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1

Introduction

In recent years, the field of multi-disciplinary artificial intelligence has seen tremen-

dous progress driven by computer vision and natural language processing advance-

ments. Recent work in these fields has enabled computers to better understand and

interpret visual information from images, and accurately comprehend and generate

human language. Extending these capabilities to data- and resource-constrained set-

tings presents unique challenges but can have transformative change. These inno-

vations have also significantly transformed the healthcare landscape by offering un-

precedented opportunities to enhance patient care, improve diagnostic accuracy, and

optimize treatment strategies. In this thesis, I present my contributions to tackle ma-

jor challenges in tailored application of state-of-the-art machine learning techniques

to low data and resource settings.

One key challenge is adapting general-use, real-world models into smaller, domain-

specific models. This is achieved via knowledge distillation. Foundation models are

large-scale artificial intelligence models that have been trained on vast amounts of

general data. They possess a broad understanding of language and images but are not

tailored to specific tasks. Distilling information from these models means extracting

and refining the valuable knowledge they contain to create smaller, more specialized

models suited for specific applications. In my work, we address this challenge by

introducing a flexible knowledge distillation method that can be optimized in severe
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resource-constrained settings and can work with a varied range of model architectures.

Another challenge in multi-disciplinary application of computer vision is a lack to

annotations. However, textual annotations are relatively easy to obtain and are often

abundant. Leveraging these readily available text annotations reduces the need for

extensive manual labeling of images, which is both time-consuming and costly. By

using this existing textual data, vision models can efficiently learn to associate visual

features with semantic concepts, improving their performance and generalization.

This process requires what’s known as vision-language alignment, where the model

learns to associate visual features from images with relevant textual descriptions using

large paired image-text datasets. In this work, we design alignment models to learn

effectively from small annotated datasets. We present a vision-language alignment

objective that is designed to be trained with significantly reduced amounts of data

and using smaller batch sizes while providing comparable or superior performance on

standard benchmarks against other methods trained in similar settings.

In medical image analysis, machine learning models often suffer from bias and reduced

performance due to variations in data from different sample sources. In histopathol-

ogy, these differences manifest as stain variations which are discernible variations in

color of the slides that arise from inconsistencies in laboratory procedures, differences

in staining reagents, and variations in imaging equipment. These variations can nega-

tively impact the performance of automated image analysis algorithms, such as those

used for nuclei detection, tissue segmentation, or disease classification. Such incon-

sistencies can impair the ability of models to generalize to new, differently stained

images. We tackle this problem by introducing a novel adversarial method that ex-

ecutes many-to-one domain stain normalization. The training objective is designed

to make sure that the structure of the image is preserved during translation. Our
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method demonstrates impressive performance in preserving the structural integrity of

images while transferring the stain distributions when tested on duodenum biopsies.

Model training and diagnostics for medical imaging applications suffers from per-

vasive lack of data due to ethical and privacy concerns. Specifically in the field of

pathology, histopathological analysis relies on hematoxylin and eosin (H&E) stained

biopsies for microscopic inspection to identify diseases, including cancers, with diag-

nosis heavily dependent on the pathologist’s training and exposure to various disease

subtypes. This presents challenges, especially with rare variants, which are harder

to identify visually. Recently, deep learning methods have been developed to sup-

port diagnosis, particularly through segmentation models that identify nuclei types.

Generative models can generate histopathology images with specific characteristics,

addressing the imbalance in datasets and reducing bias in model training. These

models hold potential to improve diagnosis by aiding both deep learning systems and

human pathologists, and synthetic datasets can help overcome privacy concerns in

medical data sharing. Conditional generation of annotated data adds value by alle-

viating the high costs of labeling medical images. This synthetic data can also be

used to train machine learning models without compromising patient privacy, thereby

overcoming the limitations posed by scarce or sensitive data.

Overall, this thesis makes contributions towards extending state-of-the-art machine

learning techniques to low data and resource settings on multiple fronts. Our proposed

knowledge distillation techniques facilitate seamless knowledge transfer between neu-

ral networks, enabling effective model compression and transfer learning from foun-

dational vision and language models. We present methodology for leveraging textual

captions for vision model pretraining in resource and data-constrained environments.

We also present a stain-normalization methodology specifically addressing the prob-
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lem of variation in visual appearance of digital slides due to differences in staining

mechanisms across sites. Further, our examination of conditional diffusion models for

generative modeling of histopathological tissue slides holds substantial promise for the

field of pathology. By synthesizing tissue patches conditioned on nuclei masks, this

approach presents a pioneering solution for enhancing the accuracy and efficiency

of histopathological analysis by addressing the pervasive lack of annotated data in

medical imaging analysis. As such, my thesis statement is:

Tailored deep learning methods enable consistent and critical progress toward en-

hancing reasoning capabilities, particularly in data- and resource-constrained settings

like healthcare. Improvements in knowledge distillation using information maxi-

mization enables cheaper optimization and domain-transfer for large vision models.

Information-efficient contrastive learning for aligning images with textual data leads

to better performance on small datasets. Structure-preserving generative adversarial

networks help minimize visual variations in medical images. Conditional diffusion can

be used to develop end-to-end models for synthesizing inherently-annotated histology

tissue samples with pixel-perfect nuclei localization.
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1.1 Contributions

This thesis makes the following novel contributions:

1. Knowledge distillation

(a) We developed three flexible mutual information maximization objectives

for knowledge distillation.

(b) Our method is effective across a wide range of model pairs and enables

learning transferable representations.

2. Contrastive image & text alignment

(a) Our work allows training multi-modal alignment models in data and re-

source constrained settings.

(b) The method achieves state-of-the-art performance in downstream tasks

like retrieval, unsupervised object localization, and zero-shot learning.

3. Stain normalization for H&E images

(a) We designed a structure-preserving cycle consistent architecture for un-

paired image to image translation to normalize color distributions.

(b) The method achieves unprecedented performance in normalizing stain dis-

tributions in histology images.

4. Generative modeling for medical imaging

(a) Our end-to-end method synthesizes unlimited annotated realistic histology

tissue samples with pixel-perfect nuclei localization.

(b) It demonstrates competitive metrics quantitatively, and our expert qual-

itative evaluations suggest that synthetic patches are comparable to the

real set.
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2

Estimating and Maximizing

Mutual Information for Knowledge

Distillation

In this chapter, we discuss Mutual Information Maximization Knowledge Distillation

(MIMKD). Our method uses a contrastive objective to simultaneously estimate and

maximize a lower bound on the mutual information of local and global feature rep-

resentations between a teacher and a student network. We demonstrate through ex-

tensive experiments that this can be used to improve the performance of low capacity

models by transferring knowledge from more performant but computationally expen-

sive models. This can be used to produce better models that can be run on devices

with low computational resources. Our method is flexible, we can distill knowledge

from teachers with arbitrary network architectures to arbitrary student networks.

Our empirical results show that MIMKD outperforms competing approaches across

a wide range of student-teacher pairs with different capacities, with different archi-

tectures, and when student networks are with extremely low capacity.
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2.1 Introduction

Recent machine learning literature has seen a lot of progress driven by deep neural

networks. Many such models that achieve state-of-the-art performance on different

benchmarks require large amounts of computation and memory capacities (Zehao

Huang and N. Wang 2018). To this end, Knowledge Distillation (KD) has been

used to transfer knowledge from a stronger teacher network to a smaller and less

computationally expensive student network (Buciluǎ, Caruana, and Niculescu-Mizil

2006; G. Hinton, Vinyals, and Dean 2015). We look at knowledge distillation from

an information-theoretic perspective and propose Mutual Information Maximization

Knowledge Distillation (MIMKD). Multiple approaches have been proposed to esti-

mate the mutual information between high-dimensional continuous variables (Belg-

hazi et al. 2018; Hjelm et al. 2018). Belghazi et al Belghazi et al. (2018) propose a

KL-divergence based formulation of mutual information. We observe that this ap-

proach can be extended to maximize the mutual information in a contrastive setup.

Contrastive methods have had an outsized impact in other problems such as self-

supervised learning (T. Chen et al. 2020; He, Fan, et al. 2020), however they rely

on sampling a rather large number of paired inputs to optimize their objective func-

tions. We find that by using a Jensen-Shannon divergence (JSD) based formulation

we obtain a more stable objective to optimize where the performance is invariant to

the number of negative samples while being monotonically related to the true mu-

tual information as also shown in Hjelm et al Hjelm et al. (2018). Recently proposed

Contrastive Representation Distillation (CRD) framework (Tian, Krishnan, and Isola

2019) uses a Noise Contrastive Estimation (NCE) objective (Oord, Y. Li, and Vinyals

2018; Gutmann and Hyvärinen 2010) to transfer structured relational knowledge from

the teacher to the student. However, a caveat of this approach is that it ignores in-
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termediate distillation for feature level information and requires a large number of

negative samples requiring large batches (T. Chen et al. 2020) or memory banks (He,

Fan, et al. 2020; Z. Wu et al. 2018). We extend this work by using a JSD-based con-

trastive objective that is insensitive to the number of negative samples. This enables

us to impose additional region-consistent local and feature-level constraints with just

one negative sample.

We propose three mutual information maximization objectives between the teacher

and student networks: (1) Global information maximization, which aims to maximize

the shared information between the final output representations. This pushes the

student network to generate feature vectors that are as rich as the ones generated by

the teacher. (2) Local information maximization, which pushes the student network

to recognize complex patterns from each region of the image that are ultimately useful

for classification. This is achieved by maximizing the mutual information between

region-specific vectors extracted from an intermediate representation of the student

network and the final representation of the teacher network. Finally, (3) Feature

Information Maximization, which is designed to structurally improve the granular

feature-extraction capability of the student by maximizing the mutual information

between region-consistent local vectors extracted from intermediate representations

of the networks.

Our experimental results demonstrate that these objectives are effective across a wide

range of student-teacher pairs and carry out extensive ablation studies of the effect

of each proposed objective.
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2.2 Background

In this section, we discuss previous efforts in improving knowledge distillation, and in

estimating mutual information which are the key areas of contribution of our work.

2.2.1 Knowledge distillation.

The concept of knowledge distillation (KD) was introduced in the works of Buciluǎ et

al. (Buciluǎ, Caruana, and Niculescu-Mizil 2006) and later formalized for deep neural

networks by Hinton et al. (G. Hinton, Vinyals, and Dean 2015). In knowledge distil-

lation, the goal is to train smaller models that can mimic the performance of larger

models. Hinton et al. (G. Hinton, Vinyals, and Dean 2015) proposed a knowledge

distillation method in which the student network is trained using soft labels extracted

from teacher networks.

Attention transfer (Zagoruyko and Komodakis 2016a) introduced the idea of trans-

ferring intermediate attention maps from the teacher to the student network. Fit-

nets (Romero et al. 2014) also presented the idea of adding more supervision by

matching the intermediate representation using regressors. Yim et al. (Yim et al.

2017) formulated the distillation problem using the flow of solution procedure (FSP),

which is computed as the gram matrix of features across layers. Sau et al. (Sau and

Balasubramanian 2016) proposed to include a noise-based regularizer while training

the student with the teacher. Specifically, they perform perturbation in the logits

of the teacher as a regularization approach. In Correlation Congruence for Knowl-

edge Distillation (CCKD) (B. Peng et al. 2019), the authors present a framework

which transfers not only instance-level information but also the correlation between

instances. In CCKD, a Taylor series expansion-based kernel method is proposed
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to better capture the correlation between instances. Tung et al. (Tung and Mori

2019) propose a loss that is based on the observation that semantically similar in-

puts produce similar activation patterns in trained networks. Variational Information

Distillation (VID) (Ahn et al. 2019) uses a variational lower-bound for the mutual

information between the teacher and the student representations by approximating

an intractable conditional distribution using a pre-defined variational distribution.

More closely related to our work are methods that cast knowledge distillation as

a mutual information maximization problem. Contrastive representation distilla-

tion (CRD) (Tian, Krishnan, and Isola 2019) used a contrastive objective similar to

Oord et al. (Oord, Y. Li, and Vinyals 2018) to maximize a lower-bound on mutual

information between final representations. The objective used by CRD is a strong

lower-bound on the mutual information but requires a significant number of negative

samples during training, consequently, requiring large batch-sizes or memory buffers.

These practical constraints become even more limiting if mutual information needs

to be minimized at the feature-level to enforce regional-supervision during student

training. Our work proposes an alternative that bypasses the needed for such large

batch-sizes and thus enables to optimize for mutual information through three sepa-

rate objectives.

2.2.2 Mutual Information Estimation.

Mutual information is a fundamental quantity that measures the relationship between

random variables but it is notoriously difficult to measure (Paninski 2003). An exact

estimate is only tractable for discrete variables or a small set of problems where the

probability distributions are know. However, both the mentioned scenarios are un-



11

likely for real-world visual datasets. Recently, Mutual Information Neural Estimation

(MINE) (Belghazi et al. 2018) demonstrated a strong method for estimation of mutual

information between high-dimensional continuous random variables using neural net-

works and gradient descent. MINE (Belghazi et al. 2018) proposed a general-purpose

parametric neural estimator of mutual information based on dual representations of

the KL-divergence (Ruderman et al. 2012). Following from MINE (Belghazi et al.

2018), Deep InfoMax (Hjelm et al. 2018) proposed a mutual information based ob-

jective for unsupervised representation learning. Deep InfoMax (Hjelm et al. 2018)

contends that it is unnecessary to use the exact KL-divergence based formulation of

mutual information and demonstrated the use of an alternative formulation based on

the Jensen-Shannon divergence (JSD). The authors showed that the JSD based esti-

mator is stable, and does not require a large number of negative samples. In addition,

Deep InfoMax (Hjelm et al. 2018) also demonstrated the value of including global and

local structure-based mutual information objectives for representation learning. We

leverage this line of work in our method to propose a framework for knowledge dis-

tillation that leverages both local and global features without significantly adding

memory overheads during training.

2.3 Method

In this section, we describe our general framework for model compression or knowl-

edge distillation in a teacher student setup. Consider a stronger teacher network

ft : X → Y with trained parameters ϕ and a student network, operating on the same

domain, fs : X → Y with parameters θ. Let x be the sample drawn from the data

distribution p(x) and ft(x) & fs(x) denote the representations extracted from the
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pre-classification layer, while f cls
t (x) & f cls

s (x) denote the predicted class-probability

distributions from the teacher and the student networks respectively. Now consider

a set R = {(f (k)
t (x), f

(k)
s (x))}Kk=1 that contains K pairs of intermediate representa-

tions extracted from the networks such that each pair in set R contains same-sized

intermediate representations extracted from the networks, where mk ×mk is the size

corresponding to the k-th pair in the set. Each location in these 2-dimensional in-

termediate representations corresponds to a specific region in the input image. Note

that we do not include the final representations ft(x) and fs(x) in the set R.

Our method focuses on maximizing the mutual information, (1) between final image

representations ft(x) and fs(x) (global information maximization), (2) between the

global image representation from the teacher network ft(x) and the last intermediate

representation from the student network f
(K)
s (x) (local information maximization),

and (3) between the pairs in set R (feature information maximization). Figure 2.1

shows an overview of our method.

2.3.1 Mutual Information Maximization

In order to estimate and maximize mutual information between random variables

X and Z, we train a neural network to distinguish samples generated from the joint

distribution, P (X,Z) and the product of marginals P (X)P (Z). In MINE (Belghazi et

al. 2018), the authors use the Donsker-Varadhan (DV) (Donsker and Varadhan 1983)

representation of the KL-divergence as the lower bound on the mutual information.

Recently, another bound on mutual information, formulated as infoNCE (Oord, Y. Li,

and Vinyals 2018) based on Noise-Contrastive Estimation (Gutmann and Hyvärinen

2010), has seen wide adoption in representation learning due to its low variance and
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replicate

 times

(a) Global Information Maximization (b) Local Information Maximization (c) Feature Information Maximization

replicate

 times

... ...... ...

+ scores

- scores

+ scores

- scores

+ score

- score

Teacher network Student networkNegative sample

Figure 2.1: Overall schematic of our proposed method for mutual information max-
imization based knowledge distillation (MIMKD). Top: Representations generated
by teacher and student networks for image x and a negative sample x′. Note that
our method uses only one negative sample. Bottom: (a) Positive and negative pairs
of final feature vectors are passed into the discriminator function to get scores. (b)
Teacher’s final representation is replicated to match student’s last intermediate rep-
resentation. (c) For each group of same-sized intermediate feature maps in set R,
positive and negative pairs are passed into a distinct discriminator function to get
scores. The positive and negative scores obtained are then used with equation (2) to
estimate and maximize a lower-bound on mutual information.

accurate estimate of MI. It is defined as follows;

ÎInfoNCE
ω (X;Z) = EP (X,Z)

[
Tω − EP (X)P (Z)

[
log

∑
Tω

]]
, (2.1)

where Tω : X ×Z → R is the discriminator neural network with parameters ω. How-

ever, as demonstrated in (Hjelm et al. 2018), both DV and infoNCE require a large

number of negative samples during training. Recent works tackle this problem by

using a memory-buffer that keeps representations from previous samples in memory

to be accessed during training. As implemented in CRD (Tian, Krishnan, and Isola

2019), this can be done if mutual information is maximized only between the final

representations of the networks as the dimensions of the representations to be kept
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in memory is limited. In this work, we extend this infoNCE based MI maximization

framework to include feature and local level information maximization. As a result,

we require negative samples for each location in the multiple K intermediate fea-

ture maps as well as for the final representations. This becomes unfeasible for most

large state-of-the-art architectures. To this end, in our approach we adopt Jensen-

Shannon divergence based mutual information estimation, similar to the formulations

in (Nowozin, Cseke, and Tomioka 2016) and (Brakel and Bengio 2017). The MI esti-

mate from this JSD-based bound on MI, due to its formulation, is insensitive to the

number of negative samples.

I(X;Z) ≥ ÎJSDω (X;Z) = EP (X,Z)

[
−log(1 + e−Tω)

]
−EP (X)P (Z)

[
log(1 + eTω)

]
. (2.2)

Overall, we optimize the parameters θ of the student network fs and parameters

ω of the critic network Tω by simultaneously estimating and maximizing mutual

information between the representations of the frozen teacher network and the student

network.

2.3.2 Global information maximization

Our global objective aims to maximize the mutual information between the richer final

representation of the frozen teacher network ft(x) and the final representation of the

student network fs(x) to encourage the student to learn richer representations. This

objective uses a discriminator function Tωg , where ωg are the trainable parameters. We

use the infoNCE bound for global MI maximization as it is computationally feasible

to maintain a memory bank of negative samples due to the lower dimensionality of the
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final representations from the networks. We optimize the parameters of the student

and the discriminator function simultaneously as:

(ω̂g, θ̂) = argmax
ωg ,θ

Î infoNCEωg
(ft(x), fs(x)). (2.3)

2.3.3 Local information maximization

In this objective we maximize the mutual information between a richer final repre-

sentation of the teacher network and representations of local regions extracted by

the student network. This objective draws from the assertion that the final teacher

representations contains valuable information required for downstream classification.

Hence, this objective encourages the student network to extract information from

local image regions that is ultimately useful for classification.

We enforce this objective between ft(x) and the last intermediate representation from

the student network in the set R. Therefore for k = K, f (K)
s (x) is a mK ×mK feature

map where each location roughly corresponds to an H/mK × W/mK patch in the

input image where H,W are the height and width of the image. The representation

of each such patch {f (K)
s (x)}i,j is then paired with ft(x), where i, j ∈ [1,mK ] denotes

the specific location in the feature map. The pairs are then used with the mutual

information estimator to optimize the parameters as follows:

(ω̂l, θ̂) = argmax
ωl,θ

1

m2
K

mK∑
i=1

mK∑
j=1

ÎJSDωl
(ft(x), {f (K)

s (x)}i,j) (2.4)

where a discriminator neural network Tωl
with parameters ωl is used.
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2.3.4 Feature Information maximization

This objective aims to maximize the mutual information between region-consistent

intermediate representations from the networks. In neural networks, the complex-

ity of captured visual patterns increases towards the later layers (Zeiler and Fergus

2014). Intuitively, to mimic the representational power of the teacher, the student

network needs to learn these complex patterns hierarchically. In order to motivate

such hierarchical learning, mutual information is maximized between intermediate

features at different depths in the networks. This enables the student to learn to

identify complex patterns in a bottom-up fashion and systematically learn to gen-

erate richer features. Note that within each pair of intermediate feature maps in

set R, mutual information is maximized between vectors corresponding to the same

location in the image. This information maximization pushes the student network

to extract features from each region of the image that share maximum information

with the features extracted by the teacher network from the same region. For a pair

(f
(k)
t (x), f

(k)
s (x)) ∈ R, information is maximized between pairs of region-consistent

vectors {f (k)
t (x)}i,j and {f (k)

s (x)}i,j for each i, j ∈ [1,mk] as follows:

(ω̂f , θ̂) = argmax
ωf ,θ

1

K

1

m2
k

K∑
k=1

mk∑
i=1

mk∑
j=1

ÎJSDωf
({f (k)

t (x)}i,j, {f (k)
s (x)}i,j) (2.5)

where a discriminator neural network Tωf
with parameters ωf is used.

2.3.5 Classification objective

Here the cross-entropy loss is minimized between the output of the classification

function f cls
s (x) and the target label y as follows:
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(θ̂) = argmin
θ

LCE(y, f
cls
s (x)), (2.6)

where LCE denotes the cross-entropy function.

Our overall objective is a weighted-summation of all the above individual objectives

with weights α (cross-entropy loss), λg (global MI maximization), λl (local MI maxi-

mization), and λf (feature MI maximization)

2.3.6 Mutual Information Discriminators

The parameterized mutual information discriminator functions (Tωg , Tωl
, and Tωf

) can

be modeled as neural networks. In our experiments, we use two distinct discriminator

architectures inspired from the functions presented in Deep InfoMax (Hjelm et al.

2018). For global information maximization, we use the standard project and dot

architecture. The representations from both the teacher and the student are first

projected using an appropriate projection architecture with a linear shortcut. The

dot-product of these projections is then computed to get the score. Positive and

negative pairs of representations are passed through the discriminator to get respective

scores to be passed into equation 2.2 to get the estimates on the lower bound of the

mutual information. Whereas, for local and feature information maximization we use

a convolution based architecture as it is cheaper for higher dimensional inputs.

