




Abstract

In today’s rapidly evolving technological landscape, multi-agent systems have become a fundamental paradigm for
modeling complex interactions and decision making in various domains. The study of decision making within these
systems has gained significant attention across fields like artificial intelligence, robotics, economics, and social sciences.
This dissertation explores the intricacies of decision making in multi-agent systems, focusing on the cooperative,
non-cooperative and competitive interactions among agents, and addresses the challenge of designing and analyzing
multi-agent decision-making algorithms, with the aim to understand how individual agents with diverse capabilities,
knowledge, and objectives can collectively achieve desirable outcomes.

For cooperative decision making that involves agents collaborating to achieve common objectives, effective
coordination and information sharing are essential. This research investigates decision-making algorithms that facilitate
collaboration and improve overall system performance under various challenging scenarios, such as heterogeneity,
non-stationarity, and decentralized communication. In domains with limited resources, conflicting objectives, or
strategic interactions, non-cooperative and strictly competitive agent behaviors become prevalent. In such settings,
agents prioritize self-interest and individual objectives over collaborative efforts. This research analyzes and develops
effective decision-making techniques on the system side to account for non-cooperative behaviors and guide agents
towards desirable decision-making outcomes.

By understanding the dynamics of decision making in both cooperative and non-cooperative settings, this dissertation
aims to enhance the overall performance and efficiency of multi-agent systems across a wide range of applications,
and contribute to the advancement of decision-making algorithms, enabling better cooperation and addressing the
challenges posed by non-cooperative behaviors in multi-agent systems.
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Chapter 1

Introduction and Overview

In today’s rapidly evolving technological landscape, multi-agent systems have emerged as a fundamental paradigm for
modeling complex interactions and decision making in various domains. These systems consist of multiple autonomous
agents that interact with each other, aiming to achieve individual and collective goals. The study of decision making
within such multi-agent systems is a crucial research area that has gained significant attention across diverse fields,
including artificial intelligence, robotics, economics, and social sciences. This dissertation delves into the intricacies of
decision making in multi-agent systems, exploring the spectrum of cooperative and competitive interactions that agents
engage in. By understanding the dynamics of decision making in both cooperative and non-cooperative settings, I aim
to enhance the overall performance and efficiency of multi-agent systems across a wide range of applications.

The fundamental challenge in designing and analyzing multi-agent decision-making systems lies in understanding
how individual agents, each with its own capabilities, knowledge, and objectives, can collectively achieve desirable
outcomes. Cooperative decision making lies at the heart of many real-world scenarios, where agents must collaborate to
achieve common objectives. Examples can be found in various domains such as disaster response [1], autonomous
vehicles [2], and multi-robot systems [3]. The ability to effectively coordinate actions and share information among
agents is critical for successful cooperation. Consequently, this research investigates decision-making algorithms that
facilitate collaboration among agents under different challenging scenarios, such as heterogeneity, non-stationarity, and
decentralized communication, with the purpose of improving overall system performance. In addition to cooperation,
non-cooperative and strictly competitive behaviors are another prevalent aspect of multi-agent systems, particularly
in domains where limited resources, conflicting objectives, or strategic interactions exist. In contrast to agents in
cooperative setting, now the agents operate in environments where self-interest and individual objectives take precedence
over collaborative efforts. These agents seek to maximize their own utility or achieve personal goals without actively
considering the well-being or interests of others. For instance, in economic settings like auction systems or marketplaces
[4], the agents may engage in strategic bidding or pricing strategies to gain an advantage over their competitors. This
research seeks to analyze and develop effective decision-making techniques on the system side to account for such
behaviors and guide the agents towards desirable decision-making outcomes.

1.1 Challenges
In order to let the multi-agent system interact, learn, and adapt in complex environments, one fundamental challenge
faced by these intelligent agents is the well-known exploration-exploitation dilemma [5], such that agents seeking
to make optimal decisions need to determine: whether to invest resources and time into exploring new options that
may yield greater long-term benefits or to exploit known strategies that have shown success in the past. Striking the
right balance between exploration and exploitation becomes crucial to achieving efficient decision-making in various
domains, ranging from recommender systems [6], mobile health [7], environment monitoring [8], automatic machine
learning [9], cyber-physical systems [10, 11], etc. As illustrated in Figure 1.1, in addition to obtaining a good model
estimation on dataset collected so far, the agents also need to efficiently explore the action space to acquire new data
points from the environment. Otherwise, the learned model generalizes poorly on previously unseen data inputs, and
thus leads to sub-optimal decisions.

In the context of multi-agent systems, the exploration-exploitation dilemma takes on a new dimension. Agents
within such systems are not isolated decision-makers but instead interact with each other, forming complex networks of
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Figure 1.1: To make optimal decisions, agents need to trade-off between exploration and exploitation when interacting
with the environment. Under multi-agent systems that are studied in this dissertation, challenges on new dimensions are
introduced, as agents within such systems are not isolated decision-makers but instead interact with each other, forming
complex networks of interactions and dependencies.

interactions and dependencies. These interactions introduce additional challenges that can affect the decision-making
dynamics of both cooperative and non-cooperative agents, which will be discussed in more details in the following
paragraphs.

Decision making with cooperative agents In cooperative multi-agent systems, where agents work together to
achieve common goals, the exploration-exploitation dilemma is influenced by factors such as information sharing and
coordination. Cooperative agents need to strike a balance between exploring new possibilities that may improve the
collective performance and exploiting established strategies to maintain stability and avoid unnecessary risks. Achieving
effective cooperation requires methods that enable agents to align their exploration and exploitation strategies. However,
several practical challenges may impede such cooperation in multi-agent systems.

• First, for many applications, decision making systems face a non-stationary environment, i.e., the reward function
of each agent changes over time, which induces changes in the task similarities between agents. For example,
users of a recommender system may change their preferences dramatically over time due to various internal or
external factors [12], and thus users sharing similar opinions now may develop diverse opinions in the future.
Therefore, directly pooling their data together to learn a single model has negative impacts on the performance.
Instead, the decision making system needs to carefully decide when and with whom the agents should collaborate,
in order to enjoy improved performance compared with learning a separate model on each agent.

• Second, with the increasing number of decentralized applications, where data storage and computation are
distributed to each agent, cooperative decision making under decentralized environment is becoming increasingly
important. In this case, communication bandwidth becomes the main bottleneck, e.g., communication in a
network of mobile devices can be slower than local computation by several orders of magnitude [13]. This gives
rise to the conflict between the need of timely data/model aggregation for cooperative decision making and the
need of communication efficiency, and thus a well-designed communication strategy becomes vital to strike the
balance.

Decision making with non-cooperative agents Conversely, in non-cooperative multi-agent systems, where agents
pursue self-interest, instead of a common goal in an altruistic manner, the decision making problem takes on a more
competitive nature. For example, the agents may want to withhold some information due to concerns about cost, privacy
and security, even if their interests align with that of the others, and thus, collectively they make sub-optimal decisions.
In this case, it is essential to factor such self-interested behaviors into decision making, i.e., by carefully modeling their
various non-cooperative or even competitive behaviors, and then designing strategies tailored to each situation. In this
dissertation, the following non-cooperative behaviors are considered.

• First, the agents may withhold the actual feedback, and only reveals the sequence of chosen actions to the system,
which gives rise to an intriguing challenge of learning agents’s utility parameters from only the coarse and
implicit feedback of “revealed preference” [14]. For example, it is widely observed that very few recommender
system users would bother to provide detailed feedback (even not numerical ratings). This observation is also
supported by the 90-9-1 Rule for online community engagement, and the “Lazy User Theory” [15] in the HCI
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community, which states that a user will most often choose the solution that will fulfill her information needs
with the least cost/effort.

• Second, as self-interested entities, agents may refuse to participate in cooperation, unless the benefits of coop-
eration outweighs the potential risks, e.g., of privacy leakage. This is motivated by the practical observation
that many clients in a decentralized/federated system are inherently self-interested and thus reluctant to share
data without receiving explicit benefits from the server [16]. For instance, consider a recommendation platform
(server) that wants its mobile app users (clients) to opt in its new recommendation service, which switches
previous on-device local prediction model to a globally trained model. Although the new service is expected to
improve the overall recommendation quality for all clients, particular clients may not be willing to participate, as
the expected gain for them might not compensate their locally increased cost (e.g., communication bandwidth,
added computation, lost control of their data, etc). In this case, additional actions have to be taken by the server
to encourage participation, as it has no power to force clients.

