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Abstract

The Distributed leader-following consensus problem for multi-agent systems has

drawn increasing attention recently. Consensus is a fundamental approach for dis-

tributed coordination. It means that a group of agents are made to reach an agree-

ment on some common states using certain local information. In the leader-following

consensus problem, there exists an active leader which specifies the movement of the

whole group. A majority of existing research is focused on the leader-following con-

sensus problem assuming that the parameters of follower agents are uncertain, while

few papers consider the leader dynamic uncertainty at the same time.

This thesis studies the distributed leader-following consensus problem of multi-

agent systems in which the leader and followers both have parametric uncertainties

and bounded external disturbances. Follower agents are controlled to follow an active

leader with a reference input signal, despite such uncertainties. An Adaptive control

method is adopted to solve this problem. This research starts from the basic case

that there are one leader and one follower in a multi-agent system. A new adaptive

scheme is proposed for dealing with parametric uncertainties. Furthermore, in order

to cancel the effect of disturbances, an adaptive disturbance compensator is developed.

Then, expanding the size of the multi-agent system under a directed graph, a new

distributed control protocol only using local information is adopted, generalizing the

previous control scheme. The proposed distributed control protocol has the capability

to guarantee that all agents can reach an agreement asymptotically with disturbances

acting on the follower agents. Comparing with the classical fixed gain control method,

the adaptive control method is capable of effectively handling system ans disturbance

uncertainties. Extensive numerical simulation results illustrate the effectiveness of

the proposed adaptive control scheme.



Contents

1 Introduction 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Control System Models . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Signal Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 System Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Classical Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Graph Theory and Communication Topology . . . . . . . . . . . . . . 16

3 Adaptive Leader-Following Control 18

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Adaptive Control of Single Input Systems . . . . . . . . . . . 19

3.1.2 Adaptive Control of Multiple Inputs Systems . . . . . . . . . . 21

3.2 Adaptive Following Control Design for Single Input Systems . . . . . 23

3.2.1 Design Conditions . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Adaptive Control Laws . . . . . . . . . . . . . . . . . . . . . . 24

ii



iii

3.2.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Disturbance Rejection . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Adaptive Following Control Design with Multiple Inputs . . . . . . . 34

3.3.1 Design Conditions . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Adaptive Control Scheme . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 Disturbance Rejection . . . . . . . . . . . . . . . . . . . . . . 40

3.3.5 Design Based on LDU Parametrization . . . . . . . . . . . . . 45

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Simulation Study for Single Input Systems . . . . . . . . . . . 52

3.4.2 Simulation Study with Multiple Inputs . . . . . . . . . . . . . 60

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Adaptive Leader-Following Consensus for Multiple Agents 73

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Algebraic Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Adaptive Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Design Conditions . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Adaptive Control Scheme . . . . . . . . . . . . . . . . . . . . 85

4.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Disturbance Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Conclusions and Future Work 100

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Future Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Figures

2.1 Block diagram of a system with output feedback and an adjustable

preamplifier gain k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 State space representation of a plant with state feedback. Reproduced

from [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 An illustrative of a multi-agent system with five followers and one leader 17

3.1 Follower state (solid) vs. leader state (dotted) with fixed gain control. 54

3.2 Follower state (solid) vs. leader state (dotted) with adaptive gain control. 54

3.3 Tracking errors with adaptive control vs. fixed gain control. . . . . . 55

3.4 Parameter errors ki(t)− k∗i with adaptive control (i = 1, 2, 3). . . . . 55

3.5 Follower state (solid) vs. leader state (dotted) without disturbance

rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Follower state (solid) vs. leader state (dotted) with adaptive distur-

bance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Tracking errors with adaptive disturbance rejection vs. without dis-

turbance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Follower state (solid) vs. leader state (dotted) without disturbance

rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



v

3.9 Follower state (solid) vs. leader state (dotted) with adaptive distur-

bance rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Tracking errors with adaptive disturbance rejection vs. without dis-

turbance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.11 Follower state (solid) vs. leader state (dotted) with fixed gain control. 62

3.12 Follower state (solid) vs. leader state (dotted) with adaptive gain control. 62

3.13 Tracking errors with adaptive control vs. fixed gain control. . . . . . 63

3.14 Parameter errors Ki(t)−K∗i with adaptive control (i = 1, 2, 3). . . . . 63

3.15 Follower state (solid) vs. leader state (dotted) without disturbance

rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.16 Follower state (solid) vs. leader state (dotted) with adaptive distur-

bance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.17 Tracking errors with adaptive disturbance rejection vs. without dis-

turbance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.18 Follower state (solid) vs. leader state (dotted) without disturbance

rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.19 Follower state (solid) vs. leader state (dotted) with adaptive distur-

bance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.20 Tracking errors with adaptive disturbance rejection vs. without dis-

turbance rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.21 Follower state (solid) vs. leader state (dotted) with adaptive gain con-

trol (LDU decomposition). . . . . . . . . . . . . . . . . . . . . . . . . 71

3.22 Follower state (solid) vs. leader state (dotted) with adaptive gain con-

trol (LDU decomposition). . . . . . . . . . . . . . . . . . . . . . . . . 71

3.23 Tracking errors with adaptive control vs. fixed gain control (LDU

decomposition). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



vi

4.1 Case I: Interaction graph of two followers and one leader aaaaa aaaaaaaa 79

4.2 Case II: Interaction graph of two followers and one leader . . . . . . . 80

4.3 Case III: Interaction graph of two followers and one leader . . . . . . 80

4.4 Case IV: Interaction graph of two followers and one leader . . . . . . 80

4.5 A basic structure exists in directed graphs . . . . . . . . . . . . . . . 80

4.6 Interaction graph after adding one follower on follower v1 . . . . . . . 81

4.7 Interaction graph after adding one follower on follower v1 . . . . . . . 82

4.8 Interaction graph after adding one follower for follower vk . . . . . . . 83

4.9 Interaction graph of three follower agents and one leader . . . . . . . 94

4.10 State trajectories of three follower states xi and leader state x0 vs.

time(sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 Tracking errors between three follower states xi and leader state x0 vs.

time(sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.12 Interaction graph of five follower agents and one leader . . . . . . . . 96

4.13 State trajectories of five follower states xi and leader state x0 vs.

time(sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.14 Tracking errors between five follower states xi and leader state x0 vs.

time(sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.15 State trajectories of three follower states xi and leader state x0 with

disturbance rejection vs. time(sec) . . . . . . . . . . . . . . . . . . . 99

4.16 Tracking error between follower states xi and leader state x0 vs. time(sec) 99



Chapter 1

Introduction

In past two decades, an unprecedented growth in sensing, communications and

computation has been witnessed. This growth change the way we collecting and

processing the information. The sensor network revolution makes it possible to us for

exploring and interacting with the environment. Hence the growing importance of the

multi-agent system cooperative systems has also been acknowledge by the research

community. Many important scientific results have appeared addressing different

aspects of multi-agent cooperative systems. Due to the multi-disciplinary nature of

multi-agent cooperative systems, research focusing on this field can address many

parallel problems for instance in the area of distributed decision making, in the area

of connectivity maintenance and in the area of vehicle formation, etc. [32].

In the meanwhile, adaptive control method is becoming popular in many fields.

Since the control community has heavily acknowledged the importance of the adaptive

control, lots of useful results on adaptive control appearing to make this modern

control method more powerful. Hence, in this thesis, we combine these two popular

topics, multi-agent cooperative systems and the adaptive control method, together.

We will explore the leader-following consensus problems of multi-agent system by

1
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using adaptive control in the coming several chapters.

1.1 Research Motivation

With the development of sensor networks, control of multi-agent systems has been

emerging and has drawn lots of attention. Since the main objective in distributed

control of multi-agent systems is to enable a group of agents to perform a special

task, distributed control is also referred as the cooperative control. There are several

typical problems existing in the cooperative control including the consensus problem

[9,37,45], the formation problem [4,8, 34] and the flocking problem [36,39,41].

Among those three typical cooperative control problems, the consensus problem

is the most important one because the consensus algorithm is basic and fundamen-

tal [26]. In particular, consensus means to reach an agreement on a certain quantity

of interest, namely their position or velocities [37]. As the most fundamental and

important control problem in cooperative control, Jadbabaie et al. [13] considered

such the leader-following consensus problem and proved that if all the agents were

jointly connected with their leader, their states would coverage to that of the leader as

time goes on. The controllabilty of the leader-following dynamic network was studied

in [14, 22, 46]. The leader-following consensus problem can be classified into two dif-

ferent kinds. The first one is the consensus regulation problem, which is also referred

as leaderless problem (behavior-based) [20, 27, 31, 35]. The other one is the consen-

sus tracking problem, also known as leader-following consensus(synchronization). For

leader-following consensus problems, there should exist an active leader whose states

keep changing in the multi-agent system [11, 21, 40, 50]. In another word, leader-

following consensus means that all follower agents eventually reach an agreement on

the state or output of a preassigned leader, which specifies a desired objective for all
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other agents to follow and is usually independent of its followers [24].

Formation control requires agents keeping a desired special distance, in another

word, formation control requires agents keeping a desired formation configuration

which actually is the consensus of relative position and flocking control requires agents

to move together with the same velocity and avoid inter-collisions at the same time

which obviously is the consensus on velocities [25]. The practical application of co-

operative control is broadly used in many areas such as formation control of mobile

vehicles and scheduling of automated highway systems.

1.2 Literature Review

In current leader-following consensus relative literature, distributed protocols are

designed for multi-agent systems with single-integrator or double-integrator linear

dynamics followers with an active leader. The active leader model is also governed by

a single-integrator or double-integrator linear dynamics. A plenty of literature focuses

on single-integrator and/or double-integrator systems like [9, 10, 33]. For example,

[33], it considered a consensus algorithm for double-integrator dynamics with several

different cases. In [51], the consensus problem was addressed for a double integrator

multi-agent system to track a single-integrator leader with a desired constant velocity,

and meanwhile the non-uniform time-varying communication delays were taken into

account. Recently, the multi-agent system with general linear dynamics has also

been considered. Recent design and analysis tools cover from the output regulation

approach in [11] and [40] which based on the output regulation theory [3, 5, 48]. [28]

investigated the consensus leader-following problem for a group of identical followers

with an autonomous active leader whose parameter matrix is as same as the follower.

In [28] only local information can be used by the distributed controller. Being different
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with [28], [24] solved the consensus problem for a group of followers with different

dynamics under an external disturbances with an active leader which model can be

also different with the followers. Plant parameters of the followers in [24] are in

uncertainty. The distributed control protocol in [24] designed by model reference

adaptive control method and also uses the local information of an individual agent.

However, although the author said that some part of the leader’s parameter can be

unknown, this statement is not convinced. Motivations of the aforementioned research

are clear but in practical application sometimes conditions of those researches are

unsatisfied.

Motivated by the above observations, in this thesis we study the adaptive leader-

following consensus problem of a group of linear dynamics agents guided by an active

real leader with external disturbances under directed graphs. Different from [28], sys-

tem parameter matrices in this thesis can be completely different with each other, and

also the system parameter matrices of the leader are supposed to be different from all

the followers. Comparing to [24], dynamic parameters can be completely unknown

including dynamic parameters of all followers and the leader. This assumption is

meaningful because in the real engineering environment, sometimes it is difficult to get

accurate dynamic parameters. In the meanwhile, like many papers [12,17–19,23,44],

this thesis also considers the external disturbances acting on the real application.

Hence, we develop a new protocol structure based on the principle of adaptive con-

trol method in order to solve the consensus leader-following problem with an external

disturbances such that all follower agents can track the active leader with a desired

reference signal. Then, the performance of a close-loop system is analyzed to verify

the designed control protocol with the corresponding adaptive laws. Finally, sev-

eral simulation results will be displayed to verify the effectiveness of our proposed

theoretical protocol.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we introduce

some basic background information to help readers follow the thesis easier including

background about control systems and background about multi-agent systems. In

Chapter 3, we develop a new adaptive control scheme for leader-following consensus

problem with only one leader-one follower with and without disturbances and present

simulation results to support the new adaptive scheme. In Chapter 4, we present

a new adaptive control scheme for multi-agent systems with directed graph whose

structure is modified from the control scheme developed in Chapter 3. Several cases

are presented including the disturbance-free case and the disturbance-acting case. The

corresponding numerical simulation results illustrate the effectiveness of the adaptive

control protocol. Finally, in Chapter 5 we discuss the results in this thesis and the

potential future work.



Chapter 2

Background

Before starting to discuss the adaptive control of multi-agent system, some basic

background about control system and multi-agent system needs to be presented. In

this chapter, topics about control system including control system modeling, system

stability, classical control and adaptive control are presented first. Topics following

the background of control system are some basic background about topology.

2.1 Control System Models

Usually in order to solve an engineering problem, the first step is to develop an

appropriate mathematical model of the system either from physical laws or from

experimental data. Dynamic systems are described by differential equations. While

most dynamics systems are nonlinear in nature, study of their linearized models and

linear systems has played a crucial role in understanding dynamic system behaviors.

In the first coming paragraph, a topic to be discussed is the non-linear system. In

the second coming paragraph the linear system is discussed.

6
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Nonlinear Systems A dynamic system can be described by a set of differential

equations

Fi(y
(p)(t), . . . , y(1)(t), y(t), u(p)(t), . . . , u(1)(t), u(t), t) = 0, t ≥ t0, (2.1)

i = 1, 2, . . . , l. y(i)(t) and u(i)(t) denote the ith time derivatives diy(t)
dti

and diu(t)
dti

of

y(t) and u(t), with a common notation ẏ(t) = y(1)(t), u̇(t) = u(1)(t) and ÿ(t) =

y(2)(t), ü(t) = u(2)(t). A special form of Fi depends on a special system under consid-

eration.

A n-th order dynamic system can be described by a group of n interactive first-

order differential equations

ẋ = f0(x, u, t), y = h0(x, u, t), t ≥ t0, (2.2)

for some functions f0 ∈ Rn and h0 ∈ Rq with q ≥ 1, n ≥ 1, where x = [x1, . . . , xn]T ∈

Rn is the system state vector with the state variable xi, i = 1, 2, . . . , n, physical or

artificial, to completely define the system behavior, u(t) ∈ RM with M ≥ 1 is the

system input, and y(t) is the system output [42].

The system behavior depends on the control u(t). When a feedback control law

u(t) = β(x, t) is use, system (2.2) becomes

ẋ = f(x, u, t), y = h(x, u, t), t ≥ t0, (2.3)

for some functions f ∈ Rn and h ∈ Rq with q ≥ 1, n ≥ 1, whose solution is denoted

as x(t) = x(t; t0, x0), where x(t0) = x0 is the initial state vector. For a vector function

x(t), a measure of its “magnitude” is its norm ‖x‖ [42].

However, sometimes in order to make system analysis easier, we need to degenerate
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the non-linear systems to the linear system on (x0, u0) by Taylor expansion,1 which

is

δẋ = Aδx+Bδu

δy = Aδx+Bδu (2.4)

with

A =
∂f

∂x
|(x0,u0) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn


|(x0,u0)

, B =
∂f

∂u
|(x0,u0) =


∂f1
∂u1

. . . ∂f1
∂un

...
...

∂fn
∂u1

. . . ∂fn
∂un


|(x0,u0)

,

C =
∂h

∂x
|(x0,u0) =


∂h1
∂x1

. . . ∂h1
∂xn

...
...

∂hn
∂x1

. . . ∂hn
∂xn


|(x0,u0)

, D =
∂h

∂u
|(x0,u0) =


∂h1
∂u1

. . . ∂h1
∂un

...
...

∂hn
∂u1

. . . ∂hn
∂un


|(x0,u0)

.

.

Since linearization always be made in a small range, in oder to denote conveniently

usually people express linearized system (2.4) as

ẋ = Ax+Bu

y = Cx+Du (2.5)

(2.5) is called the “linearized system” and the method used in this linearization pro-

cess is called ‘Lyapunov linearization method”. Lyapunov linearization method is

concerned with the local stability of a nonlinear system. It is a formalization of the

intuition that a nonlinear system method should behave similarly to its linearized

1Often, (x0, u0) is an equilibrium point which means f(x0, u0) = 0
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approximation for small range motions. Because all physical systems are inherently

nonlinear, Lyapunov’s linearizion method serves as the fundamental justification of

using linear control techniques in practice. More details about Lyapunov linearization

method can be found in literature [38].

Linear Systems As we discussed in the previous paragraph, many nonlinear sys-

tems are hard to be analyzed or to be controlled. One of the methods to control

nonlinear systems is linearization. Thus there is no doubt that researches on linear

system are really important.