Specifically, for local information maximization, we replicate the final representation

from the teacher ft(x) to match the mK ×mK size of the student’s last intermediate

feature map (f (K)
s (x)). The resulting replicated tensor is then concatenated with

f
(K)
s (x) to get [ft(x), f

(K)
s (x)] which serves as the input for the critic function (ref.

table on right). Similarly, consider feature mutual information maximization, for each
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pair in the set R we use a distinct discriminator T
(k)
ωf . For a given k, each pair of

intermediate feature representations in the set R are concatenated together to get

[f
(k)
t (x), f

(k)
s (x)]. Which is then passed through two convolutional (1× 1 kernels and

512 filters) where each layer is followed by a ReLU non-linearity. The output obtained

is then further passed into a convolutional layer (1 × 1 kernels and 1 filter) to give

mk ×mk scores. Further details are provided in supplementary.

2.3.7 Implementation Details

We adopted the generally established approach for training CNNs on the CIFAR-100

dataset. We use SGD with momentum 0.9, weight decay 5 × 10−4, and an initial

learning rate of 0.05 for a total of 240 epochs with batch-size 64. The learning rate is

decayed by 0.1 at the 150th, 180th and the 210th epoch. We used random horizontal

flips and random crop for augmenting the dataset during training. For ImageNet, we

use the standard PyTorch training scheme for ResNets (He, X. Zhang, et al. 2016).

Code implementation will be made public on publication.

2.4 Experiments

In this section, we demonstrate the efficacy of our framework using various ablative

and quantitative analyses. We first establish the value of each of our mutual informa-

tion maximization formulations by performing an extensive ablative study (sec. 2.4.1).

Further, we demonstrate the prowess of our distillation framework based on model

compression performance in the following setups: (1) Under similar student-teacher

network architectures (sec. 2.4.2), (2) under dissimilar architectures (sec. 2.4.3), (3)
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under a setting with custom designed shallow student networks (ref. appendix for

results), (4) in a larger scale setting on Imagenet (ref. appendix for results), and (5)

in terms of transfer learning performance (sec. 2.4.4) as a measure of the transferabil-

ity of distilled representations. Our model compression experiments are performed

on the CIFAR-100 dataset which contains colored natural images of size 32 × 32. It

has 50K training images with 500 images in each of 100 classes and a total of 10K

test images. In our experiments, we use standard CNN architectures of varied capac-

ities, such as ResNet (He, X. Zhang, et al. 2016), Wide ResNet (WRN) (Zagoruyko

and Komodakis 2016b), MobileNet (Sandler et al. 2018), ShuffleNet (X. Zhang et al.

2018), and VGG (Simonyan and Zisserman 2014). We compare our method with

other knowledge distillation methods, such as (1) Knowledge Distillation (KD) (G.

Hinton, Vinyals, and Dean 2015), (2) FitNets (Romero et al. 2014), (3) Attention

Transfer (AT) (Zagoruyko and Komodakis 2016a), (4) Variational Information Dis-

tillation (VID) (Ahn et al. 2019), and (5) Contrastive Representation Distillation

(CRD) (Tian, Krishnan, and Isola 2019). We used the following values for hyper-

parameters based on a held out set: α = 1, λg = 1, λl = 0.75, λf = 1 for all our

experiments. The infoNCE bound in CRD as well as our global MI is set to use

4096 negatives. The hyper-parameter choice for other approaches can be found in

supplementary. Additionally, in order to demonstrate the scalability of our method,

we compare our distillation performance on the ImageNet (Deng et al. 2009) dataset

against AT (Zagoruyko and Komodakis 2016a), and KD (G. Hinton, Vinyals, and

Dean 2015). ImageNet is a large-scale dataset with 1.2 million training images across

1K classes and a total of 50K validation images.
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Figure 2.2: Results from the ablation studies on CIFAR100 dataset using a student
ResNet-8x4 (baseline acc. 72.44%) with teacher ResNet-32x4 (baseline acc. 79.24%).
Contour lines represent the final test accuracy of the student. The study was per-
formed by varying the values of λf , λg, λl from 0 to 1 with increments of 0.25 while
α was kept constant at 1. In each plot, the accuracy landscape is shown with λg set
to a constant value.

2.4.1 Ablation Study

We perform an extensive ablation study to demonstrate the value of each component

of our mutual information maximization objective. Ablative study experiments are

performed with ResNet-32x4 as the teacher network and ResNet-8x4 as the student

network where the baseline accuracy of the teacher is 79.24% and that of the stu-

dent network is 72.44%. The values of the hyper-parameters λg, λl and λf — that

control the weight of the global, local and feature mutual information maximization
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objectives respectively – were varied between 0 and 1 with an increment of 0.25 while

the weight for the cross-entropy loss, α was set to 1. Note that for this study, we

use the JSD-based bound for all MI maximization formulations including for global

MI which is not the case for our final competitive models presented further. The

contour plots in Figure 2.2 shows the test accuracy landscape with respect to a pair

of hyper-parameters when the third hyper-parameter is set to distinct values. For

instance, we observe that for any value of λg, better performance is achieved towards

higher values of both λf and λl. Similar trends can be observed in all the accuracy

landscape plots. Overall, this demonstrates the value of maximizing region-consistent

local and feature-level mutual information between representations in addition to just

global information maximization. Please refer to the appendix for additional accuracy

landscape plots.

2.4.2 Similar CNN Architectures

We perform knowledge distillation from a teacher network to a student network of

the same family (e.g. ResNets of different capacities). Table 2.1 presents our results,

showing that our method outperforms others in most setups and always obtains gains

with respect to student networks. Notice that CRD (Tian, Krishnan, and Isola 2019)

is able to slightly surpass the performance of our method in one setup while being

close in most cases. We find this encouraging as CRD (Tian, Krishnan, and Isola

2019) uses a similar mutual information maximization based formulation in their

distillation objective with a tighter lower-bound. Therefore, if we only use the global

objective in our method, CRD (Tian, Krishnan, and Isola 2019) should outperform

our method due to its tighter bound. Despite compromising the lower bound on

mutual information, MIMKD takes advantage of using region-consistent local and
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Student Net. WRN-
16-1

WRN-
16-2

ResNet-
8

ResNet-
20

ResNet-
20

ResNet-
8x4

VGG-8

Teacher Net. WRN-
40-2

WRN-
40-2

ResNet-
110

ResNet-
110

ResNet-
56

ResNet-
32x4

VGG-19

Student Acc. 67.01 72.80 59.63 69.10 69.10 72.44 69.67

Teacher Acc. 75.31+8.3075.31+2.5173.82+14.1973.82+4.7272.31+3.2179.24+3.8074.63+4.96

FitNets 68.35+1.3473.11+0.31 60.36+0.73 69.12+0.02 69.28+0.18 73.80+1.3671.32+1.65

AT 68.49+1.4873.37+0.57 60.24+0.61 70.36+1.2670.18+1.0873.20+0.76 71.71+2.04

VID 68.95+1.9473.89+1.0960.44+0.81 70.32+1.2270.52+1.4273.19+0.75 71.52+1.85

KD 68.24+1.2373.91+1.1161.01+1.3870.32+1.2270.59+1.4073.21+0.77 72.29+2.62

CRD 69.21+2.2074.17+1.3760.82+1.1971.45+2.3571.12+2.0275.21+2.7773.10+3.43

MIMKD (ours) 70.20+3.1975.16+2.3661.81+2.1871.43+2.3371.31+2.2175.83+3.3973.27+3.60

Table 2.1: Observed test accuracy (in %) of student networks trained with teacher
networks of higher capacity but similar architecture on the CIFAR100 dataset using
MIMKD and other competing methods. MIMKD shows consistent increases in accu-
racy for all model pairs and the largest gains overall.

feature-level mutual information maximization.

2.4.3 Dissimilar CNN Architectures

Here, we perform knowledge distillation from a teacher network to a student network

with a significantly different architecture. This tests the flexibility methods to adapt

to distinct data-abstraction flows of dissimilar neural network architectures. Table

2.2 demonstrates that our method (MIMKD) outperforms other distillation methods

in most teacher-student combinations increasing the accuracy of a ShuffleNetV2 by

4.7% while distilling from a much different ResNet-50 model. This demonstrates that

our method is able to accommodate significant architectural differences in teacher-



23

Student Net. WRN-16-
1

WRN-16-
2

VGG-8 Shuffle-
NetV1

Shuffle-
NetV2

Mobile-
NetV2

Teacher Net. ResNet-
110

ResNet-
32x4

ResNet-
32x4

VGG-13 ResNet-50VGG-13

Student Acc. 67.01 72.80 69.67 70.51 69.85 61.11

Teacher Acc. 73.82+6.81 79.24+6.44 79.24+9.57 74.62+4.11 79.23+9.38 74.62+13.51

FitNets 67.99+0.98 73.79+0.99 70.28+0.61 72.29+1.78 71.80+1.95 61.42+0.31

AT 66.42–0.59 72.19–0.61 71.77+2.10 71.19+0.68 70.78+0.93 61.96+0.85

VID 67.47+0.46 73.38+0.58 71.52+1.85 72.22+1.71 72.84+2.99 63.01+1.90

KD 68.86+1.85 74.63+1.83 73.46+3.79 72.26+1.75 72.91+3.06 64.47+3.36

CRD 69.71+2.70 75.61+2.81 73.73+4.06 72.86+2.35 73.65+3.80 66.34+5.23

MIMKD (ours) 69.88+2.87 76.24+3.44 74.09+4.42 73.88+3.37 74.55+4.70 65.89+4.78

Table 2.2: Observed test accuracy (in %) of student networks trained with teacher
networks of higher capacity and different architecture on the CIFAR100 dataset using
our method MIMKD and other distillation frameworks.

student pairs and does not impose structural constraints on intermediate layers that

hinder training. While other methods that work on intermediate feature maps like

AT (Zagoruyko and Komodakis 2016a) and FitNets (Romero et al. 2014) do not show

much improvement from base student accuracy.

2.4.4 Transferring representations

Finally, we compare the transferability of features learned with knowledge distillation

from MIMKD, on two other datasets: STL-10 and TinyImagenet. A WRN-16-2

network is trained with and without distillation from a pre-trained WRN-40-2 teacher

on the CIFAR100 dataset. The student is then used as a frozen feature extractor (pre-

classification layer) for images in the STL-10 and the TinyImageNet dataset. A linear
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STL-10 TinyImageNet

Base Accuracy (no distillation) 69.5 33.8

Knowledge Distillation (KD) 70.6 33.9
Attention Transfer (AT) 70.8 34.4
Contrastive Repr. Distill (CRD) 71.4 35.6

MIMKD (this work) 71.8 36.2

Table 2.3: Observed test-set accuracy (in %) of the student network on STL-10 and
TinyImagenet datasets using our method (MIMKD) and other distillation frame-
works.

classifier is trained on these extracted features to perform classification on the test sets

of these datasets. The classification accuracy on the unseen datasets is interpreted

as the transferability of representations. Results are presented in Table 2.3 and show

that MIMKD learns more transferrable representations.

2.5 Discussion

We presented a framework (MIMKD) motivated by an information-theoretic per-

spective on knowledge distillation. Utilizing an information-efficient lower bound

on mutual information, we proposed three information maximization formulations

and demonstrated the value of region-consistent local and feature-level information

maximization on distillation. We enable intermediate distillation using a JSD based

lower-bound on MI which we optimize using only one negative sample.

Acknowledgments This work was supported by NSF Awards IIS-2221943 and IIS-

2201710, and through gift funding from a Facebook Research Award: Towards On-

Device AI.
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3

CLIP-Lite: Information Efficient

Visual Representation Learning

with Language Supervision

We propose CLIP-Lite, an information efficient method for visual representation

learning by feature alignment with textual annotations. Compared to the previously

proposed CLIP model, CLIP-Lite requires only one negative image-text sample pair

for every positive image-text sample during the optimization of its contrastive learning

objective. We accomplish this by taking advantage of an information efficient lower-

bound to maximize the mutual information between the two input modalities. This

allows CLIP-Lite to be trained with significantly reduced amounts of data and batch

sizes while obtaining better performance than CLIP at the same scale. We evaluate

CLIP-Lite by pretraining on the COCO-Captions dataset and testing transfer learn-

ing to other datasets. CLIP-Lite obtains a +14.0% mAP absolute gain in performance

on Pascal VOC classification, and a +22.1% top-1 accuracy gain on ImageNet, while

being comparable or superior to other, more complex, text-supervised models. CLIP-

Lite is also superior to CLIP on image and text retrieval, zero-shot classification, and

visual grounding. Implementation: https://github.com/4m4n5/CLIP-Lite

https://github.com/4m4n5/CLIP-Lite
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Figure 3.1: Given a batch of n image-caption pairs {(Ii, Ti)}, CLIP requires a large
number of negative pairs {(Ii, Tj) | i ̸= j} due to the need to pair every image in the
batch with captions from other images. Whereas, CLIP-Lite can learn representations
using a single negative pair (in red) for every positive pair (in green).

3.1 Introduction

Pretraining image classification networks on the Imagenet dataset has led to visual

representations that transfer to other tasks (Girshick et al. 2014; Long, Shelhamer,

and Darrell 2015; Vinyals et al. 2015; Antol et al. 2015; Y. Zhu et al. 2016). However,

such classification based pretraining requires a large amount of human-annotated data

which is hard to obtain at scale. In contrast, captioned image data is an information-

dense source of supervision that is relatively cheap to collect and plentiful on the

internet. Therefore, recent methods have used joint vision-language pretraining to

learn representations from image-caption pairs (Desai and Johnson 2021; Sariyildiz,
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Perez, and Larlus 2020). However, methods such as VirTex (Desai and Johnson 2021)

which train on complex language modeling tasks such as masked language modeling,

token classification, and captioning fail to align features in a common latent space.

Recently, CLIP (Radford et al. 2021), a vision-language pretraining model, was de-

veloped using contrastive learning between the two modalities on an Internet-sized

dataset of 400 million image-caption pairs. Contrastive learning methods work by

pulling closer the representations of independent views of the same datum i.e. a

positive or matching image-caption pair and pushing apart the representations of in-

dependent views of different data i.e. negative or non-matching image-caption pairs.

However, contrastive learning in vision-language pretraining still has some limitations

as it seems to be most effective only with large scale data, and it requires a large num-

ber of negative image-caption pairs during training. Our work aims to address and

explore these two limitations by proposing CLIP-Lite, an information efficient vari-

ation of CLIP that is useful even in smaller data regimes, does not rely in as many

negative sample pairs during training, and provides comparable or superior perfor-

mance on standard benchmarks against other methods trained at the same scale. Our

work is motivated by the observation that multiple contrastive objectives maximize

a lower-bound on the mutual information between two or more views of the same

datum (M. Wu et al. 2020).

3.2 Background

In this section, we discuss previous efforts in improving pretraining, and in vision

language alignment which are the key areas of contribution of our work. Our work is

related to several strands of research on visual pretraining without full-supervision.
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Vision-Language Pretraining: Research on learning visual representations by us-

ing textual labels or annotations has a long history. In (Quattoni, Collins, and Darrell

2007), the authors learn data-efficient image representations using manifold learning

in the weight space of classifiers trained to predict tokens in image captions. Fol-

lowing this work, (Joulin et al. 2016) used convolutional neural networks to predict

words in image captions to learn image representations.

This approach was later extended in (Lei Ba, Swersky, Fidler, et al. 2015) where

the model learns to predict phrase n-grams, which demonstrated impressive zero-

shot performance on downstream classification tasks. Recently, VirTex (Desai and

Johnson 2021) used proxy language modeling tasks, such as image-captioning to train

a visual encoder and a transformer based language decoder which generates captions.

ICMLM (Sariyildiz, Perez, and Larlus 2020) demonstrated a similar masked language

modeling approach but relied on pretrained textual encoders for generating textual

features. In (Stroud et al. 2020), video representations are learned using paired

textual metadata, however the method does not extend to visual pretraining for

images. In general, these methods distill the rich semantic information from a caption

into the visual representation by learning to predict each token in the caption given

the corresponding image. More recent work, such as CLIP (Radford et al. 2021), has

shown that a simpler contrastive objective for aligning image and caption pairs is also

able to learn a powerful visual representation. Our work extends CLIP using a more

information-efficient approach.

Contrastive Representation Learning and Mutual Information Estimation:

As demonstrated in (M. Wu et al. 2020), we observe that contrastive frameworks learn

by maximizing the mutual information (MI) between different views of a given data

point. For images, this is achieved by maximizing the MI between different augmenta-
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tions of the data as in SimCLR (T. Chen et al. 2020; Bachman, Hjelm, and Buchwalter

2019). While for sequential data such as conversational text, consecutive utterances

can be considered as different views (Stratos 2018). Similarly, several other con-

trastive frameworks have been proposed that learn representations in domains such

as images (Grill et al. 2020; Caron et al. 2020), text (Mikolov et al. 2013; Stratos

2018), graphs (Veličković et al. 2018), and videos (Jabri, Owens, and Efros 2020).

The value of mutual information is extremely challenging to estimate, especially for

the high-dimensional continuous representations used in deep learning. To this end,

various tractable lower-bounds on mutual information are used for optimization. Re-

cently, MINE (Belghazi et al. 2018) proposed a general-purpose parameterized neural

estimator of mutual information. It uses a Donsker-Varadhan (Donsker and Varad-

han 1983) representation of KL-divergence as the lower-bound on mutual information.

MINE (Belghazi et al. 2018) used a neural network critic to distinguish positive and

negative pairs of samples. Another popular bound on mutual information that has

seen wide adoption due to its low variance is the InfoNCE (Oord, Y. Li, and Vinyals

2018) bound. In (Hjelm et al. 2018), the infoNCE bound on the mutual informa-

tion is used for unsupervised representation learning. While it is used by several

other methods for self-supervised (T. Chen et al. 2020) representation learning for

images. The capacity of the bound is limited by the number of contrastive samples

used (McAllester and Stratos 2020). Additionally, InfoNCE can underestimate large

amounts of true MI which is generally the case with high-dimensional representations

of natural images. To this end, DeepInfoMax (Hjelm et al. 2018) proposed using a

lower-bound on mutual information that is based on the Jensen-Shannon Divergence

(JSD) instead of the traditional KL-divergence (KLD). Inspired by this, we extend

the use of this bound for vision-language pretraining and demonstrate its effectiveness

through extensive experimental evaluations.
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3.3 Method

In this section, we describe our pretraining framework (Figure 3.2) for visual repre-

sentation learning. Given a dataset of image-caption pairs, the goal of our pretraining

framework is to train an image encoder and a text encoder such that representations

learned from the visual and the textual streams share maximum information (Figure

3.2 shows an overview). Consider an image encoder network, fi with parameters θi

and a textual encoder, ft with parameters θt. Let (xi, xt) be a sampled image-caption

pair from the dataset and fi(xi) and ft(xt) denote the representations extracted from

the networks. Based on the information bottleneck principle (Tishby and Zaslavsky

2015), the maximum mutual information (MI) predictive coding framework (Oord,

Y. Li, and Vinyals 2018; Hjelm et al. 2018; McAllester and Stratos 2020) aims to

learn representations that maximize the MI between inputs and representations. In

recent years, several methods (T. Chen et al. 2020; He, Fan, et al. 2020; Bachman,

Hjelm, and Buchwalter 2019) have used this principle to maximize MI between rep-

resentations extracted from multiple views of a shared context. In the case of visual

self-supervised learning, this is achieved by creating two independently-augmented

copies of the same input and maximizing the MI between the respective features pro-

duced by an encoder. This framework can be extended further by considering an

image xi and its caption xt as distinct views of the same input. This setup is moti-

vated by the observation that image captions contain rich semantic information about

images, for instance, presence of objects, location of objects, their relative spatial con-

figurations, etc. Distilling this information into our visual representation is useful for

robust representation learning (Radford et al. 2021). To this end, we formulate our

objective as follows:
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Figure 3.2: CLIP-Lite: We extract representations for an image, its positive cap-
tion, and one negative caption. Image-caption pairs are then fed into the mutual
information discriminator function which outputs a score for each pair. These scores
are then used to estimate and maximize mutual information using Jensen-Shannon
Divergence (JSD) to optimize the parameters of the encoders and the mutual infor-
mation discriminator end-to-end. The projection and dot function represents the MI
discriminator function Tω.

(θ̂i, θ̂t) = argmaxθi,θt
I(fi(xi), ft(xt)), (3.1)

where I(fi(xi), ft(xt)) ≤ I(xi; xt); due to the data processing inequality between

visual and textual streams.

3.3.1 Mutual Information Maximization

For given random variables y and z, their mutual information is defined as a Kullback-

Leibler (KL) divergence between their joint distribution p(y, z) and the product of
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their marginal distributions, p(y)p(z) as,

I(y; z) = DKL(p(y, z) || p(y)p(z)). (3.2)

However, mutual information is notoriously hard to estimate for high-dimensional

continuous variables, especially when the distributions p(y, z), p(x), or p(z) are not

explicitly known. As a result, recent approaches use various tractable lower bounds

on the mutual information which are differentiable and hence can be maximized

with gradient-descent based optimization. For contrastive learning, a commonly used

bound is infoNCE (Oord, Y. Li, and Vinyals 2018) based on Noise-Contrastive Esti-

mation (Gutmann and Hyvärinen 2010). This bound is relatively more stable and has

been shown to work in a wide variety of tasks (T. Chen et al. 2020; Bachman, Hjelm,

and Buchwalter 2019; X. Chen, Fan, et al. 2020) including CLIP (Radford et al.

2021) which, similar to our method, aims to learn visual representations from textual

annotations. The infoNCE bound has seen wider adoption as it demonstrates lower

variance compared to the Donsker-Varadhan bound (Donsker and Varadhan 1983).

However, both of these bounds require a large number of negative samples and as a

result, recent methods either train with extremely large batch-sizes (Radford et al.

2021; T. Chen et al. 2020); or an additional memory-bank of negative samples (X.

Chen, Fan, et al. 2020; Tian, Sun, et al. 2020).

Unlike these works, we estimate mutual information using a Jensen-Shannon Diver-

gence (JSD) bound, similar to formulations used for generative modeling (Nowozin,

Cseke, and Tomioka 2016); and source separation (Brakel and Bengio 2017). This

bound on mutual information is derived by replacing the KL-divergence in equation

3.2 with the Jensen-Shannon divergence (ref. appendix for further discussion). In-

terestingly, the lower bound derived as such is stable, differentiable, monotonically
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related to the mutual information I(y; z), and most importantly, not dependent on

the number of negative samples. Hence we have, I(Y ;Z) ≥ ÎJSDω (Y ;Z) where,

ÎJSDω (Y ;Z) :=EP (Y,Z)[−log(1 + e−Tω)]

− EP (Y )P (Z)[log(1 + eTω)],

(3.3)

and Tω : Y × Z → R is a discriminator neural network with trainable parameters

ω which are jointly optimized to distinguish between a paired-sample from a joint

distribution (positive image-caption pair) and one pair from the product of marginals

(negative image-caption pair). Therefore we are able to optimize our overall objective

with just one negative sample as follows:

(ω̂, θ̂i, θ̂t) = argmax
ω,θi,θt

ÎJSDω (fi(xi), ft(xt)), (3.4)

where the visual encoder is a convolution neural network, and features are extracted

from the pre-classification layer of the network. The textual encoder is parameterized

by a neural network that takes the caption as a string of textual-tokens and generates

a one-dimensional representation.