• Third, in some situations, we may face strictly competitive agents, i.e., the actions of one agent negatively affect
the utilities of the others. Take recommender systems of short videos or live streaming as an example. To
maximize utility, the content creators may actively adjust their contents to attract more users. Therefore, how the
system allocates the user traffic to the creators affects their content generation, and thus further affects social
welfare, i.e., overall user satisfaction [4]. In this case, it is essential for the system to mediate creators’ behaviors
with properly designed allocation rule and steer the equilibrium outcome to optimize important societal objectives,
such as social welfare for users.

1.2 Dissertation Overview
To explore the intricacies of different types of agent behaviors, and provide insights into effective strategies for agents
to efficiently explore the environment and achieve optimal outcomes, this dissertation instantiates these challenges
under scenarios where the environment repeatedly provides the system with a set of candidate actions to choose
from, and possibly some side information (aka., context) [17, 18, 19]; and the system, whose goal is to maximize
cumulative reward over time, can only observe the reward corresponding to the chosen action. This is often modeled as
a (contextual) bandit problem [20, 21], which is a sub-class of episodic Markov decision processes (MDPs) [22] and
exemplifies the well-known exploitation-exploration dilemma [5]. There is no explicit state transition. Each decision
or action taken is considered in isolation, without any influence from previous actions or states. This means that the
outcome of each action is independent and does not affect the future outcomes. However, we should note that solutions
devised for bandit problems typically applies to more general episodic MDPs [22, 23, 24].

Bandit problems have gained popularity in a wide range of applications, such as recommender systems [17], display
advertisement [18], clinical trials [19], mobile health [7], environment monitoring [8], automatic machine learning [9],
cyber-physical systems [10, 11], etc. Despite the fact that many of these application scenarios involve multiple agents,
most existing works formulate the problem under centralized/single-agent settings [5, 20, 25, 26]. In this dissertation,
we aim to address the aforementioned challenges by developing novel decision making algorithms for both cooperative
and non-cooperative multi-agent systems. Through a combination of theoretical analysis and empirical evaluations, we
aim to contribute to the advancement of decision making algorithms that enable agents to navigate complex scenarios,
foster cooperation, and steer equilibrium outcomes in competitive settings.

The rest of this dissertation is structured as follows. In Chapter 2, we investigate decision making with cooperative
agents, with focus on two main aspects: cooperation in heterogeneous and non-stationary environments, and cooperation
in decentralized environments. In Chapter 3, we investigate decision making with non-cooperative agents, which
encompasses three scenarios: the system can only observe revealed preference feedback from another learning agent;
the agents require incentives to participate in federated optimization; and the agents engage in competitive behavior
under the context of content creation in recommender systems. These scenarios posed unique challenges that require us
to explore novel decision-making algorithms. In Chapter 4, we summarize this dissertation and discuss future research
directions.
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Chapter 2

Decision Making with Cooperative Agents

In recent years, the field of multi-agent systems has witnessed significant advancements in the development of decision-
making algorithms for cooperative agents [27, 28]. Cooperative decision making involves a group of agents working
together to achieve a common goal by making coordinated choices. However, this collaborative setting introduces
several challenges that must be addressed to ensure effective decision making. This chapter aims to explore two key
challenges faced by cooperative agents: the presence of a heterogeneous and non-stationary environment, and the need
for efficient communication in decentralized systems.

2.1 Cooperation in heterogeneous and non-stationary environments
Most existing contextual bandit algorithms impose strong assumptions on the mapping between context and reward
[20, 29, 17]: typically it is assumed that the expected reward associated with a particular action is determined by a
time-invariant function of the context vector. This overly simplified assumption restricts the application of contextual
bandits in many important real-world scenarios, where a learner has to serve a population of users with possible mutual
dependence and changing interest. This directly motivates recent efforts that postulate more general reward assumptions
[30, 25, 31, 32]; among them, non-stationary bandits [12, 33, 34, 35, 36, 37] and clustered bandits [27, 38, 39, 40]
received much attention.

In non-stationary bandits, the reward mapping function becomes time-variant. A typical non-stationary setting is the
abruptly changing environment, a.k.a, a piecewise stationary environment, in which the environment undergoes abrupt
changes at unknown time points but remains stationary between two consecutive change points [41, 42]. A working
solution needs to either properly discount historical observations [43, 42, 36] or detect the change points and reset the
model estimation accordingly [41, 34, 12]. In clustered bandits, grouping structures of bandit models are assumed,
e.g., users in a group share the same bandit model. But instead of assuming an explicit dependency structure, e.g.,
leveraging existing social network among users [44, 30], clustered bandit algorithms aim to simultaneously cluster and
estimate the bandit models during the sequential interactions with users [27, 38, 39, 40]. Its essence is thus to measure
the relatedness between different bandit models. Typically, confidence bound of model parameter estimation [27] or
reward estimation [39] is used for this purpose.

So far these two problems have been studied in parallel; but the key principles to solve them overlap considerably.
On the one hand, mainstream solutions for piecewise stationary bandits detect change points in the underlying reward
distribution by comparing the observed rewards [34] or the quality of estimated rewards [41, 12] in a window of
consecutive observations. If change happens in the window, the designed statistics of interest would exceed a threshold
with a high probability. This is essentially sequential hypothesis testing of a model’s fitness [45]. On the other hand,
existing solutions for clustered bandits evaluate if two bandit models share the same set of parameters [27, 38] or the
same reward estimation on a particular arm [39]. This can also be understood as a goodness-of-fit test between models.

In this work, we take the first step to unify these two parallel strands of bandit research under the notion of test of
homogeneity, and study non-stationarity in linear bandit with time-varying arm set, which distinguishes us from most
existing work. We address both problems by testing whether the collection of observations in a bandit model follows
the same distribution as that of new observations (i.e., change detection in non-stationary bandit algorithms) or of those
in another bandit model (i.e., cluster identification in clustered bandit algorithms). Built upon our solution framework,
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bandit models can operate on individual users with much stronger flexibility, so that new bandit learning problems can
be created and addressed. This enables us to study a new and challenging bandit problem in a clustered non-stationary
environment, where the learner has to reset individual models when a change of reward distribution is detected, and
merge them when they are determined as identical. This task of doing change detection while clustering is novel and
important by itself [46], and has never been considered in bandit problem where the observations are non-IID in nature.
Since our solution automatically detects changes and clustering structure, it has a much weaker assumption about the
environment (e.g., it can be clustered, or non-stationary, or both). Furthermore, our solution enables data sharing across
both users and time, when such structure exists in the environment, thus greatly reducing sample complexity in learning
bandit models. Our rigorous regret analysis and extensive empirical evaluations demonstrate the value of this unified
solution, especially its advantages in handling various environment assumptions.

2.1.1 Related works
Our work is closely related to the studies in non-stationary bandits and clustered bandits. In this section, we discuss the
most representative solutions in each direction and highlight their connections.

Non-stationary bandits Instead of assuming a time-invariant environment, the reward mapping is allowed to
change over time in this problem setting. Commonly imposed assumptions include slowly-varying environment
[47, 48] and abruptly-changing environment [49, 12, 50]. We focus on the latter setting, which is also known as a
piecewise stationary environment in literature [41, 42]. In a non-stationary setting, the main focus is to eliminate the
distortion from out-dated observations, which follow a different reward distribution than that of the current environment.
Popular solutions for the piecewise stationary environment actively detect change points and reset bandit models
accordingly [41, 34, 35, 12, 51, 50, 37]. It should be noted that this dissertation studies non-stationarity in linear bandit
with time-varying arm set [12, 48, 36, 52], which is different from the solutions for non-stationary MAB problem
[41, 34, 35, 51, 50] or the non-stationary contextual MAB [53, 54, 37]. Therefore, their results do not apply to the
setting considered in this dissertation. The closest work to our setting is [12], which maintains a pool of base linear
bandit models and adaptively adds or selects from them via a change detector, which monitors how well each base
bandit model predicts the new observations. This in essence boils down to a likelihood-ratio test for change in the bandit
parameter. To the best of our knowledge, all the other studies for non-stationary linear bandit assume a slowly-varying
environment and adopts strategies like sliding window [48], decaying weight [36] or periodical restart [52] to eliminate
the distortion from out-dated observations.

