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Abstract

The increasing use of smart devices such as smartphones and wearables has
enabled new opportunities for health research that leverage rich multimodal, multiscale
data streamed from embedded sensors to monitor and deliver timely interventions to
patients when and where they need them most using recent computational advances
in machine learning. This new approach to intervention provides more accessible,
scalable, and cost-effective options to reach individuals. This relatively new interven
-tion framework called just-in-time adaptive intervention (JITAI) aims to provide
the right type/amount of support, at the right time, by adapting to an individual’s
dynamically changing internal and contextual state. The success of JITAIs depends
on accurate models for recognition of internal states such as an individual’s emotional
state and other contextual states relevant to health. This data can in turn be
used to design an intervention policy that leads to improved user engagement, lower
attrition rates, and lower symptom burden. In this dissertation, we propose multiple
computational techniques that move us towards more personalized JITAIs for mental
health.

To demonstrate the efficacy of our proposed computational approaches, we
leverage real-world data from multiple mobile sensing studies from a population of
college students to (1) personalize affect recognition for subgroups of individuals,
(2) learn context-aware intervention policies for emotion regulation (ER), and finally
culminating by combining approaches 1 and 2 into a (3) subgroup-based, context-
aware intervention policies for emotion regulation. These methodologies contribute
to a growing body of approaches that moves us closer to the realization of just-in-time
interventions in mobile health.
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1 | Introduction & Related Work

1.1 Motivation

The ubiquity of smart devices (e.g., mobile phones, smartphones, laptops, and tablets)
in recent years has created massive opportunities for monitoring human health traces
from sensors (e.g., GPS, accelerometer, microphone etc) and delivering timely interven
-tions to reinforce health habits with potential positive impacts on long-term mental
health and wellbeing. There is a wide range of application areas using mobile health
interven -tions including, physical activity, alcohol use, smoking cessation and mental
illnesses. This new technology allows us to innovate the traditional approach of
delivering treatment in clinic, which typically involves regular visits to the clinic for
treatments. This approach to mental health treatment is inefficient and not easily
accessible. Furthermore, it is also fraught with issues of recall bias on the side
of the patient not being able to accurately remember events that happen between
visits. In recent years, new approaches to mitigate the effect of recall bias have been
developed to capture natural experiences of patients in their natural environments
using surveys delivered periodically through smart devices that enables patients to log
their experiences. This methodology is referred to as experience sampling methodology
or ecological momentary assessment (EMAs) [Shiffman et al., 2008].

EMAs hold the promise of collecting high quality data for behavioral mental
health research to enable statistical inferences from both an idiographic and nomothetic
perspective. When EMAs involve active interventions when a risk of interest is
detected, it is called an ecological momentary interventions (EMI). The capability of

1



1. Introduction & Related Work 2

EMA or EMI studies as an efficient alternative to supplant the traditional approach
is often undermined by issues such as user attrition, confounding bias, habituation
to EMA prompts and perceived relevance of interventions [Doherty et al., 2020].
These issues have spurred new research directions to develop methods geared towards
reducing these issues that plague the efficacy of EMA studies. One line of research
uses gamification to improve user engagement for EMA studies [Doherty et al.,
2020, Klasnja et al., 2015], but not much has been done to improve the relevance
of interventions (EMIs). It is important that systems built to deliver interventions to
patients be personalized and effective especially in the early stages, to mitigate the
risk of user engagement for lost of trust in the system, or the exposure to unexpected
adverse outcomes caused by poor interventions [Tewari and Murphy, 2017]. This
is especially relevant in the mental health application settings where the negative
impacts can be devastating [Doherty et al., 2020]. In the traditional recommender
systems literature, the problem of recommending relevant actions to users with limited
data at early stages is called the cold-start problem.

In this thesis, we develop computational methods similar to cold-start approa
-ches to improve the relevance of mobile health interventions by means of personalized
health assessments and intervention recommendations. Our methods were developed
with purely observational data to improve the relevance of mobile interventions especia
-lly at the early stages of an EMA study, which consequently will impact user engage
-ment and produce desirable outcomes for users. The framework to operationalize
our methods is called the just-in-time adaptive interventions (JITAI).

1.2 Methods for Personalization

The concept of personalization is widely used in more traditional recommender systems
such us e-commerce and entertainment systems like Netflix to improve user engagement
and relevance scores. Models such as collaborative filtering, matrix factorization
and deep learning form the cornerstone of the immense methodological advances in
recommender systems. More recently, there has been new inroads made with non-
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traditional methods such as contextual bandits and causal inference to improve upon
the personalization efforts to make recommendations more adaptive over time via safe
exploration and exploitation strategies [Goldenberg et al., 2021]. There is a growing
effort in mobile health to adopt these techniques for more nuanced applications like
mental and physical health which have relatively more consequential implications
beyond user disengagement; for example, providing unhealthy recommendations that
could lead to a patient relapse in an alcohol cessation study. Papers focusing on
personalization in mobile health can be mainly categorized by two modeling targets;
symptoms predictions and intervention recommendations.

There have been several papers showing improvements in training personalized,
that is individual-level, models over a more generalized model in mobile health symp
-toms. For example, Jacques et. al, showed that by using multi-task learning, where
the task is defined at the individual level, leads to improvements in predicting health,
stress and well-being over a more generalized model [Jaques et al., 2016]. Also,
Koldijk et al. [Koldijk et al., 2016] showed that by adding the participant ID as a
feature to their workplace stress prediction model improved accuracy in classifying
mental effort suggesting that person-level models are more useful. An even more
recent paper proposed a collaborative filtering based classifier to detect depressive
symptoms [Xu et al., 2021] and showed generalization between data sets collected
from different institutions, thus highlighting the importance of personalized models
for study replication. Similarly, for mobile health interventions optimization, there
is a growing interest in using contextual bandits to personalize interventions based
on users’ contexts. A notable work by Rabbi et. al. used contextual bandits to
personalize physical activity recommendations to users in a study conducted over 14
weeks [Rabbi et al., 2015]. Tomkins et. al. also demonstrated the use of contextual
bandit with multi-task learning to intelligently pool data from similar users for the
recommendation of physical steps; their findings showed significant improvements in
performance over a more generalized contextual bandit approach [Tomkins et al.,
2021]. Throughout this thesis, we develop techniques for personalization in mobile
health and demonstrate significant advances over more generalized models.



1. Introduction & Related Work 4

1.3 Just-in-Time Adaptive Interventions

1.3.1 Mobile Health Interventions

Many existing papers propose recommender systems targeting different health outcomes.
For example, myBehavior, a mobile app that tracks user’s physical and dietary habits,
recommends personalized suggestions for a healthier lifestyle [Rabbi et al., 2015].
Cheung et al. [Cheung et al., 2018] created a mobile app called IntelliCare, which
consists of a suite of 12 individual apps as ’treatments’ that will be recommended for
managing depression and anxiety. Yang et al. [Yang et al., 2018] created a mobile
health recommender system that integrates depression prediction and personalized
therapy solutions to patients with emotional distress. In their system, personalization
is realized using 9 external factors related to depression, including family life, external
competition, interpersonal relationship, self-promotion burden, economic burden, work
pressure, individual personality, coping style, and social support, which are assessed
using mobile questionnaires. These mobile health efforts are consistent with a mobile
intervention framework called Just-in-time adapti -ve intervention (JITAI) [Nahum-
Shani et al., 2017].

1.3.2 Reinforcement Learning Powered Mobile Health

Two aspects regarding the intervention decisions made in a JITAI framework are the
timing of intervention delivery and choosing the best intervention strategy to deliver.
Most existing work focuses on optimizing for the best timing to deliver an intervention
(e.g., predicting stressful moments linked to emotional eating [Rahman et al., 2016]).
By contrast, our work focuses on identifying the most effective ER strategies based
on a person’s context (e.g., location, activity). Reinforcement learning with Markov
decision processes (MDPs) are typically used to operationalize the key objectives of a
JITAI. Example applications include personalizing sepsis treatment strategies [Peng
et al., 2018], encouraging physical activity for diabetes patients [Yom-Tov et al.,
2017], and managing stress [Jaimes et al., 2014]. Interestingly, although reinforcement
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learning is not directly applied to recommend ER strategies for emotion management,
it has been applied to understand the psychological and cognitive process of ER
[Marinier et al., 2008, Raio et al., 2016]. Specifically, [Marinier et al., 2008] argues
that emotions are a proxy for human subject decision making. In other words, humans
make decision to maximize the way the feel afterwards. Similarly, [Raio et al., 2016]
makes the argument that emotion regulations do not only fit the computational model
of reinforcement learning using a simple classification of model-free or model-based
learning, but argues for a more hybrid and hierarchical approach.

1.3.3 Learning Initial Policies for Fast Online Adaptation

As the adaptation of reinforcement learning become more widespread in applications
including autonomous vehicles, healthcare and robotics; there has been a growing
body of research exploring safe exploration in RL or other offline alternatives in
settings like clinical healthcare where active exploration is unethical or dangerous.
Some notable examples include learning vasopressor and IV fluid dosages for sepsis
management [Raghu et al., 2017] using Double-Deep Q-Network [Van Hasselt et al.,
2015] with doubly robust policy evaluation [Jiang and Li, 2016], and the AI clinican
[Komorowski et al., 2018] also using deep reinforcement learning for sepsis treatment
in the intensive care unit setting. These examples however represent settings where
active exploration from reinforcement learning is prohibitive or impossible. On the
other hand, in more moderate stake applications such as robotics, research has been
developing in recent years to enable offline policy learning that uses abundant historical
data of robots to learn better policies to prevent the wear and tear on the robot and
enable fast adaptation. In fact, several recent benchmarks have been developed to
advance research in this area, notable RL Unplugged [Gulcehre et al., 2020] and
D4RL [Fu et al., 2020]. Recent work, showed the benefit of learning an offline policy
for fast adaptation in the online setting [Rakelly et al., 2019] in robotic applications.
While researchers in mobile health indicate that there might be similar benefits for
offline learning in mobile health settings through learning an initial policy [Tewari
and Murphy, 2017], there has been no real world demonstration of the approach to
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our knowledge. It is, however, worth noting there is recent theoretical work in offline
reinforcement learning where the average undiscounted reward is optimized [Liao
et al., 2020b, Liao et al., 2020c]. We will focus on the practical demonstration of
offline learning with purely observational data in this thesis work motivating future
work to evaluate our approaches in a real-world setting.

1.4 Preliminary Work in Reinforcement Learning

In general, we denote random variables as capital letters and their realizations in
small letters (e.g., x is a realization of X random variable). Let us denote S,A,R
as the random variables for state, action, and associated reward for the sequential
decision making process. To set up the mathematical formulation for mobile health
interventions, it is assumed that we collect multimodal data streams including states
(s), actions (a) and rewards (r) from a micro-randomized trial [Klasnja et al., 2015]
over a period T . Consequently, we obtain data, denotedD = {(st, at, rt)}Tt=1. Typically,
the sequence of data is assumed to be generated from a Markov decision process,
with the implication that expected reward at each point is sufficiently determined
by the current state given the immediate past state. In mobile health intervention
applications, it is assumed that T can take infinite values which makes the problem
an infinite horizon Markov decision process.

Markov Decision Process (MDP)

Suppose we observe a training dataset, Dn = {Di}ni=1 that consists of n independent,
identically distributed (i.i.d.) observations of D:

{S1, A1, S2, . . . , ST , AT , ST+1}

where t indexes the decision time. The length of the trajectory is assumed to
be non-random (e.g., 5 weeks for Social Anxiety Monitoring and Mobile Intervention
(SAMMI) data). St ∈ S is the state at time t andAt ∈ A is the action (treatment/strat
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-egy) selected at time t. We assume the action space, A, is finite. Without loss
of generality, we assume that state space, S, is finite; as this imposes no practical
limitations and can be extended to a general state space.

The states evolve according to a time-homogeneous Markov process. For t ≥ 1,
St+1{S1, A1, . . . , St−1, At−1|St, At}, and the conditional distribution does not depend
on t. Denote the conditional distribution by P , i.e., Pr(St+1 = s

′ |St = s, At =

a) = P (s
′ |s, a). The reward (i.e., outcome) is denoted by Rt+1 = R(St, At, St+1). We

assume the reward is bounded, i.e., |R(s, a, s
′
)| ≤ Rmax. We use r(s, a) = E[Rt+1|St =

s, At = a].

Let Ht = {S1, A1, . . . , St} be the history up to time (t - 1) together with the
current state, St. Denote the conditional distribution of At given Ht by πb,t(a|Ht) =

Pr(At = a|Ht). Let πb = {πb,1, . . . , πb,T}. This is called the behavior policy in the
literature. In this work, we are not required to know the behavior policy.

Consider a time-stationary, Markovian policy, π, that takes the states as input
and outputs a probability distribution on the action space, A, that is, π(a|s) denoting
the probability of selecting action, a, at state, s. The average reward of the policy,π,
is defined as

V(s|π) = lim
T→+∞

Eπ

(
1

T

T∑
t=1

γRt+1|S1 = s

)
, (1.1)

where the expectation, Eπ, is with respect to the distribution of the trajectory
in which the states evolve according to P and the actions are chosen by π. Also, the
parameter γ ∈ [0, 1] is added to encode the idea that immediate rewards are worth
more than long-term reward, although, recent literature shows the irrelevance of the
γ in mobile health applications [?]. It can be shown that the maximal average reward
among all possible history dependent policies can be in fact achieved by some time-
stationary, Markovian policy. Consider a pre-specified class of such policies, Π, that is
parameterized by θ ∈ Θ ⊂ Rp. We state the objective of learning as an optimization
problem;

π∗ = argmax
π∈Π

VΠ(s|π). (1.2)
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1.4.1 Limitations as Applied to Mobile Health

Using Markov decision processes with reinforcement learning (RL) seems keenly appro
-priate for mobile health data. However, there are a few weaknesses that limit the
utility in real-world applications.

