
Accelerating Graph Processing with Near-Memory
Accelerator Architectures

Dissertation

presented to the faculty of the

University of Virginia School of Engineering and Applied Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Oluwole Jaiyeoba

Committee:

Chair: Mircea R. Stan, CPE, UVA

Advisor: Kevin Skadron, CS, UVA

Sandhya Dwarkadas, CS, UVA

Felix Xiaozhu Lin, CS, UVA

Adwait Jog, CS, UVA

Tom Fletcher, ECE, UVa

August, 2023

oj2zf@virginia.edu

© Copyright 2023 Oluwole Jaiyeoba

All rights reserved.

Abstract

For the past fifty years, Moore’s Law and Dennard Scaling have been playing important roles in

both performance and energy efficiency of computer systems. Unfortunately, they are not likely

to continue, and computers no longer benefit from technology scaling as much as they did in

the past. Recently, specialized hardware accelerators have emerged as a promising alternative to

general-purpose computing for their potential to achieve orders of magnitude speedup and energy

efficiency improvements on data-intensive applications. Graph analytics is an important data-

intensive application that has gained prominence over the past years. With the rapid rise in data

volumes in important applications such as social media, network analysis, genomics, knowledge

graphs, etc, graph analytics allows us extract meaning from vast datasets and understand relation-

ships between entities. However, achieving the full potential of accelerators to run graph analytics

remain a challenge since the bottlenecks of such applications do not lie on computation, but data

movement. To address this limitation, this thesis presents hardware and software techniques to

effectively accelerate both static and dynamic graph processing workloads.

This thesis makes algorithmic (software) and architectural (hardware) innovations to accelerate

graph analytics on static and evolving graphs for single- and multi-FPGA settings. First, we pro-

pose GraphTinker to tackle the long probe distances incurred when following edges to update

dynamic graphs (i.e., edge insertions, deletions and modifications). GraphTinker combines a tree-

based and open-address hashing scheme to skip entire regions within an edgelist when updating

a graph. Second, we propose ACTS to tackle the poor scaling challenge associated with FPGA

graph accelerators. ACTS embodies a set of architectural innovations that optimize off-chip HBM

iii

bandwidth usage and increase on-chip UltraRAM (URAM) parallelism in HBM-enabled FPGAs.

Both contributions allow significant improvement over prior art. Third, we propose Swift to tackle

the challenges from frequent movement of graph data between FPGAs in a multi-FPGA setup.

Swift decouples the fundamental primitives in graph processing into a partly-synchronous-partly-

asynchronous model, to keep all available bandwidth (PCIe, HBM, on-chip memory) of the FPGA

busy. This also results in superior performance over prior art. Fourth, we address the redundancy

associated with current models for updating dynamic graphs. We propose a technique that culti-

vates abundant parallelism and hides graph updating tasks within graph analytics. With a trend

of exponentially increasing demand for data-intensive computing, the techniques presented in this

thesis will work as useful tools for the acceleration of such important workloads.

iv

Acknowledgments

v

Contents

1 Introduction 2

2 Background 9

2.1 Graph Processing Abstractions . 9

2.1.1 Vertex-centric (“Think like a vertex”) . 10

2.1.2 Edge-centric (“Think like an edge”) . 10

2.1.3 Subgraph-Centric (“Think like a subgraph”) 11

2.1.4 The Abstraction used in this Dissertation: Edge-centric 11

2.1.5 Graph Algorithms . 12

2.2 FPGAs as Accelerators . 14

2.3 High-Level Synthesis . 17

2.3.1 A Simple Example . 19

2.3.2 HLS Optimizations . 20

2.4 High Bandwidth Memory (HBM) . 23

3 GraphTinker: High Performance Data Structure For Dynamic Graph Processing 26

vi

3.1 Challenges . 26

3.2 The Tinker representation . 28

3.2.1 The Subblock region . 30

3.2.2 The Workblock region . 30

3.2.3 The VertexPropertyArray . 31

3.3 The Coarse Adjacency List (CAL) . 31

3.4 GraphTinker . 32

3.5 GraphTinker Operations . 33

3.5.1 Inserting an edge . 33

3.5.2 Deleting an edge . 34

3.5.3 Retrieving edges . 34

3.6 Scatter-Gather Hashing . 35

3.7 The Hybrid Graph Processing Model . 35

3.7.1 Graph Processing Models for Evolving Graphs 35

3.7.2 The Hybrid Model . 36

3.7.3 Implementation . 37

3.8 Evaluation . 39

3.8.1 Target System . 39

3.8.2 Algorithms . 39

3.8.3 Performance . 40

3.9 Related Work . 52

vii

3.9.1 Adjacency matrix . 52

3.9.2 Adjacency list . 53

3.9.3 Robin Hood Hashing . 53

3.9.4 Graph Processing Models for Dynamic Graphs 54

3.10 Conclusion . 55

4 ACTS: Scalable Graph Processing on HBM-enabled FPGAs 57

4.1 Introduction . 57

4.2 The Challenge . 58

4.3 Why FPGAs? . 61

4.4 Implementation Details . 62

4.4.1 Partition Vertex Updates not Edges . 62

4.4.2 Online Recursive Partitioning . 63

4.4.3 Efficient Edge Packing . 65

4.4.4 Hybrid Processing of Sparse Frontiers . 68

4.5 Evaluation . 70

4.5.1 Target Hardware System . 70

4.5.2 Applications . 70

4.5.3 Datasets . 71

4.5.4 Experimental Setup . 71

4.5.5 Resource Utilization . 73

4.5.6 Accelerator Performance . 74

viii

4.5.7 Energy Usage . 76

4.6 Related Work . 77

4.6.1 FPGA-based Graph Processing Frameworks 77

4.6.2 GPU- and Software-based Graph Processing Frameworks 78

4.7 Conclusion . 78

5 Swift: Accelerated Graph Processing with Multiple FPGAs 80

5.1 Challenges . 80

5.2 Implementation Details . 82

5.2.1 Decoupled Asynchronous Execution Flow 82

5.2.2 Example Flow . 85

5.2.3 Graph Layout in Memory . 86

5.2.4 Workload Balance Across The FPGA Cluster 87

5.2.5 High Throughput Exchange Datapath . 90

5.3 Evaluation . 91

5.3.1 Target Hardware System . 91

5.3.2 Applications and Datasets . 92

5.3.3 Accelerator Performance . 93

5.3.4 Overall Performance . 97

5.4 Conclusion . 98

6 Dynamic ACTS: A Dynamic Graph Accelerator For HBM-Enabled FPGAs 99

ix

6.1 Challenges . 99

6.2 A More Promising Pathway . 100

6.3 Conclusion . 103

7 Conclusion And Future Work 104

A List of Publications 107

A.1 Publications . 107

A.2 Planned Publications & Journals . 107

A.3 Patents . 108

A.4 Awards . 108

Bibliography 116

x

List of Figures

2.1 The fundamental FPGA architecture [1] . 15

2.2 A simplified CLB: The four-input LUT is formed from two three-input units [1] . . 15

2.3 HLS synthesis flow . 17

2.4 HLS overview . 19

2.5 Simple HLS Example [2] . 20

2.6 Loop pipelining example in HLS [2] . 21

2.7 Loop unrolling example in HLS [2] . 21

2.8 Task-level parallelism in HLS [2] . 22

2.9 Array partitioning in HLS . 23

2.10 Overview of HBM on an FPGA [3] . 24

3.1 Prior art data structures based on adjacency list 28

3.2 Tinker data structure . 28

3.3 Comparing adjacency list (A) and CAL data structures (B) 31

3.4 Block Diagram of GraphTinker showing Tinker and CAL representations 33

3.5 Heuristic Formula for the Hybrid Engine . 37

xi

3.6 Hybrid Engine Implementation . 38

3.7 Insertion throughput for GraphTinker vs. STINGER with different input sizes and

using the hollywood-2009 dataset . 41

3.8 Insertion throughput for GraphTinker vs. STINGER on different datasets and with

batch size of 1 million edges . 41

3.9 Update throughput for GraphTinker vs. STINGER using different number of CPU

cores . 42

3.10 Processing throughput for GraphTinker vs. STINGER when running BFS on dif-

ferent datasets . 43

3.11 Processing throughput for GraphTinker vs. STINGER when running SSSP on

different datasets . 44

3.12 Processing throughput for GraphTinker vs. STINGER when running CC on differ-

ent datasets . 44

3.13 Edge deletions throughput for GraphTinker vs. STINGER data structure with dif-

ferent input sizes and using the RMAT 2M 32M dataset 46

3.14 Throughput for GraphTinker vs. STINGER when running BFS on the RMAT 2M 32M

dataset and with different number of edges deleted. 47

3.15 Average processing throughput for GraphTinker vs. STINGER when running BFS,

SSSP and CC algorithm on the RMAT 2M 32M dataset and performing edge dele-

tions . 47

3.16 Effect of different PAGEWIDTH sizes on insertion throughput to GraphTinker data

structure when loading the Hollywood2009 dataset. 49

3.17 Effect of different PAGEWIDTHs on graph analytics throughput when running the

BFS algorithm on the Hollywood2009 dataset. 50

xii

3.18 Behaviors of different PAGEWIDTHs in a combination of updates and analytics

using different datasets when running the BFS algorithm. Bars are averaged across

updates/analytics ratios. 51

3.19 Robin Hood Hashing . 54

4.1 The challenge associated with graph slicing during pre-processing 58

4.2 Prior art (A) vs. ACTS (B) graph processing workflow 62

4.3 (A) Conventional Bucket-based partitioning vs. (B) Recursive Bucket-based parti-

tioning . 63

4.4 (A) ACTPACK representation allows concurrent BRAM accesses across both source

and destination vertex ID dimension; (B) Prior-art representation allows concurrent

BRAM accesses across a single vertex ID dimension; (C) How edges of a graph

are represented in ACTPACK . 66

4.5 (A) Prior art’s heuristic model labels the entire graph as sparse or dense in every

GAS iteration; (B) Our heuristic model is more tightly coupled, labelling some

parts of the subgraph as sparse and others as dense 68

5.1 PCIe is a Bottleneck in multi-FPGA Graph Processing 81

5.2 Decoupled Graph Execution Model . 83

5.3 Decoupled Operations Executing Asynchronously on Graph 84

5.4 Graph Layout in HBM . 86

5.5 Workload Balancing Strategy . 87

5.6 High Throughput Exchange Datapath . 90

6.1 Dynamic graph updating model employed by prior art 99

xiii

6.2 Interleaved Dynamic Graph Updating Flow . 101

xiv

List of Tables

3.1 Comparing time complexities for Adjacency List, RHH and Tinker. P* is the tree

fan-out (e.g., 4 from Figure 3.2) . 29

3.2 GRAPH DATASETS UNDER EVALUATION . 40

4.1 EVALUATION SYSTEMS . 72

4.2 Resource utilization of ACTS on the Xilinx Alveo U280 FPGA 73

4.3 Execution time (in ms) for PageRank; Bottom section is Speedup (based on exe-

cution time) . 74

4.4 Execution time (in ms) for Single Source Shortest Path (SSSP); Bottom section is

speedup (based on execution time) . 75

4.5 Execution time (in ms) for Sparse Matrix Dense Vector Multiplication (SPMV);

Bottom section is speedup (based on execution time) 75

4.6 Execution time (in ms) for Hyperlink-Induced Topic Search (HITS); Bottom sec-

tion is speedup (based on execution time) . 76

4.7 Energy consumption for PageRank in milli joules; Bottom section is energy im-

provement (ACTS vs. Gunrock) . 77

4.8 Energy consumption for SSSP in milli joules; Bottom section is energy improve-

ment (ACTS vs. Gunrock) . 77

xv

5.1 GRAPH DATASETS UNDER EVALUATION (M: millions; B: billions; Abbr:

Abbreviation) . 92

5.2 Comparing ACTS with prior FPGA-based accelerators; Peak BW* refers to the to-

tal off-chip bandwidth available in evaluation platform; Performance in execution

time (in ms) . 93

5.3 FPGA and GPU Platform specifications. Memory BW* refers to off-chip DDR4/HBM

memory bandwidth; Communication BW* refers to PCIe/NVLink bandwidth be-

tween the FPGA/GPU respectively; Clock Freq* refers to clock frequency of the

FPGA/GPU; Effective BW* refers to maximum bandwidth the algorithm can use

upon deployment . 93

5.4 Comparing ACTS with Gunrock on 16 iterations of PageRank using 4 FPGAs/G-

PUs; Comm BW* refers to communication bandwidth between devices; Perf*

refers to performance in million edges traversed per second or MTEPS (top);

Perf*/Watt refers to energy efficiency in MTEPS / Watt (middle); Perf* / Band*

refers to bandwidth efficiency in MTEPS / (GB/s) (bottom) 94

5.5 Comparing ACTS with Gunrock on 16 iterations of SPMV using 4 FPGAs/GPUs;

Comm BW* refers to communication bandwidth between devices; Perf* refers to

performance in million edges traversed per second or MTEPS (top); Perf*/Watt

refers to energy efficiency in MTEPS / Watt (middle); Perf* / Band* refers to

bandwidth efficiency in MTEPS / (GB/s) (bottom) 95

5.6 Comparing ACTS with Gunrock on 16 iterations of Hyperlink Induced Topic Search

(HITS) using 4 FPGAs/GPUs; Comm BW* refers to communication bandwidth

between devices; Perf* refers to performance in million edges traversed per second

or MTEPS (top); Perf*/Watt refers to energy efficiency in MTEPS / Watt (middle);

Perf* / Band* refers to bandwidth efficiency in MTEPS / (GB/s) (bottom) 96

xvi

Chapter 1

Introduction

Graphs are data structures well-suited to represent the inherent relationships between different

entities for a wide variety of applications, e.g., data science, machine learning, social networks,

roadmap, and genomics. With the rapid growth of data and the corresponding growing develop-

ment of graph-oriented tasks, the size and complexity of graphs are still expanding. This poses

great challenges for modern graph processing ecosystems in performance and energy efficiency.

Graph processing is poorly suited to many-core CPU/GPU architectures, as the irregular structure

of graphs requires random memory accesses that prevent them from exploiting the memory- and

instruction-level parallelism of such architectures.

Challenges also exist when dealing with dynamic graphs (i.e., graphs that change with time). Such

graphs must be updated regularly to maintain their most recent state and also processed regularly to

capture newer relationships formed between vertices in time. A basic edge consists of a source ID,

a destination ID, and an edge weight. When inserting a new edge into a dynamic graph, conven-

tional graph updating techniques use the source vertex ID of the edge to index the corresponding

edgelist where the edge should be inserted. This edgelist can contain several edges depending on

the outdegree of the source vertex. The edgelist is read from memory (e.g., DRAM) and traversed

to find a matching edge. If a match exists, the matching edge’s weight is updated. Otherwise,

the new edge is appended to the edgelist. The updated edgelist is then written back to DRAM.

2

Chapter 1. Introduction and Motivation 3

This process wastes DRAM bandwidth as several edges in an edgelist are read from and written

to DRAM for every new edge to be inserted with only a fraction of the edgelist updated. On the

other hand, running graph analytics uses DRAM bandwidth more efficiently because all edges of

an edgelist read from DRAM are processed. This makes graph updating tasks demonstrate signifi-

cantly lower throughput than graph analytics tasks. In a dynamic graph processing context where

both graph updating and analytics tasks are multiplexed in time, Amdahl’s law kicks in to degrade

performance as overall throughput becomes limited by the slow graph updating process.

The age of big data has caused a consistent rise in the demand for computing power in datacenters.

CPUs and GPUs employed to process graphs are known for their relatively high energy consump-

tion. Datacenters use an estimated 200 terawatt-hours (TWh) each year and contribute to 1%

There are three main approaches to developing accelerators for graph processing: ASICs, FPGAs,

and GPUs. Of these three accelerators, FPGAs appear to have advantages that make them best

suited for graph processing. Hence, we focus on FPGAs as our research platform. FPGAs have

advantages over ASICs. First, building a custom ASIC chip, especially a large, high-performance

chip, can be expensive. This requires large volumes to amortize the Non-Recurring Engineering

(NRE) costs. FPGAs provide a highly customizable fabric that can approach the performance of

an ASIC at a much lower cost, especially if the initial deployment volume is not large enough to

justify an ASIC. Second, a successful FPGA design can serve as a prototype for a future ASIC

to justify the associated costs. Third, because FPGAs are reconfigurable, the accelerator can be

continuously optimized until it is ready to be fixed into an ASIC. Fourth, when not used for graph

acceleration, the FPGAs can be used to accelerate a wide variety of other applications. FPGAs also

have advantages over GPUs for graph processing. The FPGA and the GPU offer fine-grained on-

chip parallelism and high off-chip bandwidth (via the High Bandwidth Memory, or HBM), which

positively impacts throughput. However, with the FPGA, the architect can design custom datapaths

that restructure the locality of graph data and move this data between on-chip processing elements,

bypassing DRAM. Data restructuring is important in graph processing to allow efficient bandwidth

utilization and on-chip parallelism. This is because graph algorithms are typically memory-bound

[4], and the unstructured nature of graphs forces underutilization of memory bandwidth due to

Chapter 1. Introduction and Motivation 4

random memory accesses. Data restructuring, too, in principle, can happen with the GPU with its

shared memory. However, because restructuring unstructured data requires a non-trivial capacity of

on-chip memory to avoid certain DRAM access latency overheads, the smaller capacity of shared

memory of the GPU compared to the scratchpad of the FPGA is a limitation.

In this dissertation, I observe that efficient use of available DRAM bandwidth within an acceler-

ator is important in improving the throughput and scalability of graph processing tasks for static

and dynamic graphs. Accordingly, I hypothesize that (1) reducing the probe distance when

searching through edgelists to update dynamic graphs is critical to both throughput and load

stability, and (2) restructuring the spatial locality of messages passed between vertices (also

known as vertex updates), rather than the vertices and edges of the graph, would allow effi-

cient scaling in throughput across increasing graph sizes in FPGA-based environments. To

help investigate this hypothesis, this dissertation first addresses the long probe distance associated

with updating dynamic graphs (i.e., edge insertions, deletions, and modifications) and proposes

strategies to reduce this distance without sacrificing throughput during graph processing. In this

work, I also propose data structures for dynamic graphs that yield high throughput when used for

both graph updating and graph analytics tasks. Considering the advantages of the FPGA, as men-

tioned earlier in this chapter, I shifted my research environment to the FPGA. I observe that graph

analytics throughput scales poorly for both static and dynamic graphs when the size of graphs to

process on the FPGA increases. I first study this for a single FPGA performing static graph anal-

ysis and then extend my solution to dynamic graphs and to multi-FPGA configurations. In the

multi-FPGA setting, there is also a need to combat the bottleneck of frequent movement of graph

data between FPGAs across a limited-bandwidth communication channel (e.g., PCIe). I propose

innovations that hide communication-related activities within the entire graph processing flow. Fi-

nally, I addressed the wastage of bandwidth when updating dynamic graphs. This problem makes

updating a dynamic graph significantly slower in throughput compared to running graph analytics

and impedes overall performance in dynamic graph processing contexts according to Amdahl’s

law. These contributions are summarized below.

GraphTinker: A High-Performance Data Structure For Dynamic Graph Processing. This

Chapter 1. Introduction and Motivation 5

research was motivated by a common tradeoff with state-of-the-art data structures for dynamic

graphs. To insert, delete or modify a graph with an edge update, a typical requirement is for an edge

update to search through an edgelist to find a match before implementing the insertion, deletion, or

modification command. The number of edges traversed when following edges during this search

is termed probe distance. Several data structures demonstrate high throughput when updating the

dynamic graph (i.e., edge insertions, deletions, and modifications) at the cost of low throughput

when running graph analytics on the same, or vice-versa. For example, compact data structures

(e.g., those based on adjacency lists [5]) support reading edges from DRAM at high throughput and

are efficient for graph processing. However, they suffer long probe distances when following edges

to perform graph updates because of their tightly packed, unsorted representation. We propose

GraphTinker to address this. GraphTinker merges two ideas to achieve the combined benefit of

short probe distance (for high-throughput graph updating) and compactness (for high-throughput

graph analytics). To achieve high-throughput graph updating, GraphTinker incorporates a novel

representation (called Tinker) that combines a tree-like algorithm when following edges and a

well-known open hashing algorithm (Robin Hood Hashing). These allow GraphTinker to skip

entire regions in an edgelist when searching for a matching edge. To achieve high-throughput

graph analytics, GraphTinker maintains a highly compact representation of edges (called Coarse

Adjacency Lists) tailored to Tinker that allows sequential streaming of multiple edgelists from

DRAM during graph analytics. These contributions allow GraphTinker to demonstrate up to 3.3X

superior throughput compared to a prior state-of-the-art data structure for dynamic graphs based

on adjacency list [5] and 10X improvement when used to run graph analytics.

ACTS: A Near-Memory FPGA Graph Processing Framework. The advantages the FPGA pro-

vides for graph processing earlier discussed motivated me to switch research platforms from the

CPU to the FPGA. A notable limitation of prior single-FPGA-based graph accelerators is poor

scaling. As the size of the graph to process increases, degradation in throughput becomes more

severe. This limits their applicability in the real-world processing of large graph workloads. This

problem stems from a widely adopted strategy known as graph slicing where a large graph is first

sliced during pre-processing into partitions to improve locality, after which all partitions are loaded

Chapter 1. Introduction and Motivation 6

to the FPGA, and each is processed one at a time on-chip. Slicing restructures the locality of the

graph. Processing of each slice can now benefit from the FPGA’s fast but limited-capacity Ultra-

RAM (URAM) to perform random accesses. A principal requirement for slicing is that the vertex

properties of each slice fit in on-chip URAMs. This work shows that this approach limits scaling,

as slicing unstructured workloads such as graphs creates shards that cannot be entirely disjointed.

Therefore, processing each shard depends on vertex property data in other shards. This depen-

dency introduces redundancies where several vertex properties are read more than once in each

graph iteration, which hurts throughput. This redundancy is exacerbated with larger graph sizes

which limit scaling. I tackled this problem by restructuring the locality of vertex updates generated

during processing rather than the graph itself. This allows each active vertex to be read only once

in each graph iteration, resolving redundancy. Restructuring vertex updates during processing can

be a high-overhead task that can limit throughput. I tackled the overheads associated with the

online restructuring of vertex updates by proposing a novel recursive partitioning strategy. I also

propose an edge-packing strategy to eliminate on-chip data dependencies from multiple edges or

vertex updates accessing the same URAM on-chip (due to a graph’s unstructured nature). Unlike

many other simulation-based works, our design is implemented on real hardware. It delivers a

significant speedup of up to 16.5× compared to the state-of-the-art FPGA accelerator based on the

HBM. ACTS also delivers speedup over GPU-based solutions showing a geometric mean speedup

of up to 1.5x.

Swift: Accelerated Graph Processing with Multiple FPGAs. The success of our single FPGA

work motivated us to explore graph processing in multi-FPGA environments equipped with the

HBM. The research question was: “How do multi-FPGA accelerators compare with single-FPGA

accelerators in throughput? And are multi-FPGA graph accelerators able to scalable efficiently

with an increasing number of FPGAs?”. Our findings revealed that state-of-the-art multi-FPGA

solutions sometimes exhibited the same (and sometimes even worse) throughput compared to their

single-FPGA counterparts. This is caused by the low bandwidth PCIe communication channel be-

tween FPGAs and the frequent substitution of on-chip data during processing due to graph slicing.

