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Abstract 

In this thesis, a computational scheme was developed to generate thousands of microstructure 

realizations of unidirectional composites with random fiber distributions employed by the 

homogenization theory called FVDAM. Once the microstructure was realized using randomly 

distributed fiber centers, it was then discretized into equally dimensioned subvolumes, and the 

material assignment matrix was created for input into FVDAM simulation. Subsequently, the 

FVDAM homogenization theory was incorporated into a python-driven interface that enabled 

generation of thousands of elastic-plastic stress-strain curves for unidirectional metal matrix 

composites with random fiber distributions. The generated microstructure realizations, the 

corresponding homogenized elastic moduli and stress-strain responses were then employed in ANN 

and CNN architectures that were designed and optimized for predictive purposes. 

The calculated homogenized moduli and stress-strain responses under six fundamental 

loading modes were first correlated with the microstructural realizations to understand the effect of 

random fiber distributions on the response in the elastic and elastic-plastic regions. Whereas the 

effect of fiber randomness on the homogenized moduli is small, it is much larger on the elastic-

plastic response, but also dependent on the loading direction relative to the fiber orientation. As 

expected, and confirmed by simulations herein, the microstructural randomness has virtually no 

effect on the response by uniaxial loading along the fiber direction due to the constraint of the fibers 

that controls the plastic strain evolution. Large microstructure effects are seen under normal loading 

transverse to the fiber direction, which become somewhat smaller under transverse shear and 

smaller still under axial shear. 

Subsequently, deep ANN and CNN architectures were designed and optimized to predict both 

the homogenized elastic moduli and direction-dependent elastic-plastic stress-strain responses of 

microstructural realizations representative of random fiber composites. Whereas the input to the 

ANN model consisted of fiber placement locations, the CNN model employed full-field 

microstructural images discretized into subvolumes or pixels. Nineteen hundred and fifty 

microstructural realizations were sufficient for training, testing and validation, which produced very 

good prediction of the homogenized stress-strain responses of the remaining fifty realizations by 
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both ANN and CNN algorithms. In contrast, 20,000 realizations were required for the prediction of 

the 13 homogenized elastic moduli based on the CNN algorithm due to the small effect of random 

fiber microstructures. Nonetheless, the CNN algorithm successfully captured the very small moduli 

indicative of monoclinic behavior several orders of magnitude smaller than the moduli 

characteristic of orthotropic response. By contrast, the ANN algorithm did not perform well due to 

the input data type and the size of the training data set, likely because the small differences in the 

homogenized moduli produced by fiber placement variations required significantly larger number 

of features and/or data for accurate prediction. 

The algorithms and generated results reported in the thesis are important in developing 

accurate ML-based computational models for implementation in multi-scale analyses of large-scale 

composite structures. Perhaps most significantly, the execution times required to predict the 

homogenized elastic-plastic response of random fiber composites based on the ANN/CNN 

algorithms are several orders of magnitude smaller that the full-scale calculations based on the 

FVDAM homogenization theory, enabling multi-scale analysis of composite structures. 
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Chapter 1 

Introduction 

1.1 Motivation 

Fiber-reinforced materials are the building blocks of laminated and woven composites used 

in modern structural applications. Most traditional composites are fabricated with small-diameter 

fibers such as glass, carbon, or graphite, producing microstructures that are intrinsically random, 

requiring large number of microstructural realizations for establishing structure-property 

relationships. These relationships are expressed in terms of linear or nonlinear equations, often 

called generalized Hooke’s law, that relate average stresses to average strains applied to a small 

enough volume of a composite material considered as representative of the overall behavior. The 

term homogenization is employed to describe computational techniques that accomplish this. 

Linear relations describe linearly elastic behavior whereas nonlinear equations describe behavior 

that includes plasticity, creep, etc. 

Homogenization-based analyses of representative volume elements (RVE) or repeating unit 

cells (RUC) characteristic of statistically homogeneous or periodic composites, respectively, Fig. 

1.1, present computational challenges when large numbers of randomly distributed fibers contained 

within an RVE or RUC are involved. The difference in the two representations lies in how the 

boundary conditions are applied to the bounding surface of the two volumes, Drago and Pindera 

[1]. In the case of statistically homogeneous composites, either homogeneous displacement or 

homogeneous tractions are applied which are expected to produce the same homogenized moduli. 

Either of the two boundary conditions are supposed to produce the same boundary deformation. As 

an example, a square RVE will deform into a rectangular one under stresses transverse to the fibers 

and into a smaller square under axial stress parallel to the fibers. This can only be approximately 

achieved if the RVE contains enough fibers because the boundary deformation will be influenced 

by the fibers adjacent to it. In contrast, in the case of periodic composites, periodic boundary 

conditions involving both displacements and tractions are applied.    
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Figure 1.1. Schematic representation of a unidirectional composite (top), and statistically 
homogeneous (bottom left) and periodic (bottom right) material microstructures. 

The two representations produce similar homogenized moduli if the volume representative 

of the microstructure contains enough fibers within it. 

Majority of homogenization techniques applied to random fiber composites that satisfy the 

requirement of local stress field accuracy necessary for accurate elastic and post-elastic 

homogenization are based on numerical approaches. These include finite-difference, finite-element 

and finite-volume based solutions of the stress fields within RVE or RUC, with the finite element 

method being the dominant one, as discussed in the reviews provided in Refs. [2-4]. Some progress 

has been made in developing alternative computational approaches, such as the finite volume and 

elasticity-based methods [5,6], but the finite element method continues to dominate despite its 

limitations vis-à-vis rapid analysis of multi-fiber RUCs of periodic material microstructures. The 

need to generate thousands of random microstructure realizations for characterizing the response 

of random fiber unidirectional composites makes the method ill-suited for microstructure-property 

identification. 



 
 
 

3 

An alternative approach to characterize the elastic and elastic-plastic response of random 

fiber composites is to use machine learning (ML) techniques that establish relationships between 

microstructural features and the homogenized response under different types of loading.  The 

application of artificial intelligence (AI) techniques in general, and machine learning (ML) 

techniques specifically, to the area of mechanics of materials is nowadays attracting increasing 

attention because of demonstrated dramatic reductions in computational times required to 

characterize the material response at the homogenized level.  A properly trained ML algorithm is 

capable of predicting the homogenized response of a material microstructure that it has not seen 

before much faster than solving the entire RVE or RUC problem numerically. The development of 

an accurate ML algorithm requires generation of a large data set that enables to establish an implicit 

relationship between the microstructural features of a random fiber composite and the resulting 

homogenized stress-strain curve under different loading directions. Once the data set is generated, 

an ML algorithm is then trained and then employed for predictive purposes. 

1.2 Machine learning approaches and background work 

ML techniques mimic the way a human brain processes information received from different 

sensory receptors. The theoretical basis for construction of logical networks that mimic brain 

activity has been developed nearly 80 years ago [7]. However, it has only been relatively recently 

that these artificial networks began to play an important role in fluid and solid mechanics 

communities, and elsewhere, due to the introduction of a back-propagation algorithm [8] that 

efficiently identifies optimal values of weights associated with nodal connections between adjacent 

layers of a neural network. These networks now play increasingly important roles in, amongst many 

applications, image identification and segmentation, microstructural identification, discovery of 

novel materials for targeted applications. In solid mechanics, the back-propagation neural network 

algorithm has been employed in a seminal paper to model the nonlinear response of concrete [9], 

motivating rapid popularization and spread of this data-driven modeling approach. ML algorithms 

continue to be employed in biomedical applications, discovery of new materials with unique 

properties, re-construction of fluid flow from limited sensor input data as well as construction of 

constitutive equations in the elastic and elastic-plastic regimes, amongst many other applications  

[10-19]. Most recently, there has been an explosion of different neural network architectures 
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proposed, with emphasis on incorporating physics-based models that target key deformation 

mechanisms through loss functions, for example [20-22]. These endeavors are limited when applied 

to heterogeneous materials, however, because of the prohibitively high computational costs in 

generating large sets of data using the finite-element approach, which continues to be the dominant 

analysis technique. 

Neural network architectures employed to predict homogenized response and recover local 

fields of heterogeneous materials include deep ANNs (more than three inner layers), CNNs, and 

recurrent neural networks (RNN) including GRUs, LSTMs and TCNs, with new architectures 

proposed continuously. Typically, these networks map loading history, material properties, and/or 

microstructure onto homogenized response or local fields under typically unidirectional loading, 

but generally not both thus far. Literature search reveals that there are no reported results of network 

architectures where loading, material properties and microstructure are mapped onto homogenized 

stress and local stress fields whilst incorporating physics-based considerations that guide the weight 

optimization and ensure stability of the predicted homogenized stresses in structural analysis 

applications. 

Previous work has shown that both the ANN and CNN algorithms have performed well in 

predicting the effective homogenized moduli based either on the coordinates of fiber centers in the 

case of ANN, and on the RUC images obtained from fibers centers and radii in the case of CNN, 

when the data size is big enough, [23]. These results were obtained from numerical experiments 

based on 60,000 microstructural realizations of the RUC. In both the ANN and CNN models, 48,000 

microstructural realizations were used for training, and 12,000 for testing. The accuracy for the 

ANN model was about 97% and the CNN around 98%. The microstructural realizations were 

generated by assigning random values to the fiber centers, which defined the fiber radii for the 

investigated fiber volume fractions of the RUC, and the homogenized moduli for different numbers 

of randomly placed fibers within the RUC were calculated by the hybrid homogenization theory 

(HHT) developed by Yin at al. [24]. Homogenized moduli of 60,000 RUC microstructural 

realizations could be calculated using HHT due to its efficiency arising from the combined 

analytical and semi-analytical approaches in determining the fiber and matrix stress fields, and 

generating the random fiber microstructures. Figure 1.2 illustrates the degree of accuracy of 

predicting the 13 independent elastic homogenized moduli by the ANN algorithm with similar 
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results obtained from the CNN algorithm.  We note that HHT at present is limited to elastic analysis 

and therefore, despite its efficiency, elastic-plastic response of thousands of random RUCs could 

not be generated. 

 

 

Figure 1.2 Previous work based on the 60,000 RUCs, illustrating the predictive capability 
of the ANN algorithm in estimating homogenized moduli of a random unidirectional 
composite, Ref. [23]. 

 

1.3 Rapid homogenization of random composites via FVDAM  

Neural networks require large data sets for training purposes. In the context of developing 

neural network architectures that map a complex material microstructure onto a homogenized 

stress-strain curve, generation of such data involves repeated solution of a RUC boundary-value 

problem for a given loading path for each microstructural realization with multiple, randomly 

situated fibers. Accurate solutions to such problems may only be achieved using numerical 

techniques, with the finite-element method the most common one. 

An attractive alternative to the solution of homogenization problems is offered by the finite-

volume method which continues to gain popularity. The finite-volume method was originally 

developed for the solution of boundary-value problems in fluid mechanics, cf. Versteeg and 
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Malalasekera [25]. Satisfaction of the governing (transport or equilibrium) field equations within 

subvolumes of the investigated discretized domain in an integral sense is a key feature of the finite-

volume method which distinguishes it from variational techniques such as the finite-element 

method. In the context of fluid mechanics applications, this is done upon first expressing the field 

equations in a finite-difference form, and then extrapolating the grid point field variables to the 

subvolume surfaces surrounding each point to enable the required surface integration, thereby 

ensuring local field equation satisfaction in the integral sense. 

The simplicity and demonstrated stability of the finite-volume method in fluid mechanics 

applications has motivated the transition of this technique to solid mechanics problems during the 

past 35 years as an alternative to the finite-element approach. For static elasticity-type problems 

this reduces to the satisfaction of the equilibrium equations in the integral sense within subvolumes 

of the discretized analysis domain, 

∫ "!"!"
!#!

+ 𝐹$%𝑑𝑉% = ∫ 𝜎&$𝑛&𝑑𝑆%'#
+ ∫ 𝐹$𝑑𝑉%(#

= 0																																			(#
(1.1) 

where 𝑛& are components of the unit normal to the bounding surface 𝑆% of the subvolume 𝑉%, and 

Gauss' Theorem was employed to convert the volume integral of stress divergence to the surface 

integral of traction components. Three versions of this technique can be identified in the analysis 

of solid mechanics problems, as discussed by Cavalcante et al. [26]. These versions are 

characterized by different subvolume discretization of the investigated domain and different 

displacement field representations within subvolumes, which lead to different manner of 

approximating field variables along subvolume surfaces. 

The first two approaches, known as the cell-centered and cell vertex finite-volume 

techniques originally developed for homogeneous materials and structures, were motivated by the 

established finite-volume technique for fluid mechanics problems and elements of the finite-

element method. The cell-centered finite-volume method is similar to the original fluid mechanics 

version and employs subvolumes which are centered around grid points at which field variables are 

defined. Initially, structured meshes based on rectangular or cylindrical subvolumes had been used 

for domain discretization, which were subsequently generalized to unstructured meshes with 

arbitrary subvolume topology based on polyhedral shapes. The cell vertex, or vertex based, finite-
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volume approach leverages elements of the finite-element method in domain discretization and 

displacement field approximation. The domain is first discretized into finite elements, and the 

common vertices of adjacent elements provide grid points at which field variables are defined using 

shape functions borrowed from the finite-element approach. Subvolumes centered around grid 

points are then constructed taking contributions from elements with common vertices and using 

element and face centers as subvolume corners. Thus the subvolume geometry and displacement 

field approximation are directly linked to element discretization and employed shape functions. 

Satisfaction of the local equilibrium equations is carried out over all subvolumes containing every 

common vertex shared by adjacent elements forming grid points. Arbitrarily shaped polygonal 

control volumes may thus be constructed based on the chosen element type used to mesh the 

analysis domain. 

As discussed by Pindera et al. [27], the third version of the finite-volume method evolved 

independently and nearly in parallel to model materials with heterogeneous microstructures, 

including periodic and functionally graded materials. The structural finite-volume theory has its 

origins in the so-called Higher-Order Theory for Functionally Graded Materials (HOTFGM), 

developed in a sequence of papers in the 1990's. This theory provided the main framework for the 

construction of its homogenized counterpart initially named the Higher-Order Theory for Periodic 

Multiphase Materials. The structural and homogenized versions of these so-called higher-order 

theories were subsequently re-constructed in a sequence of papers by Pindera and co-workers by 

simplifying the discretization of analysis domain into rectangular subvolumes which, in turn, 

facilitated implementation of the efficient local/global stiffness matrix approach, cf., Ref. [28-30]. 

The re-constructed theories were further extended by incorporating parametric mapping to enable 

efficient modeling of complex microstructures using quadrilateral subvolumes, cf., Ref. [31-33]. 

The reconstructed finite-volume theories are similar to the cell-centered techniques that 

evolved in parallel for homogeneous materials and structures during the same time frame. However, 

in contrast with the early cell-centered techniques, the re-constructed theories employ explicit 

displacement field approximation within individual subvolumes and follow an elasticity-based 

approach in satisfying interfacial displacement and traction continuity conditions in a surface-

averaged sense. This is consistent with the satisfaction of equilibrium equations in a surface-
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averaged sense and leads to explicit construction of local stiffness matrices for individual 

subvolumes which, in turn, substantially reduces the number of unknown variables, and allows 

direct comparison with the finite-element method. Assembly of local stiffness matrices into the 

global stiffness matrix is then performed such that continuity of surface-averaged tractions and 

displacements is satisfied. The satisfaction of both traction and displacement continuity across 

subvolume faces produces a robust solution technique that naturally accommodates heterogeneous 

material microstructures. A review of the finite-volume method in solid mechanics applications has 

been recently provided by Cardiff and Demirdzic [34]. 

In this thesis, the original version of FVDAM based on rectangular or square discretization 

of the RUC material microstructure developed by Bansal and Pindera [29] will be employed 

because it is better suited for the generation of thousands of microstructural realizations with 

random fiber distributions than the parametric version. 

1.4 Objectives 

In this thesis, we will explore the performance of two different types of neural network 

architectures in predicting the homogenized elastic and elastic-plastic stress-strain response of 

random fiber composites using an extensive set of data generated by FVDAM adopted for this 

purpose. The two architectures are the artificial neural network (ANN) and the convolutional neural 

network (CNN) which accept two different types of inputs to establish microstructure-homogenized 

property relationships. These two architectures are described in Chapter 4. 

The ANN architecture maps microstructural details of a RUC described by a few parameters 

(fiber number, fiber centers and radii, and fiber volume fraction) to the homogenized stiffness 

matrix and stress-strain curve that corresponds to a particular loading direction. This is the simplest 

representation of the microstructure. In contrast, the CNN architecture maps all of the 

microstructural details of a RUC as perceived by direct visual observation, or simply the RUC 

image, to the homogenized stress-strain curve by identifying and extracting pertinent geometric 

features. Hence the number of parameters defining the analyzed microstructure is substantially 

greater. The questions that will be addressed in the investigation include the differences in the 

convergence, accuracy, and efficiency of the two algorithms. 
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A related question is the speed-up obtained from the ML algorithms relative to the FVDAM-

based simulations. Even though FVDAM is an efficient homogenization scheme in stand-alone 

applications, the generation of a homogenized stress-strain response is on the order of minutes, 

depending on the complexity of the analyzed RUC microstructure and the length of the load path. 

Hence it cannot be efficiently employed in large-scale structural applications as a user-defined 

subroutine to generate homogenized response at a point in the analyzed structure. Reducing such 

calculations to a fraction of a second using a trained and accurate ML-based algorithm would 

produce an enabling multiscale computational capability. This thesis aims to determine which of 

the two approaches is more accurate and efficient in predicting the homogenized response of 

random fiber composites. 

1.5 Thesis Outline 

The thesis is organized as follows. Chapter 2 describes the computational engine that 

generates homogenized stress-strain response of a RUC containing random fiber distributions, as 

well as the automated manner of random microstructure realizations for use in FVDAM simulations 

that enables rapid generation of thousands of unit cells containing randomly distributed fibers with 

a fixed volume fraction.  The microstructures are defined by material assignment matrices, with 

entries corresponding to square subvolumes into which the unit cell is subdivided. Each entry 

defines either the matrix or fiber phase contained within the corresponding subvolume, Fig. 1.3. 

This information is passed to FVDAM to generate both the elastic and elastic-plastic response for 

a given loading direction. Chapter 3 presents homogenized elastic moduli and elastic-plastic stress 

strain responses under six unidirectional stress loading paths obtained from the thousands of 

generated microstructural realizations, including extensive results that illustrate for the first time 

the effect of random microstructures on the extent of scatter observed in the homogenized elastic-

plastic responses. The extensive data generated in Chapter 3 is then employed to train and predict 

the homogenized stress-strain response of random unidirectional composites. Chapter 4 describes 

two different ML algorithms employed for this purpose whereas Chapter 5 contains the predicted 

results. The main contributions and conclusions of this investigation are summarized in Chapter 6. 
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Figure 1.3 An example of a simple two-material microstructure and the corresponding 
material assignment matrix 
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Chapter 2 

FVDAM and Microstructural Realization 

In this chapter, we describe the computational homogenization engine called FVDAM 

employed to generate random microstructures of unidirectionally reinforced composites. This 

homogenization approach is particularly convenient for generating regular as well as large numbers 

of random microstructures due to the manner in which the microstructural features are mimicked 

through a subdivision of the unit cell into subvolumes. The different phases or constituents con- 

tained within the unit cell are represented by numbers that correspond to materials with different 

thermo-mechanical moduli assigned to different subvolumes using the material assignment matrix 

which reflect the unit cell subdivision into rows and columns. The subvolumes may also be 

interpreted as pixels for construction of a CNN architecture for machine learning purposes. 

Examples of two regular arrays and one random array of unidirectional composites are illustrated 

in Fig. 2.1. 

The next two sections describe the main features of FVDAM and the automated algorithm 

employed to generate random microstructures. The FVDAM description follows Ref. [29] whereas 

the random microstructure generator is based on the recent contribution of Adakroy et al. [35]. The 

third section describes the python code that employs the generated microstructures to simulate the 

elastic-plastic response of the unit cell along different loading paths, and the final section 

summarizes the contributions described in this chapter. The construction of the random 

microstructure generator and the master code that enables automated simulations of the 

homogenized response of thousands of unit cells with random microstructures illustrated in Chapter 

3 are the two new contributions that set the stage for the implementation of machine learning 

algorithms described in Chapter 4 and implemented in Chapter 5. 
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Figure 2.1. Examples of random (top) and regular (bottom: square and hexagonal arrays) 

microstructures that may be simulated by FVDAM. 
 

2.1 Finite-Volume Direct Averaging Micromechanics 

The original FVDAM theory contributed by Basal and Pindera [29] employs a rectangular 

grid to mimic the actual microstructure of the repeating unit cell RUC that defines a periodic 

multiphase material with continuous reinforcement along the 𝑥)  axis, Fig. 2.2. The unit cell 

microstructure is made up of any number of arbitrarily distributed phases that produce fully 

anisotropic response in the 𝑥* − 𝑥+ plane. unit cell. The global coordinates (𝑥), 𝑥*, 𝑥+) are used to 
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describe the homogenized response of the periodic array, whereas he local coordinates (𝑦), 𝑦*, 𝑦+) 

are associated with the unit cell. The subvolumes employed to discretize the unit cell are labelled 

(b, g). The indices b = 1,…	, 𝑁b	 and γ = 1,…	, 𝑁, which span the unit cell along the local 𝑦) and 

𝑦* axes, respectively, identify the (b, g) subvolume in the 𝑦* − 𝑦+ plane. 

 

 
Figure 2.2. A periodic array of differently shaped fiber reinforcement embedded in a matrix 
phase, and discretization of the repeating unit cell into square or rectangular subvolumes. 

 
The local coordinates 𝑦6*

(.), 𝑦6+
(0) attached to the subvolume’s center specify locations within 

the particular (b, g) subvolume. The subvolume dimensions along the 𝑦* and 𝑦+ axes are ℎ. and 𝑙0, 

respectively, such that the overall RUC dimensions H and L are: 𝐻 = ∑ ℎ.
1$
.2)  and 𝐿 = ∑ 𝑙0

1%
02) . 

The displacement field in each subvolume is approximated by a two-scale expansion in 

terms of global and local coordinates, 
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𝑢!
(#,%)(𝑥, 𝑦) = 	 𝜀!̅'𝑥' +	𝑢!

((#,%)(𝑦)							𝑖 = 1,2,3																																								(2.1) 

where 𝜀$̅& are the specified homogenized strains which play the role of loading parameters, and the 

fluctuating displacement field components are given in terms of the local coordinates >𝑦6*
(.), 𝑦6+

(0)? 

attached to the subvolume's centroid, 

𝑢!
((#,%) = 𝑊!()))

(#,%) + 𝑦2*
(#)𝑊!(+))

(#,%) + 𝑦2,
(%)𝑊!()+)

(#,%) +
1
2
33𝑦2*

(#)* −	
ℎ#
*

4
7𝑊!(*))

(#,%) +	
1
2
33𝑦2,

(%)* −	
𝑙%*

4
7𝑊!()*)

(#,%)(2.2) 

The unknown fifteen coefficients 𝑊$(34)
(.,0)  are expressed in terms of the surface-averaged 

displacements, leading to the construction of local stiffness matrices for each subvolume, which are 

then assembled into the global stiffness matrix for the unit cell such that the tractions and 

displacements are satisfied in a surface-averaged sense. The construction of the local stiffness 

matrix involves the satisfaction of the subvolume equilibrium equations in the surface averaged 

sense. 

2.1.1 Local stiffness matrix 

The local stiffness matrix for the (b, g) subvolume is constructed by relating the surface-

averaged fluctuating displacements to the surface-averaged tractions on each face of the subvolume. 

The surface-averaged displacements on the four faces of the (b, g) subvolume are defined by 

 
𝑢9!
(*±(#,%) =	 +

.!
∫ 𝑢!

((#,%) ;± /"
*
, 𝑦2,

(%)= �̅�𝑦,
(%)	0.#/*

2.!/*
 ,  𝑢9!

(,±(#,%) =	 +
/"
∫ 𝑢!

((#,%) ;± /"
*
, 𝑦2*

(#)= �̅�𝑦*
(#)	0.#/*

2.!/*
		(2.3)       

Performing the above surface averaging yields relations between the surface-averaged 

fluctuating displacements and the unknown coefficients 𝑊$(34)
(.,0)  in the subvolume displacement 

field approximation. The corresponding traction components, given in terms of stresses through the 

Cauchy’s relations 

𝑡!
(#,%) = 𝜎'!

(#,%)𝑛!
(#,%)																																																																					(2.4) 

are obtained from the generalized Hookeís law for the (b, g) subvolume, 

 
𝜎!'
(#,%) = 𝐶!'3.

(#,%) ;𝜀3.
(#,%) −	𝜀3.

4(#,%)=																																																								(2.5) 
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where the plastic behavior is limited to isotropic subvolumes, whereas the strictly elastic 

subvolumes may be orthotropic or (transversely) isotropic. The subvolume strains are given in terms 

of the macroscopic and fluctuating strain components upon use of the strain-displacement relations 

 

𝜀!'
(#,%) =	𝜀!̅' +

1
2D

𝜕𝑢!
((#,%)

𝜕𝑦'
+	
𝜕𝑢'

((#,%)

𝜕𝑦!
	F																																															(2.6) 

The surface-averaged tractions on the four faces of the (b, g) subvolume are defined in the 

same manner as the corresponding fluctuating displacements, 

 
�̂�!
(*±(#,%) =	 +

.!
∫ 𝑡!

((#,%) ;± /"
*
, 𝑦2,

(%)= �̅�𝑦,
(%)	0.#/*

2.!/*
, �̂�!
(,±(#,%) =	 +

/"
∫ 𝑡!

((#,%) ;± /"
*
, 𝑦2*

(#)= �̅�𝑦*
(#)0.#/*

2.!/*
				(2.7) 

Performing the above surface averaging, the surface-averaged traction components are 

obtained in terms of the first and second order unknown coefficients 𝑊$()6)
(.,0),𝑊$(6))

(.,0),𝑊$(*6)
(.,0),𝑊$(6*)

(.,0). 

Using the definitions for the surface-averaged fluctuating displacement, these coefficients are 

expressed in terms of the surface-averaged displacements and the remaining unknown zero order 

coefficients 𝑊$(66)
(.,0). Satisfaction of the subvolume equilibrium equations in the surface-average 

sense 

 
∫ 𝑡!