A linear system time-varying dynamic system is described as

ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u, t ≥ t0, (2.6)

with x(t0) = x0,where x ∈ Rn, u ∈ RM , y ∈ Rq are the state, input and output,

respectively. A(t) ∈ Rn×n, B(t) ∈ Rn×M , C(t) ∈ Rq×n and D(t) ∈ Rq×M are continu-

ous functions of t. Systems like (2.6) are linear time varying system. If parameters

A,B,C ans D in (2.6) are constant which does not depends on t, the system is called

the “linear time invariant (LTI) system”. In the time-invariant case, system (2.6)

becomes

ẋ = Ax+Bu

y = Cx+Du, t ≥ t0, (2.7)

where A ∈ Rn×n, B ∈ Rn×M , C ∈ Rq×n, and D ∈ Rq×M are all constant system
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matrices. In this case, the state solution can be explicitly expressed as

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (2.8)

Gain matrix decomposition Leader-following systems to be discussed in this the-

sis are LTI systems. Usually, in control input signal, there exists one or more gains

making the control input signal work. Introducing an important system characteri-

zations for linear system which is useful to the later control design development.

Assume that all leading principal minors of the gain matrix Kp are nonzero 2.

The LDU decomposition of Kp exists and can be employed for adaptive control of

the plant (2.7) [42].

Let ∆i, i = 1, 2, . . . ,M be the leading principle minors of Kp, The following

proposition gives the key result of the LDU decomposition.

Proposition 2.1. (LDU decomposition) A matrix Kp ∈ RM×M with all its leading

principle minors being nonzero has a unique decomposition:

Kp = LD∗U (2.9)

for some M×M unit(i.e., with all diagonal elements being 1) lower triangular matrix

L and unit upper triangular matrix U , and

D∗ = diag {d∗1, d∗2, . . . , d∗M} = diag

{
∆1,

∆2

∆1

, . . . ,
∆M

∆M−1

}
. (2.10)

This is the well-known LDU decomposition of a nonsingular matrix with nonzero

2The kth leading principal minor of a matrix A = aij ∈ RM×M is det


a11 . . . a1k
...

...

ak1 . . . akk

 , k =

1, 2, . . . ,M.
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leading principal minors.

2.2 Signal Measures

In order to have a unique measurement for vector signals, a new concept called

“norm” is defined. Consider a vector signal x(t) = [x1(t), . . . , xn(t)]T ∈ Rn. x(t) =

[x1(t), . . . , xn(t)]T is a vector at any t, and is a vector function as t changes. Vector

norms can measure vectors, and while function norms can measure vector functions.

Definition 2.1. A real-valued function ‖·‖ on linear space S is a norm if

(i) ‖x‖ ≥ 0 for all x ∈ S and ‖x‖ = 0 only if x = 0;

(ii) ‖βx‖ = |β| ‖x‖ for all x ∈ S and any scalar β; and

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ S.

Since in control systems there exist many signal vectors that need to be measured,

it is imperative to introduce signal norms before we develop a adaptive control scheme.

The L1, L2, and L∞ norms are defined below as

L1 = {x(t) ∈ Rn : ‖x(·)‖1 <∞}, (2.11)

L2 = {x(t) ∈ Rn : ‖x(·)‖2 <∞}, (2.12)

L∞ = {x(t) ∈ Rn : ‖x(·)‖∞ <∞}, (2.13)

where the vector signal norms are
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‖x(·)‖1 =

∫ ∞
0

(|x1(t)|+ · · ·+ |xn(t)|)dt, (2.14)

‖x(·)‖2 =

√∫ ∞
0

x21(t) + · · ·+ xn1 (t), (2.15)

‖x(·)‖∞ = sup
t≥0

max
1≤i≤n

|xi(t)|. (2.16)

Remark 2.1 By definition of L∞, we can conclude that x(t) ∈ L∞ iff x(t) is bounded,

i.e., x(t) ∈ L∞ and x(t) is bounded are equivalent. �

2.3 System Stability

The concept of stability is crucial to control system design. An unstable control

system is useless and dangerous. The methods available to examine the poles depend

on the representation of the system model. If the classical approach is taken then the

poles of the transfer function can be examined. If the modern approach is used then

the eigenvalues, which are the poles, of the system matrix A can be analyzed. Either

approach can quickly give information on whether or not the system is inherently

stable, marginally stable, or unstable.

For adaptive control systems stability must be defined another way since knowl-

edge of the system parameters are unavailable and possibly changing. The work of

Alexander Mikhailovich Lyapunov, who presented definitions and theorems for study-

ing the stability of solutions to a broad class of differential equations, has been used

extensively to address this problem [16]. The work of Lyapunov relies on defining an

energy function, formally known as a Lyapunov function candidate, that can be used

to determine the stability of a system without having to solve for the solutions to the

system explicitly. Originally, this Lyapunov function was purely the total mechanical
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or electrical energy and therefore by nature positive definite.

Lyapunov indirected method can be found in many textbooks about nonlinear

system like [42], [38].

Stability definitions Since all systems to be discussed in this thesis are LTI sys-

tems, we will introduce the definition of stability for LTI [2]

Definition 2.2. The response of ẋ(t) = Ax(t) is marginally stable or stable in the

sense of Lyapunov if every finite initial state x0 excites a bounded response. It is

asymptotically stable if every finite state excites a bounded response which, in addition,

approaches 0 as t→∞.

Usually, we do not use the definition to check the stability of a LTI system.

Theorem 2.1 can help us to check the stability of a LTI system more quickly.

Theorem 2.1. The equation ẋ(t) = Ax(t) is marginally stable if and only if all eigen-

values of A have zero or negative real parts and those with zero real parts are simple

roots of the minimal polynomial of A. The equation ẋ(t) = Ax(t) is asymptotically

stable if and only if all eigenvalues of A have negative real parts.

Also in the Lyapunov sense, we can check the stability of matrix A by Lyapunov

theorem

Theorem 2.2. The equation ẋ = Ax, A ∈ Rn×n, x ∈ Rn is asymptotically stable

if and only if for every positive definite Q = QT ∈ Rn×n, the Lyapunov equation

ATP + PA = −Q has a unique and positive definite solution P = P T ∈ Rn×n.

Theorem 2.1 and Theorem 2.2 are theorems which we usually used to check the

stability of close-looped system by classical control. But for adaptive control, The-

orem 2.1 and Theorem 2.2 would not work because in adaptive control there exist
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uncertainty on the dynamics model, we have no access to get a set of accurate system

parameters. So we introduce a new method called Lyapunov direct method to help

us check the system stability when applying adaptive control.

Theorem 2.3. (Lyapunov direct method) If in some Ball B(h) there exists a positive

definite function V (x, t) with V̇ ≤ 0, then the equilibrium state xe = 0 of the the

system ẋ = Ax is stable. If, in addition, V (x, t) is decrescent, then it is uniformly

stable.

Based on definitions and theorems presented before, Barbalart lemma is intro-

duced. This lemma makes the precess to analyze system stability more easier.

Lemma 2.1. (Barbalat Lemma)If a scalar function ḟ(t) ∈ L∞, f(t) ∈ L2, then

limt→ f(t) = 0. [42]

2.4 Classical Control

The first thing we need to know about the classical control is the feedback is

pervasive. Feedback is a very crucial method to stabilize the unstable system stable

[1]. Usually, the output y(t) is fed back and compared with the input u(t). The block

diagram of the most classical feedback control system is shown in Fig 2.1. System

transfer function can be computed by block diagrams like Fig 2.1. Remind that in Fig

2.1, k is a constant through the whole control process. Whether control parameter k

can update or not is one of a big differences with adaptive control and the classical

control.

With the state space representation it is convenient to feedback the state variables

x(t) to the control signal u(t) instead of an input signal y(t). With this configuration

each state variable can be adjusted by a gain vector K to give the desired closed loop
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−

u(t)
k G(s)

y(t)

Figure 2.1: Block diagram of a system with output feedback and an adjustable pream-
plifier gain k.

poles. A typical control system represented with the state space representation uti-

lizing state feedback is displayed in Figure 2.2 [29] where double error lines represent

vector signals.

2.5 Adaptive Control

Unlike classical control systems, adaptive control system has capability to payload

system uncertainties including unknown system structures, system parameters and

other environmental uncertainties. An adaptive controller structure is designed based

on a known parameter case, however, the value of the adaptive controller parameter is

updated by parameter estimator instantly. Combining an adaptive controller with an

parameter estimators, adaptive control can achieve a desired performance by dealing

with variety kind of uncertainties.

There are two approaches to adaptive control design. The first one is direct adap-

+

+

r(t)
B

u(t) +

+

Ẋ ∫
A

X

−K

C
y(t)

Figure 2.2: State space representation of a plant with state feedback. Reproduced
from [29].
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tive control. For direct adaptive control, the parameter estimator estimates controller

parameters online directly according to the plant information of input/output. Plant

parameters are parametrized implicitly in terms of a set of parameters of a nominal

controller. The second approach is indirected adaptive control and is characterized

by estimating the parameters of the plant first. Then based on some design equation

to calculate control parameters to achieve the desired performance. Direct adaptive

control will be employed in this thesis.

2.6 Graph Theory and Communication Topology

Information exchange between agents can be represented as a graph. We give

some basic terminology and definitions from graph theory [6,7] which will be used in

Chapter 4.

Definition 2.3. By a graph G we mean a finite set V(G) = (vi, . . . , vn), whose ele-

ments are called nodes or vertexes, together with set E(G ⊂ V × V), whose elements

are called edges. An edge is therefore an ordered pair of distinct vertexes.

Definition 2.4. A graph is called direct graph if and only if for all (vi, vj) ∈ E(G),

the edge (vj, vj) ∈ E(G), then the graph is said to be undirected. Otherwise, it is called

a directed graph.

Definition 2.5. An edge (vi, vj) is said to incoming with respect to vj and outgoing

with respect to vi) and can be represented as an arrow with vertex vi as its tail and

vertex as its head.

Definition 2.6. A path of length r in a directed graph is a sequence (v0, . . . , vr) of

r + 1 distinct vertexes such that for every i ∈ {0, . . . , r − 1}, (vi, vi+1) is an edge.
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Figure 2.3: An illustrative of a multi-agent system with five followers and one leader
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Chapter 3

Adaptive Leader-Following Control

The final objective for this thesis is to design a distributed adaptive control scheme

of leader-following consensus problem for multi-agent system. However, before going

that far, it is important for us to know how adaptive control works for systems in-

cluding one follower and one leader. Fully understand this basic problem is important

for us to develop a more complex controller for multi-agent systems in Chapter 4.

3.1 Problem Statement

For state tracking control problems, there are two different common cases we are

interested in. One is the control problem with a single input, the other one is the

control problem with multiple inputs. Adaptive control of single input is easier and

more fundamental than multiple input cases and adaptive control of multiple input

systems are more significant and practical. In this chapter, both of these two control

problems will be discussed.

18
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3.1.1 Adaptive Control of Single Input Systems

Consider a linear time-invariant follower plant in state-space form

ẋ(t) = Ax(t) + bu(t) + bd(t), x(t) ∈ Rn, u(t) ∈ R, t ≥ 0 (3.1)

with x(0) = x0, where A ∈ Rn×n is an unknown constant parameter matrix, and

b ∈ Rn is an unknown constant parameter vector and d(t) is an external unknown

bounded disturbance. The state x(t) ∈ Rn is measurable. The leader dynamic system

is give by

ẋm(t) = Amxm(t) + bmum(t) + bmdm(t), xm(t) ∈ Rn, um(t) ∈ R, t ≥ 0 (3.2)

where Am is an unknown constant parameter matrix and bm is an unknown constant

parameter vector. xm(t) and um(t) are available for measurement and bounded. dm(t)

is an bounded disturbance acting on the leader dynamic system.

Regarding by the disturbances d(t) and dm(t), there are three different cases in

total.

Case I: Single input systems without disturbances In this case, d(t) = 0 and

dm(t) = 0. There exist no disturbance in the multi-agent system. The dynamic of

the follower and the leader can be re-presented as

ẋ(t) = Ax(t) + bu(t), x(t) ∈ Rn, u(t) ∈ R, t ≥ 0 (3.3)

ẋm(t) = Amxm(t) + bmum(t), xm(t) ∈ Rn, um(t) ∈ R, t ≥ 0 (3.4)



20

Case II: Single input systems with a disturbance acting on the followers

In this case, d(t) 6= 0 and dm(t) = 0. The dynamic plant of the follower is

ẋ(t) = Ax(t) + bu(t) + bd(t), x(t) ∈ Rn, u(t) ∈ R, t ≥ 0 (3.5)

d(t) ∈ R is an unknown external disturbance acting on the follower system. The

disturbance should be bounded and satisfies

d(t) = d0 +

q∑
β=1

dβfβ(t) (3.6)

where d0 and dβ are unknown constant and fβ(t) is a bunch of known continuous

bounded functions for β = 1, 2, . . . , q for some q ≥ 0. The dynamic of the given leader

remains as (3.4).

Case III: Single input systems with disturbances acting on both the leader

and the followers In this case, d(t) 6= 0 and dm(t) 6= 0. When d(t) and dm(t) are

not equal zero, the follower plant is (3.5). The leader dynamic is

ẋm(t) = Amxm(t) + bmum(t), xm(t) ∈ Rn, um(t) ∈ R, t ≥ 0 (3.7)

where

dm(t) = dm0 +

qm∑
β=1

dmβfmβ(t) (3.8)

with dm0 and dmβ are unknown constant and fmβ(t) are some known continuous

bounded functions for β = 1, 2, . . . , p for some p ≥ 0.

The control objective is to design a bounded state feedback control signal u(t) to

make the follower system state x(t) bounded and tracking the leader system xm(t)

asymptotically, i.e., limt→∞(x(t)− xm(t)) = 0.
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3.1.2 Adaptive Control of Multiple Inputs Systems

In section 3.1.1, the control input u(t) and the leader reference signal um(t) are

scalars, and parameters b and bm are vectors. However, in practical engineering

applications, there are many multiple inputs systems with u ∈ Rm,m 6= 1.

Consider a follower plant expressed as (3.9), and the leader is given as (3.10)

ẋ(t) = Ax(t) +Bu(t) +Bd(t), x(t) ∈ Rn, u(t) ∈ Rp (3.9)

ẋm(t) = Amxm(t) +Bmum(t) +Bmdm(t), xm(t) ∈ Rn, um(t) ∈ Rm (3.10)

where A ∈ Rn×n is an unknown parameter matrix and Am ∈ Rn×n is an asymp-

totically stable parameter matrix. However, B ∈ Rn×p and Bm ∈ Rn×m become to

parameter matrices rather than parameter vectors. Although the dimension of B and

Bm are changed, all the parameters matrices here including A,Am, B and Bm remain

unknown in this section. xm(t) and um(t) are available for measurement and bounded

and x(t) is measured.

Being similar to single input system, classify multiple inputs systems into three

cases regarding by the existence of the disturbances.

Case I: Multiple inputs systems without disturbances d(t) = 0 and dm(t) =

0. In this situation, the one leader-one follower system degenerate into

ẋ(t) = Ax(t) +Bu(t), x(t) ∈ Rn, u(t) ∈ Rp, t ≥ 0 (3.11)

ẋm(t) = Amxm(t) +Bmum(t), xm(t) ∈ Rn, um(t) ∈ Rm, t ≥ 0 (3.12)

Case II: Multiple inputs systems with a disturbance acting on the follower

systems d(t) 6= 0 and dm(t) = 0. The dynamic plant of the follower is
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ẋ(t) = Ax(t) +Bu(t) +Bd(t), x(t) ∈ Rn, u(t) ∈ Rp, t ≥ 0 (3.13)

d(t) ∈ Rp is an unknown external disturbance acting on the follower system. The

disturbance should be bounded and satisfies

d(t) = d0 +

q∑
β=1

dβfβ(t) (3.14)

where d0 ∈ Rp and dβ ∈ Rp are unknown constant vectors and fβ(t) are a bunch of

known continuous bounded functions for β = 1, 2, . . . , q for some q ≥ 0. The given

leader remains as

ẋm(t) = Amxm(t) +Bmum(t), xm(t) ∈ Rn, um(t) ∈ Rm, t ≥ 0 (3.15)

Case III: Single input systems with disturbance acting on both leader and

follower d(t) 6= 0 and dm(t) 6= 0. the follower plant is (3.13). The dynamic of the

given leader is

ẋm(t) = Amxm(t) +Bmum(t) +Bmdm(t), xm(t) ∈ Rn, um(t) ∈ Rm, t ≥ 0 (3.16)

where

dm(t) = dm0 +

q∑
β=1

dmβfmβ(t) (3.17)

with dm0 ∈ Rm and dmβ ∈ Rm are unknown constant and fmβ(t) are some known

continuous bounded functions for β = 1, 2, . . . , q for some p ≥ 0.