Graph processing involves heavy amounts of data movements with very light-weight computation

Chapter 1. Introduction and Motivation 7

performed on the data, so excessive communication between FPGAs is a bottleneck. For exam-

ple, the Xilinx Alveo U280 board equipped with HBM can deliver off-chip DRAM bandwidth of

460GB/s within an FPGA but supports only 16GB/sec from its PCIe Gen4x8 when sending data to

another FPGA. To tackle this problem, we propose a decoupled, asynchronous graph processing

model based on the Gather-Apply-Scatter (GAS) paradigm. By decoupling the fundamental oper-

ations in clusterscale graph processing – processing of edges, importing of graph data from remote

FPGAs, and exporting of graph data to remote FPGAs –, we can overlap these processing oper-

ations and keep all available bandwidth (PCIe, HBM, on-chip memory) of the FPGA constantly

busy across the entire graph processing flow. We also propose a graph placement technique to

exchange unstructured active vertex properties between FPGAs at high throughput. Swift exhibit

superior throughput over several prior art FPGA solutions and up to 2.6x bandwidth efficiency over

a state-of-the-art GPU accelerator.

Dynamic ACTS: A New Approach to Updating Dynamic Graphs. Employing our graph accel-

erator to process evolving graphs revealed a major challenge — updating a dynamic graph (i.e.,

edge insertions, deletions, modifications) can be significantly slower (up to 80X) compared to

running graph analytics on the same. Unlike graph analytics, graph updating required searching

through edgelists for a match and discarding many after this match is found. This bottlenecks the

processing flow in a dynamic graph processing context according to Amdahl’s law. We revisited

the fundamental algorithmic objective of updating dynamic graphs — for edge updates and their

matches to meet. We propose a new direction for updating dynamic graphs. Rather than traversing

edgelists of a graph to find matching edge slots, we hash a group of edge updates to a large URAM

array in the FPGA using a suitable hashing formula. Then, as edges are streamed from HBM

during graph analytics, each edge is hashed by the same hashing function to find the appropriate

slot in the URAM containing its update (i.e., it has any). The edge then picks and applies its up-

date inflight during graph analytics. This O(1) runtime complexity boosts the parallelism achieved

during graph updating and allows graph updating to be hidden within graph analytics. Our results

show superior throughput over prior art dynamic data structures.

The outline of this dissertation is listed as follows. Chapter 2 illustrates preliminary background

Chapter 1. Introduction and Motivation 8

information on FPGAs and graph processing. In Chapter 3, I propose GraphTinker, a high-

performance data structure for dynamic graph processing. In Chapter 4, I propose ACTS, a scalable

FPGA accelerator. In Chapter 5, we propose Swift, a high-performance multi-FPGA accelerator.

In Chapter 6, I propose Dynamic-ACTS, a new approach to updating dynamic graphs. We sum-

marize this dissertation and discuss future directions in Chapter 6.

Chapter 2

Background

This chapter presents the background and related work of this thesis. We introduce graph pro-

cessing and discuss the major abstractions used to process graphs and the particular abstraction

chosen in this dissertation. The FPGA allows us to achieve high-performance graph processing

because it allows fine-grained parallelism. More importantly, it allows the computer architect to

design specific datapaths that restructure and route data on-chip, bypassing the DRAM. We intro-

duce the FPGA architecture, the memory technology (HBM), and the high-level synthesis-based

programming methodology.

2.1 Graph Processing Abstractions

In this section, we discuss the most relevant paradigms used to express computation in graph

processing systems. Programming models for graph processing have been studied and documented

in the literature [6] [7]. The key distinguishing property between the various paradigms is the

granularity of the unit of computation.

9

Chapter 2. Background 10

2.1.1 Vertex-centric (“Think like a vertex”)

This is a very popular abstraction for large-scale distributed graph processing. The vertex-centric

model places the vertex at the center of the computation and forces the user to express the com-

putation from the point of view of a single vertex by providing a single higher-order function. A

vertex-centric program receives a directed graph and a vertex function as input. A vertex serves

as the unit of parallelization and has a local state that consists of a unique ID, an optional vertex

value, and its outgoing edges, with optional edge values. Vertices communicate with other vertices

through messages. The vertex-centric model is general enough to express a broad set of graph

algorithms. It is a good fit when the computation can be expressed as a local vertex function that

only needs to access data on adjacent vertices and edges.

2.1.2 Edge-centric (“Think like an edge”)

A main challenge with the vertex-centric approach is that it first reads vertices before making ran-

dom accesses to their set of edges. Because most graphs have a much larger number of edges

than vertices, access to edges dominates the processing cost. The edge-centric approach was pro-

posed [8] to tackle this problem by iterating over edges and updates on edges rather than over

vertices. This allows the edge-centric approach to altogether avoid random access into the set of

edges, instead streaming them from memory and making random accesses to their corresponding

vertices. This is beneficial because streaming over edges and performing random accesses for ver-

tex updates is better than vice-versa, especially if multiple updates to a vertex can be coalesced.

There is performance gain because random access to any storage medium delivers less bandwidth

than sequential access. The most popular edge-centric variant is employed by [9]. In this variant,

the system that processes edges and generates messages (known as vertex updates) is decoupled

from the system that performs these updates at their respective destination vertices. This allows

opportunities for restructuring the locality of the vertex updates to accelerate performance.

Chapter 2. Background 11

2.1.3 Subgraph-Centric (“Think like a subgraph”)

Unlike the vertex-centric and edge-centric abstractions, which are fine-grained, the subgraph-

centric abstraction is a coarse-grained abstraction. This abstraction has been employed by Gi-

raph++ [10] and other prior works [11], [12]. In this abstraction, the subgraph is the unit of

parallel computation. A subgraph is a collection of associated vertices in a graph, usually one that

has a few edges connecting to other subgraphs. By exposing the subgraph to the user function,

this abstraction can reduce communication and exploit the subgraph structure to accelerate the

convergence of vertex-centric programs. The subgraph-centric model relies on the perception of

each subgraph as having defined characteristics rather than just a collection of unassociated ver-

tices. While in the vertex-centric model, a vertex is restricted to accessing information from its

immediate neighbors, in the subgraph-centric model, information can be propagated freely inside

all the vertices of the same subgraph. This simple property of the subgraph-centric model can lead

to significant communication savings and faster convergence in some algorithms.

2.1.4 The Abstraction used in this Dissertation: Edge-centric

ALGORITHM 1: Edge-centric model

foreach active Streaming Partition SP in pivot do

foreach outgoing edge E(U, V) in SP do

if vertex U is active then
Res = Process Edge(Eweight, Uprop, Vprop)

V temp = Apply(Vtempprop, res)

end

end

end

The model employed in this dissertation is the edge-centric model. Several state-of-the-art software-

based [8, 10, 13–15] and accelerator-based [9, 16–21] frameworks are based on this model. The

Chapter 2. Background 12

edge-centric model allows the system that generates messages (the Process Edge stage of algo-

rithm 1) to be decoupled from the system that updates vertex values (the Apply stage of algorithm

1). This decoupling opportunity opens the door to explore research opportunities to design cus-

tom datapaths that restructure the spatial locality of messages and maximize off-chip bandwidth

efficiency. The edge-centric variant is amenable to a wide memory bandwidth environment like

the FPGA-HBM because the wide bandwidth memory facilitates high throughput when streaming

edges from memory. The main memory traffic in graph processing workloads is incurred by edge

accesses, which can be performed in a streaming manner, as explored in [8]. The input is an un-

ordered set of directed edges of the graph. Undirected edges in a graph can be represented by a pair

of directed edges. To process subgraphs within a graph efficiently, the edge-centric model employs

Streaming Partitions [8] where the graph is logically split into different intervals by source vertex

IDs during preprocessing. In a given graph iteration, only intervals consisting of active vertices

are processed. This prevents all edges from being read in every iteration. In the Apply stage, the

update tuples generated in the Process Edge stage are applied to the destination vertex to compute

the new vertex property. Several iterations of these two functions are repeated until the termination

criterion is met.

2.1.5 Graph Algorithms

Throughout the dissertation, we discuss four different fundamental representative graph algo-

rithms. These are the core kernels and building blocks representing the majority of graph process-

ing runtimes in many applications. These algorithms were chosen as benchmarks because they

demonstrate memory access behaviors that generalize across various graph processing algorithms.

PageRank (PR): PageRank (PR) is an important algorithm used to rank websites by search en-

gines. It works by counting the number and quality of links to a page to determine a rough estimate

of how important the website is. The underlying assumption is that more important websites will

likely receive more links from other websites. The PageRank algorithm calculates scores of ver-

tices in a graph based on some metric (e.g., popularity). Web pages are represented as vertices,

Chapter 2. Background 13

and hyperlinks are represented as edges. The equation below shows how the PageRank score is

calculated for each vertex. α is a constant, and Udeg is the out-degree and a constant property of

vertex U. In PageRank, all vertices are considered active in all iterations. PageRank has a time

complexity of O(E ·K) where E is the number of edges and K is the number of iterations.

V score = α + (1− α) ·
∑

U |(U,V)∈E

Uscore

Udeg

Single Source Shortest-Path (SSSP) This graph traversal algorithm computes the distance be-

tween a single source and all other vertices in a weighted graph. Like Breadth First Search (BFS),

the algorithm iteratively explores neighboring vertices from starting vertices and assigns the dis-

tance to each vertex connected to the active vertices of the iteration. The main difference between

BFS and SSSP is that SSSP utilizes edge weights to determine distance, while BFS does not. The

equation below shows how the distance is determined for each vertex adjacent to active vertices.

SSSP has a time complexity of O(V 2) where V is the number of vertices.

Vdist =
∑

U |(U,V)∈E
(Vdist, Udist + Eweight(U, V)))

Hyperlink Induced Topic Search (HITS): Hyperlink Induced Topic Search (HITS) is an algo-

rithm used in link analysis. It is used to discover and rank the web pages relevant to a particular

search. This algorithm originated from the fact that an ideal website should link to other relevant

sites and be linked by other important sites. HITS uses hubs and authorities to define a recursive

relationship between web pages. HITS rates nodes based on two scores, a hub score, and an author-

ity score. The authority score estimates the node’s importance within the network, while the hub

score estimates the value of its relationships to other nodes. In HITS, all vertices are considered

active in all iterations. The Hub score and authority scores of each vertex in HITS are calculated

using the formula below:

Eachnode′sHubscore =
∑

(Authorityscoreofeachnodeitpointsto).

Eachnode′sAuthorityscore =
∑

(Hubscoreofeachnodepointingtoit).

Chapter 2. Background 14

Sparse Matric Vector Multiplication (SPMv): Sparse matrix-vector multiplication (SpMV) [22]

is a fundamental computational kernel used in scientific and engineering applications. They are

widely used for many scientific computations, such as graph algorithms, graphics processing, nu-

merical analysis, and conjugate gradients. This problem is a simple multiplication task where the

worst case (dense matrix) has a complexity of O(N3). The key feature of the problem is that the

majority of the elements of the matrix are zero and do not require explicit computation.

2.2 FPGAs as Accelerators

A basic FPGA architecture (Figure 2.2) consists of thousands of fundamental elements called

configurable logic blocks or CLBs (1) surrounded by a system of programmable interconnects (2),

called a fabric, that routes signals between CLBs. The routing interconnect of an FPGA is static and

consists of wires and programmable switches that form the required connection. Routing signals

between CLBs is done during compilation. The FPGA also consists of Input/Output (I/O) blocks

(3) that interface between the FPGA and external devices. The CLB is the basic repeating logic

resource of an FPGA. When linked together by routing resources, the components in CLBs execute

complex logic functions and memory functions. Depending on the manufacturer, the CLB may also

be referred to as a logic block (LB), a logic element (LE), or a logic cell (LC). We have witnessed

the successes of FPGA-based accelerators in the industry. Both Microsoft and Baidu have adopted

FPGA-based accelerators to accelerate production workloads, such as the Bing search engine and

machine learning platforms, at a large scale. Amazon, Nimbix, and Alibaba have deployed FPGAs

into their cloud computing environments.

An individual CLB (Figure 2.2.2) comprises several logic blocks. The number and arrangement

of components in the CLB varies by device; the simplified example in Figure 2.2 contains two

three-input LUTs 1⃝, an full adder FA 3⃝ and a D-type flip-flop 5⃝, plus a standard mux 2⃝ and

two muxes, 4⃝ and 6⃝, that are configured during FPGA programming. The key building block in

the CLB is a lookup table (LUT) that can implement any truth table for an n-bit input, and these

Chapter 2. Background 15

Figure 2.1: The fundamental FPGA architecture [1]

Figure 2.2: A simplified CLB: The four-input LUT is formed from two three-input units [1]

Chapter 2. Background 16

LUTs can then be combined to implement more complex combinational functions. The FPGA also

consists of memory blocks called Block RAMs (BRAMs) and Ultra RAMs (URAMs) for storing

data on-chip. Both memories are random access memory embedded throughout an FPGA for data

storage. Block RAMs come in a finite size, 4, 8, 16, or 32 kb (kilobits) are common. Depending

on the application’s needs, they have a customizable width and depth, and multiple BRAMs can be

linked together to create larger BRAM sizes. The BRAM is analogous to the last-level cache in the

CPU or the CPU scratchpad because it is a high-speed memory used to hold small items of data

in the FPGA for rapid retrieval. The UltraRAM (or URAM) is a high-density memory building

block. Each URAM can store up to 288K bits of data and is configured as a 4K x 72 memory block.

UltraRAM has eight times the capacity of a block RAM. Both URAM and BRAM are natively one

clock latency reads and writes. The UltraRAM is intended to replace off-board memories enabling

better overall performance. The BlockRAM is smaller than URAM but more flexible, allowing

multiple blockRAMs to be easily cascaded to make larger memories. The UltraRAM, on the other

hand, is larger (having up to eight times the capacity of a block RAM) but less flexible in data

width and address space configuration than block memory. Reconfigurable interconnections allow

different logic blocks to be wired together to form a large logic design. I/O blocks the interface

between the FPGA and external devices. Any design that can fit within the available resources

can be implemented on the FPGA through these programmable blocks. FPGAs also incorporate

dedicated digital signal processing (DSP) blocks to accelerate commonly used, complex functions

such as multiplication, fast Fourier transforms (FFTs), and finite impulse response filtering (FIR),

which would otherwise take significant resources if implemented directly using logic (i.e., using

LUTs and flip-flops).

CPUs, GPUs, FPGAs, and ASICs are also hardware solutions for graph processing. Graph process-

ing requires abundant fine-grained parallelism in a processing platform. This is because a typical

graph has many vertices, and graph processing models require user-defined computations to be

performed in parallel on each of these vertices during processing. The CPU’s inability to provide

this abundant level of fine-grained parallelism makes it less preferred to the FPGA, as long as the

parallelism achieved in the FPGA makes up for its lower clock speed (2-3 GHz for CPUs vs. 200-

Chapter 2. Background 17

500 MHz in a typical FPGA implementation). The FPGAs and ASICs have a greater potential for

the tasks outlined in this dissertation than the GPU. With FPGAs and ASICs, specialized on-chip

datapaths can be designed to restructure graph data’s static locality in real time. This is amenable

to the unstructured nature of graphs and the memory-centric paradigm of graph analytics because

it allows graph data to be moved between arbitrary memory locations in DRAM with few clock

cycles. Also, it allows graph data to move between arbitrary processing elements (PEs) within the

FPGA, bypassing the DRAM. The GPUs are not a good architectural fit because there are limita-

tions to how data can move between on-chip elements. For example, shared memory in the GPU is

only visible to threads in the same block. Hence threads within two different blocks cannot com-

municate without passing through the DRAM. The FPGAs and ASICs also excel over the GPU

regarding energy efficiency. They omit the branch divergence and provide finer-grained paral-

lelism, delivering better performance or energy efficiency, especially when performing concurrent

fixed-point operations. FPGAs are preferred to ASICs because of their flexibility. FPGAs allow

reconfigurability and reduce design costs by eliminating whole classes of design problems related

to ASICs. These problems include transistor-level design, testing, signal integrity, crosstalk, I/O

design, and clock distribution.

2.3 High-Level Synthesis

Figure 2.3: HLS synthesis flow

Chapter 2. Background 18

With the FPGA, computer architects can map computationally intensive applications with large

amounts of parallelisms onto the FPGAs to execute specific tasks orders of magnitude faster than

general-purpose CPUs while consuming a fraction of the power. The main problem with mapping

is that it makes the design of these already complex Integrated Circuits even more complex. Thus,

new design methodologies are required to facilitate their design. One technology that is being

fully embraced, especially for designing accelerators, is High-Level Synthesis (HLS). HLS takes

as input an untimed behavioral description in, e.g., C or C++ and generates efficient RTL code that

can execute it (Verilog or VHDL). Figure 2.3 shows FPGA synthesis flow with and without HLS.

Raising the level of VLSI design abstraction from the RT level to the behavioral level has several

advantages. First, it reduces the turn-around time as it requires writing fewer lines of code, making

the design and verification much easier. It has been reported that a single line of C code produces,

on average, 7× more gates than a single line of Register Transfer Level (RTL) code [9]. Second, it

allows us to simulate faster, facilitating the verification process. Last, it facilitates the re-usability

of the behavioral description by allowing the generation of micro-architectures with different char-

acteristics by simply using different synthesis options. This implies that a designer only needs to

design and verify the behavioral description once and can then generate a micro-architecture with

specific power, performance, and area for a particular project by setting the synthesis options to a

particular value. This dramatically extends the re-usability of the design. This advantage is also a

weakness as it implies that designers must fully understand how the different options interact and

how the HLS process works in detail to obtain the desired micro-architecture. This implies that

hardware knowledge is still very much required when using HLS.

As shown in Fig. 2.4, high-level synthesis is divided into two steps: i) parse the software program

and generate the Control-Data Flow Graph (CDFG), which captures the control/data dependencies

of the original program. ii) map the CDFG into a statically scheduled or dataflow circuit.

CDFG. HLS first generates a control flow graph (CFG), the standard data structure for optimizing

software programs. Nodes in this graph are basic blocks, which correspond to a collection of

consecutive sequential statements with a single entry and exit point. Outgoing edges from a basic

block correspond to different potential successors, with the successor chosen based on a specified

Chapter 2. Background 19

Figure 2.4: HLS overview

condition. For-loops and while-loops result in cycles in the CFG. Then, a data flow graph (DFG)

is generated for each basic block to capture the data dependencies among instructions within it. A

CDFG is the combination of CFG and DFGs for all of the basic blocks.

Static or dynamic dataflow circuit. HLS converts the generated CDFG into a statically scheduled

circuit, which consists of a datapath that contains all the operations (e.g., addition, multiplication,

etc.) from the program and a finite state machine that schedules these operations into clock cycles.

The state machine serves as a global scheduler that controls the execution sequence of the whole

circuit.

2.3.1 A Simple Example

Fig. 2.5 (a) shows an example code that has two add operations and one multiply operation,

and the variable y is redefined in the two branches of the if statement. Fig. 2.5 (b) shows the

scheduling result of the static HLS engine. The two branches (Line 6 and Line 8) are scheduled in

C1, and the preprocessing (Line 4) and postprocessing (Line 10) codes are scheduled in C0 and C2,

respectively. There are two add operations in different clock cycles, and the HLS engine allocates

one adder and binds the two add operations to it. Fig. 2.5 (c) shows the final circuit with one adder

and one multiplier. It also has two registers to store the intermediate results from the adder and the

multiplier, respectively. Furthermore, it has three multiplexers; two are used to share the adder in

Chapter 2. Background 20

C0 and C1, and the last is used to select the right y from the if branches.

Figure 2.5: Simple HLS Example [2]

2.3.2 HLS Optimizations

HLS tools use a C/C++ front end and a set of transformation heuristics to map software constructs

onto hardware elements and a back end that generates RTL code [17, 24]. To satisfy resource,

layout, and timing requirements, a constraint solver is typically deployed [25]. To guide the trans-

formation, programmers can add #pragma hints. HLS tools make a heuristic effort to translate

any valid C/C++ program to RTL. In this section, we present some of the most important pragmas

that programmers can use to improve their design performance in HLS. FPGAs enable designers

to extract parallelism at a finer granularity to improve performance. Parallelism can be defined at

various levels in HLS. It can be the operations within a loop or the parallelism between multiple

functions. Programmers can use directives (via pragmas) to express parallelism in their code.

Loop pipelining. Loop pipelining is used to define parallelism at the instruction level. Figure

2.6 shows an example of a simple loop that performs simple arithmetic operations on two vectors

(A and C). The loop includes a read operation to read one element of input A, a multiplication

operation, and a write operation to write the result to the output array (C). Figure 2.6 shows the loop

execution cycles with and without the pipelining. A loop without the pipeline pragma processes

the three operations sequentially and waits for all the operations in the previous iteration to finish

before starting the new iteration. When a pipeline pragma is used, the next iteration is started

Chapter 2. Background 21

Figure 2.6: Loop pipelining example in HLS [2]

immediately after the module can accept new input. The initiation interval (II) defines how fast

the next iteration can begin. II is set at the cycle level. In general, it is desirable to have loops

with II=1. In some cases, the tool may not reach the designer’s desired initiation interval. For

example, loop-carry dependencies can prevent loop pipelining. When this occurs, the tool selects

the minimum possible II from that loop. Several other pragmas can be used to provide additional

information to the tool to overcome loop-carry dependencies, but we do not explain them here.

Figure 2.7: Loop unrolling example in HLS [2]

Loop unrolling. Unrolling is another type of parallelism that can be defined within a loop. Un-

rolling makes multiple copies of the operational module that can then execute in parallel. A user

can set the unrolling factor. Figure 2.7 shows the earlier example, this time with an unrolling

pragma. In this example, the unrolling directive instructs the HLS tool to create two copies of the

multipliers. A loop can be unrolled partially or completely. Loop unrolling represents an area/per-

Chapter 2. Background 22

formance trade-off. Unlike loop pipelines, unrolling can only be applied when loop iterations are

known at compile time. Like the loop pipeline, the compiler may fail to achieve the designer-

requested unrolling factor. Insufficient resources are one of the most common reasons for this. In

our example, if there are not enough memory ports to read input for multiple copies of the loop

body, then the compiler cannot unroll the design as requested. We will discuss how the memory

units can be partitioned to meet the requirements for the hardware modules later.

Figure 2.8: Task-level parallelism in HLS [2]

Task-level Parallelism. Parallelism in HLS can be defined at a higher level, such as the entire task.

Dataflow pragma is used to define parallelism at the function level. A Dataflow pragma pipelines

the functions and schedules them to start their operation as soon as the inputs are ready. Figure 2.8

presents the task-level pipelining. The overall latency to finish two functions is six cycles (three for

function one and three for function 2). When they are pipelined, the second function can start its

process after the first cycle. Thus, the overall execution time is reduced to 4 cycles with dataflow.

In pipelining the tasks, the task with the highest latency determines the initiation interval.