Impact of Noisy Observations

Mobile health intervention studies are mostly conducted in uncontrolled environments;
both context information and rewards can be very noisy as a result of possible
confounders. For example, in the SAMMI data, the effect of strategies is represented
by self-reported effectiveness of affect, but this measurement is subjective and could
be limited by recall bias. Similarly, sensor pedometer step count data could be
confounded by accidental hand movements. In addition, these data do not completely
describe the context of the user. Consequently, such uncertainty typically requires
even more interaction data to select an optimal policy.

Although it is typically useful to optimize for long-term effect of mobile health
policies to account for the risk of habituation; this approach often leads to high
variance in reward estimation as well as a slow learning. Specifically, by setting
the discount rate γ in 1.1 close to 1, an infinite amount of data is required for
learning [Arumugam et al., 2018, François-Lavet et al., 2015, Jiang et al., 2015]. In
effect, reducing the discount factor to be closed to 0 mitigates the risk of overfitting
[Arumugam et al., 2018], the richness of the policy class to learn the optimal policy
depends not on the state and actions but on the planning horizon denoted above as T ,
that is the shorter the horizon is, the more likely it is to learn a good policy and vice
versa. In light of these limitations, most works applying reinforcement learning in
real world mobile health intervention applications, tend to use bandits or contextual
bandits since these can be seen as a full RL with a discount factor γ = 0.



1. Introduction & Related Work 9

Reliance on Access to True Underlying State

One other weakening assumption for using full RL with MDPs is the underlying
assumption of having access to the true state space of an agent or a user in a mobile
health setting. This is almost never realized in practice since as stated above, the
contextual variables are a noisy representation of the true underlying state of a user.
Consequently, the impact of the Markov assumption is aggravated since the current
state is not even well identified with available data. A recent paper, which deployed
a real world application of mobile health interventions to encourage physical activity
[Yom-Tov et al., 2017], argued that while there are methods using Q-learning or TD-
learning for RL, these methods heavily rely on the assumption of having access to
the true underlying state, or to high-quality features that represent the dynamics
well. As a result, they used a contextual bandits which allows them to predict the
immediate effect of a given interventions as opposed to additionally changing the
state of a user. There are several other studies, that made similar arguments to select
contextual bandits or some variant thereof as opposed to a full-blown RL, see [Rabbi
et al., 2015,Paredes et al., 2014,Forman et al., 2019]. Similar to previous work, we
propose to use contextual bandits to allow us to learn about the immediate effect of
treatments/strategies from the limited historical data from the SAMMI study. Our
objective, is to use the ensuing policy as a warm-start treatment assignment policy
to collect high quality data less prone to the risk of disengagement and attritions in
a future study.

1.4.2 Contextual Bandits

Contextual multi-armed bandit (CMAB) or simply contextual bandits is an reinforce
-ment learning framework that leverages contextual information to learn a policy that
triggers actions based on the context to achieve optimal expected rewards. Typically,
CMAB consists of an agent that interacts with an environment over a finite number
of trials i = 1, 2, . . . , T such that: 1) it observes a context x from an input space
X ; 2) chooses an action from a set A = {a1, a2, . . . , ak−1, ak}, which contains all the
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strategies that each corresponds to an arm of a k MAB; and 3) receives a reward
signal ri. The goal of the agent is to learn a policy to guide action decisions. Unlike
a full-blown reinforcement learning algorithm typically modeled using MDPs, where
an action decision modifies future states and action selections, CMAB assumes that
{(xt, at, rt)}Tt=1 are independently and identically distributed following an unknown
generative distribution D.

The observables are (xt, at, rt(at)); in particular, only the reward rt(at) for
the chosen arm at is observed. For each context x ∈ Rd, the optimal assignment is
a(x) = argmaxa E[r(a)|x] and we let at = a(xt), which denotes the optimal assignment
for context xt. The objective is to find an assignment rule that sequentially assigns at

to minimize the cumulative expected regret
T∑
t=1

E[r(at)−r(at)], where the assignment

rule is a function of the previous observations (xj, aj, r(aj)) for j = 1, ..., t− 1 and of
the new context xt.

Contextual bandits typically assumes an active learning setting where an agent
iteratively learns to make good decisions by interacting with the environment through
experimentation. This is however costly and expensive for most real world safety-
critical applications such as healthcare or mobile health where there is a risk of taking
dangerous decisions or causing a disengagement from the users. Consequently, this
motivates a new paradigm of reinforcement learning in the offline setting, also known
as, offline reinforcement learning or batch reinforcement learning. In this setting, the
agent does not explore the environment, instead, it has access to log of historical
trajectories from other agents’ behaviors and the goal is to learn an optimal policy
from this data. As stated above, these historical data pose a missing data problem,
in that, for each context the agent only observes the reward associated with the
action taken and not the reward of the alternative actions. In other words, there is
an abundance of factual outcomes of actions, but the agent needs to estimate the
counterfactual outcomes with limited data to estimate the associated reward of the
alternative actions. This are concept is well established from the causal inference
body of literature.
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Causal Inference

Causal inference fundamentally aims to answer the cause-and-effect question: does
X cause Y ? If so, how much is the effect of X on Y ? Causal inference helps us
learn about how things work and predict the impact of a change on an event of
interest [Morgan and Winship, 2015, Imbens and Rubin, 2015]. In this section, we
review some basic concepts and assumptions of causal inference that will be used in
the later chapters of this dissertation when we make a connection between causal
inference and health treatment recommendation.

The Potential Outcome Framework

The potential outcome framework of causal inference [Rubin, 1974] is the most widely
used formulation of causality. We use random variable A = {a1, a2, · · · , ak} as a
collection of actions an agent can take in an environment and assume that only
one treatment can be taken each time, i.e., ak is either 1 (when action is taken) or
0 (when action is not taken). In this framework, each individual has k potential
outcomes Y (ak) depending on the value of ak. For example, in the bandit setting,
each time, we assume there is a potential outcome Y (ak = 1) if the action ak is taken
and Y (ak = 0) if not taken.

One measurement or estimand of the causal effect is the average difference
(over individuals) between those potential outcomes. It is called the average treatment
effect (ATE): E[δ] = E[Y (1)]−E[Y (0)], where the expectation is taken over the whole
population of interest. In the language of graphical models [Pearl, 2009], this is framed
as evaluating the impact of an intervention on random variables in a probabilistic
graph. The difficulty of causal inference is that we can only observe one realization
of all the potential outcomes Y (a), for a ∈ {0, 1}. The counterfactual estimand
of the value of a treatment when there is additional contextual data is called the
conditional average treatment effect (CATE). For example, given a context x the
CATE of treatment is denoted CATE(a = 1|x) = Y (a = 1|x)− Y (a = 0|x).
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Randomized Experiments and Observational Studies

There are two types of data commonly encountered in causal analysis: data collected
from randomized experiments and data collected from observational studies. Randomi
-zed experiments are studies where each unit receives a treatment randomly, for
example, as in a clinical trial where a random proportion of patients receives treatment
and placebo. This approach ensure reliability and validity of statistical estimates for
causal effects. A naive ATE estimator of the difference between the treated and
untreated with data from randomized experiments is unbiased. While such data is of
great quality, it is rarely easy to obtain.

Observational data, on the other hand, is collected from studies where we have
no control over the treatment assignment mechanism. This often results from studies
where it is impractical to perform a randomized experiment (e.g., for ethical reasons),
or when we cannot control the data collection process. Special care is required when
making causal statement with observational data, since the naive ATE estimator
is generally biased. Despite such difficulty, observational data is easily accessible
compared to data collected from randomized experiments.

To estimate the CATE from observational data, the following set of assumptions
are made;

• Ignorability. {Yi(a1), Yi(a2), . . . , Yi(ak)}Ai|Xi = x for any x ∈ X and ai ∈
A = {a1, a2, · · · , ak}. In other words, there are no unobserverd confounders.

• Positivity or overlap. That is that 0 < P (A = ai|x) < 1 for all ai ∈ A and
x ∈ X. In other words, there is a non-zero probability for selecting any action
in a given context.

In summary, offline contextual bandits is equivalent to deriving the actions
that maximize the CATE as follows: a∗(x) = argmaxaCATE(a|x).

If we treat recommending a mobile health intervention to a user as action taken
by an agent, the data collected from a lot of behavioral health intervention systems
is an example of observational data. We leverage this connection in Chapters 3 and
4.
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Ideally, conducting a live experiment, akin to a randomized control trial is
required to learn the treatment effect of different strategies [Klasnja et al., 2015].
However, this approach is typically fraught with issues including cost of experimenta
-tion. Experiments with human subjects to discover treatments are expensive and go
through a lengthy process of approval, and even when finally staged take a significant
amount of time to complete. However, there is an abundance of observational data
collected from EMAs and smartphone embedded sensors, which can be leveraged to
warm-start the process of treatment selection in mobile health intervention designs.
These data are cheap to obtain; for example, in this thesis, we mostly use data
from a study targeted toward identifying the treatment outcome of cognitive-bias
modifications to learn about a somewhat related topic, namely, emotion regulation.
Moreover, we can use observational data to learn about the contextual effectiveness of
different treatments which are almost impossible in live human trials. In light of these
merits, we propose a novel approach to the treatment of social anxiety that leverages
smartphones and contextual bandits to build a initial or warm-start recommender
algorithm for emotion regulation strategies tailored to a person’s contexts as well as
the idiographic characteristics.

1.5 Contributions

The contributions proposed in this thesis work are three-fold:

1. We develop, to our knowledge, the first methodological approach to learning an
initial policy in the mobile health interventions setting using available retrospective
mobile sensing data.

2. We develop a framework to learn a subgroup-based, personalized mobile health
intervention policy in the offline setting.

3. We establish a proof-of-principle with a case study on emotion-regulation, an
important and trans-diagnostic process that will likely have broad impacts on
mental health.
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1.6 Hypotheses

To achieve the objectives of this thesis, we investigate three hypotheses:

1. There is a subgroup-based prediction model that outperforms a generalized
model for affect prediction tasks.

2. There is a general context-aware intervention policy for mental health which
performs significantly better than what people are already doing.

3. There are subgroups in the given population for which there is an enhanced
effectiveness of intervention effects based on contextual variables.

1.7 Organization

The rest of the thesis is organized as follows:

1. In Chapter 2, we leverage cluster-based approaches to predict human affective
states from passive sensor data.

2. In Chapter 3, we use contextual bandits and causal inference techniques to
demonstrate the learning and evaluation of mobile health interventions policies
on the process of emotion regulation. We also, provide results from our extension
of the approach to a more clinically relevant application.

3. In Chapter 4, we use subgroup analysis to learn warm-start policies of the
emotion regulation intervention policy and demonstrate improvement on the
approach outlined in Chapter 3.

4. In Chapter 5, we conclude the thesis by summarizing impact of the body of work
in this thesis, the limitations as well as an outline of possible future directions.



2 | Personalized Affect Prediction

Negative affect is a proxy for mental health in adults. By being able to predict
participants’ negative affect states unobtrusively, researchers and clinicians will be
better positioned to deliver targeted, just-in-time mental health interventions via
mobile applications. In this chapter, we present our to personalizing the passive
recognition of negative affect states via a group-based modeling of user behavior
patterns captured from mobility, communication, and activity patterns. Our empirical
experiments show that group models outperform generalized models in a dataset
based on a two weeks of users’ daily lives.

2.1 Introduction

The extent to which individuals experience positive and negative affect on a daily
basis is associated with mental health outcomes [Clark et al., 1994]. Higher levels of
negative affect are associated with increased vulnerability to many mental disorders,
including depression and anxiety disorders, two of the most common types of mental
disorders in U.S. adults [Kessler et al., 2005a]. Mental health research typically
relies on self-report questionnaires that assess negative affect at a moment in time.
Repeated administration of these measures, such as in an ecological momentary
assessment (EMA) framework, is resource intensive and susceptible to retrospective
bias when participants are asked to recall their mood over a previous duration [Gentzler
and Kerns, 2006]. Ideally, negative affect would be recognized without asking partici
-pants, thereby reducing burden, improving compliance among participants, and

15
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allowing for continuous modeling of affect change. To aid recognition of negative
affect, unobtrusive mobile sensing of location, texts and calls, and activity levels
could also be used to enrich the information provided by participants’ responses to
questionnaires assessing negative affect and measures of mental health (e.g., social
anxiety, depression).

Current affect recognition approaches are based primarily on generalized or
individualized approaches [Yonekura et al., 2016]. In generalized approaches, the
recognition model learns global patterns that the majority of participants followed
during the experiment. These patterns are then used for prediction. Since user
behaviors vary substantially, generalized models may fail to predict variations in
affect for an individual person. In contrast, individualized models are designed to
learn participants’ patterns on a case-by-case basis, thus they are expected to be more
accurate. However, individualized models require a certain number of observations
for each individual to obtain robust prediction performance. In short-term studies
involving human subjects (e.g., two weeks), individual models may fail to adequately
capture individual affective patterns because of a small pool of observations [LiKamWa
et al., 2013].

In our work, we propose a new group-based approach that integrates generalized
and personalized models. We first propose a method for clustering multi-modal
behavioral profiles that groups participants based on their mental states, activity
levels, communications, and mobility patterns. We then apply several prediction
algorithms to investigate whether group models using multi-modal user profiles outper
-form the generalized or population-based model.

2.2 Related Work

Smartphone usage can be used as an indirect marker of mood. Passively sensed
location information has been used to predict depressive symptoms [Saeb et al., 2015].
Individuals with higher social anxiety levels were more likely to report negative affect
during the day, which in turn was predictive of spending more time at home at
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subsequent measurements [Chow et al., 2017]. Self-reported stress and mental health
indices were also successfully predicted in a 10-week long study design in college
students with both passively and actively sensed data [Wang et al., 2017].