3.4 Experiments

In this section, we describe the experiments that demonstrate the value of using tex-

tual captions for learning visual representations using CLIP-Lite. In our experiments,

the CLIP-Lite architecture consists of a ResNet-50 image encoder and the BERT-base

textual encoder and is trained on the COCO Captions (X. Chen, Fang, et al. 2015)
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# image_encoder - CNN (eg. ResNet50) 
# text_encoder - Transformer (eg. BERT) 
# mi_discriminator - Project, Normalize and Dot 
# I[n, h, w, c] - Batch of images 
# T[n, l] - Batch of texts 

# Extract image and text features 
image_feats = image_encoder(I) 
text_feats = text_encoder(T) 

# Shuffle text features to get negative samples 
text_feats_neg = shuffle(text_feats) 

# Compute alignment scores using project, normalize and dot 
positive_scores = mi_discriminator(image_feats, text_feats) 
negative_scores = mi_discriminator(image_feats, text_feats_neg) 

# MI Estimation / Loss function 
loss = softplus(-1.0 * positive_score) + softplus(negative_score)

Figure 3.3: CLIP-Lite: Pytorch style pseudo-code for our pretraining framework.

dataset. We evaluate the robustness of our visual encoder through the following

downstream tasks which use the visual encoder (1) as a frozen feature extractor, or

(2) as source of weight initialization for finetuning (ref. appendix). In addition, we

also demonstrate the data efficiency of our method by evaluating performance on

fractional datasets.

3.4.1 Architecture and Training Details

In all experiments, we use a standard ResNet-50 (He, X. Zhang, et al. 2016) that takes

in a 224 × 224 image and generates 2048-dimensional features at the pre-logit layer.

For textual encoding, we use a transformer (Vaswani et al. 2017) model initialized

using BERTbase (Devlin et al. 2018) and use the output [CLS] token as the text rep-

resentation. We use the COCO Captions dataset (X. Chen, Fang, et al. 2015) which
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has 118K images with five captions per image. During training time we apply (1)

random cropping, (2) color jittering, (3) random horizontal flips while interchanging

the words ‘left’ and ‘right’ in the caption, and (4) normalization using the ImageNet

image mean. We use SGD with momentum 0.9 (Sutskever et al. 2013; B. T. Polyak

1964) and weight decay 10−4 wrapped in LookAhead (M. R. Zhang et al. 2019) with

α = 0.5, and 5 steps. We perform distributed training across 8 GPUs with batch

normalization (Ioffe and Szegedy 2015a) per GPU with an overall batch size of 1024

images for 250K iterations. We use linear learning rate warmup (Goyal et al. 2019)

for the first 10K iterations followed by cosine decay (Loshchilov and Hutter 2016) to

zero. Additionally, we train CLIP (Radford et al. 2021) on the COCO-dataset us-

ing an open-source implementation1 with the originally recommended (Radford et al.

2021) training schedule that suit smaller datasets, reasonable batch-sizes, and com-

pute resources. Specifically, we train using the Adam Optimizer (Kingma and Ba

2014a) with decoupled weight decay regularization (Loshchilov and Hutter 2016) for

all weights except gains or biases. We train with a batch-size of 1024 and warm-up to

an initial learning rate of 10−4 in 10K steps and decay to zero with the cosine sched-

ule. We found that the performance slightly improves with longer training therefore

we train for 250K iterations, similar to ours. All other training details and hyper-

parameters were kept the same as the original work (Radford et al. 2021). Please

note that our ResNet-50 based CLIP-COCO model outperforms (+1.2% Zero-shot

Acc. on CIFAR10) publicly available weights2, refer to appendix for further details

on CLIP-COCO training.

1https://github.com/mlfoundations/open_clip
2https://github.com/revantteotia/clip-training/blob/main/zero_shot_eval_output/coco_trained_clip_observations.md

https://github.com/mlfoundations/open_clip
https://github.com/revantteotia/clip-training/blob/main/zero_shot_eval_output/coco_trained_clip_observations.md
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3.4.2 Mutual Information Discriminator

As described in main paper, our JSD-based lower-bound on mutual information relies

on a discriminator function, Tω : Y × Z → R, which distinguishes between samples

extracted from the joint distribution, P (Y, Z) i.e. a positive image-caption pair and

the product of marginals, P (Y )P (Z) i.e. a negative image-caption pair. This dis-

criminator function can be modelled as an arbitrary neural network with parameters

ω that can be jointly optimized with the encoders during training (Belghazi et al.

2018). In this work, we use a projection and alignment based architecture similar to

the one presented in Deep InfoMax (Hjelm et al. 2018).

Given a pair of one-dimensional representations, both vectors are first projected using

a projection module with two linear layers separated by a ReLU and a linear short-

cut. A dot-product of these projections is computed to get alignment scores. The

projection function maps these representations to an aligned cross-modal latent space.

Separate projection functions are used for image and text representations. Positive

and negative pairs of image-text representations are passed through the discrimina-

tor to get respective scores which are then used to estimate and maximize mutual

information using our objective. This architecture, in addition to being simple and

computationally inexpensive, also offers alignment of the representations into a com-

mon cross-modal latent space which uses cosine similarity as the distance metric.

3.4.3 Transfer Learning with Frozen Backbone

In these experiments, we train linear models on frozen visual backbones pretrained

using CLIP-Lite and compare with pretraining methods on PASCAL VOC (Evering-

ham et al. 2010) and ImageNet-1k (Russakovsky et al. 2015) classification problems.
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Table 3.1: Frozen Backbone Results: On Pascal VOC07 and Imagenet-1k clas-
sification, CLIP-Lite outperforms baseline CLIP when evaluated using linear classi-
fiers trained on top of frozen backbone networks pretrained on the COCO Dataset.
CLIP-Lite’s performance is competitive with more complex vision-language models.
CLIP-Lite also performs better than supervised and self-supervised models trained on
COCO images, without captions (ref. supplemental materials for additional results).

Method # images Annotations VOC07 IN-1k

COCO-Sup. 118K labels 86.2 46.4

MoCo-COCO 118K self-sup. 67.5 46.5

ICMLM 118K captions 87.5 47.9
VirTex 118K captions 88.7 53.8

CLIP-COCO 118K captions 74.2 33.2
CLIP-Lite 118K captions 88.2 55.3

PASCAL VOC linear classification: For this experiment, our setup is identical

to VirTex (Desai and Johnson 2021). We train on VOC07 trainval split (9K images,

20 classes) and report mAP on the test split. For classification, we train per-class

SVMs on 2048-dimensional global average pooled features extracted from the last

layer of our trained visual encoder. For each class, we train SVMs for cost values

C ∈ {0.01, 0.1, 1, 10} and select best C by 3-fold cross-validation.

Imagenet-1k linear classification: For this experiment, our setup is identical to

VirTex (Desai and Johnson 2021). We train on the ILSVRC 2012 train split and

report top-1 accuracy on val split. We train a linear classifier (fully connected layer

+ softmax) on 2048-dimensional global average pooled features extracted from the

last layer of the visual backbone. For training, we use a batch-size of 256 for 100

epochs. We use SGD with momentum 0.9 and weight decay 0. The learning rate

schedule is decayed by 0.1 after 60 & 80 epochs with an initial LR of 30.

Results: We compare CLIP-Lite to supervised, self- and textually-supervised models
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Table 3.2: Data Efficiency: CLIP-Lite is more data efficient than CLIP, as shown
in this experiment where we pretrain on {25, 50, 75, 100}% of the COCO Captions
dataset and evaluate the models on VOC and ImageNet classification tasks with a
frozen backbone. CLIP-Lite trained with just 25% of COCO already surpasses CLIP
trained on the whole dataset.

# images VOC07 IN-1k

CLIP COCO-100% 118K 74.2 33.2

CLIP-Lite COCO-25% 29.5K 77.7+3.5 45.1+11.9
CLIP-Lite COCO-50% 59K 84.4+10.2 51.3+18.1
CLIP-Lite COCO-75% 88.5K 86.8+12.6 53.2+20.0
CLIP-Lite COCO-100% 118K 88.2+14.0 55.3+22.1

in Table 3.1. CLIP-Lite significantly outperforms baseline CLIP when trained with

the same amount of data on both tasks. When compared to other image-caption pre-

training methods, CLIP-Lite performs competitively with VirTex (Desai and John-

son 2021) on VOC2007 and outperforms both VirTex (Desai and Johnson 2021) and

ICMLM (Sariyildiz, Perez, and Larlus 2020), which are trained on relatively complex

language modeling tasks, on Imagenet classification. In addition, different from them,

our method also generates a shared latent space that encodes both image and text

modalities and enables cheap computation of cross-modal alignment, which enables

downstream tasks such as zero-shot retrieval, and zero-shot transfer. It also allows

us to find subspaces associated with abstract concepts that are better expressed with

language than with visual examples, which allows for applications in bias mitigation

through the synthesis of gender-neutral image representations. CLIP-Lite also out-

performs a fully-supervised model trained with COCO image labels, showing that it

learns a better visual representation from information-dense captions as compared to

training with labels alone. Additional results in the supplement show that CLIP-Lite

is comparable or better than image-only SSL learning models trained on ImageNet,

even though it is trained on much fewer images, albeit with textual supervision.
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Data Efficiency: Due to our information-efficient approach for mutual information

maximization, CLIP-Lite should be able to learn effective feature representations

without requiring as much pretraining data as CLIP. To evaluate this claim, we train

ResNet-50 backbones with our pretraining setup on multiple fractional subsets of

the COCO Captions dataset and measure their downstream performance on both

VOC and ImageNet classification tasks. As demonstrated in Table 3.2, CLIP-Lite

outperforms the original CLIP training objective on VOC with 20% and on Imagenet

with just 10% of the data, while obtaining a substantial improvement when both

are trained with 100% data. Additionally, when compared with Virtex, CLIP-Lite

performs competitively on VOC while being consistently better on Imagenet-1k.

3.4.4 Transfer Learning with Backbone Finetuning

Next, we evaluate the performance of of our visual backbone when the entire network

is finetuned for the downstream task. For this purpose, we perform fine-grained

classification on the iNaturalist 2018 (Van Horn et al. 2018) dataset, which contains

images from 8, 142 fine-grained categories, with a long-tailed distribution. We train

with the ‘train2018’ split and evaluate in the ‘val2018’ split. We finetune pretrained

ResNet-50 models with a linear layer, using SGD with momentum 0.9 and weight

decay 10−4 for 100 epochs. Initial learning rate is set to 0.025, which is reduced by

10× at epochs 70 and 90. We use a batch size of 256 distributed across 8 GPUs.

Results: We summarize our results in Table 3.3. CLIP-Lite is competitive with

supervised and self-supervised learning models trained with images alone even those

trained with 5-10x more images. Its performance matches closely a model trained with

full-supervision on 50% of the ImageNet (Krizhevsky, Sutskever, and G. E. Hinton



40

Table 3.3: Backbone Finetuning Results: CLIP-Lite outperforms CLIP-COCO
on iNaturalist, and performs comparably to VirTex. (IN-Sup. = ImageNet-
supervised.)

Method # images Annotations iNat 18

Random Init - - 61.4

IN-sup 1.28M labels 65.2
IN-sup-50% 640K labels 63.2
IN-sup-10% 128K labels 60.2

MoCo-COCO 118K self-sup. 60.5
MoCo-IN 1.28M self-sup. 63.2

VirTex 118K captions 63.4

CLIP-COCO 118K captions 61.8
CLIP-Lite 118K captions 63.1

Table 3.4: Text Retrieval Results: CLIP-Lite substantially outperforms CLIP-
COCO and the baseline Visual N-grams (A. Li et al. 2017) approach. CLIP-Lite is
superior when evaluated on the COCO test split, which is similar to the CLIP-Lite
training set and on Flickr30K, generalizing to unseen images and text zero-shot.

Flickr30k MSCOCO
Method R@1 R@5 R@10 R@1 R@5 R@10

Visual N-Grams 15.4 35.7 45.1 8.7 23.1 33.3
CLIP-COCO 19.9 41.9 54.9 18.9 42.9 54.6

CLIP-Lite 28.8 55.8 67.4 26.0 54.6 68.0

2012) dataset, equal to 5.4× the number of images as our pretraining dataset. Finally,

CLIP-Lite obtains a 1.3% improvement over CLIP-COCO, while being competitive

with VirTex.

3.4.5 Image-Text and Text-Image Retrieval

Our method is expected to produce effective representations for the task of image-

text retrieval as it is trained by aligning text and image representations. We evaluate
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Table 3.5: Image Retrieval Results: CLIP-Lite substantially outperforms CLIP-
COCO and the baseline Visual N-grams (A. Li et al. 2017) approach. CLIP-Lite is
superior when evaluated on the COCO test split, which is similar to the CLIP-Lite
training set and on Flickr30K, generalizing to unseen images and text zero-shot.

Flickr30k MSCOCO
Method R@1 R@5 R@10 R@1 R@5 R@10

Visual N-Grams 8.8 21.2 29.9 5.0 14.5 21.9
CLIP-COCO 13.9 33.0 43.8 13.9 33.5 44.2

CLIP-Lite 23.1 51.1 62.9 20.2 48.1 62.2

the image-text retrieval capabilities of CLIP-Lite on the validation set of COCO and

the test split of Flickr30k (Young et al. 2014) datasets, following CLIP. We perform

zero-shot image-text and text-image retrieval by ranking image-text pairs by their

alignment score, which is the dot product of the normalized representations in the

shared latent space. This ability to perform zero-shot retrieval is a salient feature of

our and CLIP-like methods over works that rely on language modeling tasks.

Results: Table 3.4, 3.5 shows that CLIP-Lite substantially outperforms CLIP-COCO

on all metrics for both text and image retrieval. The performance improvement is

large both when evaluated on the COCO validation set, which is similar to the the

COCO-Captions training split used for CLIP-Lite training; and when testing zero-

shot on unseen text vocabulary and object categories of Flickr30K. Taken together,

these results show that CLIP-Lite learns a superior representation for retrieval tasks

as compared to CLIP, when trained on same amounts of data.

3.4.6 Zero-Shot Transfer

We use the cross-modal alignment capability of CLIP-Lite to perform zero-shot clas-

sification on unseen datasets CIFAR-10, CIFAR100 (Krizhevsky, G. Hinton, et al.
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Table 3.6: Zero Shot Transfer: CLIP-Lite obtains satisfactory zero-shot transfer
to unseen datasets.

CLIP-COCO CLIP-Lite

Dataset Top1 Top5 Top1 Top5

CIFAR10 16.3 68.9 33.0 82.7
CIFAR100 2.9 12.4 6.8 33.1
ImageNet-V2 4.4 11.1 9.9 21.4
ImageNet-A 1.7 7.3 3.8 14.9

2009), ImageNetV2 (Recht et al. 2019), and ImageNet-A (Hendrycks et al. 2021).

Our model generates a shared latent space where we can readily compute the align-

ment between (image, text) pairs as the cosine of their representations. Therefore,

we use the names of the classes to generate a textual description of each class label

(class prompt). In this experiment, we use templates such as, “a photo of a {class

name}” to generate such class prompts, following CLIP (Radford et al. 2021). Please

refer to the appendix for comparison between different templates for generating the

prompts. For a given image, we compute its alignment with each of the class prompts

which are then normalized into a probability distribution via a softmax.

Results: Our results for the zero-shot transfer task on unseen datasets are compiled

in table 3.6. Given the zero-shot nature of the task, CLIP-Lite obtains satisfactory

performance on the complex ImageNet evaluations while clearly outperforming CLIP

trained with the same amount of data in all settings.

3.4.7 Evaluating Visual Grounding

Next, we evaluate the capability of CLIP-Lite to localize a region in the image that

corresponds to a given textual description. We compute the dot-product of the visual
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and textual embedding and compute its gradients with respect to the last convo-

lutional layer of ResNet. We global average pool these gradients and perform a

weighted sum with the last convolutional activations and clip the negative values to

obtain Grad-CAM (Selvaraju et al. 2017). We then use the areas highlighted by Grad-

CAM to approximate a predicted bounding box. We evaluate this experiment on the

RefCOCO+ (Yu et al. 2016) dataset. We note that the images in the RefCOCO+

dataset are extracted from the training set of the COCO (X. Chen, Fang, et al. 2015)

dataset which our model uses for pretraining. Therefore, we view this evaluation as

an explorative study to establish that our model is focusing on the relevant areas of

the image while computing the alignment score with the caption. RefCOCO+ results

can be seen in the table to the right. CLIP-Lite significantly outperforms CLIP on

all settings.

Method Val-acc TestA-acc TestB-acc

CLIP-COCO 29.1 28.5 28.5

CLIP-Lite (ours) 36.1 41.4 32.0

Qualitative results in Figure 3.4

demonstrate that even though

the network has not been

trained with any localization su-

pervision, it is surprisingly good

at localizing phrases in the im-

age. For instance, in Figure 3.4 bottom left, for the phrase “blue”, the network

attends to all blue regions in the player’s outfit. Interestingly, it is also able to

localize abstract concepts as “blurry player”.
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“bending over” “child” “man” “girl”

“blurry player”“blue” “red bus” “grand bazar
blue”

Figure 3.4: Visual Grounding on RefCOCO+: CLIP-Lite is able to localize
textual descriptions to relevant areas in the image, shown here through Grad-CAM
visualization using the alignment score with the mentioned textual description. Top
left: CLIP-Lite is able to localize the action phrases such as “bending over”. This
demonstrates the value of learning from semantically rich textual captions.

3.4.8 Editing Concepts from Image Representations

One salient feature of CLIP-like methods, which other methods such as VirTex (De-

sai and Johnson 2021) and ICMLM (Sariyildiz, Perez, and Larlus 2020) lack, is that

they are able to generate a shared latent space that encodes both image and text

modalities. This enables us to find representations and subspaces associated with

abstract concepts that are better expressed with language than with visual examples.

Using this property, we demonstrate a methodology to remove concepts from visual

representations. For instance, it is non trivial and even problematic to collect visual

examples that capture the concept of gender, while it is relatively straightforward

to express this concept in a sentence using language. Therefore, we can identify

the gender subspace in our shared embedding space using text and use it to remove

variance along this direction to smooth out the concept of gender from image repre-

sentations. We motivate this experiment in the growing body of literature regarding
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Figure 3.5: Demonstrating Neutral Representations: Qualitative demonstra-
tion of our concept editing method. For each text prompt, most aligned images are
retrieved from male and female buckets of the gendered COCO subset before (top
row) and after (bottom row) gender smoothing. Once representations are gender-
neutralized the gendered references in the query become irrelevant and the image is
only retrieved based on its remaining contents. Alignment score decreases from left to
right for each set of queried images. Boundary color denotes perceived image gender;
red for female, blue for male.

bias mitigation, where the objective is to build invariant representations with respect

to sensitive or protected attributes (T. Wang et al. 2019; Zeyu Wang et al. 2020).

In comparison to our work other methods require retraining the models to obtain

invariant bias representations through adversarial learning (T. Wang et al. 2019) or

effectively combining domain independent classifiers (Zeyu Wang et al. 2020).

Identifying the Concept Subspace: The first step of our approach is to isolate

the direction in the embedding space that captures maximum gender variance. For

this purpose, we follow a strategy similar to Bolukbasi et al. (Bolukbasi et al. 2016)

that deals with debiasing word representations. For characterizing features for male

and female genders, we use word pairs (man, woman), (son, daughter) that indicate

opposite genders. Now, consider a dataset D = {(wm, wf )}mi=1 where each entry

(wm, wf ) is a tuple of opposite gendered words. Intuitively, each tuple should contain

words that have the same meaning if not for the target attribute. To make the set

D more robust, we used the sentence contextualization strategy presented in Liang
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Table 3.7: Concept Editing Results: We compute the mean alignment scores for
the top 10 images queried using prompts that either contain male or female gendered
tokens. The images are queried using gendered and neutralized representations. We
observe that after gender-deletion the alignment score for images with men and women
converge to similar values.

Images with Men Images with Women

gendered neutral delta gendered neutral delta

Male queries 0.085 0.069 +0.016 0.057 0.067 -0.010
Female queries 0.042 0.068 -0.026 0.089 0.062 +0.027

et al. (Liang et al. 2020). In this step, the predefined sets of gendered tokens in the

set, D, are used to generate paired sentences which have the same meaning except

for the gender attribute. We perform this contextualization by using simple sentence

templates such as “I am a [word]” where [word] can be replaced with the word pairs

in our dataset D to give, for instance, (“I am a boy.”, “I am a girl.”). Hence, we

obtain a contextualized bias attribute dataset S = {(sm, sf )}ni=1 where each entry

is a tuple of semantically similar sentences with opposite genders. We extract the

sentence representations for all entries in the set S by passing them through our

pretrained text encoder and then projecting them to the shared latent space using the

projector trained with our mutual information discriminator Tω. We define sets Rm

and Rf that contain sentence representations of the male and the female category,

for example, Rm = {Ft(sm)}ni=1 where Ft(.) is the sequential combination of our

pretrained text-encoder and text-projection functions. Now we estimate the gender

subspace V = {v1, ..., vk} using the Principal Component Analysis corresponding

mean shifted representation from both sets as described in (Liang et al. 2020).

Removing Concept from Image Representations: After estimating the gender

subspace in our shared cross-modal latent space, we extend the hard debias algo-

rithm (Bolukbasi et al. 2016) to edit visual representations. This is achieved by first
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projecting the representation onto the bias subspace, this projection is then subtracted

from the original representation to give the de-gendered representation. Given an im-

age, we first encode the image onto our multi-modal shared latent space to get, say, h.

Now, consider the identified gender subspace V , we first compute the projection of h

onto this gender subspace V to get hV =
∑k

j=1 ⟨h, vj⟩ vj. We subtract this projection

from the original representation to get a vector, ĥ = h− hV that is orthogonal to the

bias subspace and therefore does not encode the target bias.