Memory configuration. Memory partitioning is a critical part of HLS to achieve desired perfor-

mance. Proper memory partitioning can allow a design to achieve the desired parallelism (II=1

for the initiation interval for loop pipelines or the maximum unrolling factor). The FPGA offers

various on-chip memory resources such as block RAMs (BRAMs), LUT RAM, and Ultra RAM

(URAM), and it is the designer’s responsibility to choose optimal memory partitioning of these

memory blocks for the design. Memory partitioning divides a single array of data into multiple ar-

Chapter 2. Background 23

Figure 2.9: Array partitioning in HLS

rays and assigns each array to a different memory resource. Each memory module can be accessed

independently. Figure 2.9(a) demonstrates a block partitioning method where each smaller array

is created from consecutive blocks of the original array. Another way to partition an array is cyclic

partitioning, which creates smaller arrays by interleaving elements from the original array (Figure

2.9(b)).

2.4 High Bandwidth Memory (HBM)

High bandwidth memory (HBM) is a new type of memory that vertically stacks memory chips,

like floors in a skyscraper. Various layers of chips are stacked on top of each other using vertical

channels called TSVs (through-silicon vias). This allows the HBM to reduce the distance that data

needs to travel between the memory and processor and allows greater throughput per area than the

conventional DDR memory. By reducing the amount of power needed to transfer data between

memory and processor, HBM is also more power efficient than DDR. We use the HBM in this

dissertation because of the highly parallelizable and memory-centric nature of graph processing. It

Chapter 2. Background 24

Figure 2.10: Overview of HBM on an FPGA [3]

should be noted that the HBM connected to an FPGA (e.g., the Xilinx Alveo U280 FPGA) would

provide two different clock domains. One of these domains is for the FPGA and the other for

handling memory reads and writes to the HBM. The highly parallelizable nature allows several

concurrent operations to be executed across the many vertices of a graph. The memory-centric na-

ture results in a lot of the processing time being spent on moving data between memory locations.

As opposed to the 2D DRAM, HBM uses stacked RAM, which increases the height of the com-

ponent, but not the width. This leads to significantly more memory capacity without the need for

longer connections. While GDDR5 uses the FPGA/GPU chip on a silicon die and is surrounded by

off-chip memory, HBM takes a different approach. HBM uses an FPGA placed on an interposer

- or an electrical interface that routes connections between sockets - in addition to four pieces of

stacked memory, each residing on top of its logic die. The design allows for stacking additional

memory on top of each chip, thus reducing the need for longer connections, additional power, per-

formance drops, or heating issues. HBM can allow for a theoretical stack of four times the chips of

current RAM. This provides significant power gains in addition to faster and more efficient mem-

ory. Because the HBM modules are soldered close to the FPGA die physically, there is a benefit

from short paths for data transmission. Combined with the wide memory bus, the FPGA can be fed

Chapter 2. Background 25

with information responsively (lower latency) while consuming considerably less power to achieve

similar bandwidth than GDDR5 memory. The capability of stacking memory chips vertically and

on the same substrate as the FPGA die allows manufacturers to save space on the board.

The fundamental structure of HBM is composed of a base logic die at the bottom and stacked core

DRAM dies, which are interconnected by TSVs as shown in Fig. 2.10 [23]. The power and ground

have common planes to support all eight channels. In the heterogeneous HBM structure, the core

dies have a conventional DRAM architecture with TSV interfaces. The base die has I/O buffers

and inevitable test logic. Using stacked DRAM, TSV, micro-bump, and 2.5D package technolo-

gies, HBM offers improved capacity, bandwidth, and power efficiency compared to conventional

DRAMs.

Chapter 3

GraphTinker: High Performance Data

Structure For Dynamic Graph Processing

In recent years, there has been a growing interest in frameworks for processing streaming graphs

because many real-world graphs change in real-time (e.g., [[24], [5], [25], [26], [27], [28]]). These

graph-streaming systems receive a stream of queries and a stream of updates (e.g., edge and vertex

insertions and deletions, as well as edge weight updates). They must process both updates and

queries with low latency in terms of query processing time and the time it takes for updates to be

reflected in new queries.

3.1 Challenges

Several prior art frameworks do not satisfy the requirements for both high-throughput graph up-

dating (i.e., edge insertions, deletions and updates) and high-throughput graph analytics (i.e., com-

puting PageRank, BFS, etc.). One is sacrificed at the expense of the other. For example, graph data

structures based on the adjacency list model [5] suffer from long probe distances when following

edges, causing poor graph update throughputs. The adjacency list-based data structures consist of

26

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 27

vertex tables and edgelists that holds the edges incident to each vertex. During graph updates (i.e.,

edge insertions and deletions and updates), entire edgelists of a particular vertex sometimes need

to be traversed in search for an edge, which causes a worst-case runtime complexity of n (where n

is the number of edges inserted at the vertex). On the other hand, the adjacency list-based models

enjoy high throughput when used for graph analytics because of their compact edge structure —

i.e., all edges incident to a vertex are located in physically contiguous locations in DRAM and can

therefore be streamed sequentially. Open address hashing is another classic representation used in

modern data structures [29]. A classic example of open address hashing is the Robin Hood hashing

(RHH) algorithm [30] [31] [32]. RHH works by moving keys around in a hashtable to reduce probe

distance and yields a worst-case runtime complexity of O(lnn) (where n is the number of edges

inserted at a given source vertex). The RHH algorithm is based on the notion of probe sequence

lengths or probe distance. The probe distance of a key is the number of probes required to find a

key during a lookup. As new keys (i.e., edges) are inserted into the hashtable, old keys are shifted

so that all keys stay reasonably close to the slot they originally hash to. The aim is to minimize the

variance of a key’s distance from its ”home” slots. Open address hashing allows high throughput

during graph updating as only a subset of the edgelist of a vertex is usually traversed before an

insertion, deletion, or update is made. However, It can impede graph analytics performance due to

its non-compact nature because an edge list of a vertex can consist of several unoccupied slots.

To tackle this challenge and achieve both high throughput during graph updating and graph ana-

lytics, we propose GraphTinker, a data structure for evolving (i.e., dynamic) graphs that integrates

two novel data structures (Tinker and CAL), each with its unique advantage. We propose Tinker in

section 3.2. Tinker allows low probe distance when following edges and supports high-throughput

graph updating. We introduce Coarse Adjacency List (or CAL) in section 3.3. CAL allows se-

quential streaming of multiple edgelists together from DRAM during graph analytics. Finally, we

tailor these two data structures together to form GraphTinker in section 3.4.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 28

3.2 The Tinker representation

Figure 3.1: Prior art data structures based on adjacency list

Figure 3.2: Tinker data structure

Our Tinker model also includes open address hashing, particularly the Robin Hood Hashing (RHH).

However, the key advantage of Tinker over RHH is shown in Table 3.1. Tinker further reduces

the probe distance when following edges (from O(lnn) to O(ln(logP∗ n))) compared to RHH.

It achieves this via a tree-like representation. By reducing the probe distance, Tinker achieves

reduced number of visits to DRAM during edge updating. This in turn reduces the cost of high-

latency DRAM access. Tinker combines the Robin Hood hashing (RHH) algorithm with a tree-

based hashing technique and maintains a slower degradation in throughput as more edges are added

to the datastructure compared to the adjacency list and RHH-based approaches. This allows better

load stability. The RHH algorithm prevents Tinker from reading entire edgelists of a source vertex.

The tree-based behavior further reduces the probe distance by completely skipping entire chunks of

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 29

Approach Adj List RHH Tinker

Time complexity n O(lnn) O(ln(logP∗ n))

Table 3.1: Comparing time complexities for Adjacency List, RHH and Tinker. P* is the tree

fan-out (e.g., 4 from Figure 3.2)

edges when following edges in a logarithmic order. This allows Tinker achieve improved runtime

complexity over RHH and the adjacency list model.

The Tinker data structure is divided into two parts, namely the main region and the overflow region.

The main region is composed of edgeblocks (called top-parent edgeblocks), which store edges,

and is indexed by the vertex source IDs. Therefore, every index of the main region in Tinker con-

sists of edges belonging to a source vertex. The overflow region is also composed of edgeblocks

which have the same property as the edgeblocks in the main area, but are descendants of Subblock

sections of either the main region (1st generation descendant) or of the overflow region (¿1st gen-

eration descendant) itself. When the Subblock regions (of edgeblocks either in the main area or

overflow area) become congested and filled with edges, they ”branch out” into child edgeblocks,

which reside in the overflow area. This tree-like behavior allows Tinker to grow arbitrarily. Any

child edgeblock has the same characteristics as its parent edgeblocks, and also consist Subblocks,

which can also “branching out” when congested. Fig. 3.2 illustrates this “branching out” behavior

with a simple example. As shown, the third Subblock belonging to vertex with ID one (v1) was at

some point congested and branched out to form a new child edgeblock (ov1). As the graph grew,

the second Subblock of ov1 also became congested with edges, and in turn, branched out to form

its own child edgeblock (ov3). With this descendant-level arrangement of edgeblocks, the average

probe distance when following edges of a particular vertex vi is of the order O(logP n) (where P

is the fan-out). Therefore, as the graph grows, Tinker experiences lesser performance degradation

compared to the adjacency list based data structures. The tree-like expansion of Tinker does not

only allow it grow arbitrarily, but also plays an important role of reducing the probe distance when

following edges. By allowing a given source vertex have multiple branches to store its edges,

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 30

only relevant branches can be traversed when following edges. This allows entire branches to be

skipped during graph updating. For example, source vertex 2 has twelve edge blocks that store its

edges, but the tree-based strategy will ensure only six of its edgeblocks are explored with the RHH

algorithm when inserting the edge ⟨1, 13⟩ (source ID of 1 and destination vertex ID of 13).

3.2.1 The Subblock region

The Subblock regions are components that make up edgeblocks in an EdgeblockArray. The Sub-

block region is the first layer of granularity of the edgeblock (in the EdgeblockArray). It represents

the component of the EdgeblockArray which is capable of ‘branching out’ (when congested) into

child edgeblocks (located in the overflow region) in order to house more out- edges for a particular

source vertex. It simply achieves this by pointing to its child edgeblock which is located in the

overflow region.

3.2.2 The Workblock region

The Workblock region, on the other hand, forms the second layer of granularity of the Edge-

blockArray. Its main purpose is to parameterize the granularity at which edge data are retrieved

from the EdgeblockArray for inspection. During the process of updating a new edge, when the

Tree-Based Hashing scheme allocates a (or retrieves an existing) Subblock to be retrieved from the

EdgeblockArray, the Subblock is retrieved one Workblock at a time for the RHH process. There-

fore, having too large Workblock sizes would increase the probability of a successful completion

of the RHH process in that retrieval, but at the same time would increase the number of edges

retrieved from DRAM. Therefore, the concept of having Workblock size as a parameter during

configuration of GraphTinker allows the user to select an optimum performance point.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 31

3.2.3 The VertexPropertyArray

The VertexPropertyArray is the array structure which houses the properties of the vertices of the

graph. It stores information pertaining to the vertices such as the degree, value and any flags

associated with it and indexed by the vertex IDs of the vertices. This structure works with the

EdgeblockArray during the graph computation process because both edge data and vertex proper-

ties need to be retrieved for computation.

3.3 The Coarse Adjacency List (CAL)

Figure 3.3: Comparing adjacency list (A) and CAL data structures (B)

The Coarse Adjacency List (CAL) allows GraphTinker support high throughput when running

graph analytics. CAL and Tinker are connected to form GraphTinker (explained in section 3.4).

CAL is linked to, and mirrors the content of Tinker. Therefore inserting, updating or deleting

an edge in CAL happens when performing the same operation in Tinker. Every edge in Tinker

consist a pointer that points to its corresponding mirror in CAL. Due to its highly compact nature

(i.e., consisting no empty slots within edgelists), CAL can maximize DRAM bandwidth by reading

groups of edgelists from DRAM. Similar to the adjacency list model, edges in CAL are located

in physically contiguous locations in DRAM and can therefore be streamed sequentially. Unlike

CAL, however, several source vertices are collected in groups (called vertex groups) and share an

entry — i.e., all edges of a group of source vertices are located in physically contiguous locations

in DRAM. This makes CAL more efficient than the adjacency list model when reading edgelists

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 32

of groups of vertices from DRAM. In CAL, edgelists belonging to a group of source vertices are

stored in edgeblocks, and each edgeblock maintains a pointer that connects it to the previous and

next block housing edges in the same group. By this, edgeblocks can be arbitrarily allocated in

different physical locations in DRAM, and CAL can keep track of which edgeblock belongs to

which vertex group. Figure 3.3 illustrates the CAL data structure. To form CAL, source vertices

are partitioned into different groups according to their vertex ids, and each group represents a given

contiguous range of source vertex IDs. For example, if every group consists of 1024 vertices, then

source vertex ids from 0 to 1023 all belong to group 0, etc.

Whenever a new edge is inserted in Tinker, its source vertex id is inspected to find the group that

vertex belongs to. The last assigned edgeblock to this group is retrieved and the edge is inserted into

the last unoccupied edge slot in this edgeblock. If the edge previously existed in Tinker, its pointer

to CAL is retrieved and its corresponding mirror edge in CAL is updated. When an edge is deleted

in Tinker, the mirror edge is retrieved in CAL and also deleted (i.e., flagged as invalid). Because

this process of updating the CAL does not involve traversing edges, the overhead of its insertion,

deletion and updating operation is low. CAL provides a more compact edge data representation

in database and therefore reduces the number of non-contiguous edge data accesses from memory

during graph analytics computation. How CAL and Tinker are work together to process graphs is

discussed in more details in section 3.7.

3.4 GraphTinker

GraphTinker tailors the Tinker and CAL representations together into a data structure as shown in

Figure 3.4 to achieve high-throughput graph updating and graph analytics. For every edge inserted

into the Tinker representation, its source vertex is inspected and a copy of the edge is also inserted

into the next empty slot in CAL. GraphTinker is efficient at processing graph updates because

Tinker allows reduced probe distance. To accelerate graph processing, these two data structures

are coupled with a hybrid graph processing model. The key insight behind this hybrid model is

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 33

Figure 3.4: Block Diagram of GraphTinker showing Tinker and CAL representations

edges can be read from Tinker or CAL depending on the state of the graph iteration. More details

of the hybrid model is discussed in section 3.7.

3.5 GraphTinker Operations

3.5.1 Inserting an edge

Two stages are involved when inserting an edge into GraphTinker: the FIND and the INSERT

stage. The FIND stage searches for the edge belonging to the associated vertex in the Tinker,

while the INSERT stage attempts to insert a new edge if the FIND stage is unsuccessful. In cases

where deletions have previously been made and an empty slot is created, the INSERT stage insert

the edge into the empty slots. For each stage, the edge is hashed by its source and destination

vertex ids to determine the appropriate Subblock in Tinker to searching. Workblocks are retrieved

from the Subblock in sequential order, running the find/RHH algorithm on each Workblock for the

FIND or INSERT mode respectively. If the update is still unsuccessful after all the Workblocks of a

Subblock are inspected, newer ‘branches’ (edgeblocks) are created (if not already available) out of

the Subblock, rehashing is done again, and the same process continues in the newly-hashed child

Subblock region. This process can continue for a few generations for very large-degree vertices.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 34

“Branching out” from a Subblock to form child edgeblocks is simply achieved by inserting a

pointer into the Subblock, pointing to the newly created child edgeblock.

3.5.2 Deleting an edge

GraphTinker supports two mechanisms for deleting an edge: delete-only and delete-and- compact.

The delete-only mechanism is straightforward; instead of erasing all data (key, value and probe

distance) of the element and moving succeeding elements forward, a flag (tombstone) is set to

indicate that no edge exists in the bucket anymore. Therefore, any edge that traverses this bucket

location the next time sees this bucket as vacant. The delete-and-compact mechanism, on the other

hand, attempts to compact the data structure whenever a deletion is made, reducing probe distance

and freeing edgeblocks for subsequent insertions and maintaining compactness of the database.

All this happens during runtime whenever any edge is deleted. It achieves this by deleting edges

(flagging as tombstone) from appropriate child edgeblocks of the data structure. These edges

removed are then inserted into the slots where the deletions took place. By doing this, the holes

in between edges in an edgeblock that are created by deletion of edges are filled up during the

deletion process, thus allowing the data structure to stay compact even as more and more edges

are deleted from the database. In order to avoid the significant overhead and complexity of edge

tracking associated with the swapping process of the RHH algorithm, only the Tree-Based Hashing

algorithm is enabled with this mechanism, with the RHH algorithm turned off.

3.5.3 Retrieving edges

GraphTinker provides two outputs for reading edges. The first connects to Tinker while the second

connects to CAL. The choice of which output to use depends on the mode of the graph iteration.

More details on these different modes are discussed in section 3.7.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 35

3.6 Scatter-Gather Hashing

GraphTinker maintains a compact graph representation at every stage of a graph’s growth life.

This prevents the need for pre-processing to compact the graph structure before running graph

analytics at any update step. Edge updates streaming into a data structure can be random and non-

contiguous (by their source and destination vertex ids). A typical scenario is when the first batch

of edge updates to the graph have source vertex IDs in distant physical locations in DRAM. When

processing such sparse graph, many non-contiguous read accesses to DRAM will occur. This can

result in significant performance degradation at the early stages of a graph’s life, where not many

edges have been loaded compared to the full capacity of the graph.

To tackle this issue, we introduce scatter-gather hashing when updating GraphTinker. The goal is

to ensure the graph remains compact at every stage of its growth. For every edge to be inserted,

the source vertex ID of that edge is inspected. If the source vertex ID has not been hashed before

(i.e., a new edge), it is hashed by the Scatter-Gather Hashing function to obtain a new ’translated’

source vertex ID associated with it. This is simply to obtain the the next unused source ID index

location in Tinker (starting from zero). On the other hand, if the source vertex ID has been hashed

before, the Scatter-Gather Hashing table is checked to obtain the formerly hashed id. In either of

both situations, the edge is now associated with a new hashed source vertex ID before the update

operation commences. The mapping between the original source vertex ID and the new hashed

source vertex ID (and vice versa) is maintained by the Scatter-Gather Hashing table.

3.7 The Hybrid Graph Processing Model

3.7.1 Graph Processing Models for Evolving Graphs

There are two main processing models for running graph analytics on evolving graphs — the

store-and-static-compute (or full-compute) model and the incremental-compute model. With the

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 36

store-and-static-compute model, graph updates (i.e., edge insertions, deletions and modifications)

are made to the graph in discrete time intervals, and classic graph analytics algorithms are re-run

on the entire graph after every update interval. Because the entire graph is processed at every

update step, edges are sequentially read from DRAM, and the DRAM bandwidth can be utilized

efficiently. However, this model suffers from redundant computations, as several vertices that

have not changed from the previous iteration are processed. With the incremental-compute model,

only regions affected by the batch update at discrete time intervals are processed. Inconsistent

vertices are vertices whose properties change after a batch of edge updates are processed to the

underlying graph. These vertices become the first set of active vertices during graph processing.

The incremental-compute model reduces the number of edges and vertices that must be recomputed

and can lead to significant performance improvement when this reduction is substantial. However,

this model incurs more expensive, non-contiguous data accesses to DRAM because the updates

subset of vertices can be located in physically distant locations in DRAM. In instances where many

vertices are inconsistent after a batch update, this model can perform even worse that the store-and-

static-compute model. The advantages of each graph processing models provide motivates us to

propose a hybrid model that leverages the benefits of both.

3.7.2 The Hybrid Model

Our hybrid graph model selects which graph processing model (full-compute or incremental-

compute) is best suited for every graph iteration. This model is best suited for algorithms such

as BFS, SSSP, and CC, where not all vertices need to be active in every iteration. By deciding

between full- and incremental-compute modes at every iteration, our hybrid model select the best

execution path for the next iteration, and use the best suited data structure between Tinker and

CAL. The Tinker data structure is employed to feed the graph engine with edges when processing

in incremental-compute model, while CAL is employed when processing the full-compute mode.

This is because CAL allows the edges of multiple contiguous vertices to be read sequentially at

high throughput, but is inefficient when used to read edgelists of sparse, non-contiguous subsets

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 37

of vertices. In our hybrid model, statistic information is gathered during the apply phase of ev-

ery graph iteration, and used to predict whether the next iteration should be processed in full- or

incremental-compute mode. The heuristic formular is shown in Figure 3.5. The information gath-

ered are the number of active vertices for the next iteration, the total degrees of all active vertices

for the next iteration, the current size of the graph, and the maximum size attainable by the evolving

graph.

Figure 3.5: Heuristic Formula for the Hybrid Engine

The threshold value of 0.02 in the heuristic formula is gotten from running several experiments

were run for both full and incremental processing modes to investigate the tradeoffs between se-

quential streaming versus random retrieval of edges from the graph structure, and how these vary

with the number of edges retrieved. A typical scenario where our hybrid model is efficient is when

a graph iteration (e.g., i) consist very few active vertices but its proceeding iteration (iteration

i + 1) consists a much large number of active vertices. The hybrid model can therefore use the

incremental processing (IP) mode for iteration i and the full processing (FP) mode for iteration

i+ 1.

3.7.3 Implementation

Fig. 3.6 shows the component-level arrangement of our hybrid engine model, and how the different

parts are connected together to achieve its overall functionality. Inconsistency vertices are vertices

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 38

in the graph whose properties change because of the update. The Set Inconsistency Vertices mod-

ule sets the initial inconsistency vertices after every batch update step is completed and before the

updated graph is processed. The implementation of this module differs slightly depending on the

algorithm to be implemented. For example, in the BFS algorithm, the vertices affected by the up-

date batch comprise the source vertices of the edges in the update batch, while the inconsistency

vertices when running Weakly Connected Component (CC) comprise both the source and destina-

tion vertices of the edges in the update batch. This unit is automatically generated depending on

the algorithm to be run.

Figure 3.6: Hybrid Engine Implementation

The LoadEdges module loads edges from Tinker or CAL depending on the graph processing mode.

When processing in full-compute mode, edges are loaded from the CAL because it provides a

very compacted data representation of the graph edges. When processing in incremental-compute

mode, edges are loaded from Tinker. The Graph Processing pipeline implements the modules

responsible for the Processing and Apply phase explained in the Graphicionado paper [9]. The

Inference module decides what the next execution mode should be for the next iteration, based on

the collected statistic data and user-defined heuristics.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 39

3.8 Evaluation

3.8.1 Target System

Implementation: We implemented GraphTinker on an Intel CPU (Intel® Xeon® E5-2620 v4)

with 8 physical cores, operating at 2.10GHz, with 512GB DRAM. All experiments were run on

the CPU. The PAGEWIDTH, Subblock and Workblock sizes of GraphTinker were chosen to be

64, 8 and 4 respectively because our experiments found that they define a good balance between

effective data structure performance in updating edges and in graph analytics computation. We

compare GraphTinker to the previous state-of-the-art data structure for dynamic graph processing,

STINGER [6]. STINGER is a shared memory (in core) parallel dynamic graph processing frame-

work. It performs updates about 3 times faster compared with 12 open-source graph databases and

libraries [17], such as Boost Graph Library, DEX, Giraph and SQLite. We used version 15.10,

available on GitHub. STINGER’s configuration was set to have an average edgeblock size of

16. The batch size of edges used in the experiments to compare GraphTinker and STINGER is 1

million edges per batch. The choice on batch size does not have any impact on results.

Datasets: We evaluate the performance of GraphTinker (insertions and deletions) using a mix

of both synthetic and real-world graph datasets. The synthetic datasets are generated from the

Graph500 RMAT generator [2], while the real-world datasets are obtained from the University of

Florida’s Sparse Matrix Collection [8]. The properties of these datasets are shown in Table 1.