The control objective is to design a bounded control signal u(t) to make the

follower system state x(t) bounded and track the leader system state xm(t) asymp-

totically.
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3.2 Adaptive Following Control Design for Single

Input Systems

In this section, we will solve the single input system leader-following state tracking

problem. The single input system without disturbance will be solved first which in-

cludes the basic principle of the leader-following state tracking problem. Disturbance

rejection is developed in Section 3.2.4.

3.2.1 Design Conditions

As stated in Section 3.1.1, the control objective is to design a bounded state

feedback control signal u(t) to make the follower system state x(t) bounded and

tracking the leader system xm(t) asymptotically.

To meet the control objective, we assume

(A3.1) all the eigenvalues of Am are in the open left-half complex plane;

(A3.2) um(t) is bounded and piecewise continuous;

(A3.3) there exist two constant vectors k∗1 ∈ Rn and k∗3 ∈ Rn and a non-zero constant

scalars k∗2 ∈ R, k∗4 ∈ R such that the following equations are satisfied:

Ae = A+ bk∗T1 , bm = bk∗2

Am = A+ bk∗T3 , be = bk∗4 , (3.18)

where Ae ∈ Rn×n is a stable and known matrix and be ∈ Rn is a known vector;

(A3.4) sign[k∗4], the sign of the parameter k∗4, is known;
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Assumptions (A3.1) and (A3.2) are for a stable, well-defined reference system with

a bounded output ym(t). Assumption (A3.3) is the so-called matching condition such

that if the parameters of Am, bm, A and b are known and (3.18) is satisfied then the

control law

u∗(t) = k∗T1 (x(t)− xm(t)) + k∗2um(t) + k∗T3 xm(t) (3.19)

achieves the control objectives: the closed-loop system becomes

ẋ(t) = Ax(t) + b(k∗T1 (x(t)− xm(t)) + k∗2um(t) + k∗T3 xm(t))

= (A+ bk∗T1 )(x(t)− xm(t)) + (A+ bk∗T3 )xm(t) + bk∗2um(t)

= Ae(x(t)− xm(t)) + Amxm(t) + bmum(t) (3.20)

whose state vector x(t) belongs to L∞, and the tracking error e(t) = x(t) − xm(t)

satisfies:

ė(t) = Aee(t), e(0) = x(0)− xm(0) (3.21)

which indicates that limt→∞ e(t) = 0 exponentially. So that with the nominal con-

troller (3.19) , the desired control objective can be achieved.

3.2.2 Adaptive Control Laws

In our problem, the parameters of A, b, Am and bm are unknown, so (3.19) can not

be used for control. In this case an adaptive controller which has the same structure

of (3.19) is to be used, whose structure is given as

u(t) = kT1 (t)(x(t)− xm(t)) + k2(t)um(t) + kT3 (t)xm(t) (3.22)
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where k1(t), k2(t) and k3(t) are the estimates of k∗1, k
∗
2 and k∗3 respectively. The de-

sign task now is to choose adaptive laws update these estimates so that the control

objective is still achievable even all the four parameters are unknown.

To be specific, the adaptive laws to update the control parameters are proposed

as

˙̃k1(t) = k̇1(t) = −sign[k∗4]Γe(t)eT (t)Pbe (3.23)

˙̃k2(t) = k̇2(t) = −sign[k∗4]γum(t)eT (t)Pbe (3.24)

˙̃k3(t) = k̇3(t) = −sign[k∗4]Ψxm(t)eT (t)Pbe (3.25)

where P ∈ Rn×n is a positive definite matrix satisfying ATe P + PAe = −Q, for any

chosen Q ∈ Rn×n being constant and Q = QT > 0. Γ ∈ Rn×n,Ψ ∈ Rn×n are constant

matrices, and Γ = ΓT > 0,Ψ = ΨT > 0, γ > 0 is a constant scalar. k1(0), k2(0) and

k3(0) are arbitrary.

In summary, according to the previous development, we now present the following

result.

Theorem 3.1. The adaptive controller (3.22), with the adaptive laws (3.23), (3.24)

and (3.25), applied to the plant (3.3) guarantees that all closed-loop signals are bounded

and the tracking error e(t) = x(t) − xm(t) goes to zero as t goes to infinity, i.e.,

limt→∞ e(t) = 0.
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3.2.3 Stability Analysis

To prove Theorem 3.1, we see

u(t) = u(t)− u∗(t) + u∗(t)

= (k1(t)− k∗1)T (x(t)− xm(t)) + (k2(t)− k∗2)um(t)

+ (k3(t)− k∗3)Txm(t) + u∗(t), (3.26)

and then we derive the adaptive control based on the tracking error equation

ė(t) = Aee(t) + b(k1(t)− k∗1)T e(t) + b(k2(t)− k∗2)um(t) + b(k3(t)− k∗3)Txm(t)

= Aee(t) + be

(
1

k∗4
k̃T1 (t)e(t) +

1

k∗4
k̃2(t)um(t) +

1

k∗4
k̃T3 (t)xm(t)

)
(3.27)

where

k̃1(t) = k1(t)− k∗1, k̃2(t) = k2(t)− k∗2, k̃3(t) = k3(t)− k∗3 (3.28)

are parameter errors.

Since the adaptive laws for k1(t), k2(t) and k3(t) are chosen to be dynamics from

some adaptive laws, the state vector of the closed-loop error system is

ec(t) = (eT (t), k̃T1 (t), k̃2(t), k̃
T
3 (t))T ∈ R3n+1. (3.29)

We choose a positive definite function as a Lyapunov function candidate

V (ec) = eTPe+
1

|k∗4|
k̃T1 Γ−1k̃1 +

1

|k∗4|
k̃22γ

−1 +
1

|k∗4|
k̃T3 Ψ−1k̃3 (3.30)

as a measurement of the system errors. As stated in the adaptive laws (3.23)-(3.25),
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P ∈ Rn×n is positive definite and satisfies:

ATe P + PAe = −Q < 0. (3.31)

Parameter matrices Γ and Ψ are symmetric positive definite, and parameter γ is a

positive scalar as aforementioned in the previous Subsection 3.2.2.

Compute the time derivative of V (ec)

V̇ =
d

dt
V (ec)

=

(
∂V (ec)

∂e

)T
ė(t) +

(
∂V (ec)

∂k̃1

)T
˙̃k1(t) +

(
∂V (ec)

∂k̃2

)
˙̃k2(t) +

(
∂V (ec)

∂k̃3

)T
˙̃k3(t)

= 2eT (t)P ė(t) +
2

|k∗4|
k̃T1 (t)Γ−1 ˙̃k1(t) + +

2

|k∗4|
k̃2(t)γ

−1 ˙̃k2(t) +
2

|k∗4|
k̃T3 (t)Ψ−1 ˙̃k3(t)

(3.32)

Substituting (3.27) and (3.31) in (3.32), we have

V̇ = −eT (t)Qe(t) + eT (t)Pbe
2

k∗4
k̃T1 (t)e(t) + eT (t)Pbe

2

k∗4
k̃2(t)um(t)

+ eT (t)Pbe
2

k∗4
k̃T3 (t)xm(t) +

2

|k∗4|
k̃T1 Γ−1 ˙̃k1(t) +

2

|k∗4|
k̃2(t)γ

−1 ˙̃k2(t)

+
2

|k∗4|
k̃T3 (t)Ψ−1 ˙̃k3(t) (3.33)

By the adaptive laws, (3.23)-(3.25), (3.33) becomes

V̇ = −eT (t)Qe(t) ≤ −qm ‖e(t)‖22 ≤ 0 (3.34)

where qm > 0 is the minimum eigenvalue of Q. From here on, the desired properties

of the proposed adaptive laws are obvious:

(i) V > 0 and V̇ ≤ 0 implies that the equilibrium state ec = 0 of the closed-



28

loop system consisting of (3.27), (3.23), (3.24) and (3.25) is uniformly stable

and its solution ec(t) is uniformly bounded, which gives the boundedness of

x(t), k1(t), k2(t) and k3(t), and in turn of the boundedness of ė(t) because of

(3.27);

(ii) (3.34) implies e(t) ∈ L2;

(iii) with e(t) ∈ L2∩L∞ and ė(t) ∈ L∞, applying Barbalat lemma, we conclude that

limt→∞ e(t) = 0. 5

From the results demonstrated above, all the properties mentioned in Theorem 3.1

are proved.

3.2.4 Disturbance Rejection

In Section 3.1.1 Case II has a disturbance acting on the follower, and Case III has

disturbances acting on the leader and the followers respectively. To reject the effect

of unknown disturbances so that the desired system performance can be achieved,

certain matching conditions should be satisfied and additional compensation term

should be introduced to the controller (3.22).

Design for the disturbance acting on the follower system(Case II) When

Assumptions (A3.1)-(A3.4) are satisfied, the ideal control law (3.19) is modified as

u(t) = k∗1(x(t)− xm(t)) + k∗2um(t) + k∗3xm(t) + k∗5(t), (3.35)

where k∗5 = −d(t) = −d0 −
∑q

β=1 dβfβ(t), which leads to the desired closed-loop

system

ẋ(t) = Ae(x(t)− xm(t)) + Amxm(t) + bmum(t) (3.36)
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an in turn the desired tracking error system ė(t) = Aee(t) making limt→∞ e(t) = 0,

as Ae is stable.

When the parameters A, b, Am, bm and the value of d(t) are unknown, the adaptive

version of the controller (3.35) is used:

u(t) = kT1 (t)(x(t)− xm(t)) + k2(t)um(t) + kT3 (t)xm(t) + k5(t), (3.37)

where ki(t) for i = 1, 2, 3 are the estimates of k∗i , respectively, and

k5(t) = k50(t) +

q∑
β=1

k5β(t)fβ(t) (3.38)

with k5β(t) being the estimate of k∗5β = −dβ, β = 0, 1, 2, · · · , q.

To develop adaptive laws for ki(t) for i = 1, 2, 3 and k5β(t), β = 0, 1, 2, . . . , q, we

first derive an system error equation in terms of the tracking error e(t) = x(t)−xm(t)

and the parameter errors

k̃i(t) = ki(t)− k∗i , i = 1, 2, 3,

k̃5β(t) = k5β(t)− k∗5β, β = 0, 1, 2, . . . , q. (3.39)

Let k̃5(t) = k5(t)− k∗5. Using (3.37),(3.38) and (3.39), we obtain

ẋ(t) = Ax(t) + b(kT1 (t)(x(t)− xm(t)) + k2(t)um(t) + kT3 (t)xm(t) + k5(t))

= Ae(x(t)− xm(t)) + Amxm(t) + bmum(t)

+ be
1

k∗4
(k̃T1 (t)(x(t)− xm(t)) + k̃2(t)um(t) + k̃T3 xm(t) + k̃5(t)) (3.40)
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Substituting (3.7) into (3.40), we have the tracking error equation

ė(t) = Aee(t) + be
1

k∗4
(k̃T1 (t)(x(t)− xm(t)) + k̃2(t)um(t) + k̃T3 xm(t) + k̃5(t)). (3.41)

Based on this error equation, we choose the adaptive laws as

k̇1(t) = −sign[k∗4]Γ1e(t)e
T (t)Pbe, (3.42)

k̇2(t) = −sign[k∗4]γ2um(t)eT (t)Pbe, (3.43)

k̇3(t) = −sign[k∗4]Ψ3xm(t)eT (t)Pbe, (3.44)

k̇50(t) = −sign[k∗4]γ50e
T (t)Pbe, (3.45)

k̇5β(t) = −sign[k∗4]γ5βfβ(t)eT (t)Pbe, β = 1, 2, · · · , q, (3.46)

where Γ1 = ΓT1 > 0, γ2 > 0,Ψ3 = ΨT
3 > 0 and γ5β > 0, β = 0, 1, 2, · · · , q are

adaptation gains, and P = P T > 0 satisfies (3.31).

To analysis the close-loop system stability, choose a positive definite function as

Lyapunov candidate function which is

V = eTPe+
1

|k∗4|
k̃T1 Γ−11 k̃1 +

1

|k∗4|
k̃22γ

−1
2 +

1

|k∗4|
k̃T3 Ψ−13 k̃3 +

1

|k∗4|

q∑
β=0

k̃25βγ
−1
5β (3.47)

Taking time derivative and apply the adaptive laws (3.42) - (3.46) into its derivative.

The time derivative of (3.47)

V̇ = −eT (t)Qe(t) + eT (t)Pbe
2

k∗4
k̃T1 (t)e(t) + eT (t)Pbe

2

k∗4
k̃2(t)um(t)

+ eT (t)Pbe
2

k∗4
k̃T3 (t)xm(t) + eT (t)Pbe

2

k∗4
k̃5β(t) +

q∑
β=1

eT (t)Pbe
2

k∗4
k̃5β(t)fβ(t)

+
2

|k∗4|
k̃T1 Γ−1 ˙̃k1(t) +

2

|k∗4|
k̃2γ

−1 ˙̃k2(t) +
2

|k∗4|
k̃T3 Ψ−1 ˙̃k3(t)

+
2

|k∗4|
k̃50γ

−1
50

˙̃k50(t) +

q∑
β=1

2

|k∗4|
k̃50γ

−1
5β

˙̃k5β(t) (3.48)
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By the adaptive laws (3.42)-(3.46), (3.48) becomes to

V̇ = −eT (t)Qe(t), Q = QT > 0 (3.49)

from which we can obtain the desired system properties, i.e., we can also have the

result of Theorem 3.1. 5

Remark 3.1 The disturbance d(t) in (3.3) is matched to the control input u(t), that

is, both act on the plant dynamics through the same vector b. If they are not matched,

for example, for the plant

ẋ(t) = Ax(t) + bu(t) + bd(d0 + d1f(t)), (3.50)

where b and bd ∈ Rn are linear independent, the above adaptive design may not be

able to ensure asymptotic state tracking. �

Design for disturbance acting on both leader and follower systems (Case

III) For the purpose of designing an adaptive control scheme to address the dis-

turbance acting on both leader and follower systems, we assume all the Assumptions

(A3.1)-(A3.4) aforementioned are satisfied. In order to reject the disturbance so that

the desired system performance can be achieved, the ideal controller with disturbance

compensator is chosen as:

u(t) = k∗T1 (x(t)− xm(t)) + k∗2um(t) + k∗T3 xm(t) + k∗5(t) (3.51)

which has the same form with the ideal controller chosen in the last paragraph.

However, when d(t) and dm(t) present in (3.6) and (3.7) respectively at the same
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time, we re-define

k∗5 = k∗2dm(t)− d(t)

= (k∗2dm0 − d0) +

qm∑
β=1

k∗2dmβfmβ(t)−
q∑

β=1

dβfβ(t)

= k∗50 +

qm∑
β=1

k∗5mβfmβ(t) +

q∑
β=1

k∗5βfβ(t) (3.52)

with

k∗50 = k∗2dm0 − d0, k∗5mβ = k∗2dmβ, k
∗
5β = −dβ. (3.53)

The ideal controller (3.51) with the re-defined k∗5 leads (3.5) to a desired system

closed-loop system

ẋ(t) = Ae(x(t)− xm(t)) + Amxm(t) + bmum(t) + bmdm(t) (3.54)

In result, we obtain limt→∞ e(t) = 0, since ė(t) = ẋ(t) − ẋm(t) = Aee(t) and Ae is

stable.

When the parameters A, b, Am, bm and the value of disturbance d(t) are unknown,

we use the adaptive version of controller (3.50) as

u(t) = kT1 (t)(x(t)− xm(t)) + k2(t)um(t) + kT3 (t)xm(t) + k5(t) (3.55)

where

k5(t) = k50(t) +

qm∑
β=1

k5mβ(t)fmβ(t) +

q∑
β=1

k5β(t)fβ(t) (3.56)

is the estimate of k∗5.