(#,%)𝑑𝑆(#,%)5(",!)
= 0																																																																	(2.8)   

produces the remaining set of relations between the surface-averaged fluctuating displacements and 

zero order coefficients, enabling the construction of the local stiffness matrix that relates the 

surface-averaged fluctuating displacements to the corresponding surface-averaged tractions, 

 
�̂�(#,%) = 𝐾(#,%)𝑢9 ((#,%) +	∆𝐶(#,%)𝜀̅ + 𝑔(#,%)																																															(2.9) 

where the local ∆𝑪(.,0) is comprised of the differences in the material stiffness matrices of adjacent 

subvolumes. Explicit expressions for the elements of the local stiffness matrix 𝐾(.,0) and plastic 

vectors 𝑔(.,0) which contain integrals of plastic strains have been provided in closed form by Bansal 

and Pindera [29]. 
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2.1.2 Local stiffness matrix 

Assembly of the local stiffness matrices by enforcing the continuity of both surface-

averaged displacements and tractions, together with periodic boundary conditions, produces a 

global system of equations for the unknown surface-averaged fluctuating displacements. In the 

local/global stiffness matrix approach, the redundant displacement continuity equations are 

eliminated by setting the surface-averaged displacements at the interfaces associated with the 

adjacent subvolumes (b, g), (b+1, g) and (b, g), (b, g+1) to common unknowns, 

 
𝑢9!
(*0(#,%) = 𝑢9!

(*2(#0+,%) =	𝑢9!
(*(#0+,%)	𝑎𝑛𝑑		𝑢9!

(,0(#,%) = 𝑢9!
(,2(#,%0+) =	𝑢9!

(,(#0+,%)												(2.10) 

for i = 1, 2, 3, upon application of the traction continuity conditions at these common interfaces 

	
	�̂�!
(*0(#,%) +	 �̂�!

(*2(#0+,%) = 0					𝑎𝑛𝑑					�̂�!
(,0(#,%) +	 �̂�!

(,2(#,%0+) = 0																									(2.11) 

 
The above relations hold true at 𝛽 = 1,… ,𝑁. − 1  and 𝛾 = 1,… ,𝑁0 − 1  subvolume 

interfaces, producing G3𝑁. − 1I𝑁0 + 3(𝑁0 − 1)𝑁. equations containing G3𝑁. − 1I𝑁0 + 3G𝑁0 −

1I𝑁. unknown interfacial surface-averaged displacements in the unit cell’s interior and 6(𝑁. +

𝑁0) surface-averaged displacements at the external boundaries. The additional equations necessary 

for the determination of the 6𝑁.𝑁0 unknown surface-averaged displacements are obtained from the 

periodicity conditions imposed on the fluctuating surface-averaged boundary displacements, 

 
𝑢9!
(*(+,%) =	𝑢9!

(*67"0+,%8				𝑎𝑛𝑑				𝑢9!
(,(#,+) =	𝑢9!

(,6#,7!0+8																																				(2.12) 

and surface-averaged boundary tractions 
 

�̂�!
(*(+,%) +	 �̂�!

(*67"0+,%8 = 0					𝑎𝑛𝑑					�̂�!
(,(#,+) +	 �̂�!

(,6#,7!0+8 = 0																													(2.13) 

Imposition of the interfacial traction and displacement continuity conditions at the common 

subvolume faces, together with the periodic boundary conditions, produces the global system of 

equations for the determination of the common surface-averaged fluctuating displacements 

𝐾𝑼S ( =	∆𝑪𝜀̅ + 𝑮																																																																						(2.14) 
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where the vector 𝑼N 7  contains all the unknown fluctuating surface-averaged displacements, the 

global ∆𝑪 matrix is comprised of the differences in the material stiffness matrices of adjacent 

subvolumes, and the vector G contains integrals of plastic strains in the subvolumes. The global 

stiffness matrix singularity is eliminated by constraining the four corner subvolume faces in order 

to remove rigid body displacements. The remaining interfacial surface-averaged displacements are 

then determined by solving the reduced stiffness matrix system of equations iteratively at each load 

increment, given that vector G contains surface-averaged plastic strains which depend implicitly 

on surface-averaged displacements. 

2.1.3 Homogenized Hooke’s Law 

The solution for the unknown fluctuating surface-averaged displacements 𝑼N 7 at each point 

𝜀 ̅along the load path enables calculation of the subvolume volume-average strains 𝜀$̅&
(.,0). These 

strains are then related to the applied homogenized strains 𝜀̅  and plastic effects through the 

localization relations 

𝜀!̅'
(#,%) = 𝑨(#,%)𝜀̅ + 𝑫(#,%)																																																				(2.15) 

where 𝐴(.,0) are Hill’s elastic strain concentration matrices found by the successive application of 

one macroscopic strain component at a time without considering plastic deformations. The load 

path-dependent vector 𝐷(.,0) contains plastic contributions to the (𝛽, 𝛾) subvolume deformation 

and is generated by solving Eq. (2.14) at each increment of the applied macroscopic strain in the 

manner described in the following subsection. Use of the localization relations at each converged 

sequence of iterations in the expression for the average composite stress 

𝜎2 = 	
1
𝐻𝐿

ZZ 𝑙%ℎ#𝜎2(#,%)
7"

#9+

7!

:9+

																																																							(2.16) 

where 𝜎6(.,0) is obtained from Eq. (2.5), produces the homogenized Hooke’s law in the form, 

𝜎2 = 𝐶 ∗ (𝜀̅ 	− 	𝜀̅4)																																																														(2.17) 

where the homogenized stiffness matrix 𝑪∗ is given by， 

𝐶∗ =		
1
𝐻𝐿

ZZ 𝑙%ℎ#𝐶(#,%)𝐴(#,%)
7"

#9+

7!

:9+

																																														(2.18)		 
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and the homogenized plastic strain 𝜀9̅ is 

𝜀4̅ =	
[𝐶∗]2+

𝐻𝐿
ZZ 𝑙%ℎ#(𝜀(̅#,%)−	𝐷(#,%))

7"

#9+

7!

:9+

																																								(2.19) 

2.1.4 Numerical iterative scheme 

The plastic strain fields depend on the loading history and thus the unknown surface-

averaged fluctuating displacements depend implicitly on the evolving subvolume plastic fields. 

Hence the solution of Eq. (2.14) is obtained iteratively at each point along the load history defined 

by the imposed homogenized strain 𝜀̅. At each load increment, the surface plastic strains are 

calculated using Mendelson’s technique, Mendelson [36], wherein the point-wise plastic strains 

within the reference subvolume are decomposed into converged contributions from the previous 

load step plus increments that result from the imposed load increment 

 

𝜀$&
9(.,:) >𝑦6*

(.), 𝑦6+
(0)? = 	 𝜀$&

9(.,:) >𝑦6*
(.), 𝑦6+

(0)? |9:;<$=>? + 𝑑𝜀$&
9(.,0)(𝑦6*

(.), 𝑦6+
(0)) 

 

Plastic strain increments are calculated using the classical plasticity theory with isotropic 

hardening based on the Prandtl-Reuss equations reformulated by Mendelson [36 in terms of so-

called modified total strain deviators 𝑒$&7 , rather than deviatoric stresses, as follows 

𝑑𝜀!'
4 =	

𝑒!'(

�̅�<==
𝑑𝜀4̅																																																																			(2.20) 

where 𝑒$&7 = 𝜀$& −
)

+@&&A"!
− 𝜀$&

9 |9:;<$=>? , �̅�;BB = S2/3𝑒$&7 𝑒$&7 , and the effective plastic strain 

increment 𝑑𝜀9̅ = �̅�;BB − 𝜎6/3𝜇. The implementation of the reformulated equations is made very 

efficient by the plastic loading condition 1 − "C
+D;̅'((

> 0, Williams and Pindera [37]. 

 

Once the converged solution to Eq. (2.14) is obtained at each point along the load path, the 

plastic influence matrices 𝑫(.,0) are calculated from Eq. (2.15), which produces the homogenized 

plastic strain 𝜀̅9 in Eq. (2.17). 
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2.2 Microstructural Realization 

The key to the generation of the homogenized response is the construction of the RUC. In 

the case of both finite-element and finite-volume based homogenization, this involves 

discretization of the RUC into an appropriate number of elements or subvolumes that mimic the 

RUC microstructure as closely as possible. For RUCs containing large numbers of fibers, such 

discretization is not a trivial matter, and typically involves a considerable amount of time and effort. 

Commercial automated mesh generation procedures have been developed for the finite-element 

method but require considerable work in interfacing them with the actual finite-element code. 

Automating a finite-element mesh generation procedure to enable thousands of microstructural 

realizations and subsequent execution in the elastic-plastic domain is a time-consuming matter, 

particularly if convergence of the solution must be verified. The finite-volume technique employed 

in this study based on rectangular subvolume discretization is a more efficient approach even when 

the fiber cross section boundary is approximated by a stair-case pattern. Given sufficient number 

of subvolumes, past work has shown that very accurate and converged results may be obtained both 

in the elastic and elastic-plastic domains due to the local satisfaction of the equilibrium equations 

even in the presence of constituent phases with very large moduli mismatch. 

To rapidly realize thousands of microstructures required in this study, a computer code was 

developed that randomly distributes fibers of circular cross section within the unit cell of specified 

height and length for a given fiber volume fraction and number of fibers contained within. Once 

the microstructure is realized using randomly distributed fiber centers, it is then discretized into 

equally dimensioned subvolumes, and the material assignment matrix is created for input into 

FVDAM simulation. For a unit cell occupied by fibers of the same properties that are embedded in 

a matrix phase, the material assignment matrix contains two distinct numbers (0,1 or 1,2, say) which 

serve as labels that define the fiber and matrix properties. The fiber radii relative to the fiber centers 

provide boundaries around subvolumes that are assigned fiber labels, with the remaining 

subvolumes assigned matrix labels. 

A naive initial approach to this problem employed recursion to randomly place fiber centers, 

stepping back when no space remained for an additional required fiber and continuing to choose 
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random coordinates among the set of free coordinates until all fibers were placed. This approach 

turned out to be inadequate for unit cells with relatively large numbers of fibers. For example, 

consideration of a unit cell with ten fibers and volume fraction 0.45 (this was a fairly common 

specification) indicated that this approach was likely to run forever with low probability of 

convergence, with an unpredictable and large runtime. As a result, a different method was 

implemented. 

      

Figure 2.3. Animation describing fiber placement technique: left-hand picture 
includes buffers; right-hand picture shows the final microstructure. 

 
The volume fraction, fiber count, and window area determine the radius of each fiber. First, 

fibers are placed evenly throughout the window. A buffer is added around each fiber in the form of 

a radial differential (pictured as silver rings in Fig. 2.3). Random displacements are assigned to 

each fiber and the fibers are allowed to translate. When two fibers come into contact, their 

displacements are adjusted to prevent overlap. Each fiber takes on the displacement of the fiber 

with which it came into contact. Similarly, if a fiber hits a unit cell boundary, a “bounce” is 

simulated by multiplying the appropriate displacement component by -1. For example, hitting the 

left boundary of a rectangular-shaped unit cell would produce the adjustment of the x displacement 

component.) Contacts were determined by finding distances between respective circle centers and 

walls and checking if any distances dropped below the radius. This procedure was continued until 

a specified number of steps or microstructural re-configurations had taken place. Figure 2.4 

illustrates microstructural configurations at different steps for a procedure involving 1000 

microstructural re-configurations. As observed, microstructural evolution after 200 steps appears 
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apparently random upon visual inspection. Any of the generated microstructures in this manner 

may be then discretized into rows and columns of subvolumes, or pixels, and the material 

assignment matrix created for input into FVDAM. For the microstructures comprised of 10 fibers, 

1000 microstructural re-configurations require less than one second on a PC. 

 

 

Figure 2.4. Microstructural evolution produced by the generate_assignment_matrix.py script. 

 

2.3. Homogenized Response Simulation 

The simulation of random microstructure unit cells has been automated in order to obtain 

homogenized stress-strain curves along a specified loading path for all generated microstructural 

realizations. Six loading paths are presently available that enable generation of homogenized stress-

strain curves under uniaxial homogenized stress loading along the axial and transverse directions. 

The uniaxial loading is achieved by applying homogenized strains in appropriate ratios that yield 

the specified unidirectional homogenized stress loading. The user specifies the loading option and 

the number of microstructural realizations to be simulated. The assignment matrices for the 
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generated microstructural realizations are stored so that they may be simulated for different loading 

options. In this way, different loading options may be applied to the same set of microstructures for 

comparison. 

 

 
Figure 2.5. The master script driver.py that automates the simulation of a specified sequence 
random microstructures by: automatically generating the material assignment matrix; executing 
FVDAM; writing the homogenized stress-strain curves for the given load option to a csv file; and 
storing the individual RUC microstructure data for future use 
 

The master script called automatic_matlab.py is the main calling program written in Python 

that generates the material assignment matrix, executes FVDAM, writes the homogenized stress- 

strain curves for the given load option to a file, and stores the individual RUC microstructure data, 

as illustrates schematically in Fig. 2.5. Key features of the master script include the use of both 

Python scripts and Matlab files. This is because FVDAM was written in Matlab, while all other 

forms of data manipulation were allocated to Python. FVDAM is run using a Python Matlab engine, 

as provided by Mathworks. The individual subscripts called by the master script are: 

● generate_assignment_matrix.py: randomly distributes fibers within a unit cell of specified 

dimensions for the specified fiber volume fraction and fiber count. Then the script discretizes the 

result—based on provided window height and width—into a material assignment matrix in 

preparation for FVDAM execution. The output of this subscript are material assignment matrices 

for the specified number of random microstructural realizations. 

● FVDAM_global_exec.m: executes FVDAM sequentially for each microstructural realization for 

the specified load path 

● update_csv.py: homogenized stress-strain curves are saved in a cumulative CSV file that begins 

with a single column of incremental homogenized strains. Homogenized stresses corresponding to 
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the specified load option are recorded as additional columns, where each column corresponds to 

another RUC array, and each row corresponds to the incremental homogenized strain from the first 

column. The script update_csv.py opens the LOP_?_SIGMA??_collection.csv files and modifies it 

by extracting the target column in the FVDAM output and merges it with the current file. 

● update_RUG_csv.py: stores individual RUC arrays. A new csv is created for every 

microstructure. The number of rows of these csv files matches the fiber count. The first column 

corresponds to discretized x coordinates, while the second column corresponds to discretized y 

coordinates. 

Finally, a Matlab script was written to best visualize the data in the LOP_?_SIMGA??_collection 

csv file. The stress-strain curves match the broomstick distribution expected of the microstructures. 

The above computational process is sufficiently optimized such that it is possible to receive useful 

results from a PC. For example, generating, storing and graphing 100 microstructural realizations 

of unit cells discretized into 159 × 211 subvolumes required approximately 2.5 hours. The master 

script requires the installation of a Python Matlab engine. It is important that the versions of Python 

and Matlab installed on the machine are appropriate for integration.  

 

2.4 Summary 

This chapter describes the computational homogenization engine called FVDAM employed 

to simulate the response of random microstructure unit cells of unidirectional composites along 

different uniaxial homogenized stress paths and the related Python-driven code that enables 

automated generation and subsequent simulations of the response of thousands of microstructural 

realizations for six uniaxial homogenized stress load paths. This capability facilitates the 

development of under- standing of the effect of microstructural randomness on the homogenized 

response for this class of composites in the elastic-plastic region. More importantly from the 

perspective of this thesis, the homogenized stress-strain responses of the generated microstructural 

realizations are available for implementation into ML-based algorithms that enable rapid 
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prediction of the response of random microstructural realizations of unidirectional composites 

without resorting to actual homogenization calculations which is the topic of subsequent chapters. 
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Chapter 3 

Random Microstructure Homogenization 

The solution of the system of equations for the unknown surface-averaged fluctuating 

displacements of a random microstructure RUC given by Eq. (2.14) in Chapter 2, in conjunction 

with Eq. (2.15) - (2.16), yields the homogenized Hooke's law reproduced below in symbolic form, 

                                                              𝜎6 = 𝑪∗(𝜀̅ − 𝜀9̅)                                                       (3.1) 

The homogenized strain components of the strain tensor  𝜀 ̅ is  specified by the load option, 

the components of the homogenized plastic strain tensor 𝜀̅9 are obtained from Eq. (2.19) at the 

converged step along the load path, and the homogenized stiffness matrix 𝑪∗ is calculated just once 

from Eq. (2.18). The process of calculating the homogenized response along the specified load path 

is automated, as described in Chapter 2, enabling to generate thousands of homogenized stiffness 

matrices 𝑪∗  and the homogenized stress-strain curves for each of the generated random 

microstructure. The results obtained from two thousand simulations are reported in this chapter 

which will be employed in Chapter 5 for training and predictive purposes. 

Whereas the homogenized stiffness matrix 𝑪∗  is calculated just once for each 

microstructural realization, the homogenized elastic-plastic response depends on the applied 

loading path. These homogenized responses have been generated under uniaxial stress loading 

defined by the six load options LOPs. Uniaxial stress loading is obtained by adjusting the 

homogenized strain components accordingly to produce the desired single non-zero homogenized 

stress component The load option designations are: 

● LOP = 1:  uniaxial loading by 𝜎6)), all other homogenized stress components are zero 

● LOP = 2:  uniaxial loading by 𝜎6**, all other homogenized stress components are zero 

● LOP = 3:  uniaxial loading by 𝜎6++, all other homogenized stress components are zero 

● LOP = 4:  uniaxial loading by 𝜎6*+, all other homogenized stress components are zero 
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● LOP = 5:  uniaxial loading by 𝜎6)+, all other homogenized stress components are zero 

● LOP = 6:  uniaxial loading by 𝜎6)*, all other homogenized stress components are zero 

It is well known that for unidirectional composites, the uniaxial response along the fiber 

direction is not sensitive to the fiber distribution. Hence LOP = 1 is not expected to produce 

substantial differences in both the initial elastic response and post-elastic or elastic-plastic response 

of the generated random microstructures.   This is due to the axial constraint  𝜀)̅)3FG:$# = 𝜀)̅)
B$H;: and 

the relatively weak influence of the Poisson's ratio differential which does not significantly affect 

the axial load sharing between the fiber and matrix phases. In contrast, the load sharing between 

the fiber and matrix phases is much more affected by the fiber distributions along load paths in 

planes transverse to the axial reinforcement, yielding more substantial differences. Completely 

random fiber distributions are expected to produce homogenized stress-strain response that mimic 

those of transversely isotropic materials. 

The new automated computational capability has been employed to generate two thousand 

microstructures with each RUC composed of ten fibers with the fiber volume fraction of 0.46 

following Pindera and Bansal [38]. The material system was boron/aluminum with the fiber and 

matrix properties given in Table 3.1. Each RUC was discretized into 159× 211 subvolumes, with 

automatic fiber placement procedure described in Chapter 2. 

 
Table 3.1:  Elastic and plastic parameters of boron fiber and aluminum matrix, Ref. [38]. 

 

3.1 Elastic Response - Homogenized Stiffness Matrix 

For a unidirectional composite reinforced along the 𝑥) axis with a random distribution of 

fibers in the 𝑥* − 𝑥+ plane, the structure of the homogenized stiffness matrix is that of a monoclinic 

material with a single plane of material symmetry perpendicular to the fiber direction 𝑥), namely 
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                                       (3.2) 

In the presence of three mutually orthogonal planes of symmetry, the coupling elements 

𝐶)I∗ = 𝐶*I∗ = 𝐶+I∗ = 𝐶JK∗ =0 and the homogenized stiffness matrix structure becomes that of an 

orthotropic material. Further, if the 𝑥* − 𝑥+ plane is a plane of isotropy, then the following relations 

ensue 

𝐶)*∗ = 𝐶)+∗ , 		𝐶**∗ = 𝐶++∗ , 			𝐶II∗ = )
*
(𝐶**∗ − 𝐶*+∗ ),			𝐶JJ∗ = 𝐶KK∗                           (3.3) 

reducing the number of independent material moduli to five referred to the principal material 

coordinate system. 

 

Once the elements of 𝐶∗, the homogenized engineering moduli may be determined from the 

inverse relationship 

𝑆∗ = [𝐶∗]L) 

where the homogenized compliance matrix 𝑆∗  is expressed in terms of the homogenized 

engineering moduli, 

 

where 𝐸))∗ = )
'))∗
, 𝜈)*∗ = − '+)∗

'))∗
, etc., and 𝜂),*+ etc., are Lekhnitskii’s coefficients of mutual influence 

which provide a measure of normal and shear strain coupling due to material’s extent of anisotropy 

in the 𝑥* − 𝑥+ plane. 
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Figure 3.1 presents the density distributions of the thirteen homogenized stiffness matrix 

elements for the two thousand microstructures. The homogenized stiffness matrix is indeed 

symmetric and thus only thirteen elements are shown. The density distributions were calculated by 

dividing the two thousand outcomes for the homogenized stiffness matrix elements into fifty 

intervals ranging from the smallest to the largest value of each homogenized stiffness matrix 

element, and plotted against the number of occurrences normalized by the total number of 

microstructural realizations. Recall that microstructural randomness increases with microstructure 

realization number because the initial RUC microstructure, which was used to generate RUCs of 

increasing randomness, was regularly spaced, see Fig. 2.4. The mean values and standard deviations 

of these distributions are given in Table 3.2. 

 

Table 3. Mean values and standard deviations of 13 homogenized stiffness elements distributions 
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Figure 3.1. Homogenized elastic moduli for the 2000 microstructural 

realizations graphed vs RUC number. 
 

3.2 Elastic-Plastic Response 
Subsequently, homogenized responses of the two thousand RUC realizations were 

generated under uniaxial loadings specified by the LOP number. These responses are summarized 

in Fig. 3.2 for the six LOP cases and discussed below. 

3.2.1 LOP 1 results 

Figure 3.2(a) presents the homogenized stress-strain response due to loading by 𝜎)) only, with the 

remaining homogenized stresses set to zero. As observed, the initial elastic response is practically 

unaffected by the microstructural randomness, as also observed in the small variations of 𝐶))∗  seen 

in Fig. 3.1. This homogenized stiffness matrix element is proportional to 𝐸))∗  which defines the 

initial response under unidirectional loading by	𝜎)). Similarly, practically no impact of the fiber 

distribution is observed in the elastic-plastic region given the much stiffer boron fibers relatively to 

the aluminum matrix, the relatively large fiber volume fraction and the fiber constraint which 

produces 𝜀)̅) = 𝜀)̅)3 = 𝜀)̅)
B . This suggests that the matrix stress that controls plasticity in the elastic-

plastic region is relatively constant and unaffected by the fiber distribution, producing nearly  
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(a)                                                                      (b) 

      
(b)                                                                      (d) 

        
        (e)               (f) 

Figure 3.2. Homogenized stress-stress responses for uniaxial loading by LOP = 1,…,6. 
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uniform yielding throughout the entire matrix regardless of the microstructural details. This results 

in the bilinear character of the homogenized stress-strain curves 𝜎6)) − 𝜀)̅) which visually appear 

the same regardless of the fiber distribution. 

3.2.2 LOP 2 results  

Substantially greater effect of fiber randomness on both the homogenized elastic moduli and stress-

strain responses is observed under uniaxial loading by the transverse stress 𝜎**. The onset and 

evolution of plasticity magnify the effect in the elastic-plastic region due to differences in the plastic 

field localization produced by the different fiber distributions. This results in the pattern of the 

homogenized stress-strain curves that resembles a broom stick, Fig. 3.2(b), with the upper and lower 

bounds substantially greater than those on the homogenized elastic modulus 𝐶**∗  shown in Fig. 3.1. 

These substantial differences are produced by highly heterogeneous stress distributions that result 

in localized plastic strains which are significantly affected by fiber locations relative to the applied 

load. To illustrate the effect of random fiber distributions on the homogenized stress-strain response 

under this uniaxial loading, unit cell microstructures have been identified that produce stiffest, most 

compliant, and intermediate homogenized responses and will be discussed in the sequel. 

3.2.3 LOP 3 results 

As in the case of LOP 2, the homogenized stress-strain response under uniaxial loading by the 

transverse stress 𝜎++  exhibits substantial broom stick pattern in the elastic-plastic region, Fig. 

3.2(c). The upper and lower bounds on the response are LOP 3 loading are similar to those observed 

under LOP 2 given that the microstructure is nearly transversely isotropic. The unit cell 

microstructures that correspond to the stiffest, most compliant and intermediate homogenized 

stress-strain responses will be illustrated in the sequel. These microstructures are similar to those 

that produce the corresponding homogenized responses under LOP 2 loading, supporting the 

transverse isotropy assumption. 

3.2.4 LOP 4 results 

Figure 3.2 (d) presents the homogenized stress-strain response due to uniaxial loading by transverse 
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shear 𝜎II only, with the remaining homogenized stresses set to zero, As observed, the elastic-plastic 

responses also exhibit a broom stick pattern, but the extent of the difference between upper and 

lower bound responses is not as great as under LOP 2 and 3 loadings. The microstructures that 

produce stiffest, most compliant, and intermediate responses will be shown in the sequel. 

3.2.5 LOP 5 and LOP 6 results 

The homogenized stress-strain responses under uniaxial axial shear loadings in the 𝑥) − 𝑥* and 

𝑥) − 𝑥+ planes by 𝜎6)* and 𝜎6)+, respectively, are shown in Figs. 3.2 (e) and 3.2 (f). Broom stick 

patterns are also observed in these cases, but the extent is even smaller than observed under LOP 4 

loading. Little difference is observed in the two sets of responses, suggesting transverse isotropic 

behavior. The microstructures that produce stiffest, most compliant, and intermediate responses are 

illustrated in the sequel. 

3.2.6 Effect of microstructure on the homogenized stress-strain response 

In order to investigate the effect of fiber distribution on the homogenized stress-strain behavior 

under different uniaxial loadings, we compare the stiffest, most compliant and intermediate stress-

strain responses generated by uniaxial loadings defined by the six LOP cases in Figs. 3.3 – 3.8.  

Figure 3.3 illustrates the responses for uniaxial loading by 𝜎)) only. As observed, it is impossible 

to visually differentiate the stiffest and softest responses regardless of the substantial variations in 

the RUC microstructures included in the Figure. As explained in the foregoing, plasticity initiates 

nearly uniformly throughout the entire RUC because of the axial constraint by the fiber, giving rise 

to indistinguishable response in the elastic-plastic region for the three different microstructures. 

This will be a good test for the capability of the investigated ML algorithms given that the responses 

under uniaxial loading transverse to the fibers exhibit broomstick appearance, the extent of which 

depends on the stress component. 

 Figure 3.4 illustrates the effect of RUC microstructure on the stiffest, intermediate and 

softest responses for uniaxial loading by transverse 𝜎6** stress only oriented along the horizontal 

axis. The stiffest response is produced by the RUC with the most ordered microstructure 

characterized by aligned fiber rows and the softest by RUC microstructure with most disordered 
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fibers. The microstructure with some degree of order produces the intermediate stress-strain 

response. 