Prediction of affect from mobile sensing appears to be more difficult to replicate.
In a feasibility study, LiKamWa et al. [LiKamWa et al., 2013] explored a personalized
feature selection approach to predict changes in mood from unobtrusively sensed
indices of social activity (e.g., calls/texts, emails), physical activity (e.g., GPS), and
general mobile phone use (e.g., application use, web browsing). The study relied on
two months of data collected from 32 participants. Results indicated high levels of
accuracy in predicting mood using personalized models. The personalized modeling
also produced better accuracy compared to a generalized model using data from all
users.

A follow-up study in which a personalized feature selection approach was used
to predict affect ratings from 27 participants over 42 days found no clear benefits
of using this approach [Asselbergs et al., 2016]. However, these studies did differ in
length, participant variability (e.g., depressive symptoms), and unobtrusive features
assessed. It remains possible that personalized feature selection requires an intensive
level of data collection that participants may perceive as burdensome. Given these
findings, we use an intermediate approach between generalized and personalized
models to recognize affect in a given situation.

2.3 Study Design

Sixty-five undergraduate students were recruited for a two-week study period to
understand dynamics of emotional, cognitive, and interpersonal processes associated
with depression and social anxiety. University students provide a relatively homoge
-neous sample in terms of life phase and common psychological stressors, thereby
mitigating the impact of a wide variety of potential nuance factors. Pre-study surveys
were given to the students at enrollment, and one of these surveys measured students’
social anxiety (SIAS) [Mattick and Clarke, 1998]. The study contained an ecological
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momentary assessment (EMA) phase that requests self-report data on psychological
affect throughout the day. A customized mobile app (Sensus) [Xiong et al., 2016]
was installed on participants’ personal Android smartphones and was programmed to
deliver 6 EMAs throughout the day (each survey contained 12 questions), randomly
scheduled in each 2-hour block from 9 a.m. to 9 p.m. (e.g., once between 9-11 a.m.,
once between 11 a.m.-1 p.m., etc.). Sensus was also configured to deliver an end-of-day
survey at 10 p.m. each day. Prompts concerning affect first asked participants to rate
how positive they were feeling from 1 (not at all) to 100 (very positive). The second
question asked participants to rate how negative they were feeling from 1 (not at all)
to 100 (very positive). In addition to these active assessments, Sensus also passively
collected GPS coordinates every 150 seconds and accelerometer data at 1 Hz, in
addition to call and text logs. All data were transmitted wirelessly to a secure Amazon
Web Services server, where data were stored for further analysis (see Figure 2.1).

Figure 2.1: Passive and affect data collection using smartphones.
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2.4 Experiments

2.4.1 Data Preprocessing

We first processed participants’ raw GPS data into semantic locations (e.g., leisure,
education, and home) by combining a spatiotemporal clustering algorithm [Kang
et al., 2005] and OpenStreetMap (OSM) geodatabase [Keßler, 2015]. Our label
taxonomy includes the following types: Education (e.g., university and libraries),
Leisure (e.g., restaurants and cinemas), Out of town, In transition (e.g., going from
one place to another), Home, and Other houses. Our algorithm has been trained to
recognize Home as the place having a house OSM-tag (e.g., apartment, dormitory,
house, etc. See [Keßler, 2015] for more details about OSM tags) where a subject
stayed the most between 10 p.m. and 9 a.m.

For accelerometer data, we used statistical measures (mean, minimum, maxim-
um, standard deviation, median and variance) on the 1-minute sliding window to
extract several features of phones’ motion around affect assessment moments. These
features aim to represent the physical activity levels of the participants, and we used
them to predict momentary negative affect. Note that our accelerometer features are
extracted from the magnitude of acceleration

√
x2+y2+z2

3
to make them orientation

free, since the phones were used in participants’ natural environments.

Individuals’ affect may be associated with the degree to which they interact
with others. Thus, we included communication events in our models. For each EMA
we collected the number of text messages and phone calls as long as their duration
overlapped with epochs prior to the EMA prompt. Here we chose 1 hour prior to the
EMA prompt as the time window to record the number of text messages and phone
calls.

2.4.2 Profiling Users

After preprocessing the data, we clustered the participants based on their behavioral
profiles. There are different ways to cluster participants. For instance, a clustering
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strategy can be based on time spent at home to cluster people having depressive
symptoms, drawing on the hypothesized correlation between home staying and affect
fluctuation patterns. The following four passively sensed profile features were used to
drive the clustering process.

Location

For location data, we considered five common point-of-interest classes consisting of
{‘out of town’, ‘education’, ‘friends’ houses’, ‘home’, ‘leisure’}. Then we calculated
the proportion of time spent in each of these locations over the study period for each
participant.

Activity

From the accelerometer data, we chose thresholds of 0.2 and 0.3 between the minimum
and maximum to define three levels of activity (e.g., {Low, Medium, High} in accelera-
tion). We chose these cutoffs based on the observed distribution of the acceleration
values. Then for each participant, we calculated the proportion of time being in these
activity levels (e.g., proportion of time being in the high level).

Short-Message Service (SMS)

From the SMS data, we aggregated the number of text messages sent and received
within each 1-hour window during the study period. From this, we defined 5 text
messaging levels based on text message frequencies (e.g., ‘VeryLow’,‘Low’,‘Medium’,-
‘High’,‘VeryHigh’) with intermediary cutoffs at 1, 10, 20 and 30 messages per hour
based on their observed distribution.

Phone Calls

Similarly, we computed the proportion of calls occurring at each level of call activity
defined as ‘Low’,‘Medium’,‘High’,‘VeryHigh’ using thresholds of 1, 3 and 6 calls per 2-
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hour window. We used a 2-hour window to accommodate the lower hourly frequency
of phone calls compared with text messages.

Formally, for the design matrix X ∈ RN×d with X = {xi}Ni , the feature vector
for each participant is xi = {xi1, xi2, · · · , xip1︸ ︷︷ ︸

M1

, xi1, xi2, · · · , xip2︸ ︷︷ ︸
M2

, · · · , xi1, xi2, · · · , xipn︸ ︷︷ ︸
Mn

}.

Note that Mi (i ∈ [1, n]) represents the ith modality and pi the number of levels in
the ith modality.

With the above, we determine different clusters based on various combinations
of these four passively sensed modalities in addition to SIAS using the G-means
(Gaussian Means) [Hamerly and Elkan, 2004] algorithm. The G-means algorithm is
an extension of K-means where number of clusters is automatically determined by
iteratively selecting k such that the data assigned to each cluster follows a Gaussian
distribution.

2.4.3 Predictive Models

We used 4 algorithms to test the predictability of negative affect: Gaussian process,
SVM, linear lasso, and random forest. Each of these models has merit with respect
to the issues that may ensue from constraints of data availability for model training,
which is the case in this study. Although random forest, SVM, and Lasso regression
are well-studied, Gaussian processes have demonstrated promising performance in e-
health applications [Clifton et al., 2013] mostly because they enable experts to encode
their beliefs about smoothness or periodicity using covariance functions. In addition,
the complexity of the model is inherently regulated (see chapter 5 of [Rasmussen and
Williams, ]) and provides uncertainty over predicted values. In our case, we used the
squared-exponential covariance function [Rasmussen and Williams, ]:

K(x, x′) = θ2
sexp

{
−||x− x′||2

2θ2
`

}
(2.1)

where θt = {θs, θ`}, with θs and θ` being the hyperparameters of the covariance
function regulating the y-scale and x-scale, respectively.
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2.5 Results

Figure 2.2 presents the performance of various clustering strategies compared with
generalized models using the predictive algorithms presented earlier. Before analyzing
performance, we will present a brief interpretation of each grouping strategy. Using
data from SMS, four groups were discovered as presented in Table 2.1. The group
labeled freq are most actively engaged with text messaging on their phones, while
reg1 and reg2 fall in the middle with reg2 being more frequent than reg1. The most
inactive group is labeled by infreq. In the profiles learned using the phone call logs, two
groups were discovered: an active group and an inactive group in terms of their phone
call level distributions. Notice that for the majority of time prior to EMAs, phone
calls were rarely made by our study participants, and thus we see high percentages
in the ‘low’ level. Using acceleration as a proxy to characterize participants’ activity
level, we found two: one active group and one inactive group. Again notice that
the differences in the acceleration level distribution between the two learned groups
are minor and only relative between them. With respect to locations, in the first
group, the participants split most of their time between school and home; in the
second group, the participants spent over 80% of their time at school at the expense
of other places; and in the third group, the participants spent the majority of their
time away from home (e.g., traveling out of town, visiting friends, and at leisure place
of interests).

We also used cutoffs of 34 and 43 in SIAS scores to divide participants into
low, medium, and high social anxiety groups [Heimberg et al., 1992]. In total, we
experimented with 10 grouping approaches based on location, activity level, communi-
cations (SMS and phone calls), and SIAS scores as shown in Figure 2.2. Specifically,
DailyActivity applies a combination of location, activity level, communications profiles;
communication is based on the combination of phone calls and SMS (re-grouped into
active and inactive) producing three groups (active in both SMS and calls, only active
in either SMS or calls, inactive in both SMS and calls).

From Figure 2.2, using most of the grouping strategies, we were able to obtain
better overall performance in lower weighted RMSE in our group models when compared



2. Personalized Affect Prediction 23

Table 2.1: Clustering based on communication, location, and acceleration data using G-
means clustering algorithm.

Group Profile (%)

Gp Label #Part Low+ Low Med High High+

SMS 1 reg1 22 80.5 16.8 2.0 0.5 0.2
2 reg2 12 68.6 25.9 4.3 0.7 0.4
3 infreq 9 93.7 5.9 0.3 0.1 0.0
4 freq 19 49.1 36.1 8.6 3.5 2.7

Call 1 inactive 54 89.5 9.1 1.3 0.1
2 active 8 65.7 29.2 4.4 0.7

Acc 0 active 25 83.1 4.6 12.3
1 inactive 37 91.2 2.7 6.1

Out Edu Friend Home Leisure

Loc 1 school-
home

34 2.0 49.2 4.4 38.7 5.8

2 school 18 3.0 83.0 2.7 4.9 6.5
3 out 10 20.9 43.7 8.3 9.3 17.8

to the generalized model. Specifically, our generalized models using four different
algorithms achieved a RMSE of 21.58 (random forest), 22.05 (Gaussian processes),
21.87 (linear lasso), and 22.31 (SVM), respectively. For each grouping strategy on
Gaussian processes model, we were able to obtain average reductions of RMSE 0.8722

(Location), 0.6310 (activity level), 0.045 (SMS), 1.2330 (calls), 1.4505 (SIAS), 1.9268

(DailyActivity), 0.4264 (communication), 1.2675 (SIAS+communication), 2.1326 (All
features - communi-cation), 1.9231 (All features - SIAS), respectively.

Note from Figure 2.2 that the DailyActivity grouping strategy consistently
performed better than most other grouping strategies, and this strategy is also closest
to the individual model approach (65 individual models for 65 participants) because
it resulted in the most (25) subgroups among all these strategies, thus we used it to
further investigate whether there are any specific patterns with respect to sample size
to guide future design of group-level modeling approaches.

From Figure 2.3, we can see that there is a nonlinear relationship between
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Figure 2.2: The performance of each grouping strategy compared with the generalized
model’s performance (black horizontal line). The y-axis is the weighted root mean square
error (WRMSE). The error bars represent 2 standard deviations of each grouping strategy.
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sample size of groups and their performances. Groups with small sample size tend
to perform either extremely poorly or extremely well. This signals potential weak
generalizability of profiling strategies that forms many small groups. So the ideal
situation will be to form groups with profiling strategies that evenly distribute the
samples across different subgroups.

Figure 2.3: The impact of sample size on the performance of groups formed by
DailyActivity strategy.

2.6 Summary

The focus of the present investigation was to provide a framework for accurately
predicting negative affect from passively sensed data concurrent with individuals’
affect ratings. Given that two weeks may be too short for algorithms to learn
personalized models, we developed a method for predicting negative affect using a
group-level approach. We first clustered participants using multimodal behavioral
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profiling, then we predicted negative affect from passively sensed data. The results
indicate that profiling users based on their behavior improves the performance of
the predictive model compared to generalized models. Future work will study the
predictability levels among the different groups using validated questionnaire measures
of personality and depression. The present study contributes to a body of research
that aims to use passively sensed data to recognize user affect and launch interventions
when and where they are most needed.



3 | Offline Treatment Policy: An Emotion
Regulation Case Study

Delivering treatment recommendations via pervasive electronic devices such as mobile
phones has the potential to be a viable and scalable treatment medium for long-
term health behavior management. But active experimentation of treatment options
can be time-consuming, expensive and altogether unethical in some cases. There
is a growing interest in methodological approaches that allow an experimenter to
learn and evaluate the usefulness of a new treatment strategy before deployment.
We present the first development of a treatment recommender system for emotion
regulation using real-world historical mobile digital data from n = 114 high socially
anxious participants to test the usefulness of new emotion regulation strategies. We
explore a number of offline contextual bandits estimators for learning and propose
a general framework for learning algorithms. Our experimentation shows that the
proposed doubly robust offline learning algorithms performed significantly better
than baseline approaches, suggesting that this type of recommender algorithm could
improve emotion regulation. Given that emotion regulation is impaired across many
mental illnesses and such a recommender algorithm could be scaled up easily, this
approach holds potential to increase access to treatment for many people. We also
share some insights that allow us to translate contextual bandit models to this
complex real-world data, including which contextual features appear to be most
important for predicting emotion regulation strategy effectiveness.

27
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3.1 Introduction

Mental illnesses such as depression and social anxiety, if left untreated, can interfere
with healthy life functioning, leading to lower disability-adjusted life years [Murray
et al., 2013] and higher suicide rates [Bostwick and Pankratz, 2000]. It is estimated
that more than 25% of Americans suffer from a diagnosable mental illness each year
[Kessler et al., 2005b], yet half of them do not receive any treatment [America, ] due
to the scarce health care resources and limited access to traditional in-person care [Lin
et al., 2018]. New mobile technologies and increasing smartphone ownership give rise
to mobile health, a digital health care paradigm that creates opportunities to scale
up health interventions to the underserved patient population [Hilty et al., 2013],
especially those with chronic conditions.

