treated as a document, and the image features as words. Through
this method, local image features are extracted and quantified to construct a visual words
dictionary (i.e., the visual codebook). Finally, an image is encoded as an order-less histogram
of visual word frequencies. The informativeness of image-level representation is investigated
in a supervised fashion.

The BoVW approach has been widely used in the medical image domain for image
annotation, classification, and retrieval and has shown a solid performance [38]. Avni et
al. [54] used BoVW to encode SIFT descriptors for categorization of chest X-ray images
and achieved the top performance in ImageCLEF competition for medical image annotation
task, which is based on the IRMA project X-ray library [55]. Powell et al. [56] applied BoVW
approach on histopathology images to extract tissue-derived image features and used them to
predict the overall survival in lower grade Gliomas. A support vector machine (SVM) model
was applied to discriminate patients into short and long overall survival groups dichotomized
at 24-month. Bardou et al. [57] used BoVW to encode local histology descriptors extracted
by Dense Scale Invariant Feature Transform (DSIFT) features and Speeded-Up Robust
Features (SURF) for the classification of breast cancer. Zhang et al. [58] proposed a BoVW
scheme using the sparse random feature to classify epithelial nuclei, and stroma nuclei
objects to segment the glandular structure in histology images of colon tissues. Mittal
et al. [59] applied BoVW and gravitational search algorithm to encode histological contents
to classify the images into the respective tissue categories to facilitate the quantification
analysis of histopathology images by removing inter-category heterogeneity. Yamamoto
et al. [30] used the BoVW approach on histological image features extracted by a deep
Convolutional Autoencoder (CAE) in an unsupervised fashion to encode histology images
to predict prostate cancer recurrence.

10
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4.2 Model Development

The general idea of the BoVW approach is representing an image as an orderless set of visual
features. The BoVW consists of two main steps: In the first step, a visual codebook is learned
for representing the images of interest. A codebook is a visual vocabulary V = {c1, ..., cK}
including representative local descriptors codified as K visual words. In the second step,
each local image feature is associated with a visual word. Finally, the image is represented
by the histogram of the codeblocks 1. Figure 4.1 represents the overview of BoVW model.
The main steps of this model are as follows: image encoding and training a classifier on
image-level histograms.

4.2.1 Image Encoding

Codebook Learning

In this step, a visual codebook is constructed. After dividing the gigapixel image w into a
set of high-resolution tissue tiles xij ∈ RP×P×3 sampled from the ith row and jth column of
an uniform grid of square patches of size P using a stride of S throughout w, each tissue
tile x is mapped into a low-dimensional embedding vector size E independently. This study
employed CAE and BiGAN trained in an unsupervised fashion to map each high-resolution
tissue tile into a low-dimensional embedding space. Then, a k-means clustering algorithm is
employed to cluster extracted features into several visual words (see Fig 4.1, A-1). Selection
of the number of clusters (codebook size) is an important decision in codebook construction.
This parameter should be guessed/optimized and then imported to the model as an an input.

WSI Encoding

After learning the set of visual words, for WSI Xi = {x1, ..., xn} including n tissue tile,
the tile-wise embedding vectors are assigned to visual words (see Fig 4.1, A-2). Then, the
histogram of codeblocks’ frequencies Hi = (h1, ..., hK) is considered as representation of Xi.
The k-th bin in Hi is calculated as follows:

hk =
1

|Xi|
∑
x∈Xi

p(ck|fψ(x)) k = 1, ...,K. (4.1)

where, p(ck|fψ(x)) is the likelihood that embedding vector of tissue tile x (learned by neural
network fψ(.) with parameter ψ), belongs to codeblock ck. As can be seen, the image-level
histogram is the normalized frequency of each visual word ck to relieve the effect of the

1in this dissertation, visual word, codeblock, and codeword are used interchangeably.
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In this step, salient features of an image are identified. In the literature, different strategies have been proposed for local feature extraction from histopathology images. In~this study, we employed both CAE and Bidirectional Generative Adversarial Network (BiGAN) 
trained in an unsupervised fashion to map each tissue tile into a low-dimensional embedding space. We then used k-menas algorithm to cluster extracted features from tissue tiles into several clusters. Each cluster is considered a visual descriptor or codeblock, which are 

components of a codebook. Selection of the number of clusters (codebook size) is an important decision in codebook construction. This parameter should be guessed/optimized and then imported to the model as an~input.
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Figure 4.1: Overview of BoVW approach

number of tissue tiles in cases that WSIs have different number of tissue tiles. The hard
assignment or soft assignment of patches to the clusters can be considered, depending on
which clustering algorithm is used. In the case of employing k-means clustering, which gives
a hard assignment of instances to clusters, image-level histogram values are calculated based
on Equation (4.2).

hk =
1

|Xi|
∑
x∈Xi

I(cx = k) k = 1, ...,K, (4.2)

where hk is the value of bin k-th in the generated histogram, and cx is the cluster that image
patch x belongs to.

4.2.2 Slide-Level Inference

After encoding WSIs, the image-level histograms are employed to train a classifier to predict
the WSI-level labels.

4.2.3 Feature Importance

After training a classifier on encoded WSIs, the importance of codeblocks calculated by
the model can be considered to evaluate the model’s performance qualitatively. Per-class
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importance of each tissue tile x for class C, ICx is calculated as follows:

ICx =

K∑
m=1

p(cm|fψ(x))ICcm , (4.3)

where p(cm|fψ(x)) is the posterior probability of codeblock m-th given fψ(x) (embedding
vector of tissue tile x), and ICcm is the importance of the same codeblock for class C. We
used the permutation feature importance to calculate per-class importance of each feature.
In this method, each feature’s importance for a specific class is defined to be the increase
in the models’ prediction error when values of that feature are randomly shuffled [60] which
demolishes the relationship between the feature and the label. Model error increase due to
shuffling the values of a feature shows that this feature is relevant. In this case, the model
relied on the given feature for the prediction. In contrast, a feature is irrelevant if the model
error does not change after shuffling the feature’s values. In this case, the model ignores
this feature for the prediction.

4.3 Experiments and Results

4.3.1 Experimental Results

The performance of a classification model is highly correlated with the degree of separability
between different classes. Before applying classification algorithms on encoded WSIs, we
visualized image-level representation vectors using the principal component analysis (PCA)
method to understand better how well each method characterizes the visual content of
histopathology images ( see Figure 4.2). What can be deduced from the graphs is that both
feature learning approaches have generated very similar results. In both models, lots of
squamous WSIs were encoded relatively separately from dysplastic and non-dysplastic BE.
However, as expected, there is confusion between these two classes.
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Figure 4.2: Principal component analysis (PCA) plot for WSIs encoded using (left) BoVW-CAE,
(right) BoVW-BiGAN.

Classification results can further refine the findings from the PCA plots. Five standard
metrics were used for classification under a 1-vs-rest strategy: accuracy, precision, recall,
specificity, and F1 score. To estimate the significance of results, bootstrapping was used for
all metrics.

After applying the sliding window method on 650 WSIs from 130 unique patients, a
total of 2135 big patches (5000 × 5000 pixels) were generated, of which 793 (37.1%) were
in the squamous class, 606 (28.4%) in non-dysplastic BE, and 736 (34.5%) in dysplastic
BE. Of the independent testing set of 321 images, 142 (44.2%) squamous, 74 (23.1%) non-
dysplastic BE, and 105 (32.7%) dysplastic BE images were used to evaluate trained models
and to analyze the classification performance from both quantitative and qualitative aspects.