Analysis: To evaluate concept editing, we use the gendered subset of COCO-Captions (T.

Wang et al. 2019; Zhao et al. 2017) for studying bias. The gender labels for images

in the COCO dataset are derived from the captions. We obtain a subset from the

COCO dataset with 16, 225 images with men and 6, 601 images with women. We use

10 sentences with male references and 10 sentences with female references from the set

S and use them as prompts for this study. For each gendered prompt, we query the

top 10 images independently from the male and the female image sets using both bi-

ased and debiased representations to compute alignment with the prompt. The mean

alignment scores are then computed for each set given the prompt. Table 3.7 shows

that the alignment scores roughly equalize for members of the two groups after re-

moving the variance along the gender direction from the visual representations which

indicates the invariance of the visual representations to gendered language tokens.

3.5 Discussion

We introduced CLIP-Lite an image-text pretrained model using contrastive learn-

ing that leverages a different objective than the CLIP model that allows for it to

be more data efficient. CLIP-Lite’s objective is insensitive to the number of nega-
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tive samples and hence can be trained with just one negative image-caption pair and

shows superior results on lower data regimes while still demonstrating some of the

most remarkable capabilities of the original CLIP model such as transferable features,

zero-shot capabilities, and a shared latent space. Additionally, we present a concept

editing methodology for neutralizing visual representations with respect to a chosen

abstract concept. As a followup to the above work, we propose designing a train-

ing paradigm for medical image-text data which can be trained cheaply and small

amounts of annotated data.
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4

SAASN: Self-Attentive Adversarial

Stain Normalization

Hematoxylin and Eosin (H&E) stained Whole Slide Images (WSIs) are utilized for

biopsy visualization-based diagnostic and prognostic assessment of diseases. Vari-

ation in the H&E staining process across different lab sites can lead to significant

variations in biopsy image appearance. These variations introduce an undesirable

bias when the slides are examined by pathologists or used for training deep learning

models. To reduce this bias, slides need to be translated to a common domain of

stain appearance before analysis. We propose a Self-Attentive Adversarial Stain Nor-

malization (SAASN) approach for the normalization of multiple stain appearances

to a common domain. This unsupervised generative adversarial approach includes

self-attention mechanism for synthesizing images with finer detail while preserving

the structural consistency of the biopsy features during translation. SAASN demon-

strates consistent and superior performance compared to other popular stain normal-

ization techniques on H&E stained duodenal biopsy image data. Implementation:

https://github.com/4m4n5/saasn-stain-normalization

https://github.com/4m4n5/saasn-stain-normalization
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4.1 Introduction

Histopathology involves staining patient biopsies for microscopic inspection to identify

visual evidence of diseases. The most widely used stain in histopathology is the

Hematoxylin and Eosin (H&E) stain (A. H. Fischer et al. 2008). Hematoxylin has

a deep blue-purple color and stains acidic structures such as nucleic acids (DNA in

cell nuclei). While Eosin is red-pink, and stains basic structures such as nonspecific

proteins in the cytoplasm and the stromal matrix. Staining is crucial as it enables

visualization of the microscopic structural features in the biopsy. The process of

staining is followed by glass biopsy slide creation and eventually digitization into

Whole Slide Images (WSIs) using digital scanners. These WSIs are further used for

histopathology research and electronic transmission of biopsies.

Computer vision is becoming increasingly useful in the field of histology for computed-

aided diagnosis and discovering information about histopathological microscopic cel-

lular (Litjens et al. 2017). Tremendous potential has been shown for training deep

learning algorithms on these datasets for diagnosis and visual understanding of dis-

eases requiring histopathological assessment. Convolution Neural Networks (CNNs)

have been successfully reported for biopsy-based diagnosis of breast cancer and en-

teropathies among others (Y. Liu et al. 2017; Aman Shrivastava, Kant, et al. 2019;

Wei et al. 2019). The performance and fairness of such data-driven methods is depen-

dent on the data used for training. Therefore, it is imperative for the training data

to be free of any bias that might skew the models. A common source of such bias

is significant stain color variation among images. This is due to the discrepancies in

the manufacturing protocol and the raw materials of the staining chemicals (Bejnordi

et al. 2014) across different sites where the biopsy slides are prepared. Multiple H&E

stain distributions within the CNN input data can lead to biased predictions where
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the results are influenced by color differences rather than microscopic cellular features

of interest for clinical diagnostic interpretation. Additionally, it causes difficulty for

a trained model to make predictions on a biopsy WSI with a new stain appearance

that is not represented in the data used to train the model.

To overcome these issues, researchers have developed stain normalization techniques

to convert all input images to an equivalent color distribution. Some of the most

popular stain normalization techniques depend on a qualitatively chosen target image

that represents an ideal color appearance (Macenko et al. 2009; A. M. Khan et al.

2014; Vahadane et al. 2016). The input (source) image is normalized to match the

stain profile of the chosen target image. The obvious downside to this approach is

that the normalization is highly dependent on the color distribution of a single image.

Rather than using just one target image to represent an entire stain distribution, an

alternative approach to consider an entire set of images that share the same stain

distribution as the target domain has been suggested (Janowczyk, Basavanhally, and

Madabhushi 2017; Shaban et al. 2019). A mapping function can then be learned to

translate images from a particular source domain to a target domain. This problem

can be modelled as an unsupervised image-to-image translation task (M.-Y. Liu,

Breuel, and Kautz 2017).

Recently, Generative Adversarial Networks (GANs) have been shown to demonstrate

exceptional results in unpaired image translation tasks (Yi et al. 2017; J.-Y. Zhu et al.

2017; T. Kim et al. 2017). However, the challenge posed by the stain normalization

task is to ensure the preservation of fine details and microscopic structural properties

that are crucial for the correct disease assessment. Additionally, since the biopsy slides

can be sourced from multiple sites, the framework needs to be capable of mapping

multiple stain distributions to a common target distribution.
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In this paper, we propose a novel adversarial approach that can execute many-to-

one domain stain normalization. A custom loss function, structural cycle-consistency

loss, is designed to make sure that the structure of the image is preserved during

translation. Self-attention (Parikh et al. 2016) is used to ensure that highly detailed

microscopic features can be synthesized in the image. Our approach and other lead-

ing stain normalization techniques are compared on duodenum biopsy image data

that was used to diagnose Celiac or Environmental Enteropathy disease in children.

SAASN demonstrated superior performance in preserving the structural integrity of

images while transferring the stain distribution from one domain to the other.

4.2 Background

The earliest methods that attempted stain normalization were primarily simple style

transfer techniques. Histogram specification mapped the histogram statistics of the

target image with the histogram statistics of the source (Coltuc, Bolon, and Chassery

2006). This approach only works well if the target and source images have similar

color distributions. Forcing the normalization of the source image to match the

histogram statistics of the target can create artifacts which can alter the structural

integrity. As demonstrated by Reinhard et al. (Reinhard et al. 2001), color transfer

with histogram specification can also be performed in a decorrelated CIELAB color

space which is designed to approximate the human visual system.

For H&E stained histology images, the presence of each stain or the lack thereof

at each pixel should represent the most appropriate color space. Considering this,

researchers developed stain normalization methods that outperformed the histogram

specification technique by leveraging stain separation. These techniques start with
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converting an RGB image into Optical Density (OD) as OD = log I0
I

, where I0 is the

total possible illumination intensity of the image and I is the RGB image. Color

Deconvolution (CD) is made easier in the OD space, because the stains now have a

linear relationship with the OD values. The CD is typically expressed as OD = V S,

where V is the matrix of stain vectors and S is the stain density map. The stain

density map can preserve the cell structures of the source image, while the stain

vectors are updated to reflect the stain colors of the target image.

In Macenko et al. (Macenko et al. 2009), stain separation is computed using singular

value decomposition on the OD tuples. Planes are created from the two largest

singular values to represent H&E stains. One useful assumption with this approach

is that the color appearance matrix is non-negative, this is because a stain value of

zero would refer to the stain not being present at all. The approach by Vahadane et

al. (Vahadane et al. 2016) (Vahadane) also includes the non-negative assumption, as

well as, a sparsity assumptions, which states that each pixel is characterized by an

effective stain that relates to a particular cell structure (nuclei cells, cytoplasm, etc.).

Stain separation is generated with Sparse Non-negative Matrix Factorization (SNMF)

where the sparsity acts as a constraint to greatly reduce the solution space (Roy et al.

2018). SNMF is calculated using dictionary learning via the SPAMS package.

While Macenko and Vahadane are both unsupervised techniques, supervised ap-

proaches to this problem have also been studied. Khan et al. (A. M. Khan et al.

2014) applies a relevance vector machine or a random forest model to classify each

pixel as hematoxylin, eosin or background. The authors provide a pre-trained model

for cases which is only useful if the color distribution of new source images is close to

the color distribution of their training data. Training a new model would require a

training set with pixel level annotations for each stain. After the stain separation, the
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color of the target image is mapped with a non-linear spline. The non-linear mapping

approach can lead to undesirable artifacts and this normalization approach is more

computationally costly than the unsupervised approaches.

Recently, techniques for stain normalization have progressed to include deep learning

approaches such as autoencoders and GANs (Janowczyk, Basavanhally, and Mad-

abhushi 2017; Shaban et al. 2019). The StainGAN (Shaban et al. 2019) approach

applied the CycleGAN framework for one-to-one domain stain transfers. In a one-

to-one stain transfer situation, the cycle-consistency loss is calculated by taking the

L1 distance between the cycled image and the ground truth. In a many-to-one situ-

ation, the cycled image will likely have a different color appearance than the original

image. Therefore, a new loss function that focuses on image structure and not the

color differences is required.

Biopsy WSIs contain repetitive patterns across the image in the form of recurring

cell structures, stain gradients, and background alike. During translation, these spa-

tial dependencies can be used to synthesize realistic images with finer details. Self-

attention (Parikh et al. 2016) exhibits impressive capability in modelling long-range

dependencies in images. SAGAN (H. Zhang et al. 2018) demonstrated the use of

self-attention mechanism into convolutional GANs to synthesize images in a class

conditional image generation task. We incorporate these advances in SAASN to en-

able it to efficiently find spatial dependencies in different areas of the image.

4.3 Method

The general objective of the proposed framework is to learn the mapping between

stain distributions represented by domains X and Y . Since the aim of the approach
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Figure 4.1: Visual example of a many-to-one stain transfer network. Two different
stains are present as inputs within X: X(1) and X(2). Both of these domains are
translated to Y with GXY . To complete the cycle, GY X returns the image back to
the X domain, but it can no longer be mapped directly to the input sub-domains
X(1) or X(2) from which it originated. Instead, the image is mapped back to X̂ which
is represents a new domain of stain appearance.

is to normalize stain patterns across the entire dataset, one of these domains can

be considered as the target domain (say Y ). The task is then to generate images

that are indistinguishable the target domain images based on stain differences. The

stain normalization task desires translation of images to a singular domain of stain

distribution. This allows us to have multiple sub-domains in domain X representing

different stain patterns. The overall objective then becomes to learn mapping func-

tions GY X : X → Y and GXY : Y → X given unpaired training samples {xk
i }Ni=1,

xk
i ∈ X(k) ∈ X, k ∈ [1, K] where K denotes the number of sub-domains in X and

{yj}Mj=1, yj ∈ Y . The distribution of the training dataset is denoted as x ∼ p (x | k)

and y ∼ p (y). Additionally, two discriminator functions DX and DY are used. DX is
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employed to distinguish mapped images GXY (yi) from xi while in a similar fashion

DY is used to distinguish GY X (xi) from yi. As illustrated in Figure 4.1, the mapping

function GXY will map images from domain Y to a previously undefined sub-domain

X̂ whose boundary is defined by the optimization function and the training data dis-

tributions in domain X. The overall optimization function used to train the designed

framework includes a combination of adversarial loss (Goodfellow et al. 2014), cycle

consistency loss (J.-Y. Zhu et al. 2017), identity loss (Taigman, A. Polyak, and Wolf

2016), structural cycle consistency loss based on the structural similarity index (Zhou

Wang et al. 2004) and a discriminator boundary control factor.

Adversarial loss is used to ensure that the stain distribution of the generated images

matches the distribution of the real (ground truth) images in that domain. The ob-

jective for the mapping function GY X : X → Y and the corresponding discriminator

DY is defined as:

LY
adv = Ey∼p(y) [logDY (y)] + Ex∼p(x|k) [log (1−DY (GY X(x)))] (4.1)

Here GY X tries to generate images that are indistinguishable from images in domain Y

and consequently fool the discriminator DY , i.e. the generator GY X tries to minimize

the given objective function while the discriminator DY tries to maximize it. Similarly

the objective for the reverse mapping function GXY : Y → X is defined. The presence

of multiple distinct stain distributions in the domain X can make it challenging for

the discriminator DX to learn the decision boundary surrounding the domain X.

This can especially pose a challenge when there is an overlap or proximity in the

stain distribution of one of the sub-domains of X and the target domain Y in the

high-dimensional space. Therefore, to make sure that the decision boundary learned

by DX does not include sections of the target domain Y , a discriminator boundary



57

control factor is added to the optimization function as follows:

LX
adv = Ex∼p(x|k) [logDX(x)]+Ey∼p(y) [log (1−DX(GXY (y)))]+Ey∼p(y) [log (1−DX(y))]

(4.2)

Cycle consistency loss (J.-Y. Zhu et al. 2017) is implemented to reconcile with

the unpaired nature of the task. To overcome the lack of a ground truth image

for a fake image generated in a particular domain, the image is mapped back to its

original domain using the reverse mapping function. The reconstructed image is then

compared to the original source image to optimize the mapping function as follows:

Lcyc = Ex∼p(x|k) [∥GXY (GY X(x))− x∥1] + Ey∼p(y) [∥GY X(GXY (y))− y∥1] (4.3)

Structural cycle consistency loss is added to the objective function to alleviate

the shortcomings of the cycle consistency loss for many-to-one translation. In a many-

to-one situation, the cycled images are likely to have a distinct color distribution than

any of the sub-domains. Therefore minimizing the L1 distance between original and

the cycled image alone is not an effective way to ensure cycle consistency. We use a

color agnostic structural dissimilarity loss based on the Structural Similarity (SSIM)

index (Zhou Wang et al. 2004) as follows:

Lscyc =
1− SSIM (GXY (GY X (x)), x)

2
+

1− SSIM (GY X(GXY (y)), y)

2
(4.4)

Additionally, to ensure that the the mapping learnt by the generator does not result

in the loss of biological artifacts, the structural dissimilarity loss is also computed
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between the mapped and the original image:

Ldssim =
(1− SSIM (GY X (x) , x))

2
+

(1− SSIM (GXY (y) , y))

2
(4.5)

where

SSIM(a, b) =
(2µaµb + C1) + (2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)
(4.6)

where µ, σ are the respective means and standard deviations of the windows (a

and b) of the fixed size N × N that strides over the input image. C1 and C2 are

stabilizing factors that prevent the denominator from disappearing. These measures

are calculated for multiple corresponding windows of gray-scaled input images and

aggregated to get the final measure. Gray-scaled inputs are used to focus on structural

differences between images and not changes in color.

Identity loss (Taigman, A. Polyak, and Wolf 2016) is utilized to regularize the

generator and preserve the overall composition of the image. The generators are

rewarded if a near identity mapping is produced when an image from the respective

target domain is provided as an input image. In other words, when an image is fed

into a generator of its own domain, the generator should produce an image that is

nearly identical to the input. This is enforced by minimizing the L1 distance of the

resulting image with the input image as follows:

Lid = Ey∼p(y) [∥GY X(y)− y∥1] + Ex∼p(x|k) [∥GXY (x)− x∥1] (4.7)

The overall objective function then becomes:

L(GY X , GXY , DX , DY ) = LY
adv +LX

adv +α ∗Lcyc+β ∗Lscyc+γ ∗Ldssim+ δ ∗Lid (4.8)
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where parameters α, β, γ and δ manage the importance of different loss terms. The

parameters in the generators and the discriminators are tuned by solving the above

objective as:

G∗
Y X , G

∗
XY = arg min

GY X ,GXY

max
DX ,DY

L(GY X , GXY , DX , DY ) (4.9)

In the following sections, we describe the implementation and compare our results

with other current state-of-the-art methods of color normalization with both multiple

(K = 2) and single (K = 1) sub-domains in X.

4.4 Experiments

4.4.1 Dataset

For this paper, duodenal biopsy patches were extracted from 465 high resolution WSIs

from 150 H&E stained duodenal biopsy slides (where each glass slide could have one

or more biopsies). The biopsies were from patients with Celiac Disease (CD) and

Environmental Enteropathy (EE). The biopsies were from children who underwent

endoscopy procedures at either Site 1 (10 children <2 years with growth faltering,

EE diagnosed on endoscopy, n = 34 WSI), Site 21 (16 children with severe acute

malnutrition, EE diagnosed on endoscopy, n = 19 WSI), or Site 31 (63 children <18

years old with CD, n = 236 WSI; and 61 healthy children <5 years old, n = 173 WSI).

It was observed that there was a significantly large stain variation between images

originating from different sites. While images from Site 1 were different tones of dark

blue, images from Site 3 were more pink with images from Site 2 lying somewhere in

the middle of this spectrum.
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Figure 4.2: H&E stained duodenal biopsy patches created from whole slide images
sourced from different locations.

There is always some degree of physical variation between histological sections from

different sites. In this study, our approach and other competing methods were per-

formed on 500 × 500 pixel patches generated from the images, which were further

resized to 256 × 256 pixel to marginally reduce the resolution. In the multi-sub-

domain setup, patches from Site 1 (sub-domain X(1)) and Site 2 (sub-domain X(2))

were both considered to be in domain X and patches from Site 3 to be in domain Y .

While in single sub-domain training setup, patches from Site 1 were considered to be

in domain X and Site 3 to be in domain Y . For training both X and Y had 16000

patches where X(1) contributed 10817 and X(2) 5183 patches. Testing metrics were

computed on 1500 patches in each sub-domain.
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Figure 4.3: Left: Results when mapping was done from two sub-domains of X to Y .
Patches from both domains X(1) and X(2) are translated to domain Y using GY X .
These generated images are then translated back to a new domain defined by a GXY

as a combination of stain distributions of sub-domains of X. Patches on either end of
the second column are real images from domain Y and have been added to visually
show the performance of GY X . Right: Results when mapping was learnt using a single
domain in X to Y .

4.4.2 Network Architecture

The generator network is a modified U-Net (Ronneberger, P. Fischer, and Brox

2015) which has been shown to generate excellent results in image translation tasks

(Isola et al. 2017). U-Net is encoder-decoder network (G. E. Hinton and Salakhut-

dinov 2006) that uses skip connections between layers i and n − i where n is the

total number of layers in the network. In previous encoder-decoder architectures

(Pathak et al. 2016; X. Wang and Gupta 2016; Yoo et al. 2016). The input is passed

through a series of convolutional layers that downsample the input until a bottleneck

is reached after which the information is upsampled to generate an output of the de-

sired dimensions. Therefore, by design all information passes through the bottleneck.
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In a stain normalization task, the input and the output of the network share a lot

of general information that might get obscured through the flow of such a network.

Skip connections in a U-Net solve this problem by circumventing the bottleneck and

concatenating the output from the encoder layers to the input of the corresponding

decoder layers.

The discriminator is a 4 block CNN, which eventually outputs the decision for each

image. Every convolutional block in both the generator and the discriminator is a

module consisting of a convolution-normalization-ReLU layers in that order. Both

instance (Ulyanov, Vedaldi, and Lempitsky 2016) and batch (Ioffe and Szegedy 2015b)

normalization were used; and batch normalization was empirically chosen for the final

network. The convolutional layers have kernel size of 4 and stride 2, with the exception

of the last layer in the discriminator which operates with stride 1.

Self-attention layers (Parikh et al. 2016) were added after every convolutional block

in both the generator and the discriminator network. The self-attention mechanism

complements the convolutions by establishing and leveraging long range dependencies

across image regions. It help the generator synthesize images with finer details in

regions based on a different spatial region in the image. Additionally the discriminator

with self-attention layers is able to enforce more complex structural constraints on

input images while making a decision. As described in SAGAN (H. Zhang et al.

2018), a non-local network (X. Wang, Girshick, et al. 2018) was used to apply the

self-attention computation. The input features x ∈ RC×N are transformed using three

different learnable functions q(x), k(x), v(x) analogous to query, key and value setup

in (Vaswani et al. 2017) as follows:

q(x) = Wqx; k(x) = Wkx; v(x) = Wvx (4.10)
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where Wq ∈ RC̄×C , Wk ∈ RC̄×C , and Wv ∈ RC̄×C . Also, C is the number of channels,

N = height∗width of the feature map from the previous layer and C̄ is an adjustable

parameter. For our model, C̄ was set as C/8. The attention map is further calculated

as:

αj,i = softmax(k(xi)
Tg(xj))

=
exp (k(xi)

T g(xj))∑N
i=1 exp (k(xi)T g(xj))

(4.11)

where αj,i represents the attention placed on location i while synthesizing location j.

The ouput o ∈ RC×N is calculated as:

oj =
N∑
i=1

αj,iv(xi) (4.12)

The output o is then scaled and added to the initial input to give the final result,

yi = µoi + xi (4.13)

where µ is a learnable parameter that is initialized to 0.

Spectral normalization when applied on the layers of the discriminator network

has been shown to stabilize the training of a GAN (Miyato et al. 2018). Moreover,

based on the findings about the effect of a generator’s conditioning on its perfor-

mance, Zhang et al. (H. Zhang et al. 2018) argue that while training a self-attention

based GAN, both the generator and the discriminator can benefit from using spectral

normalization. Therefore, a spectral normalization (with spectral norm of all weight

layers as 1) was added to all the networks.
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4.4.3 Training Details

The parameter values of α = 10, β = 10, γ = 10 and δ = 0.1 were empirically chosen

after experimentation for the evaluation model. Across all experiments, we used the

Adam optimizer (Kingma and Ba 2014b) with a learning rate of 0.0002 and batch

size 16. The model was trained for the first 50 epochs with a fixed learning rate and

the next 50 epochs while linearly decaying the learning rate to 0. Instead of updating

the discriminator with an image generated form the latest generator, a random image

selected from a buffer of 50 previously generated images was used to perform the

update cycle (Ashish Shrivastava et al. 2017). Least-squares adversarial loss inspired

from LSGAN (Mao et al. 2017) was used instead of the described cross-entropy loss

for some experiments. The least-squares loss stabilized the training but there was no

significant visual difference in the results produced.