Clustered bandits When serving a population of users, the vanilla linear bandit usually models the preference of
each individual user in isolation, neglecting the correlation between users. In order to improve sample efficiency, such
user correlation can be utilized to enable collaboration among each individual bandit models [55, 27, 38, 39, 44, 30].
Besides leveraging explicit structure among users, such as social networks [56, 44, 30, 57], recent efforts focus on
online clustering of bandits via the interactions with users [27, 38, 39, 40]. For example, [27] assumed that observations
from different users in the same cluster share the same underlying bandit parameter. Thus, they estimate the clustering
structure among users based on the difference between their estimated bandit parameters. [38] used a similar idea to
cluster items (arms) as well. [39] further studied arm-dependent clustering of users, by the projected difference between
models on each arm. [40] proposed a phase-based algorithm to relax the uniform user frequency assumption in the
analysis of [27]. Essentially, these algorithms measure the relatedness between users by evaluating the homogeneity of
observations associated with individual models, though they have used various measures for this purpose.

In this section, we first formulate the problem setup. Then we describe two key components pertaining to non-
stationary bandits and clustered bandits, and pinpoint the essential equivalence between them under the notion of
homogeneity test, which becomes the cornerstone of our unified solution. Based on our construction of homogeneity
test, we explain the proposed solution, followed by our theoretical analysis of the resulting upper regret bound of the
proposed solution.

2.1.2 Clustered non-stationary bandit problem
To offer a unified approach that addresses the two target problems, we formulate a general bandit learning setting that
encompasses both non-stationarity in individual models and existence of clustering structure.
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Consider a learner that interacts with a set of n users, U = {1, ..., n}. At each time t = 1, 2, ..., T , the learner
receives an arbitrary user indexed by it ∈ U , together with a set of available arms Ct = {xt,1,xt,2, . . . ,xt,K} to choose
from, where xt,j ∈ Rd denotes the context vector associated with the arm indexed by j at time t (assume ∥xt,j∥ ≤ 1
without loss of generality), and K denotes the size of arm pool Ct. After the learner chooses an arm xt, its reward
yt ∈ R is fed back from the user it. We follow the linear reward assumption [20, 29, 17] and use θit,t to denote the
parameter of the reward mapping function in user it at time t (assume ∥θit,t∥ ≤ 1). Under this assumption, the reward
at time t is yt = x⊤

t θit,t + ηt, where ηt is Gaussian noise drawn from N(0, σ2). Interaction between the learner and
users repeats, and the learner’s goal is to maximize the accumulated reward it receives from all users in U up to time T .

Denote the set of time steps when user i ∈ U is served up to time T as Ni(T ) = {1 ≤ t ≤ T : it = i}. Among
time steps t ∈ Ni(T ), user i’s parameter θi,t changes abruptly at arbitrary time steps {ci,1, ..., ci,Γi(T )−1}, but remain
constant between any two consecutive change points. Γi(T ) denotes the total number of stationary periods in Ni(T ).
The set of unique parameters that θi,t takes for any user at any time is denoted as {ϕk}mk=1 and their frequency of
occurrences in T is {pk}mk=1. Note that we do not impose any assumption on the distribution over the user, nor on the
distribution over the unique bandit parameter appearing in each round. Also note that the ground-truth linear parameters,
the set of change points, the number and frequencies of unique parameters are unknown to the learner. Moreover, the
number of users, i.e., n, and the number of unique bandit parameters across users, i.e., m, are finite but arbitrary.

Our problem setting defined above is general. The non-stationary and clustering structure of an environment can be
specified by different associations between {θi,t}ni=1 and {ϕk}mk=1 across users over time t = 1, 2, ..., T . For instance,
by setting n > m and Γi(T ) = 1,∀i ∈ U , the problem reduces to the clustered bandits problem, which assumes sharing
of bandit models among users with stationary reward distributions. By setting n = 1, m > 1 and Γi(T ) > 1,∀i ∈ U , it
reduces to the piecewise stationary bandits problem, which only concerns users with non-stationary reward distributions
in isolation. To make our solution compatible with existing work in non-stationary bandits and clustered bandits, we
also follow the three commonly made assumptions about the environment.

Assumption 1 (Change detectability). For any user i ∈ U and any change point c in user i, there exists ∆ > 0 such
that at least ρ portion of arms satisfy: |x⊤θi,c−1 − x⊤θi,c| > ∆ [12].

Assumption 2 (Separateness among {ϕk}mk=1). For any two different unique parameters ϕi ̸= ϕj , we have ∥ϕi − ϕj∥ ≥
γ > 0 [27, 39, 40].

Assumption 3 (Context regularity). At each time t, arm set Ct is generated i.i.d. from a sub-Gaussian random vector
X ∈ Rd, such that E[XX⊤] is full-rank with minimum eigenvalue λ′ > 0; and the variance ς2 of the random vector
satisfies ς2 ≤ λ′2

8 ln 4K [27, 39, 40].

The first assumption establishes the detectability of change points in each individual bandit models over time.
The second assumption ensures separation within the global unique parameter set shared by all users, and the third
assumption specifies the property of context vectors. Based on these assumptions, we establish the problem setup in
this work and illustrate it on the left side of Figure 2.1.

2.1.3 Test statistic for homogeneity
As discussed in Section 2.1.1, the key problem in non-stationary bandits is to detect changes in the underlying reward
distribution, and the key problem in clustered bandits is to measure the relatedness between different models. We view
both problems as testing homogeneity between two sets of observations to unify these two seemingly distinct problems.
For change detection, we test homogeneity between recent and past observations to evaluate whether there has been a
change in the underlying bandit parameters for these two consecutive sets of observations. For cluster identification, we
test homogeneity between observations of two different users to verify whether they share the same bandit parameter.
On top of the test results, we operate the bandit models accordingly for model selection, model aggregation, arm
selection, and model update.

We use H1 = {(xi, yi)}t1i=1 and H2 = {(xj , yj)}t2j=1 to denote two sets of observations, where t1, t2 ≥ 1 are their
cardinalities. (X1,y1) and (X2,y2) denote design matrices and feedback vectors of H1 and H2 respectively, where
each row of X is the context vector of a selected arm and the corresponding element in y is the observed reward for this
arm. Under linear reward assumption, ∀(xi, yi) ∈ H1, yi ∼ N(x⊤

i θ1, σ
2), and ∀(xj , yj) ∈ H2, yj ∼ N(x⊤

j θ2, σ
2).

The test of homogeneity between H1 and H2 can thus be formally defined as testing whether θ1 = θ2.
Because θ1 and θ2 are not observable, the test has to be performed on their estimates, for which maximum likelihood

estimator (MLE) is a typical choice. Denote MLE for θ on a dataset H as ϑ = (X⊤X)−X⊤y, where (·)− stands
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Figure 2.1: Online bandit learning in a non-stationary and clustered environment. The environment setting is shown on
the left side of the figure, where each user’s reward mapping function undergoes a piecewise stationary process; and
the reward mapping functions are globally shared across users. The proposed DyClu algorithm is illustrated on the
right side of the figure. The model has a two-level hierarchy: at the lower level, individual users’ bandit models are
dynamically maintained; and at the upper level, a unified test of homogeneity is performed for the purpose of change
detection and cluster identification among the lower-level user models.

for generalized matrix inverse. A straightforward approach to test homogeneity between H1 and H2 is to compare
∥ϑ1 − ϑ2∥ against the estimation confidence on ϑ1 and ϑ2. The clustering methods by [27, 39] essentially followed
this idea. However, theoretical guarantee on the false negative probability of this method only exists when the minimum
eigenvalues of X⊤

1 X1 and X⊤
2 X2 are lower bounded by a predefined threshold. In other words, when one does not

have sufficient observations in either H1 or H2 , this test will not be effective.
To address this limitation, we choose the test statistic that has been proved to be uniformly most powerful for this

type of problems [58, 59, 60]:

s(H1,H2)=
||X1(ϑ1 − ϑ1,2)||2+||X2(ϑ2 − ϑ1,2)||2

σ2
(2.1)

where ϑ1,2 denotes the estimator using data from both H1 and H2. The knowledge about σ2 can be relaxed by replacing
it with empirical estimate, which leads to Chow test that has an F-distribution [58].