One viable target for a digital health intervention that could benefit a significant
portion of the population is emotion dysregulation, or difficulty selecting and effectively
applying appropriate strategies to modulate the intensity or duration of emotional
states [Gross, 1998]. Emotion dysregulation is observed broadly across many mental
illnesses, and improvements in emotion regulation (ER) often accompany decreases in
symptom severity [Fernandez et al., 2016,Sloan et al., 2017]. The ability to effectively
manage negative emotions in our daily lives is of utmost importance. For example,
days before a job interview, you may not be confident in your preparation, and feel
anxious about it. You may find it difficult to focus on anything else, and cannot
stop worrying about it or sleep. To manage your negative emotions, you might
try a variety of strategies, including suppressing your thoughts about the upcoming
interview, talking to a friend about it, conducting a mock interview for practice,
distracting yourself with video games, or taking the advice from your therapist to
identify and re-evaluate your catastrophic thoughts.

Ideally, one would conduct a randomized control trial (RCT) to evaluate the
effect of different ER strategies in different contexts, but this can quickly become
unfeasible if the intent is to evaluate more than a dozen strategies across different
contexts. We address this challenge in part by using an offline contextual bandits to
learn and evaluate a novel treatment recommender algorithm using an observational
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dataset collected from a population of socially anxious individuals.

While an observational design necessarily limits what causal inferences are
possible, our contributions in this work include the following: 1) to the best of our
knowledge, this is the first study to apply Contextual multi-armed bandit (CMAB)
on ER, a domain that is central to treatment for many mental illnesses; 2) we
apply CMAB in an offline setting that learns an interpretable initial policy using
observational data; 3) we leverage both passively (e.g., Accelerometer) and actively
(e.g., how appropriate was timing of survey) sensed contexts with a designed reward
signal using self-reported effectiveness to evaluate the CMAB performance using
several different importance sampling based estimators, and compare them with
both a random policy and the observed policy. Our results show significantly better
performance in the proposed CMAB approaches in terms of the average reward of a
policy, which we denote as usefulness.

3.2 Related Work

Emotion regulation (ER) has been studied in psychology for decades due to its
importance in understanding how people manage their emotions [Gross, 1998], and its
implications for both mental and physical health, and interpersonal relations [Aldao
et al., 2010a]. People respond to stressful events using different ER strategies in
different social and physical contexts, and according to different situational demands
[Sheppes et al., 2014, Dixon-Gordon et al., 2015]. While ER strategies have long
been considered as either adaptive or maladaptive, several researchers have argued
that their effectiveness is context dependent [Bonanno and Burton, 2013,Aldao and
Nolen-Hoeksema, 2013].

Notably, demographic characteristics such as age and gender [Nolen-Hoeksema
and Aldao, 2011a], which may be considered internal contexts, significantly influence
people’s choice of ER strategies. In addition, numerous recent studies have focused on
external contexts in people’s daily lives, and investigated their impact on ER strategy
choice [Troy et al., 2013, Aldao, 2013, Suri et al., 2018]. An ecological momentary
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assessment study by Heiy et al. [Heiy and Cheavens, 2014] revealed that many of the
most frequently used ER strategies were not the most effective for decreasing negative
emotions, suggesting room for improvement in ER even among healthy individuals.
To date, the capability of recommending the most effective ER strategies to people
based on different contexts is urgently desired but remains a far-off goal [Doré et al.,
2016]. In this work, we make an effort towards this goal to learn a personalized and
adaptive approach for ER strategy recommendation across various contexts.

Many existing works propose various recommender systems targeting different
health outcomes. For example, myBehavior, a mobile app that tracks user’s physical
and dietary habits, recommends personalized suggestions for a healthier lifestyle
[Rabbi et al., 2015]. Cheung et al. [Cheung et al., 2018] created a mobile app
called IntelliCare, which consists of a suite of 12 individual apps as ’treatments’
that will be recommended for managing depression and anxiety. Yang et al. [Yang
et al., 2018] created a mobile health recommender system that integrates depression
prediction and personalized therapy solutions to patients with emotional distress. In
their system, personalization is realized using 9 external factors related to depression,
including family life, external competition, interpersonal relationship, self-promotion
burden, economic burden, work pressure, individual personality, coping style, and
social support, which are assessed using mobile questionnaires. These mobile health
efforts are consistent with a mobile intervention framework called Just-in-time adaptive
intervention (JITAI) [Nahum-Shani et al., 2017].

Two aspects regarding the intervention decisions made in a JITAI framework
are the timing of intervention delivery and choosing the best intervention strategy to
deliver. Most existing works focus on optimizing for the best timing to deliver an
intervention (e.g., predicting stressful moments linked to emotional eating [Rahman
et al., 2016]). By contrast, our work focuses on identifying the most effective ER
strategies based on a person’s context. Reinforcement learning with Markov decision
processes (MDPs) are typically used to operationalize the key objectives of a JITAI.
Example applications include personalizing sepsis treatment strategies [Peng et al.,
2018], encouraging physical activity for diabetes patients [Yom-Tov et al., 2017], and
managing stress [Jaimes et al., 2014]. Interestingly, although reinforcement learning
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is not directly applied to recommend ER strategies for emotion management, it has
been applied to understand the psychological and cognitive process of ER [Marinier
et al., 2008,Raio et al., 2016].

In this work, we propose to leverage contextual multi-armed bandits, a reinforce
-ment learning algorithm that treats each learning sample as independent from the
same underlying data generating the distribution, but ignores the long term impacts
on the distal outcome [Dudik et al., 2011]. CMAB has been mainly applied in
domains such as web contents and advertisement placement [Li et al., 2010,Tewari
and Murphy, 2017]. In recent years, it has also been applied in numerous mobile
health applications, such as hospital and doctor referral for medical diagnosis [Tekin
et al., 2014], personalized feedback for healthier lifestyle [Rabbi et al., 2017], and
physical activity recommendation [Liao et al., 2020a]. Unlike these studies, which
were conducted in an online setting or with simulations, our work focuses on the off-
policy setting, in which a historical dataset on ER from a mobile health study is used
to train an initial warm-start recommendation policy on ER. We design the various
reinforcement learning components in the context of recommending ER strategies, and
applied various importance sampling based techniques in learning and evaluation.

3.3 Contextual Multi-armed Bandit for Emotion

Regulation

Contextual multi-armed bandit (CMAB) is an reinforcement learning algorithm that
leverages contextual information to learn a policy that triggers actions based on the
context to achieve optimal expected rewards. Typically, CMAB consists of an agent
that interacts with an environment over a finite number of trials i = 1, 2, . . . , T such
that: 1) it observes a context x from an input space X; 2) chooses an action from a
set A = {a1, a2, . . . , ak−1, ak}, which contains all the strategies that each corresponds
to an arm of a k MAB; and 3) receives a reward signal ri. The goal of the agent is to
learn a policy to guide action decisions. Unlike a full-blown reinforcement learning
algorithm typically modeled using MDPs, where an action decision impacts future
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Figure 3.1: Learning initial policy for emotion regulation (ER) using offline learning in
contextual multi-armed bandit.
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states and action selections, CMAB assumes that {(xi, ai, ri)}Ti=1 are independently
and identically distributed following an unknown generative distribution D.

We formulate ER recommendation as a CMAB using mobile sensing technologies
as shown in Figure 3.1. Smartphones and wearables are applied to track the users
both passively with sensor embedded devices and actively with mobile ecological
momentary assessments (EMAs). These mobile sensing data streams will be processed
into the contexts, the recommended ER strategies, and the associated rewards for our
CMAB framework.

In the offline learning, observational data generated under a different policy
will be used to learn and evaluate an initial policy. This data-generating policy is
called the behavior policy and can be denoted as πb. Similarly, the initial policy is
called the target policy denoted as πe.

We seek to achieve two objectives: 1) Learn an initial policy π∗e given an
observational dataset, called the learning problem which is formulated as

π∗e = argmax
πe∈Π

VΠ. (3.1)

Where V represents the value of a policy and Π, the function class of possible policies.
2) Evaluate the performance of the initial policy using expected rewards from the
testing samples. We call this the evaluation problem and this is formulated as

Vπe = E(x,r)∼D[rπe(x)]. (3.2)

In the next section, we present the technical details on both the learning and evaluation
problem to learn and evaluate the initial policy.
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3.4 Learning and Evaluation in Contextual Multi-

armed Bandit

We consider learning in a linear policy class, of which the candidate policies are
efficient for learning and easy to interpret. We apply importance sampling techniques
that use a certain form of weighting scheme denoted as πe(ai|xi)

π̂b(ai|xi) in context xi to correct
for the distributional shift between the target and behavior policy in order to have
an unbiased estimate of the target policy value [Dudík et al., 2014].

There are three main value estimators that lie at the core of offline policy
learning and evaluation within the contextual bandit framework; namely, the direct
method (DM), Inverse Propensity Weighting (IPW), and Doubly-Robust (DR) [Atan
et al., 2018]. None of these approaches are guaranteed to perform optimally in every
application scenario. Thus, we apply all of them in learning the optimal policy, and
report their results. Below, we provide more details on the benefits and drawbacks of
each approach.

The Direct Method (DM)

The direct method, sometimes called the response surface modeling or covariate
adjustment, is the family of approaches that consist of learning a predictive model
which maps context and actions to the rewards in a regression model. Specifically, the
direct method (DM) consists of estimating a reward approximator for r̂(x, a), where
r̂ : X × A→ R. This will result in a value function:

VDM =
1

T

T∑
i=1

πe(ai|xi)r̂(xi, ai) (3.3)

where, πe is the target policy. While this approach is simple to implement and can
be used with most regression models, it relies heavily on model specification and
overlap in the distributions of the behavior and evaluation policies. This gets even
more complex in application domains where the physical process of the underlying
environment is not well understood. In effect, most of the direct methods approaches
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suffer from high bias in the estimates, albeit with low variance for a sufficiently
well-specified model. Some popular examples of algorithms using this approach
for learning counterfactual predictions are the Bayesian Additive Regression Trees
(BART) [Chipman et al., 2010] and the Causal Forest [Wager and Athey, 2018].

The Inverse Propensity Weighting Method (IPW)

The inverse propensity weighting approach seeks to correct for the distributional shift
caused by the behavior policy by using the behavior policy πb if known or an estimate
π̂b (also known as propensity scores [Chakraborty, 2013]) otherwise. The correction in
distribution shifts is achieved using importance sampling in the estimator to evaluate
the target policy. Mathematically, a generalized IPW estimator called the trimmed
IPW (tIPW) is as follows:

VtIPW =
1

T

T∑
i=1

πe(ai|xi)
max{π̂b(ai|xi), τ}

ri. (3.4)

Where τ is a lower bound on the propensity scores to reduce the effect of
large weights on variance of the estimator. When τ = 0 this reduces to a classic
IPW estimator. When τ = 0 this approach gives an unbiased estimate of the value
of the target policy, however it suffers from high variance due to extreme values of
propensity scores (e.g., a propensity score close to zero will give rise to approximately
infinite weights). Some examples of algorithms using this approach are the Policy
Optimizer for Exponential Models (POEM) [Swaminathan and Joachims, 2015] and
the Offset tree [Beygelzimer and Langford, 2009].

The Doubly Robust Estimator (DR)

The doubly robust approach combines the DM and IPW methods to achieve a
balanced trade-off between bias and variance. This avoids extremely high bias and
variance in the estimator. The DR estimator has been formalized by Dudík et
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al [Dudík et al., 2014] as follows:

VDR =
1

T

T∑
i=1

[
r̂(xi, ai) +

πe(ai|xi)
π̂b(ai|xi)

(ri − r̂(xi, ai))
]
. (3.5)

The DR estimator combines the DM (typically a maximum likelihood estimator)
with the importance sampling of the residual from the DM approximator. This is
described as doubly robust because if the DM model is correct, then the expected
residual from the model EY [ε̂] = 0, leaving the second term equal to zero for any
arbitrary behavior policy π̂b; similarly, if the π̂b is correctly estimated, then the
second term is a consistent estimator of the error bias from the DM approximator.
Though more robust, DR is error prone when both the DM and the behavior policy
approximators are misspecified [Kang et al., 2007].

Propensity Score Estimation

As noted above, the behavior policy that generated the data is unknown and needs to
be estimated from the data. This is achieved by estimating propensity scores, which
represent the likelihood of choosing strategies in different contexts. Propensity scores
also serve to reduce multivariate contextual data [Rosenbaum and Rubin, 1983] into
one-dimensional scores such that treatment group distributions are matched. The goal
of the propensity scores is to create a pseudo-population where the effect of selection
bias due to unobserved confounders, as evidenced by distributional mismatch across
strategies, is minimized.