To develop adaptive laws for ki(t) for i = 1, 2, 3, k5β(t) for β = 0, 1, 2, . . . , q and
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k5mβ(t) for β = 1, 2, . . . , p, derive the tracking error e(t) = x(t)− xm(t) first and the

parameter errors

k̃i(t) = ki(t)− k∗i , i = 1, 2, 3,

k̃5β(t) = k5β(t)− k∗5β, β = 0, 1, 2, . . . , q,

k̃5mβ(t) = k5mβ(t)− k∗5mβ, β = 1, 2, . . . , qm. (3.57)

Let k̃5(t) = k5(t)− k∗5. Substituting (3.50), (3.56) and (3.57) into (3.54), we obtain

ẋ(t) = Ae(x(t)− xm(t)) + be
1

k∗4
(k̃T1 (t)(x(t)− xm(t)) + k̃2(t)um(t) + k̃T3 xm(t) + k̃5(t))

+ Amxm(t) + bmum(t) + bmdm(t) (3.58)

With e(t) = x(t)− xm(t), we have the tracking error equation

ė(t) = Aee(t) + be
1

k∗4
(k̃T1 (t)(x(t)− xm(t)) + k̃2(t)um(t) + k̃T3 xm(t) + k̃5(t)). (3.59)

Based on (3.59), we choose the adaptive laws as

k̇1(t) = −sign[k∗4]Γ1e(t)e
T (t)Pbe, (3.60)

k̇2(t) = −sign[k∗4]γ2um(t)eT (t)Pbe, (3.61)

k̇3(t) = −sign[k∗4]Ψ3xm(t)eT (t)Pbe, (3.62)

k̇50(t) = −sign[k∗4]γ50e
T (t)Pbe, (3.63)

k̇5β(t) = −sign[k∗4]γ5jfβ(t)eT (t)Pbe, β = 1, 2, · · · , qm, (3.64)

k̇5mβ(t) = −sign[k∗4]δ5mβfmβ(t)eT (t)Pbe, β = 1, 2, · · · , p (3.65)

Analysis the closed-loop system stability by Lyapunov method. Choose a positive
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definite function as

V = eTPe+
1

|k∗4|
k̃T1 Γ−11 k̃1 +

1

|k∗4|
k̃22γ

−1
2 +

1

|k∗4|
k̃T3 Ψ−13 k̃3 +

1

|k∗4|

q∑
β=0

k̃25βγ
−1
5β

+
1

|k∗4|

qm∑
β=1

k̃25mβδ
−1
5mβ (3.66)

has the negative semidefinite time derivative after substituting (3.60) -(3.65)

V̇ = −eT (t)Qe(t), Q = QT > 0 (3.67)

from which, we can obtain all the desired system properties, i.e, the control objective

is achieved. 5

3.3 Adaptive Following Control Design with Mul-

tiple Inputs

In this section, we focus on the leader-following consensus problem with multiple

inputs. Case I in Section 3.1.2 will be solved first. Case II and Case III in Section 3.1.2

with disturbances are developed in Section 3.3.4. In Section 3.3.5, an adaptive control

scheme is designed for multiple inputs systems based on the LDU decomposition.

3.3.1 Design Conditions

Recall that in Section 3.1.2, the control objective for the multiple inputs systems

is stated as to design a control input u(t) to make the follower system state x(t)

bounded and to track the leader state xm(t) asymptotically. In order to achieve this

control objective, several design conditions are presented as follows.

(A3.5) all the eigenvalues of Am are in the open left-half complex plane;
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(A3.6) um(t) is bounded and piecewise continuous;

(A3.7) there exist four parameter matrices K∗1 ∈ Rn×p, K∗2 ∈ Rp×m, K∗3 ∈ Rn×p and

K∗4 ∈ Rp×p such that the following equations are satisfied:

A+BK∗T1 = Ae, BK
∗
2 = Bm, A+BK∗T3 = Am, BK

∗
4 = Be, (3.68)

where Ae ∈ Rn×n is a stable and known matrix and Be ∈ Rn×p is a known

matrix;

(A3.8) there is a known matrix S ∈ Rp×p such that K∗4S is symmetric and positive

definite: Ms = K∗4S = (K∗4S)T = STK∗T4 > 0.

If the parameter of Am, Bm, A and B are known, (3.68) is satisfied, then the ideal

control law

u∗(t) = K∗T1 (x(t)− xm(t)) +K∗2um(t) +K∗T3 xm(t) (3.69)

results in the closed-loop system

ẋ(t) = Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t) (3.70)

whose state vector x(t) belongs to L∞, i.e., x(t) is bounded. The tracking error

e(t) = x(t)− xm(t) satisfies:

ė(t) = Aee(t), e(0) = x(0)− xm(0), (3.71)

so that limt→∞ e(t) = 0 exponentially since Ae is a stable matrix.
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3.3.2 Adaptive Control Scheme

When the parameters of A, b, Am and bm are unknown, update (3.69) to the adap-

tive version,

u(t) = KT
1 (t)(x(t)− xm(t)) +K2(t)um(t) +KT

3 (t)xm(t) (3.72)

where K1(t), K2(t) and K3(t) are the estimates of K∗1 , K
∗
2 and K∗3 respectively.

Choose the adaptive laws (3.73) - (3.75) to update K1(t), K2(t) and K3(t):

˙̃KT
1 = K̇T

1 (t) = −STBT
e Pe(t)e

T (t) (3.73)

˙̃K2 = K̇2(t) = −STBT
e Pe(t)u

T
m(t) (3.74)

˙̃KT
3 = K̇T

3 (t) = −STBT
e Pe(t)x

T
m(t) (3.75)

with S satisfying Assumption (A3.8) and P = P T > 0 satisfying ATe P+PAe = −Q <

0 for any chosen symmetric positive definite matrix Q. K1(0), K2(0) and K3(0) are

chosen arbitrarily.

Theorem 3.2. The adaptive controller (3.72) with the adaptive laws (3.73), (3.74)

and (3.75), applied to the system (3.11) guarantees that all closed-loop signals are

bounded and the tracking error e(t) = x(t)− xm(t) goes to zero as t goes to ∞.

3.3.3 Stability Analysis

In order to prove the Theorem 3.2, in another word, to prove that the closed-loop

system (3.11) with state feedback adaptive controller (3.72) is stable, we first define

the parameter error as

K̃1(t) = K1(t)−K∗1 , K̃2(t) = K2(t)−K∗2 , K̃3(t) = K3(t)−K∗3 . (3.76)
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Use (3.11) and (3.72) to obtain

ẋ(t) = Ax(t) +Bu(t)

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t)

+B(K̃T
1 (t)(x(t)− xm(t)) + K̃2(t)um(t) + K̃T

3 (t)xm(t))

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t)

+Be

(
K∗−14 K̃T

1 (t)e(t) +K∗−14 K̃2(t)um(t) +K∗−14 K̃T
3 (t)xm(t)

)
. (3.77)

Substituting (3.12) in ė(t) = x(t)− xm(t), we have the tracking error equation

ė(t) = Aee(t) +Be

(
K∗−14 K̃T

1 (t)e(t) +K∗−14 K̃2(t)um(t) +K∗−14 K̃T
3 (t)xm(t)

)
. (3.78)

Now K1(t), K2(t) and K3(t) are matrices so the state vector of the closed-loop

system is

ec(t) = (eT (t), k̃T11(t), . . . , k̃
T
1n(t), k̃T21(t), . . . , k̃

T
2m(t), k̃T31(t), . . . , k̃

T
3n(t))T ∈ R(2n+m)p+n

(3.79)

where k̃1i(t) ∈ Rp is the ith column of K̃T
1 (t), i = 1, 2, . . . , n. k̃2j(t) ∈ Rp is the jth

column of K̃2(t), j = 1, 2, . . . ,m, and k̃3q(t) ∈ Rp is the qth column of K̃T
3 (t), q =

1, 2, . . . , n, that is,

K̃T
1 (t) = (k̃11(t), . . . , k̃1n(t)) ∈ Rp×n,

K̃2(t) = (k̃21(t), . . . , k̃2m(t)) ∈ Rp×m,

K̃T
3 (t) = (k̃31(t), . . . , k̃3n(t)) ∈ Rp×n. (3.80)
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We choose the positive definite function

V (ec) = eTPe+
n∑
i=1

k̃T1iM
−1
s k̃1i +

n∑
j=1

k̃T2jM
−1
s k̃2j +

n∑
q=1

k̃T3qM
−1
s k̃3q (3.81)

as a measurement of these errors, where P ∈ Rn×n is constant, P = P T > 0 and

satisfies (3.31) for someQ ∈ Rn×n being constant andQ = QT > 0, andMs = MT
s > 0

satisfies the Assumption A3.8. With tr[M ] denoting the trace of a square matrix M ,

we express V (ec) as

V (ec) = eTPe+ tr[K̃1M
−1
s K̃T

1 ] + tr[K̃T
2 M

−1
s K̃2] + tr[K̃3M

−1
s K̃T

3 ] (3.82)

The time-derivative of V (ec) is

V̇ =

(
∂V (ec)

∂e

)T
ė(t) +

n∑
i=1

(
∂V (ec)

∂k̃1i

)T
˙̃k1i(t) +

m∑
j=1

(
∂V (ec)

∂k̃2j

)T

˙̃k2j(t)

+
n∑
q=1

(
∂V (ec)

∂k̃3q

)T

˙̃k3q(t)

= 2eT (t)P ė(t) + 2
n∑
i=1

k̃T1i(t)M
−1
s

˙̃k1i(t) + 2
n∑
j=1

k̃T2j(t)M
−1
s

˙̃k2j(t)+

2
n∑
q=1

k̃T3q(t)M
−1
s

˙̃k3q(t) (3.83)

= 2eT (t)P ė(t) + tr[K̃1(t)M
−1
s

˙̃KT
1 (t)] + tr[K̃T

2 (t)M−1
s

˙̃K2(t)] + tr[K̃3(t)M
−1
s

˙̃KT
3 (t)]

Substituting (3.78) and (3.31) in (3.83), we have

V̇ = −eT (t)Qe(t) + 2eT (t)PBeK
∗−1
4 K̃T

1 (t)e(t) + 2eT (t)PBeK
∗−1
4 K̃2(t)um(t)

+ 2eT (t)PBeK
∗−1
4 K̃T

3 (t)xm(t) + 2 tr[K̃1(t)M
−1
s

˙̃KT
1 (t)] + 2 tr[K̃T

2 (t)M−1
s

˙̃K2(t)]

+ 2 tr[K̃3(t)M
−1
s

˙̃KT
3 (t)]. (3.84)
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Using the definition Ms = K∗4S = MT
s > 0 and the properties that tr[M1M2] =

tr[M2M1], tr[M3] = tr[MT
3 ] for any matrices M1, M2 and M3 of appropriate dimen-

sions, we obtain

eT (t)PBeK
∗−1
4 K̃T

1 (t)e(t)

= tr[eT (t)PBeK
∗−1
4 K̃T

1 (t)e(t)] = tr[eT (t)PBeSM
−1
s K̃T

1 (t)e(t)]

= tr[e(t)eT (t)PBeSM
−1
s K̃T

1 (t)] = tr[K̃1(t)M
−1
s STBT

e Pe(t)e
T (t)] (3.85)

eT (t)PBeK
∗−1
4 K̃2(t)um(t)

= tr[eT (t)PBeK
∗−1
4 K̃2(t)um(t)] = tr[eT (t)PBeSM

−1
s K̃2(t)um(t)]

= tr[um(t)eT (t)PBeSM
−1
s K̃2(t)] = tr[K̃T

2 (t)M−1
s STBT

e Pe(t)u
T
m(t)] (3.86)

eT (t)PBeK
∗−1
4 K̃T

3 (t)xm(t)

= tr[eT (t)PBeK
∗−1
4 K̃T

3 (t)xm(t)] = tr[eT (t)PBeSM
−1
s K̃T

3 (t)xm(t)]

= tr[xm(t)eT (t)PBeSM
−1
s K̃T

3 (t)] = tr[K̃3(t)M
−1
s STBT

e Pe(t)x
T
m(t)] (3.87)

Apply adaptive laws (3.73), (3.74) and (3.75) into (3.84), combing with the facts

(3.86) and (3.87), we have,

V̇ = −eT (t)Qe(t) ≤ −qm ‖e(t)‖22 ≤ 0 (3.88)

Hence the equilibrium state ec = 0 of the closed-loop system consisting of (3.73),

(3.74), (3.75) and (3.78) is uniformly stable and its solution ec(t) is uniformly bounded.

That is, y(t), K1(t), K2(t), K3(t) and ė(t) all are bounded. Furthermore (3.88) im-

plies e(t) ∈ L2 and so limt→0 e(t) = 0. Theorem 3.2 is proved. 5
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3.3.4 Disturbance Rejection

To reject the effect of unknown disturbances so that the desired system perfor-

mance can be achieved, certain matching conditions should be satisfied and additional

compensation is introduced to the controller (3.69).

Case II and Case III in Section 3.1.2 are developed in the later two paragraphs

respectively.

Design for disturbance acting on follower systems (Case II) When Assump-

tions (A3.5)-(A3.8) are satisfied, the ideal control law (3.69) is modified as

u(t) = K∗1(x(t)− xm(t)) +K∗2um(t) +K∗3xm(t) + k∗5(t), (3.89)

where k∗5 = −d(t) ∈ Rp, which leads to the desired closed-loop system

ẋ(t) = (A+BK∗T1 )(x(t)− xm(t)) + (A+BK∗T3 )xm(t) +BK∗2um(t) +Bk∗5 +Bd(t)

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t) (3.90)

an in turn the desired tracking error system ė(t) = Aee(t) making limt→∞ e(t) = 0,

as Ae is stable.

When the parameters of A, B, Am, Bm and the value of d(t) are unknown, update

the controller (3.89) to an adaptive version which is

u(t) = K1(t)
t(x(t)− xm(t)) +K2(t)um(t) +KT

3 (t)xm(t) + k5(t), (3.91)
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where Ki(t), i = 1, 2, 3 are the estimates of K∗i , respectively, and

k5(t) = k50(t) +

q∑
β=1

k5β(t)fβ(t) (3.92)

with k5β(t) being the estimate of k∗5β = −dβ for β = 0, 1, . . . , q.

To develop adaptive laws for Ki(t) for i = 1, 2, 3, and k5β(t) for β = 0, 1, 2, · · · , q,

firstly we derive an error equation in terms of the tracking error e(t) = x(t)− xm(t)

and the parameter errors

K̃i(t) = Ki(t)−K∗i , i = 1, 2, 3,

k̃5β(t) = k5β(t)− k∗5β, β = 0, 1, 2, · · · , q. (3.93)

Substituting (3.89) into (3.13) with the definition of parameter errors, then we

obtain

ė(t) = Aee(t)+BeK
∗−1
4 (K̃T

1 (t)(x(t)−xm(t))+ K̃2(t)um(t)+ K̃T
3 xm(t)+ k̃5(t)) (3.94)

where k̃5(t) = k5(t)− k∗5.

Based on this error equation, we choose the adaptive laws as

˙̃KT
1 = K̇T

1 (t) = −STBT
e Pe(t)e

T (t) (3.95)

˙̃K2 = K̇2(t) = −STBT
e Pe(t)u

T
m(t) (3.96)

˙̃KT
3 = K̇T

3 (t) = −STBT
e Pe(t)x

T
m(t) (3.97)

˙̃K50 = K̇50(t) = −STBT
e Pe(t) (3.98)

˙̃K5β = K̇5β(t) = −STBT
e Pe(t)f

T
β (t) (3.99)

where S satisfies Assumption (A3.8) and P = P T > 0 satisfies (3.31).
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Applying adaptive control (3.91) with adaptive laws (3.95) - (3.99), (3.13) should

have all the desired the properties. In order to show that the controller (3.91) with

adaptive laws (3.95) - (3.99) works and can drive e(t) = x(t) − xm(t) bounded and

stable which are the desired properties of trajectories of (3.13). Choose a positive

definite function

V = eTPe+ tr[K̃1M
−1
s K̃T

1 ] + tr[K̃T
2 M

−1
s K̃2] + tr[K̃3M

−1
s K̃T

3 ]

+ tr[k̃T50M
−1
s k̃50] +

q∑
β=1

tr[k̃T5jM
−1
s k̃5j]. (3.100)

Then the time derivative of (3.97) is

V̇ = −eT (t)Qe(t) + 2eT (t)PBeK
∗−1
4 K̃T

1 (t)e(t) + 2eT (t)PBeK
∗−1
4 K̃2(t)um(t)

+ 2eT (t)PBeK
∗−1
4 K̃T

3 (t)xm(t) + 2eT (t)PBeK
∗−1
4 k̃T50(t)

+ 2eT (t)PBeK
∗−1
4 k̃5jf5j + 2 tr[K̃1(t)M

−1
s

˙̃KT
1 (t)]

+ 2 tr[K̃T
2 (t)M−1

s
˙̃K2(t)] + 2 tr[K̃3(t)M

−1
s

˙̃KT
3 (t)]

+ 2 tr[k̃T50M
−1
s

˙̃k50] + 2 tr[k̃T5jM
−1
s

˙̃k5j]. (3.101)

Applying adaptive laws (3.95)-(3.99), the time derivative of (3.101) as

V̇ = −eT (t)Qe(t) ≤ 0 (3.102)

which is negative semidefinite. From (3.102) we can obtain the desired system prop-

erties. 5

Disturbance acting on both leader and follower systems(Case III) Consider

the leader plant (3.13) and follower plant (3.16). In order to reject the disturbance

so that the desired system performance can be achieved, we choose the ideal control
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structure as:

u∗(t) = K∗T1 (x(t)− xm(t)) +K∗2um(t) +K∗T3 xm(t) + k∗5(t). (3.103)

Being different with Case II, when d(t) and dm(t) is present in (3.13) and (3.16)

respectively, we re-define

k∗5 = K∗2dm(t)− d(t)

= (K∗2dm0 − d0) +

qm∑
β=1

K∗2dmβfmβ(t)−
q∑

β=1

dβfβ(t)

= k∗50 +

qm∑
β=1

k∗5mβfmβ(t) +

q∑
β=1

k∗5βfβ(t) (3.104)

with

k∗50 = K∗2dm0 − d0, k∗5mβ = K∗2dmβ, k
∗
5β = −dβ (3.105)

For the ideal controller, the re-defined k∗5 leads to a desired closed-loop system

ẋ(t) = (A+BK∗T1 )(x(t)− xm(t)) + (A+BK∗T3 )xm(t) +BK∗2um(t)

+BK∗2dm0 −Bd0 +B

qm∑
β=1

K∗2dmβfmβ(t)−B
q∑

β=1

dβfβ(t) +Bd(t)

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t) +Bmdm(t) (3.106)

In result, we obtain limt→∞ e(t) = 0, since ė(t) = ẋ− ẋm = Aee(t) and Ae is stable.