When s(H1,H2) is above a threshold υ, it suggests the pooled estimator deviates considerably from the individual
estimators on two datasets. Thus, we conclude θ1 ̸= θ2; otherwise, we conclude H1 and H2 are homogeneous. The
choice of υ is critical, as it determines the type-I and type-II error probabilities of the test. Upper bounds of these two
error probabilities are given below and their proofs are deferred to Section 2.1.7.

Theorem 2.1.1. The test statistic s(H1,H2) follows a non-central χ2 distribution s(H1,H2) ∼ χ2(df, ψ) , where the

degree of freedom df = rank(X1) + rank(X2)− rank(

[
X1

X2

]
) , and the non-centrality parameter

ψ =

[
X1θ1
X2θ2

]⊤ [
It1+t2 −

[
X1

X2

] (
X⊤

1 X1 +X⊤
2 X2

)− [
X⊤

1 X⊤
2

]] [X1θ1
X2θ2

]
σ2

.

Lemma 2.1.2. When θ1 = θ2, ψ = 0; the type-I error probability can be upper bounded by:

P
(
s(H1,H2) > υ|θ1 = θ2

)
≤ 1− F (υ; df, 0),

where F (υ; df, 0) denotes the cumulative density function of distribution χ2(df, 0) evaluated at υ.
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This lemma states that given two datasets H1 and H2 (hence the degree-of-freedom df is determined), the type-I
error probability of this test only depends on the specified threshold υ.

Lemma 2.1.3. When θ1 ̸= θ2, ψ ≥ 0; the type-II error probability can be upper bounded by,

P
(
s(H1,H2) ≤ υ|θ1 ̸= θ2

)
≤

{
F
(
υ; d, ψ

)
, if X1 and X2 are full-rank.

F (υ; df, 0), otherwise.

where ψ = ||θ1−θ2||2/σ2

1/λmin(X⊤
1 X1)+1/λmin(X⊤

2 X2)
.

Compared with the type-I error probability, this lemma shows that the type-II error probability also depends on the
ground-truth parameters (θ1, θ2) and the variance of noise σ2.

These error probabilities are the key concerns in our problem: in change detection, they correspond to the early
and late detection of change points [12]; and in cluster identification, they correspond to missing a user model in the
neighborhood and placing a wrong user model in the neighborhood [27]. Given it is impossible to completely eliminate
these two types of errors in a non-deterministic algorithm, the uniformly most powerful property of the test defined in
Eq (2.1) guarantees its sensitivity is optimal at any level of specificity.

2.1.4 DyClu algorithm
In the environment specified in Section 2.1.2, the user’s reward mapping function is piecewise stationary (e.g., the
line segments on each user’s interaction trace in Figure 2.1), which calls for the learner to actively detect changes and
re-initialize the estimator to avoid distortion from outdated observations [41, 34, 35, 12]. A limitation of these methods
is that they do not attempt to reuse outdated observations because they implicitly assume each stationary period has an
unique parameter. Our setting relaxes this by allowing existence of identical reward mappings across users and time
(e.g., the orange line segments in Figure 2.1), which urges the learner to take advantage of this situation by identifying
and aggregating observations with the same parameter to obtain a more accurate reward estimation.

Since neither the change points nor the grouping structure is known, in order to reuse past observations while
avoiding distortion, the learner needs to accurately detect change points, stores observations in the interval between
two consecutive detections together, and then correctly identify intervals with the same parameter as the current one.
In this work, we propose to unify these two operations using the test in Section 2.1.3, which leads to our algorithm
Dynamic Clustering of Bandits, or DyClu in short. DyClu forms a two-level hierarchy as shown in Figure 2.1: at the
lower level, it stores observations in each interval and their sufficient statistics in a user model; at the upper level, it
detects change in user’s reward function to decide when to create new user models and clusters individual user models
for arm selection. Detailed steps of DyClu are explained in Algorithm 1.

The lower level of DyClu manages observations associated with each user i ∈ U in user models, denoted by Mi,t.
Each user model Mi,t = (Ai,t,bi,t,Hi,t) stores:

1. Hi,t: a set of observations associated with user i since the initialization of Mi,t up to time t, where each element
is a context vector and reward pair (xk, yk).

2. Sufficient statistics: Ai,t =
∑

(xk,·)∈Hi,t
xkx

⊤
k and bi,t =

∑
(xk,yk)∈Hi,t

xkyk.

Every time DyClu detects change in a user’s reward mapping function, a new user model is created to replace the
previous one (line 15 in Algorithm 1). We refer to the replaced user models as outdated models and the others up-to-date
ones. We denote the set of all outdated user models at time t as Ot and the up-to-date ones as Ut. In Figure 2.1, the
row of circles next to M1,t−1 represents all the user models for user 1, red ones denote outdated models and the blue
one denotes up-to-date model.

The upper level of DyClu is responsible for managing the user models via change detection and model clustering. It
replaces outdated models in each user and aggregates models across users and time for arm selection.

Change detection A one-sample homogeneity test is used to construct a test variable eit,t = 1 {s(Hit,t−1, {(xt, yt)}) > υe}
to measure whether the user model Mit,t−1 is ‘admissible’ to the new observation (xt, yt). υe is a chosen threshold
for change detection. To make more reliable change detection, we use the empirical mean of eit,t in a sliding window
of size min(|Hit,t−1|, τ) as the test statistic, denoted as êit,t =

1
min(|Hit,t−1|,τ)

∑
k eit,k. Lemma 2.1.4 specifies the

upper bound of early detection probability using êi,t, which is used for selecting threshold for it.
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Algorithm 1 Dynamic Clustering of Bandits (DyClu)
1: Input: sliding window size τ , δ, δe ∈ (0, 1), threshold for change detection and neighbor identification υe and υc, and

regularization parameter λ
2: Initialization: for each user model Mi,0, ∀i ∈ U : Ai,0 = 0 ∈ Rd×d, bi,0 = 0 ∈ Rd, Hi,0 = ∅, êi,0 = 0; the set of outdated

user models O0 = ∅, and up-to-date user models U0 = {Mi,0}i∈U
3: for t = 1, 2, ..., T do
4: Observe user it ∈ U , and set of available arms Ct = {xt,1, ..., xt,K}
5: Choose arm xt ∈ Ct by Eq 2.2:

argmax
x∈Ct

x⊤θ̂V̂it,t−1
+ CBV̂it,t−1

(x)

6: Observe reward yt from user it
7: Compute eit,t = 1

{
S(Hit,t−1, (x

⊤
t , yt)) > υe

}
8: Update êit,t =

∑
t̃it (τ)<j≤t:ij=it

eit,j

9: if êit,t ≤ 1− F (υe; 1, 0) +
√

log 1/δe
2τ

then
10: if eit,t = 0 then
11: Mit,t: Hit,t = Hit,t−1 ∪ (xt, yt), Ait,t = Ait,t−1 + xtx

⊤
t , bit,t = bit,t−1 + xtyt

12: else
13: Ot = Ot−1 ∪Mit,t−1, êit,t = 0
14: Replace Mit,t−1 with Mit,t = (Ait,t = 0, bit,t = 0,Hi,t = ∅) in Ut

15: Compute V̂it,t = {M ∈ Ut ∪Ot : S(Hit,t,H) ≤ υc} and update V̂i,t for i ̸= it accordingly.

Lemma 2.1.4. From Lemma 2.1.2, type-1 error probability P (ei,t = 1) = 1 − F (υe; 1, 0), and thus E[ei,t] =
1− F (υe; 1, 0). Applying Hoeffding inequality gives,

P
(
êi,t > 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≤ δe

At any time step t, DyClu only updates Mit,t−1 when eit,t = 0 (line 10-12 in Algorithm 1). This guarantees that if
the underlying reward distribution has changed, with a high probability we have eit,t = 1, and thus the user model
Mit,t−1 will not be updated. This prevents any distortion in Hit,t by observations from different reward distributions.