4.5 Results and Evaluation

To demonstrate the value of each introduced term in the designed loss function, an

ablation study was performed. A competitive version of StainGAN (Shaban et al.

2019) was also implemented based on the information given in the paper. It was

observed that the addition of self-attention layers helped the model to generate more

vibrant results that preserved medically significant artifacts. For instance, the red

blood cells in the second row of Figure 4.4 get visually merged with the surrounding

cells when self-attention is not used. The ablation study shows shows that with the

cycle consistency loss alone the forward mapping function (GXY ) is suppressed from

providing a many-to-one mapping as the generated domain (X̂) from the inverse

function (GY X) will overlap more with the dominant domain in the training set.
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Figure 4.4: Visual and quantitative comparison of performance between StainGAN
and ablation study on SAASN. The numbers indicate the overall mean ± standard
deviation of the SSIM index for the transformation. All models were trained in a
many-to-one setup.

Addition of the structural cycle consistency loss term alleviates this issue as it is

stain agnostic and a combination of the said losses gives a more compelling result.

To evaluate the stain transfer, the Structural Similarity (SSIM) index is again utilized.

SSIM is calculated by comparing the normalized image with the original. Both images

are converted to gray-scale before beginning SSIM calculations. Our approach is

compared to two of the most popular unsupervised stain normalization techniques,

Macenko (Macenko et al. 2009) and Vahadane (Vahadane et al. 2016). The popular

supervised approach by Khan (A. M. Khan et al. 2014) could not be tested due to

lack of pixel-level labeling in our data. These results are compiled in Table 4.1. For

the X(1) to Y and the X(2) to Y stain transfers, the values for SAASN are higher

than the other two normalization techniques and the variance is significantly smaller.

This demonstrates that SAASN is not only better at preserving structure, but also
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Figure 4.5: Visual comparison of performance in cases where Macenko and Vahadane
techniques struggle to properly transfer stain in each scenario. The target image only
applies to the Macenko and Vahadane techniques.

consistently transfers stain without major anomalies. The traditional approaches

(Vahadane and Macenko) approaches can struggle if the source has a much different

stain distribution than the target. This can lead to the stains appearing in the wrong

areas on the normalized image. SAASN is able to leverage information from entire

stain domains and therefore is not as affected by this issue. These results demonstrate

that SAASN can be trusted to produce consistent stain transfers on a robust set of

stain patterns in WSI patches.

In addition to assessing the structure-preserving ability of the stain normalization

methods, visual comparisons are essential to ensure that the stains have transferred

properly. In Figure 4.5, results are displayed for the three stain transfers. The images

with the smallest L2-norm for combined Macenko and Vahadane SSIM values were

selected to demonstrate the performance of SAASN. For X(1) to Y and X(2) to Y , the
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Table 4.1: Mean ± Standard deviation of the SSIM index values for normalization
across domains. For StainGAN and SAASN all values are computed for a many-to-
one setup.

Method X(1) to Y X(2) to Y Y to X(1)

Vahadane 0.861± 0.108 0.919± 0.029 0.932± 0.033

Macenko 0.942± 0.033 0.934± 0.022 0.941± 0.020

StainGAN 0.927± 0.011 0.943± 0.027 0.929± 0.021

SAASN 0.977± 0.007 0.989± 0.002 0.981± 0.004

Figure 4.6: Normalized Whole Slide Image using ours and traditional approaches.
Macenko was chosen because it performed better than Vahadane on our dataset. The
target slide for Macenko was empirically selected to give the best translation.

same target image from domain Y is used. For Y to X(1), a target image from domain

X(1) is used. The three selected source images are similar in that they all have a large

majority of pixels containing connective tissue or background. The unsupervised

approaches can struggle executing color deconvolution on these types of images. This

is apparent in the Macenko and Vahadane normalizations shown in Figure 4.5. The

stains are either inverted (hematoxylin-like color transferred to the background) or

confusing connective tissue as an actual cell structure. Meanwhile, SAASN did not

have difficulty identifying the connective tissue or background pixels in the source
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image.

A similar visual can be obtained using the highest L2-norm values. These are the

examples where the traditional methods performed the best1. We found that even

though the SSIMs were all similar and very high for all three normalizations, the stains

were not all transferred properly. Vahadane and Macenko are able to maintain struc-

ture, but may not visually match the target distribution or the proper background

pixel color.

Stain normalization is crucial for bias-free visual examination of Whole Slide Images

(WSIs) and diagnosis by medical practitioners in control trial settings. WSIs have

very large dimensions and cannot be normalized without resizing to a computationally

tractable size which results in a significant loss in resolution. To normalize WSIs, they

must be split into patches, normalized and then stitched back together. Traditional

methods perform computations for transformation independently on these patches.

As a result, it is impossible to reconstruct a WSI that has a consistent stain and is

indistinguishable from an original image in the target domain. As demonstrated in

Figure 4.6, for our method, since the trained weights of the mapping function are con-

stant during this transformation, the reconstructed WSI could not be distinguished

from original images and thus is easier for medical professionals to hold diagnosis

trails.

In order to a validate a successful translation three medical professionals, including a

board-certified pathologist, completed a blind review of WSIs normalized via tradi-

tional and our method as shown in Figure 4.6. The pathologist confirmed that medi-

cally relevant cell types (polymorphonuclear neutrophils, epithelial cells, eosinophils,

lymphocytes, goblet cells, paneth cells, neuroendocrine cells) were not lost during

1Please refer supplemental material for the figure and additional results.
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translation. The pathologist further observed that our method was able to com-

pletely preserve the structure and the density of all of these cell types which tra-

ditional methods only partially preserved. Specifically, the eosinophilic granules in

paneth cells, neuroendocrine cells and eosinophils were not appreciated in tradition-

ally stain normalized WSIs which made it difficult to differentiating these cells from

each other.

4.6 Discussion

The proposed framework is successful in effective translation of the stain appearance

of histopathological images while preserving the biological features in the process.

This setup was specifically designed to accommodate a many-to-one stain transfer

situation in which multiple stains are converted to a common domain. SAASN is

compared to other leading stain normalization techniques using duodenal biopsy im-

age data originating from three sites with different stain appearances. SAASN consis-

tently performed successful stain transfers even when the other techniques failed due

to large variations between the source and target image stains and unconventional

input image structures. Results also show that SAASN outperformed traditional

methods at preserving the cellular structures. We contend that the proposed unsu-

pervised image to image translation approach can be successfully applied to general

many-to-one image translation problems outside the medical domain as well. Results

for out of domain implementation is added to the supplemental material.
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5

Nuclei-Aware Semantic

Histopathology Image Generation

Using Diffusion Models

In recent years, computational pathology has seen tremendous progress driven by

deep learning methods in segmentation and classification tasks aiding prognostic and

diagnostic settings. Nuclei segmentation, for instance, is an important task for di-

agnosing different cancers. However, training deep learning models for nuclei seg-

mentation requires large amounts of annotated data, which is expensive to collect

and label. This necessitates explorations into generative modeling of histopatholog-

ical images. In this work, we use recent advances in conditional diffusion modeling

to formulate a first-of-its-kind nuclei-aware semantic tissue generation framework to

generate synthetic tissue patches given a semantic instance mask of up to six differ-

ent nuclei types. Our method enables pixel-perfect nuclei localization in generated

samples. These synthetic images are useful in applications in pathology pedagogy,

validation of models, and supplementation of existing nuclei segmentation datasets.

Implementation: https://github.com/4m4n5/NASDM.

https://github.com/4m4n5/NASDM
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5.1 Introduction

Histopathology relies on hematoxylin and eosin (H&E) stained biopsies for micro-

scopic inspection to identify visual evidence of diseases. Pathologists examine high-

lighted tissue characteristics to diagnose diseases, including different cancers. A cor-

rect diagnosis, therefore, is dependent on the pathologist’s training and prior exposure

to a wide variety of disease subtypes (Xie et al. 2020). This presents a challenge, as

some disease variants are extremely rare, making visual identification difficult. In

recent years, deep learning methods have aimed to alleviate this problem by design-

ing discriminative frameworks that aid diagnosis (Van der Laak, Litjens, and Ciompi

2021; Y. Wu et al. 2022). Segmentation models find applications in spatial iden-

tification of different nuclei types (Graham, Vu, et al. 2019). However, generative

modeling in histopathology is relatively unexplored. Generative models can be used

to generate histopathology images with specific characteristics, such as visual patterns

identifying rare cancer subtypes (Fajardo et al. 2021). As such, generative models

can be sampled to emphasize each disease subtype equally and generate more bal-

anced datasets, thus preventing dataset biases getting amplified by the models (Hall

et al. 2022). Generative models have the potential to improve the pedagogy, trust-

worthiness, generalization, and coverage of disease diagnosis in the field of histology

by aiding both deep learning models and human pathologists. Synthetic datasets

can also tackle privacy concerns surrounding medical data sharing. Additionally,

conditional generation of annotated data adds even further value to the proposi-

tion as labeling medical images involves tremendous time, labor, and training costs.

Recently, denoising diffusion probabilistic models (DDPMs) (Ho, Jain, and Abbeel

2020) have achieved tremendous success in conditional and unconditional generation

of real-world images (Dhariwal and A. Nichol 2021). Further, the semantic diffusion
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model (SDM) demonstrated the use of DDPMs for generating images given semantic

layout (W. Wang et al. 2022). In this work, (1) we leverage recently discovered capa-

bilities of DDPMs to design a first-of-its-kind nuclei-aware semantic diffusion model

(NASDM) that can generate realistic tissue patches given a semantic mask comprising

of multiple nuclei types, (2) we train our framework on the Lizard dataset (Graham,

Jahanifar, et al. 2021) consisting of colon histology images and achieve state-of-the-

art generation capabilities, and (3) we perform extensive ablative, qualitative, and

quantitative analyses to establish the proficiency of our framework on this tissue

generation task.

5.2 Background

Deep learning based generative models for histopathology images have seen tremen-

dous progress in recent years due to advances in digital pathology, compute power,

and neural network architectures. Several GAN-based generative models have been

proposed to generate histology patches (Levine et al. 2020; Xue et al. 2021; Zhou

and Yin 2022). However, GANs suffer from problems of frequent mode collapse and

overfitting their discriminator (Xiao, Kreis, and Vahdat 2021). It is also challeng-

ing to capture long-tailed distributions and synthesize rare samples from imbalanced

datasets using GANs. More recently, denoising diffusion models have been shown to

generate highly compelling images by incrementally adding information to noise (Ho,

Jain, and Abbeel 2020). Success of diffusion models in generating realistic images

led to various conditional (Kawar et al. 2022; Saharia, Chan, et al. 2022; Saharia,

Ho, et al. 2022) and unconditional (Dhariwal and A. Nichol 2021; Ho, Saharia, et al.

2022; A. Q. Nichol and Dhariwal 2021) diffusion models that generate realistic sam-
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ples with high fidelity. Following this, a morphology-focused diffusion model has been

presented for generating tissue patches based on genotype (Moghadam et al. 2023).

Semantic image synthesis is a task involving generating diverse realistic images from

semantic layouts. GAN-based semantic image synthesis works (Tan, Chai, et al.

2021; Tan, D. Chen, et al. 2021; Park et al. 2019) generally struggled at generating

high quality and enforcing semantic correspondence at the same time. To this end, a

semantic diffusion model has been proposed that uses conditional denoising diffusion

probabilistic model and achieves both better fidelity and diversity (W. Wang et al.

2022). We use this progress in the field of conditional diffusion models and semantic

image synthesis to formulate our NASDM framework.

5.3 Method

5.3.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs) (Ho, Jain, and Abbeel 2020) rep-

resent a fairly recent and significant advance in generative modeling, harnessing a

sequential denoising process inspired by principles of non-equilibrium thermodynam-

ics to synthesize high-fidelity data. A DDPM comprises of a forward diffusion process

that iteratively perturbs data with Gaussian noise, transforming it into a tractable

noise distribution through a Markov chain of latent variables. The reverse diffusion

process, which is the key innovation of DDPMs, involves training a neural network

to approximate the reverse transitions, effectively learning to denoise the perturbed

data step-by-step. This reverse process is modeled as a series of Gaussian transitions

conditioned on the current state, with the neural network effectively denoising the
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perturbed samples. This method ensures stable training dynamics, mitigating issues

commonly encountered in Generative Adversarial Networks (GANs) (Goodfellow et

al. 2014), and achieves state-of-the-art performance in various generative tasks, in-

cluding high-resolution image synthesis, audio generation, and more. Consequently,

DDPMs have established themselves as a robust and versatile framework for high-

dimensional data generation with remarkable fidelity and diversity. The following

subsections describe the formulations of the forward and the reverse diffusion process

in detail.

5.3.2 Forward Diffusion Process

DDPMs are formulated from the variational perspective where the forward diffusion

systematically transforms data into a noise distribution through a series of incremental

additions of Gaussian noise. Formally, this process yields a Markov Chain of latent

variables {xt}Tt=0, which are of the same dimensionality as the original data, where x0

is the original data sample, and xT converges to an isotropic Gaussian distribution.

The data is sampled from q(x0), which represents the real data distribution. At

each time step t, Gaussian noise is added to the data controlled by a predefined

variance schedule controlled by parameters {β}Tt=1. Specifically, each step of the

forward diffusion is defined as,

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (5.1)

q(x1:T | x0) =
T∏
t=1

q(xt | xt−1), (5.2)
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where {β}Tt=1 ∈ [0, 1) is the variance schedule across diffusion steps, I is the identity

matrix and N (x;µ, σ) represents a normal distribution with mean µ and covariance σ.

Note that a key property of Gaussian distributions is that the composition of multiple

Gaussian perturbations remains Gaussian. This means if we add Gaussian noise to

a Gaussian-distributed variable, the resulting distribution is still Gaussian. This

property allows us to combine the noise addition steps over multiple time steps into

a single Gaussian distribution. Given the forward process transitions, we can derive

the marginal distribution of xt conditioned on the original data x0 by recursively

applying the transition probabilities. Due to the linear nature of the noise addition

and the properties of Gaussian distributions, the marginal distribution q(xt | x0) can

be expressed as a Gaussian distribution,

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (5.3)

where αt = (1−βt) and ᾱt =
∏t

s=1 αs. This property is particularly advantageous, as

it enables the efficient sampling of noisy data at any intermediate time step without

requiring an iterative simulation from x0 to xt.

5.3.3 Reverse Diffusion Process

The reverse diffusion process in DDPMs is a generative mechanism which inverts

the forward diffusion process through a sequence of learned denoising steps. This

process is designed to transform samples from the noise distribution back into coherent

data samples. Specifically, the reverse process aims to approximate the conditional

distributions pθ(xt−1|xt) through a neural network, where each xt−1 depends only on

xt. The reverse transitions are modeled as Gaussian distributions as follows,
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pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (5.4)

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1 | xt), (5.5)

where pθ is a neural network that represents the learned reverse process with param-

eters θ. During sampling, the model begins with a noise vector xT ∼ N (0, I) and

iteratively applies the reverse transitions pθ(xt−1 | xt) using the trained denoising

neural network to generate a sequence of latent variables that culminate in the recon-

structed data sample x0. This iterative process effectively denoises the initial noise,

step by step, reconstructing the data distribution in reverse order. The success of the

reverse diffusion process is contingent on a well-trained denoising network pθ as it

ensures that the final samples are realistic and diverse, closely matching the original

data distribution.

5.3.4 Training The Model

Optimizing the parameters θ of the denoising neural network involves minimizing a

variational lower bound on the negative log-likelihood of the data,

E[− log pθ(x0)] ≤ Eq

[
− log pθ(x0:T )

q(x1:T | x0)

]
(5.6)

≤ Eq

[
− log p (xT )−

∑
t≥1

log pθ (xt−1 | xt)

q (xt | xt−1)

]
= L, (5.7)
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which decomposes into a series of Kullback-Leibler (KL) divergence terms between

the true posterior of the forward process and the learned reverse process, along with

a reconstruction term:

L = LT +
∑
t>1

Lt−1 + L0, (5.8)

LT = DKL (q (xT | x0) ∥p (xT )) , (5.9)

Lt−1 = DKL (q (xt−1 | xt, x0) ∥pθ (xt−1 | xt)) , (5.10)

L0 = − log pθ (x0 | x1) . (5.11)

Except for L0, each term of the decomposition in eq 5.8 is a KL-divergence between

two Gaussian distributions and hence has a closed-form solution. The KL-divergence

terms ensure that the neural network accurately captures the denoising process by

aligning the learned distributions pθ(xt−1|xt) with the true posteriors q(xt−1|xt, x0).

Notice that LT does not depend on the parameters θ and can be ignored safely during

optimization. Upon simplification via Bayes theorem, the posteriors q(xt−1|xt, x0) can

be represented in terms of parameters βt and ᾱt as follows,

q (xt−1 | xt, x0) = N
(
xt−1; µ̃ (xt, x0) , β̃tI

)
, (5.12)

where,

µ̃t (xt, x0) =

√
ᾱt−1βt

1− ᾱt

x0 +

√
αt (1− ᾱt−1)

1− ᾱt

xt, (5.13)

β̃t =
1− ᾱt−1

1− ᾱt

βt. (5.14)

For pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), the original DDPM work (Ho, Jain,
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and Abbeel 2020) suggests setting Σθ (xt, t) = σ2
t I to untrained time-dependent con-

stants. They find that both extremes of σ2
t = βt and σ2

t = β̃t =
1−ᾱt−1

1−ᾱt
βt performed

similarly. Now with pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I), the loss terms can be

calculated in a Rao-Blackwellized fashion with closed-form expressions as follows,

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t (xt, x0)− µθ (xt, t)∥2
]
+ C, (5.15)

where C includes the constant terms independent of θ. There are multiple other ways

to parameterize µθ(xt, t). For instance, the network could also predict the noise ϵ

added to x0, and this noise could be used to predict x0 via

x0 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
. (5.16)

Ho et al. (Ho, Jain, and Abbeel 2020) found that predicting ϵ works best with the

following simplified loss function,

Lt−1 = Ex0,ϵ

[
β2
t

2σ2
tαt (1− ᾱt)

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
]
. (5.17)

The network is trained using stochastic gradient descent, where each training step

involves adding noise to a data sample and then predicting the noise to minimize

the objective function. The amount of noise added can be determined by uniformly

sampling t for each image in each minibatch. Overall, the reverse process mean func-

tion approximator, µθ, can be used to predict µ̃t, or, it can be reparameterized to

instead predict ϵ. Ho et al. (Ho, Jain, and Abbeel 2020) report that the ϵ-prediction

parameterization not only resembles Langevin dynamics but also simplifies the diffu-

sion model’s variational bound to an objective akin to denoising score matching (Song
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et al. 2020). Therefore, efficient training can be achieved by optimizing random terms

of L using stochastic gradient descent.

5.3.5 Generating Samples

Sampling from a diffusion model involves simulating the reverse denoising process to

systematically transform noise into data through a sequence of learned probabilistic

steps. This process begins with an initial sample drawn from a standard Gaussian

distribution which serves as the prior. Specifically, the process starts by initializing

a noise vector xT ∼ N (0, I), where T represents the total number of diffusion steps.

The idea of the reverse diffusion process is to iteratively apply the reverse transition

model to progressively denoise the sample. At each time step t, from T down to 1,

the model computes xt−1 using the following Gaussian distribution:

xt−1 ∼ pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (5.18)

Here, µθ(xt, t) and Σθ(xt, t) are the mean and variance predicted by a neural network

parameterized by θ. As described above, typically, the neural network predicts the

mean, while the variance can either be fixed or predicted by the network as well.

Alternatively, when using the ϵ-based parameterization involves predicting the noise

added at each step, instead of predicting the mean directly. This approach can be

formalized as:

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
. (5.19)

The iterative denoising process involves repeating the sampling step for each time

step, gradually refining xt until x0 is obtained. This stepwise process effectively
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removes the noise added during the forward diffusion, reconstructing a sample from

the data distribution. By the end of the iterations, the final output, x0, represents

a sample from the learned data distribution. Due to the stochastic nature of each

reverse transition, each run of this process can generate a unique data sample.

In summary, the diffusion model uses the learned reverse transitions to convert initial

noise into high-quality data samples, effectively reversing the forward diffusion pro-

cess. This ensures that the generated samples are consistent with the original data

distribution, showcasing the model’s ability to produce realistic and diverse outputs.

5.3.6 Conditional Sampling Using Guidance

Diffusion models can be used to generate samples conditioned on desired informa-

tion such as class labels, text descriptions, or other attributes. This is achieved by

incorporating a mechanism known as guidance in the sampling process. Guidance-

based sampling in diffusion models is a technique designed to enhance the fidelity

and controllability of the generated samples by incorporating additional information

or constraints into the sampling process. This approach modifies the reverse diffu-

sion process to include guidance from an auxiliary model or a predefined condition,

which can steer the generative model towards more desirable outputs. One com-

mon implementation of guidance-based sampling involves using a classifier to guide

the diffusion model, where the gradients from the classifier are combined with the

reverse diffusion steps to bias the sample generation towards specific classes or fea-

tures. Another approach, known as classifier-free guidance, directly conditions the

diffusion model on the desired attributes, enabling the generation of samples that

adhere to specified conditions without requiring an explicit classifier. By integrat-
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ing these guidance mechanisms, diffusion models can produce higher quality, more

targeted samples, thereby expanding their applicability in tasks requiring controlled

generation such as conditional image synthesis, text-to-image generation, and other

domains where adherence to specific criteria is crucial. Following sections describe

both these mechanisms in further detail.

Classifier Guidance

Classifier guidance (Ho and Salimans 2022) is a mechanism used in diffusion proba-

bilistic models to perform conditional generation by incorporating gradients from a

pretrained classifier into the sampling process. This method involves using a sepa-

rate classifier to guide the diffusion model towards generating samples that satisfy

specific conditions, such as class labels. The primary objective of classifier guidance

is to bias the reverse diffusion process such that the generated samples adhere to a

desired condition. This is achieved by using the gradient of an independently trained

classifier’s output with respect to the input data, effectively steering the generation

towards higher probability regions of the conditioned distribution.