Results of esophageal WSIs classification in three classes of squamous, dysplastic BE,
and non-dysplastic BE for different models are summarized in Table 4.1. The reported values
are averages with 95% confidence intervals. For computing confidence intervals, numbers
greater than one were truncated to 1.
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Table 4.1: Results of WSI classification using BoVW approach

Class Metric Model

BoVW-CAE BoVW-BiGAN

Squamous

Accuracy 0.841 (0.837, 0.845) 0.902 (0.899, 0.904)
Precision 0.896 (0.890, 0.901) 1.000 (1.000, 1.000)
Recall 0.725 (0.717, 0.732) 0.778 (0.772, 0.784)
Specificity 0.933 (0.930, 0.937) 1.000 (1.000, 1.000)
F1 score 0.801 (0.795, 0.806) 0.875 (0.871, 0.879)

Barrett’s

Accuracy 0.842 (0.838, 0.846) 0.796 (0.792, 0.800)
Precision 0.593 (0.584, 0.601) 0.533 (0.525, 0.541)
Recall 1.000 (1.000, 1.000) 0.948 (0.943, 0.953)
Specificity 0.794 (0.789, 0.799) 0.751 (0.745, 0.756)
F1 score 0.743 (0.737, 0.750) 0.681 (0.674, 0.688)

Dysplasia

Accuracy 0.926 (0.923, 0.929) 0.894 (0.891, 0.898)
Precision 1.000 (1.000, 1.000) 0.951 (0.946, 0.955)
Recall 0.775 (0.767, 0.782) 0.713 (0.704, 0.721)
Specificity 1.000 (1.000, 1.000) 0.982 (0.980, 0.984)
F1 score 0.872 (0.868, 0.877) 0.814 (0.808, 0.820)

Weighted Average

Accuracy 0.869 (0.866, 0.872) 0.875 (0.872, 0.877)
Precision 0.861 (0.859, 0.864) 0.877 (0.875, 0.879)
Recall 0.804 (0.800, 0.809) 0.796 (0.792, 0.800)
Specificity 0.923 (0.921, 0.925) 0.937 (0.935, 0.938)
F1 score 0.812 (0.808, 0.816) 0.811 (0.807, 0.815)

As shown in Table 4.1, two models have similar performance given the weighted
average of F1 score for all classes as an evaluation metric. The F1 score for the model
trained on encoded WSIs using CAE is 0.812 (95% CI, 0.808-0.816) vs 0.811 (95% CI,
0.807-0.815) for the model trained on encoded WSIs using BiGAN. Tables 4.2 and 4.3 shows
the confusion matrix of BoVW-CAE and BoVW-BiGAN respectively.

Table 4.2: Confusion matrix of BoVW-CAE

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 106 (0.746) 36 (0.254) 0 (0.000)
Non-dysplastic BE 0 (0.000) 74 (1.000) 0 (0.000)
Dysplastic BE 8 (0.076) 13 (0.124) 84 (0.800)

Table 4.3: Confusion matrix of BoVW-BiGAN

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 110 (0.775) 32 (0.225) 0 (0.000)
Non-dysplastic BE 0 (0.000) 70 (0.946) 4 (0.054)
Dysplastic BE 0 (0.000) 30 (0.286) 75 (0.714)

As the number of clusters is a critical parameter in the performance of clustering
methods, we evaluated different numbers of clusters (codeblocks) for both approaches to
pick a decent number of codeblocks given our dataset. Figure 4.3 summarizes the results
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Figure 4.3: The effect of the number of clusters on the performance of the BoVW

of the evaluation of different numbers of clusters for both CAE and BiGAN approaches.
As shown, the same trend can be seen for both approaches. After a significant increase
in the model performance due to increasing the number of clusters from 50 to 100, the
weighted F1 score decreases as a result of increasing the number of clusters, and again with
further increase in the number of clusters, model performance is improved. Regarding the
BoVW-CAE, although increasing the number of clusters improves the model performance,
the complexity of the model also increases, leading to an undesirable consequence, a decrease
in interpretability, which is crucial, especially in the field of medical image analysis. Thus,
in cases that the improvement in model performance due to the increase in the number of
clusters is not highly significant, the less number of clusters, the preferable model we will
have. Thus, 100 is determined as an optimal value for the number of clusters, although 250
and 300 clusters have better classification results. Also, for BoVW-BiGAN, 100 is selected
as the optimal number of clusters.

As can be seen, the performance of BoVW-CAE is better than BoVW-BiGAN for
different number of clusters. Furthermore, compared to BoVW-CAE, BoVW-BiGAN is
more sensitive to number of clusters, and selecting an optimal number of clusters is more
crucial in this model.

4.3.2 Analysis of Codeblocks

For more scrutiny about the models’ performances, the per-class importance of each visual
word that is a measure of how important it is in the image-level inference is calculated by
Equation 4.3. By aggregating these values from all images in the test set for every visual
word and averaging, a value is obtained indicating the relative importance of given codeblock.
Figures 4.4 and 4.5 show some randomly selected image patches associated with the top five
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visual words in each class for both BoVW-CAE and BoVW-BiGAN, respectively.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 4.4: Randomly sampled tissue tiles from top 5 codeblocks associated with (left) Squamous,
(middle) Barrett’s, and (right) Dysplasia in the BoVW-CAE
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 4.5: Randomly sampled tissue tiles from top 5 codeblocks associated with (left) Squamous,
(middle) Barrett’s, and (right) Dysplasia in the BoVW-BiGAN

4.4 Discussion

In this chapter, we investigated the BoVW capability for representation learning of histology
images to classify dysplastic and non-dysplastic BE. We used a two-step process, in which,
in the first step, local image features are quantified and then clustered to shape codewords.
Finally, each image is represented as an order-less histogram of codeword frequencies. A
decision fusion model was trained on image-level histograms in the second step to output
the final labels of new WSIs. The results demonstrated the ability of unsupervised feature
extraction from WSIs if an appropriate setting is chosen. This is an important contribution
because we provided an informative representation of WSIs, employing an unsupervised
framework that avoids manually image annotation.

Since the number of clusters is a critical parameter in some clustering algorithms
such as K-means, we evaluated different values to select a decent number of visual words
that generate better classification results. As shown, both feature learning approaches, CAE
and BiGAN, generated very similar results given a specific number of clusters (here 100).
However, applying BoVW on deep local features learned by CAE outperforms the same
model on BiGAN-derived features considering different values for the number of clusters.
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Despite producing satisfactory results, the BoVW approach does not consider the
spatial arrangement of visual words, which leads to some information loss. In some cases,
the contribution of visual word distribution to the outcome is negligible and hence can be
ignored, while in some cases, such information loss leads to a significant deterioration of
model performance.
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5.1 Background

Although WSIs are composed of millions of pixels, only a small portion of these pixels
tend to be meaningful regarding relevant image-level metadata (e.g., the image label in
the classification problem or time in survival analysis) [45]. In the current published
literature, analysis of WSIs has been addressed by different machine learning paradigms.
In the fully-supervised paradigm, [24,25,26], pixel-wise annotation of images and extracting
image patches from annotated regions for further analysis is an approach to nullify the
dimensionality curse of WSIs. Employing the fully-supervised approach requires accepting
some simplifying assumptions. One of the most common assumptions states that the signal
associated with the image-level metadata has a patch-level representation and can be fully
recognized at a low level of abstraction [45]. This assumption creates the need for patch-
level annotation, which means engaging in a labor-intensive, time-consuming, and error-
prone process. However, it is obvious that this method is applicable only in cases where the
relationship between image patterns and image-level metadata is known. In such cases, the
spatial relationship between patches is lost in the process of patch-level annotation. If the
relationship between image patterns and image-level metadata is not fully understood, as
may be the case with pathology slides for newly discovered diseases, preserving the spatial
arrangement of local image features may aid in discovering and understanding new disease
processes.

Another assumption states that although the image-level metadata signals exist
at a low level of abstraction, a human annotator cannot recognize them. According to
this assumption, patches’ mere presence is sufficient to ensure the existence of true signal
evidence associated with the image-level metadata even if information regarding the spatial
arrangement of patches is lost. Based upon this assumption, the gigapixel images are
assumed to be a set of bags, each containing many patches that only some of them trigger
the true signal. This scenario is called Multiple Instance Learning (MIL) [28, 61]. One of
the goals in MIL is detecting critical patches. This approach cannot provide any analysis

20
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beyond the patch-level due to not considering the spatial relationship between patches.
However, methods such as Attention-Based MIL [47] have been proposed to improve the
interpretability of MIL.

Tellez et al. [45] proposed Neural Image compression (NIC) for gigapixel image
analysis. NIC sidesteps the steep computational requirements needed to train neural networks
with whole slide images by organizing the patch-level representation vectors of each WSI,
given their spatial arrangement. This approach creates highly compact representations
that are more amenable to train neural networks. This technique creates highly compact
representations of gigapixel images that are more amenable to training neural networks.
Inspired by this method and utilizing the concept of visual words, we proposed Cluster-
Based Neural Image Compression (CBNIC), which leverages the advantages of NIC and
also incorporates the information regarding codeblocks into the model. The performance of
the proposed approach is evaluated for the diagnosis of dysplastic and non-dysplastic BE on
WSIs.