When êit,t exceeds the threshold specified by Lemma 2.1.4, DyClu will inform the lower level to move Mit,t−1 to
the outdated model set Ot = Ot−1 ∪ {Mit,t−1}; and then create a new model Mit,t = (Ait,t = 0, bit,t = 0,Hi,t = ∅)
for user it as shown in line 13-16 in Algorithm 1.
• Clustering of user models. In this step, DyClu finds the set of “neighborhood” user models V̂it,t of current user model
Mit , t, where V̂it,t−1 = {M = (A,b,H) ∈ Ut ∪Ot : s(Hit,t,H) ≤ υc}. Basically, DyClu executes homogeneity
test between Mit,t and all other user models M ∈ Ut ∪Ot (both outdated and up-to-date) with a given threshold υc
(line 17 in Algorithm 1). Lemma 2.1.2 and 2.1.3 again specify error probabilities of each decision.

When selecting an arm for user it at time t, DyClu aggregates the sufficient statistics of user models in neighborhood
V̂it,t−1. Then it adopts the popular UCB strategy by [5, 17] to balance exploitation and exploration. Specifically,
DyClu selects arm xt that maximizes the UCB score computed by aggregated sufficient statistics as follows (line 5 in
Algorithm 1),

xt = argmax
x∈Ct

x⊤θ̂V̂it,t−1
+ CBV̂it,t−1

(x) (2.2)

In Eq (2.2), θ̂V̂it,t−1
= A−1

V̂it,t−1
bV̂it,t−1

is the ridge regression estimator using aggregated statistics AV̂it,t−1
= λId +∑

(Aj ,bj ,Hj)∈V̂it,t−1
Aj and bV̂it,t−1

=
∑

(Aj ,bj ,Hj)∈V̂it,t−1
bj ; the confidence bound of reward estimation for arm x

is CBV̂it,t−1
(x) = αV̂it,t−1

√
x⊤A−1

V̂it,t−1
x, where αV̂it,t−1

= σ

√
d log (1 +

∑
(Aj,bj,Hj)∈V̂it,t−1

|Hj |
dλ ) + 2 log 1

δ +
√
λ.
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2.1.5 Regret analysis

Denote RT =
∑T
t=1 θ

⊤
it
x∗
t − θ⊤itxt as the accumulative regret, where x∗

t = argmaxxt,j∈Ct
θ⊤itxt,j is the optimal arm

at time t. Our regret analysis relies on the high probability results by [20] and decomposition of ”good” and ”bad”
events according to change detection and clustering results. The full proof, along with ancillary results and discussions,
are deferred to the end of Section 2.1.

Theorem 2.1.5. Under Assumptions 1, 2 and 3, the regret of DyClu is upper bounded by:

RT = O
(
σd

√
T log2 T (

m∑
k=1

√
pk) +

∑
i∈U

Γi(T ) · C
)

where C = 1
1−δe + σ2

γ2λ′2 log
d
δ′

, with a probability at least (1− δ)(1− δe
1−δe )(1− δ

′
).

Note that the first term matches the regret of the ideal case that the learner knows the exact change points and
clustering structure of each user and time step, while the second term corresponds to the additional regret due to the
interplay between errors in change detection and clustering, which is unique to our problem. To better understand this
result, we discuss in the following paragraph how it compares with state-of-the-art bandit solutions in settings like
non-stationary environment only or clustered environment only.

Case 1: Setting m = 1, n = 1 and Γ1(T ) = 1 reduces the problem to the basic linear bandit setting, because
the environment consists of only one user with a stationary reward distribution for the entire time of interaction.
With only one user who has a stationary reward distribution, we have

∑1
k=1

√
pk = 1 where pk is frequency of

occurrences of ϕk in T as defined in Section 2.1.2. In addition, since there is only one stationary period, the added
regret caused by late detection does not exist; and the added regret due to the failure in clustering can be bounded
by a constant, which only depends on environment variables. The upper regret bound of DyClu then becomes
O
(
σd
√
T log2 T

)
, which achieves the same order of regret as that in LinUCB [20]. Case 2: Setting Γi(T ) = 1,∀i ∈ U

reduces the problem to the clustered bandit setting [27], because all users in the environment have a stationary
reward distribution of their own. Similar to Case 1, the added regret caused by late detection becomes zero and
the added regret due to the failure in clustering is bounded by a constant, which leads to the upper regret bound
of O

(
σd
√
T log2 T (

∑m
k=1

√
pk
)
. DyClu achieves the same order of regret as that in CLUB [27]. Case 3: Setting

n = 1 reduces the problem to a piecewise stationary bandit setting, because the environment consists of only one
user with piecewise stationary reward distributions. For the convenience of comparison, we can rewrite the upper
regret bound of DyClu in the form of O

(∑
k∈[m]RLin(|N

ϕ
k (T )|) + Γ1(T )

)
, where RLin(t) = O

(
d
√
t log2 t

)
[20]

and Nϕ
k (T ) =

{
1 ≤ t

′ ≤ T : θi
t
′ ,t

′ = ϕk

}
is the set of time steps up to time T when the user being served has the

bandit parameter equal to ϕk. Detailed derivation of this is deferred to Section 2.1.7. Note that the upper regret bound
of dLinUCB [12] for this setting is O

(
Γ1(T )RLin(Smax) + Γ1(T )

)
, where Smax denotes the maximum length of

stationary periods. The regret of DyClu depends on the number of unique bandit parameters in the environment, instead
of the number of stationary periods as in dLinUCB, because DyClu can reuse observations from previous stationary
periods. This suggests DyClu has a tighter regret bound if different stationary periods share the same unique bandit
parameters; for example, in situations where a future reward mapping function switches back to a previous one.

2.1.6 Experiment setup & results
We investigate the empirical performance of DyClu by comparing with a list of state-of-the-art baselines for both
non-stationary bandits and clustered bandits on synthetic and real-world recommendation datasets.

Synthetic dataset We create a set of unique bandit parameters {ϕk}mk=1 and arm pool {xj}Kj=1 (K = 1000), where ϕk
and xj are first sampled fromN(0d, Id) with d = 25 and then normalized so that ∀k, j, ∥ϕk∥ = 1 and ∥xj∥ = 1. When
sampling {ϕk}mk=1, the separation margin γ is set to 0.9 and enforced via rejection sampling. n users are simulated. In
each user, we sample a series of time intervals from (Smin, Smax) uniformly; and for each time interval, we sample
a unique parameter from {ϕk}mk=1 as the ground-truth bandit parameter for this period. This creates asynchronous
changes and clustering structure in users’ reward functions. The users are served in a round-robin fashion. At time
step t = 1, 2, . . . , T , a subset of arms are randomly chosen and disclosed to the learner. Reward of the selected arm is
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Figure 2.2: Accumulated regret on synthetic datasets with three different environment settings. Environment 1: n = 100
users share a global set of m = 5 unique bandit parameters, and each user remains stationary all the time. Environment
2: n = 20 user with fixed stationary period length 500; each period sample a unique bandit parameter. Environment 3:
n = 100 users share a global set of m = 5 unique bandit parameters, and each user changes in a asynchronous manner.

generated by the linear function governed by the corresponding bandit parameter and context vector, with additional
Gaussian noise sampled from N(0, σ2).

LastFM dataset The LastFM dataset is extracted from the music streaming service Last.fm [44], which contains
1892 users and 17632 items (artists). “Listened artists” of each user are treated as positive feedback. We followed [12]
to preprocess the dataset and simulate a clustered non-stationary environment by creating 20 “hybrid users”. We first
discard users with less than 800 observations and then use PCA to reduce the dimension of TF-IDF feature vector to
d = 25. We create hybrid users by sampling three real users uniformly and then concatenating their associated data
points together. Hence, data points of the same real user would appear in different hybrid users, which is analogous to
stationary periods that share the same unique bandit parameters across different users and time.