When the parameters A,B,Am, Bm and the value of disturbance d(t) are unknown,

we use the adaptive version of controller (3.103) which is

u(t) = KT
1 (x(t)− xm(t)) +K2um(t) +KT

3 xm(t) + k5(t) (3.107)
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where

k5(t) = k50(t) +

qm∑
β=1

k5mβ(t)f5mβ(t) +

q∑
β=1

k5β(t)fβ(t) (3.108)

is the estimate of k∗5.

In adaptive control, it is unaccessible for us to obtain the ideal parameters, so

define the parameter errors first.

K̃i(t) = Ki(t)−K∗i , i = 1, 2, 3.

k̃5β(t) = k5β(t)− k∗5β, β = 0, 1, . . . , q.

k̃5mβ(t) = k5mβ(t)− k∗5mβ, β = 1, 2, . . . , qm. (3.109)

Let k̃5(t) = k5(t) − k∗5(t). Substituting (3.103), (3.104) and (3.109) into (3.13), we

obtain

ẋ(t) = Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t) +Bmdm(t)

+BeK
∗−1
4

(
K̃T

1 (t)(x(t)− xm(t)) + K̃2(t)um(t) + K̃T
3 xm(t) + k̃5(t)

)
(3.110)

with e(t) = x(t)− xm(t), we have the tracking error equation

ė(t) = Aee(t) +BeK
∗−1
4

(
K̃T

1 (t)(x(t)− xm(t)) + K̃2(t)um(t) + K̃T
3 xm(t) + k̃5(t)

)
.

(3.111)

Based on (3.111), we choose the adaptive laws as

˙̃K50 = K̇50(t) = −STBT
e Pe(t), (3.112)

˙̃K5β = K̇T
5β(t) = −STBT

e Pe(t)f
T
β (t), β = 1, 2, . . . , q. (3.113)

˙̃K5mβ = K̇5mβ(t) = −STBT
e Pe(t)f

T
mβ(t), β = 1, 2, · · · , p, (3.114)

with P = P T > 0 satisfying ATP + PA = −Q,Q = QT > 0 since Ae is stable.
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S ∈ Rp×p satisfies Assumption (A3.8). K1(t), K2(t) and K3(t) are still in (3.95)

-(3.97).

Use the Lyapunov direct method to analysis the stability of the closed-loop system

(3.13) with adaptive controller (3.103) and adaptive laws (3.95) - (3.97) and (3.112)

-(3.114). Choose a positive definite function

V = eTPe+ tr[K̃1M
−1
s K̃T

1 ] + tr[K̃T
2 M

−1
s K̃2] + tr[K̃3M

−1
s K̃T

3 ]

+

q∑
β=1

tr[k̃T5βM
−1
s k̃5β] +

qm∑
β=1

tr[k̃T5mβM
−1
s k̃5mβ] (3.115)

as a measurement of the closed-loop error system. Then get the time derivative of

(3.118) which is the negative semidefinite when adaptive laws (3.95) - (3.97) and

(3.112) -(3.114) are substituted.

V̇ = −eT (t)Qe(t) ≤ 0, Q = QT > 0 (3.116)

from (3.116), we can obtain all the desired system properties. 5

Remark 3.2 In fact, there are no essential difference between the disturbance rejec-

tion algorithm applied in Case II and Case III. Actually, Case II is a special form of

Case III with dm(t) = 0. For example in multiple intputs systems, when dm(t) = 0,

it is obviously that k∗5 = k∗2dm(t)− d(t) = −d(t). The application of this remark is to

be further discussed in Section 4.5. �

3.3.5 Design Based on LDU Parametrization

The adaptive design of previous section for the p-inputs plant (3.11) needs As-

sumption (A3.8): Ms = K∗4S = (K∗4S)T = STK∗T4 > 0 for some known matrix

S ∈ Rp×p. This S matrix is analogous to the sign of k∗4 for the case p = 1; however,
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the knowledge of such an S matrix is more difficult to obtain then that of the sign

of k∗4. Relaxation of such knowledge for multivariable adaptive control is important.

In this section, we present an adaptive control scheme for the plant (3.11), using

different knowledge for the gain matrix K∗4 . This adaptive design employs a modified

controller parametrization based on an LDU decomposition of the gain matrix K∗−14 .

Actually, with LDU decomposition we can address all those six different cases

mentioned in Section 3.1.1 and Section 3.1.2. In this section we will solve Case I with

multi-input systems as an example. The basic principle of adaptive control scheme

and stability analysis for the other two cases are the same.

Gain matrix and design conditions

Proposition 3.1. (LDU decomposition) A matrix Kp ∈ RM×M with all its leading

principle minors being nonzero has a unique decomposition:

Kp = LD∗U (3.117)

for some M×M unit(i.e., with all diagonal elements being 1) lower triangular matrix

L and unit upper triangular matrix U , and

D∗ = diag {d∗1, d∗2, . . . , d∗M} = diag

{
∆1,

∆2

∆1

, . . . ,
∆M

∆M−1

}
. (3.118)

This is the well-known LDU decomposition of a nonsingular matrix with nonzero

leading principle minors.

From Proposition 1, we first express the gain matrix K∗−14 ∈ Rp×p which satisfies

Assumption (A3.8) as

K∗−14 = LD∗U (3.119)
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for some p× p unit (i.e., with all diagonal elements being 1) lower triangular matrix

L and unit upper triangular matrix U , and

D∗ = diag
{
d∗1, d

∗
2, . . . , d

∗
p

}
= diag

{
∆1,

∆2

∆1

, . . . ,
∆p

∆p−1

}
(3.120)

with ∆i, i = 1, 2, . . . , p, as the leading principle minors of K∗−14 in (3.68). To use this

decomposition, we assume

(A3.9) All leading principle minors ∆i of the matrix K∗−14 are nonzero, and their

signs, signs[d∗i ], i = 1, 2, . . . , p, are known;

(A3.10) the matrix L in (3.117) is known.

Controller structure Using (3.68) and (3.117), we express the plant (3.9) as

ẋ(t) = Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t)

+B(u(t)−K∗T1 (x(t)− xm(t))−K∗2um(t)−K∗T3 xm(t))

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t)

+BeK
∗−1
4 (u(t)−K∗T1 (x(t)− xm(t))−K∗2um(t)−K∗T3 xm(t))

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t)

+BeLD
∗(Uu(t)− UK∗T1 (x(t)− xm(t))− UK∗2um(t)− UK∗T3 xm(t))

= Ae(x(t)− xm(t)) + Amxm(t) +Bmum(t) (3.121)

+BeLD
∗(u(t)− (I − U)u(t)− UK∗T1 (x(t)− xm(t))− UK∗2um(t)− UK∗T3 xm(t))

where I −U is an upper triangular matrix with zero diagonal elements as U is a unit

upper triangular matrix (whose diagonal elements are 1). From (3.10) and (3.121),
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we have the tracking error equation

ė(t) = Ae(x(t)− xm(t)) (3.122)

+BeLD
∗(u(t)− (I − U)u(t)− UK∗T1 (x(t)− xm(t))− UK∗2um(t)− UK∗T3 xm(t))

Rewrite the tracking error as,

ė(t) = Aee(t) +BeLD
∗(u(t)− Φ∗0u(t)− Φ∗T1 (x(t)− xm(t))− Φ∗2um(t)− Φ∗T3 xm(t))

(3.123)

where

Φ∗0 = I − U, Φ∗T1 = UK∗T1 , Φ∗2 = UK∗2 , Φ∗T3 = UK∗T3 (3.124)

This error equation motivates the controller structure

u(t) = Φ0u(t) + ΦT
1 (x(t)− xm(t)) + Φ2um(t) + ΦT

3 xm(t) (3.125)

where Φ0(t), Φ1(t), Φ2(t) and Φ3(t) are the estimates of Φ∗0,Φ
∗
1,Φ

∗
2 and Φ∗3, respec-

tively; in particular, the parameter matrix Φ0 has the same special upper triangular

form as that of Φ∗0 = I − U , that is,

Φ0 =



0 φ12 φ13 · · · φ1p

0 0 φ23 · · · φ2p

...
...

...
...

...

0 0 · · · 0 φp−1p

0 · · · · · · 0 0


(3.126)
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This special form ensures that the control signals u(t) is implementable from (3.125)

without singularity, that is,

up(t) = [ΦT
1 (x(t)− xm(t)) + Φ2um(t) + ΦT

3 xm(t)]p,

up−1(t) = φp−1pup(t) + [ΦT
1 (x(t)− xm(t)) + Φ2um(t) + ΦT

3 xm(t)]p−1,

up−2(t) = φp−2p−1up−1(t) + φp−2pu(t) + [ΦT
1 (x(t)− xm(t)) + Φ2um(t) + ΦT

3 xm(t)]p−1,

...

u2(t) =

p∑
i=3

φ2iui(t) + [Φ0u(t) + ΦT
1 (x(t)− xm(t)) + Φ2um(t) + ΦT

3 xm(t)]2,

u1(t) =

p∑
i=2

φ1iui(t) + [ΦT
1 (x(t)− xm(t)) + Φ2um(t) + ΦT

3 xm(t)]1, (3.127)

where [v]i denotes the ith row of the vector v.

Adaptive laws To derive at a compact and exact expression of the control law

(3.125) with the special parameter structure (3.126), we let ΦT
1i(t) be the ith row of

ΦT
1 (t), ΦT

2i(t) be the ith row of ΦT
2 (t) and ΦT

3i(t) be the ith row of ΦT
3 (t), i = 1, 2, . . . , p,

and define

θ1(t) = [φ12(t), φ13(t), . . . , φ1p(t),Φ
T
11(t),Φ

T
21(t),Φ

T
31(t)]

T ∈ R2n+2p−1

θ2(t) = [φ23(t), φ24(t), . . . , φ2p(t),Φ
T
12(t),Φ

T
22(t),Φ

T
32(t)]

T ∈ R2n+2p−2

...

θp−2(t) = [φp−2p−1(t), φp−2p(t),Φ
T
1p−2(t),Φ

T
2p−2(t),Φ

T
3p−2(t)]

T ∈ R2n+p+2

θp−1(t) = [φp−1p(t),Φ
T
1p−1(t),Φ

T
2p−1(t),Φ

T
3p−1(t)]

T ∈ R2n+p+1

θp(t) = [ΦT
1p(t),Φ

T
2p(t),Φ

T
3p(t)]

T ∈ R2n+p (3.128)
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which are the estimates of the corresponding θ∗i from the rows Φ∗0,Φ
∗
1,Φ

∗
2 and Φ∗3 in

(3.124). It follows from (3.123),(3.125) and (3.128) that

ė(t) = Aee(t) +BeLD
∗



θ̃T1 (t)ω1(t)

θ̃T2 (t)ω2(t)

...

θ̃Tp−1(t)ωp−1(t)

θ̃Tp (t)ωp(t)


, (3.129)

where θ̃i(t) = θi(t)− θ∗i , i = 1, 2, . . . , p, and

ω1(t) = [u2(t), u3(t), . . . , up(t), e
T (t), rT (t), xTm(t)]T ∈ R2n+2p−1

ω2(t) = [u3(t), u4(t), . . . , up(t), e
T (t), rT (t), xTm(t)]T ∈ R2n+2p−2

...

ωp−2(t) = [up−1(t), up(t), e
T (t), rT (t), xTm(t)]T ∈ R2n+p+2

ωp−1(t) = [up(t), e
T (t), rT (t), xTm(t)]T ∈ R2n+p+1

ωp(t) = [eT (t), rT (t), xTm(t)]T ∈ R2n+p (3.130)

we now choose the following adaptive laws for θi(t), i = 1, 2, . . . , p,

θ̇i(t) = −sign[d∗i ]Γiēi(t)ωi(t), t ≥ 0, (3.131)

where ēi(t) is the ith component of eT (t)PBeL with P = P T > 0, satisfying (3.31),

Γi = ΓTi > 0, and sign[d∗i ] is from Assumption A3.9.
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Stability Analysis To analyze the stability properties of the adaptive scheme

(3.131), we consider the positive definite function

V (e, θ̃i, i = 1, 2, . . . , p) = eTPe+

p∑
i=1

|d∗i | θ̃Ti Γ−1i (t)θ̃i (3.132)

The time derivative of V (e, θ̃i), along the trajectory of (3.131), is

V̇ = 2eT (t)P ė(t) + 2
M∑
i=1

|d∗i | θ̃Ti (t)Γ−1i θ̇i(t)

= 2eT (t)P ė(t) + 2
M∑
i=1

ēi(t)d
∗
i θ̃
T
i (t)ωi(t) + 2

M∑
i=1

|d∗i | θ̃Ti (t)Γ−1i θ̇i(t)

= −eT (t)Qe(t) (3.133)

Since Q = QT > 0, (3.133) implies that the equilibrium state ec = 0, with ec =

[eT , θ̃T1 , . . . , θ̃
T
M ]T , of the closed-loop system consisting of (3.129) and (3.131) is uni-

formly stable and its solution ec(t) is uniformly bounded. That is, θi(t), i = 1, 2, . . . , p,

and ė(t) all are bounded. From (3.133), we also have e(t) = x(t)− xm(t) ∈ L2 and so

limt→∞ e(t) = 0 as from the Barbalat lemma. 5

3.4 Simulation Study

To verify the adaptive laws, simulation studies are displayed below. To simplify

the problem and make the result easy to follow, choose n = 2 for all systems below.

Leader parameters are given for simulation study.

In this section, simulation results for all cases including single input systems and

multiple inputs systems are shown. Section 3.4.1 displays simulation results of single

input systems. Section 3.4.2 displays simulation results of multiple inputs systems.
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3.4.1 Simulation Study for Single Input Systems

This section shows simulation results of single inputs systems. Simulation results

of three different cases classifying by the disturbance performance in section 3.1.1 are

shown in order. Through the simulation result,we can verify that the adaptive control

laws works well.

Case I: Singe input system without disturbances For numerical study, pa-

rameter matrices in (3.3) and (3.4) are selected as: (n = 2):

Am =

 1 1

−11 −6

 , bm =

0

8

A =

 1 1

−1 0

 , b =

0

2


and the known Ae and be are chosen as

Ae =

 1 1

−9 −4

 be =

0

4

 .
Based on the matching condition (3.8), we can easily obtain the ideal value of

k∗1, k
∗
2 and k∗3.

k∗T1 = [−4, −2], k∗2 = 4, /, k∗T3 = [−5, −3].

This set of ki(i = 1, 2, 3) is the values that would make up the nominal controller

(3.19). However, this nominal controller maybe unknown in real some experiences.

Therefore, the estimates k1(t), k2(t) and k3(t) of k∗1, k
∗
2 and k∗3 will be determined from

adaptive laws and used in the adaptive controller (3.22).

For the purpose of the simulation, the ideal gains were calculated. They are

used to show how a fixed gain controller cannot handle the parameter unknown case.

Since k1(0), k2(0) and k3(0) can be chosen arbitrary, here we choose ki(0) = 0.5k∗i , (i =
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1, 2, 3). r = sin(t) + cos(t). The initial leader and follower state are xm = [0, 0]T and

x = [0, 0]T , respectively.

The simulation result with a fixed gain controller for the state tracking of x is

shown in figure 3.1. Likewise, the simulation result with adaptive controller for x is

shown in figure 3.2. Tracking errors in both fixed gain control and adaptive control

are shown in figure 3.3. Parameter errors ki(t)− k∗i (t) are shown in figure 3.4.

Case II: Single input systems with disturbance acting on follower systems

For numerical study, parameter matrices in (3.5) and (3.4) are selected as: (n = 2):

Am =

 1 1

−11 −6

 , bm =

0

8

 , A =

 1 1

−1 0

 , b =

0

2


The disturbance (3.6) is

d(t) = −5− 4 sin(5t).