Training: For classifier guidance, the training phase of the diffusion model remains

unchanged. The model is trained to learn the reverse denoising processes without

any conditioning. The forward process progressively adds noise to the data, while

the reverse process learns to denoise, reconstructing the original data distribution

as described above. Critically, a separate classifier pϕ(y | xt), with parameters ϕ, is

trained to predict the condition y (e.g., a class label) given a noisy sample xt from the

diffusion process. Note that this classifier needs to be trained on noisy data generated

by the forward diffusion process at various time steps t in order to provide meaningful

guidance.
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Sampling: During the sampling phase, classifier guidance modifies the standard

reverse diffusion process to incorporate guidance signal from the classifier using its

gradients. Specifically, the sampling process begins with initializing an initial noise

vector xT ∼ N (0, I). Then for each time step t from T down to 1, the reverse

transition is adjusted from the one highlighted in eq. 5.18 using the gradient of the

classifier’s log-probability with respect to xt, resulting in

xt−1 ∼ pθϕ(xt−1 | xt, y), (5.20)

where,

pθϕ(xt−1 | xt, y) = N (xt−1;µθ(xt, t) + α∇xt log pϕ(y | xt),Σθ(xt, t)). (5.21)

Here, α is a scaling factor that determines the strength of the guidance, µθ(xt, t) and

Σθ(xt, t) are the mean and variance predicted by the diffusion model, and ∇xt log pϕ(y|xt)

is the gradient provided by the classifier.

Overall, the classifier pϕ predicts the probability of the condition y given the current

noisy sample xt. Hence, the gradient ∇xt log pϕ(y|xt) indicates the direction in which

the sample xt should be adjusted to increase the probability of the desired condition y.

This computed gradient is scaled by a hyper-parameter α and added to the predicted

mean µθ(xt, t) of the reverse transition. This adjustment effectively biases the sample

generation process towards samples that the classifier deems more likely to belong to

the desired condition y.

Conclusion: Classifier guidance enables the generation of high-quality conditional

samples without needing to retrain the entire diffusion model with the conditions.

However, there are some considerations. The scaling factor α must be carefully tuned.
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If α is too high, the guidance may overly distort the samples, leading to poor qual-

ity. If too low, the guidance may be insufficient to influence the sampling effectively.

Additionally, the effectiveness of this method depends on the robustness of the clas-

sifier. The classifier must accurately predict conditions from noisy data at various

time steps. Finally, computing the gradients for each time step adds computational

overhead, making the sampling process more resource-intensive.

Classifier-Free Guidance

Classifier-free guidance (Ho and Salimans 2022) is a technique used to generate condi-

tional samples without relying on an explicit classifier to provide gradients. Instead,

the model itself is trained to handle both conditional and unconditional sampling,

allowing for a more integrated and flexible approach to conditional generation. This

method involves training the model with and without conditioning, allowing it to

take advantage of both types of information during sampling.

Training: For classifier-free guidance, during the training phase, the diffusion model

is trained on both conditioned and unconditioned data. Specifically, the model learns

to predict the reverse diffusion steps for samples with and without a given condition.

This dual training approach involves augmenting the dataset with conditions (e.g.,

class labels or other attributes) and also training on the same data without these

conditions to allow the model to generalize effectively. Formally, this involves training

the model with two formulations both pθ(xt−1 | xt, y) and pθ(xt−1 | xt) where y is

the condition. The model is trained to minimize the loss for both conditioned and

unconditioned predictions, thereby learning to handle both scenarios. Practically, this

is done by randomly dropping the condition during training for a certain percentage

(e.g., ∼ 10%) of optimization iterations.
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Sampling: During sampling, classifier-free guidance combines the predictions from

the conditional and unconditional models to guide the generation process. The key

idea is to leverage the unconditioned model to adjust the conditioned generation,

ensuring that the samples adhere to the desired attributes while maintaining high

quality. After starting with an initial noise vector xT ∼ N (0, I), for each time step

t from T down to 1, compute the reverse transition for both the conditioned and

unconditioned models,

x
(cond)
t−1 ∼ pθ(xt−1 | xt, y), (5.22)

x
(uncond)
t−1 ∼ pθ(xt−1 | xt). (5.23)

These transitions are then combined using a guidance scale factor w to control the

influence of the condition as,

xt−1 ∼ x
(cond)
t−1 + w

(
x
(cond)
t−1 − x

(uncond)
t−1

)
, (5.24)

where w adjusts the strength of the guidance, effectively interpolating between the

conditioned and unconditioned predictions.

Conclusion: The combination of the conditioned and unconditioned predictions

allows the model to generate samples that adhere to the desired conditions while

leveraging the unconditioned model’s ability to produce high-quality samples. By

adjusting the guidance scale w, the generation process can be fine-tuned to balance

adherence to the condition with overall sample quality. Classifier-free guidance of-

fers several advantages over classifier-based methods. By integrating the condition

directly into the model, it eliminates the need for a separate classifier, simplifying the

overall architecture and reducing the potential for mismatches between the classifier
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and the diffusion model. Additionally, this method provides more flexibility in han-

dling various types of conditions, including those that may be difficult to encode with

a classifier. However, careful tuning of the guidance scale w is essential to achieve the

desired balance between conditional fidelity and sample quality. If w is too high, the

generated samples may become distorted; if too low, the samples may not adequately

reflect the desired conditions.

This section demonstrates a framework for generating tissue patches conditioned

on semantic layouts of nuclei. Given a nuclei segmentation mask, the model aims

to generate realistic synthetic patches. For this demonstration, (1) the first-of-

its-kind Nuclei-Aware Semantic Diffusion Model (NASDM) (Aman Shrivastava and

Fletcher 2023) is described that can generate realistic tissue patches given a seman-

tic mask comprising multiple nuclei types, (2) it is trained on the graham2021lizard

dataset (Graham, Jahanifar, et al. 2021) consisting of colon histology images, achiev-

ing state-of-the-art generation capabilities, and (3) extensive ablative, qualitative,

and quantitative analyses are provided to establish the proficiency of the framework

on this semantics driven tissue generation task.

5.3.7 Data Description

The lizard dataset (Graham, Jahanifar, et al. 2021) is used to demonstrate the

NASDM method. This dataset comprises histology image regions of colon tissue

from six different data sources at 20× objective magnification. Full segmentation an-

notation for different types of nuclei—namely, epithelial cells, connective tissue cells,

lymphocytes, plasma cells, neutrophils, and eosinophils accompanies the images. A

generative model trained on this dataset can be employed to effectively synthesize
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colonic tumor micro-environments. The dataset includes 238 image regions, with an

average size of 1055× 934 pixels. Due to substantial visual variations across images,

a representative test set is constructed by randomly sampling a 7.5% area from each

image and its corresponding mask to be held out for testing. The test and train

image regions are further divided into smaller image patches of 128 × 128 pixels at

two different objective magnifications: (1) at 20×, the images are directly split into

128 × 128 pixel patches, whereas (2) at 10×, 256 × 256 patches are generated and

resized to 128 × 128 for training. To utilize the data exhaustively, patching is per-

formed with a 50% overlap in neighboring patches. Consequently, at (1) 20×, a total

of 54,735 patches are extracted for training, with 4,991 patches held out, while at (2)

10× magnification, 12,409 training patches are generated, and 655 patches are held

out.

5.3.8 Stain Normalization

A common issue in training models with H&E stained histopathology slides is the

visual bias introduced by variations in the staining protocol and the raw materials of

chemicals, leading to different colors across slides prepared at different labs (Bejnordi

et al. 2014). To address this, several stain-normalization methods have been proposed

to normalize all tissue samples to mimic the stain distribution of a given target slide.

The earliest approaches to stain normalization mainly involved basic style transfer

techniques. One such method, histogram specification, aimed to match the histogram

statistics of the source image with those of the target image (Coltuc, Bolon, and

Chassery 2006). This technique is effective only when the source and target images

have similar color distributions. Enforcing this normalization can introduce artifacts

that compromise the structural integrity of the source image. Reinhard (Reinhard et
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al. 2001) further demonstrated that color transfer using histogram specification could

be conducted in the decorrelated CIELAB color space, which approximates the human

visual system. For H&E stained histology images, the appropriate color space should

accurately represent the presence or absence of each stain in each pixel. Researchers

developed advanced stain normalization methods that surpass the performance of

the histogram specification technique by utilizing stain separation. These methods

begin by converting an RGB image into Optical Density (OD), using the formula

OD = log I0
I

, where I0 represents the maximum possible illumination intensity of the

image and I is the RGB image. In the OD space, color deconvolution (CD) becomes

more straightforward because the stains exhibit a linear relationship with the OD

values. The CD process is typically represented as OD = V S, where V is the matrix

of stain vectors and S is the stain density map. The stain density map preserves the

cell structures of the source image, while the stain vectors are adjusted to match the

stain colors of the target image. One such method, the structure-preserving color

normalization scheme introduced by Vahadane et al. (Vahadane et al. 2016) is used

for its effectiveness and simplicity in this demonstration, to transform all slides to

match the stain distribution of an empirically chosen slide from the training dataset.

5.3.9 Conditional Semantic Mask Generation

To generate semantic masks of histological nuclei encompassing six distinct types—

epithelial cells, lymphocytes, connective, neutrophils, plasma, and eosinophil cells—

we utilized a conditional diffusion model conditioned on a one-hot encoded vector

specifying the nuclei types to include in the mask. The method involves training a

diffusion probabilistic model on just the annotation masks extracted from the lizard

dataset, where each nucleus was labeled according to its type. The one-hot encoded
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Figure 5.1: NASDM training framework: Given a real image x0 and semantic
mask y, we construct the conditioning signal by expanding the mask and adding an
instance edge map. We sample timestep t and noise ϵ to perform forward diffusion
and generate the noised input xt. The corrupted image xt, timestep t, and semantic
condition y are then fed into the denoising model which predicts ϵ̂ as the amount of
noise added to the model. Original noise ϵ and prediction ϵ̂ are used to compute the
loss in (5.27).

vector served as a conditioning input, integrated into the diffusion process by passing

the one-hot vector through a linear layer and adding the output to the time embed-

ding. The diffusion model architecture used is based on a U-Net backbone enhanced

with attention mechanisms to capture spatial dependencies and improve long range

dependencies. During training, the model learns to reverse the diffusion process in

a manner conditioned on the specified nuclei types, effectively generating semantic

masks that includes only the nuclei indicated by the one-hot vector. This approach

enables flexible and controllable generation of histological nuclei masks. These syn-

thetic semantic masks can then be used with the trained NASDM model that is

described in the following sections to enable infinite histological data generation that

is already annotated.
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5.3.10 Nuclei-Aware Semantic Diffusion Model

The formulation of NASDM derives from conditional diffusion models. As discussed,

a conditional diffusion model aims to maximize the likelihood pθ(x0 | y), where data

x0 are sampled from the conditional data distribution, x0 ∼ q(x0 | y), and y repre-

sents the conditioning signal. As discussed above, a diffusion model consists of two

intrinsic processes. The forward diffusion process that systematically destroys the

information in a given sample and the reverse diffusion process which incrementally

adds information by denoising a corrupted sample. When formulating a conditional

diffusion model, the forward diffusion process can ignore the conditioning signal and

Gaussian noise can be incrementally added to corrupt the data sample x0 using the

same description in Section 5.3.2. However, the denoising process is designed to incor-

porate the conditioning signal and is defined as a Markov chain with learned Gaussian

transitions starting from pure noise, p(xT ) ∼ N (0, I) and is parameterized as a neural

network with parameters θ as

pθ(x0:T | y) = p(xT )
T∏
t=1

pθ(xt−1 | xt, y). (5.25)

Hence, for each denoising step from t to t− 1,

pθ(xt−1 | xt, y) = N (xt−1;µθ(xt, y, t),Σθ(xt, y, t)). (5.26)

It has been shown that the combination of q and p here is a form of a variational auto-

encoder (Kingma and Welling 2013), and hence the variational lower bound (VLB)

can be described as a sum of independent terms, Lvlb := L0+...+LT−1+LT , where each

term corresponds to a noising step as described earlier in equation 5.8. As described
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in previous sections, the time step t is randomly sampled during training, and the

expectation Et,x0,y,ϵ is used to estimate the loss Lvlb and optimize the parameters θ.

The denoising neural network, as discussed, can be parameterized in various ways.

In NASDM, a noise prediction-based formulation results in superior image quality.

Consequently, the NASDM denoising model is trained to predict the noise added

to the input image given the semantic layout y and the time step t using the loss

described below:

Lsimple = Et,x,ϵ [∥ϵ− ϵθ(xt, y, t)∥2] . (5.27)

It is important to note that the given simplified loss function does not provide a

training signal for Σθ(xt, y, t). To address this, following the improved DDPMs strat-

egy (Watson et al. 2021), a network is trained to predict an interpolation coefficient

v for each dimension. This coefficient is then converted into variances,

Σθ(xt, y, t) = exp
(
v log βt + (1− v) log β̃t

)
. (5.28)

This is then directly optimized using Lvlb, which is the KL divergence between the

estimated distribution pθ(xt−1 | xt, y) and the diffusion posterior q(xt−1 | xt, x0),

formulated as,

Lvlb = DKL(pθ(xt−1 | xt, y) ∥ q(xt−1 | xt, x0)) (5.29)

During this optimization, a stop gradient is applied to ϵ(xt, y, t), allowing overall Lvlb

to guide Σθ(xt, y, t), while Lsimple in equation 5.27 primarily guides ϵ(xt, y, t). The

overall loss is then a weighted sum of these two objectives, as follows:

Lhybrid = Lsimple + λLvlb. (5.30)
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5.3.11 Conditioning on a Semantic Mask

NASDM requires our neural network noise predictor ϵθ(xt, y, t) to effectively process

the information from the nuclei semantic map. For this purpose, we leverage a mod-

ified U-Net architecture described in Wang et al. (W. Wang et al. 2022), where the

time step is injected into the encoder of the denoising network via scaling and shifting

features, while the semantic information is injected into the decoder using multi-layer,

spatially-adaptive normalization operators.

Encoder: The encoder of the network processes the noisy image with stacked se-

mantic diffusion encoder resblocks and attention blocks. These resblocks consists of

convolution, SiLU and group normalization. Where SiLU (Paul et al. 2022) is a non-

linearity of the form f(x) = x · sigmoid(x) which tends to work better than ReLU

on deeper models. In order to inject the time step t at different time steps, the res-

block involves scaling and shifting the intermediate activation with learnable weight

w(t) ∈ R and bias b(t) ∈ R formulated as, fi+1 = w(t) · fi + b(t) where fi, fi+1 ∈ R

are the input and output features.

Decoder: The semantic label map is injected into the decoder of the denoising

network by the semantic diffusion decoder resblock in multi-layer spatially adaptive

manner. Different from the resblocks in the encoder, here the spatially-adaptive

normalization is used instead of the group normalization. This normalization layer

injects the semantic label map into the denoising streams by regulating the feature

in a spatially-adaptive, learnable transformation, which is formulated as follows,

f i+1 = γi(x) · Norm
(
f i
)
+ βi(x), (5.31)

where f i and f i+1 are the input and output features and Norm(·) refers to the
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Figure 5.2: Guidance Scale Ablation: For a given mask, we generate images using
different values of the guidance scale, s. The FID and IS metrics are computed by
generating images for all masks in the test set at 20× magnification.

parameter-free group normalization. γi(x), βi(x) are the spatially-adaptive weight

and bias learned from the semantic layout, respectively.

In the NASDM model, the conditioning signal is constructed using the semantic mask

such that each channel of the signal corresponds to a unique nuclei type. In addition,

a mask comprising of the edges of all nuclei to further demarcate nuclei instances is

also concatenated to the signal.

5.4 Experiments

In this section, we first describe our implementation details and training procedure.

Further, we establish the robustness of our model by performing an ablative study over

objective magnification and classifier-guidance scale. We then perform quantitative

and qualitative assessments to demonstrate the efficacy of our nuclei-aware semantic

histopathology generation model.
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Table 5.1: Quantitative Assessment: We report the performance of our method
using Fréchet Inception Distance (FID) and Inception Score (IS) with the metrics
reported in existing works. (-) denotes that corresponding information was not re-
ported in original work. *Note that performance reported for best competing method
on the colon data is from our own implementation, performances for both this and
our method should improve with better tuning. Please refer to our github repo for
updated statistics.

Method Tissue type Conditioning FID(↓) IS(↑)

BigGAN (Brock, Donahue, and Simonyan 2018) bladder none 158.4 -
AttributeGAN (Ye et al. 2021) bladder attributes 53.6 -
ProGAN (Karras et al. 2017) glioma morphology 53.8 1.7
Morph-Diffusion (Moghadam et al. 2023) glioma morphology 20.1 2.1
Morph-Diffusion* (Moghadam et al. 2023) colon morphology 18.8 2.2

NASDM (Real Masks) colon nuclei mask 14.1 2.7
MaskGen + NASDM (Generated Masks) colon syn. nuclei mask 15.2 2.6

5.4.1 Implementation Details

Our diffusion models for patch and mask generation is implemented using a semantic

UNet architecture (Section 5.3.11), trained using the objective in (5.30). Following

previous works (A. Q. Nichol and Dhariwal 2021), we set the trade-off parameter λ

as 0.001. We use the AdamW optimizer to train our model. Additionally, we adopt

an exponential moving average (EMA) of the denoising network weights with 0.999

decay. Following DDPM (Ho, Jain, and Abbeel 2020), we set the total number of

diffusion steps as 1000 and use a linear noising schedule with respect to timestep t for

the forward process. After normal training with a learning rate of 1e − 4, we decay

the learning rate to 2e − 5 to further finetune the model with a drop rate of 0.2 to

enhance the classifier-free guidance capability during sampling. The whole framework

is implemented using Pytorch and trained on 4 NVIDIA Tesla A100 GPUs with a

batch-size of 40 per GPU. Code will be made public on publication or request.
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5.4.2 Ablation over Guidance Scale

In this study, we test the effectiveness of the classifier-free guidance strategy. We

consider the variant without guidance as our baseline. As seen in Figure 5.2, increase

in guidance scale initially results in better image quality as more detail is added to

visual structures of nuclei. However, with further increase, the image quality degrades

as the model overemphasizes the nuclei and staining textures.

5.4.3 Ablation over Objective Magnification

Obj. Mag. FID(↓) IS(↑)

10× 38.1 2.3

20× 20.7 2.5

As described in Section 5.3.7, we generate patches at two dif-

ferent objective magnifications of 10× and 20×. In this sec-

tion, we contrast the generative performance of the models

trained on these magnification levels respectively. From the

table on right, we observe that the model trained at 20× ob-

jective magnification produces better generative metrics. Note that we only train on

a subset on 20× mag. to keep the size of the training data constant.

5.4.4 Generative Metrics Evaluation

To the best of our knowledge, ours is the only work that is able to synthesize histol-

ogy images given a semantic mask, making a direct quantitative comparison tricky.

However, the standard generative metric Fréchet Inception Distance (FID) measures

the distance between distributions of generated and real images in the Inception-

V3 (Kynkäänniemi et al. 2022) latent space, where a lower FID indicates that the

model is able to generate images that are very similar to real data. Therefore, we
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compare FID and IS metrics with the values reported in existing works (Ye et al. 2021;

Moghadam et al. 2023) (ref. Table 5.1) in their own settings. We can observe that

our method outperforms all existing methods including both GANs-based methods

as well as the recently proposed morphology-focused generative diffusion model.

5.4.5 Downstream Task Evaluation

Tissue biopsy analysis is a critical aspect of histopathology, wherein anatomic pathol-

ogists examine hematoxylin and eosin-stained (H&E) biopsies to identify structural

and cellular features associated with various diseases. The interpretation of these

features not only aids in diagnosing diseases but also helps determine disease severity

and guide treatment decisions. However, this process is inherently subjective and

susceptible to inter-observer variability due to the investigating pathologists’ vary-

ing levels of experience and exposure to different disease states. As such, the use of

deep learning models for medical image segmentation has been of enormous interest

in recent years and has also shown remarkable results. These models rely heavily

on large and heterogeneous datasets with pixel-wise expert annotations to produce

precise outcomes. The creation of such expert-annotated medical datasets remains a

substantial barrier to the development of these models, as it is both labor-intensive

and time-consuming. In order to address this challenge, there is a growing interest

in generative modeling for medical imaging. However, the effectiveness of these syn-

thetic datasets in addressing segmentation challenges is largely unexplored. In this

study, our objective is twofold: (1) to generate synthetic tissue patches from anno-

tated semantic masks using a nuclei-aware semantic diffusion model and (2) to train

and evaluate nuclei segmentation models investigating the potential of synthetic data

in enhancing downstream segmentation performance. In this section, we (1) describe
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the datasets used for training and validating the NASDM and HoVerNet models,

along with the steps for data preparation, (2) detail the process of nuclei seman-

tics conditioned patch generation using NASDM, and (3) outline the training and

evaluation of nuclei segmentation model for downstream experiments.

Figure 5.3: Overall approach: We have patches x sampled from conditional data
distribution, x ∼ q(x | y), and masks y as the conditioning signal. We train a
conditional generative model pϕ(x | y) (left), sample synthetic images (middle), and
then evaluate the efficacy of synthetic images in training nuclei segmentation models
pθ(y | x) (right). Here ϕ and θ represent the parameters of NASDM and HoVerNet
models.

In order to investigate the effectiveness of synthetic datasets in improving nuclei

segmentation models, we perform three evaluation experiments: (1) Addition of Syn-

thetic Patches (5.4.5) to the training of nuclei segmentation models. This experiment

explores the impact of supplementing the training dataset of the HoVerNet model

by adding synthetic images generated from our generative NASDM model. (2) Re-

placement with Synthetic Patches (5.4.5) for nuclei segmentation training. In this

experiment, we evaluate the performance of segmentation models trained on datasets

comprising different ratios of real to synthetic patches. And (3) Synthetic vs Real

Patches (5.4.6) for training downstream nuclei segmentation models. This experi-

ment determines how effective synthetically generated patches are for training nuclei

segmentation models compared to their real counterparts. In all following experi-

ments, the dice score is reported on a held-out real test set described in Table 5.2.

The models are validated after every two epochs during training, and we report the

metrics of the best-performing model on the test set.
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Lizard Dataset

238 Images
59,726 patches

Train Set
// NASDM Training

190 Images
48,337 patches

Real Set (R2)
// HoVerNet Training

36 Images
8,639 patches

Synthetic Set (S2)
// HoVerNet Training

36 Images
8,639 patches

Test Set (S2)
// HoVerNet Testing

12 Images
2,750 patches

Real Train Subset (R1)
// HoVerNet Training

36 Images
8,201 patches

Synthetic Train Subset (S1)
// HoVerNet Training

36 Images
8,201 patches

Figure 5.4: Overview of data: The figure describes the different subsets of Lizard
dataset used for training and evaluation of NASDM and HoVerNet models in our
experiments. Refer Table 5.2 for further details.

