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Introduction 

 The U.S. Bureau of Labor Statistics estimates that the growth in software developer 

positions alone is expected to be 22% from 2019 to 2029 (Bureau of Labor Statistics, 2020). 

Unsurprisingly, the number of students interested in computer science and related fields has 

skyrocketed, with over a 100% increase in undergraduate students in the past decade as 

illustrated by Figure 1. However, as the interest in CS increases, the challenges of helping 

students succeed become more complex given the increasing variety of technical, ethnic, and 

socioeconomic backgrounds. Without understanding the factors that dissuade students from 

pursuing or limit success in computing degrees, instructors and computing departments will 

continue to fail to properly allocate resources that would otherwise improve the situation of 

struggling students. 

 

 

Figure 1: Number of CS undergraduate and Ph.D. students enrolled in American universities from 

2002 to 2017. The number of undergraduate students is increasing rapidly. (NYTimes, 2019) 

 

My technical project will investigate the feasibility to apply code complexity analysis and 

machine learning to determine if there are correlations between code patterns and graded 
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outcomes that, when combined with other student variables, can be used to develop a model to 

predict student success through machine learning. On the other hand, my STS topic looks to 

understand the factors that reduce retention rates and engagement in CS courses from an ethnic 

and racial perspective, with particular focus on underrepresented minority (URM) students. 

Leonard et al. (2013) examined that for engineering students, a “lack of interaction with student 

organizations and technical societies, as well as with peers and faculty can have a significant 

impact on higher-education degree completion.” The STS research will analyze the missing or 

lacking support systems and social group opportunities for URMs in the early stages of their 

post-secondary computing education. 

 

Technical Topic: Utilizing Machine Learning to Predict Student Success and Improve 

Course Resource Management 

 

Transitioning from introductory to intermediate computer science courses, computing 

students are faced with projects and assignments that require longer code and provide less 

structure and guidance in their implementation. Although students are expected to be prepared 

for this additional workload from prior experiences, Mansur (2020) explains that “in 

intermediate (post CS2) programming courses, many students fail to complete one or more 

projects on time,” inhibiting their success in the course. If students that are struggling to 

complete their large assignments cannot be identified, instructors will not be able to properly 

allocate their limited instructional resources to help students that are struggling succeed in the 

course. One potential reason for this shortcoming could be a limited grasp on the target concept 

material, but less attention is given to what degree student code quality (or lack thereof) and 

complexity play a role in the ability to complete assignments and succeed in these courses. 

Research conducted by Mansur suggests that student coding habits and strategies (e.g., time 
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management, testing, debugging) play a key role in the successful completion of large coding 

assignments. As such, the technical project will primarily focus on the feasibility to determine 

student success (i.e. course grades) from students’ submitted code and background factors via 

machine learning. If at-risk students are detected early, instructors will be able to better allocate 

resources to those students that are at risk of dropping out or failing the course. 

 To build such a model that can predict student success, data from students that previously 

enrolled in the course must be gathered. As mentioned previously, the areas of interest are both 

students’ code and their backgrounds. However, because source code is difficult to analyze 

directly, the technical component will first look into designing a preprocessing algorithm to 

examine students’ code automatically. Common metrics, such as commenting and modularity, 

can be parsed and summarized from the source code. Another metric of interest is cyclomatic 

complexity – a metric used for software to indicate how complex a length of code is. A high 

cyclomatic complexity is typically positively correlated with an increased number of faults and 

errors, which makes it an area of interest by software testing teams in industry (Watson et al., 

1996, pg. 1). However, cyclomatic complexity hasn’t been imported to perform a static 

complexity analysis of student source code, which could prove to be a valuable data source. By 

performing these analyses, programming submissions can be converted to structured, statistical 

data. The data points will then be matched and tabulated with background factors such as gender, 

school year, and past grades (see Figure 2 for additional potential factors) to build a student 

profile. These student profiles characterize a student’s situation and help the analysis find 

similarities and differences across unique students. 
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Code Factors Background Factors Target Label 

Number of methods 

Number of lines 

Code commenting 

Cyclomatic complexity 

Debugging strategy 

Language features 

Gender 

School year 

Assignment grades 

Exam grades 

Past courses 

Past course grades 

Time spent on assignments 

Course grade 

 

Figure 2: Table representing potential coding-related factors and background factors to collect 

data on. The target label is the variable to predict. (Created by Author) 

 

Once the student profiles have been gathered, machine learning algorithms can be used to 

analyze the dataset and produce a model (see Figure 3). Machine learning is an application of 

artificial intelligence where computer programs systematically improve their decision-making 

ability through experience (i.e., by analyzing available data). The technique has had success in 

predicting student course grades. For example, using in-class questions as the primary input, 

machine learning has been able to predict student outcomes in different courses reasonably well 

(Liao et al., 2019, pg.13). Categorical machine learning algorithms, such as random forest and 

logistic regression classifiers, will be applied across the available variables mentioned previously 

to develop a model that can be used to predict and label students that are struggling in a course. 