3.8.2 Algorithms

We evaluate the performance of GraphTinker as an efficient data structure for dynamic graph pro-

cessing by evaluating it in conjunction with several algorithms: breadth-first-search (BFS), single-

source- shortest-path (SSSP), and connected-components (CC). These algorithms were chosen

because they could be modelled using both full and incremental processing modes, and because

they are important algorithms in the graph community.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 40

Dataset # Vertices # Edges Type

RMAT 1M 10M 1, 000, 192 10, 000, 000 synthetic

RMAT 500K 8M 524, 288 8, 380, 000 synthetic

RMAT 1M 16M 1, 048, 576 15, 700, 000 synthetic

RMAT 2M 32M 2, 097, 152 31, 770, 000 synthetic

Hollywood-2009 1, 139, 906 113, 891, 327 Real world

Kron g500-logn21 2, 097, 153 182, 082, 942 Real world

Table 3.2: GRAPH DATASETS UNDER EVALUATION

3.8.3 Performance

GraphTinker vs. STINGER (Insertion throughput performance)

Fig. 3.7 shows the insertion throughput of GraphTinker and STINGER’s data structures (i.e.,

without any graph analytics computation taking place) when used to insert edges into the graph

using the Hollywood2009 dataset. Two different setups for GraphTinker were used: First, when

the GraphTinker is used with the CAL feature and second, when used without it. A single thread

was used to run the experiment. The y-axis in the figure represents the insertion throughput (in

million edges per second) while the x-axis represents the input sizes of edges loaded (in million

edges inserted in batches of 1 million edges per batch).

As shown in Fig. 3.7, GraphTinker’s insertion throughput outperforms STINGER by up to 2.7X

when GraphTinker is used with the CAL module and up to 3.3X when GraphTinker is used with-

out the CAL module. One important observation from the plot is that GraphTinker shows less

performance degradation than STINGER as the load (input size) increases. As shown, Graph-

Tinker decreased from 1.6 million edges/sec in the fifth input batch to 1 million edges/sec in the

last batch, giving about 34% throughput degradation, while STINGER decreased from 1.3 mil-

lion edges/sec in the fifth input batch to 0.4 million edges/sec in the last input batch, giving about

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 41

Figure 3.7: Insertion throughput for GraphTinker vs. STINGER with different input sizes and

using the hollywood-2009 dataset

Figure 3.8: Insertion throughput for GraphTinker vs. STINGER on different datasets and with

batch size of 1 million edges

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 42

72% throughput degradation. This implies that GraphTinker has better load stability compared to

STINGER. The improvement in throughput and the higher load stability of GraphTinker over the

STINGER structure is because GraphTinker makes fewer edge traversals during updating. This

makes GraphTinker more efficient in DRAM accesses than STINGER.

Fig. 3.8, on the other hand shows the throughput performance of GraphTinker and STINGER for

insertions using different datasets. As shown, GraphTinker outperforms STINGER across all the

datasets. One interesting thing to note from the figure is that as the size of the datasets increases,

GraphTinker’s performance advantage also increases. This is again because STINGER has to do

more edge-traversals than GraphTinker.

GraphTinker vs. STINGER (multicore performance)

Figure 3.9: Update throughput for GraphTinker vs. STINGER using different number of CPU

cores

Fig. 3.9 shows the performance of the GraphTinker data structure as the number of cores of the

multicore CPU system increases. The y-axis in the figure represents the insertion throughput (in

million edges/sec) of the data structure, while the x-axis shows the number of cores used. The

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 43

dataset used in this experiment is the hollywood2009 dataset. GraphTinker maintains its perfor-

mance advantage as core count increases. As shown, GraphTinker outperforms STINGER in each

case. In this experiment, we observe that, for each of the different number of cores used, STINGER

starts off with fairly good insertion throughputs during the first set of batch insertions, but then ex-

periences rapid deterioration as more batches are inserted. For example with 8 cores, STINGER

experienced a decrease from about 3.4 million edges/sec in the first iteration to about 1 million

edges/sec in the last iteration. In contrast, with GraphTinker, we observe far less degradation in

throughput as subsequent batches are inserted.

GraphTinker vs. STINGER for Different Graph benchmarks

Figure 3.10: Processing throughput for GraphTinker vs. STINGER when running BFS on different

datasets

In order to evaluate the impact on performance of GraphTinker on important graph algorithms,

we ran graph analytics on BFS, SSSP, and CC using GraphTinker as the data structure and our

hybrid engine as the graph engine. In each experiment, edges of the given dataset are loaded into

the data structure in batches (of 1 million edges) to update the graph. After each batch insertion,

the graph engine runs the given graph analytics algorithm on the current state of the graph. This

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 44

Figure 3.11: Processing throughput for GraphTinker vs. STINGER when running SSSP on differ-

ent datasets

Figure 3.12: Processing throughput for GraphTinker vs. STINGER when running CC on different

datasets

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 45

two-step process continues in turn until the final batch of edges is loaded and there are no more

edges remaining to load. For comparison, we also ran graph analytics using STINGER.

Figs. 3.10, 3.11 and 3.12 show the performances of BFS, SSSP and CC algorithms when us-

ing GraphTinker and STINGER. The y-axes in the figure represent the throughput (in million

edges/sec) when running each algorithm across the different datasets, while the x-axes represent

the different datasets used in the experiments. As shown, when the hybrid engine is configured to

run in full processing mode and using GraphTinker as the data structure, it demonstrates signifi-

cantly better performance than when using STINGER (up to 10X performance improvement).

There are two major reasons for this. First, the Coarse Adjacency List (CAL) EdgeblockArray

representation of edges maintained by GraphTinker allows a highly- compacted representation

of edges, which reduces non- contiguous memory accesses compared to STINGER. Second, the

Scatter-Gather Hashing (SGH) scheme implemented in GraphTinker allows it to reduce DRAM

memory accesses during edge retrievals compared to STINGER. We conducted experiments where

we disabled the CAL and the SGH features of GraphTinker and observed that GraphTinker then

results in only about 1.5 times better than STINGER when running in full processing mode. Ad-

ditional experiments show that the SGH and CAL feature account for a combined improvement

of over 91% in GraphTinker’s performance when enabled. This shows how significant these two

features are to GraphTinker as an effective data structure for analytics of dynamic graphs.

These figures show that the hybrid mode always demonstrates better performance than the full

and incremental processing modes for all the algorithms (BFS, SSSP and CC), and using all the

datasets. This is because the inference box (the decision-maker) of the hybrid engine makes excel-

lent predictions on the best execution path to take for every iteration. The reason for the significant

gap in performance with the hybrid engine mode over both full and incremental processing modes

in some cases (such as in CC) is that, in these instances, the hybrid engine makes especially suc-

cessful predictions (we observed up to 97% correctness).

Figs. 3.10, 3.11 and 3.12 also show that there are instances where the incremental processing

model can perform worse than the full processing model. An example is the CC experiment on

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 46

dataset RMAT 500K 8M. In this experiment, about 30% of the iterations involved a very large

number of active vertices (¿ 100,000 active vertices). This caused IP to sometimes perform worse

than FP, with ranges of 3X to 9X performance degradation in some iterations. This performance

degradation is caused by the significant amount of non-contiguous memory accesses incurred by IP

in these scenarios. However, in many applications and data sets, IP is superior. Hybrid execution

is thus an important ingredient of an efficient graph engine.

Comparison of GraphTinker and STINGER edge deletion mechanisms

Figure 3.13: Edge deletions throughput for GraphTinker vs. STINGER data structure with differ-

ent input sizes and using the RMAT 2M 32M dataset

We evaluate the impact of GraphTinker’s deletion mechanisms on data structure and graph analyt-

ics performance. We run the BFS algorithm (in FP mode) on the RMAT 2M 32M dataset using a

single core. The graph is initially fully loaded, after which deletions are then made (at 1 million

edges per batch) in batches until the database is empty. This is to evaluate GraphTinker’s perfor-

mance as deletions are made to the data structure. Also, graph analytics is performed after every

batch is deleted in order to evaluate GraphTinker’s performance in analytics (i.e., after edge dele-

tions are carried out). The performance of GraphTinker for edge deletions and also for analytics

after edge deletions have been made is observed. For comparison, we compare to STINGER.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 47

Figure 3.14: Throughput for GraphTinker vs. STINGER when running BFS on the

RMAT 2M 32M dataset and with different number of edges deleted.

Figure 3.15: Average processing throughput for GraphTinker vs. STINGER when running BFS,

SSSP and CC algorithm on the RMAT 2M 32M dataset and performing edge deletions

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 48

Fig. 3.13 shows the throughput of both data structures (GraphTinker and STINGER) from the

experiment when used for edge updates (deletions) only and without any graph analytics process

taking place. The y-axis in the figure represents the deletion throughput (in million edges per

second) while the x-axis represents the amount of edges deleted (in million edges). As shown,

the delete-only mechanism for GraphTinker outperforms the delete-and- compact mechanism by

up to 2X when the first batch is deleted and only about 1.2X when the last batch is deleted from

the database. Both deletion mechanisms, however, outperform STINGER’s deletion mechanism.

Another important observation is that GraphTinker’s delete-only mechanism causes a throughput

degradation as more edges are deleted from the database, whereas the delete-and- compact-in

mechanism shows stable performance. This is because, with the delete-only mechanism, there is

no shrinking of the data structure and so the same time has to be spent following edges, even though

the number of edges in the database decreases. Whereas with the delete-and- compact mechanism,

the data structure shrinks as more edges are deleted, allowing less time spent in following edges

and more stable throughput.

Fig. 3.14 show the effect of the deletion mechanisms on analytics when both data structures

(GraphTinker and STINGER) are used for graph analytics. The y-axis represents throughput (in

millions edges/sec) of graph analytics, while the x-axis represents the amount of edges deleted

(in millions of edges). As shown, the delete-and-compact mechanism outperforms the delete-only

mechanism about 1.2X when half of the edges are deleted, to as much as 4X when the last batch

is deleted. Both mechanisms also surpass STINGER’s deletion mechanism. Another important

observation is that the delete-only mechanism experiences degradation in throughput (from 30

million edges per sec in first batch to 7 million edges per sec on last batch) while the delete-and-

compact mechanism experiences stable performance. The reason is similar to what was described

earlier: with the delete-only mechanism, the data structure does not experience any shrinking and

so the time spent retrieving edges from the database remains the same even as more edges are

deleted.

Fig 3.15 shows the performances of BFS, SSSP, and CC algorithm running across the RMAT 2M 32M

dataset. The y-axes in the figure represent the average throughput (in million edges/sec). The fig-

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 49

ure shows that the delete-and- compact mechanism demonstrates better performance, compared

with the delete-only mechanism for all three algorithms.

Effect of different PAGEWIDTH sizes on GraphTinker’s performance.

Figure 3.16: Effect of different PAGEWIDTH sizes on insertion throughput to GraphTinker data

structure when loading the Hollywood2009 dataset.

In order to evaluate the effect of different PAGEWIDTH sizes on GraphTinker’s data structure and

analytics performance, we configure GraphTinker on different PAGEWIDTH sizes (16, 32, 64,

128 and 256) and run the BFS algorithm on the Hollywood2009 dataset. This dataset was chosen

arbitrarily.

Fig. 3.16 shows the performance of GraphTinker’s data structure with the five different PAGEWIDTH

sizes. The y- axis represents the insertion throughput while the x-axis represents the input sizes

of edges loaded. Fig. 3.17, on the other hand, shows the corresponding BFS performance with

the five different PAGEWDTH sizes when the graph engine was configured to run on incremental

processing (IP) mode. This mode is selected because it utilizes the EdgeblockArray.

Fig 3.16 highlights two interesting behaviors. First, an increase in the PAGEWIDTH size from

16 to 256 demonstrates an increase in the insertion throughput experienced by the data structure.

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 50

Figure 3.17: Effect of different PAGEWIDTHs on graph analytics throughput when running the

BFS algorithm on the Hollywood2009 dataset.

This is because increasing PAGEWIDTH size increases the hash range of edgeblocks in the data

structure, leading to reduced frequency of collision experienced by the RHH algorithm. Second,

increased PAGEWIDTH size allows the data structure to experience lesser degradation of through-

put as more edges are inserted (i.e., better throughput stability), with PAGEWIDTH size of 256

experiencing the highest throughput stability.

On the other hand, Fig 3.17 shows that increasing the PAGEWIDTH decreases the throughput of

graph analytics and vice versa. This is because smaller PAGEWIDTH sizes give a more compacted

data structure compared to larger PAGEWIDTH sizes, and this allows more edges to be retrieved

per unit time during graph analytics.

Choice of optimal PAGEWIDTH.

In order to find the most optimal PAGEWIDTH size for GraphTinker, we designed an experiment

which investigates the performance with varying ratios of updates to analytics. This experiment

projects two use cases of a dynamic graph: (1) where edge updates are made frequently and analyt-

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 51

Figure 3.18: Behaviors of different PAGEWIDTHs in a combination of updates and analytics using

different datasets when running the BFS algorithm. Bars are averaged across updates/analytics

ratios.

ics rarely, and (2) where edge updates are made rarely and analytics frequently. The algorithm for

analytics used for this experiment is the BFS algorithm. The ratios of updates to analytics in each

of these experiments range from 1:10 to 10:1 and the PAGEWIDTHs used range from 8 to 256.

For each dataset, 20 vertices among those with the highest degrees are pre-collected so that each

analytic in each experiment uses a different root vertex. In each experiment comprising a dataset,

PAGEWIDTH and updates/analytics ratio, edges are inserted into GraphTinker at batch sizes of

1 million edges per batch, and analytics are done in different intervals according to the update/-

analytics ratio of that experiment. The left part of the ratio (updates) determines how frequently

the insertion process is intercepted in order to run graph analytics, while the right part of the ratio

(analytics) determines how many analytics should be run on each interception. For example, with

a ratio of 4:7 on the RMAT 2M 32M dataset which contains 32 million edges, the edge insertion

process to the graph is intercepted 4 times (i.e., after every 6 batches are inserted) in order to run

7 different analytics in each interception, each on a different choice of root vertex. After each

experiment is conducted (360 experiments in total), we then calculate the average time lapses of

each experiment using a given dataset and a given PAGEWIDTH (36 different data points). The

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 52

result is then plotted as shown in figure 3.18.

The y-axis of Fig 3.18 represents the time elapsed (in milliseconds) averaged across the updates/an-

alytics ratios of each dataset and each PAGEWIDTH combination, while the x-axis represents the

different datasets used in the experiments. As shown, the PAGEWIDTH size of 64 demonstrates

the best overall performance, especially when dealing with larger datasets. Lower PAGEWIDTH

sizes such as 8 exhibit poor performance due to very low edge- update performance, which be-

comes more pronounced with larger datasets. Although higher PAGEWIDTH sizes exhibit good

edge update performance, they ultimately experience poor analytics performance due to their less

compacted arrangement of graph edges. The PAGEWIDTH size of 64 appears to represent a good

balance of update/analytics ratio. These experiments were conducted with the BFS algorithm.

Nevertheless, we expect this behavior to generalize to other GAS based algorithms using the edge

centric model because the experiment illustrates the memory access behavior of the BFS algorithm,

which is the same model as any other GAS based analytics algorithm.

3.9 Related Work

Over the years, a number of data structures have been proposed for graph processing. There has

been a tradeoff between the effectiveness of these data structures while updating edges versus

supporting efficient real-time graph analytics. This is because more compacted graph data repre-

sentations, which result in higher throughput performance, typically require large data movements

when performing updates. We explore prior data structures for dynamic graphs in this section.

3.9.1 Adjacency matrix

A classic data structure is an adjacency matrix, which holds a 2D matrix representation of the

edges of the graph, so that an edge with endpoints ui and vi is located in the matrix position aij

of the adjacency matrix structure. Even though this model provides O(1) edge insertion time, it is

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 53

unsuitable for dynamic graph processing, because the overall sizes of today’s graphs would warrant

huge memory consumption O(n2) as well as very sparse representation of graph data.

3.9.2 Adjacency list

STINGER [5] is a state-of-the-art data structure for dynamic graph processing. It is a shared-

memory data structure based on adjacency lists. STINGER’s model consists of a vertex table and

an edge list. Each element of the vertex table (called Logical Vertex Array) points to a given

location in the edge list (Edge Block Array). The vertex table holds the vertices in the graph while

the edge list consists of edgeblocks, which hold the edges associated with each vertex. Edgeblocks

can point to other edgeblocks to accommodate more space for edges belonging to a vertex. While

this model allows some level of compaction of edges - meaning the edges in an edge block are

packed close together - it still suffers from long probe distance during graph updates because

entire chains of edgeblocks (belonging to a particular vertex) have to be traversed during an edge

insertion or deletion process. This is because the edges belonging to the vertices are not sorted or

hashed in any way and could be located in any of the edgeblocks belonging to a particular vertex.

Additionally, this representation does not yield a highly compacted representation of edges in data

structure because of the many non-contiguous edgeblocks that could be present in the database.

These drawbacks direct our approach.

3.9.3 Robin Hood Hashing

The Robin Hood Hashing (RHH) algorithm [3-5] provides a solution for achieving low probe

distance. A brief description of how the algorithm works is discussed below. Fig 3.19 shows the

insertion process of an edge into a simple hash table using the Robin Hood Hashing algorithm.

Assume i, j is an edge between a vertex i and j. If this edge is to be inserted into the hash table, a

suitable hash function (e.g., h = Vid mod C, where Vid is ID of the edge’s source vertex and C is the

capacity of the hash table) is used to compute the initial position (known as initial bucket) of the

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 54

Figure 3.19: Robin Hood Hashing

hash table from where inspection begins. For the example in Fig. 1, the initial bucket for the edge

x is 1. Next, because the edge entry in bucket 1 of the hash table is already occupied, the probe

distance of both edges are compared to decide who now stays in the bucket. If the probe distance of

the edge currently present in the bucket is lower than that of the edge to be inserted, then the edge

to be inserted now swaps the edge currently present in the bucket, so that the edge formerly in the

bucket now becomes the new floating edge looking for another location to be inserted. Otherwise,

the edge to be inserted skips over that bucket to inspect the bucket. Probe distance, in the context

of Robin Hood Hashing, refers to the distance between the original hashed positions of the edge to

its current displaced position. For the example, the new edge (1, 5) wins because its probe distance

is equal to the probe distance of the edge already present in bucket 1 (1, 6). Since edge (1, 6) is

evicted, it must find a new bucket to occupy. When comparing with edge (2, 2), it wins because it

is “poorer” than the one in bucket 2 (2, 2) – meaning its probe distance is greater than the one in

bucket 2 (2, 2). Edge 2, now evicted, finds bucket 3 empty and moves there.

3.9.4 Graph Processing Models for Dynamic Graphs

Two primary execution models exist for updating analyses of a graph as the contents change.

Store-and-static-compute model: Traditional works [13- 15] proposed graph processing on dy-

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 55

namic graphs by employing the store-and-static-compute model, in which updates are made to the

graph in discrete time intervals and classic, static graph analytics algorithms are re-run on the entire

graph after every update interval. If preprocessing is carried out before using this model to pro-

vide a compact representation of the graph data (e.g., from adjacency list to CSR representation),

it can offer advantages because retrieving of edges can now be achieved in a highly contiguous

manner. However, this model suffers from having to perform redundant computations, which can

be significant when dealing with large graphs.

Incremental-compute model: Later works [20-24] explore an incremental approach to avoid this

redundant computation. In this model, only regions affected by the batch update at discrete time

intervals are processed. The vertices affected by the batch updates are referred to as inconsistent

vertices, and they are identified as vertices in the graph whose properties change because of the

update. These vertices become the first set of active vertices during graph processing. The advan-

tage of this model is that it reduces the number of edges and vertices that must be recomputed and

can lead to significant performance improvement when the reduction is substantial. However, this

model incurs more expensive, non-contiguous data accesses to memory because the set of active

vertices for a given iteration can be non-sequential and unsorted. In instances where many ver-

tices are to be processed in a given iteration, the outcome using this model can be worse than the

store-and-static-compute model.

The advantages each of these two graph computation models provide motivated us to create a

hybrid model that leverages the benefits of both.

3.10 Conclusion

This chapter presents GraphTinker, a high-performance data structure for dynamic graph process-

ing, as well as a new hybrid graph engine to improve efficiency when processing dynamic graphs.

Technical advances offered by GraphTinker include: (1) a novel data structure that combines the

benefits of two well-known hashing schemes to reduce the probe distance while following edges,

GraphTinker: High Performance Data Structure For Dynamic Graph Processing 56

and hence provides better solutions to the state-of-the-art data structure models based on adja-

cency lists, and (2) ScatterGather and Coarse Adjacency List (CAL) features that allow efficient

compaction to our data structure to minimize DRAM accesses. The hybrid graph engine offers an

improvement over the store-and-static-compute model and the incremental-compute model pro-

posed in previous works. This is achieved by automatically selecting the best execution path be-

tween these two modes for every iteration in order to combine the advantages offered by both

models. Evaluation of GraphTinker on a variety of datasets and graph algorithms demonstrates

that GraphTinker is capable of providing up to 3.3X performance improvement in update through-

put on the CPU over the previous state of the art, STINGER. When used to run algorithms such

as BFS, SSSP and CC on dynamic graphs, GraphTinker’s more efficient data structure enables

up to 10X improvement in performance compared to STINGER when running analytics in full

processing (FP) mode. Finally, experimental tests using our hybrid graph engine demonstrate its

capability to provide up to 2X performance improvement over the incremental processing model

and up to 3X performance improvement over the full processing model.

Chapter 4

ACTS: Scalable Graph Processing on

HBM-enabled FPGAs

4.1 Introduction

Despite the high off-chip bandwidth and on-chip parallelism offered by today’s near-memory ac-

celerators, software-based (CPU and GPU) graph processing frameworks still suffer performance

degradation from under-utilization of available memory bandwidth because graph traversal often

exhibits poor locality. Emerging FPGA-based graph accelerators tackle this challenge by design-

ing specialized graph processing pipelines and application-specific memory subsystems to maxi-

mize bandwidth utilization and efficiently utilize high-speed on-chip memory. To use the limited

on-chip (BRAM) memory effectively while handling larger graph sizes, several FPGA-based so-

lutions resort to some form of graph slicing or partitioning during pre-processing to stage vertex

property data into the UltraRAM. While this has demonstrated performance superiority for small

graphs, this approach breaks down with larger graph sizes. For example, GraphLily [33], a recent

high-performance FPGA-based graph accelerator, experiences up to 11X performance degradation

between graphs having 3M vertices and 28M vertices. This makes prior FPGA approaches imprac-

tical for large graphs. We propose ACTS, an HBM-enabled FPGA graph accelerator, to address

57

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 58

this problem. Rather than partitioning the graph offline to improve spatial locality, we partition

vertex-update messages (based on destination vertex IDs) generated online after active edges have

been processed. This optimizes read bandwidth even as the graph size scales. The detailed model

describing the various features in ACTS and its implementation on the HBM-enabled is discussed

in this chapter.

