
Software Maintenance: An Alternative Production Environment and Other
Improvements

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Timothy Cha

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on
this assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman and Briana Morrison, Department of Computer Science

Software Maintenance: An Alternative Production Environment
and Other Improvements

CS4991 Capstone Report, 2022

Timothy Cha

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

thc8pku@virginia.edu

Abstract
Cvent, an event-planning software-as-a-
service company, needed maintenance on
its Business Intelligence application as the
application’s microservices were
undergoing several changes. One of the
largest issues was the production
environment in which the application’s
microservices were being tested, as the
microservices could not be thoroughly
tested without being deployed into the
production environment and affecting the
user directly. As an intern, I solved this
issue by creating an alternative
production environment, Prod-BETA,
which allowed the microservices access to
production-quality data without breaking
the production environment. Steps that I
took included sunsetting certain existing
production environments and downsizing
the memory requirements for each
microservice in our application. Work was
mostly performed on the IntelliJ IDE, with
DataDog being used to analyze historical
memory usage of each microservice. With
the downsizing in memory and the
removal of some production
environments, the company saved a total
of approximately $2000 worth of memory
per month. Work is still in progress for
completing Prod-BETA as at the time of
writing, microservices are still being

deployed to this environment by our full-
time developers.

1. Introduction and Background
It is imperative that a company’s
application is continually changed to
address evolving client requirements,
security vulnerabilities, and potential bugs
which can cause significant financial
ramifications for the company. Code
changes in earlier stages of software
development, especially where those
changes prevent possible bugs,
substantially reduce the risk of
unsatisfactory user experience and are
less expensive to fix.

Cvent is no exception. Currently, Cvent’s
Business Intelligence (BI) Application has
four deployment stages: local
development, silo, staging and production.
However, the Business Intelligence
application’s deployment cycle has an
issue in that the silo and staging
environments do not offer the high-quality
data the production environment provides.
This poses an issue because simulating the
software’s data in the silo and staging
environments also does not guarantee that
we will be able to catch all issues if we
simulated the data in production.
Therefore, the only way to test our
production environment is by deploying

our code to the production environment
directly.

However, this can negatively affect the
user. We proposed restructuring the
current problematic deployment
environment architecture to introduce a
new pre-production stage between
staging and production called Beta. In that
stage, we create an alternative
environment named Prod-BETA which
offers production-quality data without
requiring testers to deploy the
application’s microservice code live.

2. Related Works
Former developer and cloud engineer
Tomas Fernandez (2020) identifies two
primary approaches to circumventing
problematic releases into production:
blue-green deployment and canary
deployment. In blue-green deployment,
developers perform side-by-side
deployments with two identical
production environments, referred to as
Blue and Green. Both the Blue and Green
environments have access to a shared
resource, which includes databases and
services. One environment (in this case
Green) would be live for users to see while
the other environment would not; instead,
any versional changes to the source code
would be tested on Blue. Once any errors
caught during testing and deployment on
Blue are mitigated, Blue will then become
the live environment while Green becomes
the staging environment. This cycle
repeats. Canary deployment, on the other
hand, rolls out software updates to only a
select few users. Upon receiving feedback
from those users, developers release the
updated software to all users.

Several companies, such as Twitter for
example, use canary releases to roll out
updates in their software (Kotian, 2016).

Our restructured deployment architecture
follows the blue-green deployment model
more closely; however, it does not run two
production environments simultaneously.
Instead, Beta precedes our production
stage sequentially.

3. Project Design and Methodology
We will improve the application’s
deployment architecture by adding an
intermediate pre-production stage
between staging and production.

3.1. Deployment Architecture Design
Below are figures for the deployment
architecture before and after the change.
The names in the figures have been
changed to protect proprietary
information.

Figure 1: Cvent’s BI Application’s

deployment architecture pre-change.

Prod-ALPHA, Prod-GAMMA, and Prod-
DELTA are production environments,
where Prod-ALPHA is currently the
primary production environment for the
BI services. These production
environments differ by the region they
operate in. CT-ALPHA is a continuous
integration environment.