Ensuring overlap in the strategies with respect to the propensity scores reduces
the possibility of extreme values in the IPW and DR estimation, given these approaches
depend on the estimated score denoted π̂b(a|x) or P̂ij in the algorithm 1. Estimation
methods such as logistic regression have typically been used but they are limited
due to their linearity assumption [McCaffrey et al., 2013]. Recently, there are non-
parametric machine learning models developed to add more flexibility in order to
model more complex data, such as what we usually expect in human data. An
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Algorithm 1 Generalized Algorithm for Policy Learning
Input: X, A, R.
Output: π∗(x).
1: // Propensity Score Estimation
2: Fit Generalized Boosted Model f̂ : X → A on SN = (X,A) to balance covariate

distribution.
3: Obtain propensity score matrix P̂ = f̂(x).
4: // Reward Imputation
5: fit a one-time logistic regression r̂ : X × A→ R for each strategy
6: for rij ∈ R (a matrix of rewards). do
7: if DM method then
8: r̂DMij = r̂(xij, aij)
9: end if
10: if IPW method then
11: r̂IPWij =

rij

P̂ij

12: end if
13: if DR method then
14: r̂DRij = r̂DMij +

(rij−r̂DM )

P̂ij

15: end if
16: end for
17: Set R̂ = {r̂ij}i=1:T,j=1:k the weighted reward matrix
18: // Policy Optimization
19: Fit logistic regression ĥ : x→ R̂ on new training set (X,R).
20: // For policy π∗(x)
21: π∗(x) = argmaxa∈A ĥ(ra|x)
22: return π∗(x).
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example of a non-parametric model is Generalized Boosted Models (GBM). GBM
estimation uses an iterative process with multiple regression trees to capture nonlinear
relationships between strategies and context variables without over-fitting the data.
We implemented GBM propensity score estimation in our analysis using the R package
twang [Ridgeway et al., ]. We used the absolute standardized mean difference [Stuart
et al., 2013] as the stopping criteria over 5000 iterations.

The Learning Algorithms

In our experiments we used a multivariate logistic regression as the value function
approximator that maps contexts to rewards for each ER strategy within the direct
method and doubly robust estimators. We used logistic regression with `2 regulariza
-tion for the ease of interpretation and replication in other studies. We will call the
learner using direct method (DM) and the one using doubly-robust estimation as (DR)
in our experimentation. The offset tree, denoted OT, is different in that it learns
several binary regression trees for propensity weighted reward in each offset tree.
More details can be found in Beygelzimer et al. [Beygelzimer and Langford, 2009].
We compare the performance of these three approaches, and benchmark them against
a random policy (i.e., randomly choosing one strategy from the 10 ER strategies) and
the observed policy (i.e., what people reported using in the data).

The Evaluation of Learned Policies

Given the selection bias in the test data, we evaluate the performance of the different
recommender algorithms using two variants of importance sampling approaches; name
-ly, the inverse propensity weighting (IPW)(e.i.τ = 0) and the trimmed inverse
propensity weighting (tIPW)(e.i. τ 6= 0) (see equation 4.5) by varying the parameter
τ .

We consider both approaches because while the IPW provides an unbiased
estimate of the mean policy reward with possibly high variance, the tIPW reduces the
variance at the cost of more bias in the estimator. τ is a nuisance parameter and can
be determined heuristically if τ < 1/k, where k is the number of strategies according
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to lemma 3.1 of Strehl et. al, [Strehl et al., 2010]. We compare the performance of
each algorithm on the average reward on the test set.

3.4.1 Design of ER Recommender System

Our contextual variables capture the user’s state around the time to use a strategy.
They are summarized in Table 3.1. A combination of these variables allows us to
provide contextual recommendation for ER strategies. For example, given that a user
is at home in the evening with a trait social anxiety level of 30, we would recommend
tackling issues head on if our algorithm predicts it to be the most effective strategy.
The actions in our formulation are the top 10 most frequently used adaptive strategies,
which are shown in the CMAB in Figure 3.1. Admittedly, there are multiple ways to
reduce dimensionality of the ER feature space and we explored additional approaches
in other analyses. However, we chose to focus on this subset of strategies as they are
mostly considered healthy strategies (i.e., they tend to be associated with positive
health consequences, unlike a strategy such as using alcohol or drugs to change one’s
feelings) and were most frequently reported in our learning data.

The reward signal needs to reflect the effectiveness of the chosen strategy
in the given context at helping to manage the participant’s emotion. In our data,
participants reported the perceived effectiveness of their ER attempt on a scale of
0-10. We binarized this outcome measure to define a reward signal for the agent.
Our threshold was defined as the average of effectiveness scores across all users, or
the grand mean. Let O(xi, ai) denote the immediate effectiveness of the chosen ER
strategy at time i in context xi, we have the grand mean as

Ô =
1

N

T∑
i=1

O(xi, ai), (3.6)

. The reward signal for each context x and action a is thus defined as:

r(x, a) = 1{O(x,a)>Ô}, (3.7)
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where 1 is an indicator function that returns 1 when the condition is satisfied, and 0

otherwise.

Table 3.1: Contexts for the proposed contextual multi-armed bandit algorithm.

Context Description

Social partners self-reported social relationship with people in
the context (e.g., being with classmates, friends,
strangers/acquaintances, romantic partner and
family).

Social interaction self-reported social context (e.g., being alone, no
interactions with others or being around them, and
interaction with others).

Social preference self-reported social preference (e.g., more people, less
people).

Motivation to change self-reported motivation to change feelings on a 0-10
scale.

Device OS device platform (e.g., Android and iOS).

Social anxiety score self-reported social anxiety score using SIAS scale
with 0-80 range.

Time of day this is a manual binning of periods of time in the day,
(e.g., morning, mid-day, afternoon, and night).

Semantic Location Self-reported locations (e.g., the gym, home,
in transition between locations, other homes,
other locations, religious places, restaurant, school,
shopping center or workplace).

Accelerometer passively sensed measure of user movement (e.g.,
mean, energy and standard deviation).

Activity Type passively recognized human activity types (e.g.,
cycling, stationary, walking and automotive).

Appropriateness of Timing self-reported measure of how appropriate the timing
was for sending an survey prompt on a scale of 0-10.
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3.5 Experiments

3.5.1 Study Design

After getting approval from the university’s Institutional Review Board (IRB), N =

114 participants aged 18 years and older were recruited in a US college department
and community to enroll in the present study. Participants were eligible to enroll if
they scored at least 29 on the Social Interaction Anxiety Scale (SIAS) developed by
Mattick & Clarke [Mattick and Clarke, 1998]. This cutoff was selected to recruit a
sample experiencing moderate to severe social anxiety symptoms (scale range is 0-
80). Four participants were excluded in the analysis due to missing data; specifically,
1 participant did not report any EMA data and 3 participants did not have any
reports of effectiveness of an ER strategy, leaving 110 participants with the following
demographics: 81 female, 29 male (no participants reported a non-binary gender
identity); 86 undergraduates, 11 graduates or professional students, and 13 others;
aged 18-34 with mean 20.41 and SD 2.98; 82 reported their race/ethnicity as White,
21 Asian, 7 African American, 3 Middle Eastern, 3 Native Hawaiian/Pacific Islander
(numbers add up to more than 110 because some participants identified as multiple
races). Their SIAS scores ranged from 29 to 73 (M = 46.68, SD = 10.39). Although
the full SIAS was used for recruitment (for comparison to the reference group from
prior published work), the sum of the straightforwardly-worded items was used for
analyses, because the straightforwardly-worded items have been shown to have prefer
-able psychometric properties to the full scale [Rodebaugh et al., 2007].

A mobile app called MetricWire was installed on all participants’ personal
smartphones to collect random time survey data for five weeks. Six identical surveys
were sent randomly within each two hour window from 9am to 9pm daily. Participants
were instructed to complete the surveys as promptly as possible upon receiving the
notifications. If participants had not completed the survey within 30 minutes of the
initial notification, the app sent a reminder notification. If not completed after 45
minutes, the survey disappeared. Participants were instructed to answer the survey
with reference to when they received the initial survey notification. This instruction
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might introduce a small degree of recall bias into survey responses, but was included
to enhance ecological validity by sampling a wide variety of situations in daily life,
including situations in which it would be difficult to respond to a survey immediately
(e.g., when a participant is taking an exam or in the middle of a conversation).
Sensor data were also passively collected from participants’ smartphones to capture
their activity levels and GPS location. Table 3.1 summarizes the contextual features
extracted from both survey and passive data.

3.5.2 Data Processing

We used both the random time survey data and the sensor data from the study to
obtain the contexts surrounding the reported ER strategy use and its effectiveness. All
contextual variables are aligned with random time prompts using two hour windows.
For example, accelerometer data within two hours prior to each survey starting
time were aggregated to capture the level of activity for each reported ER strategy
use. We transformed the x, y, z dimensions of the accelerometer using the formula
1
3

√
x2 + y2 + z2 to obtain an orientation invariant measure for acceleration. Activity

type data consisted of the activities recognized by MetricWire. These activities
include stationary, walking, running, automotive, and cycling. The feature associated
with each activity type is the sum total of its occurrence in the two hour window.
Semantic locations such as home, transition, religious place, restaurant, school, shop
-ping, someone else’s house, work etc., provided by participants in the surveys were
included in the context variables. Temporal features were created using four time
windows: morning (9-12PM), mid-day (12 -3PM), late-afternoon (3-6PM), and night
(6-9PM). Finally, we included other survey responses, such as rating the convenience
of responding to the prompt when fired, and others summarized in Table 3.1 as
context variables.

The original EMA data consists of 12742 learning samples from all participants.
We excluded samples where participants did not report an effectiveness score for using
ER strategies, either because they reported that they did not try to change their
feelings (which is one option in the menu provided; 7617 samples were excluded for
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this reason) or because they used a strategy but skipped the survey prompt about
effectiveness (239 samples were excluded for this reason). This leaves 4886 learning
samples. 259 samples where important survey responses were missing (specifically,
any missingness on reported convenience of responding to the prompt when fired,
semantic location, or motivation to change feelings) were further excluded, leaving
4627 samples for analysis. We avoided imputing the 259 samples as these are self-
reported ground truth data. On the other hand, we used multiple chained imputation
to impute data on the passively sensed accelerometer and activity type data, which
have missing rates of 65% and 68%, respectively. The MICE R package with classifica
-tion and regression trees method was used for the imputation.

The remaining 4627 learning samples consisted of instances where participants
reported choosing not only one strategy but also combinations of strategies in a menu
of 20 strategies available to them in the survey. Our algorithm, however, considers
the effect of a single strategy at a time. To accommodate this constraint, we split the
samples in which more than one strategy was reported to have been used into multiple
independent samples. For example, if a participant used a combination of eating food
and distracting themselves in a given context, we treated this case as two separate
samples in which a single strategy was used, and assigned the same effectiveness score
to both. This allows us to retain all the data in which effectiveness was reported,
increasing power, and not cut the common occurrence in which people report using
more than one ER strategy, increasing generalizability. While we recognize this may
reduce accuracy in parameter estimation as more bias is being introduced with this
data augmentation approach because it is possible that the self-reported effectiveness
score does not apply to all applied strategies equally, we felt the benefits for data
retention and external validity were worth the trade-off. By augmenting the data
this way, we obtain 6259 learning samples, including instances where any of the top
10 most adaptive strategies have been used. By contrast, restricting the data sample
to instances where only one strategy was reported being used by the participants,
we ended up with 2496 samples, which is about 1/3 of the data generated by the
augmentation approach (contact the first author to see results for the CMAB analyses
using this smaller dataset).
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We used a total of 40 contextual variables summarized in Table 3.3, consisting
of binary variables (e.g., semantic locations, social partner(s) vs. alone, etc.) and
continuous variables, including convenience of responding to the prompt when fired,
motivation to change, SIAS score (SIASsf), activity types, and accelerometer features.
The continuous variables were scaled to a range between [0, 1] to avoid biasing coefficient
estimations toward the continuous variables.

3.6 Results

Our results as summarized in Table 3.2 show the mean reward across the different
recommender algorithms and baselines. We report the mean reward with standard
errors on a 5-fold cross validation (due to relatively small data), and test for level
of significance using an independent samples t-test at α = 0.05. The parameter τ
regulates the effect of extremely large weights due to low propensity scores by capping
all scores below the chosen value of τ . Note also that τ uses the same value in both
learning and evaluation for each policy. The algorithm learned with doubly robust
estimator (DR) outperforms all its competitors, including the Offset Tree (OT) and
the DM learner. This can be seen from its absolute mean reward and the tight
confidence bounds for all values of τ . This implies that the doubly robust method
achieves the right trade-off between high variance and high bias, at least relative to
the other approaches tested, making it a more more reliable statistical estimator of
off-policy performance in our data. We also see that the gap between the Offset tree
and the DR get closer as the value of τ is increased. This is as expected as the classic
OT algorithm is heavily dependent on the inverse propensity weighting and thus more
affected by high variance. Notice that the parameter values of τ are set below 0.1 to
match with the theoretical constraint developed in Lemma 3.1 of [Strehl et al., 2010].
Also note that the DM, Random, and Observed policies are affected by the parameter
τ only in the evaluation stage, but they still benefit from less variance in the mean
reward estimation on the test set.
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Table 3.2: Mean reward by policy (mean± std). Superscripts † and ∗ respectively represent
statistical significant at α = 0.05 over random and behavior policy baselines.

Algorithm IPW(τ = 0) IPW(τ = 0.02) IPW(τ = 0.05)
DR 11.48± 2.07†∗ 10.84± 1.96†∗ 9.11± 1.27
DM 11.08± 2.38 10.46± 2.26 8.65± 1.28
OT 8.60± 1.70 8.41± 1.60 7.81± 1.42
Observed 8.25± 0.40 8.20± 0.40 7.84± 0.32
Random 8.24± 0.51 8.20± 0.50 7.91± 0.49

To probe deeper into a qualitative evaluation of the DR algorithm, we examine
the effect sizes of several contextual variables in the learning stage in terms of how
they predict individual strategies. These effect sizes are summarized in Table 3.3.
Contextual variables with a positive effect size can be interpreted as increasing the
odds of positive rewards if that strategy is chosen within that context and vice versa
for negative effect sizes. For example, the chances are high the strategy will be
perceived as effective if the user is recommended to seek advice or comfort from
others when they have recently been stationary because the effect size is 1.07. Note
that the effect sizes in bold are statistically significant at α = 0.05.