4.2 The Challenge

Figure 4.1: The challenge associated with graph slicing during pre-processing

A notable limitation with several single-FPGA graph accelerators is poor scaling with respect

to increasing graph sizes. They experience degradation in throughput that worsens as the size

(number of vertices) of the graph workload increases. Hence, the throughput when processing large

graphs (tens of millions to hundreds of millions of vertices) can be far lower than the same when

processing small graphs (thousands to millions of vertices). This problem stems from their strategy

of slicing the graph into chunks to leverage fast on-chip URAM memory for random accesses to

vertex properties. Because the FPGA’s on-chip memory (BRAMs, URAMs, scratchpads etc.) are

much smaller compared to their off-chip memory (DDR, HBM, SSD etc.), many slices can be

created which leads to redundancies when reading source vertex properties. For example, the

HBM of Xiliinx Alveo U280 is 128x larger than its URAM. The URAM, however, can be several

times (10x) faster than HBM memory. The slower speed of HBM relative to URAM comes from

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 59

the need to be dynamically refreshed all of the time so it does not lose its data. This continuous

refreshing can be time consuming and slow down the memory, especially when random accesses

is involved. To leverage this high-speed potential of the URAM, several accelerators [33] [17] [34]

[35] [18] [36] [37] [38] [39] [40] [41] [42] [43] resort to using the URAMs of the FPGA to house

vertex properties of the graph, and the HBM/DDR to house edge properties. This is because several

graphs have much smaller number of vertices that edges. Housing vertex properties in URAM

allows random accesses to be made to fast URAMs, which avoids expensive random accesses to

the HBM. URAMs are preferred to BRAMs to house vertex properties because of their larger

capacity. Several accelerators employ this strategy. To handle large graphs with vertices more than

the URAMs can accommodate, they resort to slicing such that the vertex properties of each slice

can fit in URAM. This is a pre-processing step. During processing, the graph is then processed

slice by slice. When processing each slice, destination vertex properties are buffered in URAMs

first. Their corresponding edges and source vertex properties are then streamed from HBM, vertex

updates are generated, and used to reduce their corresponding destination vertex properties in

URAM. Because locality of each slice has been restructured around destination vertex properties,

random accesses to destination vertex properties can be made to the URAM, which is much faster

than if they were made to the HBM.

The fundamental challenge with slicing a graph to leverage high-speed URAMs as explained is

that, because graphs are unstructured data, partitioning a graph’s edges and vertices across a given

dimension (e.g., destination ID) improves the URAM locality across that dimension, but degrades

the same across the other dimension (i.e., source ID). No slice will therefore be completely separate

from another as slices would be linked by edges that span across slices. Processing a slice will

therefore depend on source vertex properties assigned to other slices. Buffering vertex properties

across the sliced dimension (destination vertex ID) during processing will enjoy optimal DRAM

read bandwidth usage due to its high locality. Buffering vertex properties of the other dimension

(i.e., source vertex ID) however will suffer from excessive DRAM read bandwidth usage from

reading unused vertex properties. For example, GraphLily [33], a recent state-of-the-art FPGA

accelerator experiences up to 2X throughput advantage over Gunrock, a well known state-of-the-art

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 60

GPU accelerator for graph sizes under eight million vertices, but up to 4X throughput degradation

for graphs between sixteen and sixty four million vertices.

Figure 4.1 illustrates this problem using a simple example. Figure 4.1A and B shows two sample

graphs, with graph B larger than graph A. Assuming the available BRAM can only house three

vertex properties. Graph A and B will therefore be considered too large and will need to be sliced

to restructure locality. Graph A consists 6 vertices and will need to be sliced in two parts, while

Graph B consisting 12 vertices will need to be sliced in three parts. When processing Partition

1 (of graph A), destination vertex properties (0, 1 and 2) will be read from DRAM to on-chip

BRAM. The source properties and edges will then be streamed from DRAM in chunks to BRAMs

when generating vertex updates. To maximize DRAM bandwidth utilization when reading source

vertex properties from DRAM, the source vertices in each chunk is read from contiguous DRAM

memory locations. For example, vertices 1, 2, 3, 4 and 5 are all read when processing Partition

1, even though only vertices 1, 2 and 5 will be used. These unused source vertex properties (3

and 4) account for DRAM bandwidth over-utilization. Additionally, vertex 1’s source property

is required when processing both Partition 1 and 2, which means that it will be read more than

once. Therefore, reading destination vertex properties to URAM will enjoy good use of DRAM

bandwidth, because every destination vertex property will be read and written to DRAM only once

in each GAS iteration, but reading the source vertex properties will suffer DRAM bandwidth over-

utilization from its degraded locality. This problem amplifies with the size of the graph because

more degradation of source vertex locality will be experienced. With graph B for example, vertices

1, 2, 3, 4, 5, 6, 7 and 8 will all have to be read when processing Partition 1 (an additional three

vertices read), even though only vertices 1, 2 and 8 will be used. Also, vertex 1’s source property

is required when processing Partitions 1, 2 and 3 (one time more than in 4.1A).

To combat this poor scaling issue we propose ACTS, a graph processing framework for static

graphs on the HBM-enabled single-FPGA environment. ACTS employs the push-based GAS

(Gather Apply Scatter), edge-centric style of processing. ACTS is designed to run on a single

FPGA.

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 61

4.3 Why FPGAs?

We analyze the fundamental primitives in graph processing to justify our decision for using the

FPGA for our architecture, as opposed to the CPU and the GPU. The first primitive is the pro-

cessing of edges to generate vertex updates. This involves reading the edge and its corresponding

source vertex property, and using the edge function of the algorithm to generate a vertex update

message. This simple operation needs to be repeated across all active vertices of the graph, and is

therefore amenable to parallelization across the multiple hardware threads of the FPGA, the mul-

tiple CUDA threads of the GPU, and the multiple threads of the CPU. This operation is therefore

amenable to all three architectures — the FPGA, the GPU and the CPU.

Another fundamental operation in graph analytics is updating corresponding destination vertices

with the vertex updates. This operation is a central overhead in graph processing, and a motivation

for a lot of research in graph processing. It is characterized by random memory accesses because

the destination vertex properties can be located in arbitrary and sometimes very distant locations in

DRAM. It therefore exhibits poor memory locality. This operation would benefit from a hardware

architecture having both disaggregated on-chip memory blocks (scratchpad, URAM etc.), each of

considerably large size, that can be connected together. The on-chip memory requirement is so that

the random access behavior can be mapped on-chip, and random accesses can be made across fast

SRAM rather than slower DRAM. The large size requirement is because of the unstructured nature

of graphs forcing random accesses. The disaggregated nature is to allow parallelism, where several

sections of the graph can be updating simultaneously in parallel. The requirement for connected-

ness is to that data can routed to destinations that lie outside the range of the on-chip memory. This

is because the capacity of on-chip memory is certainly limited. Of the three architetcures, only the

FPGA can satisfy all three architectural requirements. Though the CPU contain large SRAM mem-

ory (L2, L3 caches in CPU and shared memory in GPU), their non-disaggregated nature prevents

exploiting parallelism.

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 62

4.4 Implementation Details

Figure 4.2: Prior art (A) vs. ACTS (B) graph processing workflow

4.4.1 Partition Vertex Updates not Edges

To tackle this problem, we propose the restructuring the URAM locality of vertex updates rather

than of edges and vertices during pre-processing. This change moves restructuring from an of-

fline to an online perspective. If the graph is restructured by partitioning into slices, the generated

graph partitions are not entirely separate because several edges can span across partitions, espe-

cially when the size of the graph (and hence the number of slices) increases. This introduces the

redundancy explained in section 6.1. On the other hand, if vertex updates (generated by processing

source vertices and their incident edge properties) are restructured, there is clean separation be-

tween the generated vertex update partitions, removing the redundancy issue. Hence, every source

vertex property is read only once from DRAM in every graph iteration before being discarded,

and optimal DRAM read bandwidth usage of vertex property data can be maintained even when

processing larger graphs. Figure 4.2A shows the processing flow employed by prior art where the

graph’s edges and vertices are first restructured before processing starts, while Figure 4.2B shows

our proposed processing flow where the generated vertex updates are restructured instead. In our

proposed processing flow, the source vertices and their outgoing edges are first processed accord-

ing to the edge function of the algorithm to generate vertex updates. These vertex updates are

then partitioned according to their destination vertex IDs in the Partition stage to generate vertex-

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 63

update partitions, such that the destination vertex properties associated with each partition can fit

in URAM. In the final Apply stage, the destination vertex properties for each partition are read

from HBM into URAM, their corresponding vertex-update partitions are streamed from HBM to

perform the updates.

4.4.2 Online Recursive Partitioning

Figure 4.3: (A) Conventional Bucket-based partitioning vs. (B) Recursive Bucket-based partition-

ing

The main challenge associated with our proposed processing flow is the overheads that can be

associated with online partitioning. With prior approach of partitioning the graph, the preprocess-

ing cost of one-time graph partitioning is amortized over multiple iterations, runs, and algorithms.

With our approach however, online partitioning needs to be done in every graph iteration. A high

overhead partitioning strategy can therefore degrade throughput and obscure the no-redundancy

advantages online partitioning intended to provide in the first place. A principal requirement of

an effective online partitioning strategy is that it sustains minimal throughput degradation when

handling large graphs. As the size of graph (i.e., number of vertices) increases, the range of desti-

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 64

nation vertex IDs in the vertex updates to partition increases. However, because the URAM within

the FPGA has a limited fixed capacity, more partitions need to be generated to satisfy the URAM-

locality requirement (where the destination vertex properties of each partition can fit in URAM).

Employing conventional online partitioning approaches such as bucket- and radix-based partition-

ing [44] [45] [46] [47] can suffer high overhead as the graph to process grows. This is because

they can suffer overheads from DRAM access latency due to movements of small chunks of ver-

tex update between fast BRAM and slower HBM memory of the FPGA board. In the conven-

tional bucket-partitioning strategy, unstructured vertex updates are loaded from HBM to BRAM in

BRAM-sized chunks in a read stage, partitioned on-chip using FPGA logic and BRAM into several

high-locality vertex-update partitions (P0 to Pp) each having range R. This happens in a partition

stage. Each vertex-update partition is then written back into its distinct HBM-bucket locations in a

write-back stage. These vertex updates are represented by key-value pairs (keys representing des-

tination vertex IDs and values representing messages). This read, partition and writeback process

occur repeatedly until the entire vertex updates generated from the scatter stage is processed. With

larger graphs however, more partitions need to be generated to attain the same range (R) because of

the fixed size of the FPGA’s URAM. This can result in very small-sized chunks of vertex updates

moving between BRAM and DRAM during the writeback process that consequently exacerbates

the impact of DRAM access latency, and degrade the overall partitioning throughput. To reduce

this overhead, we propose a recursive partitioning strategy. This fundamental idea behind recursive

partitioning is to split the bucket-partitioning task into multiple steps to manage the granularity of

data movements between BRAM and DRAM during partitioning, and therefore reduce the impact

of DRAM Access Latency.

Figure 4.3B shows the recursive partitioning strategy, and how it differs from the conventional par-

titioning in Figure 4.3A. Both figures show vertex updates (U) with range (R=20) generated from

the scatter stage. The range (R) refers to the range of destination vertex IDs of the vertex updates.

Rather than completely partitioning each chunk read from DRAM into P(=4) partitions (like Fig-

ure 4.3A), our recursive partitioning strategy partially partitions them into P/K partitions (K=2 in

this example) and write the P/K partial partitions back to DRAM (i.e., writeback process). After

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 65

the partial partitioning process is finished, each partial partition is then read back from DRAM

using the same process to generate further P/K partial partitions. This recursive process continues

until the the final locality of partitions is attained (S=5 in this simple example). The benefit of

recursively partitioning over the conventional bucket-partitioning approach is that irrespective of

the range (R) to be partitioned, we can maintain a fixed-sized granularity at which vertex updates

are transferred between BRAM and DRAM during the writeback process, and alleviate the impact

of DRAM access latency. For example, with the conventional bucket-partitioning approach in Fig-

ure 4.3A, four update partitions (buffered in BRAM) are written back to DRAM for every chunk

(which will increase with R), while with recursive partitioning in Figure 4.3B, only two partitions

are written back to DRAM for every chunk. After the recursive partitioning process finishes, the

apply stage then applies these high-locality partitions at their respective destination vertices. An

important research finding in this project is that the multiple passes through the vertex updates (U)

required during recursive partitioning still presents a lower overhead compared to the conventional

partitioning approach for several large graphs.

4.4.3 Efficient Edge Packing

The FPGA’s AXI memory interface allows a wide bitwidth read and write accesses at rates reach-

ing 512 bits per clock cycle from each HBM channel. This means 16384 bits of graph data can be

read every clock cycle across all 32 HBM channels. Today’s FPGAs can also deliver an impressive

Internal SRAM Total Bandwidth of up to 30TB/s (Alveo U280 FPGA). These two provisions al-

low a rich environment for an embarrassingly parallel computational paradigm where many edges

are streamed from the HBM in parallel, processed in parallel using independent BRAM/URAM

and logic resources and written back to HBM, all in a pipelined fashion. This processing behavior

can be hard to achieve with graph analytics because the unstructured nature of graphs can cause

scenarios where two or more edges need to access the same URAM simultaneously to read source

vertex properties, or two or more vertex update may need to access destination vertices in the

same URAM simultaneously. Several strategies have therefore been proposed in attempt to com-

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 66

Figure 4.4: (A) ACTPACK representation allows concurrent BRAM accesses across both source

and destination vertex ID dimension; (B) Prior-art representation allows concurrent BRAM ac-

cesses across a single vertex ID dimension; (C) How edges of a graph are represented in ACT-

PACK

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 67

bat this problem. Prior art allow concurrent URAM accesses to vertex property data in only one

dimension (i.e., source vertex ID or destination vertex ID), and would required shuffling [17] or

arbitration logic [33] to optimize access in the other dimension (see Figure 4.4B). For example,

CSPR [33] packs edges in HBM such that independent and parallel accesses can only be made to

destination vertex properties in URAM. An arbitration infrastructure is however required to im-

prove parallelism when reading source vertex properties. ThunderGP [17] employs a shuffling

logic to improve parallelism when updating destination vertex properties in URAM. The limita-

tions of arbitration or shuffling is both exploit suffer from workload imbalance among PEs which

can serve as a bottleneck.

We propose a novel edge packing format called ACTPACK that allows this embarrasingly par-

allel streaming behavior when processing edges, partitioning vertex updates and applying vertex

updates in the scatter-partition-apply paradigm. The graph to be processed is converted from what-

ever format it is represented (e.g., CSR format) into our ACTPACK format. This happens during

pre-processing. With our edge packing, edges in HBM can be streamed in parallel, processed in

parallel, and applied to their respective destinations in parallel, all while accessing independent

URAMs and with no URAM conflicts. Also, because there is no need for shuffling and arbitra-

tion logic, the limitation of high logic utilization is eliminated. Figure 4.4B illustrates how edges

represented in ACT-PACT support a high throughput graph processing pipeline. Given an edge-

block consisting four edges represented in ACTPACK as shown, concurrent read accesses can be

made to source properties stored in BRAM during the scatter stage (at four edges per clock cycle),

and concurrent read and write accesses to destination properties stored in BRAM during the apply

stage. More importantly, all edges within an edgeblock will belong to the same partition after the

recursive partitioning process, and can therefore all move as one unit through the entire recursive

partitioning process. This allows the partitioning process to happen at wide-word rates of four (4)

edges per clock cycle.

Figure 4.4C shows how edges are packed in HBM with the ACTPACK representation. First, the

edges of a graph are divided into intervals according to their source IDs. Each interval has a

source ID range of S, where S source vertex properties can fit in URAM. Second, edges within

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 68

each interval is further divided into groups by hashing both source and destination IDs. E.g. G2,1

consist edges that meet the condition (SrcID mod |S| = 2, DestID mod |S| = 1). For clarity,

we refer to the subscripts attached to each group as the dimensions of the group (e.g., group G2,3

has x dimension equals 2 and y dimension equals 3). Third, groups are arranged into sets such

that each set consists groups with contiguous y dimensions and cyclic contiguous x dimensions as

shown in step 3 of Figure 4.4A. Fourth, edgeblocks are retrieved by selecting edges from distinct

groups within the same set as shown in step 4.

4.4.4 Hybrid Processing of Sparse Frontiers

Figure 4.5: (A) Prior art’s heuristic model labels the entire graph as sparse or dense in every GAS

iteration; (B) Our heuristic model is more tightly coupled, labelling some parts of the subgraph as

sparse and others as dense

Some graph algorithms such as Breadth First Search (BFS), Single Source Shortest Path (SSSP)

and Connected Components (CC) are associated with sparse active subgraphs in certain iterations.

These are a subset of the vertices of the graph (called active vertices) that are active in a given

GAS iteration. They can be a small subset scattered in non-contoguous locations in HBM (termed

sparse) or a large subset collocated within a given physical location in HBM (termed dense). Sev-

eral FPGA graph accelerators employ the edge-centric computing style [8] because it allows se-

quential streaming of edges which can benefit from the high HBM bandwidth of the FPGA. This

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 69

processing style can however suffer from poor utilization of HBM bandwidth when processing

sparse active subgraphs, as edgelists are scattered in non-contiguous locations in HBM. Therefore,

and many edges can read from HBM with only few actually needed, as entire 64-byte cacheline

data can be load from HBM data while operating on only a portion of the data. To tackle this

challenge, prior art [33] resort to dual modes of execution, where the active subgraph can either

be processed as a sparse or dense subgraph. They employ heuristic models that label the active

subgraph in a given GAS iteration as either sparse or dense by recording the number of active ver-

tices in that iteration. They also employ data structures suitable for each mode of processing. For

example, [33] reads edges from CSR format when processing sparse subgraphs and their CSPR

format when processing dense subgraphs.

Figure 4.5A and B show the heuristic model used by prior art and ACTS respectively. The shaded

circles and boxes represent vertices and edges of the active subgraph respectively. Prior art (Figure

4.5A) labels the entire graph as dense since the number of active vertices (7) is greater than the

threshold (assuming a threshold of 6 vertices). This means all (65) edges of the graph are read

during the scatter stage. Rather than labelling the entire graph as sparse or dense, ACTS label

intervals (i.e., regions of the graph) as dense or sparse depending on whether the number of active

vertices they contain exceeds or lies below the threshold respectively. Assuming a threshold of 2

in this example, 21 edges are read in total compared to the 65 edges read in Figure 4.5A when

processing this graph iteration. This extra level of coupling where sparsity is determined on an

interval-by-interval basis rather than across the entire graph allows ACTS more accurately capture

the different levels of sparsity across the graph, and prevent reading too many useless edges during

processing. This reduces the bandwidth wastage when reading edges from HBM during process-

ing. Like prior art, we also employ a dual data structures for each mode of processing. We employ

the CSR (compressed sparse row) format to access sparse intervals and the ACTPACK format to

read edges in dense intervals. This is because CSR represents outgoing edges in compact for (i.e.,

outgoing edges of a vertex are located in contiguous locations in DRAM) unlike ACTPACK that

fragments the edges.

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 70

4.5 Evaluation

This section describes the experiments and analyses to evaluate ACTS. We chose the HLS C lan-

guage because it generates low-level RTL from high level C/C++ language, and hides away all

details of AXI control, BRAM/URAM memory and IP setup transparent from the programmer,

allowing him concentrate on the application.

4.5.1 Target Hardware System

The hardware system for our hardware accelerator is the Xilinx Alveo U280 FPGA. The FPGA

has 1.7 million LUTs, 960 288 Kb (270 Mb) URAM blocks and 41 MB BRAM blocks, making a

total of for a total of 311 MB SRAM memory. The final clock frequency after hardware synthesis

was 150 MHz. The FPGA is connected to 8 GB of HBM via 32 512-bit channels with a max

frequency of 350 MHz. This means the peak line bandwidth is 460 GB/s. The FPGA is connected

via PCIe Gen4x8, or 8 lanes of Gen4 to the host processor system. The host side of the graph

applications were implemented in OpenCL C and executed on a 16-core Intel Xeon Silver 4216

CPU ruining at 2.10GHz. Our target hardware system features up to 32 HBM channel. Each

channel is privately connected to its processing element (PE), which is responsible for processing

the vertices and edges housed by that channel.

4.5.2 Applications

Four different analytics applications were explored in ACTS:

• PageRank [48]: Computes the PageRank score of each vertex in the graph

• Hyperlink Induced Topic Search (HITS) [49]: A link analysis algorithm that rates Web pages

• SpMV: Sparse Matrix-Vector Multiplication (SpMV) [22]

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 71

• Single-Source Shortest Path (SSSP) [50]: Computes the shortest distance to every vertex in

the graph from a given root vertex

4.5.3 Datasets

We evaluate the performance of our framework over GraphLily [33] and Gunrock [51] using a

mix of both synthetic and real-world static graph datasets. We chose these datasets because they

expressed diverse cache behaviors. The synthetic datasets were generated from the RMAT graph

generator [52] located at [53], while the real-world datasets were obtained from the University

of Florida’s Sparse Matrix Collection [54]. The probabilities {0.57,0.19,0.19,0.05} were used as

input parameters in generating the RMAT datasets. The synthetic datasets were included to investi-

gate how ACTS will perform on a set of graphs having a fixed number of edges but a varying num-

ber of vertices. Due to limited HBM memory capacity (of 8GB), we could not run graphs larger

than the RMAT26 dataset (67 million nodes and 268 million edges) on the FPGA for GraphLily or

our work. For ACTS, this is because a portion of each HBM channel is also used to house vertex-

update partitions and sorted edgelist representation required for processing. The next generation

of HBM is expected to be 2GB per channel, allowing for handling larger graphs. Table 5.1 shows

the properties of all the datasets evaluated.

4.5.4 Experimental Setup

Baselines We set up three different experiments to evaluate the impact of ACTS. Table 4.1 shows

the system parameters of the evaluated system.

We implemented ACTS end-to-end, including I/O and FPGA kernel invocation costs in the first

setup on a Xilinx Alveo U280 Ultrascale+ FPGA Accelerator Card with HBM memory bandwidth

capable of delivering up to 460GB/s. The Xilinx HLS tool was used to generate RTL code from

C++ HLS source, while the Xilinx Vitis tool was used to synthesize this design and run it on the

Xilinx Alveo U280 FPGA board. All performance results are measured on the FPGA board. Vitis

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 72

Xilinx Alveo U280 NVidia Titan X

Memory technology HBM GDDR5X

Max Bandwidth 460 GB/s 480 GB/s

Memory capacity 8 GB 12 GB

Max clock 300 MHz 1500 MHz

Max Power 225 W 250 W

Table 4.1: EVALUATION SYSTEMS

could only synthesize up to 24 PEs and yielded a clock frequency of 170 MHz (out of 300 MHz)

and a HBM memory clock of about 350 MHz (out of 450 MHz).

In the second setup, we ran GraphLily [33] on the same Xilinx Alveo U280 Ultrascale+ FPGA

Accelerator Card. GraphLily’s source code is publicly available on GitHub, so we could run

experiments across a variety of datasets and also gain insight into its memory traffic behavior

using the Xilinx Vitis software emulation tool. We chose GraphLily because it is also an FPGA-

based graph framework that utilizes the HBM memory. Because GraphLily did not provide an

implementation for HITS, we compared it against PageRank, SSSP, and SpMv.