Figure 2: Cvent’s BI Application’s

deployment architecture post-change.

Creating the new production environment
was not an easy task, as many
configuration files had to be edited or
deleted, while several new ones were
created.

3.2. Methodology
As part of restructuring BI’s deployment
architecture, many of the BI microservices
needed readjustments on their memory
requirements to lower the cost of running
the application with this new architecture.
To achieve this, I first used DataDog and
AWS to analyze historical memory usage
of each microservice. If a microservice’s
memory usage was significantly lower
than its heap memory limit, I changed its
limit to be closer to its memory usage
while allowing some room for tolerance.

Moreover, the production environments
Prod-GAMMA, Prod-DELTA, and CI-
ALPHA were no longer being used, which
necessitated their sunsetting for our new
deployment architecture. To sunset those
environments, their respective
configuration files in each BI microservice
were edited so that the number of
microservice instances running in that
environment would be zero. For example,
if a prod-GAMMA.config file existed in the
BI-service-alpha source code folder, the
file would be edited so that zero instances
of BI-service-alpha would run under the
prod-GAMMA environment. Creation of
the YAML and config files for Prod-BETA
were handled by the full-time developers,
and the migration status of all
microservices from Prod-ALPHA to Prod-
BETA is unknown at the time of writing
because of the continuing work after the
end of my internship.

Although not necessarily a component of
our Prod-BETA project, the BI
microservices required Software

Development Kit updates to account for
AWS outages as well as other security
vulnerabilities as part of a remodeled
deployment architecture. To do this, I
edited each microservice’s pom.xml file to
update its mono-java version so that it
used the latest Couchbase security patches.
I also updated each microservice’s Maven
and dependency versions to their latest
ones, and any dependency conflicts were
mitigated by using exclusion tags.

4. Results
As part of our work, we as interns were
asked by our manager to perform a cost
analysis on the BI application pre- and
post-change in our deployment
architecture. With the memory
readjustment for every BI microservice
across the silo, staging, and production
environment Prod-ALPHA, approximately
150 GB was saved. Moreover, the cost of
running the application with the right-
sizing of the BI microservices and the
sunsetting of Prod-GAMMA and Prod-
DELTA was reduced by about 65% per
month. This substantial decrease in cost is
financially significant to the company as
we do not have to spend as much money
running instances of our microservices on
AWS.

5. Conclusion
Cvent’s Business Intelligence application
had issues with its production
environment where in that testing the
application’s microservices in that
environment would directly affect the user.
Because testing the microservices in the
production environment provided higher
quality data than testing in lower
environments would provide, changes
needed to be made to the application’s
deployment architecture. This was
accomplished by creating Prod-BETA, an
alternative pre-production environment,

which allowed access to production-
quality data. Creating Prod-BETA involved
many steps from sun-setting certain
production environments to down-sizing
the memory requirements of the
application’s microservices. In the end,
creating Prod-BETA saved the company
several thousand dollars per month on
memory usage.

6. Future Work
At the time I completed the internship,
full-time developers were still in the
process of creating the Prod-BETA YAML
files necessary to deploy the software in
the Prod-BETA environment. I do not
know whether this step was completed. In
the future, the deployment architecture of
the Business Intelligence application may
be changed again while still maintaining
the ability to obtain high-quality data to
ensure an optimal user experience.

References
Fernandez, T. (2020, August 5). What Is
Blue-Green Deployment? Semaphore.
https://semaphoreci.com/blog/blue-
green-deployment

Fernandez, T. (2020, September 1). What
Is Canary Deployment? Semaphore.
https://semaphoreci.com/blog/what-is-
canary-deployment

Kotian, A. (2016, May 9). Manhattan
software deployments: How we deploy
Twitter’s large scale. Retrieved from
https://blog.twitter.com/engineering/en_
us/topics/insights/2016/manhattan-
software-deployments-how-we-deploy-
twitter-s-large-scale-distributed-database