Ae, be are chosen as

Ae =

 1 1

−9 −4

 , be =

0

4

 ,
Parameter matrices/vectors A, b, Am, b,Ae and be adopted for simulation in Case

I and Case II are the same. It is obviously that k∗i , i = 1, 2, 3 are in these two

special cases are the same. According to the value of d(t). We can conclude that

k∗5 = 5 + 4 sin(5t).

For the purpose of the simulation, the ideal gains were calculated. They are used

to show how a fixed gain controller cannot handle the parameter unknown case and in

this case, particularly, an unknown external bounded disturbance. Since k1(0), k2(0)
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Figure 3.1: Follower state (solid) vs. leader state (dotted) with fixed gain control.
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Figure 3.2: Follower state (solid) vs. leader state (dotted) with adaptive gain control.
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Figure 3.3: Tracking errors with adaptive control vs. fixed gain control.
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Figure 3.4: Parameter errors ki(t)− k∗i with adaptive control (i = 1, 2, 3).
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and k3(0) can be chosen arbitrary, here we choose ki(0) = 0.8k∗i , (i = 1, 2, 3). k50(0) =

5× 0.8 = 4, k5β(0) = 4× 0.8 = 3.6. r = sin(t) + cos(t). The initial leader and follower

state are xm = [1, 0]T and x = [−1, 5]T , respectively.

The simulation result with a fixed gain controller for the state tracking of x is

shown in figure 3.5. Likewise, the simulation result with an adaptive controller for

the state tracking of x is shown in figure 3.6. Tracking errors in both fixed gain

control and adaptive control are shown in figure 3.7.

Case III: Single input system with disturbance acting on leader and fol-

lower systems For numerical study, parameter matrices in (3.5) and (3.7) are

selected as: (n = 2):

Am =

 1 1

−11 −6

 , bm =

0

8

A =

 1 1

−1 0

 , b =

0

2

 ,
Disturbances acting on (3.5) and (3.7) are chosen as follows:

d(t) = −5 + (−4) sin(5t),

dm(t) = 4 + 3.6 sin(5t).

Ae and be are chosen as

Ae =

 1 1

−9 −4

 , be =

0

4


Parameter matrices/vectors A, b, Am and b adopted for simulation in Case I and

Case II are the same.So the ideal controller parameters k∗i , i = 1, 2, 3 are the same

as the ideal controller parameters in Case I and Case II. According to (3.52), k∗5 =
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Figure 3.5: Follower state (solid) vs. leader state (dotted) without disturbance rejec-
tion.
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Figure 3.6: Follower state (solid) vs. leader state (dotted) with adaptive disturbance
rejection.
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Figure 3.7: Tracking errors with adaptive disturbance rejection vs. without distur-
bance rejection.

21 + 16 sin(5t)− 3.6 sin(5t).

For the purpose of the simulation, the ideal gains were calculated. They are used to

show how a fixed gain controller cannot handle the parameter unknown case. Since

k1(0), k2(0) and k3(0) can be chosen arbitrary, here we choose ki(0) = 0.8k∗i , (i =

1, 2, 3). k50(0) = 21 = 16.8, k5mβ(0) = 16 × 8 = 12.8, k5β(0) = 3.6 × 8 = 2.88.

r = sin(t). The initial leader and follower state are xm = [4, 5]T and x = [3, 1]T ,

respectively.

The simulation result with a fixed gain controller for the state tracking of x is

shown in figure 3.8. Likewise, the simulation result with an adaptive controller for

the state tracking of x is shown in figure 3.9. Tracking errors in both fixed gain

control and adaptive control are shown in figure 3.10.
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Figure 3.8: Follower state (solid) vs. leader state (dotted) without disturbance rejec-
tion
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Figure 3.9: Follower state (solid) vs. leader state (dotted) with adaptive disturbance
rejection
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Figure 3.10: Tracking errors with adaptive disturbance rejection vs. without distur-
bance rejection.

3.4.2 Simulation Study with Multiple Inputs

This section shows simulation results of single inputs systems. Simulation results

of three different cases classifying by the disturbance performance in section 3.2.1 are

shown in order. Through the simulation result,we can verify that the adaptive control

laws works well.

Case I: Multiple inputs systems without disturbance For numerical study,

parameter matrices in (3.11) and (3.12) are selected as: (n = 2, p = 2, m = 3):

Am =

 1 1

−11 −6

 , Bm =

2 0 2

0 2 0

 , A =

 1 1

−1 0

 , B =

2 0

0 2

 .
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The known parameter Ae and Be are

Ae =

 1 1

−9 −4

 , Be =

6 0

0 6

 .
Based on the matching condition (3.68), we can easily obtain the ideal value of

K∗1 , K
∗
2 and K∗3 .

K∗T1 =

 0 0

−4 −2

 , K∗2 =

1 0 1

0 1 0

 , K∗T3 =

 0 0

−5 −3

 .
For the purpose of the simulation, the ideal gains were calculated. They are used

to show how a fixed gain controller cannot handle the parameter unknown case. Since

K1(0), K2(0) and K3(0) can be chosen arbitrary, here we choose Ki(0) = 0.5K∗i , (i =

1, 2, 3). r = [sin(t), cos(t), sin(t) + cos(t)]T . The initial leader and follower state are

xm = [0, 0]T and x = [0, 0]T , respectively.

The simulation result with a fixed gain controller for the state tracking of x is

shown in figure 3.11. Likewise, the simulation result with adaptive controller for x is

shown in figure 3.12. Tracking errors in both fixed gain control and adaptive control

are shown in figure 3.13. Parameter errors Ki(t)−K∗i (t) are shown in figure 3.14.

Case II: Multiple inputs systems with disturbance acting on follower sys-

tems For numerical study, parameter matrices in (3.13) and (3.15) are selected as:
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Figure 3.11: Follower state (solid) vs. leader state (dotted) with fixed gain control.
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Figure 3.12: Follower state (solid) vs. leader state (dotted) with adaptive gain control.
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Figure 3.13: Tracking errors with adaptive control vs. fixed gain control.
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Figure 3.14: Parameter errors Ki(t)−K∗i with adaptive control (i = 1, 2, 3).
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(n = 2):

Am =

 0 1

−1 −3

 , Bm =

1 −2

4 1

 , A =

−2 3

1 −2

 , B =

0 1

1 2

 ,
The disturbance acting on the follower is

d(t) = [−5, −5]T + [1, 2]T sin(5t)

Ae and Be are

Ae =

 1 1

−9 −4

 , Be =

1 −2

4 1

 .
Based on the matching condition (3.68), we can easily obtain the ideal value of

K∗1 , K
∗
2 and K∗3 .

K∗T1 =

−16 2

3 −2

 , K∗2 =

2 5

1 −2

 , K∗T3 =

−6 3

2 −2

 ,
According to the equation k∗5β = −d(t), k∗5 = [5, 5]T + [−1, −2]T sin(5t).

For the purpose of the simulation, the ideal gains were calculated. They are used

to show how a fixed gain controller cannot handle the parameter unknown case. Since

K1(0), K2(0) and K3(0) can be chosen arbitrary, here we choose Ki(0) = 0.9k∗i , (i =

1, 2, 3). k∗50 = [−4.5, −4.5]T , k∗5β = [−0.8, 1.8]T . r = [sin(t), cos(t)]T . The initial

leader and follower state are xm = [1, 1]T and x = [2, 3]T , respectively.

The simulation result without adaptive disturbance rejection for the state tracking

of x is shown in figure 3.15. Likewise, the simulation result with adaptive disturbance
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rejection for x is shown in figure 3.16. Tracking errors corresponding with disturbance

rejection and non-disturbance rejection are shown in figure 3.17.

Remark 3.3 To show the effectiveness of the adaptive compensator, figure 3.15 is the

result making by an adaptive controller without an adaptive disturbance compensator

term, i.e., we adopt the adaptive controller (3.72) rather than (3.91). Figure 3.16 is

created by the adaptive disturbance compensator (3.91). �

Case III: Multiple inputs systems with disturbance acting on leader and

follower systems For numerical study, parameter matrices in (3.13) and (3.16) are

selected as: (n = 2):

Am =

 0 1

−1 −3

 , Bm =

1 −2

4 1

 , A =

−2 3

1 −2

 , B =

0 1

1 2

 ,
The disturbance (3.14) and (3.17) are

dm(t) = [−5, −5]T + [1, 2]T sin(5t)

d(t) = [4, 4]T + [2, 1]T cos(5t)

Ae and Be are

Ae =

 1 1

−9 −4

 , Be =

1 −2

4 1

 .
Based on the matching condition (3.45), we can easily obtain the ideal value of
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Figure 3.15: Follower state (solid) vs. leader state (dotted) without disturbance
rejection.
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Figure 3.16: Follower state (solid) vs. leader state (dotted) with adaptive disturbance
rejection.
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Figure 3.17: Tracking errors with adaptive disturbance rejection vs. without distur-
bance rejection.

K∗1 , K
∗
2 and K∗3 .

K∗T1 =

−16 2

3 −2

 , K∗2 =

2 5

1 −2

 , K∗T3 =

−6 3

2 −2

 .
Parameter matrices A,B,Am and Bm adopted for simulation in Case I and Case

II are the same. It is obviously that k∗i , i = 1, 2, 3 are in these two special cases are

the same. k∗5 = [23, −9]T + [28, −4]T sin(5t)− [1, 2]T cos(5t).

For the purpose of the simulation, the ideal gains were calculated. They are used

to show how a fixed gain controller cannot handle the parameter unknown case. Since

K1(0), K2(0) and K3(0) can be chosen arbitrary, here we choose Ki(0) = 0.9k∗i , (i =

1, 2, 3). k∗50 = 4, k∗5j = −3.6. r = [sin(t), cos(t)]T . The initial leader and follower state

are xm = [1, 1]T and x = [2, 3]T , respectively.
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The simulation result without adaptive disturbance rejection for the state track-

ing of x is shown in figure 3.18 (i.e., created by (3.72)). Likewise, the simulation

result with adaptive disturbance rejection for x is shown in figure 3.19 (i.e., cre-

ated by (3.107)). Tracking errors corresponding with disturbance rejection and non-

disturbance rejection are shown in figure 3.20.

Simulation study with adaptive control based on LDU decomposition The

following simulation results show the tracking performance without disturbances

which is exactly the case we discussed in Section 3.3.5.

For numerical study, parameter matrices in (3.6) and (3.7) are selected as: (n =

2, p = 2):

Am =

 1 1

−11 6

 , Bm =

2 0

0 2

 , A =

 1 1

−1 0

 , B =

2 0

0 2

 ,
Ae and Be are

Ae =

 1 1

−9 −4

 , Be =

1 −2

4 1

 .
Based on the matching condition (3.68), we can easily obtain the ideal value of

Φ∗0,Φ
∗
1,Φ

∗
2 and Φ∗3.

Φ∗0 =

0 −2

0 0

Φ∗T1 =

−8 −4

−4 −2

Φ∗2 =

1 2

0 1

Φ∗T3 =

−10 −6

−5 −3


For the purpose of the simulation, the ideal gains were calculated. They are used

to show how a fixed gain controller cannot handle the parameter unknown case. Since

θ1(0), θ2(0) and θ3(0) can be chosen arbitrary, here we choose θi(0) = 0.8θ∗i , (i = 1, 2).

r = [sin(t) cos(t)]T . The initial leader and follower state are xm = [2.5, 1]T and
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Figure 3.18: Follower state (solid) vs. leader state (dotted) without disturbance
rejection.
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Figure 3.19: Follower state (solid) vs. leader state (dotted) with adaptive disturbance
rejection.
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Figure 3.20: Tracking errors with adaptive disturbance rejection vs. without distur-
bance rejection.

x = [0.5, 2]T , respectively.

The simulation result with a fixed gain controller for the state tracking of x is

shown in figure 3.21. Likewise, the simulation result with adaptive controller for x is

shown in figure 3.22. Tracking errors in both fixed gain control and adaptive control

are shown in figure 3.23.

3.5 Summary

In this chapter basic adaptive control theory relevant to this research is intro-

duced. Since this is a state tracking problem, in multi-agent system we also called

this kind of problem as ”leader-following consensus” problem. Leader-following con-

sensus problems presented in this chapter are categorized into six cases in total in-

cluding three single input cases and three multiple inputs cases. Stability analyses are
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Figure 3.21: Follower state (solid) vs. leader state (dotted) with adaptive gain control
(LDU decomposition).
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Figure 3.22: Follower state (solid) vs. leader state (dotted) with adaptive gain control
(LDU decomposition).
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Figure 3.23: Tracking errors with adaptive control vs. fixed gain control (LDU de-
composition).

given for each case to show with the adaptive controllers and the corresponding adap-

tive laws, closed-loop systems in all six cases have obtained the desired properties.

Also, in the last subsection in Section 3.3 which focuses on the multiple input sys-

tems, LDU decomposition is applied. LDU decomposition is used because in practice

some parameters are hard to get, so we need another functional adaptive controller

structure with different adaptive laws. Remind that with LDU decomposition, both

disturbances-free cases and cases with disturbances can be solved. However, we just

show the disturbance-free case to show the basic principle. Many other literatures

show more details which are listed in Section 3.3.5. In Section 3.4, simulation results

are shown in order to verify that the adaptive controllers with corresponding adaptive

laws work well. Simulation results show the difference between adaptive control and

fixed gain control directly.



Chapter 4

Adaptive Leader-Following

Consensus for Multiple Agents

In Chapter 3, we discussed about one leader-one follower consensus adaptive con-

trol strategy, from which we derive a new control strategy can be applied on multi-

agent systems with directed graph. In Section 4.1, system dynamic expressions are

given and the control objective is discussed. Algebraic graph theory which is used

to represent the interactions among multi-agent systems is to be discussed in Section

4.2. In Section 4.3, a distributed adaptive control scheme for multi-agent system

describing by direct graphs is developed. Disturbances are introduced in Section 4.4,

and adaptive control compensator term will be added and the corresponding adaptive

control scheme will be discussed in the same section. In the last section, simulation re-

sults are shown to indicate the capability of the distributed adaptive control schemes

presented in this chapter.
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4.1 Problem Statement

Consider a set of N unknown follower agents. The dynamic system of the ith

follow agent can be expressed as

ẋi(t) = Aixi(t) +Biui(t), i = 1, . . . , N (4.1)

where xi(t) ∈ Rn is the state of the ith agent, ui(t) ∈ Rpi is the control input(in

multi-agent system, we also call it control protocol), All parameter matrices Ai ∈

Rn×n, Bi ∈ Rn×pi , i = 1, . . . , N in (4.1) are unknown. The dynamics of the leader is

given by

ẋ0 = A0x0 +B0u0(t) (4.2)

where x0 ∈ Rn is the state of the leader, u0(t) ∈ Rm is the bounded reference signal

and A0 ∈ Rn×n, B0 ∈ Rn×m are unknown constant matrices.

The control objective is to design a distributed control protocol using local infor-

mation for each follower to drive all follower consensus on their states with a given

leader, i.e., make all the followers track the give leader on states eventually. Such a

control problem is defined as leader-following consensus problem. The control objec-

tive can be described mathematically as

lim
t→∞

(xi(t)− x0(t)) = 0, i = 1, . . . , N. (4.3)

The above equation means if the control objective is achieved, all states errors between

follower agents and the leader should go to zero as t goes to infinity.
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4.2 Algebraic Graph Theory

The interaction graphs among N + 1 agents including one leader and N followers

are denoted by a directed graph G = (V , E) with a set of vertices V and a set of

directed edges (ordered pairs of vertices) E ⊆ V × V . A vertex represents an agent

and the directed edge (vj, vi) denotes that agent vi can obtain the information from

agent vj including both the state information and the input information, but not vice

versa. In this case, we say that vj is one of the neighbors of vi (although the link

between them is directed). Define a neighborhood set Ni for the follower agent vi

such that Ni = {vj ∈ V : (vj, vi) ∈ E} for i = 1, . . . , N . v0 denotes the leader in the

multi-agent system. It also could be a neighbor of the follower agent vi if vi can get

the information from v0 (i.e. (v0, vi) ∈ E). A directed path is a sequence of ordered

edges of the form (vi1, vi2), (vi2, vi3), . . . in a directed graph, where vij ∈ V . Define

an indegree (the number of head endpoints adjacent to a vertex) matrix D such that

D = diag{n1, n2, . . . , nN} = diag{deg(v1), deg(v2), . . . , deg(vN)} where deg(·) denotes

the indegree of an agent. This indegree matrix D represents the total number of the

neighbors of the follower agent vi, i.e., the total agent number in the neighborhood

set Ni from i = 1 to N .