In the third setup, we ran Gunrock on the NVIDIA Titan X GPU (with DDR5 off-chip memory

bandwidth of 480GB/s and base clock speed of 1417MHz). We chose Gunrock [51] for comparison

because 1) It is one of the fastest graph processing engines available, and it uses the wide off-chip

memory bandwidth of the GPU. 2) Today’s GPUs are available with HBM, and 3) Gunrock adopts

a similar programming model as ACTS for running graph analytics (i.e., the Gather-Scatter-Apply

model). We chose the NVIDIA Titan X GPU because its bandwidth closely matched that of the

Xilinx Alveo U280 Ultrascale+ FPGA Accelerator Card. Ideally, we would incorporate the GPU

memory coalescing framework into a graph engine running on an FPGA, but NVIDIA’s memory

coalescing algorithm is highly tuned and proprietary.

In the fourth setup, we ran the GAP benchmark suite [55] as a baseline. We used GAP because it

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 73

includes high-performance reference implementations and is a shared standard widely adopted by

the graph processing community.

It should be noted that no tuning is required per benchmark or dataset in ACTS, and the threshold

parameter to switch from ACTPACK to the sorted edgelist is a one-time setting passed as a param-

eter to ACTS. To derive the optimal threshold, we ran preliminary tests across random graphs on

the Xilinx Alveo U280 FPGA to obtain an optimal Streaming Partitions size (i.e., 131072 edges)

and the threshold value for switching between ACTPACK and the sorted edgelist (i.e., 8192 active

edges). Also, ACTS is synthesized once to run all algorithms (PageRank, SSSP, HITS, and SpMv)

used in our evaluation. The Processing and Apply functions corresponding to the four algorithms

evaluated are synthesized on the FPGA, and an input parameter specifying the appropriate function

is passed during processing.

Metrics (1) We measured performance in execution time (ms) and energy consumption in Watt.

In the GPU and FPGA experiments, the execution time does not include the data transfer overhead

from the host CPU to the GPU/FPGA accelerator over PCIe. We query GPU power using Nvidia-

smi and FPGA using Xilinx’s xbutil.

4.5.5 Resource Utilization

LUT FF DSP BRAM URAM Clock frequency

870K (65.4%) 720K (25.4%) 339 (2.7%) 2001 (49.3%) 768 (80.0%) 150 MHz

Table 4.2: Resource utilization of ACTS on the Xilinx Alveo U280 FPGA

Table 4.2 breaks down the on-chip resource usage of each accelerator. The on-chip clock synthesis

frequency is degraded due to congestion from multiple HBM AXI interfaces in the same SLR

region. On Alveo U280, all the HBM channels are located in SLR0, and this results in severe

congestion on SLR0 even with the coarse-grained floorplanning and pipelining.

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 74

4.5.6 Accelerator Performance

KR21 ST-OV OR SOC-LJ LJ R23 R24 UK R25 R26

GAP (ms) 46 16 43 29 32 214 354 66 532 699

GraphLily (ms) 27 7 36 14 17 192 276 364 - -

Gunrock (ms) 44 10 79 19 21 70 75 82 88 103

ACTS (ms) 15 6 17 11 12 35 41 55 64 110

GraphLily vs. GAP 1.7 2.3 1.2 2.1 1.9 1.1 1.3 0.2 - -

Gunrock vs. GAP 1.0 1.6 0.5 1.5 1.5 3.1 4.7 0.8 6.0 6.8

ACTS vs. GAP 3.1 2.7 2.5 2.6 2.7 6.1 8.6 1.2 8.3 6.4

Table 4.3: Execution time (in ms) for PageRank; Bottom section is Speedup (based on execution

time)

From a performance standpoint, ACTS outperforms GraphLily in PageRank, SSSP, and SpMv

algorithms across various datasets. An important observation is its efficient scaling behavior, where

ACTS expresses greater speedup over GraphLily with the larger graphs (i.e., the last five datasets).

Because ACTS’ does not slice the graph during pre-processing, all source vertex properties are read

only once during each GAS iteration. Therefore, ACTS is able to avoid reading redundant source

vertex properties from HBM during processing. Upon further investigation using the Vitis software

emulation tool, we realize that GraphLily experienced a surge in memory traffic when running the

last five (larger) datasets from reading many unused vertex properties. This sharp degradation

in performance is caused by slicing during pre-processing. Further profiling into GraphLily’s

source code confirms this observation, as a graph such as the RMAT24 dataset (consisting of 16

million vertices) needs to be split into about sixteen slices to make each slice BRAM-friendly.

This forces many unused vertex properties to be read on-chip. ACTS overcomes this hurdle by

incorporating efficient on-chip partitioning, lowering the overall read bandwidth usage. GraphLily

could not run DL, R25, and R26 datasets (marked as ’*OOM’) because their slicing technique

created large replications of vertex properties that could not all fit in HBM memory. With the

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 75

KR21 ST-OV OR SOC-LJ LJ R23 R24 UK R25 R26

GAP (ms) 136 56 154 141 157 533 1023 550 1312 2062

GraphLily (ms) 194 75 345 201 244 2718 3045 3367 - -

Gunrock (ms) 104 34 121 48 49 320 370 35 260 600

ACTS (ms) 47 24 41 53 62 220 184 147 404 502

GraphLily vs. GAP 0.7 0.7 0.4 0.7 0.6 0.2 0.3 0.2 - -

Gunrock vs. GAP 1.3 1.6 1.3 2.9 3.2 1.7 2.8 15.7 5.0 3.4

ACTS vs. GAP 2.9 2.3 3.8 2.7 2.5 2.4 5.6 3.7 3.2 4.1

Table 4.4: Execution time (in ms) for Single Source Shortest Path (SSSP); Bottom section is

speedup (based on execution time)

KR21 ST-OV OR SOC-LJ LJ R23 R24 UK R25 R26

GraphLily (ms) 22 6 29 11 14 155 223 294 - -

ACTS (ms) 12 5 14 9 10 28 33 44 52 89

ACTS vs. GraphLily 1.8 1.2 2.1 1.3 1.4 5.5 6.7 6.6 - -

Table 4.5: Execution time (in ms) for Sparse Matrix Dense Vector Multiplication (SPMV); Bottom

section is speedup (based on execution time)

SSP algorithm, ACTS generally performs better than GraphLily on the this algorithm compared

to the other algorithms. Unlike PageRank, SSSP is a traversal algorithm that consists of iterations

with varying levels of frontier sparsities. GraphLily’s processing engines for sparse (SpMSpV)

and dense (SpMv) frontier subgraph sizes are highly optimized for only extreme sparsity levels

(i.e., either very sparse or very dense), making it challenging to capture moderate frontier levels

of sparsity. For example, running SSSP on LJ using GraphLily in Vitis software emulation mode

revealed excessive read bandwidth usage (when using the SpMv accelerator) and excessive random

accesses (when using SpMSpV accelerator) in several iterations of the SOC-LJ dataset.

Additionally, ACTS outperforms Gunrock in PageRank, SSSP, and HITS across various datasets

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 76

KR21 ST-OV OR SOC-LJ LJ R23 R24 UK R25 R26

Gunrock (ms) 155 34 195 42 30 375 403 32 313 443

ACTS (ms) 85 18 81 33 36 150 180 165 192 330

ACTS vs. Gunrock 1.8 1.9 2.4 1.3 0.8 2.5 2.2 0.2 1.6 1.3

Table 4.6: Execution time (in ms) for Hyperlink-Induced Topic Search (HITS); Bottom section is

speedup (based on execution time)

with some exceptions, demonstrating competitive performance across increasing graph sizes. An

outlier is the UK dataset, where Gunrock outperforms both ACTS and GraphLily by a consider-

able margin with SSSP. This dataset is highly regular and benefits greatly from high cache hits

when running graph traversals. Further investigation using NVidia’s Nsight tool revealed that this

dataset experiences up to 82% cache hit rate compared to others like the Orkut dataset (OR) which

experienced only 34%.

4.5.7 Energy Usage

We also measure the energy consumption from running PageRank and SSSP across all datasets and

show the results in Tables 4.7 and 4.8. ACTS reduces average power by an average of about 50%

compared to Gunrock. The mean energy-delay product (EDP) of ACTS is 88% lower. Further

power profiling of ACTS revealed that up to 80% of ACTS’ overall power consumption is used by

the HBM memory channels, while only about 20% is spent by on-chip FPGA activity.

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 77

ST-OV LJ POK KR20 KR21 UK DL R24 R25 R26

Gunrock (mJ) 5.0 1.1 8.9 2.1 2.4 7.9 8.5 9.3 9.9 11.6

ACTS (mJ) 0.7 0.3 0.7 0.5 0.5 1.5 1.8 2.4 2.8 4.8

Energy Improvement 7.5 4.3 11.9 4.4 4.5 5.1 4.7 3.8 3.5 2.4

Table 4.7: Energy consumption for PageRank in milli joules; Bottom section is energy improve-

ment (ACTS vs. Gunrock)

KR21 ST-OV OR SOC-LJ LJ R23 R24 UK R25 R26

Gunrock (mJ) 11.8 3.8 13.7 5.4 5.5 36.2 41.8 4.0 29.4 67.8

ACTS (mJ) 2.1 1.1 1.8 2.3 2.7 9.7 8.1 2.1 17.8 22.0

Energy Improvement 5.7 3.6 7.6 2.3 2.0 3.7 5.2 1.9 1.7 3.1

Table 4.8: Energy consumption for SSSP in milli joules; Bottom section is energy improvement

(ACTS vs. Gunrock)

4.6 Related Work

4.6.1 FPGA-based Graph Processing Frameworks

There has recently been significant interest in the area of accelerating graph analytics using FPGA

and ASIC accelerators. The advantages of FPGA accelerators over ASIC is the re-configurability

it provides. Several FPGA accelerators [17–19, 33–37] and ASIC accelerators [9] rely on avail-

able on-chip URAMs to deliver superior performance. Graphicionado demonstrates up to 6.5X

speedup compared to state-of-the-art software solutions, owing a majority of its performance im-

provement to the efficient use of large on-chip scratchpad memory. For larger graphs whose vertex

properties can not fit in fast, on-chip memory, such as BRAM or URAM, these accelerators resort

to graph slicing, where a graph is first sliced during offline pre-processing to improve the BRAM

(or URAM) memory-access locality, after which all slices are then loaded into the accelerator,

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 78

which processes them one slice at a time. GraphGen [18] focuses on generating an application-

specific accelerator for a given vertex program specification rather than providing a single re-usable

domain-specific accelerator. On the other hand, FPGP [37] targets a different problem where edges

are stored in a device with extremely limited bandwidth (e.g., disk). GraphOps [56] is a concurrent

work that provides a set of modular hardware units implemented in FPGA for graph analytics.

GraphOps optimizes for graph storage and layout to provide efficient use of the off-chip memory

while ACTS optimizes for graph access patterns utilizing an on-chip scratchpad and eliminating

unnecessary off-chip memory accesses for efficiency. Lastly, Tesseract [18] targets the same do-

main as our work, but explores different technology by implementing specific hardware extensions

using the logic layer of a 3D-stacked DRAM.

4.6.2 GPU- and Software-based Graph Processing Frameworks

There are a few graph analytics software frameworks and libraries specifically optimized for GPUs;

Gunrock [51], MapGraph [57], nvGraph [58], and Enterprise [59] are representative examples. Fair

comparisons against GPU-based frameworks are difficult since GPUs often run with much larger

clock frequencies bandwidth than what FPGAs can provide. Several software graph processing

frameworks also exist. GraphChi [60], TurboGraph [61], and XStream [8] are also similar frame-

works utilizing disk-based systems for graph processing. Since these frameworks often focus on

optimizing for efficient data locality and access patterns, they are closely related to ACTS; however,

ACTS is a hardware implementation that optimizes for off-chip memory bandwidth consumptions

rather than memory-to-disk bandwidth consumptions.

4.7 Conclusion

We presented ACTS, an accelerator for HBM-equipped FPGAs based on the push-based edge-

centric computation style. ACTS addresses the excessive bandwidth usage overhead experienced

by prior art FPGA-based frameworks in two important ways. 1) It removes the requirement of

Chapter 4. ACTS: Scalable Graph Processing on HBM-enabled FPGAs 79

offline slicing and embedding it within the Gather-Apply-Scatter abstraction. This allows ACTS to

maintain an optimal read bandwidth usage of vertex property data, making it scale more efficiently

to larger graph sizes. 2) ACTS optimizes the read bandwidth usage of edge data by integrating a

more tightly coupled heuristic model that efficiently captures the various levels of sparsity when

processing sparse active frontiers. This allows it to optimize data transfer efficiency and maintain

the high on-chip memory parallelism benefit of the edge-centric style. ACTS shows a geometric

mean speedup of 3.6X over GraphLily, a state-of-the-art HBM-enabled FPGA graph accelerator,

and 1.5X over Gunrock, a state-of-the-art GPU graph accelerator. ACTS also shows a geometric

mean power reduction of 50% and a mean reduction of energy-delay product of 88% relative to

Gunrock. Future work with ACTS will be to deploy ACTS in a cluster-scale setting.

Chapter 5

Swift: Accelerated Graph Processing with

Multiple FPGAs

5.1 Challenges

Graph processing with multiple FPGAs face major challenges that are not captured in their single-

FPGA-based counterparts. The objective to use multiple devices (whether CPUs, GPUs or FPGAs)

for processing graphs is to handle graphs too large to fit in a single device, or achieve an increased

throughput from the combined bandwidth provided by each individual device. However, our com-

parisons of prior multi- and single-FPGA graph accelerators reveal that the multi-FPGA solutions

sometimes perform even worse than their single-FPGA counterparts. The multi-FPGA acceler-

ators attribute this performance degradation to limited inter-FPGA communication channel and

frequent substitution of on-chip vertex properties across processing multiple slices of the graph.

The underlying issue with frequent substitution of on-chip data is redundancy which was tackled

in chapter 4 of this dissertation. The challenge of limited inter-FPGA communication bandwidth

stems from the memory-centric characteristic of graph processing which forces vertices to have

frequent communication between each other both within and between FPGAs. This in turn creates

a non-trivial amount of data movements across the limited PCIe communication channel as shown

80

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 81

in Figure 5.1. This communication channel, which can have much lower bandwidth than off-chip

memory (HBM or DRAM), naturally becomes a bottleneck. We tackle this issue by decoupling

the fundamental parts of the graph processing paradigm, so that heterogeneous processing activ-

ities can occur on the graph in each FPGA in the cluster simultaneously. Therefore, edges can

be processed in a region of the graph for a given iteration, with active frontiers in another region

exported to remote FPGAs, and active frontiers imported into another region from remote FPGAs,

all happening simultaneously. This saturates all channels (PCIe/QSFP, HBM and on-chip BRAM-

s/URAMs) in the cluster, and hides expensive FPGA-to-FPGA communication latency overheads

within the entire graph processing flow.

Figure 5.1: PCIe is a Bottleneck in multi-FPGA Graph Processing

In this work we also identify a bottleneck during the exchange of graph data between FPGAs at

the end of every graph iteration. The goal of workload placement strategies in graph processing is

to place the graph workload across the FPGAs such that workload balance is achieved. Workload

placement can distort the original vertex ID ordering of the graph, and vertices in contiguous phys-

ical locations in the HBM can end up having non-consecutive vertex IDs. Transferring the vertex

properties of these unstructured vertices from one FPGA (sender) to another FPGA (receiver) in

between graph iterations will incur random access to HBM when re-arranging them at the receiver

FPGA. This random access behavior limits throughput. We tackle this issue by proposing a work-

load placement strategy restricts the workload placement process to allow both workload balance

and avoid this bottleneck. The fundamental idea is to divide the graph into vertex intervals and

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 82

place the graph workload across the cluster one vertex interval at a time, maintaining workload

balance across each vertex interval. This allows graph data received into a local FPGA from a

remote FPGA to be re-ordered using high speed URAMs

5.2 Implementation Details

5.2.1 Decoupled Asynchronous Execution Flow

Our decoupled asynchronous execution model is inspired by the fact that when a graph within an

FPGA is processed to generate active vertices, a time window exists between when these updated

vertex properties are generated and when they will be used by another FPGA in the next iteration.

This time window can be overlapped with other high-latency processing operations such as the

exchange of graph data between FPGAs. The fundamental difference between our decoupled

asynchronous execution model and the conventional bulk synchronous execution model is that our

model relaxes the bulk synchronization demands of the conventional edge-centric model. Bulk

synchronization forces an operation to be executed across all active edges (which constitutes a

phase) in the graph before the next operation can commence. The edge-centric execution model

separates processing into phases (Process Edges, Partition, Apply, Exchange). The first phase

(Process Edges) involves processing active edges to generate vertex updates, the second phase

(Partition) involves restructuring the URAM locality of these updates via partitioning, the third

(Apply) involved applying these updates at their respective destination vertices, and the fourth

(Exchange) exports these updated vertices to remote FPGAs in the cluster. Therefore, only one

phase can be executed on the graph at a time. Our single-FPGA work discussed in section 4 is

based on this bulk synchronous model. Because each of this phase keeps only one channel busy

(either the HBM, PCIe (write) and PCIe (read) channel), the the other two remain idle. This

is a limitation to throughput, and poses limitations when mapping our single-FPGA work to the

clusterscale setting. Our decoupled asynchronous execution model, on the other hand, relaxes

this bulk-synchronization demands and allows multiple operations to occur on the same graph

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 83

simultaneously. It decouples these processing operations from the underlying graph structure,

such that different operations can be executed in different sections of the graph within an FPGA

at the same time. This is shown in Figure 5.3. In other words, an operation (e.g., processing of

edges to generate vertex updates) can be happening in a given region of the graph, with another

operation (e.g., importing of vertex properties) happening in another region of the same graph,

and another operation (e.g., exporting of vertex properties) happening on yet another region of the

same graph, all happening simultaneously. It allows opportunity for cross-iteration-activity, where

separate regions of the graph can be consecutive iterations at a given time.

Figure 5.2: Decoupled Graph Execution Model

This interleaving between computation and communication keeps all three channels of each FPGA

(i.e., BRAM, HBM and FPGA-to-FPGA communication channels) busy and hides the expensive

PCIe communication latency. We illustrate this insight with a simple schematic shown in Figure

5.3. The graph workload assigned to each FPGA is first divided by vertex IDs into vertex in-

tervals. This is a pre-processing step. A vertex interval consist a set of vertices with the edges

that point to them (i.e., incoming edges). Within each FPGA, three managers exist that runs pro-

cess edges or apply updates, export vertex updates to remote FPGAs and import vertex updates

from remote FPGAs on the underlying graph. They are the process manager (PM), export man-

ager (EM) or import manager (IM) respectively. During graph processing, a vertex interval can

be in any one of three states at a time (ready-for-process, ready-for-export and ready-for-import).

In ready-for-process state, the active edges belonging to the interval are ready to be processed to

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 84

Figure 5.3: Decoupled Operations Executing Asynchronously on Graph

generate vertex updates. In the ready-for-export state, the vertices of a vertex interval has been

updated and its contents (i.e., active frontiers) can be now be exported to remote FPGAs. This

happens when the apply update operation is completed on that vertex interval. In the ready-for-

import state, the vertex interval is ready to receive updated vertices (i.e., active frontiers) from

remote FPGAs for processing. The process manager (PM), export manager (EM) and import man-

ager (IM) continuously poll the state of the vertex intervals to perform computation, exportation

and importation operations respectively. When running computation over a given interval, the PM

process outgoing edges in that interval, generate vertex updates and applies these updates using

the process edge, partition update and apply updates operations respectively. When performing

export operation over a vertex interval, the EM sends the active frontiers to a URAM buffer which

is then sent across the PCIe to remote FPGAs. When performing import operation over a vertex

interval, the IM collects active frontiers from a URAM buffer and stores them in HBM. The execu-

tion of PM over a vertex interval changes its state to ready-for-export, the execution of EM over a

vertex interval changes its state to ready-for-import, and also changes the state of the target remote

interval to ready-for-import. The execution of IM over a vertex interval changes the state of the

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 85

interval to ready-for-process. This allows the managers can pass commands between themselves

and maintains consistency.

5.2.2 Example Flow

We explain the working of our execution model in a simple example listed below. Assume a cluster

of four (4) FPGAs, with FPGA 0 being the reference FPGA. Note that FPGAX means FPGA X

and IY X means vertex interval Y in FPGA X.

• At the start of processing, all vertex intervals containing active vertices in FPGA0 to FPGA3

set to the ready-to-process state.

• The process-edge module (PM) in FPGA0 is invoked when it sees the ready-to-process

state (because there is at least one interval containing active vertices). It runs the process-

edge and partition-update operations over vertex interval I0,0. The result is a set of vertex

updates stored in different partitions.

• The process-edge module (PM) continues this operation until all vertex intervals containing

active vertices in FPGA0 are processed.

• After all vertex updates are generated and partitioned, the Apply-updates module (AM) then

executes the apply function on each vertex-update partition, producing a new set of active

vertices (also known as active frontiers) for each vertex interval.

• The Apply-updates module (AM) marks as ready-for-export each vertex interval whose new

active frontiers have been generated.

• The export-frontier module (EM) is invoked upon the ready-for-export flag in a vertex inter-

val and exports the active frontiers generated to the host CPU.

• The process-edge module (PM) and export-frontier module (EM) continue their apply and

export operation concurrently, generating and exporting frontiers from FPGA 0.

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 86

• When active frontiers belonging to a vertex interval is exported, the export-frontier module

(EM) marks all intervals in remote FPGAs that mirror that interval as ready-for-import.

• This invokes the import-frontier module (IM) in the remote FPGAs to import these frontiers

from the host memory to their FPGA off-chip memory. At this point during processing,

three operations (apply update, export frontiers and import frontiers) are happening simulta-

neously in the same FPGA, keeping the PCIe and HBM busy.

• Because I0,0 frontiers are also used by FPGA0 no importing of I0,0 is required for FPGA0.

5.2.3 Graph Layout in Memory

Figure 5.4: Graph Layout in HBM

In each FPGA, a single HBM channel (called frontier HBM) is dedicated to house active frontiers

imported from the communication channel. The other HBM channels in the FPGA (called worker

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 87

HBMs) each house a portion of the vertices of the graph and their incoming edges. Each processing

element (PE) is connected to a worker HBM and processes the edges within that channel. The

layout is shown in Figure 5.5. Maintaining unique edges and vertices across the HBM channels

avoids duplication of graph data and maintain storage efficiency. The vertices in each HBM is

divided into vertex intervals with range V/NUM PEs, where V vertex properties can fit in URAM.

NUM PEs is the number of processing elements in the cluster, with each PE connected to a worker

HBM. Therefore, the combined range of vertex intervals 0 across all PEs in the cluster is V. The

placement model (discussed in more details in section 5.2.4) ensures workload balance such that

each worker HBM across the cluster consists roughly the same number of vertices and edges.

5.2.4 Workload Balance Across The FPGA Cluster

Figure 5.5: Workload Balancing Strategy

A clusterscale, HBM-enabled FPGA environment provides abundant parallelism at different lev-

els. An efficient workload placement strategy is therefore critical to improving performance by

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 88

exploiting all these parallelism and preventing any stragglers in the system. The independent FP-

GAs in the cluster provide the first level of parallelism while the independent HBM channels (i.e.,

32) within each FPGA provides the second level of parallelism. This means up to 128 PEs can be

running independently in an 4-FPGA setup. Any straggler PE within the cluster can easily become

a bottleneck and impact throughput, so an efficient graph placement strategy that ensures uniform

workload balance is important.

The limitation of prior workload placement schemes is that while workload balance is achieved,

bottlenecks can be created within the system that sacrifice throughput during graph processing.