5.2 Model Development

In this model, a gigapixel image w ∈ RR×C×3 (R : number of rows, C : number of columns,
and three color channel (RGB)) which its feeding into a CNN carries a steep computational
cost, if not infeasible given current technology, is compressed in such a way that a CNN can
be trained directly on these images in a lower computational cost. CBNIC consists of two
main phase: encoding of the images and training a CNN on compressed images. Figure 5.1
represents the overview of the model. Different steps of this model are explained in more
detail as follows.

5.2.1 Image Compression

Codebook Learning

In this step, the local image descriptors of images are identified. After dividing the gigapixel
image w into a set of high-resolution tissue tiles xij ∈ RP×P×3 sampled from the ith row and
jth column of an uniform grid of square patches of size P using a stride of S throughout w,
each tissue tile x is mapped into a low-dimensional embedding vector size E independently.
This study employs CAE and BiGAN trained in an unsupervised fashion to map each high-
resolution tissue tile into a low-dimensional embedding space. Then, a k-means clustering
algorithm is employed to cluster extracted features into several clusters (see Fig 5.1, A-
1). Each cluster is indeed a visual descriptor called a visual word or codeblock, which
are components of a codebook. Selection of the number of clusters (codebook size) is an
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important decision in codebook construction. This parameter should be guessed/optimized
and then imported to the model as an an input.

In this step, salient features of an image are identified. In the literature, different strategies have been proposed for local feature extraction from histopathology images. In~this study, we employed both CAE and Bidirectional Generative Adversarial Network (BiGAN) 
trained in an unsupervised fashion to map each tissue tile into a low-dimensional embedding space. We then used k-menas algorithm to cluster extracted features from tissue tiles into several clusters. Each cluster is considered a visual descriptor or codeblock, which are 

components of a codebook. Selection of the number of clusters (codebook size) is an important decision in codebook construction. This parameter should be guessed/optimized and then imported to the model as an~input.
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Figure 5.1: Overview of CBNIC approach

WSI Encoding

After codebook learning, each tissue tile of a WSI gets associated with a visual word.
Then, its embedding vector is replaced by the representation vector of the associated visual
word. Finally, the visual words are organized following the same spatial arrangement of
corresponding tissue tiles as in the WSI w (see Fig 5.1, A-2). In this way, the information
regarding codeblocks is incorporated into the model. As a result of this phase, gigapixel
image w ∈ RR×C×3 is compressed as w′ ∈ R

R
S
×C

S
×E .

5.2.2 Training of a CNN on the compressed WSIs

Now that WSIs have been compressed, a CNN can be trained on the compressed images to
predict the output for a new WSI. A CNN can detect both local and global discriminative
visual features from the images and NIC preserving the spatial arrangement of tissue patches
guarantees that the CNN is provided with both local and global information from gigapixel
images.
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5.3 Experiments and Results

5.3.1 Architecture of CNN

A shallow CNN composed of six 2D convolutional layers was employed for classification of
the compressed WSIs. We used kernel size 3, pooling 1, and stride 1 to keep the feature
resolution unchanged. Convolution layers are followed by a softmax layer that outputs
the class probabilities. The rectified linear unit (ReLU) [14] is employed as the activation
function. Also Batch Normalization [62] was applied after ReLU of every trainable layer. We
utilized Global Attention Pooling to highlight the informative patches for the classification
of esophageal WSIs. Global Attention Pooling computes the contribution of each visual
word by learning the weights for the corresponding features vector and pools them from all
the visual words present in the given image to provide more optimal representation for an
image-level task. The importance of each visual word is estimated based upon its embedding
vector and its neighboring visual words.

5.3.2 Experimental Results

The performance of a classification model is highly correlated with the degree of separability
between different classes. Before applying classification algorithms on encoded WSIs, we
visualized image-level representations provided by CBNIC using PCA method to understand
better how well each method characterizes the visual content of histopathology images (see
Figure 5.2). What can be deduced from the graphs is that WSIs in squamous and dysplastic
BE have been encoded relatively separately from each other, while non-dysplastic BE images
have a sort of confusion with both these classes.

Classification results can further refine our findings from the PCA plots. To evaluate
the model quantitatively, five standard metrics were used for classification under a 1-vs-
rest strategy: accuracy, precision, recall, specificity, and F1 score. To estimate 95% CIs,
bootstrapping was used for all metrics.

After applying the sliding window method on 650 WSIs from 120 unique patients, a
total of 2135 big patches (5000 × 5000 pixels) were generated, of which 793 (37.1%) were
in the squamous class, 606 (28.4%) were in Barrett’s class, and 736 (34.5%) were in the
dysplastic BE class. Of the independent testing set of 321 images, 142 (44.2%) squamous,
74 (23.1%) Barrett’s, and 105 (32.7%) dysplastic BE images were used to evaluate trained
models and to analyze the classification performance from both quantitative and qualitative
aspects. Image augmentation was also performed by horizontal flipping, random 90-degree
rotations, and image mirroring during training to prevent the CNN from over-fitting.

The classification results of esophageal WSIs in squamous, dysplastic BE, and non-
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Figure 5.2: PCA plot for WSIs encoded using (left) CBNIC-CAE, (right) CBNIC-BiGAN.

dysplastic BE for different models are summarized in Table 5.1. The reported values are
averages with 95% confidence intervals. For computing confidence intervals, numbers greater
than one were truncated to 1.

As shown in Table 5.1, the CBNIC model on CAE-derived image features outperforms
the model on BiGAN-based features given the weighted average of F1 score as an evaluation
metric. The weighted average of F1 score for the model trained on encoded WSIs using
CAE is 0.889 (95% CI, 0.884-0.894) vs. 0.858 (95% CI, 0.855-0.862) for the model trained
on encoded WSIs using BiGAN. Tables 5.2 and 5.3 shows the confusion matrix of BoVW-
CAE and BoVW-BiGAN respectively. As shown in both models, the dysplastic BE has
mostly confusion with non-dysplastic BE.
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Table 5.1: Results of WSI classification using CBNIC approach

Class Metric Model

CBNIC-CAE CBNIC-BiGAN

Squamous

Accuracy 0.936 (0.931, 0.941) 0.930 (0.927, 0.933)
Precision 0.939 (0.930, 0.948) 0.926 (0.922, 0.931)
Recall 0.918 (0.912, 0.925) 0.914 (0.909, 0.918)
Specificity 0.950 (0.943, 0.958) 0.942 (0.939, 0.946)
F1 score 0.928 (0.922, 0.933) 0.920 (0.916, 0.923)

Barrett’s

Accuracy 0.898 (0.893, 0.902) 0.895 (0.892, 0.898)
Precision 0.733 (0.721, 0.745) 0.714 (0.705, 0.722)
Recall 0.884 (0.868, 0.900) 0.907 (0.901, 0.914)
Specificity 0.902 (0.896, 0.908) 0.892 (0.888, 0.895)
F1 score 0.798 (0.788, 0.807) 0.798 (0.792, 0.804)

Dysplasia

Accuracy 0.939 (0.936, 0.942) 0.890 (0.887, 0.894)
Precision 0.964 (0.959, 0.968) 0.901 (0.895, 0.907)
Recall 0.845 (0.836, 0.853) 0.746 (0.738, 0.754)
Specificity 0.985 (0.983, 0.987) 0.960 (0.957, 0.963)
F1 score 0.899 (0.894, 0.905) 0.816 (0.810, 0.822)

Weighted Average

Accuracy 0.928 (0.925, 0.932) 0.909 (0.906, 0.911)
Precision 0.900 (0.895, 0.905) 0.870 (0.867, 0.873)
Recall 0.887 (0.881, 0.892) 0.857 (0.854, 0.861)
Specificity 0.950 (0.947, 0.954) 0.936 (0.935, 0.938)
F1 score 0.889 (0.884, 0.894) 0.858 (0.855, 0.862)

Table 5.2: Confusion matrix of CBNIC-CAE

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 139 (0.979) 3 (0.021) 0 (0.000)
Non-dysplastic BE 3 (0.041) 69 (0.932) 2 (0.027)
Dysplastic BE 1 (0.010) 15 (0.143) 89 (0.848)

Table 5.3: Confusion matrix of CBNIC-BiGAN

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 132 (0.930) 4 (0.028) 6 (0.042)
Non-dysplastic BE 4 (0.054) 67 (0.905) 3 (0.041)
Dysplastic BE 7 (0.067) 21 (0.200) 77 (0.733)

As the number of clusters is an important parameter in the performance of clustering
methods, we evaluated different numbers of clusters (codeblocks) for both approaches to
pick a decent number of codeblocks. As shown in Figure 5.3, the CBNIC-CAE outperforms
the CBNIC-BiGAN regardless of the number of clusters. Furthermore, by changing the
number of clusters, no significant change observed in the the CBNIC-CAE performance. In
contrast, in the CBNIC-BiGAN, after a significant increase in the model performance due
to increasing the number of clusters from 50 to 100, the value of the weighted F1 score
decreases as a result of increasing the number of clusters and again with further increase
in the number of clusters, the model performance is improved. Therefore, to have a less
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complex model, 100 is determined as an optimal value for the number of clusters, although
250 and 300 clusters lead to very similar classification results. Also, for CBNIC-CAE, 100
is selected as the optimal number of clusters.