 
Figure 3.3. Homogenized stress-stress curves for uniaxial loading by LOP = 1 and 
microstructures that produce stiffest, intermediate, and most compliant responses. 

 

 
Figure 3.4. Homogenized stress-stress curves for uniaxial loading by LOP = 2 and 
microstructures that produce stiffest, intermediate, and most compliant responses. 
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Figure 3.5. Homogenized stress-stress curve for uniaxial loading by LOP = 3 and 
microstructures that produce stiffest, intermediate, and most compliant responses. 

 

The corresponding effect of RUC microstructure on the homogenized stress-strain response for 

uniaxial loading by transverse 𝜎6++ stress only oriented along the vertical axis is illustrated in Fig. 

3.5. Similar to the response by uniaxial transverse stress 𝜎6** shown in Fig. 3.4, the stiffest response 

is produced by the ordered microstructure RUC and the softest by the most disordered one. In both 

cases the ordered rows of fibers see the same uniaxial stress applied horizontally in the case of LOP 

= 2 and vertically in the case of LOP = 3, as do the fibers in the disordered RUCs. The stress transfer 

from the softer matrix to the stiffer fibers occurs through the same mechanism involving local 

transverse shear stress, with the aligned fibers being more effective in carrying the load. 

 In contrast, under uniaxial transverse shear loading only, it is the most ordered 

microstructure that produces most compliant response, with the stiffest response generated by the 

most disordered RUC, Fig. 3.6. The effect of microstructure on the homogenized response is also 

much less pronounced relative to the two preceding cases involving transverse normal stresses 𝜎6** 

and 𝜎6++. The fibers in the disordered arrays are more effective in carrying the applied transverse 

shear stress as the mean distance between them, and hence the softer matrix content exposed to the 

load, is smaller than in the ordered RUC with a large matrix area carrying smaller load. 
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Figure 3.6. Homogenized stress-stress curve for uniaxial loading by LOP = 4 and 
microstructures that produce stiffest, intermediate, and most compliant responses. 

 

Figures 3.7 and 3.8 illustrate the effect of RUC microstructures on the homogenized stress-strain 

responses by uniaxial shear loading by 𝜎6)+  and 𝜎6)*  in the x1-x3 and x1-x2 planes, respectively. 

Despite differences in the RUC microstructures, the extent of variation in the homogenized stress-

strain response is quite small, creating a challenge for the ML algorithm construction. 

 

 
Figure 3.7. Homogenized stress-stress curve for uniaxial loading by LOP = 5 and 
microstructures that produce stiffest, intermediate, and most compliant responses. 
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Figure 3.8. Homogenized stress-stress curve for uniaxial loading by LOP = 6 and microstructures 
that produce stiffest, intermediate, and most compliant responses. 

 

3.2.7 Homogenized stress-strain response comparison 

In order to further investigate the effect of fiber distribution on the homogenized stress-strain 

behavior under different uniaxial loadings, we compare the stiffest, most compliant and 

intermediate stress-strain responses under uniaxial transverse loading by 𝜎6** with those obtained 

under uniaxial transverse loading by 𝜎6++  generated using the same microstructures in Fig. 3.9. 

Similarly, we make the same comparison under axial shear loading by 𝜎6)* and 𝜎6)+ in Fig. 3.10. The 

reference unit cell microstructures are those that produce the stiffest, most compliant and 

intermediate responses under LOP 2 and LOP 6. This comparison reveals the extent to which the 

unit cells response approaches that of a homogenized transversely isotropic material. Specifically, 

for loading by uniaxial transverse normal stresses 𝜎6** and 𝜎6++, Fig. 3.9, the homogenized responses 

for the three different microstructures that produce stiffest, intermediate and softest responses, are 

practically identically. Similar behavior is observed under axial shear loading by 𝜎6)* and 𝜎6)+, Fig. 

3.10. 
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Figure 3.9. Comparison of homogenized stress-stress curves for uniaxial loading by LOP = 2 and 
3 for microstructures that produce stiffest, intermediate and most compliant responses under LOP 
= 2 loading. 

 

 
Figure 3.10. Comparison of homogenized stress-stress curves for uniaxial loading by LOP = 5 and 
6 for microstructures that produce stiffest, intermediate and most compliant responses under LOP 
= 2 loading. 
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3.3 Summary of Results 

The results illustrated in this chapter, which were produced using the automated FVDAM-

based computational homogenization tool, will be employed for training and predictive purposes 

using two different machine learning algorithms. The algorithms will be described in Chapter 4, 

including the training and accuracy, and the predictions will be presented in Chapter 5. 

Nonetheless, the results described in this chapter are important in their own right in 

understanding the effect of microstructural features on the homogenized response of unidirectional 

metal matrix composites in both elastic and elastic-plastic regions. Whereas the fiber distribution 

affects the homogenized elastic moduli to some extent under transverse normal and shear loading, 

as well as axial shear loading, its effect in the elastic-plastic region is substantially greater. The 

homogenized elastic moduli are also affected by the mismatch in the fiber/matrix elastic moduli 

which for the present b/al composite is relatively low, producing relatively small differences in the 

homogenized moduli of random microstructural realizations of the unit cell. In contrast, 

substantially greater microstructure-dependent deviations or scatter is observed in the elastic-plastic 

domain which also depends on the direction of the applied load relative to the fiber direction. The 

homogenized stress-strain response due to loading in the fiber direction is independent of the RUC 

microstructure randomness due to the fiber constraint. Hence the stress-strain curved are virtually 

identically for the 2,000 RUC microstructures generated. Under transverse normal stress loading 

by 𝜎6** and 𝜎6++, however, the extent of scatter is quite large. Somewhat smaller scatter is observed 

under transverse shear loading, with the stiffest and softest responses generated by microstructures 

which produce softest and stiffest responses under transverse normal loading. Still smaller scatter 

is observed under axial shear loading in the two orthogonal axial planes containing the fiber 

direction. 

The observed microstructure-dependent and load-dependent homogenized stress-strain 

behavior of the investigated unidirectional metal matrix composite presents challenges in 

developing accurate and efficient ML-based algorithms. 
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Chapter 4 

ML Algorithms and Architectures 

In this chapter we discuss the architectures and the flow of information that they control of 

two ML algorithms employed to predict the homogenized elastic moduli and stress strain response 

of random unidirectional composites, namely the artificial neural networks (ANN) and 

convolutional neural network (CNN). The individual sections first describe the architectures and 

related information flow of the two types of networks in general terms. Subsequently, the general 

discussion with the defined terminology is followed by specific description of the two architectures 

designed for the explicit purpose of predicting the response of random composites whose 

homogenized elastic moduli and stress-strain curves were generated using the FVDAM-driven 

computational tool described in Chapter 2. Because the main focus of the thesis is on the prediction 

of elastic-plastic response of random unidirectional composites, each section first describes the 

respective networks developed for this purpose followed by corresponding networks for the 

homogenized elastic moduli. 

4.1 ANN Architecture 

ANNs are composed of a certain number of layers of nodes. The data flow starts from the 

input layer, it is then processed within the hidden layers and then displayed in its final form by the 

output layer, Fig.4.1. Artificial neural networks are the standard deep learning algorithms for 

machine learning. They were originally based on the inner workings of the human brain, in which 

over 20 billion neurons propagate signals to each other called neurotransmitters to communicate all 

kinds of information. The more often a connection is used (learning a new skill), the stronger it 

becomes, and the less often a connection is used, the weaker it becomes. These principles are 

embodied in the structure of a feed-forward neural network. Individual nodes are organized as 1-

dimensional layers, with each layer densely connected to the one in front of it such that each node 
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is connected via a weight to every node in the next layer. The weights symbolize the influence the 

former node has on the value of the latter node.  

The overall ANN architecture is illustrated in Fig. 4.1. The indices 𝑖 and 𝑜 represent the input 

and output layers, respectively. The first hidden layer, second hidden layer and the third hidden 

layer are labelled ℎ), ℎ* and ℎ+. The input 1, input 2, to input 𝑚 make up the input vector. The 

output 1, output 2, to output 𝑛 make up the output vector. Each small circle embodies a single 

neuron where the data information is processed. The solid lines connecting the nodes in the 5 layers 

represent the weights, which are the model parameters we want to get after training the model. The 

first layer of nodes is comprised of the input values, and the last layer represents the output values. 

In between lie the inner layers, each of which comprises an arbitrary number of nodes. The size of 

these layers depends on the fundamentals of the problem, the values of 𝑀 and 𝑁, and pure intuition. 

Each non-input node has a value equal to the sum of each node from the previous layer multiplied 

by their weight. In other terms, it’s equivalent to multiplying a 1-dimensional vector of nodes by a 

2-dimensional matrix of weights to produce a 1-dimensional vector. Each non-input layer is fed 

into an activation function, which typically acts per element, after the summations to help organize 

the data (such as converting negative values to 0). In some models, each layer contains a bias node 

that isn’t affected by the input nodes yet is involved in the summations.  

 

 
Figure 4.1: General structure of artificial neural network 
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The vector X, which consists of the input elements [𝑥), 𝑥*, 𝑥+, … , 𝑥3] represents the input, 

and it contains the feature that we give to our model to output a prediction contained in the vector 

Y comprised of output elements [𝑦), 𝑦*, 𝑦+, … , 𝑦3]. Weights control the signal (or the strength of 

the connection) between two neurons. In other words, a weight decides how much influence the 

input will have on the output. Biases, which are constant, are an additional input into the next layer 

that will always have the value of 1. Bias units are not influenced by the previous layer (they do not 

have any incoming connections) but they do have outgoing connections with their own weights. 

The bias unit guarantees that even when all the inputs are zero there will still be an activation in the 

neuron. After enough iterations of forward and backward propagations discussed in the sequel, the 

neural network minimizes the error between the actual outputs and the predictions to give accurate 

and robust predictions. 

Neural networks are best utilized for problems of the type of 𝑅M→ 𝑅1 where 𝑀 and/or 𝑁 are 

large values and the connection between inputs and outputs is nonlinear and/or non-obvious. If 

those conditions are not true, then using a neural network may be an overkill solution to the 

problem. Neural networks function well for both regression and classification problems but must 

be designed differently for each type. Both types have either discrete or continuous numerical 

values as inputs, where 𝑀 is the number of values. For regression, the outputs are just continuous 

values, where 𝑁 is the number of values. For classification however, 𝑁 is the number of possible 

labels, and typically the output values are between 0 and 1 representing the probability that the label 

exists. If only one label is allowed, then the largest output value signals the correct label. 

4.2 Control of information flow in ANN 

4.2.1 Neurons and information flow within the neural network 

Figures 4.2 and 4.3 illustrate how the data is processed within the neurons in each hidden 

layer. In Figure 4.2, all the input elements [𝑥), 𝑥*, 𝑥+, … , 𝑥3] in X are passed to the nodes in the 

layer of the neural network. The symbol 𝑤  represents the weight parameter in each node, the 

summation ∑ represents the transfer function and 𝝋 represents activation function. The transfer 

function is given by 𝒛 = 𝑏 + ∑ 𝑎$𝑤$1
$2) . When the net input is calculated from the transfer function, 

it is fed to the activation and compared to the output from the activation function with the threshold 
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𝜃. If the output from the activation surpasses the threshold, the output will be passed to the nodes 

of the subsequent layer and this process is repeated for each node in the next layer. 

 
Figure 4.2. Data flow within each layer 

 

 

Figure 4.3. Parameters within one single neuron 

 

Figure 4.3 transfers the input data [𝑎), 𝑎*, 𝑎+, … , 𝑎4] into the output data 𝒛. The output data 𝒛 

is then passed to the activation function 𝒈 and the activation function defines how the weighted 

sum of the input is transformed into an output within this node and then pass this output 𝑔(𝑧)	 to 

the nodes of the next layer. After the transformation and activation through all the hidden layers, 

the output 𝑎=>G is obtained from the final output layer. 
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4.2.2 Data Normalization 

Before the input data is fed to the model, it is normalized. Data normalization is the process 

of transforming the input and/or output data to achieve better results. These adjustments serve to 

better accent the distinctions between values, like using linearization to identify a linear relationship. 

Often, data normalization involves adjusting the range of data to better suit the desired activation 

function described in the sequel, which is typically in the range {𝑥 ∈ 𝑅|0 < 𝑥 < 1}. Even if all 

other choices for the model are optimal, without effective data normalization, the model may fail 

to achieve acceptable results. 

Min-max adjustments (linear scaling) involve translating and scaling a set of data as follows: 

𝑥7 	=
𝑥–𝑚𝑖𝑛

𝑚𝑎𝑥	 − 	𝑚𝑖𝑛																																																											(4.1) 

where x is an element of the data, min and max are the minimum and maximum values, respectively, 

of the data set, and x’ is the transformed element. Theoretically, a min-max adjustment on an entire 

data set together should make no difference, yet in practice it results in less computation time to 

achieve the same results, Ref [39]. The range {𝑥 ∈ 𝑅|0 < 𝑥 < 1}  works very well for neural 

networks and fits most activation functions, thus it is good practice to transform all data to that 

range. If different components of the input data have vastly different scaling from each other, 

applying a min-max adjustment per component across all input data can help avoid a bias towards 

components that are consistently larger than others. 

Standardization is the conversion of a set of data into z-scores as follows: 

𝑧	 = 	 (𝑥	 − 	µ)/𝜎																																																											(4.2) 

where x is an element of the data, µ is the mean of the data set, σ is the standard deviation of the 

data set, and z is the z-score of the element. This transformation is technically a form of linear 

scaling, but these z-scores can be the input for a normalization function such as the standard bell 

curve CDF or the sigmoid function:  

𝑥7 = 𝑛𝑜𝑟𝑚𝑐𝑑𝑓(𝑧, µ, 𝜎), 𝑥7 =
1

1 + 𝑒L# 																																							(4.3) 
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Both options add emphasis to small differences near the mean and remove emphasis from small 

differences away from the mean. They also place the transformed data into the range {𝑥 ∈ 𝑅|0 <

𝑥 < 1}, which typically leads to better results. For data with a curved CDF, this transformation 

vastly improves results. Do note that if using one of these functions on output data, the inverse 

function is required to analyze the predicted outputs from the model, thus the restrictive range leads 

to a restrictive domain of the predicted outputs. In this case, an activation function such as sigmoid 

with the correct range must be used. 

4.2.3 Loss Function 

A loss function is calculated in the output layer to quantify how close the predicted values 

are to the target values with the difference called loss, which then determines the magnitude of the 

weight adjustments during the back propagation stage described in the sequel. Different choices 

emphasize different characteristics of the data. For regression, the main options are Mean Square 

Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE):  

𝑀𝑆𝐸	 = 	𝑚𝑒𝑎𝑛((𝑦9:;N −	𝑦FOG>FP)*)																																										(4.4) 

𝑀𝐴𝐸	 = 	𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑦9:;N −	𝑦FOG>FP))																																								(4.5) 

𝑀𝐴𝑃𝐸	 = 	100	 × 	𝑚𝑒𝑎𝑛(𝑎𝑏𝑠((𝑦9:;N −	𝑦FOG>FP)/𝑦FOG>FP))																						(4.6) 

Mean Square Error is the general standard. Note that for the range {𝑥 ∈ 𝑅|0 < 𝑥 < 1} , 

calculating percentage error for very small 𝑦FOG>FP can result in a massive loss. For classification, 

the choice depends on the activation function used. For a SoftMax (one label only), use cross 

entropy, and for a sigmoid (multiple label possibilities), use binary cross entropy, Ref [40]. 

4.2.4 Activation Function 

An activation function is enacted upon a layer once the values of the nodes values via 

summation have been computed. Backpropagation calculations require an activation function with 

a derivative, so a function with a constant sloe such as 𝑦	 = 	𝑥 does not suffice. The standard choice 

is the Rectified Linear Unit (ReLU):  

𝑥7 = 𝑚𝑎𝑥(𝑥, 0)																																																													(4.7) 
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where x is a single node’s value, and 𝑥7 is the new value for future calculations. In other words, 

ReLU converts all non-positive values to 0. Many flavors of ReLU exist where the tail end is curved, 

but the gains are small if any, and just lead to more computation. ReLU is widely used due to its 

quick computation time. 

For more normalized values, the sigmoid function does well: 

𝑥7 =
1

1 + 𝑒L# 																																																										(4.8) 

where 𝑥 is a single node’s value, and 𝑥7 is the new value for future calculations. For this function, 

the range of 𝑥7 is {𝑥 ∈ 𝑅|0 < 𝑥 < 1}, thus this activation function is essential for the output layer 

if the data has been normalized to that range. As an alternative, the hyperbolic tangent function 

works similarly, with a range of {𝑥 ∈ 𝑅|0 < 𝑥 < 1} instead. 

 For classification problems with a single label, the SoftMax function is a great choice. It 

squeezes values in the range {𝑥 ∈ 𝑅|0 < 𝑥 < 1}, while also ensuring that the layer has a magnitude 

of 1, thus isolating the most prominent prediction, Ref [41]. 

4.2.5 Optimization Function 

Neural networks are trained with the stochastic gradient descent algorithm. Stochastic 

gradient descent is an optimization function that calculates the error (loss) gradient by using the 

training data set and updates the neural network weights with backpropagation algorithm. There are 

many optimization functions employed in neural networks such as Gradient Descent, Stochastic 

Gradient Descent, Stochastic Gradient descent with momentum, Mini-Batch Gradient Descent, 

Adagrad, RMSProp, AdaDelta and Adam. 

The amount that the weights are updated during training is referred to as learning rate. 

Learning rate determines how quickly the model is trained measured in terms of epochs. We note 

that one epoch means training the entire neural network once or one cycle. For a small learning rate, 

the model requires more training epochs because the changes in weights are small in each update. 

In contrast, a large learning rate produces rapid changes in the weight parameters and thus requires 

fewer training epochs. If the learning rate is too small, the training process may take forever. 
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However, if the learning rate too large, the model might converge too fast to a suboptimal position. 

Thus, learning rate is a very important hyperparameter in the neural network training. The choice 

of the leaning rate is related to the performance of the model. 

In this study, we employ the Adam optimizers for the following reasons. Adam optimizer 

is an extension of the stochastic gradient descent that updates the weight in the network during the 

training. Adam optimizer updates the learning rate for each network weight individually and due to 

this flexible characteristic, it usually improves model performance and therefore is recommended 

as default optimization function during training. Moreover, the other advantage of the Adam is that 

it takes less time to train the model, and requires less computer memory and tuning than other 

optimization functions. 

4.3 Backward propagation 

The key to neural network learning is a process called back-propagation. A loss function is 

calculated in the output layer comparing it to the expected output values, returning a single positive 

value known as loss. The larger the loss, the worse the prediction. The loss is “propagated” 

backwards through the model, where weights are adjusted via partial derivative calculations, with 

a larger loss leading to larger adjustments, Ref [8]. As the model trains, the adjustments can be 

smaller and smaller, even as the loss stabilizes. An optimizer function adjusts the constants in the 

computations based on a specific learning rate. 

If the input 𝑥 ∈ 𝑅N 	without a bias term, we can calculate intermediate variables as follows: 

𝑧 = 𝑊())𝑥																																																																						 (4.9) 

where as 𝑊()) ∈ 𝑅Q×N is the weight parameter of the hidden layer. We further achieve the hidden 

activation vector of length ℎ by applying the activation function 𝜙 to intermediate variables 𝑧 ∈

𝑅Q,  

ℎ = 𝜙(𝑧)                                                             (4.10) 

The output ℎ  of the hidden layer is another case of an intermediate variable. Under the 

assumption that only a weight of 𝑊(*) ∈ 𝑅%×Q  is retained in the output layer, an output layer 

variable of length 𝑞 is denoted as: 
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𝜊 = 𝑊(*)ℎ																																																																					(4.11) 

If the loss function is 𝑙  and the example label is 𝑦 , we can then write the loss term for 

individual data example as: 

𝐿 = 𝑙(𝜊, 𝑦)                                                             (4.12) 

The 𝑙* regularization norm with the hyperparameter 𝜆 is: 

𝑠 = S
*
(�𝑊())�

T
*
+ �𝑊(*)�

T
*
)                                              (4.13) 

Regularization parameter 𝜆  is a constant number, which is also called “penalty”. 

Regularization means adding this penalty to the loss function. There are two types of regularization 

𝑙) = 𝜆∑ �𝜃&�U
&2)   and		𝑙* = 𝜆∑ 𝜃&*U

&2) .		Theta	is	the	vector	which	contains	the	parameters	of	the	

model.		

𝐹 indicates the Frobenius norm of the matrix, which flattens the 𝑙* norm matrix into a vector. 

The regularized loss of individual data example is: 

𝐽 = 𝐿 + 𝑠                                                             (4.14) 

From now on, we depict the objective function as 𝐽.	

         Mathematically, backpropagation involves the calculation of the neural network parameters’ 

gradients. The backpropagation calculates the gradients from the output layer to the input layer 

based on the chain rule. The intermediate variables, namely the partial derivatives of the neural 

network parameters, are stored by the backpropagation algorithm during the calculation. For 

example, we have 𝑌 = 𝑓(𝑋) and 𝑍 = 𝑔(𝑌), where the input X, Y and output Z are tensors of any 

shape. With the application of chain rule, we can calculate the derivative of Z with respect to X by 
𝜕𝑍
𝜕𝑋 = 𝑝𝑟𝑜𝑑 "

𝜕𝑍
𝜕𝑌 ,

𝜕𝑌
𝜕𝑋%																																																						(4.15) 

where the “prod” operator denotes the multiplication of the arguments after the required operations 

(transposition, swapping input positions, etc.).  This is straightforward for the vectors, which 

involve just matrix-matrix multiplication. For higher dimension tensors, there are other appropriate 

counterparts. Operator “prod” hides all the notations overhead in Eqn. (4.15). 

From Eqns. (4.9) and (4.11), we have the parameters of the neural network 𝑊()) and 𝑊(*). 

To calculate the parameters of gradients !V
!W()) and !V

!W(+), we use backpropagation based on the 

chain rule. We reverse the order of calculation according to forward propagation to estimate 
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parameters towards the outcome of the graphic model. First, we calculate the gradients of the 

objective function including the loss term and the regularization term.  

 
𝜕𝐽
𝜕𝐿 = 1	𝑎𝑛𝑑	

𝜕𝐽
𝜕𝑠 = 1																																																											(4.16) 

 

Next, we use the chain rule to update the gradient of the objective function variables in the 

output layer:  
𝜕𝐽
𝜕𝜊 = 𝑝𝑟𝑜𝑑 "

𝜕𝐽
𝜕𝐿 ,

𝜕𝐿
𝜕𝜊% =

𝜕𝐿
𝜕𝜊 ∈ 𝑅

% 																																														(4.17) 

Meanwhile, we update the gradients of the regularization term: 

𝜕𝑠
𝜕𝑊()) = 𝜆𝑊())	𝑎𝑛𝑑	

𝜕𝑠
𝜕𝑊(*) = 𝜆𝑊(*)																																										(4.18) 

The chain rule given by Eqn. (4.19) below returns the gradient !V
!W(+) ∈ 𝑅%×Q of the last layer 

before the output layer: 
𝜕𝐽

𝜕𝑊(*) = 𝑝𝑟𝑜𝑑 "
𝜕𝐽
𝜕𝜊 ,

𝜕𝜊
𝜕𝑊(*)% + 𝑝𝑟𝑜𝑑 "

𝜕𝐽
𝜕𝑠 ,

𝜕𝑠
𝜕𝑊(*)% =

𝜕𝐽
𝜕𝜊 ℎ

X + 𝜆𝑊(*)													(4.19) 

We use Eqn. (4.20) to calculate the gradients involved in the hidden layer output !V
!Q
∈ 𝑅%, to 

acquire the gradient in 𝑊()): 
𝜕𝐽
𝜕ℎ = 𝑝𝑟𝑜𝑑 "

𝜕𝐽
𝜕𝜊 ,

𝜕𝜊
𝜕ℎ% = 𝑊(*)X 𝜕𝐽

𝜕𝜊																																									(4.20) 

We multiply the activation function 𝜙 by the gradient !V
!Y
∈ 𝑅Q of the intermediate variable 𝑧 

using the elementwise multiplication operator, which is denoted by ⊙: 

𝜕𝐽
𝜕𝑧 = 𝑝𝑟𝑜𝑑 "

𝜕𝐽
𝜕ℎ ,

𝜕ℎ
𝜕𝑧% =

𝜕𝐽
𝜕ℎ ⊙ 𝜙7(𝑧)																																							(4.21) 

Lastly, the gradient !V
!W()) ∈ 𝑅Q×N of the parameters in the first layer of the model is achieved 

by the chain rule: 
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𝜕𝐽
𝜕𝑊()) = 𝑝𝑟𝑜𝑑 "

𝜕𝐽
𝜕𝑧 ,

𝜕𝑧
𝜕𝑊())% + 𝑝𝑟𝑜𝑑 "

𝜕𝐽
𝜕𝑠 ,

𝜕𝑠
𝜕𝑊())% =

𝜕𝐽
𝜕𝑧 𝑥

X + 𝜆𝑊())													(4.22) 

Since the gradient of the parameters !V
!W()) of the first layer is obtained, the neural network knows 

how to tune the parameters to make the “Loss” move towards the low-lying place to minimize it. 

The deep neural network repeats this process again and again with an appropriate selection of 

learning rate until the loss decreases to the minimum value and remains at a constant level. Then 

the model’s training is finished, and we can start to check the model performance. 

4.4 ANN structure for the stress-strain prediction 

The ANN model designed in this study to predict the homogenized stress-strain curves has 

12 neural layers comprised of 1 input layer with 256 nodes, 10 hidden layers with each containing 

256 nodes, and 1 output layer with 25 output nodes. The loss function adopted for this ANN model 

is the mean squared error (MSE) denoting the averaged squared difference between the actual 

values and the predicted values. The activation function applied in this model is “RELU” since the 

RELU is a linear transformation function employed especially for regression problems and it 

outperforms all the other activations for regression models. The optimizer used here is “Adam”, not 

only because Adam applies stochastic gradient descent for deep learning models which ensures 

robustness during training, but also can adapt its learning rate for sparse data. 

The detailed structure of the employed ANN model is shown in Fig. 4.4. The input vector 

comprised of [input 1, input 2…, input 22] in the input layer represents the information of each 

RUC. Input 1 and input 2 are 159 and 211, namely the height and width of the RUC images. Input 

3 to input 22 represent the 10 (x, y) coordinates of the 10 fiber centers. Similarly, [output1, 

output2…, output25] are the predictions of the equally spaced 25 data points that represent 

homogenized stress-strain curves shown in Chapter 3. 