While there are many significant effects, pointing to the importance of many
contextual factors in ER, a few context variables are notable for their large effect
sizes. Overall, the contextual predictors that tended to have the largest absolute
effect sizes (indicating that they are the most important in determining effectiveness)
are the convenience of responding to the prompt when fired, motivation to change
thoughts/feelings, trait social anxiety symptoms, accelerometer features, and certain
activity types (see Figure 3.2 for a ranking of contextual features from most to least
important, as defined by the absolute value of their effect sizes). This suggests that
a person’s movement helps to determine what ER strategies are most likely to help
them feel they have effectively regulated their emotions. The predicted effectiveness
of strategies increased when it was a convenient time to be interrupted with a survey
prompt, pointing to the importance of timing in interventions (and suggesting that
JITAIs may be a step in the right direction). Notably, effect sizes for time of day were
smaller than effect sizes for convenient time for interruption, suggesting personalized
timing for ER strategy implementation may be particularly helpful. Strategies were
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Table 3.3: Coefficients(rounded to 2 decimal places) of Contextual Predictors of Strategies
(Strats). The strategies are mapped as follows; Seeking advice/comfort from others(S1), Eating
food(S2), Doing something fun with others(S3), Distracting myself (S4), TV/internet/gaming(S5),
Thinking about things that went/are going well(S6), Thinking of the situation differently(S7), Coming
up with ideas/plans for action(S8), Accepting them(S9) and Tackling the issue head on(S10)
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predicted to be less effective for more (vs. less) socially anxious participants, even
among this sample where all participants were elevated in social anxiety symptoms
at baseline), providing further evidence of emotion dysregulation in this population.
Higher motivation to change thoughts/feelings predicted higher effectiveness ratings
tied to the ER strategy ’doing something fun with others,’ but lower effectiveness
ratings tied to the ER strategy distraction, demonstrating that contexts can change
the effectiveness of different strategies in opposing directions.

3.7 Discussion

This study provides evidence that a contextual bandits recommender algorithm may
be used to improve ER, based on the current finding that the best performing
algorithm, the learner with doubly robust estimation (DR), outperforms the observed
ER of socially anxious participants. Further, contexts matter for effective ER, based
on our finding that the DR algorithm also outperforms the random algorithm.

The results from this chapter have broad implications for the design and
analysis of future recommender systems algorithms. By leveraging the abundance of
available observational data from previous studies or interactive systems, a researcher
might be able to estimate the usefulness of a novel recommender algorithm before
deployment. Recent theoretical studies [Zhang and Bareinboim, 2017] suggest that
combining offline policy learning together with online approaches leads to data efficient
exploration and adaptations in the online setting. This could potentially reduce the
user attrition or disengagement problem that plagues most interactive systems and
ecological moment -ary assessment studies [Tewari and Murphy, 2017]. In addition,
a researcher could use this method to determine the most critical features that affect
the effectiveness of ER strategies in order to collect the most salient data for a new
study when resources are limited.

Some of the strategies included in this recommender algorithm are cognitive,
meaning that they involve a change in thinking (e.g., accepting thoughts/feelings),
whereas others are behavioral, meaning that they involve a change in actions (e.g.,
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eating food). Notably, contexts do not seem to have the same effect on strategies of
the same cognitive/behavioral type. For example, our findings indicate that walking
makes it more likely that thinking about things that went/are going well will be
an effective strategy, and less likely that thinking of the situation differently will be
effective. The distinction between these two specific strategies is subtle; for one, you
are trying to think of positive things that may or may not be related to the situation
at hand, and for the other, you are focused on the situation at hand but trying to
notice other aspects of it or conceptualize it in a different way.

Regarding the social strategies in this recommender algorithm (those that use
other people to change emotions; e.g., seeking advice/comfort from others), some
surprising patterns emerged with social context variables, though with small effect
sizes. For example, seeking advice/comfort from others was more likely to help
when a user was around strangers and less likely to help when a user was around
classmates. While it might be expected that this would be a more helpful strategy
when a user was around friends, a romantic partner, or family, none of these contexts
had significant effects on this strategy, suggesting that it would be interesting to
see whether these patterns would persist if these recommendations were deployed to
users. One interesting question that cannot be answered with the current study is how
people sought social support; it is possible that people texted or called a friend when
they were around strangers, so they may have still used friends to regulate even when
those people were not immediately available in their physical environment. Strategies
were generally predicted to be more effective when users were interacting with others
than when they were alone or around others but not interacting with them, suggesting
that the involvement of others might help users regulate effectively.

The effect sizes in Table 3.3 have some implications for the design of future
studies. In order to minimize participant burden and to maximize the usefulness of
the data collected, a researcher might focus more on collecting the most important
features (i.e., those that have the largest effect sizes in predicting the 10 strategies
considered in this chapter). The most important features were appropriateness of
the time to be interrupted; energy, standard deviation, and mean of acceleration;
whether participants had recently been in a car, walking, or stationary, their social
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Figure 3.2: Ranking of contextual variables showing most critical features in determining
the effectiveness of strategies. The ranking is based on the sum of absolute values of effect
sizes.
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anxiety symptom severity, and their motivation to change their thoughts/feelings.
These important contextual features are all either continuous or discrete variables
with many possible values; the less important contextual features are binary. This
suggests that future researchers may aim to maximize the predictive value of their
contextual variables by considering contextual variables with more variability in their
values, as opposed to binary variables. Many of these more important contextual
features also reflected movement, so future researchers may wish to preferentially
include sensors that capture information about motion.

The current algorithms work to maximize short-term perceived effectiveness
of regulating emotions, given the ER strategy attempt and effectiveness rating are
reported close in time. However, psychologists have noted that both short-term and
long-term regulation are important, with strategies differing in their effectiveness
at different timescales [Freitas and Salovey, 2000]. For example, if you are anxious
about an assignment due in a few days, watching TV might make you feel better
for 30 minutes but leave you feeling anxious the next day, whereas tackling the issue
and starting the assignment might feel worse for the next 30 minutes but make you
feel better the next day. While CMAB optimizes for short-term ER effectiveness,
evaluating the algorithms for longer-term effectiveness, examining a wider range of
ER effectiveness indicators, and examining the algorithms in more diverse samples
may all be beneficial directions for future work. Another limitation of this work is
that when this policy is deployed, a user will initially need to request an intervention
before the most contextually effective strategy is suggested; ultimately, the goal is to
be able to passively determine future emotional states and send interventions without
the user’s initiation.

3.8 Summary

In this work, we present a novel application for contextual bandits to learn contextually
effective strategies for ER. Our approach is distinct from most existing work in
health recommender systems in that we learn an initial policy that might have a
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positive impact on user engagement when finally deployed, as well as on sample
efficiency in the online setting. Our results demonstrate that an experimenter can
use available observational data to learn the usefulness of a new intervention policy;
this may provide an efficient way to generate hypotheses that can later be tested in
(resource intensive) randomized clinical trials. Given that ER is impaired across many
mental illnesses, this work has the potential to enhance the availability of scalable
interventions that can be used in daily life for many people.



4 | Subgroup-Based Emotion Regulation
Policy Generation

Many people suffer from mental health disorders such as social anxiety and depression.
Studies have shown that about 12% of Americans will experience social anxiety
disorder at some point in their lifetime and, of these, 80% will not receive any
treatment [Kessler et al., 2005a,Grant et al., 2005]. Clearly, there is a need to improve
access to mental health treatment. In recent years, smart devices, such as mobile
phones and watches have become commonplace and part of people’s regular activities
of daily living. This creates a new avenue for delivering personalized mental health
interventions to users when and where they need them most.

Emotion regulation (ER), or the process by which we influence the emotions
we express and experience [Gross, 1998], is essential for well-being but impaired in
people with many forms of mental illness, including social anxiety disorder. Our aim
in this chapter is to extend recent work using contextual bandits to create health
recommender systems for ER (i.e., systems that optimize recommendations for ER
strategy use), by investigating the hypothesis that there are subgroups of socially
anxious individuals with different responses to ER strategies. In other words, we
want to improve the utility of the generalized ER intervention policy for different
subgroups in the cohort.

While it is ideal to run an online version for intervention recommendation
for ER, akin to micro-randomized control trials [Klasnja et al., 2015], this is not
always practical and requires extensive resources, so is often not a cost-efficient step

54
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when developing new systems. A viable alternative, which we implement in this
work, is to learn an offline or off-policy ER recommender system using retrospective
data, which can then be adapted to warm-start an online version of the recommender
policy. Previous work using contextual bandits to build a health recommender system
for ER strategies have largely focused on learning a generalized context dependent
policies [Ameko et al., 2020,Beltzer et al., 2020], also outlined in Chapter 3. In this
chapter, we extend the contextual bandit ER recommender policy to subgroup level
systems discovered using the k-means clustering algorithm.

4.1 Related Work

For many years, ER strategies have been categorized as adaptive and non-adaptive
[Aldao, 2013, Bonanno and Burton, 2013]. But recent studies suggest that these
strategies are neither just adaptive or non-adaptive, instead, the effectiveness of
any strategy depends on the context in which it was applied [Doré et al., 2016].
Consequently, several findings have indicated that contexts such as demographic
attributes like gender and culture might have a differential effect on the impact of
emotion regulation strategies in a person’s experience of emotions [Nolen-Hoeksema
and Aldao, 2011b, Ford and Mauss, 2015]. A more recent paper that combined
methods from machine learning and mobile sensing technology to build a context
dependent ER recommender policy formally operationalized the idea that ER effective
-ness is context dependent [Ameko et al., 2020,Beltzer et al., 2020]. This work builds
on these studies to improve the utility score by learning specialized context-aware ER
policies for subgroups in the population.

Health recommender systems create a viable way to scale up access to health
care by leveraging smart devices with embedded sensors to help monitor and deliver
timely intervention to users. A notable example of health recommender systems is,
myBehavior, a mobile app that tracks user’s physical and dietary habits, recommends
personali -zed suggestions for a healthier lifestyle [Rabbi et al., 2015] using multi-
armed bandits. Cheung et al. [Cheung et al., 2018] created a mobile app called
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IntelliCare, which consists of a suite of 12 individual apps recommended as ‘treatments’
for managing depression and anxiety symptoms. Yang et al. [Yang et al., 2018]
created a mobile health recommender system that integrates depression prediction
and personalized therapy solutions to patients with emotional distress. In their
system, personalization is realized using external factors related to depression, including
family life, external competition, interpersonal relationship, self-promotion burden,
economic burden, work pressure, individual personality, coping style, and social support,
which are assessed using mobile questionnaires. These mobile health efforts are
consistent with a mobile intervention framework called Just-in-time adaptive interven
-tion (JITAI) [Nahum-Shani et al., 2017].

The JITAI framework is characterized by major branches of research, specifically,
the timing of intervention delivery and choosing the best intervention strategy to
deliver. A considerable amount of research focus has been directed towards optimizing
for the best timing to deliver an intervention (e.g., predicting stressful moments
linked to emotional eating [Rahman et al., 2016]). By contrast, our work focuses on
identifying the most effective ER strategies based on a person’s context and subgroup
in the population. While reinforcement learning is typically used to formalize the
object of mapping context to the right ER strategy [Ameko et al., 2018,Beltzer et al.,
2020], we use unsupervised learning methods to determine user subgroups at baseline.

Subgroup analysis as applied to health recommender systems has gained recent
popularity in the literature, since there is typically very limited data to train a
separate model for each person, and yet still maximize the relevance of the recommenda
-tions to users at the early stages of deployment. This issue is particularly important
in mobile health because of the risk of disengagement or attrition caused by making
suboptimal interventions. Hassouni et. al. demonstrated in a simulation study
that a cluster-based reinforcement learning for mobile health interventions procured
significant advantages in term of policy effectiveness and data efficiency in the early
stages of the experiment [el Hassouni et al., 2018]. Similar findings were made by
Zhu and Liao, showing significant gains of subgroup based reinforcement learning
over generalized approaches, and particularly showing that the approach is feasible
in the off-policy setting for warm-starting future recommendations used in online
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studies [Zhu and Liao, 2017]. In addition, Tomkins et.al., demonstrated advantages of
intelligently pooling users together into similar groups within the online intervention
design setting [Tomkins et al., 2021]. Similar to these works, we use a subgroup
analytic method to train personalized recommender algorithms, and unlike previous
work, also apply it in an offline setting on a real-world dataset.

4.2 Method

4.2.1 Study Design

The study consisted of N = 114 participants aged 18 years and older (M = 20.39, SD
= 2.94, range: 18-34) from a US college and community. Enrollment in the study was
determined by the Social Interaction Anxiety Scale (SIAS) [Mattick and Clarke, 1998]
(scale range is 0-80), with a cuttoff point set at 29 and above to enroll participants
experiencing moderate to severe social anxiety symptoms. The analysis excluded
4 participants due to missing data; specifically 1 participant did not report any
ecological momentary assessment (EMA) survey data and 3 other participants did not
report the effectiveness score of ER strategies which we use to train the recommender
model. The remaining 110 participants consisted of: 81 female, 29 male (with no
participant reporting a non-binary gender identity), 86 undergraduates, 11 graduates
or professional students and 13 others. The participants were aged 18-34 with mean
= 20.4 and SD = 2.98, and 82 participants reported their race as White/Caucasian,
21 Asian, 7 African American, 3 Middle Eastern, 3 Native Hawaian/Pacific Islander
(these numbers exceed 110 as many participants self-identified as multiple races).
The participants SIAS scores ranged from 29-73 (mean = 46.68 and SD = 10.39).
Although the full SIAS score was used for the enrollment process (as a way to be
consistent with the literature), the sum of the straightforwardly-worded items was
used for the analyses, as the straightforwardly-worded items have been shown to
improve the psychometric properties of the SIAS score [Rodebaugh et al., 2007].
Participants were compensated for the five weeks of EMA based on how many EMA
surveys they completed, ranging from $10 to $80.