Baselines & hyper-parameters We compare DyClu with a set of state-of-the-art bandit algorithms: linear bandit
LinUCB by [20], non-stationary bandit dLinUCB by [12] and adTS by [33], as well as clustered bandit CLUB by [27]
and SCLUB by [40]. For experiments on synthetic dataset, we also include oracle-LinUCB for comparison, which
runs an instance of LinUCB for each unique bandit parameter. Comparing with it helps us understand the added
regret due to errors in change detection and clustering. We set the same regularization parameter λ = 0.1 for all the
algorithms, and set the same sliding window size τ = 20 for both dLinUCB and DyClu on synthetic dataset and τ = 50
on LastFM dataset. The thresholds υe and υc for DyClu are essentially the upper-tail critical values of chi-square
distributions χ2(1) and χ2(d), which directly control the type-I error probability for change detection and clustering,
i.e. 1− F (υe; 1) and 1− F (υc; d) respectively. Their values affect the second term in the regret upper bound given in
Theorem 3.5 (see Lemma 2.1.6 and Lemma 2.1.7 for details). In all our experiments, υe and υc are selected such that
the corresponding significance level equals to 0.01, e.g., to make F (υc; 25) = 0.01, we set υc = 44.314.

Empirical comparisons on synthetic dataset We compare accumulated regret of all bandit algorithms under three
environment settings, and the results are reported in Figure 2.2. Environment 1 simulates the clustered bandit setting in
[27], where no change in the reward function is introduced. DyClu outperformed other baselines, including CLUB and
SCLUB, demonstrating the quality of its identified clustering structure. Specifically, compared with adTS that incurs
high regret as a result of too many false detections, the change detection in DyClu has much less false positives, as there
is no change in each user’s reward distribution. Environment 2 simulates the piecewise stationary bandit setting in [12].
Algorithms designed for stationary environment, e.g., CLUB, SCLUB, and LinUCB suffer from a linear regret after the
first change point. DyClu achieved the best performance, with a wide margin from the second best, dLinUCB, which is
designed for this environment. It shows the power of our change detection method against dLinUCB’s. Environment 3
combines previous two settings with both non-stationarity and clustering structure. DyClu again outperformed others. It
is worth noting that regret of all algorithms increased compared with Environment 1 due to the nonstationarity, but the
increase in DyClu is the smallest. And in all settings, DyClu’s performance is closest to the oracle-LinUCB’s, which
shows that DyClu can correctly cluster and aggregate observations from the dynamically changing users.
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Table 2.1: Comparison of accumulated regret under different environment settings.

n m Smin Smax T σ oracle. LinU. adTS dLinU. CLUB SCLUB DyClu

1 100 10 400 2500 2500 0.09 115 19954 9872 2432 20274 19989 853
2 100 50 400 2500 2500 0.09 489 20952 9563 2420 21205 21573 1363
3 100 100 400 2500 2500 0.09 873 21950 10961 2549 22280 22262 1958
4 100 10 200 400 2500 0.09 112 39249 36301 10831 39436 43836 3025
5 100 10 800 1000 2500 0.09 113 34385 13788 3265 34441 33514 1139
6 100 10 1200 1400 2500 0.09 112 24769 8124 2144 24980 23437 778
7 100 10 400 2500 2500 0.12 166 22453 10567 3301 22756 22683 1140
8 100 10 400 2500 2500 0.15 232 19082 10000 5872 19427 20664 1487
9 100 10 400 2500 2500 0.18 307 23918 11255 9848 24050 23677 1956

Sensitivity to environment settings According to our regret analysis, the performance of DyClu depends on
environment parameters like the number of unique bandit parameters m, the number of stationary periods Γi(T ) for
i ∈ U , and variance of Gaussian noise σ2. We investigate their influence on DyClu and baselines, by varying these
parameters while keeping the others fixed. The accumulated regret under different settings are reported in Table 2.1.
DyClu outperformed other baselines in all 9 different settings, and the changes of its regret align with our theoretical
analysis. A larger number of unique parameters m leads to higher regret of DyClu as shown in setting 1, 2 and 3, since
observations are split into more clusters with smaller size each. In addition, larger number of stationary periods incurs
more errors in change detection, leading to an increased regret. This is confirmed by results in setting 4, 5 and 6. Lastly,
as shown in setting 7, 8 and 9, larger Gaussian noise leads to higher regret, as it slows down convergence of reward
estimation and change detection.

Empirical comparisons on LastFM We report normalized accumulative reward (ratio between baselines and
uniformly random arm selection strategy [12]) on LastFM in Figure 2.3. In this environment, realizing both non-
stationarity and clustering structure is important for an online learning algorithm to perform well. DyClu’s improvement
over other baselines confirms its quality in partitioning and aggregating relevant data points across users. The advantage
of DyClu is more apparent at the early stage of learning, where each local user model has not collected sufficient amount
of observations for individualized reward estimation; and thus change detection and clustering are more difficult there.

Figure 2.3: Comparison of accumulated reward normalized by a random policy on LastFM dataset.
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2.1.7 Full proof of DyClu algorithm
Omitted proof in Section 2.1.3

The statistical test introduced in Section 2.1.3 falls under the category of χ2 test of homogeneity. Specifically,
it is used to test whether the parameters of linear regression models associated with two datasets are the same,
assuming equal variance. The test statistic follows the noncentral χ2-distribution s(H1,H2) ∼ χ2(df, ψ), where

df = rank(X1) + rank(X2) − rank(

[
X1

X2

]
) denotes the degree of freedom, and non-centrality parameter ψ =

1
σ2

[
X1θ1
X2θ2

]⊤ [
It1+t2 −

[
X1

X2

] (
X⊤

1 X1 +X⊤
2 X2

)− [
X⊤

1 X⊤
2

]] [X1θ1
X2θ2

]
. Its proof is beyond the scope of this work.

We refer the interested readers to statistics or econometrics literature like [58, 59].

Proof of Lemma 2.1.2. When datasets H1 and H2 are homogeneous, which means θ1 = θ2, the non-centrality parame-
ter becomes:

ψ =
1

σ2

[
X1θ1
X2θ1

]⊤ [
It1+t2 −

[
X1

X2

](
X⊤

1 X1 +X⊤
2 X2

)− [
X⊤

1 X⊤
2

]] [X1θ1
X2θ1

]
=

1

σ2

[
X1θ1
X2θ1

]⊤ [
X1θ1
X2θ1

]
− 1

σ2

[
X1θ1
X2θ1

]⊤ [
X1

X2

](
X⊤

1 X1 +X⊤
2 X2

)− [
X⊤

1 X⊤
2

] [X1θ1
X2θ1

]
=

1

σ2

[
θ⊤1 (X⊤

1 X1 +X⊤
2 X2)θ1 − θ⊤1 (X⊤

1 X1 +X⊤
2 X2)(X

⊤
1 X1 +X⊤

2 X2)
−(X⊤

1 X1 +X⊤
2 X2)θ1

]
=

1

σ2

[
θ⊤1 (X⊤

1 X1 +X⊤
2 X2)θ1 − θ⊤1 (X⊤

1 X1 +X⊤
2 X2)θ1

]
= 0

Therefore, when θ1 = θ2, the test statistic s(H1,H2) ∼ χ2(df, 0). The type-I error probability can be upper bounded
by P (s(H1,H2) > υ|θ1 = θ2) ≤ 1− F (υ; df, 0), which concludes the proof of Lemma 2.1.2.

Proof of Lemma 2.1.3. Similarly, using the cumulative density function of χ2(df, ψ), we can show that the type-II error
probability P

(
s(H1,H2)

)
≤ υ|θ1 ̸= θ2

)
≤ F (υ; df, ψ). As mentioned in Section 2.1.3, the value of ψ depends on the

unknown parameters θ1 and θ2. From the definition of ψ, we know that θ1 = θ2 is only a sufficient condition for ψ = 0.

The necessary and sufficient condition for ψ = 0 is that
[
X1θ1
X2θ2

]
is in the column space of

[
X1

X2

]
, e.g., there exists θ

such that
[
X1θ1
X2θ2

]
=

[
X1θ
X2θ

]
. Only when both X1 and X2 have a full column rank, θ1 = θ2 becomes the necessary and

sufficient condition for ψ = 0. This means when either X1 or X2 is rank-deficient, there always exists θ1 and θ2, and
θ1 ̸= θ2, that make ψ = 0. For example, assuming X1 is rank-sufficient and X2 is rank-deficient, then ψ = 0 as long
as θ1 − θ2 is in the null space of X2.