Whereas the homogenized stiffness matrix 𝑪∗ is calculated just once for each microstructural 

realization, the homogenized elastic-plastic response depends on the applied loading path. These 

homogenized responses have been generated under uniaxial stress loading defined by the six load 

options LOPs described in Chapter 3 that characterize the composite response. These loading 
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options produce uniaxial normal loading along and transverse to the fiber direction, and axial and 

transverse shear loading in three planes, two of which contain the fiber axis and one transverse to 

it. Uniaxial stress loading is obtained by adjusting the homogenized strain components accordingly 

to produce the desired single non-zero homogenized stress component. 

 
Figure 4.4. Artificial Neural Network (ANN) structure for the stress strain prediction 

4.5 ANN structure for the homogenized moduli prediction 

The ANN model designed in this study to predict the 13 homogenized moduli has 12 neural 

layers comprised of 1 input layer with 256 nodes, 10 hidden layers with each containing 256 layers, 

and 1 output layer with 13 output nodes. The loss function adopted for this ANN model is the mean 

squared error (MSE), which represents the averaged squared difference between the actual values 

and the predicted values. The activation function applied in this model is “RELU” since the RELU 

is a linear transformation function employed especially for regression problems and it outperforms 

all the other activations for regression models. The optimizer used here is “Adam”, not only because 

Adam applies stochastic gradient descent for deep learning models which ensure the robustness for 

the training, but also can adapt its learning rate for sparse data. The detailed structure for the applied 

ANN model is shown in Fig 4.5. 
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Figure 4.5. Artificial Neural Network (ANN) structure for the homogenized moduli prediction 

 

In Fig. 4.5, same as in Fig. 4.4, [input 1, input 2…, input 22] in the input layers represent the 

input information of each RUC. Input 1 and input 2 are 159 and 211, namely the height and width 

of the RUC images. Input 3 to input 22 represent the 10 (x, y) coordinates of the 10 fiber centers. 

Similarly, [output 1, output 2…, output 13] are the predictions of the 13 homogenized moduli 

calculated just once for a given microstructural realization. 

4.6 Convolutional Neural Network (CNN) 

When dealing with image data, such as image recognition or image classification, the 

convolutional neural network is needed to reduce the computation amount. For example, just 

suppose we have 500×500-pixel RGB image, the total amount of the pixels is 500×500×3=750000. 

If we design the ANN with 1000 neurons in the first layer, then the total number of weights in the 

first layer of the ANN will be 750000×1000=750000000. The computational consumption for the 

number of weights is far beyond the PC power and therefore results in huge time consumption for 

the training. To resolve this problem, we can adopt the convolutional neural network and utilize 

this advantage in reducing the dimensions of the data and thus lead to fewer calculations and 

computations.  
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Convolutional neural network is most widely used to analyze image data, like image 

recognition and image classification. The structure of the Convolutional Neural Network can be 

divided into 2 parts, convolutional components and fully connected layers used in ANNs. The 

numerous filters in each convolutional layer convolve across the one-dimensional image in Figure 

4.6 and extract the features to generate feature maps. During this process, the network automatically 

learns to optimize the filters through the forward propagation and back propagation learning process, 

and this is a splendid advantage compared to these traditional algorithms where manual feature 

engineering is needed, including data set manipulation such as addition, deletion, combination, and 

mutation to improve machine learning model training in order to produce better performance and 

higher accuracy. Then the network applies max pooling layer (a pooling operation that selects the 

maximum element from the region of the feature map covered by the filter, the filter is a matrix that 

moves over the inputs and extract similarities between different locations in the input image) to 

reduce the feature map size and reduce sampled feature map to fewer parameters.  Figure 4.6 

illustrates the max pooling operation. 

 

 

Figure 4.6. Max pooling operation 
 

The max pooling layer also can help to extract low level features such as edges and points. 

After the convolutional stage, the CNN flattens the feature map that contains the features and 

information extracted by the filters and feeds it to the fully connected layers to generate the output. 

The flattening process is conducted by the flattening layer, which collapses the two-dimensional 

matrices of the input from the convolutional layer into the one dimension vector and then passes 

the data to the dense layers. 
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In this thesis, we fed the CNN model with the microstructure to generate the corresponding 

homogenized response, and within the back propagation process, the model compares the 

predictions and true values and calculate the loss. Loss of the final prediction decrease with the 

optimization of the filters and the weight within each neuron during the forward/backward 

propagation and gradient descend process. Then the prediction accuracy increases and lead to good 

performance of the CNN model. 

 
Figure 4.7. Convolutional neural network structure 

4.7 CNN structure for the stress-strain prediction 

The CNN model designed to predict the homogenized stress-strain curve has 12 neural layers 

comprised of 1 input layer with 256 nodes, 9 convolutional layers with “ELU” activation functions 

with each layer containing 256 layers across the depth, 10 hidden layers with “RELU” activation 

functions with each layer containing 256 nodes, and 1 output layer with 25 output nodes. The loss 

function adopted for this ANN model is the mean squared error (MSE) which is the averaged 

squared difference between the actual values and the predicted values. The optimizer used here is 

“Adam”, not only because Adam applies stochastic gradient descent for deep learning models 

which ensures robustness during training, but also can adapt its learning rate for sparse data. The 

detailed structure for the applied CNN model is shown in Fig. 4.8. 

The image on the extreme left side in Fig. 4.8 is the RUC image, the dashed line squares are 

the 2 × 2 filters that convolve across the image. The RUC image is the input data, and the 25 

outputs are the predictions of the stress-strain points that make up the stress-strain curves. 
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Figure 4.8. Convolutional neural network (CNN) structure for the stress strain prediction 

4.8 CNN structure for the homogenized moduli 

Similar to the CNN model designed to predict the homogenized stress-strain curves, the CNN 

model designed to predict the 13 homogenized moduli also employs the same architecture, the only 

difference is that the output layer of the CNN model for the homogenized moduli has 13 output 

nodes that represent the 13 homogenized moduli instead of the 25 nodes employed in the predictions 

of the homogenized stress-strain curves. The detailed structure is shown in Fig. 4.9. 

 

 

Figure 4.9. Convolutional neural network (CNN) structure for the homogenized moduli prediction 

 
Similar to Fig. 4.8, the image on the left side is the RUC image, the dashed line squares are 

the 2 × 2 filters that convolve across the image. The RUC image is the input data, and the 13 

outputs are the predictions of the 13 homogenized elements. 
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4.9 Summary 

This chapter described the ANN and CNN models that were designed for the prediction of the 

homogenized stress-strain responses and corresponding elastic moduli of a unidirectional metal 

matrix composites with random fiber distributions based on the generated RUC microstructures 

containing 10 fibers. The ANN model developed to predict the stress-strain data employs the RUC 

fiber center coordinates as inputs and outputs the predicted stress-strain curves. Likewise, the ANN 

model developed to predict the homogenized moduli also employs the RUC fiber center coordinates 

as inputs and outputs the predicted 13 homogenized moduli elements. Both ANN model 

architectures are identical, as are the loss, activation, and optimization functions. The CNN model 

developed to predict the stress-strain curves employs the RUC images as the input data and 

generates the predicted stress-strain curves. Likewise, the CNN model that predicts the 

homogenized moduli also employs the RUC images as the input data and generates the predicted 

13 homogenized moduli elements. The performance of all these 4 neural networks will be discussed 

in Chapter 5. 

The ML algorithms described in this chapter are employed in Chapter 5 to predict both the 

stress-strain response and the 13 homogenized moduli of random microstructures of a unidirectional 

boron/aluminum composite. The specific ANN and CNN algorithms have been refined in an 

iterative process to obtain optimal predictions. In addition to illustrating the predictive capabilities 

of the two algorithms and their differences, the reduction in execution time is also discussed relative 

to full scale and computationally intensive homogenization based on the homogenization theory 

called FVDAM. This is the driving motivation for this study to enable multiscale analysis of large 

structures. 
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Chapter 5 

Model Results 

In this chapter we discuss the performance of the designed ANN and CNN models for 

predicting the stress-strain curves and homogenized moduli of a boron/aluminum unidirectional 

composite with random fiber distributions. The ANN and CNN models for the stress-strain 

responses are trained based on 6 data sets generated under applied loading by six uniaxial 

homogenized stresses (LOPs) discussed in Chapter 4, with each LOP data set size of 2,000 RUC 

microstructural realizations. The training set size is 1800, randomly selected from the 2,000 data 

samples. The test set is comprised of 100 randomly selected data. 50 data sets are used for validation 

and the remaining 50 sets are used to predict and compare the performance of the models relative 

to the actual FVDAM generated curves. In contrast, the ANN and CNN models for predicting the 

13 homogenized moduli are trained based on 20,000 microstructural realizations. Similarly, the 

training set size is 18,000, randomly selected from the 20,000 data samples. 1,000 data sets are used 

for testing and 500 are used for validation. The remaining 500 data sets are used to predict and 

compare the performance of the models. The accuracy and the loss are plotted to check the model 

performance. The performance of the models is displayed graphically by plotting the predicted and 

actual stress-strain responses for the six LOP loading cases. As for the homogenized moduli, the 

actual and predicted homogenized moduli are plotted on scatter plots to determine how far the data 

points fall from the regression line 𝑦 = 𝑥. 

5.1 ANN model performance on the stress-strain data sets 

Figure 5.1 illustrates the ANN model accuracy rate during the training epochs for the 6 LOPs 

loading cases. The evolving accuracy of the predictions for the 6 LOPs is similar. The accuracy rate 

calculated based on the training set increases rapidly with the number of epochs and attains a 

constant level around 100%. Similarly, the validation accuracy rate calculated based on the 

validation set also increases rapidly epoch count and attains a constant level around 100%. 
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Figure 5.1. ANN model for stress strain curve accuracy rate of the 6 LOPs 

 

Figure 5.2 illustrates the loss variation for the 6 LOPs. All the 6 Loss functions, which are calculated 

from the difference between the actual training response and the predictions, decrease rapidly 

during the first 2 epochs and finally remain constant somewhere at 0. The validation loss functions, 

which are calculated from the difference between the actual validation response and the predictions, 
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start from somewhere a little higher than 0, decrease in the first 2 epochs and finally remain constant 

at around 0. 

 

 

Figure 5.2. ANN model for stress strain curve loss on the 6 LOPs 
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Figure 5.3. ANN model predication comparison of stress strain curve on LOP1 to LOP3 

 
Figure 5.3 illustrates the actual 50 stress-strain curves on the left-hand side versus the 

predicted 50 stress-strain curves from the verification set on the right-hand side for the first 3 LOPs. 

The actual curves and the predicted curves look almost identical. More selective comparison is 

presented in the sequel. 
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Figure 5.4. ANN model predication comparison of stress strain curve on LOP4 to LOP6 

 
Similarly, Fig. 5.4 illustrates the actual 50 stress-strain curves on the left-hand side versus the 

predicted 50 stress-strain curves from the verification set on the right-hand side for the last 3 LOPs. 

The actual curves and the predicted curves look almost identical. To further check if the actual and 

predicted curves match for the 50 microstructural realizations, the two sets of curves were compared 

individually and the results indicated that the majority of the actual and predicted curves overlapped 
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each other. For brevity, here we select the bottom, intermediate and top curves for the comparison 

to avoid redundancy. 

 

Figure 5.5. ANN model predication comparison of the top stress strain curve for 6 LOPs 
 

Figure 5.5 presents comparison of the actual and predicted bottom stress-strain curves for the 

6 LOPs. With the exception of a small discrepancy between the actual and predicted curves for 

LOP2, the actual and predicted curves for the remaining 5 LOPs almost overlap each other, which 

indicates good performance of the ANN model. 
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Figure 5.6. ANN model predication comparison of the median stress strain curve for 6 LOPs 
 

Figure 5.6 illustrates the same comparison for the intermediate actual and predicted stress-

strain curves for the 6 LOPs. Like the comparison of the bottom stress-strain curves in the preceding 

figure, the actual and predicted intermediate stress-strain curves for the 6 LOPs almost overlap each 

other. 
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Figure 5.7. ANN model predication comparison of the bottom stress strain curve for 6 LOPs 

 

Finally, Fig. 5.7 illustrates the comparison of the actual and predicted top stress-strain curves 

for the 6 LOPs. As in the case of the bottom and intermediate stress-strain curve comparison, the 

actual and predicted top stress-strain curves for the 6 LOPs also almost overlap each other. 

 



 
 
 

65 

5.2 CNN model performance on the stress-strain data sets 

Figure 5.8 illustrates the CNN model accuracy rate during the training epochs of the 6 LOPs. 

The accuracy evolution with increasing epoch count for the five loading options LOP1,2,3,5,6 is 

similar. For the loading option LOP4, both the accuracy rate and the validation accuracy rate during  

 

Figure 5.8. CNN model for stress strain curve accuracy rate on the 6 LOPs 
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the first 10 epochs are somewhere around 0, then increase rapidly and remain constant at the level 

around 100%. The accuracy rate and the validation accuracy rate for LOP6 shift up and down after 

the 25 epochs, which indicates the validation set size is small for the CNN model based on LOP6. 

 
Figure 5.9. CNN model for stress strain curve loss on the 6 LOPs 

Figure 5.9 illustrates the Loss change for the 6 LOPs. The 5 Loss functions for the five loading 

options LOP1,2,3,5,6, which are calculated from the difference between the actual training response 

and the predictions, decrease rapidly during the first 2 epochs and finally remain constant 
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somewhere at 0. The validation loss functions, which are calculated from the difference between 

the actual validation response and the predictions, start from somewhere a little greater than 0, 

decrease in the first 2 epochs and finally remain constant at around 0. For the loading option LOP4, 

the decrease of the loss and validation loss is much gentler. 

 
Figure 5.10. CNN model predication comparison of stress strain curve on LOP1 to LOP3 
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Figure 5.10 illustrates comparison between the actual 50 stress-strain curves taken from the 

verification set, shown on the left hand side with the predicted curves shown on the right hand side, 

for the first 3 LOPs. The actual curves and the predicted curves look almost identical. 

 
Figure 5.11. CNN model predication comparison of stress strain curve on LOP4 to LOP6 

Similarly, Fig. 5.11 illustrates the corresponding comparison for the last 3 LOPs. The actual 

curves and the predicted curves look almost identical.  To further check if the actual and predicted 

curves match, the individual actual and predicted curves were compared one-by-one, and the 
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comparison revealed that the actual and predicted curves overlapped each other. For brevity, here 

we select the bottom, intermediate and top curves for this comparison to avoid redundancy. 

 
Figure 5.12. CNN model predication comparison of the top stress strain curve for 6 LOPs 

Figure 5.12 presents the comparison between the actual and predicted bottom stress-strain 

curves for the 6 LOPs. The actual and predicted curves for the 6 LOPs almost overlap each other, 

which indicates good performance of the CNN model. 
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Figure 5.13. CNN model predication comparison of the median stress strain curve for 6 LOPs 

 
Similarly, Fig 5.13 presents comparison of the actual and predicted intermediate stress-strain 

curves for the 6 LOPs. Like the bottom curve comparison for the 6 LOPs, the actual and predicted 

intermediate curves for the 6 LOPs almost overlap each other. 

Finally, Fig 5.14 illustrates the corresponding comparison of the top stress-strain curves for 

the 6 LOPs, demonstrating near overlap and hance good performance of the developed CNN 

algorithm. 
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Figure 5.14. CNN model predication comparison of the top stress strain curve for 6 LOPs 
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5.3 ANN model performance on the 13 homogenized moduli 

Figure 5.15 illustrates the ANN model accuracy rate and validation accuracy rate evolution 

during the training epochs on the 18,000 data training set. Both the accuracy rate and validation 

accuracy rate start somewhere around 100% and overlap each other. This might be a sign of 

overfitting. The loss and validation loss evolution shown on the right-hand side of the figure both 

start somewhere around 1.864 × 10K and 1.844 × 10K. The actual performance of the ANN model 

on the 13 homogenized elastic moduli is assessed in Fig. 5.16. 

 

 

Figure 5.15. ANN model accuracy and loss for the homogenized moduli 

 

Figure 5.16 is composed of 13 scatter plots showing the actual homogenized elastic moduli 

and the corresponding ANN model predictions. As observed in the 13 scatter plots, there is a clear 

regression pattern around the line 𝑦 = 𝑥  for the nine homogenized elastic moduli  

𝐶)),	𝐶)*,	𝐶)+,	𝐶**,	𝐶*+,	𝐶++,	𝐶II,	𝐶JJ		 and 𝐶KK . These are the moduli describing the response of 

orthotropic materials in absence of terms indicative of monoclinic behavior the extent of which is 

given by the four moduli 𝐶)I,	𝐶*I,	𝐶+I and 𝐶JK. The performance of the ANN algorithm for these 

four moduli is not successful. This may be due to the fact that the ANN model inputs do not provide 

enough information or features to extract and make correct predictions. Thus, the training data size 

might be not enough. Nonetheless, it must be pointed out that these moduli are very small relative 

to the nine moduli representative of orthotropic materials, likely requiring additional features that 

supplement the employed fiber centers for accurate prediction. 
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Figure 5.16. ANN model performance visualization for the homogenized moduli 
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5.4 CNN model performance on the 13 homogenized moduli 

Figure 5.17 illustrates the CNN model accuracy rate and validation accuracy rate evolution 

during the training epochs on the 18,000 data training set. The accuracy rate starts from 0 and 

validation accuracy rate starts somewhere around 100%, both finally remain constant at 100% and 

overlap each other. The loss variation with epoch count on the right-hand side of the figure starts at 

a very large number (approx. 1.586×108) and eventually decreases to a relatively small, constant 

level.  In contrast, the validation loss variation with epoch count starts at a small number (approx. 

20,000) and further decreases to a small number. The actual performance of the CNN model on the 

13 homogenized moduli is assessed in Fig. 5.18. 

 

 

Figure 5.17. CNN model accuracy and loss for the homogenized moduli 
 

Figure 5.18 is composed of 13 scatter plots of the actual homogenized moduli and the 

corresponding CNN model predictions. As observed in the 13 scatter plots, all the data points 

representing actual and predicted moduli lie on top of the regression line 𝑦 = 𝑥. This indicates that 

the CNN model’s performance is capable of accurately predicting not only the nine moduli 

indicative of orthotropic behavior but also four very small moduli that indicate slight departures 

from orthotropy, effectively resulting in slightly monoclinic RUC realizations. Moreover, as will 

be illustrated in the following section, the 13 moduli were generated very quickly relative to the 

full-scale FVDAM calculations.  
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Figure 5.18. CNN model performance visualization for the homogenized moduli 
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5.5 Comparison of execution times 

The execution times taken to generate the stress-strain responses and the homogenized moduli 

are dramatically different between the ANN/CNN algorithms and the FVDAM simulations. Overall, 

the performance of the ANN/CNN algorithms is several orders of magnitude faster than the 

FVDAM calculations. The latter involve the solution of a complicated unit cell problem that 

requires incremental and repetitive solution algorithm due to the load-dependent evolution of 

plasticity inside the RUC, which in turn is impacted by the fiber distributions and loading direction. 

5.5.1 Homogenized stress-strain response 

Execution time for one 
stress strain response 

ANN CNN FVDAM 

LOP 1  0.001s 0.001s 34s 

LOP 2 0.001s 0.001s 90s 

LOP 3 0.001s 0.001s 81s 

LOP 4 0.001s 0.001s 87s 

LOP 5 0.001s 0.001s 94s 

LOP 6 0.001s 0.001s 91s 

Table 5.1 Execution time for one stress strain response from ANN/CNN and FVDAM 

Table 5.1 shows that the execution times to predict one stress-strain response for both the 

ANN and CNN models is approx. 0.001 seconds. By contrast, the execution time of the FVDAM 

algorithm to calculate one stress-strain response requires 34 seconds for the loading option LOP1, 

and between 80 and 90 seconds for the remaining LOPs. The difference lies in the speed with which 

the iterative process that calculates the evolution of plastic strains converges, which does not require 

many iterations for loading along the fiber direction relative to loading in the transverse directions. 

The above comparison illustrates that execution time reductions of four orders of magnitude are 

obtained from the trained ANN/CNN models relative to full-scale FVDAM calculations. 
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5.5.2 Homogenized Moduli 

 ANN CNN FVDAM 

Execution time for 
one homogenized 
moduli response 

0.001s 0.001s 32.8 s 

Table 5.2 Execution time for one homogenized moduli response from ANN/CNN and FVDAM 

Table 5.2 shows that the execution time to predict one set of homogenized moduli for both 

the ANN and CNN model is 0.001 seconds. By contrast, the execution time of the FVDAM 

algorithm to calculate the 13 homogenized moduli requires 32.8 seconds. The ANN/CNN models 

continue to outperform by far the elastic FVDAM calculations which do not require iterations 

because of the absence of plasticity. 

5.6 Summary 

In this chapter, we discussed the performance of the ANN and CNN models in predicting the 

stress-strain response and the 13 homogenized moduli of a unidirectional boron/aluminum 

composite with random fiber distributions. In terms of the stress-strain response, both the ANN and 

CNN models designed here yield very good predictions and can be employed as reliable tools to 

calculate the elastic-plastic stress-strain response of unidirectional composite materials. As for the 

13 homogenized moduli, the ANN model does not perform well due to the input data type and size 

of the training data set. By contrast, the CNN model which was trained on RUC images produces 

very good and precise predictions of both the homogenized moduli and the elastic-plastic stress-

strain curves under 6 different types of unidirectional loading. This result is important in developing 

accurate ML-based computational models for implementation in multi-scale analyses of large-scale 

composite structures. 
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Chapter 6   

Summary and Conclusions 

In this thesis, a computational scheme was developed to generate thousands of microstructure 

realizations of unidirectional composites with random fiber distributions employed by the 

homogenization theory called FVDAM. Once the microstructure was realized using randomly 

distributed fiber centers, it was then discretized into equally dimensioned subvolumes, and the 

material assignment matrix was created for input into FVDAM simulation. Subsequently, the 

FVDAM homogenization theory was incorporated into a python-driven interface that enabled 

generation of thousands of elastic-plastic stress strain curves for unidirectional metal matrix 

composites with random fiber distribution. Using this code, 2,000 stress-strain curves were 

generated under 6 fundamental loadings based on the microstructure realizations and 20,000 

microstructure realizations for the determination of the homogenized stiffness tensor. The 2,000 

microstructure realizations and the corresponding stress-strain responses, and the 20,000 

microstructure realizations and the related homogenized stiffness tensor, were then employed in 

ANN and CNN architectures that were designed and optimized for predictive purposes. 

First, the variations observed in the homogenized elastic moduli for all the microstructural 

realizations were small, with negligibly small contributions from the terms suggestive of 

monoclinic behavior. This indicates that the generated RUC microstructures, despite fiber 

distribution randomness, produced essentially orthotropic behavior characterized by 9 elastic 

homogenized moduli, likely due to the relatively large number of fibers contains within the RUCs. 

Moreover, all the density distributions of the thirteen homogenized stiffness matrix elements for 

the generated microstructures followed normal distribution, and thus were good enough for training 

by the ANN and CNN model. 

The generated stress-strain curves were then examined for the 6 uniaxial loading directions 

relative to the RUC microstructural realizations. First, very small graphical differences were 

observed in the elastic response for the different RUC microstructures, indicating small differences 



 
 
 

79 

in the homogenized moduli, as observed in the small variations of the 13 homogenized moduli with 

microstructural realization. Substantially greater variations were observed in the elastic-plastic 

region that were dependent on the loading direction. Uniaxial loading by 𝜎)) only along the fiber 

direction, LOP 1, produced virtually the same response regardless of the substantial variations in 

the RUC microstructures due the fiber constraint that limited the variations in the plastic strain 

distributions. In contrast, substantial deviations in the elastic-plastic stress-strain response were 

observed under loadings from LOP 2 to LOP 6. For uniaxial loading by transverse 𝜎6** stress only 

oriented along the horizontal axis, LOP 2, the stiffest response was produced by the RUC with the 

most ordered microstructure characterized by aligned fiber rows and the softest by RUC 

microstructure with most disordered fibers. The microstructure with some degree of order produces 

an intermediate stress-strain response.   For uniaxial loading by transverse 𝜎6++ stress only oriented 

along the vertical axis, LOP 3, the corresponding effect of RUC microstructure on the homogenized 

stress-strain response was similar, with the stiffest response produced by the RUC with the most 

ordered microstructure characterized by aligned fiber rows and the softest by RUC microstructure 

with most disordered fibers. The microstructure with some degree of order produces an intermediate 

stress-strain response. In contrast, under uniaxial transverse shear loading only, LOP 4, it was the 

most ordered microstructure that produced the most compliant response, with the stiffest response 

generated by the most disordered RUC. The effect of microstructure on the homogenized response 

was also less pronounced relative to the two preceding cases involving transverse normal stresses 

𝜎6** and 𝜎6++ where the greatest scatter in the elastic-plastic region was observed. The effect of RUC 

microstructures on the homogenized stress-strain responses under uniaxial shear loading by 𝜎6)+ and 

𝜎6)* in the x1-x3 and x1-x2 planes respectively, was even smaller despite differences in the RUC 

microstructures.  

Finally, the ANN and CNN models were trained in predicting the stress-strain response and 

the 13 homogenized moduli. Both the ANN and CNN models designed here yielded very good 

predictions of the elastic-plastic stress-strain responses under the 6 uniaxial loading directions, and 

therefore may be employed as good tools to calculate the stress-strain response of unidirectional 

composite materials based on the microstructures given in terms of either the fiber center locations 

or RUC images. Only 1,900 RUC realizations were required to achieve such good performance for 

both models. In contrast, substantially greater number of microstructural realizations than those 
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generated for the prediction of elastic-plastic stress-were required to achieve good results for the 

homogenized elastic moduli. The number of microstructural realizations were increased from 2,000 

to 10,000, 15,000 and finally 20,000 and subsets of these realizations were used for prediction after 

training. Whereas the CNN model produced accurate results after being trained and optimized using 

the 20,000 microstructural realizations, including the very small, moduli indicative of monoclinic 

behavior, the ANN model based just on the fiber center distributions did not perform nearly as well. 

It may be concluded that large numbers of microstructural features are required to accurately predict 

elastic properties of random composite materials with small homogenized moduli differences due 

to fiber distribution variations. This result is important in developing accurate ML-based 

computational models for implementation in multi-scale analyses of large-scale composite 

structures. 

Perhaps most importantly, the execution times required to predict the homogenized elastic-

plastic response of random fiber composites based on the ANN/CNN algorithms are several orders 

of magnitude smaller that the full-scale calculations based on the FVDAM homogenization theory. 