Dataset Setup

We use the publicly available Lizard dataset Graham, Jahanifar, et al. 2021, com-

prising histology image regions of colon tissue from six distinct sites. These tissue

images, obtained at a 20× objective magnification, are annotated for epithelial cells,

connective tissue cells, lymphocytes, plasma cells, neutrophils, and eosinophils. The

dataset consists of 238 tissue images, with an average size of 1055 × 934 pixels. For

computational viability, all the tissue images were divided into smaller image patches

of 128×128 pixels at 20× objective magnification. Patching is performed with a 50%

overlap in neighboring patches to ensure the information at the patch boundary is not

lost. Patches with less than 50% tissue area were excluded from consideration. The

tissue images yield a total of 59, 726 patches. We employ the structure-preserving

color normalization approach Vahadane et al. 2016 to normalize the stain distribu-

tion of all patches. We harmonize the stain distribution with respect to a specifically
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Table 5.2: Overview of data: Different subsets of Lizard dataset used for training
and evaluation of NASDM and HoVerNet models.

Dataset ID Type NASDM HoVerNet # Images # Patches
Training Training

Train Set Train Real 3 7 190 48,337
Real Train Subset R1 Real 3 3 36 8,201
Synthetic Train Subset S1 Synthetic 7 3 36 8,201
Real Set R2 Real 7 3 36 8,639
Synthetic Set S2 Synthetic 7 3 36 8,639
Test Set Test Real 7 7 12 2,750

chosen slide from the training dataset, mitigating the impact of staining variations

on model performances.

We train the NASDM generative model on a Train Set containing 190 tissue images

from the Lizard dataset tiled into 48, 337 patches. From this Train Set we select a

subset R1 consisting of 36 images (8, 201 patches) and generate a corresponding syn-

thetic subset S1 from NASDM using R1’s real nuclei masks. From the Lizard dataset,

we select another subset R2 comprising of 36 images tiled into 8, 639 smaller patches.

The images in R2 are not a part of the Train Set used for training the NASDM model.

We also generate a synthetic set S2 using the nuclei masks of R2. Lastly, we reserve

12 images with 2, 750 patches, not included in any of the sets mentioned above, for

testing the segmentation models trained in downstream experiments. Table 5.2 pro-

vides the details of the subsets of the dataset used in different tasks along with their

designated nomenclature, number of images, and number of patches.

Synthetic Patch Generation Model

In order to generate patches given nuclei masks, we employ a nuclei-aware semantic

diffusion model (NASDM) that generates hyper-realistic tissue patches conditioned



99

on semantic masks highlighting locations of six different types of nuclei. NASDM uses

a conditional denoising diffusion probabilistic model which is trained to maximize the

conditional likelihood of real data.

Nuclei Segmentation Model

In all our downstream experiments, we employ HoVerNet for nuclear segmentation.

The training of HoVerNet is a two-stage process. In the initial stage, the model is

initialized with pre-trained weights from the ImageNet dataset, and the decoder is

trained exclusively for 50 epochs with a batch size of 16. In the second stage, all

the layers are fine-tuned for another 50 epochs. In both stages, we train the model

using Adam optimizer with an initial learning rate of 10−4 and then reduce it to a

rate of 10−5 after 25 epochs. We use the best-performing model over the hundred

epochs for testing. To assess the model’s performance we compute the Dice score

and Mean Intersection over Union (IoU) of the predicted masks with respect to their

actual counterparts. Given ground truth annotation X and predicted annotation Y ,

the dice score and Mean IoU are defined as:

Dice Score = 2 (X ∩ Y )÷ (|X|+ |Y |) (5.32)

Mean IoU = |X ∩ Y | ÷ |X ∪ Y | (5.33)

The final metric is obtained by averaging scores first by channel and then by batch,

providing a comprehensive evaluation of performance.
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Table 5.3: Addition of Synthetic Patches: Segmentation performance of the
nuclei segmentation model with consecutive augmenting of training set using synthetic
data. We report the mean and standard deviation across three runs for both metrics.

Data # Patches Dice Score Mean IoU
25% R2 2, 159 0.7713± 0.0005 0.6409± 0.0008
25% R2 + 25% S2 4, 318 0.7869± 0.0007 0.6608± 0.0012
25% R2 + 50% S2 6, 478 0.7993± 0.0006 0.6771± 0.0005
25% R2 + 75% S2 8, 639 0.8092 ± 0.0004 0.6889 ± 0.0007

Addition of Synthetic Patches

In this experiment, our objective is to assess the effectiveness of using synthetically

generated data to augment existing datasets for nuclei segmentation tasks. Initially,

we train a segmentation model exclusively on a 25% subset of R2. We then accumulate

synthetic images from S2, which correspond to the masks of the remaining 75% of R2.

We progressively incorporate subsets of these images from the synthetic image set S2

into the training. Note that the size of the training dataset increases with the addition

of additional images. Also, note that we do not use all the images in the set R2 as the

base set to make sure that the added images correspond to new masks that do not exist

in the base training set we start with. The Dice scores and mean IoU of all the models

on the Test set are presented in Table 5.3. We observe that as the training data is

supplemented with synthetic patches, there is a discernible improvement in the model

performance. This trend of gradual improvement underscores the beneficial impact

of synthetically generated images in augmenting datasets and ultimately enhancing

the accuracy of segmentation tasks.

With this experiment we intend to explores the impact of supplementing the training

dataset of the HoVerNet model by adding synthetic images generated from our gen-

erative NASDM model. As can be seen in Table 5.3, the performance of the model
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consistently improves with the addition of synthetic images in the training dataset

of the nuclei segmentation model. Observations from this experiment support the

contention that synthetic images generated using a state-of-the-art conditional dif-

fusion model are already useful for augmenting existing expertly annotated datasets

to improve the performances of downstream nuclei segmentation models trained on

them. This demonstrates that augmenting real datasets with synthetic samples of

rare disease subtypes and can help their identification and quantification in the wild.

Table 5.4: Replacement with Synthetic Patches: Performance of models trained
on real data, synthetic data, and different combinations of both, given the same set
of annotation masks. We report the mean and standard deviation across three runs
for both metrics.

Data Dice Score Mean IoU
R2 0.8091± 0.0012 0.6890± 0.0014
75% R2 + 25% S2 0.8098 ± 0.0007 0.6902 ± 0.0009
50% R2 + 50% S2 0.8097± 0.0006 0.6898± 0.0007
25% R2 + 75% S2 0.8092± 0.0004 0.6889± 0.0007
S2 0.8087± 0.0004 0.6886± 0.0002

Replacement with Synthetic Patches

In this experiment, our goal is to compare the performance of a nuclei segmentation

model when trained entirely on real data against when trained solely on synthetic

data. For further clarity, we also evaluate models trained with combinations of real

and synthetic data in different ratios while keeping the size of the dataset constant.

The training utilized set R2 for real images and set S2 for synthetic images. Note that

the set S2 is generated using the masks in the set R2. We first train a segmentation

model on only R2 and then systematically replace a portion of patches in R2 with

corresponding synthetic patches from S2, ensuring the total number of images and
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the masks used stay the same. The Dice score and mean IoU on the Test Set are

detailed in Table 5.4. Notably, performance across all runs is comparable indicating

that there is no loss of performance on replacement with synthetic patches. This

finding indicates that synthetic data performs just as effectively, if not better, in the

training of nuclei segmentation problems.

Here, we evaluate the performance of segmentation models trained on datasets com-

prising different ratios of real to synthetic patches. Essentially, this experiment tests

if synthetic patches are comparable to their real counterparts for the same nuclei

mask for training a nuclei segmentation model. In this experiment, we progressively

replace the real patches in the training dataset of the segmentation model with their

synthetic counterparts generated conditionally using the generative model with their

corresponding masks as the condition. This is done until the entire training dataset

is made up of only synthetic images for the same masks as the real set we start with.

As seen in Table 5.4, the performance of the trained nuclei segmentation stays unaf-

fected by the replacement of real patches with their synthetic counterparts as models

across different ratios in the training dataset perform comparably. This observation

supports the hypothesis that synthetic images generated from state-of-the-art genera-

tive models are as effective for training nuclei segmentation models as real annotated

images. This observation has tremendous implications as it demonstrates that once

we can generate masks from scratch, an end-to-end generative model can be used to

synthesize unlimited training data for training models for downstream tasks.
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Table 5.5: Comparison of Synthetic and Manual Annotations: This table
showcases the results of our investigation into the efficacy of annotations of synthetic
patches generated by the NASDM model. We report the mean and standard deviation
across three runs for both metrics.

Data Dice Score Mean IoU
R1 0.8065 ± 0.0005 0.6854 ± 0.0007
S1 0.8053± 0.0003 0.6840± 0.0003

5.4.6 Synthetic vs Manual Annotations

In this experiment, our objective is to assess whether synthetic patches generated

using the same masks used for training the generative model yield a better and more

precise set of annotations than the real patches themselves. This experiment tests

the intuition that the generative model should be able to correct for manual errors

between annotators and generate synthetic patches that are more consistent with the

masks than their real counterparts. To test this hypothesis, we strategically select

a subset of the training set used to train the NASDM model, denoted as R1, and

generate synthetic patches based on their corresponding annotations, forming set S1.

We employed both R1 and S1 to train the HoVerNet model independently. The

rationale behind this approach was to evaluate whether the more precise annotations

derived from the NASDM model could result in a more accurate representation of

nuclei boundaries, thereby potentially yielding a superior Dice score or mean IoU.

The results are reported in Table 5.5. The comparative analysis of performance

in both cases revealed notable consistency. However, it is crucial to acknowledge

that the models are evaluated using manually annotated patches in the test set. In

this experiment, we intend to evaluate if this improvement in consistency with the

mask leads to better segmentation models. We use a subset of the generative model’s

training data and generate synthetic patches for the masks in this set. A segmentation
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Figure 5.5: Generation using synthetic masks: We generate synthetic masks
in different nuclei environments and these use these patches to generate synthetic
tissue patches to demonstrate the proficiency of the model to generate realistic nuclei
arrangements.

model is then trained on the real and the synthetic sets and evaluated on the test

set. We observe that the models trained as such perform comparably with the model

trained on the real set very slightly outperforming the other one. This highlights that

the improvement in consistency with the mask that is observed qualitatively in the

synthetic patches does not necessarily translate into better segmentation models.

5.4.7 Expert Evaluation

We have two expert pathologists review the synthetic patches generated using both

real and synthetic masks as the condition. We use 60 patches for this review, 20

from the real set with their corresponding masks, 20 synthetic patches generated

using real masks, 20 synthetic patches generated using synthetic masks from our

mask generation model. The evaluation is performed on four criterion (Figure 5.7).

First, The consistency of the patch with the corresponding mask where the experts

are asked to evaluate if the patch and their corresponding masks match accurately

in terms of the nuclei delineation. Second, if there are instances of unrecognizable

nuclei types with respect to the annotated mask for each nuclei type in the patch.
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Figure 5.6: Qualitative Results: We generate synthetic images given masks with
each type of nuclei in different environments to demonstrate the proficiency of the
model to generate realistic nuclei arrangements. Legend at bottom denotes the mask
color for each type of nuclei.

In this evaluation the experts are asked if the nuclei in the patch match their labels

accurately. For each patch, the panel is asked to select the nuclei types that have at

least one instance where they do not match the corresponding annotated label in the

patch. The aim is to check if the model is able to generate convincing patterns in the

synthetic patch for each type of nuclei. Third, if there are excess instances of nuclei

in the mask with respect to the patch for each nuclei type, i.e. has the model failed

to generate some nuclei that are present in the conditioning signal. The evaluators

are asked to pick all nuclei types for which at least one instance is missing in the

patch compared to the mask. The idea is to evaluate how effectively the model is

able to generate all the nuclei instances that are present in the conditioning signal.

Finally fourth, if there are excess instances of nuclei in the patch with respect to

the mask for each nuclei type. Here, the panel is asked to select the nuclei types

for which the model has generated an extra nuclei in the patch that is not present
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in the conditioning signal. The idea here is to evaluate if the model is generating

extra nuclei in the patch outside of the ones required by the mask it is conditioned

on. Overall, the expert review demonstrates that our end-to-end histology patch

generation method is able to synthesize patches that are reasonably comparable to

real histology patches. The survey used for the review can be found on a public

typeform survey1. In Figure. 5.6), we can see that the model is able to reasonably

capture convincing visual structure for each type of nuclei.

5.5 Limitations

5.5.1 Evaluation based on patches

In this study, we emphasize that the expert evaluation presented is performed within

a very controlled and specific setting, where evaluators are tasked with analyzing

128 × 128 pixel patches of Whole Slide Images (WSI). This approach significantly

deviates from the typical method that pathologists use when interpreting histological

tissues, which involves examining much larger regions of tissue at varying levels of

magnification. The constrained focus on small image patches might limit the evalu-

ators’ ability to capture the broader context of tissue architecture and the relation-

ships between different cellular structures, which could influence diagnostic accuracy.

Therefore, the evaluation, as presented, should be interpreted within the confines of

this artificial setup, and caution must be exercised when extending these results to

more conventional histological evaluation scenarios.

1https://l7d0z1f5um1.typeform.com/to/IkAbnEOv
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Figure 5.7: Qualitative Review: Compiled results from pathologist review. We
have experts assess patches for, top-left: consistency of the patch with the corre-
sponding mask, top-right: instances of unrecognizable nuclei types with respect to
the annotated mask for each type in the patch, bottom-left: excess instances of nu-
clei in the mask with respect to the patch for each type, and bottom-right: excess
instances of nuclei in the patch with respect to the mask for each type.

5.5.2 Scope of the evaluation

Moreover, the evaluation criteria were restricted to the four dimensions explicitly

mentioned in the previous sections. Although these metrics are important for assess-

ing certain aspects of model performance, they do not encompass the full complexity

of histopathological diagnosis, which includes nuanced morphological patterns and

clinical context. As a result, this limited scope may not fully capture the model’s

ability to generalize beyond these criteria, nor does it account for all possible ways

in which the generated patches might be useful or flawed in broader medical prac-

tice. We recognize that there may be medically relevant patterns, particularly those
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that pathologists rely on for nuanced diagnostic decisions, which the model does not

replicate with high fidelity. These patterns may escape detection in the qualitative

assessments made by our small panel of experts, especially given the relatively narrow

set of criteria under consideration.

5.5.3 Size of the expert panel

It is also important to note that our panel consists of only two pathologists, which

may introduce an element of subjectivity in the evaluation. While these experts

bring considerable experience to their assessments, the small sample size of evalu-

ators means that the results should be interpreted with caution. Different experts

might have slightly different interpretations or levels of comfort in assessing the syn-

thesized patches, which could potentially lead to variation in the evaluation outcomes

if the panel were larger or more diverse. Therefore, any conclusions drawn from this

evaluation need to be tempered with an understanding of this limitation.

5.5.4 Generalization to other tissue types

Furthermore, the model was specifically demonstrated on a dataset of colon tissue

samples, and it remains uncertain whether the model’s performance will hold when

applied to other types of tissue or disease contexts. Histological structures and disease

manifestations can vary widely between tissue types, and thus, the model’s ability to

generalize beyond the colon dataset should not be assumed. Future research should

aim to extend the evaluation to include other datasets, encompassing a broader range

of tissue types and pathologies, to better understand the generalizability and robust-

ness of the model in diverse clinical scenarios.
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5.5.5 Biases in the generated samples

One limitation inherent to generative models, and particularly relevant to this work,

is the fact that they can only generate samples that resemble the data present in

the training data. This means that the model is inherently biased toward replicating

the patterns it has seen before, and it may struggle to generate plausible samples in

the presence of novel or rare histological features not well represented in the training

set. This replication of bias is a well-known issue with generative models, as they

do not possess an intrinsic mechanism to correct for biases present in the training

data. Consequently, while our model demonstrates a reasonable ability to capture

and replicate the training data distribution, it must be recognized that any biases or

limitations in the training data will likely propagate into the generated samples.

5.6 Future Work

5.6.1 Expanding conditional signals

In future work, it will be valuable to explore additional conditioning mechanisms that

could improve the model’s ability to generate more diverse and contextually accurate

patches. For instance, conditioning the patch generation process on properties such as

stain-distribution, tissue-type, disease-type, and other relevant clinical variables could

allow the model to better capture the specific characteristics of different histological

settings. By incorporating these properties into the generation process, the model

could produce patches that are more reflective of the diverse range of tissue types and

pathological conditions encountered in real-world practice. This would also enable

the model to adapt to the unique characteristics of different staining protocols, which
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vary between labs and can affect the appearance of histological samples.

5.6.2 Generating larger tissue areas

Furthermore, an interesting avenue for future research would be to explore the gen-

eration of patches conditioned on neighboring patches. This approach could enable

the generation of larger tissue regions by stitching together individual patches, thus

allowing for a more holistic representation of tissue architecture. By considering the

spatial relationships between neighboring patches, the model could capture larger-

scale tissue patterns that are critical for accurate histological analysis. This could

open up new possibilities for the application of generative models in histopathology,

enabling the synthesis of realistic tissue sections that can be used for various research

and diagnostic purposes.

5.6.3 Addressing biases in future work

Finally, future studies could also consider further refining the model to address the

biases present in the training data. Techniques such as domain adaptation, adversarial

training, or incorporating real-world clinical feedback could be explored to mitigate

these biases and ensure that the model produces more representative and equitable

outputs across different tissue types and disease conditions.
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6

Conclusion

In this thesis, I have explored the transformative potential of artificial intelligence in

healthcare by developing tailored deep learning methods to address critical challenges

in medical data analysis and diagnostics. My work focused on four key areas:

1. Knowledge Distillation for Model Compression: We created a flexible

knowledge distillation approach that effectively compresses and transfers in-

formation from large vision models to smaller, domain-specific models. This

method is optimized for resource-constrained settings and addresses the scarcity

of annotated datasets in any domain. By leveraging the extensive knowledge

of large vision models, we enabled efficient distillation into varied architectures

using our novel mutual information maximization objectives.

2. Information-Efficient Contrastive Learning: We developed a vision-language

alignment objective designed to learn effectively from paired medical images and

textual data, even when annotated datasets are limited. Our method utilizes

symbolic annotations from textual descriptions to improve vision models that

extract visual patterns correlated with text. This approach achieves superior

performance on standard benchmarks using significantly reduced amounts of

data and smaller batch sizes, making it suitable for low-resource healthcare

environments.
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3. Structure-Preserving Generative Adversarial Networks for Stain Nor-

malization: To address the issue of bias and reduced performance in neural

network models due to variations in data collection and processing, we devel-

oped a novel adversarial approach for many-to-one domain stain normalization.

Our custom training objective ensures the preservation of image structure dur-

ing translation, enhancing the robustness and accuracy of downstream computa-

tional analyses. Comparative evaluations demonstrated superior performance

in preserving structural integrity while transferring stain distributions across

domains.

4. Conditional Diffusion Models for Synthetic Medical Image Genera-

tion: Recognizing the pervasive lack of data due to ethical and privacy con-

cerns, we designed an end-to-end mechanism using conditional diffusion models

to generate synthetic, hyper-realistic histopathological tissue slides. By syn-

thesizing tissue patches conditioned on nuclei masks, this approach addresses

data scarcity and privacy issues, aiding both deep learning systems and human

pathologists. The generated synthetic datasets can mitigate dataset imbal-

ances, reduce model training bias, and facilitate medical data sharing without

compromising patient privacy.

By integrating these methodologies, this thesis presents innovative solutions to long-

standing challenges in medical imaging and diagnostics. The tailored machine learn-

ing techniques developed herein have the potential to revolutionize healthcare prac-

tices by improving diagnostic accuracy, enhancing patient care, and optimizing treat-

ment strategies. Our work underscores the critical role of specialized AI approaches

in addressing the intricate challenges intrinsic to the healthcare domain.
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Closing Remarks

The convergence of advanced machine learning techniques and healthcare has the

potential to significantly impact patient outcomes and the overall efficiency of medical

services. By focusing on the development of specialized AI methods tailored to the

unique challenges of the healthcare domain, this thesis contributes to the foundational

work necessary for the next generation of intelligent healthcare solutions. Continued

interdisciplinary collaboration will be essential to realize the full potential of these

technologies in clinical practice.
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Appendix A

Estimating and Maximizing

Mutual Information for Knowledge

Distillation

A.1 Limitations and Broader Impacts

In this paper, we presented a novel Mutual Information Maximization based knowl-

edge distillation framework (MIMKD). Our method uses the JSD based lower-bound

on mutual information which is optimized using only one negative sample. However,

despite its favorable properties, our lower-bound may be less tight on the mutual

information than the infoNCE bound as it approximates the mutual information

by being monotonically related with it. Additionally, as we use only one negative

sample, the performance of the method may be hindered by the presence of false

negatives. The performance of the method is also effected by the architecture of

the discriminator functions which can be explored further. We presented three infor-

mation maximization formulations and demonstrated the value of region-consistent

information maximization on distillation performance. We observe that the perfor-

mance is slightly-sensitive to the hyper-parameters that control the relative value

of our global, local, and feature information maximization formulations. This has
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been explored in great detail in our ablation sections and further demonstrated in

figures A.1, A.2, and A.3. Our method transfers representations from the teacher to

the student. As such, harmful biases that the teacher has learnt are transferred to

the student as well. And further exploration is required to alleviate the transfer of

such biases during distillation.

A.2 Hyper-parameters for other methods

The student is trained with the following loss function which is a combination of the

distillation loss and the cross-entropy loss for classification:

L = αLcls + (1− α)LKD + βLdis (A.1)

Note that we set α = 1 for all methods except KD ßG. Hinton, Vinyals, and Dean

2015 and the value of β is set to the value recommended in the original work as

follows:

1. KD G. Hinton, Vinyals, and Dean 2015: α = 0.9, β = 0

2. Fitnet Romero et al. 2014: β = 100

3. AT Zagoruyko and Komodakis 2016a: β = 1000

4. VID Ahn et al. 2019: β = 1

5. CRD Tian, Krishnan, and Isola 2019: β = 0.8, for CRD evaluation, we use

a original work inspired self-implementation with 4096 negative samples and

i ̸= j negative sampling methodology as described in the original work.
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A.3 Pairing Intermediate Representations

A.3.1 Similar CNN Architectures.

Consider the case of distillation when the teacher network is a pre-trained WRN-

40-2 and the student network is a WRN-16-1. We use 4 same-sized representa-

tions extracted from intermediate layers of the networks. Therefore, the set R =

{(f (k)
t (x), f

(k)
s (x))}Kk=1 contains k pairs of same-sized 2-dimensional representations.