To obtain a non-trivial upper bound of the type-II error probability, or equivalently a non-zero lower bound of the
non-centrality parameter ψ, both X1 and X2 need to be rank-sufficient. Under this assumption, we can rewrite ψ in the
following way to derive its lower bound.

Denote ϵ = θ2 − θ1. Then θ2 = θ1 + ϵ. We can decompose σ2ψ as:

σ2ψ =

[
X1θ1

X2(θ1 + ϵ)

]⊤ [
It1+t2 −

[
X1

X2

](
X⊤

1 X1 +X⊤
2 X2

)−1 [
X⊤

1 X⊤
2

]] [ X1θ1
X2(θ1 + ϵ)

]
=

[
X1θ1
X2θ1

]⊤
[
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
X1θ1
X2θ1

]

+

[
X1θ1
X2θ1

]⊤
[
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])− [
X⊤

1 X⊤
2

]] [
0

X2ϵ

]

+

[
0

X2ϵ

]⊤
[
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
X1θ1
X2θ1

]

+

[
0

X2ϵ

]⊤
[
It1+t2 −

[
X1

X2

]([
X⊤

1 X⊤
2

] [X1

X2

])−1 [
X⊤

1 X⊤
2

]] [
0

X2ϵ

]
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Since
[
X1θ1
X2θ1

]
is in the column space of

[
X1

X2

]
, the first term in the above result is zero. The second and third terms can

be shown equal to zero as well using the property that matrix product is distributive w.r.t. matrix addition, which leaves
us only the last term. Therefore, by substituting ϵ = θ2 − θ1 back, we obtain:

ψ =
1

σ2
(θ1 − θ2)

⊤X⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1(θ1 − θ2)

≥ 1

σ2
||θ1 − θ2||2λmin

(
X⊤

2 X2(X
⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1

)
≥ ||θ1 − θ2||2/σ2

1

λmin(X
⊤
1 X1)

+ 1

λmin(X
⊤
2 X2)

The first inequality uses the Rayleigh-Ritz theorem, and the second inequality uses the relation Y(X +Y)−1X =
(X−1 +Y−1)−1, where X and Y are both invertible matrices. This relation can be derived by taking inverse on both
sides of the equation X−1(X+Y)Y−1 = X−1XY−1 +X−1YY−1 = Y−1 +X−1.

Discussions The results above show that given two datasets H1 and H2, the type-I error probability of the homogeneity
test only depends on the selection of threshold υ, while the type-II error probability also depends on the ground-truth
parameters (θ1, θ2) and the variance of noise σ2. If either X1 or X2 is rank-deficient, the type-II error probability
will be trivially upper bounded by F (υ; df, 0), which means for a smaller upper bound of type-I error probability
(i.e., 1 − F (υ; df, 0)), the upper bound of type-II error probability (i.e., F (υ; df, 0)) will be large. Intuitively, for
a certain level of type-I error, to ensure a smaller type-II error probability in the worst case, we at least need both
X1 and X2 to be rank-sufficient and the value of ||θ1−θ2||2/σ2

1

λmin(X⊤
1 X1)

+ 1

λmin(X⊤
2 X2)

to be large. Similar idea is also found in

[12, 27, 39], where they require the confidence bounds of the estimators (which is essentially equivalent to the condition
on minimum eigenvalue λmin(X

⊤
1 X1) and λmin(X

⊤
2 X2) in our analysis) to be small enough, w.r.t. ||θ1 − θ2||2, to

ensure their change detection or cluster identification is accurate. Here we unify the analysis of these two tasks with
this homogeneity test.

Omitted proof in Section 2.1.4

Proof of Lemma 2.1.4. Note that early detection corresponds to type-I error of the homogeneity test in Lemma 2.1.2,
e.g., when change has not happened (thus Hit,t−1 and (xt, yt) are homogeneous), but the test statistic exceeds the
threshold υe: eit,t = 1 {s(Hit,t−1, {(xt, yt)}) > υe} = 1. Therefore, we have E[eit,t] ≤ 1 − F (υe; 1, 0). Then we
can use Hoeffding inequality given in Lemma A.12 to upper bound the early detection probability using êit,t.

As the test variable eit,t ∈ {0, 1}, it is 1
2 -sub-Gaussian. By applying Hoeffding inequality, we have:

P
(
τ êit,t − τE[eit,t] ≥ h

)
≤ exp

(
− 2h2

τ

)
Then setting δe = exp (− 2h2

τ ) gives h =
√

τ log 1/δe
2 . Substituting this back and re-arrange the inequality gives us:

P
(
êit,t < E[eit,t] +

√
log 1/δe

2τ

)
> 1− δe

Since E[eit,t] ≤ 1− F (υe; 1, 0), we have:

P
(
êit,t < 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
> 1− δe

when change has not happened.
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Omitted proof in Section 2.1.5

In this section, we give the full proof of the upper regret bound in Theorem 2.1.5. We first define some additional
notations necessary for the analysis and arrange the proof into three parts: 1) proof of Eq (2.3); 2) proof of Lemma
2.1.6; and 3) proof of Lemma 2.1.7. Specifically, Eq (2.3) provides an intermediate upper regret bound with three terms,
and Lemma 2.1.6 and Lemma 2.1.7 further bound the second and third terms to obtain the final result in Theorem 2.1.5.

Consider a learner that has access to the ground-truth change points and clustering structure, or equivalently, the
learner knows the index of the unique bandit parameter each observation is associated with (but it does not know the
value of the parameter). For example, when serving user it at some time step t, the index of user it’s unique bandit
parameter for the moment is kit,t, such that θit,t = ϕkit,t . Then since this learner knows ki

t
′ ,t

′ for t
′ ∈ [t], it can

precisely group the observations associated with each unique bandit parameter ϕk for k ∈ [m]. Recall that we denote
Nϕ
k (t) =

{
1 ≤ t

′ ≤ t : θi
t
′ ,t

′ = ϕk

}
as the set of time steps up to time t when the user being served has the bandit

parameter equal to ϕk, e.g., all the observations obtained at time steps in Nϕ
k (t) have the same unique bandit parameter

ϕk. Then an ideal reference algorithm would be the one that aggregates these observations to compute UCB score for
each unique bandit parameter, and then select arm using the UCB score associated with the true bandit parameter in
each time step. The regret of this ideal reference algorithm can be upper bounded by

∑m
k=1RLin(|N

ϕ
k (T )|) where

RLin(|Nϕ
k (T )|) = O

(
d
√
|Nϕ

k (T )| log
2 |Nϕ

k (T )|
)

[20].
However in our learning environment, such knowledge is not available to the learner; as a result, the learner does not

know Nϕ
kit,t

(t− 1) when interacting with user it at time t; instead, it uses observations in the estimated neighborhood

V̂it,t−1 as shown in Algorithm 1 (line 17). Denote the set of time steps associated with observations in V̂it,t−1 as
N̂ϕ

k̃it,t−1
(t−1), where k̃it,t−1 is the index of the unique parameter associated with observations in Hit,t−1. N̂ϕ

k̃it,t−1
(t−

1) is essentially an estimate of Nϕ
kit,t

(t−1), obtained by running cluster identification w.r.t. Hit,t−1 (whose true unique

bandit parameter index is denoted by k̃it,t−1). We define a ‘good event’ as
{
N̂ϕ

k̃it,t−1
(t− 1) = Nϕ

kit,t
(t− 1)

}
, which

matches with the reference algorithm, and since there is a non-zero probability of errors in both change detection and
cluster identification, we also have ‘bad event’

{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
, which incurs extra regret.

Recall the estimated neighborhood V̂it,t−1 = {M ∈ Ut−1 ∪Ot−1 : S(Hit,t−1,H) ≤ υc}. If kit,t ̸= k̃it,t−1, it
means there is a mismatch between user model Mit,t−1 and the current ground-truth user parameter θit,t, but the change
detection module has failed to detect this. Then the obtained neighborhood is incorrect even if the cluster identification
model made no mistake. Therefore, the bad event can be further decomposed into({
k̃it,t−1 ̸= kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
∪
({
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
.