In particular, the execution time required of the ANN/CNN model to predict one stress-strain 

response, or one homogenized moduli response is 0.001 seconds. By contrast, the FVDAM 

algorithm takes anywhere from 34 to 94 seconds to predict a single homogenized stress-strain 

response depending on the orientation of the applied load relative to the fiber direction. Similarly, 

the calculation of the 13 homogenized elastic moduli requires 32.8 seconds for FVDAM versus just 

0.001 seconds for the CNN algorithm. These dramatic reductions in execution times make possible 

calculation of the elastic-plastic response of large composite structures that experience plasticity 

during deformation. 

In conclusion, machine learning and deep learning algorithms can be good alternative 

computational methods for multi-scale analysis of composite structures, with the combined 

advantages of good accuracy and time efficiency. 
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ANN_1200_1600_1800_2000_LOP6

October 14, 2022

[29]: # pip install pandas

[30]: from keras.models import Sequential
from keras.layers import Dense, Conv1D,Conv2D, Flatten
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import keras
import glob
import os

[31]: projectDir = r'C:\Users\18810\Desktop\RUC Collection'
print(projectDir)

C:\Users\18810\Desktop\RUC Collection

[32]: extension = 'csv'
all_filenames = glob.glob(os.path.join(projectDir + '\CSV 2000', '*.csv'))
all_filenames[0]

[32]: 'C:\\Users\\18810\\Desktop\\RUC Collection\\CSV 2000\\ann_input0000.csv'

[33]: X = []
for i in range(2000):

file = open(all_filenames[i])
numpy_array = pd.read_csv(file, delimiter=',',header=None)
# numpy_array = np. loadtxt(file, delimiter=',')
X.append(numpy_array)

print(X[0])

0
0 159.000000
1 211.000000
2 21.932944
3 26.432944

1



4 26.432944
5 79.298832
6 26.432944
7 132.164719
8 26.432944
9 185.030607
10 26.432944
11 26.432944
12 79.298832
13 79.298832
14 79.298832
15 132.164719
16 79.298832
17 185.030607
18 79.298832
19 26.432944
20 132.164719
21 79.298832
22 132.164719

[34]: y = pd.read_csv('LOP_6_SIGMA12_collection.csv',header=None)
print(y.shape)
print(type(y))
y.head(--25)

(25, 2001)
<class 'pandas.core.frame.DataFrame'>

[34]: 0 1 2 3 4 5 6 7 \
0 0.0002 9.5686 9.5686 9.5718 9.5762 9.5686 9.5686 9.5786
1 0.0004 19.1360 19.1360 19.1420 19.1510 19.1360 19.1360 19.1560
2 0.0006 28.5980 28.5980 28.6170 28.6210 28.5980 28.6110 28.6370
3 0.0008 36.4790 36.4790 36.4880 36.4780 36.4790 36.4960 36.4780
4 0.0010 42.3200 42.3200 42.3150 42.3080 42.3200 42.3350 42.2870
5 0.0012 46.3910 46.3910 46.3800 46.3810 46.3910 46.4070 46.3580
6 0.0014 48.9660 48.9660 48.9500 48.9600 48.9660 48.9700 48.9300
7 0.0016 50.1150 50.1150 50.1140 50.1200 50.1150 50.1160 50.1170
8 0.0018 50.6550 50.6550 50.6560 50.6620 50.6550 50.6550 50.6620
9 0.0020 51.1120 51.1120 51.1130 51.1190 51.1120 51.1120 51.1200
10 0.0022 51.5370 51.5370 51.5380 51.5450 51.5370 51.5370 51.5460
11 0.0024 51.9450 51.9450 51.9470 51.9540 51.9450 51.9450 51.9550
12 0.0026 52.3410 52.3410 52.3420 52.3520 52.3410 52.3410 52.3520
13 0.0028 52.7270 52.7270 52.7290 52.7390 52.7270 52.7280 52.7400
14 0.0030 53.1080 53.1080 53.1090 53.1200 53.1080 53.1080 53.1200
15 0.0032 53.4810 53.4810 53.4830 53.4950 53.4810 53.4810 53.4960
16 0.0034 53.8500 53.8500 53.8520 53.8650 53.8500 53.8500 53.8660
17 0.0036 54.2150 54.2150 54.2180 54.2310 54.2150 54.2150 54.2320
18 0.0038 54.5770 54.5770 54.5790 54.5940 54.5770 54.5770 54.5940

2



19 0.0040 54.9350 54.9350 54.9380 54.9530 54.9350 54.9350 54.9540
20 0.0042 55.2900 55.2900 55.2930 55.3090 55.2900 55.2900 55.3100
21 0.0044 55.6430 55.6430 55.6460 55.6630 55.6430 55.6420 55.6640
22 0.0046 55.9940 55.9940 55.9970 56.0150 55.9940 55.9930 56.0160
23 0.0048 56.3420 56.3420 56.3460 56.3650 56.3420 56.3420 56.3650
24 0.0050 56.6890 56.6890 56.6920 56.7120 56.6890 56.6880 56.7130

8 9 ... 1991 1992 1993 1994 1995 \
0 9.574 9.5794 ... 9.3592 9.3455 9.3448 9.3599 9.3448
1 19.147 19.1570 ... 18.7160 18.6890 18.6870 18.7180 18.6870
2 28.624 28.6290 ... 27.9810 27.9480 27.9430 27.9890 27.9460
3 36.484 36.4960 ... 36.3190 36.2980 36.2830 36.3210 36.2650
4 42.311 42.3240 ... 42.7930 42.7910 42.7830 42.8220 42.7810
5 46.384 46.4020 ... 47.0830 47.0960 47.1010 47.1350 47.1280
6 48.957 48.9610 ... 49.5820 49.5740 49.5920 49.6160 49.5910
7 50.115 50.1090 ... 50.4820 50.4630 50.4740 50.4980 50.4520
8 50.658 50.6580 ... 51.0360 51.0110 51.0220 51.0530 50.9940
9 51.115 51.1160 ... 51.5230 51.4920 51.5050 51.5410 51.4720
10 51.541 51.5420 ... 51.9770 51.9430 51.9560 51.9970 51.9190
11 51.949 51.9510 ... 52.4120 52.3740 52.3880 52.4330 52.3470
12 52.346 52.3470 ... 52.8310 52.7910 52.8060 52.8540 52.7620
13 52.733 52.7350 ... 53.2380 53.1970 53.2120 53.2630 53.1650
14 53.113 53.1160 ... 53.6280 53.5910 53.6050 53.6590 53.5590
15 53.487 53.4900 ... 54.0090 53.9720 53.9860 54.0420 53.9440
16 53.857 53.8600 ... 54.3830 54.3450 54.3580 54.4160 54.3210
17 54.222 54.2260 ... 54.7500 54.7100 54.7240 54.7840 54.6870
18 54.584 54.5880 ... 55.1120 55.0710 55.0840 55.1460 55.0460
19 54.943 54.9470 ... 55.4690 55.4260 55.4400 55.5020 55.4010
20 55.299 55.3030 ... 55.8210 55.7770 55.7910 55.8550 55.7510
21 55.652 55.6560 ... 56.1700 56.1250 56.1390 56.2020 56.0980
22 56.003 56.0070 ... 56.5150 56.4690 56.4830 56.5460 56.4410
23 56.352 56.3570 ... 56.8560 56.8100 56.8240 56.8850 56.7810
24 56.698 56.7040 ... 57.1950 57.1480 57.1620 57.2210 57.1180

1996 1997 1998 1999 2000
0 9.3469 9.3494 9.3492 9.3543 9.3494
1 18.6920 18.6970 18.6960 18.7070 18.6960
2 27.9480 27.9600 27.9570 27.9640 27.9330
3 36.2500 36.2610 36.2410 36.2270 36.2080
4 42.7670 42.7790 42.7630 42.7350 42.7320
5 47.1040 47.1140 47.1230 47.0790 47.0940
6 49.5890 49.5770 49.5820 49.5630 49.5500
7 50.4550 50.4260 50.4110 50.3980 50.3570
8 50.9990 50.9660 50.9450 50.9340 50.8820
9 51.4790 51.4440 51.4190 51.4080 51.3490
10 51.9280 51.8910 51.8620 51.8520 51.7870
11 52.3580 52.3180 52.2860 52.2780 52.2070

3



12 52.7740 52.7320 52.6980 52.6900 52.6140
13 53.1780 53.1340 53.0980 53.0910 53.0100
14 53.5730 53.5270 53.4890 53.4830 53.3980
15 53.9570 53.9110 53.8720 53.8610 53.7780
16 54.3290 54.2820 54.2480 54.2300 54.1510
17 54.6940 54.6460 54.6130 54.5920 54.5130
18 55.0530 55.0040 54.9710 54.9490 54.8690
19 55.4080 55.3570 55.3230 55.3020 55.2200
20 55.7590 55.7070 55.6720 55.6500 55.5670
21 56.1050 56.0520 56.0170 55.9950 55.9110
22 56.4490 56.3950 56.3590 56.3370 56.2510
23 56.7890 56.7340 56.6970 56.6760 56.5890
24 57.1260 57.0700 57.0330 57.0130 56.9240

[25 rows x 2001 columns]

[35]: X = np.array(X)
X = X.reshape(2000, 23)
X_input = X[0:2000]
print(X_input.shape)
print(X_input[1999])

(2000, 23)
[159. 211. 21.93294387 64.1054526 32.91902306
115.42983722 25.36049823 165.61869264 76.12923234 181.95859096
25.82235632 24.38902307 66.00332628 93.28627211 85.11467013

126.49187173 133.39110318 178.73104273 125.60288691 26.0349274
120.80692658 80.13866749 132.22169038]

[36]: Y = []
for col in y.columns:

Y.append(y[col])
Y_input = np.array(Y[1:2001])
print(Y_input[1999])
print(Y_input.shape)

[ 9.3494 18.696 27.933 36.208 42.732 47.094 49.55 50.357 50.882
51.349 51.787 52.207 52.614 53.01 53.398 53.778 54.151 54.513
54.869 55.22 55.567 55.911 56.251 56.589 56.924 ]

(2000, 25)

[37]: # X_train = X_input[0:600]
# X_test = X_input[600:750]
# X_val = X_input[750:900]
# X_verify = X_input[900:1000]

[38]: # y_train = Y_input[0:600]
# y_test = Y_input[600:750]
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# y_val = Y_input[750:900]
# y_verify = Y_input[900:1000]

[39]: X_train, X_test, y_train, y_test = train_test_split(X_input, Y_input,␣
↪→test_size=0.05, random_state=42)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.
↪→026, random_state=42)

X_train, X_verify, y_train, y_verify = train_test_split(X_train, y_train,␣
↪→test_size=0.027, random_state=42)

print(len(X_train))
print(len(X_test))
print(len(X_val))
print(len(X_verify))

1800
100
50
50

[40]: from tensorflow.keras.models import Sequential

model = keras.Sequential([
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(25)

])
model.build(input_shape=(1, 23))
model.compile(

loss=keras.losses.MeanSquaredError(),
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
metrics=["accuracy", "mean_squared_error"],

)
model.summary()

Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
dense_11 (Dense) (1, 256) 6144

5



dense_12 (Dense) (1, 256) 65792

dense_13 (Dense) (1, 256) 65792

dense_14 (Dense) (1, 256) 65792

dense_15 (Dense) (1, 256) 65792

dense_16 (Dense) (1, 256) 65792

dense_17 (Dense) (1, 256) 65792

dense_18 (Dense) (1, 256) 65792

dense_19 (Dense) (1, 256) 65792

dense_20 (Dense) (1, 256) 65792

dense_21 (Dense) (1, 25) 6425

=================================================================
Total params: 604,697
Trainable params: 604,697
Non-trainable params: 0
_________________________________________________________________

[41]: with tf.device('/gpu:1'):
model.fit(X_train, y_train, batch_size=20, epochs=100, verbose=2,␣

↪→validation_data=(X_val, y_val))

Epoch 1/100
90/90 - 1s - loss: 496.3734 - accuracy: 0.3150 - mean_squared_error: 496.3734 -
val_loss: 2.1514 - val_accuracy: 1.0000 - val_mean_squared_error: 2.1514 -
1s/epoch - 13ms/step
Epoch 2/100
90/90 - 0s - loss: 1.0703 - accuracy: 0.9961 - mean_squared_error: 1.0703 -
val_loss: 0.8460 - val_accuracy: 1.0000 - val_mean_squared_error: 0.8460 -
218ms/epoch - 2ms/step
Epoch 3/100
90/90 - 0s - loss: 0.5651 - accuracy: 1.0000 - mean_squared_error: 0.5651 -
val_loss: 0.5219 - val_accuracy: 1.0000 - val_mean_squared_error: 0.5219 -
206ms/epoch - 2ms/step
Epoch 4/100
90/90 - 0s - loss: 0.4384 - accuracy: 0.9994 - mean_squared_error: 0.4384 -
val_loss: 0.3969 - val_accuracy: 1.0000 - val_mean_squared_error: 0.3969 -
191ms/epoch - 2ms/step
Epoch 5/100
90/90 - 0s - loss: 0.3595 - accuracy: 1.0000 - mean_squared_error: 0.3595 -
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val_loss: 0.3696 - val_accuracy: 1.0000 - val_mean_squared_error: 0.3696 -
213ms/epoch - 2ms/step
Epoch 6/100
90/90 - 0s - loss: 0.3363 - accuracy: 0.9994 - mean_squared_error: 0.3363 -
val_loss: 0.4013 - val_accuracy: 1.0000 - val_mean_squared_error: 0.4013 -
200ms/epoch - 2ms/step
Epoch 7/100
90/90 - 0s - loss: 0.3297 - accuracy: 0.9989 - mean_squared_error: 0.3297 -
val_loss: 0.2890 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2890 -
197ms/epoch - 2ms/step
Epoch 8/100
90/90 - 0s - loss: 0.3120 - accuracy: 1.0000 - mean_squared_error: 0.3120 -
val_loss: 0.2956 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2956 -
200ms/epoch - 2ms/step
Epoch 9/100
90/90 - 0s - loss: 0.2721 - accuracy: 1.0000 - mean_squared_error: 0.2721 -
val_loss: 0.2401 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2401 -
202ms/epoch - 2ms/step
Epoch 10/100
90/90 - 0s - loss: 0.2796 - accuracy: 0.9928 - mean_squared_error: 0.2796 -
val_loss: 0.3151 - val_accuracy: 1.0000 - val_mean_squared_error: 0.3151 -
268ms/epoch - 3ms/step
Epoch 11/100
90/90 - 0s - loss: 0.2513 - accuracy: 1.0000 - mean_squared_error: 0.2513 -
val_loss: 0.2728 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2728 -
250ms/epoch - 3ms/step
Epoch 12/100
90/90 - 0s - loss: 0.2267 - accuracy: 1.0000 - mean_squared_error: 0.2267 -
val_loss: 0.2004 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2004 -
185ms/epoch - 2ms/step
Epoch 13/100
90/90 - 0s - loss: 0.2473 - accuracy: 1.0000 - mean_squared_error: 0.2473 -
val_loss: 0.1862 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1862 -
199ms/epoch - 2ms/step
Epoch 14/100
90/90 - 0s - loss: 0.2017 - accuracy: 1.0000 - mean_squared_error: 0.2017 -
val_loss: 0.2314 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2314 -
193ms/epoch - 2ms/step
Epoch 15/100
90/90 - 0s - loss: 0.2103 - accuracy: 1.0000 - mean_squared_error: 0.2103 -
val_loss: 0.1675 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1675 -
191ms/epoch - 2ms/step
Epoch 16/100
90/90 - 0s - loss: 0.2050 - accuracy: 1.0000 - mean_squared_error: 0.2050 -
val_loss: 0.1554 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1554 -
219ms/epoch - 2ms/step
Epoch 17/100
90/90 - 0s - loss: 0.1931 - accuracy: 0.9994 - mean_squared_error: 0.1931 -
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val_loss: 0.1729 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1729 -
190ms/epoch - 2ms/step
Epoch 18/100
90/90 - 0s - loss: 0.2058 - accuracy: 0.9989 - mean_squared_error: 0.2058 -
val_loss: 0.1558 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1558 -
206ms/epoch - 2ms/step
Epoch 19/100
90/90 - 0s - loss: 0.1807 - accuracy: 1.0000 - mean_squared_error: 0.1807 -
val_loss: 0.1903 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1903 -
194ms/epoch - 2ms/step
Epoch 20/100
90/90 - 0s - loss: 0.1647 - accuracy: 1.0000 - mean_squared_error: 0.1647 -
val_loss: 0.1363 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1363 -
180ms/epoch - 2ms/step
Epoch 21/100
90/90 - 0s - loss: 0.1523 - accuracy: 1.0000 - mean_squared_error: 0.1523 -
val_loss: 0.1286 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1286 -
196ms/epoch - 2ms/step
Epoch 22/100
90/90 - 0s - loss: 0.1376 - accuracy: 1.0000 - mean_squared_error: 0.1376 -
val_loss: 0.1449 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1449 -
193ms/epoch - 2ms/step
Epoch 23/100
90/90 - 0s - loss: 0.1366 - accuracy: 1.0000 - mean_squared_error: 0.1366 -
val_loss: 0.1269 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1269 -
192ms/epoch - 2ms/step
Epoch 24/100
90/90 - 0s - loss: 0.1380 - accuracy: 1.0000 - mean_squared_error: 0.1380 -
val_loss: 0.2275 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2275 -
200ms/epoch - 2ms/step
Epoch 25/100
90/90 - 0s - loss: 0.1599 - accuracy: 1.0000 - mean_squared_error: 0.1599 -
val_loss: 0.1607 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1607 -
196ms/epoch - 2ms/step
Epoch 26/100
90/90 - 0s - loss: 0.1654 - accuracy: 0.9989 - mean_squared_error: 0.1654 -
val_loss: 0.1102 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1102 -
198ms/epoch - 2ms/step
Epoch 27/100
90/90 - 0s - loss: 0.1333 - accuracy: 0.9994 - mean_squared_error: 0.1333 -
val_loss: 0.1089 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1089 -
208ms/epoch - 2ms/step
Epoch 28/100
90/90 - 0s - loss: 0.1346 - accuracy: 1.0000 - mean_squared_error: 0.1346 -
val_loss: 0.1712 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1712 -
216ms/epoch - 2ms/step
Epoch 29/100
90/90 - 0s - loss: 0.1322 - accuracy: 1.0000 - mean_squared_error: 0.1322 -
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val_loss: 0.1121 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1121 -
215ms/epoch - 2ms/step
Epoch 30/100
90/90 - 0s - loss: 0.1345 - accuracy: 0.9983 - mean_squared_error: 0.1345 -
val_loss: 0.2532 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2532 -
230ms/epoch - 3ms/step
Epoch 31/100
90/90 - 0s - loss: 0.1178 - accuracy: 1.0000 - mean_squared_error: 0.1178 -
val_loss: 0.1089 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1089 -
325ms/epoch - 4ms/step
Epoch 32/100
90/90 - 0s - loss: 0.1589 - accuracy: 0.9994 - mean_squared_error: 0.1589 -
val_loss: 0.1319 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1319 -
274ms/epoch - 3ms/step
Epoch 33/100
90/90 - 0s - loss: 0.1261 - accuracy: 1.0000 - mean_squared_error: 0.1261 -
val_loss: 0.1411 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1411 -
265ms/epoch - 3ms/step
Epoch 34/100
90/90 - 0s - loss: 0.1497 - accuracy: 0.9967 - mean_squared_error: 0.1497 -
val_loss: 0.0922 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0922 -
211ms/epoch - 2ms/step
Epoch 35/100
90/90 - 0s - loss: 0.1094 - accuracy: 1.0000 - mean_squared_error: 0.1094 -
val_loss: 0.2863 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2863 -
215ms/epoch - 2ms/step
Epoch 36/100
90/90 - 0s - loss: 0.1170 - accuracy: 0.9994 - mean_squared_error: 0.1170 -
val_loss: 0.1038 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1038 -
208ms/epoch - 2ms/step
Epoch 37/100
90/90 - 0s - loss: 0.1037 - accuracy: 0.9978 - mean_squared_error: 0.1037 -
val_loss: 0.0911 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0911 -
273ms/epoch - 3ms/step
Epoch 38/100
90/90 - 0s - loss: 0.0975 - accuracy: 1.0000 - mean_squared_error: 0.0975 -
val_loss: 0.0820 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0820 -
239ms/epoch - 3ms/step
Epoch 39/100
90/90 - 0s - loss: 0.1183 - accuracy: 1.0000 - mean_squared_error: 0.1183 -
val_loss: 0.0928 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0928 -
224ms/epoch - 2ms/step
Epoch 40/100
90/90 - 0s - loss: 0.1169 - accuracy: 1.0000 - mean_squared_error: 0.1169 -
val_loss: 0.3634 - val_accuracy: 1.0000 - val_mean_squared_error: 0.3634 -
220ms/epoch - 2ms/step
Epoch 41/100
90/90 - 0s - loss: 0.1030 - accuracy: 1.0000 - mean_squared_error: 0.1030 -
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val_loss: 0.1478 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1478 -
228ms/epoch - 3ms/step
Epoch 42/100
90/90 - 0s - loss: 0.0963 - accuracy: 1.0000 - mean_squared_error: 0.0963 -
val_loss: 0.0876 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0876 -
205ms/epoch - 2ms/step
Epoch 43/100
90/90 - 0s - loss: 0.0819 - accuracy: 1.0000 - mean_squared_error: 0.0819 -
val_loss: 0.0736 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0736 -
248ms/epoch - 3ms/step
Epoch 44/100
90/90 - 0s - loss: 0.1188 - accuracy: 0.9961 - mean_squared_error: 0.1188 -
val_loss: 0.2169 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2169 -
233ms/epoch - 3ms/step
Epoch 45/100
90/90 - 0s - loss: 0.1070 - accuracy: 1.0000 - mean_squared_error: 0.1070 -
val_loss: 0.0767 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0767 -
208ms/epoch - 2ms/step
Epoch 46/100
90/90 - 0s - loss: 0.1168 - accuracy: 1.0000 - mean_squared_error: 0.1168 -
val_loss: 0.0772 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0772 -
202ms/epoch - 2ms/step
Epoch 47/100
90/90 - 0s - loss: 0.0758 - accuracy: 1.0000 - mean_squared_error: 0.0758 -
val_loss: 0.0807 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0807 -
192ms/epoch - 2ms/step
Epoch 48/100
90/90 - 0s - loss: 0.1279 - accuracy: 1.0000 - mean_squared_error: 0.1279 -
val_loss: 0.0793 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0793 -
189ms/epoch - 2ms/step
Epoch 49/100
90/90 - 0s - loss: 0.0985 - accuracy: 1.0000 - mean_squared_error: 0.0985 -
val_loss: 0.0621 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0621 -
203ms/epoch - 2ms/step
Epoch 50/100
90/90 - 0s - loss: 0.0758 - accuracy: 1.0000 - mean_squared_error: 0.0758 -
val_loss: 0.0641 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0641 -
195ms/epoch - 2ms/step
Epoch 51/100
90/90 - 0s - loss: 0.0820 - accuracy: 1.0000 - mean_squared_error: 0.0820 -
val_loss: 0.0652 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0652 -
201ms/epoch - 2ms/step
Epoch 52/100
90/90 - 0s - loss: 0.0951 - accuracy: 1.0000 - mean_squared_error: 0.0951 -
val_loss: 0.1917 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1917 -
197ms/epoch - 2ms/step
Epoch 53/100
90/90 - 0s - loss: 0.1195 - accuracy: 1.0000 - mean_squared_error: 0.1195 -
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val_loss: 0.0913 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0913 -
224ms/epoch - 2ms/step
Epoch 54/100
90/90 - 0s - loss: 0.0970 - accuracy: 0.9989 - mean_squared_error: 0.0970 -
val_loss: 0.0777 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0777 -
211ms/epoch - 2ms/step
Epoch 55/100
90/90 - 0s - loss: 0.1007 - accuracy: 1.0000 - mean_squared_error: 0.1007 -
val_loss: 0.1136 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1136 -
232ms/epoch - 3ms/step
Epoch 56/100
90/90 - 0s - loss: 0.0947 - accuracy: 1.0000 - mean_squared_error: 0.0947 -
val_loss: 0.0921 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0921 -
205ms/epoch - 2ms/step
Epoch 57/100
90/90 - 0s - loss: 0.1231 - accuracy: 1.0000 - mean_squared_error: 0.1231 -
val_loss: 0.0599 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0599 -
212ms/epoch - 2ms/step
Epoch 58/100
90/90 - 0s - loss: 0.0845 - accuracy: 1.0000 - mean_squared_error: 0.0845 -
val_loss: 0.0736 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0736 -
263ms/epoch - 3ms/step
Epoch 59/100
90/90 - 0s - loss: 0.0746 - accuracy: 1.0000 - mean_squared_error: 0.0746 -
val_loss: 0.0509 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0509 -
258ms/epoch - 3ms/step
Epoch 60/100
90/90 - 0s - loss: 0.0841 - accuracy: 1.0000 - mean_squared_error: 0.0841 -
val_loss: 0.1110 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1110 -
255ms/epoch - 3ms/step
Epoch 61/100
90/90 - 0s - loss: 0.0937 - accuracy: 1.0000 - mean_squared_error: 0.0937 -
val_loss: 0.0522 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0522 -
208ms/epoch - 2ms/step
Epoch 62/100
90/90 - 0s - loss: 0.0627 - accuracy: 1.0000 - mean_squared_error: 0.0627 -
val_loss: 0.0504 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0504 -
193ms/epoch - 2ms/step
Epoch 63/100
90/90 - 0s - loss: 0.0851 - accuracy: 1.0000 - mean_squared_error: 0.0851 -
val_loss: 0.2709 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2709 -
204ms/epoch - 2ms/step
Epoch 64/100
90/90 - 0s - loss: 0.0664 - accuracy: 1.0000 - mean_squared_error: 0.0664 -
val_loss: 0.0674 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0674 -
179ms/epoch - 2ms/step
Epoch 65/100
90/90 - 0s - loss: 0.0618 - accuracy: 1.0000 - mean_squared_error: 0.0618 -