Our placement strategy advances over prior art by providing workload balance without sacrific-

ing throughput. To balance workloads among different machines, prior art [62] distributes the

graph across the machines (e.g., CPUs) by a distributed graph placement algorithm that maintains

workload balance and allows minimum edge cuts across machines. All these happen during pre-

processing. Their placement model has a high degree of freedom as any vertex can be placed in

any machine in the cluster, as long as each machine has roughly the same number of vertices and

edges at the end of the placement process. This freedom sacrifices throughput of an important dat-

apath in the system — when frontiers are generated in a given machine to when they are processed

in another machine in the next iteration. Because a graph is unstructured, some edges are cut and

span across machines. Distributing the graph therefore distorts the sequential ordering of vertex

IDs of the graph as two originally contiguous vertex IDs can be assigned to different machines. To

achieve storage efficiency, vertex translation is employed so that each machine maintains a global-

to-local hashtable that translates global vertex IDs to local vertex IDs and vice versa. The global

vertex ID of a vertex is its original vertex ID in the original graph, while the local vertex ID is an

assigned ID local to the machine where the vertex resides. Translation is therefore required when

exporting generated frontiers from one FPGA to another across the communication medium. The

random accesses involved with this translation at both the sender and receiver machine constitutes

the first bottleneck to throughput. Also, because the active frontiers coming into an FPGA from

other remote FPGAs are unstructured, processing these frontiers will involve reading edgelists

from random locations in DRAM. This constitutes the second bottleneck. While these bottlenecks

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 89

are not obvious with clusterscale CPU-based graph processing environments [62], where more

dominant bottlenecks exists, their impact is more pronounced in FPGA-based architectures where

these other competing bottlenecks have been tackled.

To achieve workload balance and still maintain high throughput, we make certain adjustments in

our graph workload placement strategy. The objective is to 1) avoid translations at the sender FP-

GAs, 2) avoid translations at the receiver FPGAs, and 3) leverage fast URAMs when processing

chunks of active frontiers received into an FPGA. To achieve 1), we include the global vertexID

information when representing destination vertex properties in each FPGA. This extra information

is read from HBM and written to HBM during the apply operation. With this, there is no need to

translate active frontiers at the sender end. This increases the storage space occupied by destination

vertex properties in HBM, and introduces overheads when reading and writing destination vertex

properties to/from HBM. However, these are trivial overheads compared to the parallelism benefit

it offers. Because the referencing of vertices in all FPGAs in the cluster is the same (i.e., via global

IDs, as discussed in section 5.2.3), 2) is naturally achieved. To achieve 3), we enforce a restriction

while placing graph workload with any of the novel placement schemes discussed in [62]. Rather

than a free placement strategy where vertices can be placed in any machine in the cluster as long

as workload balance is maintained at the machine level, we place the graph one vertex interval at a

time, achieving workload balance on vertex-interval basis. Assume a cluster consisting 3 FPGAs

as shown in 5.5, all vertices and edges in vertex interval 0 is placed across the entire cluster to

maintain workload balance in this interval before moving to the next. At the end of placement, the

graph workload is not only balanced across the different machines in the cluster but also across

the different vertex intervals in the cluster. An important implication of this design decision is

that when the import manager (IM) of a given FPGA imports the active frontiers of a given vertex

interval from all remote FPGAs across the cluster, these imported active frontiers can all fit in,

and be re-arranged in, low-latency URAM. Our re-ordering strategy is explained in more details in

section 5.2.5

Balancing algorithm To balance workload within a given vertex interval, we first partition the

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 90

destination vertices in that interval into several groups based on their in-degree percentiles (i.e.,

the number of edges pointing to them). For example, a given distribution can be 0-24th, 25th-

49th, 50th-75th and 75th-100th percentiles, where 0-24th percentile represent vertices whose in-

degree lie within 0-24% the mean in-degree in the vertex interval. The vertices in each group is

then interleaved across the worker HBM channels of the cluster according to the formular i %

NUM PEs (i is the ith vertex in a given group, while NUM PEs is the total number of PEs in the

cluster). This distributes the vertices and edges data of a vertex interval evenly across the cluster.

5.2.5 High Throughput Exchange Datapath

Figure 5.6: High Throughput Exchange Datapath

In figure 5.6, we illustrate this datapath with a simple example, and how our workload placement

strategy (discussed in section 5.2.5) maintains high throughput in this datapath.

At some time during processing the process manager (PM) of FPGA 0 will perform the apply

operation on interval 0 (i.e., I0,0) to generate active frontiers. it will then label this interval as

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 91

ready-to-export. These active frontiers are unstructured because of their random, non-contiguous

global vertex IDs. However, our workload placement strategy discussed in section 5.2.4 ensures

that they will all be within a range that can fit in URAM. At another time afterwards, the export

manager (EM) of FPGA 0 will export these active frontiers to the host CPU. Subsequently, the

import manager (IM) of FPGA 1 will import these unstructured active frontiers and re-order them

using the URAM as shown in figure 5.6. In this re-ordering process, the global ID of each fron-

tier is first converted into a local ID by dividing it by V (i.e., size of a vertex interval), to get a

unique index local to URAM. Its property value is then inserted into this local ID slot in URAM.

Even though this hashing involves random accesses, the random accesses are made to fast on-chip

URAM arrays. Also, because the URAM arrays can house vertices of an entire vertex interval,

each active frontier of interval 0 is hashed into a unique slot in URAM. After this re-ordering

is completed, the processing of these newly imported active frontiers can now commence. The

concurrent generation of these active frontiers of I0,0 in FPGA 0 using fast URAMs, and the con-

current reordering of the same in FPGA 1 using fast URAMs accounts for the high throughput of

this exchange datapath.

5.3 Evaluation

5.3.1 Target Hardware System

We compare ACTS against a number of state-of-the-art clusterscale systems, including ForeGraph

(FPGA-based), PowerGraph (CPU-based), TurboGraph (FPGA-based), FPGP (FPGA-based), FDGLib

(FPGA-based) and Gunrock (GPU-based). We also made first order comparisons against Gunrock

because it was open sourced. We implemented ACTS end-to-end, including I/O and FPGA ker-

nel invocation costs on four (4) Xilinx Alveo U280 Ultrascale+ FPGA Accelerator Cards with

HBM memory bandwidth capable of delivering up to 460GB/s per FPGA. We tested Gunrock on

a NVidia A40 GPU with HBM2 memory supporting 696GB/s per GPU. The Xilinx HLS tool was

used to generate RTL code from C++ HLS source, while the Xilinx Vitis tool was used to synthe-

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 92

size this design and run it on the Xilinx Alveo U280 FPGA board. Vitis could only synthesize up

to 24 PEs and yielded a clock frequency of 150 MHz (out of 300 MHz). In the second setup, we

ran Gunrock on a cluster of GPUs (with DDR5 off-chip memory bandwidth of 480GB/s and base

clock speed of 1417MHz).

5.3.2 Applications and Datasets

We evaluated three common graph algorithms, Pagerank (PR), Sparse Matrix Vector Multiplication

(SPMv) and Hyperlink Induced Topic Search (HITS) to explore the novel contributions in ACTS.

We chose these algorithms because they generalize the memory access behaviors shared by several

other graph algorithms.

Dataset Abbr # Vertices # Edges Type

Indochina IND 7.4M 194M Real

Twitter TW 41.6M 1.4B Real

Sk-2005 UK 50.6M 1.9B Real

Uk-2005 UK 39.5M 936M Real

Soc-sinaweibo SN 58.7M 523M Real

Webbase-2001 WB 118M 1.0B Real

RMAT 8 R8 8.39M 1.07B Syn

RMAT 16 R16 16.8M 1.07B Syn

RMAT 32 R32 33.6M 1.07B Syn

Table 5.1: GRAPH DATASETS UNDER EVALUATION

(M: millions; B: billions; Abbr: Abbreviation)

We evaluate the performance of these architectures using a mix of both synthetic and real-world

static graph datasets. These datasets represent diverse cache behaviors — some exhibiting high

inherent spatial locality while the others exhibiting lower locality. The synthetic datasets were

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 93

generated from the RMAT graph generator [52] located at [53], while the real-world datasets

were obtained from the University of Florida’s Sparse Matrix Collection [54]. The probabili-

ties {0.57,0.19,0.19,0.05} were used as input parameters in generating the RMAT datasets. Due to

limited HBM memory capacity (of 8GB) per FPGA, we could not run some very large graphs in

our 4-FPGA cluster. The next generation of HBM is expected to be 2GB per channel, allowing for

handling larger graphs. Table 5.1 shows the properties of all the datasets evaluated.

5.3.3 Accelerator Performance

Algorithm Graph Metric # FPGAs Peak BW* Performance System # FPGAs Peak BW Performance

PR Twitter execution time 4 FPGAs 1840 GB/s 84ms ForeGraph [16] 4 FPGAs 304 GB/s 15s

PR Twitter execution time 4 FPGAs 1840 GB/s 84ms PowerGraph [62] 512 CPUs - 36s

BFS Twitter execution time 4 FPGAs 1840 GB/s 576ms ForeGraph [16] 4 FPGAs 304 GB/s 7.9s

BFS Twitter execution time 4 FPGAs 1840 GB/s 576ms TurboGraph [61] CPU 41.6 GB/s 76s

BFS Twitter execution time 4 FPGAs 1840 GB/s 576ms FPGP [37] 1 FPGA - 121s

PR RMAT 16 execution time 4 FPGAs 1840 GB/s 43ms FDGLib [63] 16 FPGAs 1232 GB/s 7.35s

PR RMAT 32 execution time 4 FPGAs 1840 GB/s 86ms FDGLib [63] 16 FPGAs 1232 GB/s 7.84s

Table 5.2: Comparing ACTS with prior FPGA-based accelerators; Peak BW* refers to the total

off-chip bandwidth available in evaluation platform; Performance in execution time (in ms)

Graph accelerator Memory BW* Effective BW* Communication BW* Clock Freq*

Gunrock [51] 696 GB/s 696 GB/s 112 GB/s (NVLink) 1305 MHz

ACTS 460 GB/s 345 GB/s 17 GB/s (PCIe) 150 MHz

Table 5.3: FPGA and GPU Platform specifications. Memory BW* refers to off-chip DDR4/HBM

memory bandwidth; Communication BW* refers to PCIe/NVLink bandwidth between the

FPGA/GPU respectively; Clock Freq* refers to clock frequency of the FPGA/GPU; Effective

BW* refers to maximum bandwidth the algorithm can use upon deployment

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 94

MTEPS

IND TW SK UK SN WB R8 R16 R32 Geo-mean

Gunrock 8726 11241 22634 17950 8627 11742 15426 13243 10323 11800

ACTS 12179 16685 18740 13412 4012 6465 25795 20900 15936 13771

MTEPS/BW*

IND TW SK UK SN WB R8 R16 R32 Geo-mean

Gunrock 3.1 4.0 8.1 6.4 3.1 4.2 5.5 4.8 3.7 4.2

ACTS 8.8 12.1 13.6 9.7 2.9 4.7 18.7 15.1 11.5 10.0

Improvement 2.8x 3.0x 1.7x 1.5x 0.9 1.1x 3.4x 3.2x 3.1 2.4x

MTEPS/Watt

IND TW SK UK SN WB R8 R16 R32 Geo-mean

Gunrock 16.7 21.5 43.2 34.3 16.5 22.4 29.4 25.3 19.7 22.5

ACTS 69.2 94.8 106.5 76.2 22.8 36.7 146.6 118.8 90.5 78.2

Improvement 4.2x 4.4x 2.5x 2.2x 1.4 1.6x 5.0x 4.7x 4.6x 3.5x

Table 5.4: Comparing ACTS with Gunrock on 16 iterations of PageRank using 4 FPGAs/GPUs;

Comm BW* refers to communication bandwidth between devices; Perf* refers to performance in

million edges traversed per second or MTEPS (top); Perf*/Watt refers to energy efficiency in

MTEPS / Watt (middle); Perf* / Band* refers to bandwidth efficiency in MTEPS / (GB/s)

(bottom)

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 95

MTEPS

IND TW SK UK SN WB R8 R16 R32 Geo mean

Gunrock [51] 10907 11686 50799 32962 9649 17241 24700 20036 14937 16245

ACTS 12179 16685 18740 13412 4012 6465 25795 20900 15936 13771

MTEPS/BW*

IND TW SK UK SN WB R8 R16 R32 Geo mean

Gunrock [51] 3.9 4.2 18.2 11.8 3.5 6.2 8.9 7.2 5.4 5.8

ACTS 8.8 12.1 13.6 9.7 2.9 4.7 18.7 15.1 11.5 10.0

Improvement 2.3x 2.9x 0.7x 0.8x 0.8x 0.8x 2.1x 2.1x 2.2x 1.7x

MTEPS/Watt

IND TW SK UK SN WB R8 R16 R32 Geo mean

Gunrock [51] 20.8 22.3 96.9 62.9 18.4 32.9 47.1 38.2 28.5 31.0

ACTS 69.2 94.8 106.5 76.2 22.8 36.7 146.6 118.8 90.5 78.2

Improvement 3.3x 4.3x 1.1x 1.2x 1.2x 1.1x 3.1x 3.1x 3.2x 2.5x

Table 5.5: Comparing ACTS with Gunrock on 16 iterations of SPMV using 4 FPGAs/GPUs;

Comm BW* refers to communication bandwidth between devices; Perf* refers to performance in

million edges traversed per second or MTEPS (top); Perf*/Watt refers to energy efficiency in

MTEPS / Watt (middle); Perf* / Band* refers to bandwidth efficiency in MTEPS / (GB/s)

(bottom)

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 96

MTEPS

IND TW SK UK SN WB R8 R16 R32 Geo mean

Gunrock [51] 6886 - 12663 11152 7638 8300 12015 11675 10632 9779

ACTS 6594 - 9370 6643 1832 3232 13205 10942 7891 6713

MTEPS/BW*

IND TW SK UK SN WB R8 R16 R32 Geo mean

Gunrock [51] 2.5 - 4.5 4.0 2.7 3.0 4.3 4.2 3.8 3.5

ACTS 4.8 - 6.8 4.8 1.3 2.3 9.6 7.9 5.7 4.9

Improvement 1.9x - 1.5x 1.2x 0.5x 0.8x 2.2x 1.9x 1.5x 1.4x

MTEPS/Watt

IND TW SK UK SN WB R8 R16 R32 Geo mean

Gunrock [51] 13.1 - 24.2 21.3 14.6 15.8 22.9 22.3 20.3 18.7

ACTS 37.5 - 53.2 37.7 10.4 18.4 75.0 62.2 48.8 38.1

Improvement 2.9x - 2.2x 1.8x 0.7x 1.2x 3.3x 2.8x 2.2x 2.0x

Table 5.6: Comparing ACTS with Gunrock on 16 iterations of Hyperlink Induced Topic Search

(HITS) using 4 FPGAs/GPUs; Comm BW* refers to communication bandwidth between devices;

Perf* refers to performance in million edges traversed per second or MTEPS (top); Perf*/Watt

refers to energy efficiency in MTEPS / Watt (middle); Perf* / Band* refers to bandwidth

efficiency in MTEPS / (GB/s) (bottom)

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 97

5.3.4 Overall Performance

Tables 5.2, 5.4, 5.5 and 5.6 show the comparisons of Swift with these frameworks and accelerators

and yield several important observations.

1. As shown in Table 5.2, Swift demonstrates superior performance over prior multi-FPGA

frameworks. This is due to three main reason:

(a) Within each FPGA, Swift handles the random accesses associated with vertex-to-vertex

communication at higher throughput, allowing it to enjoy more of the HBM bandwidth

and on-chip URAM parallelism within each FPGA. This is because of Swift employs

online partitioning proposed in ACTS [64] to sequentialize access to HBM and use fast

on-chip URAMs.

(b) Swift’s decoupled, asynchronous execution model (discussed in section 5.2.1) allows

overlapping between computation (within the FPGAs) and communication (between

the FPGAs) during graph processing. Prior art do not offer this advantage, causing the

FPGAs to experience idle times during communication.

(c) Swift’s load balancing strategy allows for uniformly balanced workload across the clus-

ter. It also supports high throughput when active frontiers migrate from one FPGA to

another. (discussed in section 5.2.5).

2. Swift demonstrate mixed performance compared with Gunrock. It should however be noted

that the GPU cluster used to evaluate Gunrock (A40 GPUs) has greater bandwidth and inter-

FPGA communication link than the FPGA setup. The UK-2005 and IT datasets are highly

regular datasets that exhibit high cache hit rates, making them benefit significantly from

caching in the GPU. With the other relatively unstructured datasets, ACTS demonstrate su-

perior throughput over Gunrock.

Chapter 5. Accelerated Graph Processing with Multiple FPGAs 98

5.4 Conclusion

The FPGA has great potentials for accelerating graph processing on the clusterscale arena. Its

flexibility in designing custom datapaths and memory subsystem to parallelize stubborn bottle-

necks in standard graph algorithms is perhaps its greatest advantage. In this work we present

Swift, a clusterscale graph accelerator for HBM-equipped FPGAs. Swift extends our ideas in our

previous work [64] and addresses critical concerns that are not manifested in single-FPGA accel-

erators: These are 1) limited bandwidth of FPGA-to-FPGA communication infrastructure, and 2)

throughput degradation that arises from prior workload balancing strategies. To tackle the first

we propose a decoupled, asynchronous GAS-based execution model that allows the overlapping

of three important graph processing primitives — computation, importing and exporting. This al-

lows the saturation of communication (PCIe/QSFP), offchip (HBM/DDR) and on-chip (SRAM)

bandwidth across the entire graph processing flow, effectively hiding inter-FPGA communication

with intra-FPGA computation. With our model, computation can be run on a portion of the graph

within an FPGA (called vertex interval) at the same time the importation of active frontiers is hap-

pening over another vertex interval, and at the same time exportation is happening over another

interval, all within the same FPGA. To tackle the second we impose some constraints on prior

workload placement strategies to maintain a high throughput exchange datapath, an important dat-

apath in the cluster. Swift was built on top of our prior single-FPGA-based accelerator [64], and

demonstrates superior performance over several prior FPGA-based frameworks and a well-known

GPU-based accelerator.

Chapter 6

Dynamic ACTS: A Dynamic Graph

Accelerator For HBM-Enabled FPGAs

6.1 Challenges

Figure 6.1: Dynamic graph updating model employed by prior art

In this chapter we revisit the processing of evolving graphs, this time using HBM-enabled FPGAs.

We highlight a major limitation to the widely-adopted traversal-based approach employed by the

state-of-the-art to updating evolving graphs (i.e., edge insertions, deletions and updating). We then

propose a novel approach of tackling this limitation.

99

Chapter 6. A Dynamic Graph Accelerator For HBM-Enabled FPGAs 100

The technique employed by prior art to perform graph updating is traversal based. With this ap-

proach, edgelists of the graph are traversed to search for a matching edge before the insertion,

deletion or update operation is executed. As discussed in section 3.4, the extent to which this

search space is reduced depends on the traversal algorithm, and directly correlates to the perfor-

mance of the data structure. RHH reduces it to O(lnn), while GraphTinker reduces it further to

O(ln(logP∗ n)) (n is the number of edges in the edgelist)

There are two main issues with this model. First, even with the best approaches to reduce this

search space, this approach can still suffer throughput degradation from reading too many unused

edges from DRAM, and only using a few of these edges. This is because these still depend on

n. This places a limit on the throughput of graph updating models and prevent them from coming

close to matching the throughput of graph processing models. Second, this approach cannot be

interleaved (i.e., hidden within) with graph analytics tasks. Therefore, graph updating and graph

analytics happen in separate time slots, where the graph is first updated before graph analytics is

run on it and so-on and so-forth.

6.2 A More Promising Pathway

There is a wide gap in the graph community between the throughput when performing graph up-

dates (i.e., edge insertions, deletions or modifications) to a dynamic graph and when running graph

analytics on the same. A dynamic graph is one whose topology evolves with time, and graph ana-

lytics on such graphs have to keep up with the evolution of the graph at regular time intervals. In a

typical processing context, updates are performed at regular intervals followed by graph analytics.

This makes the throughput when performing updates as important as that in analyzing the graph,

and causes a bottleneck (from amdahl’s law) when one is far slower than the other. Recent state-

of-the-art frameworks that support dynamic graphs demonstrate orders of hundreds to thousands

of millions of edges per second throughput when running common graph algorithms, but only tens

of millions of edges per seconds when performing edge-insertion. This is fundamentally because

Chapter 6. A Dynamic Graph Accelerator For HBM-Enabled FPGAs 101

Figure 6.2: Interleaved Dynamic Graph Updating Flow

graph updating (i.e., edge insertions, deletions and edits) generally requires reading more unused

edges than running graph analytics. The achievable throughput when performing graph updates

is bounded by lookup operations where several unused edges will have to be read from DRAM

and analyzed before the required edge is found. With graph analytics on the other hand, a ma-

jority of the edges read from DRAM are actually useful during processing. Due to amdahl’s law,

combining graph updating solutions with graph analytics solutions in a dynamic graph processing

environment is bottlenecked by the poorer graph-updating throughput, and this makes even the

fastest graph engines perform poorly in such scenarios. This project aims to tackle this issue.

The main insight to achieving our goal in this project is to identify high-latency operations com-

mon to both graph updating and graph analytics and interleave them together (hiding one in the

other) such that such operations are performed only once when processing evolving graphs. This

will allow graph updating to be performed at graph-analytics speeds. We currently highlight two

expensive processes common to both:

Chapter 6. A Dynamic Graph Accelerator For HBM-Enabled FPGAs 102

• Traversing edgelists: Both graph updating and graph analytics involve traversing edgelists.

During edge insertions, edgelists are traversed when following edges to insert, delete or mod-

ify an edge. During graph analytics, edgelists are also traversed when traversing neighboring

vertices to send messages from source to destination. Both operations are expensive as they

incur costly accesses to high-latency DRAM.

• Loading of non-contiguous edgelists in DRAM: During edge insertions consecutive edges

to be inserted can belong to different edgelists. Therefore edgelists are loaded on-chip from

non-contiguous vertices to perform insertions. Similarly, edgelists are also loaded on-chip

from non-contiguous vertices when traversing a graph during graph analytics. Both these

operations are also expensive as they also involve high-latency DRAM accesses.

Motivated by these common expensive operations, we propose to improve GraphTinker for FPGA-

HBM environment and tailor it into ACTS’ framework to support high performance and scalable

dynamic graph processing. In this work, we will first expose the different layers of parallelism in

GraphTinker which are (1) parallelism across source vertex IDs and (2) parallelism across desti-

nation IDs belonging to a given source ID. We will then propose methods to map efficiently to the

FPGA leveraging the inter- and intra-HBM parallelism of the FPGA, as well as its high on-chip

parallelism. Next, we will combine these high-latency tasks common to both so that such tasks are

performed only once during the workflow.

In a typical processing flow, active vertex properties for the current graph iteration are read from

DRAM with their corresponding outgoing edgelists. Additionally, graph updates (i.e., edges to be

inserted, deleted or modified) corresponding to the edgelists will also be read from DRAM. These

edgelists are then traversed on-chip to achieve two goals: (1) to generate messages and commit to

neighboring destination vertex properties (graph analytics), and (2) to update the graph structure.