In other words, machine learning algorithms can identify patterns and correlations between 

coding-related factors, background factors, and course grades. Statistically significant 

correlations between one or many factors and the outcome mean that there are certain conditions 

that significantly increase or decrease student performance and success. If a correlation is 

successfully identified, then a model incorporating those correlations can both be utilized in the 

present to inform instructors which students to allocate resources. Additionally, common limiters 

of success can be used to inform long-term planning to improve course delivery for introductory 

and intermediate CS classes in future semesters. 
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Figure 3: Code is collected and fed through algorithms to collect complexity and statistical data. 

This data, along with background information, is put into a single data set which is used to 

generate a predictive model via machine learning. (Created by Author) 

 

STS Topic: Understanding the Current Shortcomings of Diversity and Inclusion in 

Computing Education that Limit Success Rates of Underrepresented Minority Students 

 

At many universities, the University of Virginia included, the proportion of students in 

underrepresented minority (URM) groups in computing education and general engineering is 

significantly below that of the overall student population. As seen in Figure 4, URMs comprised 

less than 40% of all computing degrees conferred in 2015. However, the success and retention 

rates for underrepresented racial groups, such as African American and Hispanic, are also 

significantly lower than other groups, particularly Caucasian. Martin (2018) points out that 

“graduation rates for URMs are declining” with recent graduation rates for African American 

and Latinx students being approximately 10.8% and 5.4-6.4% respectively for all college 

graduates across all majors. This trend is not new, and without identifying the missing 
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opportunities for URMs in the early stages of their post-secondary computing education, this 

disparity will persist. Therefore, a careful examination of differences in financial support, access 

to academic resources and student groups, and interaction with faculty and advisors could 

provide insight into how to better serve these students (Leonard et al., 2013, pg. 2). 

 

 
Figure 4. Number of bachelor’s computing degrees conferred to minorities in the US by race/ethnicity 

(1987-2015) (Whitney et al., 2018, p. 29) 

 

Although a difference in financial background mentioned previously is a well-

documented problem, the key issue of interest is that underrepresented minorities fail to engage 

and form social groups of a similar ethnic and cultural background in a major that is 

predominately male and Caucasian (Leonard et al., 2013, pg. 1). In particular, environments with 

a lack of diversity, such as engineering and computing and information sciences, may cause 

URM students to feel that they don’t belong in the major. One difficulty comes from the lack of 

diversity in terms of applicants enrolled in secondary education. Applicant asymmetry continues 

to be a systemic problem that requires intervention during primary and a secondary education 

with primarily minority serving schools.  Despite this shortcoming, failing to promote inclusion 

and support current URM university students will also continue to perpetuate a significant 
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asymmetry between ethnic and racial groups that achieve computing majors. Cintron et al. 

(2019) recognize that computing students may need “different types and levels of support for 

students from” URM and non-URM backgrounds; failing to determine what support is necessary 

will hinder retention and engagement. 

Therefore, improving URM retention and success requires identification of the missing 

support systems and obstacles that make underrepresented minority students less inclined to 

pursue or stay in computing. Through an actor-network approach, I will investigate how URMs 

interact with peers, advisors, instructors, and student organizations. The research will first 

analyze historical data, as exploring which courses URM students are disproportionately 

stopping at or dropping mid-semester will help determine whether or not URMs are receiving a 

different quality of education or support than their peers. The research will also investigate 

student sentiment regarding their computing experience to identify pain points along the process 

that are less likely to be displayed by non-URM students. From here, the research will provide 

further directions or possible solutions based on the evidence and discoveries found throughout 

the process. By mapping the relationships between these actors and understanding which factors 

significantly benefit or hinder URM retention and success, computing education faculty can 

design better support systems and courses and promote inclusion and diversity.  

Conclusion 

 

 Investigating the underlying causes that inhibit student success in computing education 

provides the potential to improve student outcomes at the University of Virginia and other post-

secondary institutions. The technical component of the thesis project applies across all students 

analyzes if specific programming techniques gained from prior experiences have a direct 

correlation to graded outcomes to a statistically significant degree. If so, models built using 
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machine learning may be constructed that can help direct resources to students in need of 

additional assistance. On the other hand, the STS component narrows in on the dimension of 

diversity and aims to look at ways that underrepresented minority students are disproportionately 

affected by the current, relatively undiversified social environment in computing and engineering 

as a whole. In this case, mapping the points of interaction between URMs and other actors may 

provide critical insight into how computing departments can increase diversity and inclusion as 

students commit to and declare their majors. If both of these objectives are completed 

successfully, computing departments can further investigate ways to make changes at the course 

delivery level and a student support and inclusion level. 
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