11



val_loss: 0.0478 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0478 -
239ms/epoch - 3ms/step
Epoch 66/100
90/90 - 0s - loss: 0.0600 - accuracy: 1.0000 - mean_squared_error: 0.0600 -
val_loss: 0.0450 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0450 -
257ms/epoch - 3ms/step
Epoch 67/100
90/90 - 0s - loss: 0.0660 - accuracy: 1.0000 - mean_squared_error: 0.0660 -
val_loss: 0.0443 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0443 -
242ms/epoch - 3ms/step
Epoch 68/100
90/90 - 0s - loss: 0.0839 - accuracy: 1.0000 - mean_squared_error: 0.0839 -
val_loss: 0.1833 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1833 -
178ms/epoch - 2ms/step
Epoch 69/100
90/90 - 0s - loss: 0.0855 - accuracy: 1.0000 - mean_squared_error: 0.0855 -
val_loss: 0.0531 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0531 -
174ms/epoch - 2ms/step
Epoch 70/100
90/90 - 0s - loss: 0.0673 - accuracy: 1.0000 - mean_squared_error: 0.0673 -
val_loss: 0.1020 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1020 -
183ms/epoch - 2ms/step
Epoch 71/100
90/90 - 0s - loss: 0.0631 - accuracy: 1.0000 - mean_squared_error: 0.0631 -
val_loss: 0.0397 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0397 -
181ms/epoch - 2ms/step
Epoch 72/100
90/90 - 0s - loss: 0.0835 - accuracy: 0.9994 - mean_squared_error: 0.0835 -
val_loss: 0.0532 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0532 -
176ms/epoch - 2ms/step
Epoch 73/100
90/90 - 0s - loss: 0.1140 - accuracy: 1.0000 - mean_squared_error: 0.1140 -
val_loss: 0.0958 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0958 -
174ms/epoch - 2ms/step
Epoch 74/100
90/90 - 0s - loss: 0.0904 - accuracy: 1.0000 - mean_squared_error: 0.0904 -
val_loss: 0.0963 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0963 -
194ms/epoch - 2ms/step
Epoch 75/100
90/90 - 0s - loss: 0.0869 - accuracy: 0.9972 - mean_squared_error: 0.0869 -
val_loss: 0.1130 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1130 -
207ms/epoch - 2ms/step
Epoch 76/100
90/90 - 0s - loss: 0.0988 - accuracy: 1.0000 - mean_squared_error: 0.0988 -
val_loss: 0.0766 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0766 -
238ms/epoch - 3ms/step
Epoch 77/100
90/90 - 0s - loss: 0.0591 - accuracy: 1.0000 - mean_squared_error: 0.0591 -
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val_loss: 0.0412 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0412 -
201ms/epoch - 2ms/step
Epoch 78/100
90/90 - 0s - loss: 0.0690 - accuracy: 1.0000 - mean_squared_error: 0.0690 -
val_loss: 0.0365 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0365 -
177ms/epoch - 2ms/step
Epoch 79/100
90/90 - 0s - loss: 0.0632 - accuracy: 1.0000 - mean_squared_error: 0.0632 -
val_loss: 0.0941 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0941 -
175ms/epoch - 2ms/step
Epoch 80/100
90/90 - 0s - loss: 0.1030 - accuracy: 1.0000 - mean_squared_error: 0.1030 -
val_loss: 0.0395 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0395 -
172ms/epoch - 2ms/step
Epoch 81/100
90/90 - 0s - loss: 0.0568 - accuracy: 1.0000 - mean_squared_error: 0.0568 -
val_loss: 0.0298 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0298 -
201ms/epoch - 2ms/step
Epoch 82/100
90/90 - 0s - loss: 0.0785 - accuracy: 1.0000 - mean_squared_error: 0.0785 -
val_loss: 0.1530 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1530 -
173ms/epoch - 2ms/step
Epoch 83/100
90/90 - 0s - loss: 0.0637 - accuracy: 1.0000 - mean_squared_error: 0.0637 -
val_loss: 0.0687 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0687 -
175ms/epoch - 2ms/step
Epoch 84/100
90/90 - 0s - loss: 0.0705 - accuracy: 1.0000 - mean_squared_error: 0.0705 -
val_loss: 0.0839 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0839 -
175ms/epoch - 2ms/step
Epoch 85/100
90/90 - 0s - loss: 0.0643 - accuracy: 1.0000 - mean_squared_error: 0.0643 -
val_loss: 0.0516 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0516 -
179ms/epoch - 2ms/step
Epoch 86/100
90/90 - 0s - loss: 0.0511 - accuracy: 0.9994 - mean_squared_error: 0.0511 -
val_loss: 0.0321 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0321 -
184ms/epoch - 2ms/step
Epoch 87/100
90/90 - 0s - loss: 0.0597 - accuracy: 1.0000 - mean_squared_error: 0.0597 -
val_loss: 0.0340 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0340 -
188ms/epoch - 2ms/step
Epoch 88/100
90/90 - 0s - loss: 0.0442 - accuracy: 1.0000 - mean_squared_error: 0.0442 -
val_loss: 0.0332 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0332 -
184ms/epoch - 2ms/step
Epoch 89/100
90/90 - 0s - loss: 0.0586 - accuracy: 1.0000 - mean_squared_error: 0.0586 -
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val_loss: 0.0373 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0373 -
202ms/epoch - 2ms/step
Epoch 90/100
90/90 - 0s - loss: 0.0666 - accuracy: 0.9972 - mean_squared_error: 0.0666 -
val_loss: 0.0343 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0343 -
201ms/epoch - 2ms/step
Epoch 91/100
90/90 - 0s - loss: 0.0597 - accuracy: 1.0000 - mean_squared_error: 0.0597 -
val_loss: 0.0386 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0386 -
185ms/epoch - 2ms/step
Epoch 92/100
90/90 - 0s - loss: 0.0685 - accuracy: 1.0000 - mean_squared_error: 0.0685 -
val_loss: 0.0344 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0344 -
183ms/epoch - 2ms/step
Epoch 93/100
90/90 - 0s - loss: 0.0653 - accuracy: 1.0000 - mean_squared_error: 0.0653 -
val_loss: 0.0322 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0322 -
199ms/epoch - 2ms/step
Epoch 94/100
90/90 - 0s - loss: 0.0670 - accuracy: 1.0000 - mean_squared_error: 0.0670 -
val_loss: 0.0506 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0506 -
192ms/epoch - 2ms/step
Epoch 95/100
90/90 - 0s - loss: 0.0490 - accuracy: 1.0000 - mean_squared_error: 0.0490 -
val_loss: 0.0417 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0417 -
183ms/epoch - 2ms/step
Epoch 96/100
90/90 - 0s - loss: 0.0592 - accuracy: 0.9994 - mean_squared_error: 0.0592 -
val_loss: 0.0356 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0356 -
195ms/epoch - 2ms/step
Epoch 97/100
90/90 - 0s - loss: 0.0668 - accuracy: 0.9989 - mean_squared_error: 0.0668 -
val_loss: 0.0400 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0400 -
183ms/epoch - 2ms/step
Epoch 98/100
90/90 - 0s - loss: 0.0535 - accuracy: 1.0000 - mean_squared_error: 0.0535 -
val_loss: 0.0422 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0422 -
197ms/epoch - 2ms/step
Epoch 99/100
90/90 - 0s - loss: 0.0590 - accuracy: 1.0000 - mean_squared_error: 0.0590 -
val_loss: 0.0321 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0321 -
175ms/epoch - 2ms/step
Epoch 100/100
90/90 - 0s - loss: 0.0626 - accuracy: 1.0000 - mean_squared_error: 0.0626 -
val_loss: 0.0383 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0383 -
177ms/epoch - 2ms/step
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[42]: losses = pd.DataFrame(model.history.history)

[43]: losses.tail(1)

[43]: loss accuracy mean_squared_error val_loss val_accuracy \
99 0.062633 1.0 0.062633 0.038328 1.0

val_mean_squared_error
99 0.038328

[44]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['accuracy'],label='Accuracy')
plt.plot(losses['val_accuracy'],label='Validation Accuracy')
plt.xlabel('Epoach', fontsize=30)
plt.ylabel('Accuracy Rate', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[44]: <matplotlib.legend.Legend at 0x1e5cf401040>

[45]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['loss'],label='Loss')
plt.plot(losses['val_loss'],label='Validation Loss')
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plt.xlabel('Epoach', fontsize=30)
plt.ylabel('Loss', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[45]: <matplotlib.legend.Legend at 0x1e50c1a3070>

[46]: model.metrics_names

[46]: ['loss', 'accuracy', 'mean_squared_error']

[47]: model.evaluate(X_test,y_test)

4/4 [==============================] - 0s 2ms/step - loss: 0.0387 - accuracy:
1.0000 - mean_squared_error: 0.0387

[47]: [0.03873598575592041, 1.0, 0.03873598575592041]

[48]: print(y_verify)
len(y_verify)

[[ 9.6114 19.222 28.717 ... 57.052 57.413 57.77 ]
[ 9.5189 19.037 28.472 ... 57.353 57.693 58.031 ]
[ 9.5293 19.058 28.473 ... 56.518 56.872 57.223 ]
...
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[ 9.5378 19.069 28.376 ... 56.557 56.913 57.266 ]
[ 9.5156 19.03 28.442 ... 57.081 57.426 57.768 ]
[ 9.5596 19.118 28.594 ... 56.964 57.316 57.665 ]]

[48]: 50

[49]: predictions = model.predict(X_verify)
predictions

2/2 [==============================] - 0s 2ms/step

[49]: array([[ 9.519237, 19.191616, 28.694174, ..., 57.131355, 57.379692,
57.876114],

[ 9.535583, 19.28199 , 28.766981, ..., 57.575928, 57.849625,
58.274326],

[ 9.481114, 19.167328, 28.602041, ..., 56.363445, 56.533577,
57.112988],

...,
[ 9.436176, 19.043472, 28.430151, ..., 56.55014 , 56.787376,
57.285316],

[ 9.455863, 19.109962, 28.487492, ..., 57.123844, 57.431587,
57.922913],

[ 9.502147, 19.127972, 28.563267, ..., 57.005848, 57.266273,
57.728424]], dtype=float32)

[50]: x_axis = np.linspace(0.02,0.5,num=25)
y_axis = np.linspace(0,200,10)
print(x_axis)

[0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 ]

[51]: plt.figure(figsize=(40,8), dpi=100)
plt.subplot(131)
for i in range(len(y_verify)):

plt.plot(x_axis, y_verify[i])
plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.ylim([0, 60])

plt.subplot(132)
for i in range(len(predictions)):

plt.plot(x_axis, predictions[i])
plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('Predicted \u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
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plt.yticks(fontsize=20)
plt.ylim([0, 60])

plt.show()

[52]: # for i in range(5):
# plt.figure(figsize=(16,12), dpi=100)
#
# plt.plot(x_axis, y_verify[i], label='True Stress Strain')
# plt.plot(x_axis, predictions[i], label='Predicted Stress Strain')
# plt.legend(fontsize=20)
# plt.title("True Curve versus Predicted Curve Plot")
# plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
# plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
# plt.xticks(fontsize=20)
# plt.yticks(fontsize=20)
# plt.ylim([0, 60])
# plt.show()

[53]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(x_axis, Y_input[1379], label= "\u03B5$_{12}$ Top Curve")
plt.plot(x_axis, model.predict(X_input)[1379], label= "Predicted \u03B5$_{12}$␣
↪→Top Curve")

plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, loc = 'lower right')
plt.ylim([0, 60])

63/63 [==============================] - 0s 1ms/step

[53]: (0.0, 60.0)
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[54]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(x_axis, Y_input[458], label= "\u03B5$_{12}$ Median Curve")
plt.plot(x_axis, model.predict(X_input)[458], label= "Predicted \u03B5$_{12}$␣
↪→Median Curve")

plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, loc = 'lower right')
plt.ylim([0, 60])

63/63 [==============================] - 0s 1ms/step

[54]: (0.0, 60.0)
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[55]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(x_axis, Y_input[331], label= "\u03B5$_{12}$ Bottom Curve")
plt.plot(x_axis, model.predict(X_input)[331], label= "Predicted \u03B5$_{12}$␣
↪→Bottom Curve")

plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, loc = 'lower right')
plt.ylim([0, 60])

63/63 [==============================] - 0s 1ms/step

[55]: (0.0, 60.0)
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ANN_1200_1600_1800_2000_Homogenized Moduli 10000

October 14, 2022

[8]: # pip install pandas

[9]: from keras.models import Sequential
from sklearn import preprocessing
from keras.layers import Dense, Conv1D,Conv2D, Flatten
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import keras
import glob
import os

[10]: projectDir = r'C:\Users\18810\Desktop\RUC Collection'
print(projectDir)

C:\Users\18810\Desktop\RUC Collection

[11]: extension = 'csv'
x_filenames = glob.glob(os.path.join(projectDir + '\CSV 20000', '*.csv'))
x_filenames[0]
# im = imageio.imread(x_filenames[0])

[11]: 'C:\\Users\\18810\\Desktop\\RUC Collection\\CSV 20000\\ann_input0000.csv'

[12]: # csv_file = pd.read_csv(r'C:/Users/18810/Desktop/RUC Collection/CSV 20000/
↪→ann_input'+'0000'+'.csv')

# csv_file = csv_file.drop(csv_file.columns[0], axis=1)
# print(csv_file)

[13]: # path = r'C:/Users/18810/Desktop/RUC Collection 0/20000/RUC 20000'
# for fid in range(20000):
# fileid = f'{fid:04}' # str(fid)
# # print(fileid)

1



# csv_file = pd.read_csv(r'C:/Users/18810/Desktop/RUC Collection/CSV 20000/
↪→ann_input'+fileid+'.csv',)

# X.append(csv_file)

[14]: X = []
for i in range(10000):

file = open(x_filenames[i])
numpy_array = pd.read_csv(file, delimiter=',',header=None)
# numpy_array = np. loadtxt(file, delimiter=',')
X.append(numpy_array)

print(X[0])

0
0 159.000000
1 211.000000
2 21.932944
3 26.432944
4 26.432944
5 79.298832
6 26.432944
7 132.164719
8 26.432944
9 185.030607
10 26.432944
11 26.432944
12 79.298832
13 79.298832
14 79.298832
15 132.164719
16 79.298832
17 185.030607
18 79.298832
19 26.432944
20 132.164719
21 79.298832
22 132.164719

[15]: X = np.array(X)
X = X.reshape(10000, 23)
X_input = X[0:10000]
print(X_input.shape)
print(X_input[9999])
print(X_input[9999].shape)
X_input = preprocessing.normalize(X_input)

(10000, 23)
[159. 211. 21.93294387 80.78057355 45.4167103
138.49454301 92.15068688 114.4322726 94.05319012 77.85554871
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104.8646826 108.69900865 104.56296643 98.53351403 99.93515595
138.98474594 35.74237752 175.01704403 124.92134033 42.25672585
84.57396682 29.24735329 131.75940689]

(23,)

[16]: # Homogenized_filenames = glob.glob(os.path.join(projectDir+"\Effective␣
↪→Stiffness 20000", '*.csv'))

# Homogenized_filenames[0]

[17]: Y = []
Homogenized_filenames = glob.glob(os.path.join(projectDir+"\Effective Stiffness␣
↪→20000", '*.csv'))

for i in range(10000):
file = open(Homogenized_filenames[i])
numpy_array = pd.read_csv(file, delimiter=',',header=None, skiprows=1)
# numpy_array = np.array(numpy_array)
# numpy_array.reshape(36,1)
Y.append(numpy_array)

print(Y[0])

0 1 2 3 4 \
0 228111.10000 63139.0300 62727.84000 -42.19899 0.0000
1 63139.03000 164169.1000 65857.88000 -230.46350 0.0000
2 62727.84000 65857.8800 161378.80000 -55.89012 0.0000
3 -42.19899 -230.4635 -55.89012 42461.71000 0.0000
4 0.00000 0.0000 0.00000 0.00000 46540.2500
5 0.00000 0.0000 0.00000 0.00000 -251.1407

5
0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 -251.1407
5 47844.4600

[18]: y_input = np.array(Y)
print(type(y_input))
print(Y[0])
# print("**************************************************************")

<class 'numpy.ndarray'>
0 1 2 3 4 \

0 228111.10000 63139.0300 62727.84000 -42.19899 0.0000
1 63139.03000 164169.1000 65857.88000 -230.46350 0.0000
2 62727.84000 65857.8800 161378.80000 -55.89012 0.0000
3 -42.19899 -230.4635 -55.89012 42461.71000 0.0000
4 0.00000 0.0000 0.00000 0.00000 46540.2500
5 0.00000 0.0000 0.00000 0.00000 -251.1407
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5
0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 -251.1407
5 47844.4600

[19]: # index = [0,1,2,3,6,7,8,9,12,13,14,15,18,19,20,21,28,29,34,35]
y_input=y_input.reshape(10000, 36)
print(y_input.shape)
print(y_input[0])

(10000, 36)
[ 2.281111e+05 6.313903e+04 6.272784e+04 -4.219899e+01 0.000000e+00

0.000000e+00 6.313903e+04 1.641691e+05 6.585788e+04 -2.304635e+02
0.000000e+00 0.000000e+00 6.272784e+04 6.585788e+04 1.613788e+05

-5.589012e+01 0.000000e+00 0.000000e+00 -4.219899e+01 -2.304635e+02
-5.589012e+01 4.246171e+04 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 4.654025e+04 -2.511407e+02
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 -2.511407e+02
4.784446e+04]

[20]: # new = []
# for i in index:
# new.append(Y_new[0][i])
# print(new)
index = -1
y_clean_index=[]
for i in range(6):

for j in range(6):
index += 1
if i == 0 and j == 0:

continue
if i in [0,1,2,3] and j in [4,5]:

continue
if j in [0,1,2,3] and i in [4,5]:

continue
y_clean_index.append(index)

print(y_clean_index)
y_clean_index = [0, 1, 2, 3, 7, 8, 9, 14, 15, 21, 28, 29, 35]
print(y_clean_index)

[1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 18, 19, 20, 21, 28, 29, 34, 35]
[0, 1, 2, 3, 7, 8, 9, 14, 15, 21, 28, 29, 35]
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[21]: # y_input = []
# for i in range(2000):
# temp = []
# for j in index:
# temp.append(Y_new[i][j])
# y_input.append(temp)
# y_input = np.array(y_input)
# print(y_input[0])
#␣
↪→print("***********************************************************************")

# print(y_input[1999])
y_clean=[]

for i in range(10000):
y_clean.append(y_input[i][y_clean_index])

y_clean=np.array(y_clean)
print(y_clean.shape)
print(y_clean[0])

(10000, 13)
[ 2.281111e+05 6.313903e+04 6.272784e+04 -4.219899e+01 1.641691e+05

6.585788e+04 -2.304635e+02 1.613788e+05 -5.589012e+01 4.246171e+04
4.654025e+04 -2.511407e+02 4.784446e+04]

[22]: # names=[[],[],[],[],[],[],[],[],[],[],[],[],[]]
# for i in range(13):
# names[i]=[]
# for j in range(2000):
# names[i].append(y_clean[j][i])
# names[i]=np.array(names[i])

[23]: y_input= y_clean
print(y_input[0])
# print(names[0])
# print(names[0].shape)

[ 2.281111e+05 6.313903e+04 6.272784e+04 -4.219899e+01 1.641691e+05
6.585788e+04 -2.304635e+02 1.613788e+05 -5.589012e+01 4.246171e+04
4.654025e+04 -2.511407e+02 4.784446e+04]

[24]: # X_train, X_test, y_train, y_test = train_test_split(X_input, y_input,␣
↪→test_size=0.2, random_state=42)

# X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,␣
↪→test_size=0.125, random_state=42)

# X_train, X_verify, y_train, y_verify = train_test_split(X_train, y_train,␣
↪→test_size=0.1425, random_state=42)

# print(len(X_train))
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# print(len(X_test))
# print(len(X_val))
# print(len(X_verify))

[25]: # moduli = ["C11", "C12", "C13", "C14", "C22", "C23", "C24", "C33", "C34",␣
↪→"C44", "C55", "C56", "C66"]

#
X_train, X_test, y_train, y_test = train_test_split(X_input, y_input,␣
↪→test_size=0.025, random_state=4)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.
↪→02515, random_state=4)

# with tf.device('/gpu:1'):
# print("********************Training "+moduli[i]+"********************")
# model.fit(X_train, y_train, batch_size=20, epochs=100, verbose=2,␣
↪→validation_data=(X_val, y_val))

[28]: model = keras.Sequential([
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(512, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(13, activation="relu")

])
# model.add(tf.keras.layers.Reshape((6, 6)))
model.build(input_shape=(1, 23))
model.compile(

loss=keras.losses.MeanSquaredError(),
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
metrics=["accuracy", "mean_squared_error"],

)
model.summary()

Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
dense_12 (Dense) (1, 256) 6144

dense_13 (Dense) (1, 256) 65792

dense_14 (Dense) (1, 256) 65792
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dense_15 (Dense) (1, 256) 65792

dense_16 (Dense) (1, 256) 65792

dense_17 (Dense) (1, 512) 131584

dense_18 (Dense) (1, 256) 131328

dense_19 (Dense) (1, 256) 65792

dense_20 (Dense) (1, 256) 65792

dense_21 (Dense) (1, 256) 65792

dense_22 (Dense) (1, 256) 65792

dense_23 (Dense) (1, 13) 3341

=================================================================
Total params: 798,733
Trainable params: 798,733
Non-trainable params: 0
_________________________________________________________________

[29]: with tf.device('/gpu:1'):
model.fit(X_train, y_train, batch_size=10, epochs=25, verbose=2,␣

↪→validation_data=(X_val, y_val))

Epoch 1/25
951/951 - 4s - loss: 1319880320.0000 - accuracy: 0.8159 - mean_squared_error:
1319880448.0000 - val_loss: 143188800.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 143188800.0000 - 4s/epoch - 4ms/step
Epoch 2/25
951/951 - 2s - loss: 141736640.0000 - accuracy: 1.0000 - mean_squared_error:
141736624.0000 - val_loss: 141880112.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141880112.0000 - 2s/epoch - 2ms/step
Epoch 3/25
951/951 - 2s - loss: 141458896.0000 - accuracy: 1.0000 - mean_squared_error:
141458896.0000 - val_loss: 142267056.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 142267056.0000 - 2s/epoch - 2ms/step
Epoch 4/25
951/951 - 2s - loss: 141328912.0000 - accuracy: 1.0000 - mean_squared_error:
141328912.0000 - val_loss: 141719408.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141719424.0000 - 2s/epoch - 2ms/step
Epoch 5/25
951/951 - 2s - loss: 141155808.0000 - accuracy: 1.0000 - mean_squared_error:
141155808.0000 - val_loss: 141595568.0000 - val_accuracy: 1.0000 -
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val_mean_squared_error: 141595568.0000 - 2s/epoch - 2ms/step
Epoch 6/25
951/951 - 2s - loss: 141128016.0000 - accuracy: 1.0000 - mean_squared_error:
141128032.0000 - val_loss: 141282112.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141282112.0000 - 2s/epoch - 2ms/step
Epoch 7/25
951/951 - 2s - loss: 141017760.0000 - accuracy: 1.0000 - mean_squared_error:
141017760.0000 - val_loss: 141720864.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141720864.0000 - 2s/epoch - 3ms/step
Epoch 8/25
951/951 - 2s - loss: 140985280.0000 - accuracy: 1.0000 - mean_squared_error:
140985280.0000 - val_loss: 141639088.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141639088.0000 - 2s/epoch - 3ms/step
Epoch 9/25
951/951 - 2s - loss: 140905328.0000 - accuracy: 1.0000 - mean_squared_error:
140905328.0000 - val_loss: 141248048.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141248048.0000 - 2s/epoch - 3ms/step
Epoch 10/25
951/951 - 3s - loss: 140963888.0000 - accuracy: 1.0000 - mean_squared_error:
140963888.0000 - val_loss: 141299248.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141299232.0000 - 3s/epoch - 3ms/step
Epoch 11/25
951/951 - 3s - loss: 140903952.0000 - accuracy: 1.0000 - mean_squared_error:
140903952.0000 - val_loss: 141808448.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141808448.0000 - 3s/epoch - 3ms/step
Epoch 12/25
951/951 - 2s - loss: 140841136.0000 - accuracy: 1.0000 - mean_squared_error:
140841136.0000 - val_loss: 141358272.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141358272.0000 - 2s/epoch - 3ms/step
Epoch 13/25
951/951 - 2s - loss: 140815424.0000 - accuracy: 1.0000 - mean_squared_error:
140815424.0000 - val_loss: 141152624.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141152624.0000 - 2s/epoch - 2ms/step
Epoch 14/25
951/951 - 2s - loss: 140761552.0000 - accuracy: 1.0000 - mean_squared_error:
140761552.0000 - val_loss: 141507248.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141507248.0000 - 2s/epoch - 2ms/step
Epoch 15/25
951/951 - 2s - loss: 140842880.0000 - accuracy: 1.0000 - mean_squared_error:
140842864.0000 - val_loss: 141457776.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141457776.0000 - 2s/epoch - 2ms/step
Epoch 16/25
951/951 - 2s - loss: 140757664.0000 - accuracy: 1.0000 - mean_squared_error:
140757664.0000 - val_loss: 140959808.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 140959808.0000 - 2s/epoch - 2ms/step
Epoch 17/25
951/951 - 2s - loss: 140761040.0000 - accuracy: 1.0000 - mean_squared_error:
140761056.0000 - val_loss: 141585168.0000 - val_accuracy: 1.0000 -
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val_mean_squared_error: 141585168.0000 - 2s/epoch - 2ms/step
Epoch 18/25
951/951 - 2s - loss: 140745648.0000 - accuracy: 1.0000 - mean_squared_error:
140745648.0000 - val_loss: 142254272.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 142254272.0000 - 2s/epoch - 2ms/step
Epoch 19/25
951/951 - 2s - loss: 140833728.0000 - accuracy: 1.0000 - mean_squared_error:
140833728.0000 - val_loss: 140941968.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 140941968.0000 - 2s/epoch - 2ms/step
Epoch 20/25
951/951 - 2s - loss: 140687088.0000 - accuracy: 1.0000 - mean_squared_error:
140687088.0000 - val_loss: 140927008.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 140927008.0000 - 2s/epoch - 2ms/step
Epoch 21/25
951/951 - 2s - loss: 140739440.0000 - accuracy: 1.0000 - mean_squared_error:
140739440.0000 - val_loss: 140981376.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 140981376.0000 - 2s/epoch - 2ms/step
Epoch 22/25
951/951 - 2s - loss: 140650256.0000 - accuracy: 1.0000 - mean_squared_error:
140650240.0000 - val_loss: 141024288.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141024288.0000 - 2s/epoch - 2ms/step
Epoch 23/25
951/951 - 2s - loss: 140633008.0000 - accuracy: 1.0000 - mean_squared_error:
140633008.0000 - val_loss: 141080512.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141080512.0000 - 2s/epoch - 2ms/step
Epoch 24/25
951/951 - 2s - loss: 140692336.0000 - accuracy: 1.0000 - mean_squared_error:
140692336.0000 - val_loss: 140933472.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 140933472.0000 - 2s/epoch - 2ms/step
Epoch 25/25
951/951 - 2s - loss: 140608160.0000 - accuracy: 1.0000 - mean_squared_error:
140608160.0000 - val_loss: 141622640.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 141622640.0000 - 2s/epoch - 2ms/step

[30]: losses = pd.DataFrame(model.history.history)

[31]: losses.tail(1)

[31]: loss accuracy mean_squared_error val_loss val_accuracy \
24 140608160.0 1.0 140608160.0 141622640.0 1.0

val_mean_squared_error
24 141622640.0

[32]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['accuracy'],label='Accuracy')
plt.plot(losses['val_accuracy'],label='Validation Accuracy')
plt.xlabel('Epoch', fontsize=30)
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plt.ylabel('Accuracy Rate', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[32]: <matplotlib.legend.Legend at 0x243bd483ee0>

[33]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['loss'],label='Loss')
plt.plot(losses['val_loss'],label='Validation Loss')
plt.xlabel('Epoch', fontsize=30)
plt.ylabel('Loss', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[33]: <matplotlib.legend.Legend at 0x243bd4f5a30>
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[34]: model.metrics_names

[34]: ['loss', 'accuracy', 'mean_squared_error']

[35]: model.evaluate(X_test,y_test)

8/8 [==============================] - 0s 2ms/step - loss: 142058688.0000 -
accuracy: 1.0000 - mean_squared_error: 142058688.0000

[35]: [142058688.0, 1.0, 142058688.0]

[36]: # print(y_verify[0])
# len(y_verify)

[37]: ypred = model.predict(X_test)
ypred.shape

8/8 [==============================] - 0s 0s/step

[37]: (250, 13)

[38]: # y_test_prediction = model.predict(X_test)
# print(y_test_prediction.shape)
print(ypred[0][:])

11



[216245.06 61269.875 61074.97 0. 155453.36 65635.664
0. 152842.02 0. 0. 44163.72 0.