Figure 5.3: The effect of the number of clusters on the performance of CBNIC

Figure 5.4 shows the performance of the CBNIC model vs. BoVW. As indicated,
employing the CBNIC for the classification of esophageal WSIs has generated better results
considering both CAE and BiGAN. Given the inherent differences between the two approaches,
explaining the origin of this superiority is out of this dissertation’s scope. One of the
advantages of CBNIC over BoVW is taking into account the spatial arrangement of image
patches. We investigated this characteristic’s contribution in the final result by running the
CBNIC on images lacking this feature. To do so, after extracting the embedding vectors from
tissue patches and learning the visual codebook, the codeblocks’ representation vectors were
organized in random spatial locations to generate the compressed images. Figure 5.5 shows
the comparison between CBNIC model on images compressed with and without preserving
the spatial arrangement between the image patches. As can be seen, the CBNIC model
on images compressed preserving the spatial arrangement of patches, outperforms the other
model. This experiment only shows the positive impact of spatial arrangement of patches
on the final result. But cannot provide any conclusion regarding quantity of this impact
because the spatial location of patch-level embedding vectors were randomly shuffled and
we had no control over the degree of disarray. The difference in the degree of deterioration
of the results for different values of the number of clusters can be explained in this way.
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Figure 5.4: Comparison of the performance of BoVW and CBNIC

Figure 5.5: The contribution of spatial arrangement of tissue patches in the performance of CBNIC

5.3.3 CBNIC vs NIC

As explained earlier, the contribution of CBNIC over NIC is incorporating the concept of
codeblock into the model instead of compressing the WSIs using patch-level embedding
vectors directly. In this section, the contribution of this change is evaluated. Tables 5.4
and 5.5 show the confusion matrices of NIC given the image features learned by CAE, and
BiGAN respectively.

Table 5.4: Confusion matrix of NIC-CAE

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 112 (0.789) 15 (0.106) 15 (0.106)
Non-dysplastic BE 14 (0.189) 60 (0.811) 1 (0.000)
Dysplastic BE 24 (0.229) 19 (0.181) 62 (0.590)
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Table 5.5: Confusion matrix of NIC-BiGAN

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 104 (0.732) 33 (0.232) 5 (0.035)
Non-dysplastic BE 3 (0.041) 70 (0.946) 1 (0.014)
Dysplastic BE 22 (0.210) 40 (0.381) 43 (0.410)

Comparing these results with the results of the CBNIC model (Tables 5.2 and 5.3),
it can be deduced that the CBNIC model outperforms the NIC model for the classification
of esophageal WSIs. We employed bootstrapping approach (100 iterations) to test the
significance of the results. Figure 5.6, represents the boxplot of F1 score values on different
iterations for both NIC and CBNIC.

Figure 5.6: Comparison of the performance of NIC and CBNIC for classification of WSIs encoded
by (left) CAE, (right) BiGAN

As shown, the performance of CBNIC is significantly better than NIC, and this is
evidence for the contribution of incorporating codeblock concept into the NIC.

5.3.4 Codeblock Analysis

After training the classifier on compressed images, a weight is learned for each codeblock
that is an estimate of how important it is in the image-level inference. By aggregating
the weights from all images in the test set for every codeblock and averaging, a value is
obtained indicating the relative importance of given codeblock. Figures 5.7 and 5.8 show
some randomly selected image patches associated with codeblocks of the highest importance
for CAE-derived and BiGAN-derived features, respectively.
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Figure 5.7: Randomly sampled tissue tiles from top 5 codeblocks associated with (left) Squamous,
(middle) Barrett’s, and (right) Dysplasia in the CBNIC-CAE
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Figure 5.8: Randomly sampled tissue tiles from top 5 codeblocks associated with (left) Squamous,
(middle) Barrett’s, and (right) Dysplasia in the CBNIC-BiGAN

A medical expert reviewed these sampled tissue tiles. In both models, tissue tiles
for squamous were indicative of normal esophageal histology showing squamous cells that
are flat, thin cells lining the esophagus’s surface. For non-dysplastic BE, tiles showed goblet
cells and columnar epithelium that are normally only present in the small intestine, but with
Barrett’s, the normal esophageal lining shows the presence of these mucin-containing goblet
cells and columnar epithelial cells. For dysplastic BE, crowded hyperchromatic nuclei were
visualized that are known to be present among pre-cancerous dysplastic cells.

5.4 Discussion

This chapter proposed CBNIC as a cluster-based version of the NIC for representation
learning of high-resolution histopathology images. The NIC approach compresses gigapixel
images by learning the embedding vector of image patches in an unsupervised fashion and
organizing them following the same spatial arrangement as the original image. While, in
the CBNIC, a codebook of visual words is learned, and the embedding vectors of image
patches are replaced by the embedding vector of the corresponding visual word, and then the
gigapixel images are compressed the same way as the NIC. The performance of the learned
representations by CBNIC was evaluated through an end-to-end supervised framework. The
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results demonstrated the ability of the CBNIC approach to detect dysplastic and non-
dysplastic BE on WSIs. The results also show that the CBNIC significantly outperforms
the NIC.

The CBNIC and BoVW (discussed in Chapter 4) are somehow similar in terms of
utilizing the visual words for representation learning of images, however, from different
angles. While the BoVW considers frequencies of visual words, the CBNIC uses the visual
words’ representation vectors to encode the images. If we accept this similarity, we can say
that CBNIC can be a solution to relive the lack of considering the spatial information of
local features in the BoVW. As illustrated, the CBNIC outperforms the BoVW, although
demonstrating that the reason for this superiority is considering the spatial information of
local image features in the CBNIC compared to the BoVW is not within the scope of this
study owing to the differences in the nature of the two models. However, we showed the
positive contribution of considering the spatial information of image patches by running the
CBNIC on the compressed images, which in the image patches are randomly shuffled and
no longer are in their original spatial position. As illustrated, the classification results of the
compressed images preserving the spatial information of local image features is significantly
better than the results of the classification of images compressed without preserving the
spatial information.

As demonstrated, the CBNIC model on the images compressed using CAE-based
image features has a stable prediction ability for the different number of clusters. In
contrast, its performance on BiGAN-derived image features varies depending on the number
of clusters. Furthermore, the model on CAE image features significantly outperforms the
same model on the BiGAN-based ones. Given that the k-means performance is highly
dependent on its initialization, one might think that the superiority of the model on the
CAE-based features over the BiGAN-based features stems from the proper initialization of
k-means clustering on CAE features. Although this argument can be logically valid, here is
less likely to be the case because the results show the superiority of the CBNIC on CAE-
derived image features for all experimented cluster numbers. Besides, an attempt has been
made to choose a relatively appropriate initialization point for each clustering run using the
trial and error method. This further calls into question the validity of the raised argument.
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6.1 Background

As said earlier, CNNs have gained increasing attention in image classification due to their
ability to capture image feature representations. However, the gigapixel high-resolution
images cannot be employed directly to train a CNN due to high computational cost. Some
approaches such as BoVW [36], MIL, etc., have been employed to tackle this problem, but
they lack the spatial relationships between nearby image patches. Hypothetically, the closer
the two image patches are spatially, the more similar they are, concerning the image-level
metadata (e.g., image label or survival time). Graph convolutional networks (GCNs) [63] are
an efficient architecture that can effectively capture such spatial proximity information by
modeling relations between image patches using vertexes. Therefore, GCNs can be utilized
to model spatial arrangement between image patches extracted from the WSIs, which fail
to be considered in CNNs.