To describe the relationship between the leader and followers, we denote B =

diag {µi} if the agent i can get the information from the leader directly then µi = 1

otherwise µi = 0. Denote Q = L+B. matrix Q is a matrix which can fully described

the N + 1 order graph including N followers and one leader. It is obviously that

elements qii on diagonal are the total number of agents in the neighbor sets Ni of ith

agent respectively. In order to make the equation more clear, we denote ni equals

qii to represent the total agent number in neighbor set Ni. More examples show in

section 4.5.
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In order to make the leader-following consensus realized, we give two assumptions

on the interaction graphs.

Assumption 4.1. For each agent vi, there should exist at least one directed path

(v0, v1), (v1, v2), . . . , (vi−1, vi) which starts from the leader and ends at the agent vi.

Assumption 4.2. Directed graph G is simple, which means that it has no loops, and

no multiple arcs (arcs with same starting and ending nodes).

Remark 4.1 Many papers focusing on multi-agent leader-following consensus prob-

lem demonstrate that the controller they proposed work perfectly for complex multi-

agent systems which have many different kinds of edges. But in practical, engineers

always consider how to achieve the objective more effectively. From this considera-

tion, we find out the simplest multi-agent system structure which our proposed control

protocol can still work with. Being derived from Assumption 4.1 and Assumption 4.2,

(4.4) is the corresponding matrix Q of such the simplest multi-agent systems after

elementary transformations.



1 0

∗ 1

. . . . . .

∗ ∗ 1


N×N

(4.4)

with * representing −1 or 0. (4.4) means for a multi-agent system including N

follower agents and one leader, as long as there exist N edges and each follower agent

has in-degree one, the distributed adaptive control protocol proposed in this chapter

is applicable. �
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4.3 Adaptive Control Design

To make adaptive control design work, several design conditions should be sat-

isfied. Design conditions are presented in Section 4.3.1 and a distributed adaptive

control protocol with adaptive laws is presented in Section 4.3.2.

4.3.1 Design Conditions

To meet the control objective and solve the leader-following consensus problem,

we need several design conditions to be satisfied.

(A4.1) all the eigenvalues of A0 are in the open left-half complex plane;

(A4.2) u0(t) is bounded and piecewise continuous;

(A4.3) there exist two matrices K∗1i ∈ Rn×pi and K∗4i ∈ Rpi×pi for each follower agent

vi, which satisfy the following equations

Ae = Ai +BiK
∗T
1i , Be = BiK

∗
4i. (4.5)

where Ae ∈ Rn×n is a stable and known matrix, such that ATe P +PAe = −Q <

0, Q = QT > 0 is satisfied, and Be ∈ Rn×p is also a known matrix.

(A4.4) there exist two matrices K∗2i0 ∈ Rpi×m, K∗3i0 ∈ Rn×pi such that

A0 = Ai +BiK
∗T
3i0, B0 = BiK

∗
2i0 (4.6)

are satisfied, if the leader is one of the neighbors of the follower agent vi (i.e.,
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(v0, vi) ∈ E). Otherwise, if (v0, vi) /∈ E ,

Aj = Ai +BiK
∗T
3ij , Bj = BiK

∗
2ij (4.7)

should be satisfied for some K∗3ij ∈ Rn×pi and K∗2ij ∈ Rpi×pj for each pair of

(vj, vi) ∈ E (j 6= 0).

(A4.5) there is a known matrix Si ∈ Rpi×pi for each follower i such that K∗4iSi is

symmetric and positive definite: Ms = K∗4iSi = (K∗4iSi)
T = STi K

∗T
4i > 0.

Assumptions (A4.1) and (A4.2) are for a stable, well-defined reference system

(A0, B0) with a bounded output y0(t). Assumptions (A4.3) and (A4.4) are called the

matching conditions. Assumption (A4.4) indicates that we classify the N followers

into two groups. In the first group, each follower has a direct access to obtain the

information of the leader, thus for each pair of (v0, vi), there exist two matrices K∗2i0

and K∗3i0 satisfying (4.6). Followers in the other group have no direct accesses to the

leader, thus there exist two matrices K∗2ij and K∗3ij for each pair of (vj, vi), j 6= 0. In

summary, for each directed edges (ordered pair) (vj, vi) in the multi-agent system, no

matter vj is the leader or a follower, there exist a set of corresponding K∗2ij and K∗3ij

(0 ≤ j ≤ N).

Suppose all the parameters Ai, Bi for i = 0, 1, . . . , N are known and Assumptions

(4.5) - (4.7) satisfied, an ideal distributed adaptive protocol which can achieve the

control objective is designed as

u∗i (t) =
1

ni

∑
vj∈Ni

(
K∗T1i (xi(t)− xj(t)) +K∗2ijuj(t) +K∗T3ijxj(t)

)
(4.8)

with ni being the total agent number in the neighbor set Ni.
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We substitute (4.8) into (4.1), the ith closed-loop subsystem (4.1) becomes

ẋi(t) = Aixi(t) +
1

ni
Bi

∑
vj∈Ni

(K∗T1ij(xi(t)− xj(t)) +K∗2ijuj(t) +K∗T3ijxj(t)) (4.9)

=
1

ni

∑
vj∈Ni

(Ae(xi(t)− xj(t)) + Ajxj(t) +Bjuj(t))

To begin with a control design, define a local tracking error for each agent here in

this multi-agent case as follow

ei(t) = xi(t)−
1

ni

∑
vj∈Ni

xj(t). (4.10)

for i = 1, . . . , N , as a measurement to show the disagreement between the follower

i and the average of its neighbors on the states. The motivation of defining such a

local state tracking error is shown in the following lemma.

Lemma 4.1. Under Assumptions (A4.1) and (A4,2), if limt→∞ ei(t) = 0 holds, then

limt→∞ (xi(t)− x0(t)) = 0 holds for all i = 1, . . . , N .

Proof : First we use a one leader and two followers case to verify the Lemma 4.1. For

a one leader two followers directed graph, there are four formation possible cases in

total.

Case I: In figure 4.1, since we have known that e1(t) = x1(t) − x0(t) → 0 and

e2(t) = x2(t) − x1(t) as t → ∞, then obviously we can get x1(t) − x0(t) → 0 and

x2(t)− x0(t)→ 0 as t→∞.

0 1 2

Figure 4.1: Case I: Interaction graph of two followers and one leader
aaaaa

aaaaaaaa
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0

1 2

Figure 4.2: Case II: Interaction graph of two followers and one leader

Case II: In figure 4.2, we have known that e1(t) = x1(t) − x0(t) → 0 and e2(t) =

x2(t)−x0(t)→ 0 as t→∞, then obviously we can get x1(t)→ x0(t) and x2(t)→ x0(t)

as t→∞.

Case III: In figure 4.3, since we have known that e1(t) = x1(t)− 1
2
x0(t)− 1

2
x2(t)→ 0

0

1 2

Figure 4.3: Case III: Interaction graph of two followers and one leader

and e2(t) = x2(t)− x0(t) as t→∞, then obviously we can get x1(t)− x0(t)→ 0 and

x2(t)− x0(t)→ 0 as t→∞.

Case IV: Case IV is similar with Case III. We can also verify Lemma 4.1 quickly.

0

1 2

Figure 4.4: Case IV: Interaction graph of two followers and one leader

After the verification, we will start our proof. Under Assumption 4.1, for each follower,

there exists at least one directed path from the leader to the follower, which indicates

that each directed graph with N followers and one leader in this thesis consists of at

least one basic structure which is like figure 4.5. In figure 4.5, j = 1, . . . , N .

0 1 2 · · · j-1 j

Figure 4.5: A basic structure exists in directed graphs
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We assume that for all followers, limt→∞ ei(t) = 0, i = 1, . . . , j, j < N in figure 4.5.

Each directed graph may has several basic structures with different orders (i.e., j can

be different). Under the condition that limt→∞ ei(t) = 0 holds for i = 1, . . . , j, j < N ,

if we can prove that all followers in figure 4.5 can achieve the global tracking, i.e.,

limt→∞(xi(t)−x0(t)) = 0 no matter how the basic structure changes, we can conclude

that the Lemma 4.1 is true.

We have two different methods to make figure 4.5 more complex. The first method

is to add neighbors on follower v1 in figure 4.5 (i.e., the follower who can get the

information from the leader directly). The second method is to add neighbors on

follower v2 to vj (i.e., followers who can not get information from the leader directly).

Before we making changes on figure 4.5, we assume that all followers in figure 4.5

have already achieved the global tracking which means limt→∞(xi(t)−x0(t)) = 0, i =

1, . . . , j.

First method: there is only one possibility to add neighbors on follower v1 un-

der Assumption 4.1 and Assumption 4.2, which is to add a new follower outside into

figure 4.5 (maybe a follower from other basic structures in the same directed graph).

Figure 4.6 shows the interaction graph when we add a new follower vj+1 into figure

4.5. According to the condition of Lemma 4.1, we have ej+1(t) = xj+1(t)− x0(t)→ 0

0 1 2 · · · j-1 j

j+1

Figure 4.6: Interaction graph after adding one follower on follower v1

as t→∞ and e1 = x1 − 1
2
x0(t)− 1

2
xj+1(t). So we have x1(t)− x0(t)→ 0 as t→∞.

Since follower v2 to vj do not change, it is obviously that limt→∞(xi(t)−x0(t)) = 0. If
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there are more neighbors adding on follower vi, the situations will be the same. aaaa

aaaa

Second method: Add followers on the follower who does not have the access to get

the information from the leader directedly. aaaa

Case I: Add the leader as a neighbor of follower vk (k 6= 0 and k < N , see figure

4.7). Here we use mathematic induction to prove that the lemma is true under Case

I by the second method.

0 1 2 · · · k · · · j-1 j

Figure 4.7: Interaction graph after adding one follower on follower v1

First, when adding the leader as a neighbor of follower vk, since all limt→∞ ei(t) =

0, we have limt→∞ ek(t) = limt→∞(xk(t) − 1
2
x0(t) − 1

2
xk−1(t)) = 0. Since we as-

sume that all the followers have already achieved the global tracking before we start

adding neighbors, we have limt→∞(xk−1(t) − x0(t)) = 0. Thus, obviously we have

limt→∞(xk(t)− x0(t)) = 0.

Then we assume when we adding n followers on the follower vk including the

leader, we can get

lim
t→∞

ei(t) = lim
t→∞

(xk(t)−
1

n

∑
vk−1∈Nkn

xk−1(t)) = 0

according to limt→∞(xi(t)− x0(t)) = 0. Nkm denotes the neighbors of vk when it has

m neighbors (m¡N).
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Under the situation when adding n followers on follower vk, we add the (n+ 1)th

follower va on the follower vk including the leader, we have

lim
t→∞

ek(t) = lim
t→∞

(
xk(t)−

1

n+ 1
(

∑
vk−1∈Nm+1

xk−1(t) + xa(t))

)
= 0

Since all the other followers do not change, so xa → x0 as t → ∞, xk−1 → x0 as

t → ∞, xk−1 ∈ Nkn+1 (Nkn+1 represents the neighborhood when follower vk has n

neighbors). Thus, when there are n+ 1 followers on followers vk, according to

lim
t→∞

ek(t) = lim
t→∞

(xk(t)−
1

nk+1

(
∑

vk−1∈Nk

xk−1(t) + xa(t))) = 0

lim
t→∞

xk−1(t) = 0, lim
t→∞

xa(t) = 0

we have,

lim
t→∞

(xk(t)− x0(t)) = 0

Then,

lim
t→∞

(xi(t)− x0(t)) = 0, i = 1, . . . , j

Case II: Add other followers as neighbors of follower vk (k 6= 0 and k < N , see

figure 4.8).

0 1 2 · · · k · · · j-1 j

Figure 4.8: Interaction graph after adding one follower for follower vk

We still use mathematic induction to prove that the lemma is true under Case II

by the second method.
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First, when adding follower xa, (a 6= 0), as a neighbor of follower vk, since all

limt→∞ ei(t) = 0, we have limt→∞ ek(t) = limt→∞(xk(t)− 1
2
xa(t)− 1

2
xk−1(t)) = 0. Since

we assume that all the followers have already achieved the global tracking before we

start adding neighbors, we have limt→∞(xk−1(t)−x0(t)) = limt→∞(xa(t)−x0(t)) = 0.

Thus we have limt→∞(xk(t)− x0(t)) = 0.

When adding n followers or n + 1 followers into figure 4.5 under Case II, the

situation will be similar with Case I. Then,

lim
t→∞

(xi(t)− x0(t)) = 0, i = 1, . . . , j

In summary, we have proved that the global tracking can be achieved if we known

that all limt→∞ ei(t) = 0 whatever changes we make on a basic structure in directed

graph. Also the directed graphs under Assumption (A4.1) and (A4.2) consist of

several different basic structures. Thus we can prove that Lemma 4.1 is true. 5

From Lemma 4.1, we conclude that as long as all the local tracking errors ei(t)

for i = 1, . . . , N go to zero as t→∞, the global tracking will be achieved.

Substituting (4.9) into the derivative of the local tracking error (4.10), we obtain,

ėi(t) = ẋi(t)−
1

ni

∑
vj∈Ni

ẋj(t)

=
1

ni

∑
vj∈Ni

(
Ae(xi(t)− xj(t)) + Ajxj(t) +Bjuj(t)

)
− 1

ni

∑
vj∈Ni

(
Ajxj(t) +Bjuj(t)

)
=

1

ni

∑
vj∈Ni

(
Ae(xi(t)− xj(t))

)
= Ae

(
xi(t)−

1

ni

∑
vj∈Ni

xj(t)

)
= Aeei(t) (4.11)

RecallAe is a stable matrix, so (4.11) indicates that limt→∞ ei(t) = 0 exponentially.
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4.3.2 Adaptive Control Scheme

In our problem, the leader parameter matrices A0, B0 and the followers parameter

matrices Ai and Bi (i = 1, . . . , N) are unknown, so the ideal control protocol (4.8)

will no longer work. An adaptive version protocol of (4.8) is proposed as follows,

ui(t) =
1

ni

∑
vj∈Ni

KT
1i(t)(xi(t)− xj(t)) +K2ij(t)uj(t) +KT

3ij(t)xj(t) (4.12)

with the following adaptive laws

K̇T
1ij(t) = − 1

ni
STi B

T
e Pei(t)(xi(t)− xj(t))T (4.13)

K̇2ij(t) = − 1

ni
STi B

T
e Pei(t)u

T
j (t) (4.14)

K̇T
3ij(t) = − 1

ni
STi B

T
e Pei(t)x

T
j (t), (vj ∈ Ni, i = 1, 2, . . . , N) (4.15)

where K1ij(t), K2ij(t) and K3ij(t) are the estimates of K∗1i, K
∗
2ij and K∗3ij respectively,

and Si satisfies Assumption (A7) for i = 1, . . . , N) and P = P T > 0 satisfying

ATe P + PAe = −Q < 0, Q = QT > 0. K1ij(0), K2ij(0) and K3ij(0) can be chosen

arbitrarily.

Remark 4.2 For each follower agent vi, the ideal controller parameter K∗1i is

unique. However, according to (4.12), for each different vj ∈ Ni, the estimate K∗1is

are different. In order to distinguish these different estimate values, we denote the

estimate K∗1i as K1ij(t). �

We now present the main result in solving the leader-following consensus tracking

problem for multi-agent systems as follows.

Theorem 4.1. The distributed adaptive controller (4.12), with the adaptive laws
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(4.13)-(4.15), applied to multi-agent systems (4.1) guarantees all closed-loop signals

are bounded and global tracking is achieved: limt→∞(xi(t)− x0(t)) = 0.

4.4 Stability Analysis

In oder to analyze the stability of the closed-loop system, we first denote

K̃T
1ij(t) = KT

1ij(t)−K∗T1i , K̃2ij(t) = K2ij(t)−K∗2ij, K̃T
3ij(t) = KT

3ij(t)−K∗T3ij , (4.16)

Substituting the distributed adaptive protocol (4.12) into the multi-agent subsystem

(4.1) leads to

ẋi(t) = Aixi(t) +Biui(t)

= Aixi(t) +
1

ni
Bi

∑
vj∈Ni

(
KT

1ij(t)(xi(t)− xj(t)) +K2ij(t)uj(t) +KT
3ij(t)xj(t)

)
=

1

ni

∑
vj∈Ni

(Ae(xi(t)− xj(t)) +Ajxj(t) +Bjuj(t)) (4.17)

+
1

ni

∑
vj∈Ni

Be

(
K∗−14i K̃T

1ij(t)(xi(t)− xj(t)) +K∗−14i K̃2ij(t)uj(t) +K∗−14i K̃T
3ij(t)xj(t)

)
.