Table A.1 describes the sizes of the intermediate representations used for feature-

based mutual information maximization. It can be seen that for this combination we

use k = 4 in our formulation.

Table A.1: Dimensions of intermediate representation in the form channels×height×
width used for feature-level mutual information maximization between a teacher
WRN-40-2 and a student WRN-16-1 network. Alternatively, each value of k rep-
resents a pair of elements in the set R.

WRN-40-2 WRN-16-1

k f
(k)
t (x) f

(k)
s (x)

1 16 × 32 × 32 16 × 32 × 32
2 32 × 32 × 32 16 × 32 × 32
3 64 × 16 × 16 32 × 16 × 16
4 128 × 8 × 8 64 × 8 × 8

A.3.2 Dissimilar CNN Architectures.

Similar approach of defining the set R is followed in cases where the teacher and

student networks have significantly different architectures. For instance, Table A.2

shows the dimensions of intermediate representations used when the teacher network

is a ResNet34 while the student is a ShuffleNetV2. Here k = 4 is used, however, for
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some combinations of different standard architectures we use k = 3 if only 3 pairs

intermediate representations from the teacher and the student have the same size.

Note that our method is invariant to the number of channels in the representations.

Therefore, mismatch in the number of channels in pairs of representations in R is

inconsequential for the formulation of our losses.

Table A.2: Dimensions of intermediate representation in the form channels×height×
width used for feature-level mutual information maximization between a teacher
WRN-40-2 and a student WRN-16-1 network. Alternatively, each value of k rep-
resents a pair of elements in the set R.

ResNet34 ShuffleNetV2

k f
(k)
t (x) f

(k)
s (x)

1 64 × 32 × 32 24 × 32 × 32
2 512 × 16 × 16 116 × 16 × 16
3 1024 × 8 × 8 232 × 8 × 8
4 2048 × 4 × 4 464 × 4 × 4

A.4 Mutual Information Discriminators

The parameterized mutual information discriminator functions (Tωg , Tωl
, and Tωf

) can

be modeled as neural networks. In our experiments, we use two distinct discriminator

architectures inspired from the functions presented in Deep InfoMax Hjelm et al. 2018.

A.4.1 Convolve Architecture.

In this method, the representations from the teacher and the student are concatenated

together and passed through a series of layers to get the score. For global information

maximization, the final representations from both networks is concatenated together
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to get [fs(x), ft(x)]. This vector is then passed to a fully connected network with two

512-unit hidden layers, each followed by a ReLU non-linearity (ref. table A.3). The

output is then passed through another linear layer to obtain the final score.

Table A.3: The architecture of the discriminator used for global information maxi-
mization. Here LL denotes Linear Layer and d(v) refers to the number of dimensions
in vector v.

Input Operation Output

[ft(x), fs(x)] LL + ReLU O1

O1 LL + ReLU O2

O2 LL score

For local information maximization, we replicate the final representation from the

teacher ft(x) to match the mK ×mK size of the student’s last intermediate feature

map (f (K)
s (x)). The resulting replicated tensor is then concatenated with f

(K)
s (x) to

get [ft(x), f
(K)
s (x)] which serves as the input for the critic function (ref. table A.4).

Table A.4: The architecture of the discriminator used for local and feature mutual
information maximization. Note that for feature mutual information maximization
the input at the first layer is [f

(k)
t (x), f

(k)
s (x)].

Input Operation Output

[ft(x), f
(K)
s (x)] 1× 1 Conv + ReLU O1

O1 1× 1 Conv + ReLU O2

O2 1× 1 Conv scores

Similarly, consider feature mutual information maximization, for each pair in the set

R we use a distinct discriminator T (k)
ωf . For a given k, each pair of intermediate feature

representations in the set R are concatenated together to get [f (k)
t (x), f

(k)
s (x)]. Which

is then passed through two convolutional (1 × 1 kernels and 512 filters) where each

layer is followed by a ReLU non-linearity. The output obtained is then further passed
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into a convolutional layer (1×1 kernels and 1 filter) to give mk×mk scores (ref. table

A.4).

A.4.2 Project and Dot Architecture.

In this method, the representations from both the teacher and the student are first

projected using an appropriate projection architecture with a linear shortcut. The

dot-product of these projections is then computed to get the score. Positive and

negative pairs of representations are passed through the discriminator to get respective

scores to be passed into equation (2) to get the estimates on the lower bound of

the mutual information. One-dimensional representations are projected using the

architecture described in table A.5, whereas for two-dimensional intermediate feature

maps, projection architecture described in table A.6 is used.

Table A.5: The projection architecture used for one-dimensional inputs. Here, LL
denotes linear layer while LN denotes layer normalization. Both ft(x) and fs(x) are
projected using this architecture and their dot product is computed to get scores.

Input Operation Output

ft(x) or fs(x) LL + ReLU + LL O1

ft(x) or fs(x) LL + ReLU O2

O1 + O2 LN proj

Therefore, for (1) global information maximization, both ft(x) and fs(x) are projected

using the one-dimensional projection architecture, for (2) local information maximiza-

tion, the final teacher representation, ft(x), is projected using the one-dimensional

projection architecture and duplicated to match the size of the projected intermediate

student representation projected using the two-dimensional projection architecture, a

dot product of these outputs is then computed to get the scores, while for (3) feature
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information maximization, both representations in each pair of the set R is projected

using a respective two-dimensional projection architecture.

Table A.6: The projection architecture used for two-dimensional inputs. Here, LL
denotes linear layer while LN denotes layer normalization.

Input Operation Output

f
(k)
s (x) 1× 1 Conv + ReLU + LL O1

f
(k)
s (x) 1× 1 Conv + ReLU O2

O1 + O2 LN proj

A.5 ImageNet results

In this experiment we train a student ResNet-18 with a pre-trained teacher ResNet-

34 on the ImageNet dataset (ILSVRC). Note that we do not perform any hyper-

parameter tuning specifically for this configuration and use the same values we ob-

tained for the CIFAR-100 dataset i.e. α = 0.9, λg = 0.2, λl = 0.8, λf = 0.8. We

observed that our method is able to reduce the gap between the teacher and the

student performance by 1.44%. Results are presented in Table A.7.

A.6 Shallow CNN Architectures

In this section, we describe our experiments where we distill knowledge from a stan-

dard teacher network into a shallow custom-designed CNN. This is done to demon-

strate that it is feasible to design and distill information into light-weight mod-

els such that they perform competitively with standard CNN architectures while

running faster. For our experiments we use 2 shallow CNNs; (1) Conv-4 with 4
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Table A.7: Observed top-1 validation accuracy (in %) of the student network on the
ImageNet dataset using our method (MIMKD) and other distillation frameworks.
In similar settings, the more recent Contrastive Representation Distillation (CRD)
method reports comparable performance with an improvement of +1.42 from a stu-
dent network Tian, Krishnan, and Isola 2019.

Student Network ResNet-18
Teacher Network ResNet-34
Student Accuracy 68.88
Teacher Accuracy 72.82+3.94

Knowledge Distill. (KD) 69.66+0.78
Attention Transfer (AT) 69.70+0.82

MIMKD (this work) 70.32+1.44

convolutional-blocks followed by average pooling operation and a linear layer, where

each convolutional-block is made-up of a convolutional layer with kernel size 3×3 and

stride 2 followed by batch-normalization and a ReLU non-linearity, (2) Conv-4-MP

which has 4 convolutions blocks followed by average pooling and a linear layer at

the end, where each convolutional-block contains a convolutional layer with kernel

size 3 × 3 and stride 1 followed by batch-normalization, ReLU and a max-pooling

layer. These architectures were chosen as they are compact and run relatively faster

on standard CPUs. Table A.8 compiles our results compared to other distillation

methods for custom-designed shallow CNN architectures. Notice how a simple model

such as Conv-4-MP becomes competitive with ShuffleNetV2’s base student accuracy.

Our method is able to outperform all other methods in this setup. Additionally, we

can see that distillation is most successful with ResNet-32x4 as the teacher than for

other architectures. This could be because of the larger gap in the baseline accuracy

of the networks. Under this more controlled experiment with fixed students, larger

gaps between student-teacher pairs also led to larger gains after distillation.
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Table A.8: Observed test accuracy (in %) of shallow student networks trained with
teacher networks of higher capacity and standard architectures on the CIFAR100
dataset using our methods MIMKD and other distillation frameworks.

Student Net. Conv-4 Conv-4-MP

Teacher Net. ResNet-
110

VGG-13 ResNet-
32x4

ResNet-
110

VGG-13 ResNet-
32x4

Student Acc. 59.97 59.97 59.97 66.09 66.09 66.09

Teacher Acc. 73.82+13.8574.62+14.6579.24+19.27 73.82+7.73 74.62+8.53 79.24+13.15

FitNets 60.58+0.61 61.81+1.84 62.89+2.92 67.38+1.29 66.52+0.43 67.21+1.12

AT 61.65+1.68 62.16+2.19 63.10+3.13 67.52+1.43 66.21+0.12 66.03–0.06

VID 61.93+1.96 62.49+2.52 63.45+3.48 67.76+1.67 67.40+1.31 67.86+1.77

KD 61.98+2.01 62.10+2.13 62.87+2.90 67.51+1.42 67.84+1.75 68.04+1.95

CRD 62.13+2.16 62.54+2.57 63.76+3.79 67.96+1.87 68.06+1.97 68.52+2.43

MIMKD (ours) 62.91+2.94 62.95+2.98 64.32+4.35 68.77+2.68 68.91+2.82 69.09+3.00

A.7 Computational cost and negative sampling.

We contextualize the memory and computational overhead of our work with respect

to CRD. Our global MI objective has the same footprint as CRD (i.e. an additional

600MB over standard Resnet18 training for storing negatives). In addition, our fea-

ture and local MI objective use projection layers which add an additional 100MB of

GPU memory. As the computation of our JSD-based objective is computationally

trivial, we observe negligible reduction in training speed wrt CRD (2.2 epochs/hr v.

2.4 epochs/hr). Note that no additional memory is used for sampling negatives for

local and feature information maximization. The 4096 negatives are only used for

global MI as storing 1-D representations is relatively inexpensive.
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A.8 Ablation Study

In this section we present additional accuracy landscape plots for our extensive abla-

tion study that demonstrates the value of each component of our mutual information

maximization objective. We use a ResNet-32x4 as the teacher network and ResNet-

8x4 as the student network where the baseline accuracy of the teacher is 79.24% and

that of the student network is 72.44%. The values of the hyper-parameters λg, λl and

λf — that control the weight of the global, local and feature mutual information max-

imization objectives respectively – were varied between 0 and 1 with an increment of

0.25 while the weight for the cross-entropy loss, α was set to 1. The following contour

plots shows the test accuracy landscape with respect to a pair of hyper-parameters

when the third hyper-parameter is set to distinct values. Overall, this demonstrates

the value of maximizing region-consistent local and feature-level mutual information

between representations in addition to just global information maximization.
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Figure A.1: Results from the ablation studies on CIFAR100 dataset using a student
resnet8x4 (baseline acc. 72.44%) with teacher resnet32x4 (baseline acc. 79.24%).
Contour lines represent the final test accuracy of the student. Grid search was per-
formed by varying the values of λf , λg, λl from 0 to 1 with increments of 0.25. In
each plot, the accuracy landscape is shown with λg set to a constant value.
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Figure A.2: Results from the ablation studies on CIFAR100 dataset using a student
resnet8x4 (baseline acc. 72.44%) with teacher resnet32x4 (baseline acc. 79.24%).
Contour lines represent the final test accuracy of the student. Grid search was per-
formed by varying the values of λf , λg, λl from 0 to 1 with increments of 0.25. In
each plot, the accuracy landscape is shown with λf set to a constant value.
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Figure A.3: Results from the ablation studies on CIFAR100 dataset using a student
resnet8x4 (baseline acc. 72.44%) with teacher resnet32x4 (baseline acc. 79.24%).
Contour lines represent the final test accuracy of the student. Grid search was per-
formed by varying the values of λf , λg, λl from 0 to 1 with increments of 0.25. In
each plot, the accuracy landscape is shown with λl set to a constant value.
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Appendix B

CLIP-Lite: Information Efficient

Visual Representation Learning

with Language Supervision

B.1 Discussion on JSD-based lower bound on Mu-

tual Information

Recall that for given random variables y and z, their mutual information is defined

as a Kullback-Leibler (KL) divergence between their joint distribution p(y, z) and the

product of their marginal distributions, p(y)p(z) as, I(y; z) = DKL(p(y, z) || p(y)p(z)).

The above formulation of MI gives rise to the commonly used contrastive objective

InfoNCE (Oord, Y. Li, and Vinyals 2018). Alternatively, the KL-divergence can be

replaced with the Jensen-Shannon divergence (JSD) between the joint and the prod-

uct of marginals as an estimate of the Pointwise Mutual Information(PMI) between

two views of the data i.e. IJSD(y; z) = DJSD(p(y, z) || p(y)p(z)). And as discussed

in (Hjelm et al. 2018), this formulation of MI leads to the following relation,

JSD(p(y, z)||p(y)p(z)) ∝ Ey∼p(y)[Ez∼p(z|y)[log p(z|y)
p(z)

− (1 + p(z)
p(z|y)) log

(
1 + p(z|y)

p(z)

)
]]
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Table B.1: CLIP-Lite outperforms CLIP-COCO on both VOC and ImageNet classi-
fication tasks, and performs comparably to VirTex. CLIP-Lite’s performance is com-
parable or superior to both supervised and self-supervised learning models trained
with images alone, even those trained with 10x more images. (IN-Sup. = ImageNet-
supervised.)

Method # images Annotations VOC07 IN-1k

COCO-Sup. 118K labels 86.2 46.4
IN-Sup. 1.28M labels 87.6 75.6

MoCo-COCO 118K self-sup. 67.5 46.5
MoCo-IN v1 1.28M self-sup. 79.4 60.8
PCL v1 1.28M self-sup. 83.1 61.5
SwAV (200 ep.) 1.28M self-sup. 87.9 72.7

ICMLM 118K captions 87.5 47.9
VirTex 118K captions 88.7 53.8

CLIP-COCO 118K captions 74.2 33.2
CLIP-Lite 118K captions 88.2 55.3

Now, the quantity inside the expectation above is a concave, monotonically increasing

function of the ratio p(z|y)/p(z), which is exactly the exponential of the Pointwise

Mutual Information, i.e. ePMI(y,z).

B.2 Comparison with SSL Pretraining Methods

In this section, we evaluate the performance of our method against other pre-training

frameworks and image-only SSL methods. We observe that CLIP-Lite is comparable

or better to image-only SSL learning models trained on downstream ImageNet clas-

sification with a frozen ResNet-50 backbone, even though our method is trained on

much fewer images, albeit with textual supervision.
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B.3 Mutual Information Discriminator

As described in main paper, our JSD-based lower-bound on mutual information relies

on a discriminator function, Tω : Y × Z → R, which distinguishes between samples

extracted from the joint distribution, P (Y, Z) i.e. a positive image-caption pair and

the product of marginals, P (Y )P (Z) i.e. a negative image-caption pair. This dis-

criminator function can be modelled as an arbitrary neural network with parameters

ω that can be jointly optimized with the encoders during training (Belghazi et al.

2018). In this work, we use a projection and alignment based architecture similar to

the one presented in Deep InfoMax (Hjelm et al. 2018).

Given a pair of input one-dimensional representations, both vectors are first pro-

jected using a projection module with two linear layers separated by a ReLU and a

linear shortcut. A dot-product of these projections is then computed to get alignment

scores. The projection function maps these representations to an aligned cross-modal

latent space. Separate projection functions are used for image and text representa-

tions. Positive and negative pairs of image-text representations are passed through

the discriminator to get respective scores which are then used to estimate and maxi-

mize mutual information using our objective. This architecture, in addition to being

simple and computationally inexpensive, also offers alignment of the representations

into a common cross-modal latent space which uses cosine similarity as the distance

metric.
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B.4 Ablations

Batch-size Ablations: A salient feature of our pre-training framework is that

we use a lower-bound on the mutual information that can be optimized with only

one negative sample. This allows us to use much smaller batch-sizes compared to the

original CLIP (Radford et al. 2021) model. In this section, we evaluate the PASCAL

VOC classification performance of the visual backbones trained with a batch sizes 64,

128, 256, 512 and 1024. These ablations are performed with a 2-layered BERT model

as the text-encoder and a ResNet-50 as the image encoder for 200K iterations.

Table B.2: Batch size Ablations: We show the performance of a ResNet-50 trained
with CLIP-Lite using varying batch-sizes. We observe that the performance drops
marginally with the batch size 512. Additionally, we can see that the model is able
to converge fairly well with the significantly lower batch size of 64.

Batch Size VOC07

64 74.7
128 81.3
256 84.9
512 87.5
1024 87.9

Visual Encoder Ablations: In this section, we compare the performance of our

pretraining method using a ResNet-18, ResNet-50, and ResNet-101 backbones using

the downstream PASCAL VOC classification task. These ablations are performed

with a 2-layered BERT model as the text-encoder with a batch-size of 512 for 200K

iterations.

Text Encoder Ablations: In this section, we compare the downstream PASCAL

VOC (Everingham et al. 2010) classification performance of a ResNet-50 visual back-
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Table B.3: Visual Encoder Ablations: We show the performance of CLIP-Lite
using 3 visual backbones of varying sizes.

Visual Backbone VOC07

ResNet-18 83.8
ResNet-50 87.5
ResNet-101 87.8

bone pretrained using a text encoder transformer with varying capacities. We train 4

transformer variants, (1) pre-trained BERTbase (Devlin et al. 2018), (2) 2-layered, (3)

4-layered, (4) 6-layered, and a (5) 12-layered BERT-like transformer. These ablations

are performed with a ResNet-50 as the image encoder with a batch-size of 512 for

200K iterations.

Table B.4: Text Encoder Ablations: We show the performance of a ResNet-50
trained with CLIP-Lite using different text encoders. We observe that the perfor-
mance drops marginally when training from scratch. Additionally, we also see that
using a transformer with 2-layers works almost as well as a 12-layered transformer
when trained from scratch.

Text Encoder VOC07

BERTbase init. 88.1
2-layers 87.5
4-layers 87.6
6-layers 87.6
12-layers 87.9

Zero-shot classification templates While performing zero-shot classification, we

use the class names of target images to generate captions that the images should

align with. The performance is compared when captions are generated using three

different templates. We test three different class prompt templates and compare our

performance against an equivalently trained CLIP model on the COCO dataset. As
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seen in Table B.5, both CLIP and CLIP-Lite prefer more descriptive prompts.

Table B.5: Zero-Shot Templates on CIFAR-10: We evaluate different prompts
and find the CLIP-Lite prefers more descriptive prompts.

Class Prompt CLIP-COCO CLIP-Lite

“a {class name}” 13.3 30.8
“a picture of a {class name}” 14.5 32.6
“a photo of a {class name}” 16.3 33.0

B.5 Training CLIP on COCO-Captions Dataset

We use a CLIP model trained on the COCO dataset as a baseline for several demon-

strated tasks. For this purpose, we use an open-source implementation1 of CLIP. We

train a standard ResNet-50 (He, X. Zhang, et al. 2016) based CLIP model that takes in

a 224× 224 image and generates 2048-dimensional features at the pre-logit layer. For

textual encoding, we use a transformer (Vaswani et al. 2017) model and use the out-

put [CLS] token as the text representation. We use the COCO Captions dataset (X.

Chen, Fang, et al. 2015) which has 118K images with five captions per image. During

training time we apply (1) random cropping, (2) color jittering, (3) random horizontal

flips while interchanging the words ‘left’ and ‘right’ in the caption, and (4) normaliza-

tion using the ImageNet image mean. We train using the Adam Optimizer (Kingma

and Ba 2014a) with decoupled weight decay regularization (Loshchilov and Hutter

2016) for all weights except gains or biases. We perform distributed training across 8

GPUs with batch normalization (Ioffe and Szegedy 2015a) per GPU with an overall

batch-size of 1024. We warm-up to the initial learning rate in 10K steps and decay

to zero with the cosine schedule. We found that using the learning rate of 104 works
1https://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip
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slightly better (+1.4% on VOC07) than the originally recommended 5×105. We also

found that the performance incrementally improves (+1.9% on VOC07) with longer

training therefore we train for 250K iterations, similar to ours. All other training

details and hyper-parameters were kept the same as the original work (Radford et al.

2021). Please note that the ResNet-50 backed CLIP model trained by us on the

COCO dataset outperforms (+1.2% Zero-shot Acc. on CIFAR10) publicly available

weights2.

2https://github.com/revantteotia/clip-training/blob/main/zero_shot_eval_output/coco_trained_clip_observations.md

https://github.com/revantteotia/clip-training/blob/main/zero_shot_eval_output/coco_trained_clip_observations.md
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Appendix C

SAASN: Self-Attentive Adversarial

Stain Normalization

C.1 Additional results

We trained and tested the model in both a one-to-one (K = 1) and many-to-one

(K = 2) setup. In this section we demonstrate the model performance, on test

datasets, for visual inspection.
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Figure C.1: Visual comparison of performance in cases where Macenko and Vahadane
techniques perform very well according to a combined SSIM index. The target im-
age only applies to the Macenko and Vahadane techniques. The main results section
included a visual comparison of SAASN stain transfers with the worst performing
Macenko and Vahadane images based on SSIM. Alternatively, SAASN is also com-
pared to the best SSIM indexes for the other two techniques. Figure C.1 displayed
the top three images in each stain transfer scenario based on the highest L2-norm
of Macenko and Vahadane SSIM results. For the X(1) to Y transfer, SAASN was
the only technique that properly maintained a whitish/gray background pixel color.
For the X(2) to Y transfer, Macenko appeared to create a new stain distribution that
was not close to the desired target image. All three normalizations performed well
in the one-to-one transfer. The comparison in Figure C.1 demonstrates that SAASN
can perform better at preserving structure and properly transferring stain domains,
because both areas are incorporated into the network’s loss functions.
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Figure C.2: One-to-one (K=1) model. Left: Translation from domain X(1) to Y and
back to domain X(1). Right: Translation from domain Y to X(1) and back to Y .
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Figure C.3: One-to-one (K=1) model. Left: Translation from domain X(2) to Y and
back to domain X(2). Right: Translation from domain Y to X(2) and back to Y .
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Figure C.4: The model was also trained on Yosemite summer to winter dataset from
the CycleGAN paper. Left: Translation from winter to summer and back to winter.
Right: Translation from summer to winter and back to summer. The model was
trained with the same parameters as for the stain normalization task.
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