In the literature, very little attention has been devoted to the application of GCNs
to analyze whole-slide histopathology images. Based on our best knowledge, a few studies
have been accomplished to explore this possibility. Sureka et al. [64] used GCNs for the
classification of histopathology images. They encoded histology tissue as a graph of nuclei.
They used an attention-based architecture to provide an interpretable map highlighting each
nucleus’s contribution and neighborhood in the final diagnosis. Zhu et al. [65] benefited
from GCNs for grading of Colorectal cancer. They used a GCN to convert each large
histology image into a graph, where nuclei are nodes of a graph, and cellular interactions
are denoted as edges between them according to node similarity. Adnan et al. [40] employed
GCNs to learn a representation of lung cancer WSIs. They sampled relevant patches and
utilized graph neural networks to capture relations among sampled patches to aggregate the
WSI information into a single vector representation. They evaluated the quality of learned
representations by classification of WSIs in an end-to-end framework. Konda et al. [66] also
showed the ability of GCNs in the classification of histopathology images of colon cancer
and breast cancer.

32
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This chapter proposes a novel architecture based upon graph neural networks to learn
a representation of WSIs. In this model, each WSI is encoded as a graph in which the nodes
are visual words connected using vertexes to capture their spatial proximity information.

6.2 Review of GCNs

6.2.1 Graph Representation
A graph is defined as an ordered pair G = (V, E) where V represents the set of vertices
consisting of nodes {v1, ..., vn}, and E denotes to the set of edges. Each node vi has a
feature vector xi ∈ Rd and the entire feature matrix X ∈ Rn×d includes the feature vectors
from all nodes X = [x1, ...,xn]T . In such graph, W ∈ Rn×n is a weighted adjacency matrix
where wij denotes the edge weight between nodes vi and vj .

In our context, as shown in Figure 6.1, each WSI is modeled as a complete graph in
which each image patch is treated as a vertice, and a unique edge connects every pair of
distinct vertices. The weight of each edge wij is a function of similarity between corresponding
nodes’ feature vectors xi and xj and also their spatial distance (see Equation 6.1).

wij =
sim(xi,xj)

1 + dist(vi, vj)
(6.1)

Where sim(xi,xj) is similarity between feature vectors of nodes vi and vj and dist(vi, vj) is
spatial distance between these two nodes.

Choice of the proper distance metric and calculation of similarity in high dimensional
applications, which is the case here, is very heuristic [67]. To calculate the similarity between
xi and xj, we considered the average of cosine similarity and similarity calculated based upon
L2 − norm distance to benefit from advantages of both measures (see Equation 6.2).

sim(xi,xj) =

xi.xj

‖xi‖‖xj‖ + 1
1+‖xi−xj‖

2
(6.2)

The Euclidean distance between two nodes vi and vj is derived from Equation 6.3.

dist(vi, vj) =

√
(xi − xj)2 + (yi − yj)2 (6.3)

Where xi and yi are coordinates of the center of image patch vi.

6.2.2 Graph Convolution

In this study, two types of graph convolution are employed as follows:
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Figure 6.1: Graph representation

Spatial Convolution

Generally speaking, the spatial Convolution is propagation of node features to neighborhood
nodes followed by activation function in a message passing network [68]. A message passing
graph neural network can be described as follows:

hi
t+1 = Ut(hi

t,Θj∈Ni(Mt(hi
t, hj

t, etij , w
t
ij))) (6.4)

Where hit ∈ RF denotes features vector of node i in layer t and h0i = xi, Ni denotes set
of neighbors of node i in graph G, etij ∈ RD is features vector of the edge between node
i and node j in layer t, and wtij ∈ R denotes the weight of this edge in the same layer.
Θ denotes a differentiable, permutation invariant function, e.g., sum, mean or max. The
message functionMt and vertex update functions Ut are learned differentiable functions [68].

Spectral Convolution

In spectral domain, eigendecomposition of graph Laplacian is employed to filter the signal
on the graphs. A graph Laplacian is defined as L = D −W or in the normalized form it
is L = In −D−1/2WD−1/2 where W ∈ Rn×n denotes the adjacency matrix of graph G, In
denotes the identity matrix and D ∈ Rn×n is the diagonal degree matrix where each entry
on the diagonal is equal to the row-sum of the adjacency matrix: di =

∑
j wij . Since L is

positive semidefinite, it can be decomposed into L = UΛU>, where U = [u1, ..., un] ∈ Rn×n
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is the eigenvectors matrix and ui ∈ Rn are graph Fourier modes. Also, Λ = diag(λ) ∈ Rn×n

where λ = [λ1, ..., λn] and λi is a real non-negative eigenvalue associated with ui [69].

The convolution operator in graph~ is defined in the frequency domain as follows [70]:

x~ y = U(U>x� U>y) (6.5)

Where � represents the element-wise Hadamard product. Also, the graph Fourier transform
of signals x and y are defined as U>x and U>y respectively. As shown in Equation 6.6, the
spectral convolution on graphs in frequency domain is defined as the multiplication of any
unidimensional signal x on graph by a filter gθ [70].

gθ ~ x = gθ(L)x = gθ(UΛU>)x = Ugθ(Λ)U>x (6.6)

Where gθ(Λ) = diag(θ) = diag(F(λ)) where F is a desired filter function [69].

Evaluating the Equation 6.6 is computationally expensive as calculation of Fourier
and inverse Fourier transform by matrix multiplication of U and U> is in O(n2) [63].
Parameterizing the gθ(L) as a polynomial function that can be computed recursively from
L is a solution. To get around this problem, Hammond et. al [71] suggested that gθ(Λ)

can be approximated by a truncated expansion of Chebyshev polynomials Tk(x) [63]. The
Chebyshev polynomial is obtained from the following recurrence relation:

Tk(x) = 2xTk−1(x)− Tk−2(x) T0(x) = 1 , T1(x) = x (6.7)

According to 6.7, approximation of gθ(Λ) is as follows [63]:

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃) (6.8)

Where Λ̃ = 2
λmax

Λ− In. Now, the Equation 6.6 can be rewritten as Equation 6.9.

gθ′ ~ x = Ugθ′(Λ)U>x ≈
K∑
k=0

θ′kTk(U Λ̃U>)x =

K∑
k=0

θ′kTk(L̃)x (6.9)

6.2.3 Graph Pooling

Graph pooling refers to operations applied to reduce the number of nodes or downsample
the node features in a graph and have a similar role to the pooling in traditional CNNs.
Since pooling computes a coarser version of the graph at each step, ultimately resulting
in a single vector representation, it is usually applied to graph-level inference problems
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such as graph classification. Different types of graph polling layers such as Max Pooling,
Mean pooling, Sum pooling, and Global Attention Pooling can be employed to pool the
node feature vectors in a single representation vector. In this study, we utilized Global
Attention Pooling to highlight the informative patches for the classification of esophageal
WSIs. Global Attention Pooling computes each node’s contribution by learning the weights
for the corresponding features vector and pools them from all the nodes to provide a more
optimal representation for a graph-level task.

6.3 Model Development

We applied CBGCN for the classification of WSIs. In this model, each WSI is encoded as
a graph as explained earlier, and then a GCN is trained on WSI-level graphs to predict
the label of new WSIs. Figure 6.2 illustrates an overview of the proposed approach. Also,
different steps of this model are explained in more detail as follows:

6.3.1 Image Compression

Codebook Learning

In this step, the local image descriptors of images are identified. After dividing the gigapixel
image w into a set of high-resolution tissue tiles xij ∈ RP×P×3 sampled from the ith row and
jth column of an uniform grid of square patches of size P using a stride of S throughout w,
each tissue tile x is mapped into a low-dimensional embedding vector size E independently.
This study employs CAE and BiGAN trained in an unsupervised fashion to map each high-
resolution tissue tile into a low-dimensional embedding space. Then, a k-means clustering
algorithm is employed to cluster extracted features into several clusters (see Fig 6.2, A-
1). Each cluster is indeed a visual descriptor called a visual word or codeblock, which
are components of a codebook. Selection of the number of clusters (codebook size) is an
important decision in codebook construction. This parameter should be guessed/optimized
and then imported to the model as an an input.