Then, tracking error equations evolve to

ėi(t) = ẋi(t)−
1

ni

∑
vj∈Ni

ẋj(t)

= Ae(xi(t)−
1

ni

∑
vj∈Ni

xj(t))

+
1

ni

∑
vj∈Ni

BeK
∗−1
4i

(
K̃T

1i(t)(xi(t)− xj(t)) + K̃2ij(t)uj(t) + K̃T
3ij(t)xj(t)

)
= Aeei(t) (4.18)

+
1

ni

∑
vj∈Ni

BeK
∗−1
4i

(
K̃T

1i(t)(xi(t)− xj(t)) + K̃2ij(t)uj(t) + K̃T
3ij(t)xj(t)

)
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Choose a positive definite function as a Lyapunov candidate to measure the closed-

loop system errors,

V =
N∑
i=1

Vi (4.19)

with Vi = Vi1 + Vi2 where

Vi1 = eTi Pei (4.20)

and

V2i =
∑
vj∈Ni

tr[K̃1iM
−1
s K̃T

1i] +
∑
vj∈Ni

tr[K̃T
2ijM

−1
s K̃2ij] +

∑
vj∈Ni

tr[K̃3ijM
−1
s K̃T

3ij] (4.21)

where P = P T > 0, such that ATe P + PAe+ = −Q < 0, Q = QT > 0, and Ms is

a positive symmetric matrix which satisfies Ms = K∗4iSi, Si ∈ Rp×p (see Assumption

(A4.5)).

Substituting (4.18) into the derivative of (4.20), we have

V̇1 = 2eTi (t)P ėi(t)

= eTi (t)(PAe + ATe P )ei(t)

+
2

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃T
1i(t)(xi(t)− xj(t))

+
2

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃2ij(t)uj(t)

+
2

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃T
3ij(t)xj(t) (4.22)

Also, the derivate of V2i becomes to

V̇2i = 2
∑
vj∈Ni

tr[K̃1iM
−1
s

˙̃KT
1i]+2

∑
vj∈Ni

tr[K̃T
2ijM

−1
s

˙̃K2ij]+2
∑
vj∈Ni

tr[K̃3ijM
−1
s

˙̃KT
3ij] (4.23)
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Substituting (4.13) into
∑

vj∈Ni
tr[K̃1iM

−1
s

˙̃KT
1i], it is obtained

∑
vj∈Ni

tr[K̃1iM
−1
s

˙̃KT
1i]

= − 1

ni

∑
vj∈Ni

tr[K̃1iM
−1
s STi B

T
e Pei(t)(xi(t)− xj(t))]

= − 1

ni

∑
vj∈Ni

tr[K̃1iK
∗−1
4 BT

e Pei(t)(xi(t)− xj(t))]

= − 1

ni

∑
vj∈Ni

tr[eTi (t)PBeK
∗−1
4 K̃T

1i(xi(t)− xj(t))]

= − 1

ni
eTi (t)PBeK

∗−1
4

∑
vj∈Ni

K̃T
1i(xi(t)− xj(t)) (4.24)

Similarly, it is obtained

∑
vj∈Ni

tr[K̃T
2ijM

−1
s

˙̃K2ij] = − 1

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃2ij(t)uj(t) (4.25)

∑
vj∈Ni

tr[K̃3ijM
−1
s

˙̃KT
3ij] = − 1

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃T
3ij(t)xj(t) (4.26)

Substituting (4.24)-(3.33) into (4.23) leads to

V̇2i = − 2

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃T
1i(t)(xi(t)− xj(t))

− 2

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃2ij(t)uj(t)

− 2

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃T
3ij(t)xj(t) (4.27)

From (4.22) and (4.27), we have

V̇i = V̇1i + V̇2i = eTi (t)(PAe + ATe P )ei(t) = −eTi (t)Qei(t) ≤ 0 (4.28)
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Finally, the derivative of the positive definite function V is

V̇ =
N∑
i=1

V̇i =
N∑
i=1

eTi (t)Qei(t) ≤ −qm
N∑
i=1

‖ei(t)‖22 ≤ 0 (4.29)

where qm > 0 is the minimum eigenvalue of Q.

From (4.29), the desired properties of the proposed adaptive laws are obvious:

• V > 0 and V̇ ≤ 0 implies that the equilibrium state eic = 0 of the closed-loop

system consisting of (4.13) and (4.15) for i = 1, . . . , N is uniformly stable and

its solution eic(t) is uniformly bounded, which gives the boundedness of all xi(t),

K1ij(t), K2ij and K3ij in the multi-agent system, and in turn the boundedness

of ėi(t) for i = 1, . . . , N because of (4.18);

• (4.29) implies ei(t) ∈ L2 for i = 1, . . . , N ;

• with ei(t) ∈ L2
⋂
L∞ and ėi(t) ∈ L∞, applying Barbalat lemma, we con-

clude that limt→∞ ei(t) = 0 for i = 1, . . . , N . Then according to Lemma 1,

limt→∞(xi(t) − x0(t)) = 0 for i = 1, . . . , N which means the trajectories of all

N follower agents have the desired properties;

4.5 Disturbance Rejection

A distributed adaptive disturbance compensator develops from the basic case in

Chapter 3 is presented in this section. It is proofed by a stability analysis that the

compensator has the capability to make the followers track the leader on the state

and reject the effect of the disturbances as well.

Based on the experience, we have already known that for disturbance rejection,

we develop a new term in the adaptive controller comparing with the disturbance-free
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case and chose an appropriate expression for that new term according to which part

does the disturbance act on.

However, in this section, there are N + 1 followers, for each follower i it could be

followed by other agents as well. In order to develop the problem more conveniently,

we re-state the followers structure.

Now consider the dynamic system of all the followers becomes as

xi(t) = Aixi(t) +Biui(t) +Bidi(t) (4.30)

where

di(t) = di0 +

qi∑
β=1

diβfiβ(t) (4.31)

with di0, diβ ∈ Rpi being some unknown constants and fiβ(t) being some known

bounded continuous functions, β = 1, 2, . . . , qi and some qi > 0. The given leader is

(4.2).

To cancel the disturbance, the nominal control protocol (4.8) is modified as,

u∗i (t) =
1

ni

∑
vj∈Ni

(
K∗T1i (t)(xi(t)−xj(t))+K∗2ij(t)uj(t)+K∗T3ij(t)xj(t)+k∗5ij(t)

)
, (4.32)

where the compensation signal k∗5ij(t) is

k∗5ij = K∗2ijdj(t)− di(t)

= (K∗2ijdj0 − di0) +

qj∑
β=1

K∗2ijdjβfjβ(t)−
qi∑
β=1

diβfiβ(t)

= k∗50ij +

qj∑
β=1

k∗5jβfjβ(t) +

qi∑
β=1

k∗5iβfiβ(t) (4.33)
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for agent vj ∈ Ni where

k∗50ij = K∗2ijdj0 − di0

k∗5jβ = K∗2ijdjβ

k∗5iβ = −diβ (4.34)

The ideal disturbance compensator (4.32) leads the subsystem (4.1) to a closed-

loop result

ẋi(t) =
1

ni

∑
vj∈Ni

((Ai +BiK
∗T
1i )(xi(t)− xj(t)) + (Ai +BiK

∗T
3ij)xm(t)

+BK∗2ijuj(t) +BiK
∗
2ijdj0 +Bi

qj∑
β=1

K∗2djβfjβ(t)−Bi

qi∑
β=1

diβfiβ(t)

+Bidi(t)−Bidi0)

=
1

ni

∑
vj∈Ni

(Ae(xi(t)− xj(t)) + Ajxj(t) +Bjuj(t) +Bjdj(t)) (4.35)

In result, we obtain ėi = Aeei(t). Since Ae is stable, it is easily to verify that

limt→∞ ei(t) = 0 exponentially.

Since the parametric uncertainties, (4.32) does not work for this leader-following

consensus problem, update (4.32) to an adaptive version,

ui(t) =
1

ni

(
KT

1i(t)(xi(t)− xj(t)) +K2ij(t)uj(t) +KT
3ij(t)xj(t) + k5ij(t)

)
(4.36)

where

k5ij(t) = k50ij(t) +

qj∑
β=1

k5jβ(t)fjβ(t) +

qi∑
β=1

k5iβ(t)fiβ(t) (4.37)

with k50ij(t) being the estimate of k∗50ij and k5jβ(t) being the estimate of k∗5jβ. k5iβ(t)

is the estimate of the k∗5iβ. k5ij(t) is the estimate of k∗5ij(t).
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The adaptive law for K1i(t), K2ij(t) and K3ij(t) are still given in (4.13), (4.14)

and (4.15). The estimate k5ij is developed as

k̇50ij(t) = − 1

ni
STi B

T
e Pei(t), (4.38)

k̇5jβ(t) = − 1

ni
STi B

T
e Pei(t)f

T
jβ(t), β = 1, . . . , qj, (4.39)

k̇5iβ(t) = − 1

ni
STi B

T
e Pei(t)f

T
iβ(t), β = 1, . . . , qi. (4.40)

Theorem 4.2. The distributed adaptive controller (4.32), with the adaptive laws

(4.13)-(4.15) and (4.38) - (4.40), applied to multi-agent systems (4.1) guarantees that

all closed-loop signals are bounded and global tracking are achieved: limt→∞(xi(t) −

x0(t)) = 0.

Proof: the stability of the closed-loop system, first denote the parameter errors for

k5ij(t),

k̃50ij(t) = k∗50ij − k50ij(t)

k̃5jβ(t) = k∗5jβ − k5jβ(t)

k̃5iβ(t) = k∗5iβ − k5iβ(t) (4.41)

Combining with (4.36), we obtain

ėi(t) = Aeei(t) +
1

ni

∑
vj∈Ni

BeK
∗−1
4i

(
K̃T

1i(t)(xi(t)− xj(t)) + K̃2ij(t)uj(t)

+ K̃T
3ij(t)xj(t) + k̃50ij(t) +

qj∑
β=1

k̃5jβ(t)fjβ(t) +

qi∑
β=1

k̃5iβ(t)fiβ(t)

)
(4.42)

Choose a positive definite function as a measurement of closed-loop signals of the
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multi-agent system

V̄ =
N∑
i=1

V̄i (4.43)

with

V̄i = Vi + Vai (4.44)

where

Vai =
∑
vj∈Ni

tr[k̃T50ijM
−1
s k̃50ij] +

∑
vj∈Ni

tr[k̃T5jβM
−1
s k̃5jβ] +

∑
vj∈Ni

tr[k̃T5iβM
−1
s k̃5iβ] (4.45)

and Vi is in (4.19).

Being similar with (4.24), we obtain

∑
vj∈Ni

tr[k̃T50ijM
−1
s

˙̃k50ij] = − 1

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

k̃50ij(t) (4.46)

∑
vj∈Ni

tr[k̃5jβM
−1
s

˙̃kT5jβ] = − 1

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

K̃T
5jβ(t)fjβ(t) (4.47)

∑
vj∈Ni

tr[k̃5iβM
−1
s

˙̃kT5iβ] = − 1

ni
eTi (t)PBeK

∗−1
4i

∑
vj∈Ni

k̃T5iβ(t)fiβ(t) (4.48)

which helps use to derive the derivative of V as

V̇ = −
N∑
i=1

eTi (t)Qei(t), Q = QT > 0 (4.49)

(the details are similar to the proof of Theorem 1 and are omitted here). From this

expression of V̇ , we can similarly obtain the results of Theorem 2. 5
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4.6 Simulation Study

Case I: One leader and three followers without disturbance We provide a

simulation example to illustrate the leader-following consensus performance of multi-

agent systems under the proposed adaptive protocol. In particular, a network con-

sisting of three follower agents and one leader is considered. In systems (4.1) and

(4.2),

A1 =

−2 3

1 −2

 , B1 =

0 1

1 2

 , A2 =

 0 2

−2 1

 , B2 =

−1 2

0 1

 ,

A3 =

−1 0

−1 −2

 , B3 =

1 0

3 1

 , A0 =

 0 1

−1 −3

 , B0 =

1 −2

4 1

 ,

Ae =

 1 1

−9 −4

 , Be =

1 −2

4 1

 , (4.50)

u0 = [sin(t), cos(t)]T . It can be easily verified that Assumption 4.1 is satisfied. Th

interaction graph of the three agents and the leader is shown in 4.9, which satisfies

the topology precondition Assumption 4.1 and 4.2.

The initial values of the updating matrices and vectors in adaptive laws (4.12)-

(4.15) with K1ij(0), K2ij(0), K3ij(0) are 0.8 times of their ideal values, respectively.

The performance of the leader-following consensus is presented in Figure 4.10. Track-

ing errors xi(t)−x0(t), i = 1, 2, 3 are shown in Figure 4.11. Obviously, the three agents

can track the leader with reference signal u0(t).
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0

1 2

3

Figure 4.9: Interaction graph of three follower agents and one leader

The corresponding matrix Q of Fig 4.1 is


1 0 0

0 1 0

−1 −1 2

.

Case II: One leader and five followers without disturbance Consider a multi-

agent systems consisting of five followers and one leader. This case is verified that a

follower can achieve the consensus performance no matter the path length from its

neighbors to the leader are the same or not.

The interaction relationships between the followers and the leader is shown in

Figure 4.4. Leader-following consensus performance is shown in Figure 4.5. Tracking

errors are shown in Figure 4.6. In this case, agents 0-3 have the same dynamic models

with agents 0-3 in Case I. Also Ae and Be are the same. And

A4 =

1 3

1 1

 , B4 =

−1 2

0 1

 , A5 =

−1 −4

3 −2

 , B5 =

1 0

3 1

 , (4.51)

.
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Figure 4.10: State trajectories of three follower states xi and leader state x0 vs.
time(sec)
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Figure 4.11: Tracking errors between three follower states xi and leader state x0 vs.
time(sec)
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0 1

2 3 4

5

Figure 4.12: Interaction graph of five follower agents and one leader

The corresponding Q of Fig 4.4 =



1 0 0 0 0

0 1 0 0 0

−1 −1 2 0 0

−1 0 −1 2 0

−1 0 0 0 1


Case III: One leader and three followers with disturbance Multi-agent sys-

tem in this case is a system which has disturbances acting on multi-agent system in

Case I in Section 4.6. Parameters matrices of each agents including all the followers

and the leader are shown in (4.50). Disturbances acting on agent 1-agent 3 are

d1 = [−5, −5]T + [1, 2]T sin(t)

d2 = [−4, −4]T + [2, 1]T cos(2t)

d3 = [2, 6]T + [6, 6]T sin(3t) (4.52)

respectively. u0 = [sin(t), cos(t)]T . K1ij(0), K2ij(0), K3ij(0) and k5ij(0) are 0.85 times

their ideal value.

Use adaptive disturbance compensator (4.4) we can get the desired state trajecto-

ries. Leader-following consensus performance is shown in Figure 4.7. Tracking errors

are shown in Figure 4.8.
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Figure 4.13: State trajectories of five follower states xi and leader state x0 vs.
time(sec)
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Figure 4.15: State trajectories of three follower states xi and leader state x0 with
disturbance rejection vs. time(sec)
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, in order to solve the distributed leader-following problems for the

multi-agent systems, we first solved the one leader-one follower problem with and

without the disturbances in Chapter 3. Stability analyses have shown that the pro-

posed controllers in Chapter 3 can achieve the desired properties and the simulation

studies also verify the capability of the proposed adaptive control scheme, i.e., all

agents can track the prescribed leader eventually. Based on the basic idea used in

Chapter 3, we have developed two solutions to the distributed adaptive control and

disturbance compensation problems for multi-input multi-agent systems in Chapter 4.

Our study has shown that the desired closed-loop system stability and tracking prop-

erties can be achieved by control adaptation based on a complete parameterization of

the leader and the followers system parameters as well as the disturbance parameters.

Simulation results for multi-agent systems have also confirmed the capability of the

proposed adaptive control.

100
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5.2 Future Research Topics

Adaptive control for distributed multi-agent coordination with leader and followers

parametric uncertainties, as discussed and analyzed in this thesis, is a new research

focus. However, there are still many challenges need to be overcame. In this section,

we will introduce several potential extensions to our research.

The control framework discussed in Chapter 3 assumes that all of the states of

each agent are available for feedback control design and exchange in a communication

network. However, in real application, not all of the states can be accessible for

measurement and exchange through a communication network. It is both practically

and theoretically important to relax the requirement for full state measurement or

exchange for multi-agent systems. Therefore,a state observer is needed to achieve

the state tracking. Also this useful extension results can be applied to the multi-

agent case in Chapter 4. It is worthwhile investigating the estimation of relative state

estimation with appropriate estimation accuracy as well as the stability of closed-loop

multi-agent systems with estimated information.

At the meanwhile, for some practical multi-agent systems, links between different

agents have different weights. It is worth and important to figure out how to make

the multi-agent consensus well based on those different weights. Compared to the

weighted case, in our thesis, we assume that every edge in the communicate graph

have the same weight. This challenge need to be solved for many real practical

applications.
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