46177.805]

[47]: y_test.shape

[47]: (250, 13)

[49]: C_test = [[], [], [], [], [], [], [], [], [], [], [], [], []]
for i in range(13):

for j in range(y_test.shape[0]):
C_test[i].append(y_test[j][i])

C_pred = [[], [], [], [], [], [], [], [], [], [], [], [], []]
for i in range(13):

for j in range(ypred.shape[0]):
C_pred[i].append(ypred[j][i])

names = ["C11", "C12", "C13", "C14", "C22", "C23", "C24", "C33", "C34", "C44",␣
↪→"C55", "C56", "C66"]

# for i in range(13):
# # plt.figure(figsize=(10, 10), dpi=100)
# # plt.scatter(C_test[i], C_pred[i], s=200, marker=".", linewidths=0.1,␣
↪→alpha=0.8)

# fig, ax = plt.subplots(figsize=(20, 20), dpi=150)
# ax.scatter(C_test[i], C_pred[i], s=100, cmap=plt.cm.coolwarm, zorder=10)
# lims = [
# np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
# np.max([ax.get_xlim(), ax.get_ylim()])] # max of both axes
# ax.plot(lims, lims, 'k-', alpha=1, zorder=0)
# plt.xlabel(names[i]+' test data (MPa)',fontsize=40)
# plt.ylabel("ANN "+names[i]+' prediction (MPa)',fontsize=40)
# ax.set_aspect('equal')
# ax.set_xlim(lims)
# ax.set_ylim(lims)
# plt.xticks(fontsize=20)
# plt.yticks(fontsize=20)
# # plt.title(names[i],fontsize=30)

[44]: len(C_test[12])

[44]: 13

[50]: for idx in range(13):

fig, ax = plt.subplots(figsize=(20, 20), dpi=150)
ax.scatter(C_test[idx], C_pred[idx], s=100, cmap=plt.cm.coolwarm, zorder=10)
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lims = [
np.min([np.min(C_test[idx]), np.min(C_pred[idx])]), # min of both axes
np.max([np.max(C_test[idx]), np.max(C_pred[idx])])] # max of both axes

ax.plot(lims, lims, 'k-', alpha=1, zorder=0)
plt.xlabel(names[idx]+' test data (MPa)',fontsize=40)
plt.ylabel("CNN "+names[idx]+' prediction (MPa)',fontsize=40)
ax.set_aspect('equal')
# plt.xlim([226000, 233000])
# plt.ylim([226000, 233000])
# ax.set_xlim(lims)
# ax.set_ylim(lims)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
# plt.title(names[i], fontsize=30)
plt.show()
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CNN_1200_1600_1800_2000_LOP6

October 14, 2022

[1]: # pip install imageio

[2]: from keras.models import Sequential
from keras.layers import Dense, Conv1D,Conv2D, Flatten
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import KFold
from PIL import Image
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.io as sio
import imageio
import keras
import os
import glob

[3]: projectDir = r'C:\Users\18810\Desktop\RUC Collection'
print(projectDir)

C:\Users\18810\Desktop\RUC Collection

[4]: extension = 'png'
x_filenames = glob.glob(os.path.join(projectDir+"\RUC 2000", '*.png'))
x_filenames[0]
im = imageio.imread(x_filenames[0])
print(im.shape)

(45, 60, 4)

[5]: X = []
for i in range(2000):
# file = open(all_filenames[i])

numpy_array = imageio.imread(x_filenames[i])
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X.append(numpy_array)
X = np.array(X)
print(X.shape)

(2000, 45, 60, 4)

[6]: X = X.reshape(2000, 45, 60, 4)
X_input = X[0:2108]
print(X_input.shape)
# print(X_input[0])

(2000, 45, 60, 4)

[7]: y = pd.read_csv('LOP_6_SIGMA12_collection.csv', header=None)
print(y.shape)
print(type(y))
# y = np.array(y)
y.head()

(25, 2001)
<class 'pandas.core.frame.DataFrame'>

[7]: 0 1 2 3 4 5 6 7 \
0 0.0002 9.5686 9.5686 9.5718 9.5762 9.5686 9.5686 9.5786
1 0.0004 19.1360 19.1360 19.1420 19.1510 19.1360 19.1360 19.1560
2 0.0006 28.5980 28.5980 28.6170 28.6210 28.5980 28.6110 28.6370
3 0.0008 36.4790 36.4790 36.4880 36.4780 36.4790 36.4960 36.4780
4 0.0010 42.3200 42.3200 42.3150 42.3080 42.3200 42.3350 42.2870

8 9 ... 1991 1992 1993 1994 1995 1996 \
0 9.574 9.5794 ... 9.3592 9.3455 9.3448 9.3599 9.3448 9.3469
1 19.147 19.1570 ... 18.7160 18.6890 18.6870 18.7180 18.6870 18.6920
2 28.624 28.6290 ... 27.9810 27.9480 27.9430 27.9890 27.9460 27.9480
3 36.484 36.4960 ... 36.3190 36.2980 36.2830 36.3210 36.2650 36.2500
4 42.311 42.3240 ... 42.7930 42.7910 42.7830 42.8220 42.7810 42.7670

1997 1998 1999 2000
0 9.3494 9.3492 9.3543 9.3494
1 18.6970 18.6960 18.7070 18.6960
2 27.9600 27.9570 27.9640 27.9330
3 36.2610 36.2410 36.2270 36.2080
4 42.7790 42.7630 42.7350 42.7320

[5 rows x 2001 columns]

[8]: Y = []
for col in y.columns:

Y.append(y[col])
Y_input = np.array(Y[1:2001])
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print(Y_input[1999])
print(Y_input.shape)

[ 9.3494 18.696 27.933 36.208 42.732 47.094 49.55 50.357 50.882
51.349 51.787 52.207 52.614 53.01 53.398 53.778 54.151 54.513
54.869 55.22 55.567 55.911 56.251 56.589 56.924 ]

(2000, 25)

[9]: X_train, X_test, y_train, y_test = train_test_split(X_input, Y_input,␣
↪→test_size=0.05, random_state=42)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.
↪→026, random_state=42)

X_train, X_verify, y_train, y_verify = train_test_split(X_train, y_train,␣
↪→test_size=0.027, random_state=42)

print(len(X_train))
print(len(X_test))
print(len(X_val))
print(len(X_verify))

1800
100
50
50

[10]: model = keras.Sequential([
# keras.layers.Conv2D(32, (2,2), padding="same",␣

↪→activation="elu",input_shape=(60, 45, 4)),
keras.layers.Conv2D(256, (2,2), padding="same",␣

↪→activation="elu",input_shape=(45, 60, 4)),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="elu"),
keras.layers.Flatten(),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(256, activation="relu"),
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keras.layers.Dense(25)
])
model.compile(loss=keras.losses.MeanSquaredError(), optimizer=tf.keras.
↪→optimizers.Adam(learning_rate=0.0001), metrics=["accuracy",␣
↪→"mean_squared_error"])

model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
conv2d (Conv2D) (None, 45, 60, 256) 4352

conv2d_1 (Conv2D) (None, 45, 60, 256) 262400

conv2d_2 (Conv2D) (None, 45, 60, 256) 262400

conv2d_3 (Conv2D) (None, 45, 60, 256) 262400

conv2d_4 (Conv2D) (None, 45, 60, 256) 262400

conv2d_5 (Conv2D) (None, 45, 60, 256) 262400

conv2d_6 (Conv2D) (None, 45, 60, 256) 262400

conv2d_7 (Conv2D) (None, 45, 60, 256) 262400

conv2d_8 (Conv2D) (None, 45, 60, 256) 262400

flatten (Flatten) (None, 691200) 0

dense (Dense) (None, 256) 176947456

dense_1 (Dense) (None, 256) 65792

dense_2 (Dense) (None, 256) 65792

dense_3 (Dense) (None, 256) 65792

dense_4 (Dense) (None, 256) 65792

dense_5 (Dense) (None, 256) 65792

dense_6 (Dense) (None, 256) 65792

dense_7 (Dense) (None, 256) 65792

dense_8 (Dense) (None, 256) 65792
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dense_9 (Dense) (None, 256) 65792

dense_10 (Dense) (None, 25) 6425

=================================================================
Total params: 179,649,561
Trainable params: 179,649,561
Non-trainable params: 0
_________________________________________________________________

[11]: tf.__version__

[11]: '2.9.1'

[12]: # pip install --upgrade tensorflow-gpu --user

[13]: print("Num GPUs Available: ", len(tf.config.experimental.
↪→list_physical_devices('GPU')))

Num GPUs Available: 1

[14]: with tf.device('/gpu:1'):
model.fit(X_train, y_train, batch_size=20, epochs=25, verbose=2,␣

↪→validation_data=(X_val, y_val))

Epoch 1/50
90/90 - 11s - loss: 152.2352 - accuracy: 0.4850 - mean_squared_error: 152.2352 -
val_loss: 0.2969 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2969 -
11s/epoch - 125ms/step
Epoch 2/50
90/90 - 5s - loss: 0.3930 - accuracy: 1.0000 - mean_squared_error: 0.3930 -
val_loss: 0.7076 - val_accuracy: 1.0000 - val_mean_squared_error: 0.7076 -
5s/epoch - 61ms/step
Epoch 3/50
90/90 - 6s - loss: 0.2867 - accuracy: 1.0000 - mean_squared_error: 0.2867 -
val_loss: 0.1140 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1140 -
6s/epoch - 65ms/step
Epoch 4/50
90/90 - 6s - loss: 0.2693 - accuracy: 1.0000 - mean_squared_error: 0.2693 -
val_loss: 0.3617 - val_accuracy: 1.0000 - val_mean_squared_error: 0.3617 -
6s/epoch - 66ms/step
Epoch 5/50
90/90 - 6s - loss: 0.4747 - accuracy: 1.0000 - mean_squared_error: 0.4747 -
val_loss: 0.4706 - val_accuracy: 1.0000 - val_mean_squared_error: 0.4706 -
6s/epoch - 65ms/step
Epoch 6/50
90/90 - 6s - loss: 0.2666 - accuracy: 1.0000 - mean_squared_error: 0.2666 -
val_loss: 0.1075 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1075 -
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6s/epoch - 62ms/step
Epoch 7/50
90/90 - 6s - loss: 0.2429 - accuracy: 1.0000 - mean_squared_error: 0.2429 -
val_loss: 0.2244 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2244 -
6s/epoch - 64ms/step
Epoch 8/50
90/90 - 6s - loss: 0.1152 - accuracy: 1.0000 - mean_squared_error: 0.1152 -
val_loss: 0.0440 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0440 -
6s/epoch - 66ms/step
Epoch 9/50
90/90 - 6s - loss: 0.2255 - accuracy: 1.0000 - mean_squared_error: 0.2255 -
val_loss: 0.2783 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2783 -
6s/epoch - 67ms/step
Epoch 10/50
90/90 - 6s - loss: 0.1116 - accuracy: 1.0000 - mean_squared_error: 0.1116 -
val_loss: 0.5063 - val_accuracy: 1.0000 - val_mean_squared_error: 0.5063 -
6s/epoch - 65ms/step
Epoch 11/50
90/90 - 6s - loss: 0.1804 - accuracy: 1.0000 - mean_squared_error: 0.1804 -
val_loss: 0.4115 - val_accuracy: 1.0000 - val_mean_squared_error: 0.4115 -
6s/epoch - 66ms/step
Epoch 12/50
90/90 - 6s - loss: 0.3975 - accuracy: 0.9989 - mean_squared_error: 0.3975 -
val_loss: 0.0787 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0787 -
6s/epoch - 65ms/step
Epoch 13/50
90/90 - 6s - loss: 0.1815 - accuracy: 0.9994 - mean_squared_error: 0.1815 -
val_loss: 0.1002 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1002 -
6s/epoch - 65ms/step
Epoch 14/50
90/90 - 6s - loss: 0.1966 - accuracy: 1.0000 - mean_squared_error: 0.1966 -
val_loss: 0.0817 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0817 -
6s/epoch - 68ms/step
Epoch 15/50
90/90 - 6s - loss: 0.0686 - accuracy: 1.0000 - mean_squared_error: 0.0686 -
val_loss: 0.0326 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0326 -
6s/epoch - 63ms/step
Epoch 16/50
90/90 - 6s - loss: 0.0709 - accuracy: 1.0000 - mean_squared_error: 0.0709 -
val_loss: 0.1227 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1227 -
6s/epoch - 63ms/step
Epoch 17/50
90/90 - 6s - loss: 0.2320 - accuracy: 1.0000 - mean_squared_error: 0.2320 -
val_loss: 0.1712 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1712 -
6s/epoch - 63ms/step
Epoch 18/50
90/90 - 6s - loss: 0.2219 - accuracy: 0.9994 - mean_squared_error: 0.2219 -
val_loss: 0.1067 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1067 -
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6s/epoch - 63ms/step
Epoch 19/50
90/90 - 6s - loss: 0.1854 - accuracy: 1.0000 - mean_squared_error: 0.1854 -
val_loss: 0.1151 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1151 -
6s/epoch - 63ms/step
Epoch 20/50
90/90 - 6s - loss: 0.1504 - accuracy: 0.9994 - mean_squared_error: 0.1504 -
val_loss: 0.0232 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0232 -
6s/epoch - 66ms/step
Epoch 21/50
90/90 - 6s - loss: 0.0945 - accuracy: 1.0000 - mean_squared_error: 0.0945 -
val_loss: 0.2166 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2166 -
6s/epoch - 69ms/step
Epoch 22/50
90/90 - 6s - loss: 0.1725 - accuracy: 0.9994 - mean_squared_error: 0.1725 -
val_loss: 0.0348 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0348 -
6s/epoch - 63ms/step
Epoch 23/50
90/90 - 6s - loss: 0.2128 - accuracy: 1.0000 - mean_squared_error: 0.2128 -
val_loss: 0.2323 - val_accuracy: 1.0000 - val_mean_squared_error: 0.2323 -
6s/epoch - 62ms/step
Epoch 24/50
90/90 - 6s - loss: 0.0935 - accuracy: 1.0000 - mean_squared_error: 0.0935 -
val_loss: 0.0371 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0371 -
6s/epoch - 64ms/step
Epoch 25/50
90/90 - 6s - loss: 0.0613 - accuracy: 1.0000 - mean_squared_error: 0.0613 -
val_loss: 0.0818 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0818 -
6s/epoch - 64ms/step
Epoch 26/50
90/90 - 6s - loss: 0.1490 - accuracy: 1.0000 - mean_squared_error: 0.1490 -
val_loss: 0.0646 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0646 -
6s/epoch - 64ms/step
Epoch 27/50
90/90 - 6s - loss: 0.0956 - accuracy: 1.0000 - mean_squared_error: 0.0956 -
val_loss: 0.0661 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0661 -
6s/epoch - 63ms/step
Epoch 28/50
90/90 - 6s - loss: 0.1620 - accuracy: 1.0000 - mean_squared_error: 0.1620 -
val_loss: 0.0166 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0166 -
6s/epoch - 63ms/step
Epoch 29/50
90/90 - 6s - loss: 0.1682 - accuracy: 0.9889 - mean_squared_error: 0.1682 -
val_loss: 0.1244 - val_accuracy: 0.8800 - val_mean_squared_error: 0.1244 -
6s/epoch - 63ms/step
Epoch 30/50
90/90 - 6s - loss: 0.0743 - accuracy: 0.9961 - mean_squared_error: 0.0743 -
val_loss: 0.0460 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0460 -
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6s/epoch - 63ms/step
Epoch 31/50
90/90 - 6s - loss: 0.0841 - accuracy: 1.0000 - mean_squared_error: 0.0841 -
val_loss: 0.0203 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0203 -
6s/epoch - 63ms/step
Epoch 32/50
90/90 - 6s - loss: 0.0972 - accuracy: 0.9833 - mean_squared_error: 0.0972 -
val_loss: 0.0618 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0618 -
6s/epoch - 63ms/step
Epoch 33/50
90/90 - 6s - loss: 0.1569 - accuracy: 0.9417 - mean_squared_error: 0.1569 -
val_loss: 0.0215 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0215 -
6s/epoch - 62ms/step
Epoch 34/50
90/90 - 6s - loss: 0.1024 - accuracy: 1.0000 - mean_squared_error: 0.1024 -
val_loss: 0.0206 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0206 -
6s/epoch - 63ms/step
Epoch 35/50
90/90 - 6s - loss: 0.2149 - accuracy: 0.9989 - mean_squared_error: 0.2149 -
val_loss: 0.1772 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1772 -
6s/epoch - 63ms/step
Epoch 36/50
90/90 - 6s - loss: 0.0731 - accuracy: 0.9983 - mean_squared_error: 0.0731 -
val_loss: 0.0216 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0216 -
6s/epoch - 66ms/step
Epoch 37/50
90/90 - 6s - loss: 0.1524 - accuracy: 0.9994 - mean_squared_error: 0.1524 -
val_loss: 0.0643 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0643 -
6s/epoch - 64ms/step
Epoch 38/50
90/90 - 6s - loss: 0.1211 - accuracy: 1.0000 - mean_squared_error: 0.1211 -
val_loss: 0.1927 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1927 -
6s/epoch - 63ms/step
Epoch 39/50
90/90 - 6s - loss: 0.1002 - accuracy: 1.0000 - mean_squared_error: 0.1002 -
val_loss: 0.0324 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0324 -
6s/epoch - 67ms/step
Epoch 40/50
90/90 - 6s - loss: 0.1240 - accuracy: 1.0000 - mean_squared_error: 0.1240 -
val_loss: 0.0817 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0817 -
6s/epoch - 66ms/step
Epoch 41/50
90/90 - 6s - loss: 0.1299 - accuracy: 0.9617 - mean_squared_error: 0.1299 -
val_loss: 0.0534 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0534 -
6s/epoch - 66ms/step
Epoch 42/50
90/90 - 6s - loss: 0.0937 - accuracy: 0.9456 - mean_squared_error: 0.0937 -
val_loss: 0.0561 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0561 -
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6s/epoch - 66ms/step
Epoch 43/50
90/90 - 6s - loss: 0.1111 - accuracy: 1.0000 - mean_squared_error: 0.1111 -
val_loss: 0.1045 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1045 -
6s/epoch - 72ms/step
Epoch 44/50
90/90 - 6s - loss: 0.0776 - accuracy: 0.9983 - mean_squared_error: 0.0776 -
val_loss: 0.0641 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0641 -
6s/epoch - 66ms/step
Epoch 45/50
90/90 - 6s - loss: 0.0529 - accuracy: 1.0000 - mean_squared_error: 0.0529 -
val_loss: 0.0197 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0197 -
6s/epoch - 65ms/step
Epoch 46/50
90/90 - 6s - loss: 0.1392 - accuracy: 0.9700 - mean_squared_error: 0.1392 -
val_loss: 0.1685 - val_accuracy: 0.0000e+00 - val_mean_squared_error: 0.1685 -
6s/epoch - 64ms/step
Epoch 47/50
90/90 - 6s - loss: 0.3849 - accuracy: 0.9344 - mean_squared_error: 0.3849 -
val_loss: 0.1060 - val_accuracy: 1.0000 - val_mean_squared_error: 0.1060 -
6s/epoch - 67ms/step
Epoch 48/50
90/90 - 6s - loss: 0.1695 - accuracy: 0.9267 - mean_squared_error: 0.1695 -
val_loss: 0.0171 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0171 -
6s/epoch - 70ms/step
Epoch 49/50
90/90 - 6s - loss: 0.0505 - accuracy: 0.9994 - mean_squared_error: 0.0505 -
val_loss: 0.0117 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0117 -
6s/epoch - 66ms/step
Epoch 50/50
90/90 - 6s - loss: 0.0465 - accuracy: 1.0000 - mean_squared_error: 0.0465 -
val_loss: 0.0460 - val_accuracy: 1.0000 - val_mean_squared_error: 0.0460 -
6s/epoch - 72ms/step

[15]: losses = pd.DataFrame(model.history.history)
losses.tail(1)

[15]: loss accuracy mean_squared_error val_loss val_accuracy \
49 0.046501 1.0 0.046501 0.045956 1.0

val_mean_squared_error
49 0.045956

[16]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['accuracy'],label='Accuracy')
plt.plot(losses['val_accuracy'],label='Validation Accuracy')
plt.xlabel('Epoach', fontsize=30)
plt.ylabel('Accuracy Rate', fontsize=30)
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plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[16]: <matplotlib.legend.Legend at 0x244dcf828e0>

[17]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['loss'],label='Loss')
plt.plot(losses['val_loss'],label='Validation Loss')
plt.xlabel('Epoach', fontsize=30)
plt.ylabel('Loss', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[17]: <matplotlib.legend.Legend at 0x244dd0342b0>
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[18]: model.metrics_names

[18]: ['loss', 'accuracy', 'mean_squared_error']

[19]: print(y_verify)
len(y_verify)

[[ 9.6114 19.222 28.717 ... 57.052 57.413 57.77 ]
[ 9.5189 19.037 28.472 ... 57.353 57.693 58.031 ]
[ 9.5293 19.058 28.473 ... 56.518 56.872 57.223 ]
...
[ 9.5378 19.069 28.376 ... 56.557 56.913 57.266 ]
[ 9.5156 19.03 28.442 ... 57.081 57.426 57.768 ]
[ 9.5596 19.118 28.594 ... 56.964 57.316 57.665 ]]

[19]: 50

[20]: predictions = model.predict(X_verify)
predictions

2/2 [==============================] - 0s 109ms/step

[20]: array([[ 9.5347805, 19.25354 , 28.70302 , ..., 57.328552 , 57.553894 ,
58.009266 ],

[ 9.48955 , 19.090202 , 28.57742 , ..., 57.669415 , 58.02167 ,
58.36301 ],
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[ 9.509289 , 19.055532 , 28.554155 , ..., 56.627483 , 56.949406 ,
57.378407 ],

...,
[ 9.442978 , 19.045794 , 28.42243 , ..., 56.85839 , 57.188145 ,
57.540554 ],

[ 9.434324 , 19.06074 , 28.459711 , ..., 57.189808 , 57.495354 ,
57.89616 ],

[ 9.535934 , 19.17113 , 28.62891 , ..., 57.29061 , 57.591164 ,
57.985977 ]], dtype=float32)

[21]: x_axis = np.linspace(0.02,0.5,num=25)
y_axis = np.linspace(0,200,10)
print(x_axis)

[0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 ]

[22]: plt.figure(figsize=(40,8), dpi=100)
plt.subplot(131)
for i in range(len(y_verify)):

plt.plot(x_axis, y_verify[i])
plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.ylim([0, 60])

plt.subplot(132)
for i in range(len(predictions)):

plt.plot(x_axis, predictions[i])
plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('Predicted \u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.ylim([0, 60])

plt.show()
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[23]: # for i in range(5):
# plt.figure(figsize=(16,12), dpi=100)
#
# plt.plot(x_axis, y_verify[i], label='True Stress Strain')
# plt.plot(x_axis, predictions[i], label='Predicted Stress Strain')
# plt.legend(fontsize=20)
# plt.title("True Curve versus Predicted Curve Plot")
# plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
# plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
# plt.xticks(fontsize=20)
# plt.yticks(fontsize=20)
# plt.ylim([0, 60])
# plt.show()

[24]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(x_axis, Y_input[1379], label= "\u03B5$_{12}$ Top Curve")
plt.plot(x_axis, model.predict(X_input)[1379], label= "Predicted \u03B5$_{12}$␣
↪→Top Curve")

plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, loc = 'lower right')
plt.ylim([0, 60])

63/63 [==============================] - 2s 33ms/step

[24]: (0.0, 60.0)
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[25]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(x_axis, Y_input[458], label= "\u03B5$_{12}$ Median Curve")
plt.plot(x_axis, model.predict(X_input)[458], label= "Predicted \u03B5$_{12}$␣
↪→Median Curve")

plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, loc = 'lower right')
plt.ylim([0, 60])

63/63 [==============================] - 2s 32ms/step

[25]: (0.0, 60.0)
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[26]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(x_axis, Y_input[331], label= "\u03B5$_{12}$ Bottom Curve")
plt.plot(x_axis, model.predict(X_input)[331], label= "Predicted \u03B5$_{12}$␣
↪→Bottom Curve")

plt.xlabel('\u03B5$_{12}$ (%)', fontsize=30)
plt.ylabel('\u03C3$_{12}$ (MPa)', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, loc = 'lower right')
plt.ylim([0, 60])

63/63 [==============================] - 2s 32ms/step

[26]: (0.0, 60.0)
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CNN_1200_1600_1800_2000_Homogenized Moduli 20000

October 14, 2022

[1]: # pip install tensorflow

[2]: from keras.models import Sequential
from keras.layers import Dense, Conv1D,Conv2D, Flatten
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import mean_squared_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import KFold
from PIL import Image
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.io as sio
import imageio as imageio
import keras
import os
import glob

[3]: projectDir = r'C:\Users\18810\Desktop\RUC Collection'

[4]: projectDir+"\Effective Stiffness"

[4]: 'C:\\Users\\18810\\Desktop\\RUC Collection\\Effective Stiffness'

[5]: extension = 'png'
x_filenames = glob.glob(os.path.join(projectDir+"\RUC 20000", '*.png'))
x_filenames[0]
im = imageio.imread(x_filenames[0])
print(im.shape)
# plt.imshow(x_filenames[0])

(45, 60, 4)
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[6]: X = []
for i in range(20000):
# file = open(all_filenames[i])

numpy_array = imageio.imread(x_filenames[i])
X.append(numpy_array)

X = np.array(X)
print(X.shape)

(20000, 45, 60, 4)

[7]: X = X.reshape(20000, 45, 60, 4)
X_input = X[0:20000]
print(X_input.shape)
print(X_input[0])

(20000, 45, 60, 4)
[[[0 0 0 0]

[0 0 0 0]
[0 0 0 0]
...
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
...
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
...
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]

...