WSI Encoding
After codebook learning, the embedding vector of each tissue tile x gets associated with a
visual word. Then, the embedding vectors of visual words are considered feature vectors
of nodes in a complete graph (see Fig 6.2, A-2). In this way, the information regarding
codeblocks is incorporated into the model.
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Figure 6.2: Overview of CBGCN approach

6.4 Experiments and Results

6.4.1 Architecture of GCN

The GCNs employed in this study were composed of four graph convolutional layers followed
by pooling and softmax layer.

6.4.2 Experimental Results

After applying the sliding window method on 650 WSIs from 120 unique patients, a total
of 2135 big patches (5000 × 5000 pixels) were generated, of which 793 (37.1%) were in the
squamous class, 606 (28.4%) were in non-dysplastic BE class, and 736 (34.5%) were in the
dysplastic BE class. Of the independent testing set of 321 images, 142 (44.2%) squamous,
74 (23.1%) Barrett’s, and 105 (32.7%) dysplastic BE images were used to evaluate trained
models and to analyze the classification performance from both quantitative and qualitative
aspects. Image augmentation was also performed by horizontal flipping, random 90-degree
rotations, and image mirroring during training to prevent the GCN from over-fitting.

Since we employed two different graph convolution paradigms, namely spatial-based
and spectral-based, the results are categorized accordingly. It is worth noting that we used
PyTorch Geometric library to implement the graph-based models [72].
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Figure 6.3: PCA plot for WSIs encoded using (left) SGConv-CAE, (right) SGConv-BiGAN.

Spatial-based GCNs

For spatial-based convolution layers, we used SGConv [73]. Figure 6.3 shows the results
of PCA that visualize the image-level representations. As illustrated, WSIs in squamous
and dysplastic BE classes have been encoded relatively separately from each other, while
non-dysplastic BE WSIs have sort of confusion with both of these classes. This pattern was
also observed in previous models in this study.

Classification results can further refine our findings from the PCA plots. To evaluate
the model quantitatively, five standard metrics were used for classification under a 1-vs-rest
strategy: accuracy, precision, recall, specificity, and F1 score. Bootstrapping was used for
all metrics to estimate the results’ significance.

The results of employing a spatial-based GCNmodel for the classification of esophageal
WSIs in three classes of squamous, dysplastic BE, and non-dysplastic BE are summarized
in Table 6.1. The reported values are averages with 95% confidence intervals.

As shown in Table 6.1, the model on CAE-derived image features outperforms the
model on BiGAN-based ones given the weighted average F1 score. The weighted average of
F1 score for the model trained on encoded WSIs using CAE is 0.876 (95% CI, 0.873-0.880)
vs. 0.853 (95% CI, 0.838-0.867) for the model trained on encoded WSIs using BiGAN. Since
two 95% confidence intervals do not overlap, the null hypothesis of zero difference between
their F1 scores is rejected at the 0.05 level. Tables 6.2 and 6.3 shows the confusion matrix of
SGConv-CAE and SGConv-BiGAN respectively. As shown in both models, dysplastic BE
has mostly confusion with non-dysplastic BE.
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Table 6.1: Results of WSI classification using CBGCN (SGConv) approach

Class Metric Model

SGConv-CAE SGConv-BiGAN

Squamous

Accuracy 0.922 (0.919, 0.926) 0.908 (0.894, 0.922)
Precision 0.993 (0.991, 0.995) 0.960 (0.951, 0.968)
Recall 0.831 (0.824, 0.838) 0.829 (0.798, 0.860)
Specificity 0.995 (0.994, 0.996) 0.971 (0.965, 0.977)
F1 score 0.904 (0.900, 0.908) 0.881 (0.861, 0.900)

Barrett’s

Accuracy 0.874 (0.870, 0.878) 0.848 (0.832, 0.863)
Precision 0.649 (0.639, 0.659) 0.657 (0.629, 0.686)
Recall 0.967 (0.963, 0.972) 0.855 (0.839, 0.871)
Specificity 0.846 (0.841, 0.851) 0.845 (0.824, 0.866)
F1 score 0.776 (0.768, 0.783) 0.732 (0.712, 0.752)

Dysplasia

Accuracy 0.942 (0.939, 0.944) 0.937 (0.933, 0.940)
Precision 0.968 (0.964, 0.973) 0.939 (0.934, 0.944)
Recall 0.853 (0.845, 0.860) 0.864 (0.853, 0.875)
Specificity 0.986 (0.984, 0.988) 0.972 (0.970, 0.975)
F1 score 0.906 (0.902, 0.910) 0.899 (0.892, 0.905)

Weighted Average

Accuracy 0.917 (0.915, 0.920) 0.903 (0.893, 0.914)
Precision 0.907 (0.905, 0.910) 0.884 (0.876, 0.892)
Recall 0.869 (0.865, 0.873) 0.846 (0.831, 0.862)
Specificity 0.958 (0.957, 0.960) 0.942 (0.937, 0.948)
F1 score 0.876 (0.873, 0.880) 0.853 (0.838, 0.867)

Table 6.2: Confusion matrix of SGConv-CAE

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 124 (0.873) 18 (0.127) 0 (0.000)
Non-dysplastic BE 1 (0.014) 69 (0.932) 4 (0.054)
Dysplastic BE 7 (0.067) 12 (0.114) 86 (0.819)

Figure 6.4 summarizes the results of the evaluation of different numbers of clusters for
both CAE and BiGAN approaches. As shown, the SGConv-CAE outperforms the SGconv-
BiGAN regardless of number of clusters. Furthermore, by changing the number of clusters,
there is no significant change in the performance of the SGConv-CAE. In contrast, the
number of clusters is a more critical parameter in SGConv-BiGAN. For both SGConv-CAE
and SGConv-BiGAN, we set the number of clusters to 100 and the results summarized in
Tables 6.1, 6.2 and 6.3 are based on 100 clusters for both models.

Table 6.3: Confusion matrix of SGConv-BiGAN

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 118 (0.831) 23 (0.162) 1 (0.007)
Non-dysplastic BE 1 (0.014) 62 (0.932) 4 (0.054)
Dysplastic BE 2 (0.019) 22 (0.210) 81 (0.771)
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Figure 6.4: The effect of the number of clusters on the performance of CBGCN (SGConv)

Figure 6.5: PCA plot for WSIs encoded using (left) SGConv-CAE, (right) SGConv-BiGAN

Spectral-based GCNs

For spectral-based convolution layers, we used ChebConv [70]. Figure 6.5 shows the results
of PCA on WSIs encoded by ChebConv-based CBGCN. Same as previous models, including
the spatial-based approach, the WSIs in squamous and dysplastic BE have been encoded
relatively separately. In contrast, non-dysplastic BE WSIs have confusion with both of these
classes.

The classification results of esophageal WSIs for different models are summarized in
Table 6.4. The reported values are averages with 95% confidence intervals. As shown, the
weighted average of F1 score for the model trained on encoded WSIs using CAE is 0.883 (95%
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Table 6.4: Results of WSI classification using CBGCN (ChebConv) approach

Class Metric Model

ChebConv-CAE ChebConv-BiGAN

Squamous

Accuracy 0.928 (0.923, 0.934) 0.924 (0.921, 0.927)
Precision 0.981 (0.976, 0.986) 0.999 (0.999, 1.000)
Recall 0.854 (0.843, 0.864) 0.828 (0.823, 0.834)
Specificity 0.987 (0.984, 0.991) 0.999 (0.999, 1.000)
F1 score 0.912 (0.905, 0.920) 0.906 (0.902, 0.909)

Barrett’s

Accuracy 0.885 (0.880, 0.890) 0.871 (0.868, 0.875)
Precision 0.675 (0.663, 0.687) 0.646 (0.638, 0.654)
Recall 0.971 (0.965, 0.977) 0.976 (0.973, 0.979)
Specificity 0.859 (0.852, 0.867) 0.839 (0.835, 0.844)
F1 score 0.794 (0.786, 0.802) 0.777 (0.770, 0.783)