4. Subgroup-Based Emotion Regulation Policy Generation 58

During a baseline laboratory session, participants who consented to enroll
in this study completed several questionnaires (some of which were analyzed in
this study) and behavioral tasks. Subsequently, MetricWire, a smartphone app,
was installed on all participants’ personal smartphones. For the next five weeks,
MetricWire was programmed to deliver six identical, randomly timed surveys through
-out each day, with randomly timed survey prompts sent every two-hour block between
9am and 9pm (i.e., once between 9-11am, once between 11am-1pm, etc.). Each
survey took approximately two minutes to complete. Participants were instructed to
complete the survey as soon as possible upon receiving the notification. Participants
received a reminder notification 30 minutes after the initial notification if they had not
yet completed the survey, and the survey disappeared 15 minutes later. Participants
were instructed to answer the survey with reference to the time of the initial survey
notification. This instruction might introduce a small degree of recall bias into
survey responses, but should enhance ecological validity by sampling a wide variety of
situations in daily life, including situations in which it would be difficult to respond to
a survey immediately (e.g., when a participant is taking an exam or in the middle of
a meeting). Sensor data were also passively collected from participants’ smartphones
to capture their activity levels and GPS locations.

4.2.2 Clustering Dimensions

To assess the differences in emotion regulation effectiveness of population subgroups,
we consider two categories of features, denoted as baseline and sensor-extracted
measures, used to discover these subgroups where users are assumed to be similar.
Each set of features within a category produces a multi-dimensional profile vector
to characterize each participant in the study cohort. We rely on previous research
findings to select each feature which we describe below.
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Baseline Measures

Demographic Features

Emotion regulation strategies have been found to vary across people of different
genders and ages [Nolen-Hoeksema and Aldao, 2011b]. Furthermore, culture affects
both emotion regulation motivation and well-being [Ford and Mauss, 2015]. Given
these findings and the ease of assessing demographic features, we consider including
demographic features assessed at baseline that have sufficient variability within our
sample, which may include sex, age, ethnicity, race, native language, and household
income level.

Symptom Severity

Although emotion dysregulation is a transdiagnostic process in psychopathology, use
of specific emotion regulation strategies varies across psychological disorder [Aldao
et al., 2010b]. For example, a person with a substance use disorder might be more
likely to turn to drugs or alcohol to regulate their emotions, while a person with major
depression might take a nap to deal with a similar emotion. As such, we create clusters
based on baseline symptom severity for several psychological disorders (namely, social
anxiety disorder, generalized anxiety disorder, major depressive disorder, and alcohol
use disorders). The details about the features extracted from these measures are
included in Table 4.1.

Emotion Regulation Processes

Self-reports EMA surveys of specific styles of emotion regulation and dysregulation
(e.g., difficulties engaging in goal-directed behavior, impulse control difficulties) predict
in-the-moment emotion regulation strategy choices and the effectiveness of those
strategies [Daros et al., 2020]. Based on these findings, we include features on
self-reported trait emotion regulation styles and difficulties in creating participant
profile using the subscales of two emotion regulation questionnaires. These emotions
regulations questionnaires include, Difficulties in Emotion Regulations Scale (DERS)
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[Kaufman et al., 2016] and Emotion Regulation Questionnaire (ERQ) [Gross and
John, 2003]. Details of the subscales are outlined in Table 4.1.

Sensor-derived Features

Passive Features

Passively sensed data from smart devices can be collected unobtrusively from a user
to capture momentary traces of a person’s behavior at a granular level. Data such
as accelerometer and GPS provide activity and location data shown to be highly
associated with important mental health issues, including social anxiety symptoms
and depression [Boukhechba et al., 2018,Ameko et al., 2018]. In this work, we propose
to use these passive data features including activity types (e.g., walking, automotive
etc..) and semantic location (e.g., Home, School etc..) to capture a user’s daily routine
over the first 7 days of the study. These features specifically measure the distribution
of users’ physical activity level; for example, a user may spend 60%, 30%, and 20%
of his/her time at home, in school and at other places, respectively.

4.2.3 Counterfactual Estimation Methods

Similar to Chapter 3, we formulate learning warm start ER policy using offline
contextual bandits in which our policy is derived from measuring contextual interven
-tion effects. Contextual bandits is a variant of reinforcement learning which leverages
additional information about the world (e.g., context) for decision making. Formally,
given an agent that interacts with an environment over a finite number of steps,
denoted T , the agent perceives contextual input signal, x, and chooses an action
a ∈ aiki=1 that maximizes its reward. In this application, the perceived environment
consists of a combination of features from passive and EMA survey data capturing
information about the environment of the user. Examples include semantic locations
and activities.

In the offline policy training setting, the featurized observational data (e.g.,
passive and EMA) collected from the smart device is assumed to be generated from
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Table 4.1: A description of the self-reported baseline features extracted for clustering.
(Bold) names are feature names used in the rest of the chapter.
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an unknown policy called the behavior policy, and denoted πb. Learning a target
policy, denoted πe from this data consists of solving the objective function,

π∗e = argmax
πe∈Π

VΠ. (4.1)

where V denotes the value of a policy and Π, the policy class. The policy
value given π∗e is

Vπ∗e = E(x,r)∼D[rπ∗e (x)]. (4.2)

We consider a linear policy class which are efficient for training and easy to
interpret. We apply importance sampling techniques that use a form of weighting
scheme denoted as πe(ai|xi)

π̂b(ai|xi) in context xi to correct for the distributional shift between
the target and behavior policy in order to have an unbiased estimate of the target
policy value [Dudík et al., 2014].

There are three main value estimators that lie at the core of offline policy
training and evaluation within the contextual bandit framework; namely, the Direct
method, Inverse Propensity Weighting, and Doubly-Robust. In this work, we use
the Offset Tree, a prominent algorithm using doubly robust estimation which is
shown to work consistently on observational data [Ameko et al., 2020, Beygelzimer
and Langford, 2009].

Propensity Score Estimation

As noted above, the behavior policy that generated the data is unknown and needs to
be estimated from the observed data. This is achieved by estimating propensity scores
which represent the likelihood of choosing different strategies in different contexts.
Propensity scores also serve to reduce multivariate contextual data [Rosenbaum and
Rubin, 1983] into one-dimensional scores such that treatment group distributions are
matched. The goal of the propensity scores is to create a pseudo-population where
contextual distributional overlap across strategy groups is sufficiently achieved.

Ensuring overlap in the strategies with respect to the propensity scores reduces
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the possibility of extreme values in the estimation step, given that the estimation
approaches depend on the score denoted π̂b(a|x). Estimation methods such as logistic
regression have typically been used but they are limited in expressiveness due to their
linearity assumption [McCaffrey et al., 2013]. By contrast, there are non-parametric
machine learning models developed to add more flexibility in order to model more
complex data which is expected from human generated data. An example of a non-
parametric model is Generalized Boosted Models (GBM). GBM estimation uses an
iterative process with multiple regression trees to capture nonlinear relationships
between strategies and context variables without over-fitting the data. We implemented
GBM propensity score estimation in our analysis using the R package twang [Ridgeway
et al., ]. We used the absolute standardized mean difference [Stuart et al., 2013] as
the stopping criteria over 5000 iterations.

4.3 Data Processing Methods

To model the data using our proposed methods, several decisions were made with
regards to data pre-processing and setup for training the recommender policy. The
decisions made include how features were chosen and processed for analysis, how
missing data was handled and what imputation methods were used. Finally, we
describe the model framework and how the data maps into the different components
of the contextual bandit learning algorithms.

4.3.1 Feature Extraction

Accelerometer Features

We extract features pertaining to infer user movement patterns from the raw accelero
-meter derived from the smartphone. The raw data comes in the x, y, z coordinate
form of acceleration over time. To remove the effect of sensor orientation, we derived
an orientation invariant measure z user movement using z = 1

3

√
x2 + y2 + z2. We

derived standard accelerometer features such as mean, standard deviation and average
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energy [Hachiya et al., 2012]. Accelerometer features have been as predictive measures
of mood and affect [Jaques et al., 2017, Ameko et al., 2018] suggesting that this
could explain changes in our participants reported measure of affect and perceived
effectiveness of strategies. In total, we extracted 3 features from the accelerometer
data.

Semantic Location Features

In addition to movement patterns, we also extracted semantic locations directly from
participants through the EMA surveys. At each survey prompt, the user is asked
to provide a location label with reference to when the prompt went off. Users are
provided a list of options of semantic locations which were seen to be the most
prevalent from previous studies. The locations include the Gym, Home, being in
transit from one location to another, Other’s Home, Religious Place, Restaurant,
School and Shopping locations. When participants were in places other than the
options provided, they chose other locations and had the option to input a text
describing their location. In our analysis we grouped these other locations into one
feature as the collected details of the locations were extremely noisy and varied.
Location has similarly been found to be associated to a person’s mood [Jaques et al.,
2017].

Activity Types Features

We also describe activity modes such as cycling, running, automotive, stationary and
walking. These activities are directly determined using the labels provided directly
by MetricWire. The features are treated as categorical in our analysis. Physical
activities have been recognized as influential in a person’s experience of negative and
positive affect. Researchers have empirically shown that active physical activity leads
to an improved level of affect compared to sedentary lifestyle [Guszkowska, 2004]. The
differential effect that might ensue from these activities is encoded in our analysis by
including them as context variables for the recommender system algorithm.
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Time of Day

Time including time of day and day of week are known to have differential effect on a
person’s mood. Studies have shown that people generally experience higher positive
affect in the afternoon or sometime around midday with respect to time of day [Egloff
et al., 1995]. We include features of time of day (e.g., morning (9-12PM), midday
(12-3PM), late-afternoon (3-6PM), and night (6-9PM)) in our analysis.

Social Partners in Context

Studies have shown a consistently robust link between daily positive mood and social
events (e.g., parties, leisure time with friends and family, social eating and drinking
events) [Watson et al., 1992, Clark and Watson, 1988]. Given how important this
variable appears to influence a person’s affect in studies designed to obtain feedback
over weekly periods, we hypothesize that the effect might be more significant at the
hourly level setting.

Social Preference of Users

Participants’ social preference may provide clues as to the effectiveness of social ER
strategies; strategies like seeking social support or doing something fun with others
may lead to greater improvements in mood when participants wish they were around
more people.

Social Interactions in Context

Studies have shown that people with high depressive symptoms tend to react more
strongly to positive and negative social interactions [Steger and Kashdan, 2009]. We
capture user interaction contexts using data from our EMA surveys in which users
were asked to provide information about their social interaction states, whether alone,
with others but not interacting or with others and interacting.
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4.3.2 Approaches to Handle Missing Data

Data collection in mobile health applications are usually fraught with missingness
due to several factors such as power issues, software bugs, user non-response, user
interruptions (i.e., manually switching devices), or data that is missing due to asynchro
-nous sampling rates from different sensors. Missing data is categorized as missing
completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR). MCAR refers to a missingness situation where the missing data is assumed
to be unrelated to any variable both observable or unobservable, in other words, it
happened by chance. However, this assumption is rarely valid in the real world since
most systems are linked together and depend on each other. On the other hand,
MAR is the situation where missingness is assumed to be related to an observed
factor which is not necessary related to a measurement under study, in our case, ER
effectiveness. As a result, imputation for missing data can be done by adjusting for
observed data. The MNAR occurs where there are assumed to be counfounders that
affect missingness as well as the measurement under study. For example, a user might
turn off their device as a result of feeling extremely low in desire or motivation to do
something about their present affect. Here, the person’s internal motivation can be
a confounder that might be difficult to measure in most studies. MNAR situation
is often complicated by the inability to statistically test for the existence of such
confounding variables. In this chapter, we adopt the MAR assumption and impute
missing data for accelerometer and activity types, with missingness at 65% and 68%
respectively, using multiple chained imputation. The multiple chained imputation
algorithm works by iteratively imputing missing values in the input data by regressing
each column of missing data on the rest of the imputed column from the previous step
until convergence or a pre-specified number of iterations is attained. This method,
has been shown to work well in mobile health applications [Rashid et al., 2020]. In
this chapter, we used the MICE statistical package in R with 5 iterations.
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4.3.3 Discovering Clusters

To discover the subgroups in the study sample, we considered two categories of
features; using passive, sensor-extracted features describing user routine, as well as,
baseline self-reported measures collected on users at the laboratory session. Each
of these categories can be useful in different settings depending on what data is
available; for instance, if there are baseline measures then the policies based on these
measures can be easily adopted, whereas, in the setting with no baseline measures,
one can adopt the policies trained based on passively-extracted features for clustering.
Each clustering category formed a multi-dimensional feature vector depicting a profile
for every user in the cohort. The passive features used to create user profiles were
extracted using the first 7 days of users’ data collection period. As a results, ten
users with less that 7 days of data were excluded from the clusters formed within this
category. The passive features are comprised of contextual-information extracted and
semantic geographical locations that users confirmed via the random EMA surveys
from the mobile app. From these features we extracted the user’s daily routine by
using the empirical frequency over the features. For example, for location features,
an arbitrary user might spend an average of 50%, 30% and 20% of their time at
Home, School and Gym for the first 7 days. The baseline self-reported measures,
as summarized in Table 4.1, were summed over sub-scales for each questions related
to the baseline measures considered for clustering. We used the k-means algorithm
with the Euclidean distance metric to find similarity among users. We set our K to
optimize for the silhouette score [Rousseeuw, 1987].

4.3.4 Model Framework

Our contextual variables capture the user’s state around the time they used a strategy
as reported in the EMA. A combination of the contextual variables allows us to
provide contextual recommendation for ER strategies. For example, given that a user
is at home in the evening with a trait social anxiety level of 30, we might recommend
tackling issues head on if our algorithm predicts it to be the most effective strategy.
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Figure 4.1: Model Conceptualization for Subgroup-based Emotion Regulation



4. Subgroup-Based Emotion Regulation Policy Generation 69

The actions in our formulation are the top 10 most frequently used adaptive strategies,
which are shown in the contextual multi-armed bandits in Figure 4.1. It is notable
that there are multiple ways to reduce dimensionality of the ER feature space, and
we ultimately explored alternative approaches in other analyses. However, we chose
to focus on this subset of strategies as they are mostly considered healthy strategies
(i.e., they tend to be associated with positive health consequences, unlike a strategy
such as using alcohol or drugs to change one’s feelings) and these were also the most
frequently reported strategies in our learning data.