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
...
[0 0 0 0]
[0 0 0 0]
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[0 0 0 0]]

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
...
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
...
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]]

[8]: Homogenized_filenames = glob.glob(os.path.join(projectDir+"\Effective Stiffness␣
↪→20000", '*.csv'))

Homogenized_filenames[0]

[8]: 'C:\\Users\\18810\\Desktop\\RUC Collection\\Effective Stiffness
20000\\Effective_Stiffness0000.csv'

[9]: Y = []
Homogenized_filenames = glob.glob(os.path.join(projectDir+"\Effective Stiffness␣
↪→20000", '*.csv'))

for i in range(20000):
file = open(Homogenized_filenames[i])
numpy_array = pd.read_csv(file, delimiter=',',header=None, skiprows=1)
# numpy_array = np.array(numpy_array)
# numpy_array.reshape(36,1)
Y.append(numpy_array)

print(type(Y))
print(Y[0])

<class 'list'>
0 1 2 3 4 \

0 228111.10000 63139.0300 62727.84000 -42.19899 0.0000
1 63139.03000 164169.1000 65857.88000 -230.46350 0.0000
2 62727.84000 65857.8800 161378.80000 -55.89012 0.0000
3 -42.19899 -230.4635 -55.89012 42461.71000 0.0000
4 0.00000 0.0000 0.00000 0.00000 46540.2500
5 0.00000 0.0000 0.00000 0.00000 -251.1407

5
0 0.0000
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1 0.0000
2 0.0000
3 0.0000
4 -251.1407
5 47844.4600

[10]: y_input = np.array(Y)
print(type(y_input))
print(Y[0])
# print("**************************************************************")

<class 'numpy.ndarray'>
0 1 2 3 4 \

0 228111.10000 63139.0300 62727.84000 -42.19899 0.0000
1 63139.03000 164169.1000 65857.88000 -230.46350 0.0000
2 62727.84000 65857.8800 161378.80000 -55.89012 0.0000
3 -42.19899 -230.4635 -55.89012 42461.71000 0.0000
4 0.00000 0.0000 0.00000 0.00000 46540.2500
5 0.00000 0.0000 0.00000 0.00000 -251.1407

5
0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 -251.1407
5 47844.4600

[11]: y_input=y_input.reshape(20000, 36)
print(y_input.shape)
print(y_input[0])

(20000, 36)
[ 2.281111e+05 6.313903e+04 6.272784e+04 -4.219899e+01 0.000000e+00

0.000000e+00 6.313903e+04 1.641691e+05 6.585788e+04 -2.304635e+02
0.000000e+00 0.000000e+00 6.272784e+04 6.585788e+04 1.613788e+05

-5.589012e+01 0.000000e+00 0.000000e+00 -4.219899e+01 -2.304635e+02
-5.589012e+01 4.246171e+04 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 4.654025e+04 -2.511407e+02
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 -2.511407e+02
4.784446e+04]

[12]: index = -1
y_clean_index=[]
for i in range(6):

for j in range(6):
index += 1
if i == 0 and j == 0:
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continue
if i in [0,1,2,3] and j in [4,5]:

continue
if j in [0,1,2,3] and i in [4,5]:

continue
y_clean_index.append(index)

print(y_clean_index)
y_clean_index = [0, 1, 2, 3, 7, 8, 9, 14, 15, 21, 28, 29, 35]
print(y_clean_index)

[1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 18, 19, 20, 21, 28, 29, 34, 35]
[0, 1, 2, 3, 7, 8, 9, 14, 15, 21, 28, 29, 35]

[13]: y_clean=[]

for i in range(20000):
y_clean.append(y_input[i][y_clean_index])

y_clean=np.array(y_clean)
print(y_clean.shape)
print(y_clean[0])

(20000, 13)
[ 2.281111e+05 6.313903e+04 6.272784e+04 -4.219899e+01 1.641691e+05

6.585788e+04 -2.304635e+02 1.613788e+05 -5.589012e+01 4.246171e+04
4.654025e+04 -2.511407e+02 4.784446e+04]

[14]: y_input= y_clean
print(y_input[0])
# print(names[0])
# print(names[0].shape)

[ 2.281111e+05 6.313903e+04 6.272784e+04 -4.219899e+01 1.641691e+05
6.585788e+04 -2.304635e+02 1.613788e+05 -5.589012e+01 4.246171e+04
4.654025e+04 -2.511407e+02 4.784446e+04]

[15]: # moduli = ["C11", "C12", "C13", "C14", "C22", "C23", "C24", "C33", "C34",␣
↪→"C44", "C55", "C56", "C66"]

X_train, X_test, y_train, y_test = train_test_split(X_input, y_input,␣
↪→test_size=0.025, random_state=4)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.
↪→0256, random_state=4)

print(len(X_train))
print(len(X_test))
print(len(X_val))
# with tf.device('/gpu:1'):
# print("********************Training "+moduli[i]+"********************")
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# model.fit(X_train, y_train, batch_size=20, epochs=100, verbose=2,␣
↪→validation_data=(X_val, y_val))

19000
500
500

[16]: # X_train, X_test, y_train, y_test = train_test_split(X_input, y_input,␣
↪→test_size=0.2, random_state=42)

# X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,␣
↪→test_size=0.125, random_state=42)

# X_train, X_verify, y_train, y_verify = train_test_split(X_train, y_train,␣
↪→test_size=0.1425, random_state=42)

# print(len(X_train))
# print(len(X_test))
# print(len(X_val))
# print(len(X_verify))
# # print(X_verify[56][45])

[17]: model = keras.Sequential([
keras.layers.Conv2D(256, (2,2), padding="same",␣

↪→activation="relu",input_shape=(45, 60, 4)),
keras.layers.Conv2D(256, (2,2), padding="same", activation="relu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="relu"),
keras.layers.Conv2D(512, (2,2), padding="same", activation="relu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="relu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="relu"),
keras.layers.Conv2D(256, (2,2), padding="same", activation="relu"),
# keras.layers.MaxPooling2D((2, 2)),
# keras.layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(256, activation="elu"),
keras.layers.Dense(256, activation="elu"),
keras.layers.Dense(256, activation="elu"),
keras.layers.Dense(512, activation="elu"),
keras.layers.Dense(256, activation="elu"),
keras.layers.Dense(256, activation="elu"),
keras.layers.Dense(256, activation="elu"),
keras.layers.Dense(13)

])

# model.add(tf.keras.layers.Reshape((6, 6)))
model.compile(

loss=keras.losses.MeanSquaredError(),
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
metrics=["accuracy", "mean_squared_error"],

)
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model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
conv2d (Conv2D) (None, 45, 60, 256) 4352

conv2d_1 (Conv2D) (None, 45, 60, 256) 262400

conv2d_2 (Conv2D) (None, 45, 60, 256) 262400

conv2d_3 (Conv2D) (None, 45, 60, 512) 524800

conv2d_4 (Conv2D) (None, 45, 60, 256) 524544

conv2d_5 (Conv2D) (None, 45, 60, 256) 262400

conv2d_6 (Conv2D) (None, 45, 60, 256) 262400

flatten (Flatten) (None, 691200) 0

dense (Dense) (None, 256) 176947456

dense_1 (Dense) (None, 256) 65792

dense_2 (Dense) (None, 256) 65792

dense_3 (Dense) (None, 512) 131584

dense_4 (Dense) (None, 256) 131328

dense_5 (Dense) (None, 256) 65792

dense_6 (Dense) (None, 256) 65792

dense_7 (Dense) (None, 13) 3341

=================================================================
Total params: 179,580,173
Trainable params: 179,580,173
Non-trainable params: 0
_________________________________________________________________

[18]: tf.__version__

[18]: '2.9.1'
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[19]: # pip install --upgrade tensorflow-gpu --user

[20]: print("Num GPUs Available: ", len(tf.config.experimental.
↪→list_physical_devices('GPU')))

Num GPUs Available: 1

[21]: with tf.device('/gpu:1'):
model.fit(X_train, y_train, batch_size=20, epochs=50, verbose=2,␣

↪→validation_data=(X_val, y_val))

Epoch 1/50
950/950 - 60s - loss: 158614064.0000 - accuracy: 0.9800 - mean_squared_error:
158614064.0000 - val_loss: 1804404.7500 - val_accuracy: 1.0000 -
val_mean_squared_error: 1804404.7500 - 60s/epoch - 63ms/step
Epoch 2/50
950/950 - 55s - loss: 1719812.7500 - accuracy: 1.0000 - mean_squared_error:
1719812.7500 - val_loss: 1461959.6250 - val_accuracy: 1.0000 -
val_mean_squared_error: 1461959.6250 - 55s/epoch - 58ms/step
Epoch 3/50
950/950 - 55s - loss: 1623666.6250 - accuracy: 1.0000 - mean_squared_error:
1623666.6250 - val_loss: 777757.3750 - val_accuracy: 1.0000 -
val_mean_squared_error: 777757.3750 - 55s/epoch - 58ms/step
Epoch 4/50
950/950 - 55s - loss: 1297614.3750 - accuracy: 1.0000 - mean_squared_error:
1297614.3750 - val_loss: 612489.7500 - val_accuracy: 1.0000 -
val_mean_squared_error: 612489.7500 - 55s/epoch - 58ms/step
Epoch 5/50
950/950 - 55s - loss: 1376650.7500 - accuracy: 1.0000 - mean_squared_error:
1376650.7500 - val_loss: 366842.1875 - val_accuracy: 1.0000 -
val_mean_squared_error: 366842.1875 - 55s/epoch - 58ms/step
Epoch 6/50
950/950 - 55s - loss: 1504943.5000 - accuracy: 1.0000 - mean_squared_error:
1504943.5000 - val_loss: 299209.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 299209.0312 - 55s/epoch - 58ms/step
Epoch 7/50
950/950 - 54s - loss: 1008695.3750 - accuracy: 1.0000 - mean_squared_error:
1008695.3750 - val_loss: 3033340.5000 - val_accuracy: 1.0000 -
val_mean_squared_error: 3033340.5000 - 54s/epoch - 57ms/step
Epoch 8/50
950/950 - 54s - loss: 956473.1250 - accuracy: 1.0000 - mean_squared_error:
956473.1250 - val_loss: 323350.4688 - val_accuracy: 1.0000 -
val_mean_squared_error: 323350.4688 - 54s/epoch - 57ms/step
Epoch 9/50
950/950 - 56s - loss: 946699.1250 - accuracy: 1.0000 - mean_squared_error:
946699.1250 - val_loss: 396951.5938 - val_accuracy: 1.0000 -
val_mean_squared_error: 396951.5938 - 56s/epoch - 59ms/step
Epoch 10/50
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950/950 - 55s - loss: 865944.4375 - accuracy: 1.0000 - mean_squared_error:
865944.4375 - val_loss: 378917.5625 - val_accuracy: 1.0000 -
val_mean_squared_error: 378917.5625 - 55s/epoch - 58ms/step
Epoch 11/50
950/950 - 57s - loss: 830896.3125 - accuracy: 1.0000 - mean_squared_error:
830896.3125 - val_loss: 1728083.7500 - val_accuracy: 1.0000 -
val_mean_squared_error: 1728083.7500 - 57s/epoch - 60ms/step
Epoch 12/50
950/950 - 54s - loss: 722782.5625 - accuracy: 1.0000 - mean_squared_error:
722782.4375 - val_loss: 495060.5625 - val_accuracy: 1.0000 -
val_mean_squared_error: 495060.5625 - 54s/epoch - 57ms/step
Epoch 13/50
950/950 - 55s - loss: 656140.1875 - accuracy: 1.0000 - mean_squared_error:
656140.1875 - val_loss: 352881.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 352881.0000 - 55s/epoch - 57ms/step
Epoch 14/50
950/950 - 56s - loss: 759871.6250 - accuracy: 1.0000 - mean_squared_error:
759871.6250 - val_loss: 239078.7812 - val_accuracy: 1.0000 -
val_mean_squared_error: 239078.7500 - 56s/epoch - 59ms/step
Epoch 15/50
950/950 - 56s - loss: 641201.1250 - accuracy: 1.0000 - mean_squared_error:
641201.1250 - val_loss: 162489.0938 - val_accuracy: 1.0000 -
val_mean_squared_error: 162489.0938 - 56s/epoch - 59ms/step
Epoch 16/50
950/950 - 55s - loss: 1120075.3750 - accuracy: 1.0000 - mean_squared_error:
1120075.3750 - val_loss: 150423.7031 - val_accuracy: 1.0000 -
val_mean_squared_error: 150423.7188 - 55s/epoch - 58ms/step
Epoch 17/50
950/950 - 55s - loss: 443072.0938 - accuracy: 1.0000 - mean_squared_error:
443072.0938 - val_loss: 377040.4375 - val_accuracy: 1.0000 -
val_mean_squared_error: 377040.4375 - 55s/epoch - 58ms/step
Epoch 18/50
950/950 - 54s - loss: 518251.3438 - accuracy: 1.0000 - mean_squared_error:
518251.3438 - val_loss: 363556.6250 - val_accuracy: 1.0000 -
val_mean_squared_error: 363556.6250 - 54s/epoch - 57ms/step
Epoch 19/50
950/950 - 54s - loss: 568210.6875 - accuracy: 1.0000 - mean_squared_error:
568210.6875 - val_loss: 229310.4375 - val_accuracy: 1.0000 -
val_mean_squared_error: 229310.4375 - 54s/epoch - 57ms/step
Epoch 20/50
950/950 - 54s - loss: 576988.8125 - accuracy: 1.0000 - mean_squared_error:
576988.8125 - val_loss: 208993.9062 - val_accuracy: 1.0000 -
val_mean_squared_error: 208993.8906 - 54s/epoch - 57ms/step
Epoch 21/50
950/950 - 54s - loss: 728312.0000 - accuracy: 1.0000 - mean_squared_error:
728312.0000 - val_loss: 112439.0234 - val_accuracy: 1.0000 -
val_mean_squared_error: 112439.0234 - 54s/epoch - 57ms/step
Epoch 22/50
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950/950 - 54s - loss: 305788.4688 - accuracy: 1.0000 - mean_squared_error:
305788.4688 - val_loss: 151029.5625 - val_accuracy: 1.0000 -
val_mean_squared_error: 151029.5625 - 54s/epoch - 57ms/step
Epoch 23/50
950/950 - 54s - loss: 769244.7500 - accuracy: 1.0000 - mean_squared_error:
769244.7500 - val_loss: 135401.3281 - val_accuracy: 1.0000 -
val_mean_squared_error: 135401.3281 - 54s/epoch - 56ms/step
Epoch 24/50
950/950 - 54s - loss: 328411.6250 - accuracy: 1.0000 - mean_squared_error:
328411.6250 - val_loss: 1873815.5000 - val_accuracy: 1.0000 -
val_mean_squared_error: 1873815.5000 - 54s/epoch - 57ms/step
Epoch 25/50
950/950 - 54s - loss: 405607.7812 - accuracy: 1.0000 - mean_squared_error:
405607.7812 - val_loss: 114533.3750 - val_accuracy: 1.0000 -
val_mean_squared_error: 114533.3984 - 54s/epoch - 57ms/step
Epoch 26/50
950/950 - 54s - loss: 444453.4688 - accuracy: 1.0000 - mean_squared_error:
444453.4688 - val_loss: 72721.2422 - val_accuracy: 1.0000 -
val_mean_squared_error: 72721.2422 - 54s/epoch - 57ms/step
Epoch 27/50
950/950 - 54s - loss: 473004.6875 - accuracy: 1.0000 - mean_squared_error:
473004.6875 - val_loss: 96061.9375 - val_accuracy: 1.0000 -
val_mean_squared_error: 96061.9375 - 54s/epoch - 56ms/step
Epoch 28/50
950/950 - 54s - loss: 441486.5938 - accuracy: 1.0000 - mean_squared_error:
441486.5938 - val_loss: 269235.8750 - val_accuracy: 1.0000 -
val_mean_squared_error: 269235.8750 - 54s/epoch - 57ms/step
Epoch 29/50
950/950 - 54s - loss: 379671.4062 - accuracy: 1.0000 - mean_squared_error:
379671.4062 - val_loss: 79841.4844 - val_accuracy: 1.0000 -
val_mean_squared_error: 79841.4844 - 54s/epoch - 57ms/step
Epoch 30/50
950/950 - 55s - loss: 391161.4375 - accuracy: 1.0000 - mean_squared_error:
391161.4375 - val_loss: 694893.6875 - val_accuracy: 1.0000 -
val_mean_squared_error: 694893.6875 - 55s/epoch - 58ms/step
Epoch 31/50
950/950 - 55s - loss: 399085.5000 - accuracy: 1.0000 - mean_squared_error:
399085.5312 - val_loss: 86564.8906 - val_accuracy: 1.0000 -
val_mean_squared_error: 86564.8828 - 55s/epoch - 58ms/step
Epoch 32/50
950/950 - 54s - loss: 344905.1562 - accuracy: 1.0000 - mean_squared_error:
344905.1562 - val_loss: 920129.6875 - val_accuracy: 1.0000 -
val_mean_squared_error: 920129.6875 - 54s/epoch - 57ms/step
Epoch 33/50
950/950 - 54s - loss: 399527.7188 - accuracy: 1.0000 - mean_squared_error:
399527.7188 - val_loss: 218168.0469 - val_accuracy: 1.0000 -
val_mean_squared_error: 218168.0469 - 54s/epoch - 56ms/step
Epoch 34/50
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950/950 - 54s - loss: 375902.6250 - accuracy: 1.0000 - mean_squared_error:
375902.6250 - val_loss: 77398.1328 - val_accuracy: 1.0000 -
val_mean_squared_error: 77398.1328 - 54s/epoch - 56ms/step
Epoch 35/50
950/950 - 54s - loss: 354072.0312 - accuracy: 1.0000 - mean_squared_error:
354072.0312 - val_loss: 627317.3750 - val_accuracy: 1.0000 -
val_mean_squared_error: 627317.3750 - 54s/epoch - 57ms/step
Epoch 36/50
950/950 - 55s - loss: 347043.3125 - accuracy: 1.0000 - mean_squared_error:
347043.3125 - val_loss: 490435.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 490435.0000 - 55s/epoch - 58ms/step
Epoch 37/50
950/950 - 55s - loss: 324748.5312 - accuracy: 1.0000 - mean_squared_error:
324748.5312 - val_loss: 142808.2188 - val_accuracy: 1.0000 -
val_mean_squared_error: 142808.2188 - 55s/epoch - 58ms/step
Epoch 38/50
950/950 - 54s - loss: 327595.6250 - accuracy: 1.0000 - mean_squared_error:
327595.6562 - val_loss: 88185.8125 - val_accuracy: 1.0000 -
val_mean_squared_error: 88185.8125 - 54s/epoch - 57ms/step
Epoch 39/50
950/950 - 54s - loss: 304096.2500 - accuracy: 1.0000 - mean_squared_error:
304096.2500 - val_loss: 384206.0938 - val_accuracy: 1.0000 -
val_mean_squared_error: 384206.0938 - 54s/epoch - 57ms/step
Epoch 40/50
950/950 - 55s - loss: 303537.6250 - accuracy: 1.0000 - mean_squared_error:
303537.6250 - val_loss: 378502.2500 - val_accuracy: 1.0000 -
val_mean_squared_error: 378502.2500 - 55s/epoch - 58ms/step
Epoch 41/50
950/950 - 54s - loss: 329582.4375 - accuracy: 1.0000 - mean_squared_error:
329582.4688 - val_loss: 164870.0000 - val_accuracy: 1.0000 -
val_mean_squared_error: 164870.0000 - 54s/epoch - 57ms/step
Epoch 42/50
950/950 - 55s - loss: 282089.6562 - accuracy: 1.0000 - mean_squared_error:
282089.6562 - val_loss: 102847.0703 - val_accuracy: 1.0000 -
val_mean_squared_error: 102847.0781 - 55s/epoch - 58ms/step
Epoch 43/50
950/950 - 55s - loss: 294643.3438 - accuracy: 1.0000 - mean_squared_error:
294643.3125 - val_loss: 144845.2188 - val_accuracy: 1.0000 -
val_mean_squared_error: 144845.2188 - 55s/epoch - 58ms/step
Epoch 44/50
950/950 - 55s - loss: 314065.1875 - accuracy: 1.0000 - mean_squared_error:
314065.1875 - val_loss: 81323.6250 - val_accuracy: 1.0000 -
val_mean_squared_error: 81323.6250 - 55s/epoch - 57ms/step
Epoch 45/50
950/950 - 54s - loss: 275002.3125 - accuracy: 1.0000 - mean_squared_error:
275002.3125 - val_loss: 61837.6367 - val_accuracy: 1.0000 -
val_mean_squared_error: 61837.6367 - 54s/epoch - 56ms/step
Epoch 46/50

11



950/950 - 54s - loss: 306256.7500 - accuracy: 1.0000 - mean_squared_error:
306256.7500 - val_loss: 800175.1875 - val_accuracy: 1.0000 -
val_mean_squared_error: 800175.1875 - 54s/epoch - 56ms/step
Epoch 47/50
950/950 - 53s - loss: 292486.5625 - accuracy: 1.0000 - mean_squared_error:
292486.5625 - val_loss: 54676.8398 - val_accuracy: 1.0000 -
val_mean_squared_error: 54676.8398 - 53s/epoch - 56ms/step
Epoch 48/50
950/950 - 54s - loss: 303835.4062 - accuracy: 1.0000 - mean_squared_error:
303835.4062 - val_loss: 289413.9062 - val_accuracy: 1.0000 -
val_mean_squared_error: 289413.9062 - 54s/epoch - 56ms/step
Epoch 49/50
950/950 - 53s - loss: 286339.5000 - accuracy: 1.0000 - mean_squared_error:
286339.5000 - val_loss: 217826.4688 - val_accuracy: 1.0000 -
val_mean_squared_error: 217826.4688 - 53s/epoch - 56ms/step
Epoch 50/50
950/950 - 53s - loss: 237531.1562 - accuracy: 1.0000 - mean_squared_error:
237531.1562 - val_loss: 77085.0469 - val_accuracy: 1.0000 -
val_mean_squared_error: 77085.0469 - 53s/epoch - 56ms/step

[22]: losses = pd.DataFrame(model.history.history)
losses.tail(1)

[22]: loss accuracy mean_squared_error val_loss val_accuracy \
49 237531.15625 1.0 237531.15625 77085.046875 1.0

val_mean_squared_error
49 77085.046875

[23]: model.metrics_names

[23]: ['loss', 'accuracy', 'mean_squared_error']

[24]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['accuracy'],label='Accuracy')
plt.plot(losses['val_accuracy'],label='Validation Accuracy')
plt.xlabel('Epoch', fontsize=30)
plt.ylabel('Accuracy Rate', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[24]: <matplotlib.legend.Legend at 0x2664454a850>
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[25]: plt.figure(figsize=(16,10), dpi=100)
plt.plot(losses['loss'],label='loss')
plt.plot(losses['val_loss'],label='Validation loss')
plt.xlabel('Epoch', fontsize=30)
plt.ylabel('Loss', fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20)

[25]: <matplotlib.legend.Legend at 0x26676e14b50>
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[34]: import time
start_time = time.time()
ypred = model.predict(X_test)
ypred.shape
print("--- %s seconds ---" % (time.time() - start_time))

16/16 [==============================] - 1s 42ms/step
--- 0.7061593532562256 seconds ---

[37]: import time
start_time = time.time()
print(ypred[0][:])
print("--- %s seconds ---" % (time.time() - start_time))

[ 2.1812770e+05 6.1935301e+04 6.1434203e+04 -1.4751044e+02
1.5726241e+05 6.5391359e+04 -5.6667358e+02 1.5454186e+05

-3.0015262e+02 4.1417328e+04 4.4422984e+04 -3.3870343e+02
4.5896691e+04]

--- 0.0 seconds ---

[29]: C_test = [[],[],[],[],[],[],[],[],[],[],[],[],[]]
for i in range(13):

for j in range(len(y_test)):
C_test[i].append(y_test[j][i])
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C_pred = [[],[],[],[],[],[],[],[],[],[],[],[],[]]
for i in range(13):

for j in range(len(ypred)):
C_pred[i].append(ypred[j][i])

names = ["C11", "C12", "C13", "C14", "C22", "C23", "C24", "C33", "C34", "C44",␣
↪→"C55", "C56", "C66"]

[30]: for idx in range(13):

fig, ax = plt.subplots(figsize=(30, 30), dpi=150)
ax.scatter(C_test[idx], C_pred[idx], s=100, cmap=plt.cm.coolwarm, zorder=10)
lims = [

np.min([np.min(C_test[idx]), np.min(C_pred[idx])]), # min of both axes
np.max([np.max(C_test[idx]), np.max(C_pred[idx])])] # max of both axes

ax.plot(lims, lims, 'k-', alpha=1, zorder=0)
plt.xlabel(names[idx]+' test data (MPa)',fontsize=60)
plt.ylabel("CNN "+names[idx]+' prediction (MPa)',fontsize=60)
ax.set_aspect('equal')
# plt.xlim([226000, 233000])
# plt.ylim([226000, 233000])
# ax.set_xlim(lims)
# ax.set_ylim(lims)
plt.xticks(fontsize=40)
plt.yticks(fontsize=40)
# plt.title(names[i], fontsize=30)
plt.show()
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