Dysplasia

Accuracy 0.941 (0.939, 0.944) 0.947 (0.945, 0.950)
Precision 0.976 (0.971, 0.980) 0.982 (0.979, 0.984)
Recall 0.844 (0.836, 0.852) 0.854 (0.847, 0.861)
Specificity 0.989 (0.987, 0.991) 0.992 (0.991, 0.993)
F1 score 0.904 (0.900, 0.909) 0.913 (0.909, 0.917)

Weighted Average

Accuracy 0.923 (0.919, 0.927) 0.919 (0.917, 0.921)
Precision 0.910 (0.906, 0.914) 0.913 (0.911, 0.914)
Recall 0.877 (0.871, 0.883) 0.871 (0.868, 0.875)
Specificity 0.959 (0.956, 0.961) 0.960 (0.959, 0.962)
F1 score 0.883 (0.878, 0.889) 0.879 (0.876, 0.882)

Table 6.5: Confusion matrix of ChebConv-CAE

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 133 (0.937) 9 (0.063) 0 (0.000)
Non-dysplastic BE 0 (0.000) 73 (0.986) 1 (0.014)
Dysplastic BE 13 (0.124) 13 (0.124) 79 (0.752)

CI, 0.878-0.889) vs. 0.879 (95% CI, 0.876-0.882) for the model trained on encoded WSIs
using BiGAN. The p-value of comparing two models is 0.029, which means the ChebConv
model on CAE-derived features significantly outperforms the ChebConv on BiGAN-based
features. Tables 6.5 and 6.6 shows the confusion matrix of ChebConv-CAE and ChebConv-
BiGAN respectively.

Figure 6.6 summarizes the results of the evaluation of different numbers of clusters
for both the CAE and BiGAN approaches. As shown, the ChebConv-CAE performs better
than the Chebconv-BiGAN regardless of the number of clusters. Furthermore, unlike

Table 6.6: Confusion matrix of ChebConv-BiGAN

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 114 (0.803) 28 (0.197) 0 (0.000)
Non-dysplastic BE 1 (0.014) 69 (0.932) 4 (0.054)
Dysplastic BE 0 (0.000) 14 (0.133) 91 (0.867)
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Figure 6.6: The effect of the number of clusters on the performance of CBGCN (ChebConv)

the ChebConv-BiGAN, the model on CAE-derived features is more stable to changes in
the number of clusters. For both ChebConv-CAE and ChebConv-BiGAN, 100 clusters is
determined as an optimal value for number of clusters and the results summarized in Tables
6.4, 6.5 and 6.6 are accordingly.

Spatial-based vs spectral-based CBGCN

Generally speaking, the classification performance of spectral-based GCN on our dataset is
better than the performance of spatial-based GCN (see Figure 6.7). However, the difference
in performance varies depending on the number of clusters. Since the best performance of
these models is on number of clusters equal to 100, we limit our comparison to this value.
The F1 scores from Tables 6.1 and 6.4 are summarized in Table 6.7.

Figure 6.7: Comparison of the performance of spatial-based and spectral-based CBGCN
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Table 6.7: Comparison of the performance of spatial-based and spectral-based CBGCN

CAE-derived features BiGAN-derived features

Spatial-based (SGConv) 0.876 (0.873, 0.880) 0.853 (0.838, 0.867)
Spectral-based (ChebConv) 0.883 (0.878, 0.889) 0.879 (0.876, 0.882)

As indicated, the spectral-based model outperforms the spatial-based one given both
feature extracting approaches. However on BiGAN-derived features this superiority is
significant at 0.05 level (p−value ≈ 0.000) but on CAE-based feature, it is not (p−value ≈
0.033).

CBGCN vs GCN

The contribution of CBGCN over GCN is incorporating the concept of visual words into the
model by encoding the WSIs using visual words rather than applying patch-level embedding
vectors directly. Tables 6.8 and 6.9 show the confusion matrices of GCN (ChebConv) given
the CAE-derived and BiGAN-derived image features respectively.

Table 6.8: Confusion matrix of ChebConv-CAE (without clustering)

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 101 (0.711) 34 (0.239) 7 (0.049)
Non-dysplastic BE 3 (0.041) 71 (0.995) 0 (0.000)
Dysplastic BE 5 (0.048) 41 (0.390) 59 (0.562)

Table 6.9: Confusion matrix of ChebConv-BiGAN (without clustering)

Predicted label

Squamous Non-dysplastic BE Dysplastic BE

True label
Squamous 113 (0.796) 29 (0.204) 0 (0.000)
Non-dysplastic BE 1 (0.014) 70 (0.946) 3 (0.041)
Dysplastic BE 0 (0.000) 44 (0.419) 61 (0.581)

Comparing these results with the results of the CBGCN model (Tables 6.5 and 6.6),
it can be seen that the cluster-based GCN outperforms the GCN model for the classification
of esophageal WSIs. We employed bootstrapping approach (100 iterations) to test the
significance of the results. Figure 6.8, represents the boxplots of F1 score values on different
iterations for both GCN and CBGCN models.

As shown, the performance of CBGCN is significantly better than GCN. As a result
of employing the cluster-based model, the most improvement has been in the classification
of dysplastic BE WSIs. This class has a great confusion with non-dysplastic BE when we
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Figure 6.8: Comparison of the performance of CBGCN (ChebConv) and GCN (ChebConv) for
classification of WSIs encoded by (left) CAE, (right) BiGAN

Table 6.10: Comparison of the performance of BoVW, CBNIC, and CBGCN

CAE-derived features BiGAN-derived features

BoVW 0.812 (0.808, 0.816) 0.811 (0.807, 0.815)
CBNIC 0.889 (0.884, 0.894) 0.858 (0.855, 0.862)
CBGCN (Spatial-based) 0.876 (0.873, 0.880) 0.853 (0.838, 0.867)
CBGCN (Spectral-based) 0.883 (0.878, 0.889) 0.879 (0.876, 0.882)

use GCN to classify them.

CBGCN vs CBNIC and BoVW

In this study, the CBNIC and CBGCN have been proposed to provide an image-level
representation taking advantage of visual words concept and also preserving the spatial
arrangement of local representations, a characteristic that the BoVW lacks. The same visual
words were employed for image encoding in all models to make sure that the clustering effect
is the same on all models. Figure 6.9 illustrates the performance of all models investigated
in this study given the different number of clusters. For more detailed analysis, the best
performance of different models (considering both accuracy and interpretability) has been
summarized in Table 6.10. As shown, both CBNIC and CBGCN outperform the BoVW
model. Furthermore, the models on CAE-derived image features perform better compared
to BiGAN-derived features.

Analysis of Codeblocks

After training the classifier on compressed images, a weight is learned for each codeblock
that is an estimate of how important it is in the image-level inference. By aggregating the
weights from all images in the test set for every codeblock and averaging, a value is obtained
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Figure 6.9: Comparison of the performance of CBGCN, CBNIC and BoVW

indicating the relative importance of the given codeblock. Figures 6.10 and 6.11 show some
randomly selected image patches associated with codeblocks of the highest importance for
CAE-derived and BiGAN-derived features, respectively.

A medical expert reviewed these sampled tissue tiles. In both models, squamous
tissue tiles were indicative of normal esophageal histology showing squamous cells that are
flat, thin cells lining the esophagus’s surface. For non-dysplastic BE, tiles showed goblet cells
and columnar epithelium typically only present in the small intestine, but with Barrett’s,
the normal esophageal lining shows the presence of these mucin-containing goblet cells and
columnar epithelial cells. For dysplastic BE, crowded hyperchromatic nuclei were visualized
that are known to be present among pre-cancerous dysplastic cells.
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Figure 6.10: Randomly sampled tissue tiles from top 5 codeblocks associated with (left) Squamous,
(middle) Barrett’s, and (right) Dysplasia in the CBGCN-CAE

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 6.11: Randomly sampled tissue tiles from top 5 codeblocks associated with (left) Squamous,
(middle) Barrett’s, and (right) Dysplasia in the CBGCN-BiGAN
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6.5 Discussion

In this chapter, we employed a graph convolution neural network to classify esophageal WSIs.
This approach learns an image-level representation preserving the spatial arrangement of
visual words associated with image patches. The experimental results confirmed the ability
of this model to diagnose non-dysplastic and dysplastic BE. As demonstrated, the cluster-
based GCN outperforms the GCN trained on compressed WSIs considering the tile-level
representations, which indicates the positive contribution of encoding the WSIs using visual
words. Employing visual words rather than tile-level representations also enhances the model
interpretability. In the proposed model, we employed an attention pooling layer to estimate
each visual word’s importance in the predicted label for each image. By aggregating these
values from the individual images, we calculated the overall importance of each visual word.
From a medical perspective, pixel-wise region localization can provide an accurate visual
explanatory factor for the model’s performance, a highly desirable property in decision
support systems. The qualitative performance of this model can be evaluated simply by
inspecting the top-rank visual words by a pathologist. Generally speaking, forasmuch
as the CBCNG deals with a visual dictionary containing a finite number of words, the
results are far more interpretable than the model dealing with a massive number of tile-level
representations.