The reward signal needs to reflect the effectiveness of the chosen strategy
in the given context at helping to manage the participant’s emotion. In our data,
participants reported the perceived effectiveness of their ER attempt on a scale of
0-10. We dichotomized this outcome measure, both for problem simplification and
leveraging existing theory [Strehl et al., 2010], to define a reward signal for the agent.
Our threshold was defined as the average of effectiveness scores across all users within
each discovered subgroup, or the subgroup grand mean. Specifically, given a subgroup
indexed c, let Ok(xi, ai) denote the immediate effectiveness of the chosen ER strategy
at time i in context xi, we have the grand mean as

Ôc =
1

Nc

T∑
i=1

Ok(xi, ai), (4.3)

. Where Nc denotes the size of sample within the indexed subgroup. The reward
signal for each context x and action a is thus defined as:

r(x, a) = 1{Oc(x,a)>Ôc}, (4.4)

where 1 is an indicator function that returns 1 when the condition is satisfied, and 0

otherwise.
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4.3.5 Training Models and Evaluation Methods

Training Model

We used logistic regression as the value function approximator to map contexts
to rewards for each ER strategy within the Offset Tree algorithm in our policy
training step. The offset tree is a doubly robust estimation method that learns
several binary regression models with propensity weighted reward offset by a constant
factor to control variance of estimation. More details can be found in Beygelzimer
et al. [Beygelzimer and Langford, 2009]. We compare the performance of the trained
policy per subgroup against the global policy which is generalized for the entire cohort.

Model Evaluation

Given the selection bias in the test data, we evaluate the performance of the different
recommender algorithms using the importance sampling based approached named the
trimmed inverse propensity weighting (tIPW), also called the mean reward. This is
specifically defined for a test set of size T as,

VtIPW =
1

T

T∑
i=1

πe(ai|xi)
max{π̂b(ai|xi), τ}

ri. (4.5)

The parameter τ is a nuisance parameter and that can take values τ < 1/k,
where k is the number of strategies, according to lemma 3.1 of Strehl et. al., [Strehl
et al., 2010].

4.4 Results

4.4.1 Experiment Details

Our experimental setup is similar to the procedure outlined in Chapter 3 [Ameko
et al., 2020] in terms of data processing and the learning of the propensity scores.
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We modified the approach by learning a separate propensity scores for each subgroup
discovered to reflect our belief that users in the same cluster are expected to have
similar behavior, and we maintained the reward definition to allow consistency across
clusters.

In addition to the passive features and baseline self-reported features used to
cluster participants, we also considered demographic features such as age, income
level and race in our experiments, but the cohort is homogeneous along these features
and lack enough variability for clustering. We conducted ablation studies by dropping
demographic features from the clustering algorithms and realized no change in the
silhouette score, therefore these features were excluded from our final analysis. So
although we considered using a k-prototype [Huang, 1998] clustering algorithm to
handle the mixture of continuous and discrete variables, we ended up using the k-
means since all our clustering features were continuous. Figure 4.3 shows the cluster
centroids for each cluster by category. Each cluster depicts the prototypical profile
of a user belong to the subgroup. Four subgroups emerged in our analysis. In Figure
A.3b, there were two subgroups that we entitled Less Home and More Home due to
the clear distinction in the percentage of time spent at Home in each group. Similarly,
in Table A.3a, we have two clusters, Low Symptoms and High Symptoms, with the
clear distinction being the symptom severity.

We use the Offset Tree algorithm to train a cluster specific ER recommender
policy and evaluate the trained policy using the trimmed inverse propensity weighting
4.5 as done in Chapter 3 [Ameko et al., 2020]. We vary the trimming parameter τ
between [0, 0.1), specifically we use 0.0, 0.02, 0.05, 0.07 in our experiments, as shown
in Figures A.3a and A.3b to control variance and reduce uncertainty.

Our experiment results comparing the global model to the subgroup models
from the two categories of clustering features show an improvement over the global
baseline for three out of four clusters discovered. Figures A.3a and A.3b show that
mean reward from the clusters compared to the global at each trimming parameter
τ . We performed a Tukey HSD (Honestly Significant Difference) test to understand
the statistical significance of these models at τ = 0.02 (e.i., where model difference
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(a)

(b)

Figure 4.2: Compared mean policy rewards of subgroups based on passively sensed features
of subject routines versus global policy A.3b, and baseline self-reported measures subgroups
versus global policy A.3a
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(a) (b)

Figure 4.3: Compared mean policy rewards of subgroups based on passively sensed features
of subject routines versus global policy A.3b, and baseline self-reported measures subgroups
versus global policy A.3a

Groups Subject Size Sample Size Policy Mean Reward
Global 110 6259 18.11 ± 2.34

Less Home 56 2498 22.17 ± 2.22
More Home 44 2106 21.99 ± 5.16

Low Symptoms 50 2719 26.58 ± 5.97
High Symptoms 60 3540 14.93 ± 2.64

Table 4.2: Summary statistics on various clusters. The figures in bold indicate a significant
uplift over the global baseline at α = 0.05.

are clearer with the least standard deviation). The details of each cluster in terms
of sample and subject size with the mean reward with 95% confidence interval at
τ = 0.02 are summarized in Table 4.2.

4.5 Discussion

Our subgroup analysis led to improvements over the global policy for both routine-
based clusters and the lower symptom severity self-reported baseline subgroup. This
suggests that clustering generally tended to improve the recommendations of the
algorithm, especially for participants with less severe symptoms or when passive
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features were used for clustering. However, for the higher symptom severity subgroup,
the cluster policy did not perform significantly worse than the global policy. These
results suggest that in creating a warm-start policy for a recommender algorithm,
both self-reported baseline measures and passive features are useful. However, passive
features seemed to be similarly useful for tailoring warm-start policies for both clusters,
whereas self-reported baseline features were particularly useful for those with less
severe symptoms, and not as useful for those with more severe symptoms. Features
like the locations people visit may offer important clues into their common contexts
and behavioral patterns that may translate into different ER recommendations.
Similarly, at lower levels of symptom severity, tailoring a warm-start policy may offer
more benefits than at higher symptom severity. This might be because participants
with more severe symptoms have more complicated profiles of ER processes, difficulty
enacting ER strategies, and more pervasive impairments, such that even with tailoring,
it is difficult to pinpoint one policy that tends to help this group.

The most notable difference between the recommendations for the routine
based clusters is that the cluster who visited varied locations (e.i., Less Home) was
more frequently recommended distraction, whereas the cluster who stayed home more
(e.i., More Home) was more frequently recommended acceptance, see Figure 4.4.
These two ER strategies take very different approaches toward anxious thoughts:
distraction involves shifting attention away from thoughts, and acceptance involves
continuing to pay attention to thoughts, but with a less judgmental stance. It is
possible that these recommendations capitalize on the strengths or typical regulation
styles of each cluster (i.e., the varied location cluster maybe good at engaging in
activities that distract them, and the home cluster may be good at paying attention
to their thoughts).

On the other hand, the most notable differences between the clusters defined
by the baseline self-reported features is that the low symptom severity cluster (e.i.,
Low Symptoms) is more frequently recommended to do something fun with others,
whereas the high symptom severity (e.i., High Symptoms) cluster is recommended
to accept their thoughts/feelings and think about positive things, see Figure 4.4.
We will not speculate as to what the high symptom severity cluster’s policy may
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reflect, as this policy did not outperform the global policy. For the low symptom
severity cluster, however, doing something fun with others show up as a more highly
recommended strategy in the cluster vs. global policy again because of capitalizing
on strengths: due to their less severe symptoms, this cluster may have stronger social
contacts whom they might invite to do something fun, whereas this might be less of
an option for participants with greater social impairment and higher symptoms.

One limitation of this study is with the sample, both in terms of coverage
and size. As noted earlier, the data is collected from a college student group and it is
skewed towards a few population subgroups, hence limiting it’s replicability in a larger
and more representative population. Besides, the current subgroup analysis that
requires a hard assignment of participants to a cluster led to significant improvements
on the global policy, exploring a Bayesian hierarchical model to allow users to share
membership in several clusters might lead to further improvements in policy perform
-ance. Also, in this chapter, we optimize for immediate effects of strategies, which in a
way mitigates the effects of noise in the reward; but emotion regulation is believed to
have both short-term and long-term effects [Freitas and Salovey, 2000]. Consequently,
modeling the long-term effect of ER strategies in a Bayesian hierarchical framework
is an interesting direction to explore in order to overcome the current limitations of
the trained ER policy in this work.

4.6 Summary

In this chapter, we present a subgroup analytic method for building a warm-start
policy for emotion regulation strategies. We leverage historical data collected from
baseline and smartphones and use offline contextual bandits to train and evaluate the
policies. Our approach builds on previous work by demonstrating improvement in
policy performance, therefore having the potential to further increase user engagement
in future confirmatory studies. Given the importance of emotion regulation to human
mental health, this work is one more step made towards the vision of increasing mental
health treatment access to patients by leverage smart and ubiquitous devices.
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Figure 4.4: Policy distribution by cluster/subgroup marginalized over contextual variables
to highlight the difference in recommendations made by each policy. We also compared the
learned policies against the observed for more context.



5 | Conclusions & Future Work

Scalable access to healthcare has become more feasible with the increase ubiquitous
devices such as smartwatches and smartphones. We can leverage mobile sensing
streams and computational models to deliver more personalized and timely interventions.
This work contributes methods for learning personalized mobile health outcomes and
interventions in-the-wild. Using data from multiple modalities, including, mobile
EMA and multimodal sensors, this dissertation addresses these research problems
and makes the following contributions:

• Personalized Prediction of Affect: We used passively sensed data to characte
-rize each participant profile in the study. These profiles were used to cluster
participant into homogeneous groups based upon which we learn a prediction
model for their self-reported affect in the wild. We used a collection of models
including Gaussian processes, Lasso linear model, Random Forest and Support
Vector Machines to demonstrate that group based predictions of affect performed
better that a group independent model. We also, show that while learning
models for each individual participant might be promising, there needs to
be more data collected for this approach to be a viable option based on the
statistical significance.

• GeneralizedWarm-Start Intervention Policy fromMobile Digital Data:
We have developed a novel method to learning and evaluating a warm start
intervention policy from historical digital data. This addresses the problem
of cost involved in designing new intervention studies and mitigate the risk

77
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of attrition by learning to provide useful interventions to users early on in a
study. We leverage techniques from contextual bandits and causal inference to
formalize the problem of learning warm-start policy which unlike existing work,
uses real world observational data for a real mental health problem that has
a wide impact on several psychopathologies. Essentially, this work derives an
intervention policy for emotion regulation for any user from a moderate to high
social anxiety disorder. This approach is personalized by the context of the user
and lays the foundational step towards a subgroup relevant policy.

• Subgroup Personalized Warm-Start Intervention Policy from Digital
Data: This final contribution addresses the limitation of the above intervention
policy learning work by construction a subgroup relevant policy where similar
patients in terms of baseline psychological measures or daily habits as captured
by passive data are grouped together and provided a specialized warm-start
policy. We characterized users from their baseline self-reported psychological
measures and daily routines from passive measures and used k-means to cluster
them into homogeneous groups. We show that by learning an intervention
policy for each group, we significantly improve upon the group independent
policy from our previous work.

5.1 Future Work

There are several interesting future directions where this body of work can be extended.
A key limitation that cuts across all our studies especially for affect prediction is the
relatively small amount of data across few participants. There is an opportunity to
further validate, and evaluate the generalizability of our approaches by collecting a
larger sample with more diverse participants.

Our algorithms in Chapters 3 and 4 use contextual bandits to model the
effect of emotion regulation strategies both because of the limit in the data available
and the mitigation of the effect of noisy observations in the reward as outlined in
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subsection 1.4.1. Future work can consider leveraging a larger data set to learn a
full-reinforcement learning policy where the long term effect of emotion regulations
are accounted for in natural settings. Alternatively, there is an avenue to direct efforts
towards user modeling in high fidelity simulations as is currently being pursued in
areas of traditional recommender systems [McInerney et al., 2021,Rohde et al., 2018].
This will provide an benchmark for evaluating new intervention policies in mobile
health before deployment.

Also, there is an opportunity to join together the techniques developed in
Chapters 2 and 4 to allow for an automatic prediction of user affect and the deployment
of timely interventions. This could take the form of a two-pronged model architecture
with a nuanced variation like a feed-forward neural network where one head of the
model predicts the affect score of the user and the other head determines the most
useful intervention to deliver in opportune moments.

Finally, there is a exciting new direction to apply inverse reinforcement learning
by training a reward function from demonstrations collected from less socially anxious
individuals and using the trained reward function to guide the intervention policy for
high socially anxious individuals [Abbeel and Ng, 2004]. This approach will help
overcome the simplistic reward function defined in this thesis and provide much
more benefits for long-term reinforcement learning approaches. Alternatively, inverse
reinforcement learning can be a viable approach to learning individual behavioral
routines from observed sensor data, as shown in [Lin and Cook, 2020]. With this
capability, we can cluster participants based on these learned routines and thus obtain
more nuanced subgroups for intervention policy learning and evaluation.
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A | Appendix

A.1 SAMMI Data Streams

The SAMMI study was conducted over a period of 5 weeks for each participant,
but there is a varied amount of data quality collected as well as study engagement
observed. In this appendix, we present the plot of various data streams from the
SAMMI study over time for a given subject ID and mobile device operating system.

Figure A.1: Study engagement level for 50 sampled users.
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(a)

(b)

Figure A.2: Example of Subject IDs with relatively full data streams over the study period.
Note that RT-EMA refers to randomly timed EMA surveys.
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(a)

(b)

Figure A.3: Example of Subject IDs with relatively sparse data streams over the study
period. Note that RT-EMA refers to randomly timed EMA surveys
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