At the end of the traversal process two outputs will be produced and committed back to the graph:

(1) modified destination vertex properties, and (2) modified edgelists. This project will allow graph

updating occur at throughputs competitive to running graph analytics on static graphs and bridge

the gap between the two.

Chapter 6. A Dynamic Graph Accelerator For HBM-Enabled FPGAs 103

6.3 Conclusion

We presented Dynamic-ACTS, an accelerator for graph processing, and a graph-updating engine

designed for HBM-equipped FPGAs. Dynamic-ACTS is based on the push-based edge-centric

computation style. To accelerate graph processing, Dynamic-ACTS removes the requirement of of-

fline slicing and embedding it within the Gather-Apply-Scatter abstraction. This allows Dynamic-

ACTS to maintain an optimal read bandwidth usage of vertex property data, making it scale more

efficiently to larger graph sizes. To accelerate graph updating (i.e., edge insertions and modifica-

tions to the dynamic graph), Dynamic-ACTS employ a hashing strategy where a group of edge

updates is hashed to a large URAM array, and edges are streamed across the array to pick and ap-

ply their edge updates inflight. This approach shows significant performance benefits compared to

the widely adopted technique where edgelists are first traversed to find a match before performing

an update. This allows increased throughput to graph updating and the opportunity to hide graph

updating within graph analytics. Dynamic-ACTS demonstrates superior performance over GraSU,

a state-of-the-art graph updating engine for the FPGA. Future work with Dynamic-ACTS will be

to deploy Dynamic-ACTS in a cluster-scale FPGA setting.

Chapter 7

Conclusion And Future Work

The use of graphs and graph algorithms to model and reason about data has seen a huge invest-

ment of effort from both theoretical and practical communities over the past decade. This thesis

contributes to this research effort in Chapters 3, 4, 5, and 6 by developing graph processing meth-

ods and strategies that allow analytics of both static and dynamic graphs to be accelerated on the

FPGA.

Chapter 3 (GraphTinker) proposes a solution for the tradeoff associated with data structures for dy-

namic (or evolving) graphs. Several data structures for dynamic graphs demonstrate high through-

put when inserting, deleting, or updating edges to the graphs but at the cost of low throughput

when running graph analytics, or vice versa. In this chapter, I propose a data structure for the

CPU that allows a compact data representation, where edges within the data structure are packed

together with little to no empty slots in-between, and an optimal data structure that requires only a

small fraction of the edgelist to be traversed for every edge to be inserted, deleted or updated. The

techniques incorporated into GraphTinker allow it to demonstrate superior performance over prior

art.

My dissertation shifted gears to the FPGA domain considering the benefits of the FPGA as poten-

tial graph accelerators. Chapter 4 (ACTS) investigates the challenge of poor scaling (w.r.t. graph

104

Chapter 7. Conclusion 105

size) with prior FPGA-based graph accelerators. While current FPGA accelerators demonstrate

excellent performance when running analytics on small graphs, their performance can degrade sig-

nificantly with larger graphs. This is due to a popular adopted strategy called graph slicing, which

aims to use fast URAMs for random accesses to vertices during processing. With graph slicing,

the graph is partitioned (to restructure locality) into several slices to stage the vertex properties of

each slice in chunks that fit on-chip FPGA memory (i.e., URAM). The consequence of this is a

wastage of HBM bandwidth, as several vertex properties can be read more than once from HBM

when processing each slice. This problem exacerbates with larger graphs resulting in degradation

in throughput. My solution proposes to restructure the locality of messages generated during pro-

cessing rather than the graph itself. This eliminates this redundancy issue and allows scaling, as

no vertex property is read more than once in each graph iteration. The main drawbacks associated

with this approach are discussed and tackled in this chapter.

The work in Chapter 5 (Swift) was motivated by the success of ACTS discussed in Chapter 4. Swift

attempts to map ACTS in a multi-FPGA environment and address the issue of low communication

channel bandwidth between FPGAs. Swift proposes a decoupled asynchronous approach where

computation (within FPGAs) and communication (between FPGAs) tacks are asynchronously exe-

cuted on separate regions of a graph concurrently. The objective is to keep the PCIe communication

channel, the HBM, and the on-chip URAM/BRAM of the FPGA busy. While an asynchronous ap-

proach to graph processing on FPGAs allows this advantage, it introduces a new set of problems

that can cause the (1) degradation of HBM bandwidth efficiency within each FPGA, (2) distortion

of the correct flow of execution, causing incorrect results, and (3) displacing the online partition-

ing strategy of vertex updates, which is a principal contributor to performance in ACTS. Chapter 5

proposes techniques to address each of these concerns to deliver superior performance over prior

art.

Chapter 6 revisits dynamic graph processing and proposes a new approach to updating dynamic

graphs. The goal was to reduce the gap in throughput between graph updating and graph analytics

tasks. Rather than employing the widely known approach of traversing edgelists of a graph to

search for and update a matching edge, I propose a new strategy where a group of edge updates

Chapter 7. Conclusion 106

is hashed into a large URAM array, and edges from HBM are streamed across that array to pick

their updates at their hashed indexes. This approach serves two important benefits (1) it allows a

runtime complexity of O(1) because there is no need to search through any edgelists. (2) It allows

graph updating tasks to be hidden within graph analytics tasks as inflight edges which have been

updated can move through the graph processing pipeline. The presence of conflicts is a challenge

with this approach, where two or more edge updates can be hashed to the same URAM slot. This

challenge is tackled in this chapter.

There are three prominent future directions for my dissertation. The first would be to develop a

single synthesized implementation to support multiple algorithms. This would prevent the need

to re-synthesize all over again when making changes to the model, or when implementing a new

algorithm. The second would be to distill lessons in ACTS to develop near-memory or in-memory

accelerator. The third would be to implement caching functionality that exploit locality within

graphs.

Above all, this dissertation achieves efficient graph analytics and efficient updating of dynamic

graphs by optimizing bandwidth efficiency.

Appendix A

List of Publications

A.1 Publications

1. W. Jaiyeoba and K. Skadron, ”GraphTinker: A High Performance Data Structure for Dy-

namic Graph Processing,” 2019 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS), Rio de Janeiro, Brazil, 2019, pp. 1030-1041, doi: 10.1109/IPDPS.2019.00110.

2. W. Jaiyeoba, N. Elyasi, C. Choi, and K. Skadron. 2023. ACTS: A Near-Memory FPGA

Graph Processing Framework. In Proceedings of the 2023 ACM/SIGDA International Sym-

posium on Field Programmable Gate Arrays (FPGA ’23). Association for Computing Ma-

chinery, New York, NY, USA, 79–89. https://doi.org/10.1145/3543622.3573180

A.2 Planned Publications & Journals

• Accelerated Graph Processing with Multiple FPGAs. In this paper we would propose our

ideas for accelerated graph processing using multiple FPGAs as discussed in chapter 5.

• A Dynamic Graph Accelerator For HBM-Enabled FPGAs. In this journal we would propose

our ideas for dynamic graph processing as discussed in chapter 6.

107

List of Publications 108

A.3 Patents

• O. Jaiyeoba, N. Elyasi (Samsung SSI), C. Choi (Samsung SSI) “A technique to convert low

locality and random memory accesses into sequential accesses in efficient time” 20210255793,

August 19, 2021.

• O. Jaiyeoba, N. Elyasi (Samsung SSI), C. Choi (Samsung SSI) “System and method for

managing conversion of low-locality data into high-locality data” 11429299, August 30,

2022.

A.4 Awards

• Outstanding Teaching Assistant Award, Charles L. Brown Department of Electrical and

Computer Engineering, University of Virginia, May 2017

Bibliography

[1] “The fpga architecture,” https://www.ni.com/docs/en-US/bundle/labview-nxg-fpga-targets/

page/intro-fpga-resources.html, accessed: 2023-03-15.

[2] R. Li, “Pipelined asynchronous high level synthesis for general programs,” Ph.D. dissertation,

Yale University Graduate School of Arts and Sciences, 2021.

[3] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “Hbm (high bandwidth

memory) dram technology and architecture,” in 2017 IEEE International Memory Workshop

(IMW), 2017, pp. 1–4.

[4] S. Beamer, K. Asanović, and D. Patterson, “Gail: The graph algorithm iron law,” in

Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms,

ser. IA¡sup¿3¡/sup¿ ’15. New York, NY, USA: Association for Computing Machinery,

2015. [Online]. Available: https://doi.org/10.1145/2833179.2833187

[5] D. Ediger, R. Mccoll, J. Riedy, and D. Bader, “Stinger: High performance data structure for

streaming graphs,” 09 2012, pp. 1–5.

[6] V. Kalavri, V. Vlassov, and S. Haridi, “High-level programming abstractions for distributed

graph processing,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, pp.

305–324, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:7589970

109

https://www.ni.com/docs/en-US/bundle/labview-nxg-fpga-targets/page/intro-fpga-resources.html
https://www.ni.com/docs/en-US/bundle/labview-nxg-fpga-targets/page/intro-fpga-resources.html
https://doi.org/10.1145/2833179.2833187
https://api.semanticscholar.org/CorpusID:7589970

Bibliography 110

[7] S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable graph processing

frameworks: A taxonomy and open challenges,” ACM Comput. Surv., vol. 51, no. 3, jun

2018. [Online]. Available: https://doi.org/10.1145/3199523

[8] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph processing using

streaming partitions,” SOSP 2013 - Proceedings of the 24th ACM Symposium on Operating

Systems Principles, 11 2013.

[9] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphicionado: A high-

performance and energy-efficient accelerator for graph analytics,” 10 2016, pp. 1–13.

[10] A. C, ““giraph: Large-scale graph processing infrastructure on hadoop,” 2011.

[11] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi, C. Raghavendra,

and V. Prasanna, “Goffish: A sub-graph centric framework for large-scale graph analytics,”

in Euro-Par 2014 Parallel Processing, F. Silva, I. Dutra, and V. Santos Costa, Eds. Cham:

Springer International Publishing, 2014, pp. 451–462.

[12] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework for distributed

computation on real-world graphs,” Proc. VLDB Endow., vol. 7, no. 14, p. 1981–1992, oct

2014. [Online]. Available: https://doi.org/10.14778/2733085.2733103

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein, “Graphlab:

A new framework for parallel machine learning,” Proceedings of the 26th Conference on

Uncertainty in Artificial Intelligence, UAI 2010, 06 2010.

[14] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, “Pregel:

A system for large-scale graph processing,” 01 2009, p. 48.

[15] M. M. A. P. S. R. D. M. J. A. S. G. V. D. D. N. Sundaram, N. Satish and P. Dubey, “Graphmat:

High performance graph analytics made productive.” Proceedings of the VLDB Endowment,

2015.

https://doi.org/10.1145/3199523
https://doi.org/10.14778/2733085.2733103

Bibliography 111

[16] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “Foregraph: Exploring large-scale

graph processing on multi-fpga architecture,” 02 2017, pp. 217–226.

[17] X. Chen, H. Tan, Y. Chen, B. He, W. Wong, and D. Chen, “Thundergp: Hls-based graph pro-

cessing framework on fpgas,” in FPGA 2021 - 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, ser. FPGA 2021 - 2021 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. Association for Computing Machinery,

Inc, Feb. 2021, pp. 69–80, publisher Copyright: © 2021 ACM.; 2021 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays, FPGA 2021 ; Conference date:

28-02-2021 Through 02-03-2021.

[18] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. Hoe, J. Martinez, and

C. Guestrin, “Graphgen: An fpga framework for vertex-centric graph computation,” 05 2014,

pp. 25–28.

[19] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu, “Hitgraph: High-

throughput graph processing framework on fpga,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 30, no. 10, pp. 2249–2264, 2019.

[20] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna, “An fpga framework for edge-centric

graph processing,” in Proceedings of the 15th ACM International Conference on Computing

Frontiers, ser. CF ’18. New York, NY, USA: Association for Computing Machinery, 2018,

p. 69–77. [Online]. Available: https://doi.org/10.1145/3203217.3203233

[21] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energy-efficient graph

processing on fpga,” in 2016 IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2016, pp. 103–110.

[22] Y. Zhuo, X.-L. Wu, J. P. Haldar, T. Marin, W. mei W. Hwu, Z.-P. Liang, and

B. P. Sutton, “Chapter 44 - using gpus to accelerate advanced mri reconstruction with

field inhomogeneity compensation,” in GPU Computing Gems Emerald Edition, ser.

Applications of GPU Computing Series, W. mei W. Hwu, Ed. Boston: Morgan Kaufmann,

https://doi.org/10.1145/3203217.3203233

Bibliography 112

2011, pp. 709–722. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

B9780123849885000449

[23] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “Hbm (high bandwidth

memory) dram technology and architecture,” in 2017 IEEE International Memory Workshop

(IMW), 2017, pp. 1–4.

[24] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F. Zhao, and

E. Chen, “Kineograph: taking the pulse of a fast-changing and connected world,” in European

Conference on Computer Systems, 2012.

[25] G. Feng, X. Meng, and K. Ammar, “Distinger: A distributed graph data structure for massive

dynamic graph processing,” 10 2015, pp. 1814–1822.

[26] O. Green and D. A. Bader, “custinger: Supporting dynamic graph algorithms for gpus,” in

2016 IEEE High Performance Extreme Computing Conference (HPEC), 2016, pp. 1–6.

[27] P. Macko, V. Marathe, D. Margo, and M. Seltzer, “Llama: Efficient graph analytics using

large multiversioned arrays,” Proceedings - International Conference on Data Engineering,

vol. 2015, pp. 363–374, 05 2015.

[28] C. Yin, J. Riedy, and D. A. Bader, “A new algorithmic model for graph analysis

of streaming data,” in Proceedings of the 14th International Workshop on Mining and

Learning with Graphs (MLG), held in conjunction with 24th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), August 2018, pp. 1–8. [Online]. Available:

http://www.mlgworkshop.org/2018/papers/MLG2018 paper 23.pdf

[29] “Open addressing,” 2023, [Online; accessed 29-September-2012]. [Online]. Available:

https://en.wikipedia.org/wiki/Open addressing

[30] P. Celis, “Robin hood hashing,” Ph.D. dissertation, CAN, 1986.

https://www.sciencedirect.com/science/article/pii/B9780123849885000449
https://www.sciencedirect.com/science/article/pii/B9780123849885000449
http://www.mlgworkshop.org/2018/papers/MLG2018_paper_23.pdf
https://en.wikipedia.org/wiki/Open_addressing

Bibliography 113

[31] K. Iwabuchi, S. Sallinen, R. Pearce, B. Van Essen, M. Gokhale, and S. Matsuoka, “Towards

a distributed large-scale dynamic graph data store,” in 2016 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2016, pp. 892–901.

[32] P. Celis, P.-A. Larson, and J. I. Munro, “Robin hood hashing,” in 26th Annual Symposium on

Foundations of Computer Science (sfcs 1985), 1985, pp. 281–288.

[33] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating graph linear algebra on hbm-

equipped fpgas,” in 2021 IEEE/ACM International Conference On Computer Aided Design

(ICCAD), 2021, pp. 1–9.

[34] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: A high bandwidth memory

based accelerator for general-purpose sparse matrix-vector multiplication,” 2021. [Online].

Available: https://arxiv.org/abs/2111.12555

[35] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and J. Cong, “Sextans: A streaming

accelerator for general-purpose sparse-matrix dense-matrix multiplication,” in Proceedings

of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

ser. FPGA ’22. New York, NY, USA: Association for Computing Machinery, 2022, p.

65–77. [Online]. Available: https://doi.org/10.1145/3490422.3502357

[36] Z.-k. Wang, J. Paul, B. He, and W. Zhang, “Multikernel data partitioning with channel on

opencl-based fpgas,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. PP, pp. 1–13, 02 2017.

[37] G. Dai, Y. Chi, Y. Wang, and H. Yang, “Fpgp: Graph processing framework on fpga a case

study of breadth-first search,” 02 2016, pp. 105–110.

[38] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, and P. Sadayappan, “Parallel fpga-

based all-pairs shortest-paths in a directed graph,” in Proceedings 20th IEEE International

Parallel Distributed Processing Symposium, 2006, pp. 10 pp.–.

https://arxiv.org/abs/2111.12555
https://doi.org/10.1145/3490422.3502357

Bibliography 114

[39] N. Engelhardt and H. K.-H. So, “Gravf: A vertex-centric distributed graph processing frame-

work on fpgas,” 2016 26th International Conference on Field Programmable Logic and Ap-

plications (FPL), pp. 1–4, 2016.

[40] M. Delorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. Uribe, T. Knight, and

A. Dehon, “Graphstep: A system architecture for sparse-graph algorithms,” 05 2006, pp. 143

– 151.

[41] O. Mencer, Z. Huang, and L. Huelsbergen, “Hagar: Efficient multi-context graph proces-

sors,” in Field-Programmable Logic and Applications: Reconfigurable Computing Is Going

Mainstream, M. Glesner, P. Zipf, and M. Renovell, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2002, pp. 915–924.

[42] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F. Martı́nez, and

C. Guestrin, “Graphgen: An fpga framework for vertex-centric graph computation,” 2014

IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing

Machines, pp. 25–28, 2014.

[43] Z. Shao, R. Li, D. Hu, X. Liao, and H. Jin, “Improving performance of graph processing on

fpga-dram platform by two-level vertex caching,” in Proceedings of the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, ser. FPGA ’19. New York,

NY, USA: Association for Computing Machinery, 2019, p. 320–329. [Online]. Available:

https://doi.org/10.1145/3289602.3293900

[44] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna, “An fpga framework for edge-centric

graph processing,” ser. CF ’18. New York, NY, USA: Association for Computing

Machinery, 2018, p. 69–77. [Online]. Available: https://doi.org/10.1145/3203217.3203233

[45] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energy-efficient graph

processing on fpga,” in 2016 IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2016, pp. 103–110.

https://doi.org/10.1145/3289602.3293900
https://doi.org/10.1145/3203217.3203233

Bibliography 115

[46] M. Besta, D. Stanojevic, J. Licht, T. Ben-Nun, and T. Hoefler, “Graph processing on fpgas:

Taxonomy, survey, challenges,” 02 2019.

[47] S. Beamer, K. Asanović, and D. Patterson, “Reducing pagerank communication via propaga-

tion blocking,” in 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2017, pp. 820–831.

[48] “Pagerank.” [Online]. Available: https://en.wikipedia.org/wiki/PageRank

[49] “Hyperlink induced topic search (hits).” [Online]. Available: https://en.wikipedia.org/wiki/

HITS algorithm

[50] “Single source shortest path (sssp).” [Online]. Available: https://en.wikipedia.org/wiki/

Shortest path problem

[51] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. Owens, “Gunrock: a high-performance

graph processing library on the gpu,” 02 2016, pp. 1–12.

[52] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for graph mining,”

vol. 6, 04 2004.

[53] S.-W. J. et al, “RMAT generator library,” 06 2018. [Online]. Available: https:

//github.com/sangwoojun/sortreduce/tree/master/examples/graph/utils

[54] T. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM Trans. Math.

Softw., vol. 38, p. 1, 11 2011.

[55] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,” 08 2015.

[56] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for graph analytics

acceleration,” in Proceedings of the 2016 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, ser. FPGA ’16. New York, NY, USA:

Association for Computing Machinery, 2016, p. 111–117. [Online]. Available: https:

//doi.org/10.1145/2847263.2847337

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/HITS_algorithm
https://en.wikipedia.org/wiki/HITS_algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://github.com/sangwoojun/sortreduce/tree/master/examples/graph/utils
https://github.com/sangwoojun/sortreduce/tree/master/examples/graph/utils
https://doi.org/10.1145/2847263.2847337
https://doi.org/10.1145/2847263.2847337

Bibliography 116

[57] Z. Fu, M. Personick, and B. Thompson, “Mapgraph: A high level api for fast development of

high performance graph analytics on gpus,” 06 2014.

[58] N. G. A. L. n. NVIDIA Corporation. (2020) https://developer.nvidia.com/nvgraph. [Online].

Available: https://developer.nvidia.com/nvgraph

[59] W. Zhong, Y. Cao, J. Li, J. Sun, and H. Chen, “Specialization or generalization: A study on

breadth-first graph traversal on gpus,” 12 2017, pp. 294–301.

[60] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: large-scale graph computation on just a

pc,” 10 2012, pp. 31–46.

[61] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu, “Turbograph: A fast

parallel graph engine handling billion-scale graphs in a single pc,” 08 2013, pp. 77–85.

[62] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed graph-

parallel computation on natural graphs,” 10 2012, pp. 17–30.

[63] Y.-W. Wu, Q. Wang, L. Zheng, X. Liao, H. Jin, W. Jiang, R. Zheng, and K. Hu, “Fdglib:

A communication library for efficient large-scale graph processing in fpga-accelerated data

centers,” Journal of Computer Science and Technology, vol. 36, pp. 1051 – 1070, 2021.

[64] W. Jaiyeoba, N. Elyasi, C. Choi, and K. Skadron, “Acts: A near-memory fpga graph process-

ing framework,” 02 2023, pp. 79–89.

https://developer.nvidia.com/nvgraph

	Introduction
	Background
	Graph Processing Abstractions
	Vertex-centric (``Think like a vertex")
	Edge-centric (``Think like an edge")
	Subgraph-Centric (``Think like a subgraph")
	The Abstraction used in this Dissertation: Edge-centric
	Graph Algorithms

	FPGAs as Accelerators
	High-Level Synthesis
	A Simple Example
	HLS Optimizations

	High Bandwidth Memory (HBM)

	GraphTinker: High Performance Data Structure For Dynamic Graph Processing
	Challenges
	The Tinker representation
	The Subblock region
	The Workblock region
	The VertexPropertyArray

	The Coarse Adjacency List (CAL)
	GraphTinker
	GraphTinker Operations
	Inserting an edge
	Deleting an edge
	Retrieving edges

	Scatter-Gather Hashing
	The Hybrid Graph Processing Model
	Graph Processing Models for Evolving Graphs
	The Hybrid Model
	Implementation

	Evaluation
	Target System
	Algorithms
	Performance

	Related Work
	Adjacency matrix
	Adjacency list
	Robin Hood Hashing
	Graph Processing Models for Dynamic Graphs

	Conclusion

	ACTS: Scalable Graph Processing on HBM-enabled FPGAs
	Introduction
	The Challenge
	Why FPGAs?
	Implementation Details
	Partition Vertex Updates not Edges
	Online Recursive Partitioning
	Efficient Edge Packing
	Hybrid Processing of Sparse Frontiers

	Evaluation
	Target Hardware System
	Applications
	Datasets
	Experimental Setup
	Resource Utilization
	Accelerator Performance
	Energy Usage

	Related Work
	FPGA-based Graph Processing Frameworks
	GPU- and Software-based Graph Processing Frameworks

	Conclusion

	Swift: Accelerated Graph Processing with Multiple FPGAs
	Challenges
	Implementation Details
	Decoupled Asynchronous Execution Flow
	Example Flow
	Graph Layout in Memory
	Workload Balance Across The FPGA Cluster
	High Throughput Exchange Datapath

	Evaluation
	Target Hardware System
	Applications and Datasets
	Accelerator Performance
	Overall Performance

	Conclusion

	Dynamic ACTS: A Dynamic Graph Accelerator For HBM-Enabled FPGAs
	Challenges
	A More Promising Pathway
	Conclusion

	Conclusion And Future Work
	List of Publications
	Publications
	Planned Publications & Journals
	Patents
	Awards

	Bibliography