Although in this chapter, we employed CBGCN on the same size images, the graph-
based encoding of gigapixel images can be employed on images of different sizes. This is an
advantage of graph neural networks over the NIC approach for encoding gigapixel images.
Furthermore, the inherent flexibility of graph-based structures makes it possible to examine
diverse spatial patterns.
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Whole-slide histopathology images play a crucial role in tissue specimen assessment and
exploring underlying mechanisms associated with disease progression and patient outcome.
Visual inspection of these images by pathologists is labor-intensive, time-consuming, and
subject to high inter-observer variability. It has created a need for automated extraction
of meaningful information from WSIs using artificial intelligence and machine learning
techniques. In this dissertation, we investigated the ability of three different approaches
(i.e., BoVW, CBNIC, and CBGCN) to provide a representation of whole-slide histopathology
images. The quality of image representations was evaluated on an esophageal dataset. The
proposed approaches were employed to classify and locate non-dysplastic BE and dysplastic
BE on histopathology images and achieved promising results.

The BoVW approach encodes the images as an order-less histogram of visual word
frequencies. This model provides an image-wise representation in a totally unsupervised way.
This model utilizes neither annotated images nor image labels. Although BoVW showed
a satisfactory performance on the classification of esophageal WSIs, it ignores the spatial
arrangement of visual words, which leads to some information loss. In some cases, such
information loss leads to significant deterioration of model performance.

The CBNIC and CBGCN were proposed to provideWSI-level representation preserving
spatial arrangement of local image features and leveraging visual words that have already
shown a promising contribution in the WSI encoding in the BoVW. The CBNIC provides
a compressed representation of WSIs by organizing the visual words associated with local
tissue tiles derived from a uniform grid of square patches. This approach sidesteps the
steep computational requirements needed to train neural networks on whole slide images
by creating highly compact representations of gigapixel images that are more amenable to
training neural networks.

The CBGCN utilizes graph neural networks for image representation. This model
encodes the WSIs as a graph in which the nodes are visual words connected using vertexes
to capture their spatial proximity information. Training a graph convolutional network on
WSI-level graphs outputs the label of new images.

48
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The results of the classification of esophageal WSIs showed the superiority of CBNIC
and CBGCN over BoVW. Although codeblock analysis was accomplished for all models,
no comparative analysis was performed between the top image patterns of different models.
In future research, these results should be investigated from a medical perspective to see
whether employing CBNIC and CBGCN has led to more informative patterns than BoVW.

In all models studied in this dissertation, the tile-level representations extracted by
CAE or BiGAN were clustered to generate visual words in an unsupervised fashion. The
results demonstrated the capability of unsupervised approach for extracting relevant image
features from WSIs, and consequently, better identifying dysplastic and non-dysplastic BE.
This is important because these approaches avoid the need for manual examination of images.

A deep learning-based model for detecting and locating dysplastic and non-dysplastic
BE patterns on histopathologic images has a wide variety of applications in clinical settings.
Such a model can be integrated into clinical information management systems as a decision
support system. Such systems can provide clinicians and practitioners with possible diagnoses
or improve confidence in their assessments via providing second opinions for prognostic
decision-making of more challenging histopathological patterns. Successful implementation
of this system can support a more accurate classification of pre-malignant diseases of the
esophagus.

Gastroenterologists obtain some esophageal tissue samples from each patient and
examine them to diagnose BE severity. Nevertheless, the models proposed in this dissertation
predict WSI-level labels. This gap can be addressed in future research by extending these
models to aggregate image-level predictions from all samples of a patient and predict the
patient outcome.

Albeit achieving promising results, this study has some general limitations as well as
model-specific ones. First, all biopsy images used for this study were collected from a single
center and scanned with the same equipment. Thus, such data might not be representative
of the entire range of histological patterns in patients worldwide. Collaboration with other
medical centers and collecting more images would refine our model using a more diverse
dataset. Second, to have enough images of the same size to train the model (since in the
CBNIC model, a CNN is trained on compressed WSIs, same size images is a requirement for
this model, while BoVW and graph-based models can be trained on images of different size),
we had to generate images with size 5000×5000. To better evaluate the models’ capability, a
larger dataset and larger images would be ideally preferred. Third, in the proposed models,
we divided WSIs into small patches covering 200 × 200 pixels to be fed into a feature
extractor. The size of patches might be a critical parameter and drastically impacts the
model performance. The performance of the models with varying sizes of tissue tiles would
be worthwhile to investigate. Fourth, dealing with imbalanced datasets (the dataset we
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employed in this study is not the case), the visual codebook is likely to be dominated by the
most observed types of texture samples. Employing multiple disjoint dictionaries [37] can
avoid this issue. Fifth, in this study, we applied a single method of stain normalization, and
the use of other methods may lead to different results. Therefore, investigating the effect of
different stain normalization techniques can be another potential area of future work. The
last but not the least, the experimental results in this study are based on feature extraction
from tissue tiles. A patch-based encoding scheme cannot provide experts and clinicians with
a cell-level insight that is critical in some diseases. Encoding the histology images given the
cell morphology and cell organization as a graph to capture the tissue information [41, 64]
and employing a graph-based model on cell-level graphs can address this issue. This also
can be considered as an avenue for future research.

Some findings of this dissertation have been published in a couple of papers. Some
more papers are also being written that apply the methods presented in this study to
diagnose some other gastrointestinal diseases. They have been listed in the Table 7.1.

Table 7.1: List of papers

No. Paper Staus

1 R. Sali, N. Moradinasab, S. Gluria, L. Ehsan, P. Fernandes, T. U. Shah, S. Syed
and D. Brown, “Deep Learning for Whole-Slide Tissue Histopathology Classification:
A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s
Esophagus,” Journal of Personalized Medicine, vol. 10, no. 4, 2020.

Published

2 S. Guleria, T. U. Shah, J. V. Pulido, M. Fasullo, L. Ehsan, R. Lippman, R. Sali, P.
Mutha, L. Cheng, D. E. Brown and S. Syed, “Deep learning systems detect dysplasia with
human-like accuracy using histopathology and probe-based confocal laser endomicroscopy,”
Scientific reports, vol. 11, no. 1, pp. 1-11, 2021.

Published

3 R. Sali, L. Ehsan, S. Guleria, T. U. Shah, M. Fasullo, R. Lippman, P. Mutha, S. Syed
and D. E. Brown, “CBNIC: Cluster-Based Neural Image Compression for Representation
Learning of Whole Slide Histopathology Images,”

Under Review

4 Prediction of Celiac Disease Severity and Associated Endocrine Morbidities on Whole-Slide
Histopathology Images through Deep Learning-based Image Analytics

Working paper

5 Deep Graph Neural Networks for Crohn’s Disease Diagnosis on Whole-Slide Tissue
Histopathology Images

Working paper

The subject of one of our working papers is the prediction of Celiac Disease (CD)
severity on whole-slide histopathology images using deep learning approaches. This study is
an extension of CeliacNet [10], one of our previously published works in the Gastroenterology
Data Science Lab at the University of Virginia. CeliacNet employs a deep learning model
to predict CD’s severity (based on Marsh score) on tissue tiles using a weakly-supervised
approach. In this model, the results of patch classification are aggregated for making an
inference about the WSIs. In the second working paper, we train the deep models proposed
in this dissertation on ileal biopsies from subjects with distinct Crohn’s phenotype and
histologically controls. This study aims to predict different classes of Crohn’s disease,
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including inflammatory (B1) children at diagnosis who maintained B1 behavior or went
on to develop stricturing (B2), penetrating (B3), or both (B2/B3) subtypes on ileal WSIs.
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