The first part is a subset of event
{
k̃it,t−1 ̸= kit,t

}
, which suggests late detection happens at time t. The second part

indicates incorrectly estimated cluster for user it at time t.

Discussions Before moving on, we would like to provide some explanations about the use of
{
k̃it,t−1 ̸= kit,t

}
to

denote the event that the user’s underlying bandit parameter has changed, but the learner failed to detect it, i.e., late
detection. Recall that k̃it,t−1 is the index of the unique bandit parameter associated with observations in Mit,t−1, i.e.
Hit,t−1, while kit,t is the index of the unique parameter that governs observation (xt, yt) from user it at time t. Our
change detection mechanism in Algorithm 1 (line 9) is expected to replace model Mit,t−1 if change has happened at

time t, thus ensuring
{
k̃it,t = kit,t

}
again. However, when it fails to detect the change, it will cause

{
k̃it,t ̸= kit,t

}
,

which means DyClu has failed to update the user model Mit,t to reflect the new behavior or preference that user it has
switched to at time t.
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With detailed derivation deferred to the end of this section, following the decomposition discussed above, we can
obtain:

RT ≤O
(
σd

∑
k∈[m]

√
|Nϕ

k (T )| log
2(|Nϕ

k (T )|)
)
+ 2

∑
i∈U

∑
t∈Ni(T )

1
{
k̃it,t−1 ̸= kit,t

}
(2.3)

+ 2

T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
with a probability at least 1− δ.

In this upper regret bound, the first term matches the regret of the reference algorithm that has access to the exact
change points and clustering structure of each user and time step. We can rewrite it using the frequency of unique model
parameter ϕk as O

(
σd
√
T log2 T (

∑m
k=1

√
pk)
)

similar to Section A.4 in [27]. The second term is the added regret
caused by the late detection of change points; and the third term is the added regret caused by the incorrect cluster
identification for arm selection. The latter two terms can be further bounded by the following lemmas.

Lemma 2.1.6. Under Assumption 1 and 3, by setting the sliding window size τ ≥ 2 log 1/δe

{[1−F (υe;1,ψe)]ρ(1−δ′ )−1+F (υe;1,0)}2 ,

where ψe = ∆2/σ2

1+1/

[
λ
′
4 Smin−8

(
log

dSmin

δ
′ +

√
Smin log

dSmin

δ
′

)] , the second term in Eq (2.3) can be upper bounded by:

2
∑
i∈U

∑
t∈Ni(T )

1
{
k̃it,t−1 ̸= kit

}
≤ 2

∑
i∈U

(
Γi(T )− 1

)
(τ +

2

1− δe
)

with a probability at least 1− δe
1−δe .

Lemma 2.1.7. Define function g(ψ; d, υ) = F (υ;ψ, d), and g−1(·|d, υ) as its inverse function. Under Assumption 2
and 3, the third term in Eq (2.3) can be upper bounded by:

2

T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
≤ 2

∑
i∈U

Γi(T )O
(2ψcσ2

γ2λ′2
log

d

δ′

)
with a probability at least 1− δ

′
, where ψc = g−1

(p(1−F (υc;d,0))
1−p ; d, υc

)
is a constant.

Combining results in Eq (2.3), Lemma 2.1.6 and Lemma 2.1.7, we obtain the upper regret bound:

RT ≤ O
(
σd

√
T log2 T (

m∑
k=1

√
pk)

)
+ 2

∑
i∈U

(
Γi(T )− 1

)
(τ +

2

1− δe
) + 2

∑
i∈U

Γi(T )O
(2ψcσ2

γ2λ′2 log
d

δ′

)
= O

(
σd

√
T log2 T (

m∑
k=1

√
pk) +

∑
i∈U

Γi(T ) · C
)

where C = 1
1−δe + σ2

γ2λ′2 log
d
δ′

, with a probability at least (1 − δ)(1 − δe
1−δe )(1 − δ

′
). This finishes the proof of

Theorem 2.1.5.

Derivation of Eq (2.3)

Recall that we define a ‘good’ event as
{
N̂ϕ

k̃it,t−1
(t− 1) = Nϕ

kit,t
(t− 1)

}
, which means at time t, DyClu selects an

arm using the UCB score computed with observations associated with ϕkit,t . And the ‘bad’ event is defined as its
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complement:
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
, which can be decomposed and then contained as shown below:{

N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
=
({
k̃it,t−1 ̸= kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
∪
({
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
⊆
{
k̃it,t−1 ̸= kit,t

}
∪
({
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
where the event

{
k̃it,t−1 ̸= kit,t

}
means at time step t there is a late detection, and the event

{
k̃it,t−1 = kit,t

}
∩{

N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
means there is no late detection, but the cluster identification fails to correctly

cluster user models associated with ϕkit,t together (for example, there might be models not belonging to this cluster, or
models failed to be put into this cluster).

Under the ‘good’ event, arm xt is selected using the UCB strategy by aggregating all existing observations associated
with ϕkit,t , which is the unique bandit parameter for user it at time t. To simplify the notations, borrowing the notation
used in Eq (2.8), we denote θ̂Nϕ

kit,t
(t−1) = A−1

Nϕ
kit,t

(t−1)
bNϕ

kit,t
(t−1), where ANϕ

kit,t
(t−1) = λI+

∑
j∈Nϕ

kit,t
(t−1) xjx

⊤
j

and bNϕ
kit,t

(t−1) =
∑
j∈Nϕ

kit,t
(t−1) xjyj , as the ridge regression estimator constructed using these observations, and

CBNϕ
kit,t

(t−1)(x) = αNϕ
kit,t

(t−1)

√
x⊤A−1

Nϕ
kit,t

(t−1)
x, where αNϕ

kit,t
(t−1) = σ

√
d log (1 +

|Nϕ
kit,t

(t−1)|
dλ ) + 2 log 1

δ +

√
λ is the corresponding reward estimation confidence bound on x.

Then we can upper bound the instantaneous regret rt as follows,

rt = ⟨θit,t,x∗
t ⟩ − ⟨θit,t,xt⟩ ≤ ⟨θ̃it,t,xt⟩ − ⟨θit,t,xt⟩

= ⟨θ̃it,t − θ̂V̂i,t−1
,xt⟩+ ⟨θ̂V̂i,t−1

− θit,t,xt⟩

≤

2CBNϕ
kit,t

(t−1)(xt), if
{
N̂ϕ

k̃it,t−1
(t− 1) = Nϕ

kit,t
(t− 1)

}
.

2, otherwise.

The first inequality is because ⟨θ̃it,t,xt⟩ is optimistic, where xt ∈ Ct and θ̃it,t ∈
{
θ ∈ Rd : ∥θ̂V̂i,t−1

− θ∥A−1

V̂i,t−1

≤ αNϕ
kit,t

(t−1)

}
.

For the second inequality, we split it into two cases according to the occurrence of the ‘good’ or ‘bad’ events. Recall
that N̂ϕ

k̃it,t−1
(t− 1) denotes the set of time steps associated with observations in V̂it,t−1. Then under the ‘good’ event{

N̂ϕ

k̃it,t−1
(t− 1) = Nϕ

kit,t
(t− 1)

}
, with probability at least 1− δ, we have ⟨θ̃it,t − θ̂V̂i,t−1

,xt⟩ ≤ CBNϕ
kit,t

(t−1)(xt)

and ⟨θ̂V̂i,t−1
− θit,t,xt⟩ ≤ CBNϕ

kit,t
(t−1)(xt), so that rt ≤ 2CBNϕ

kit,t
(t−1)(xt). Under the ‘bad’ event when wrong

cluster is used for arm selection, we simply bound rt by 2 because ∥θit,t∥ ≤ 1 and ∥xt∥ ≤ 1.
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Then the accumulated regret RT can be upper bounded by:

RT =

T∑
t=1

rt ≤ 2

T∑
t=1

1
{
N̂ϕ

k̃it,t−1
(t− 1) = Nϕ

kit,t
(t− 1)

}
CB

N
ϕ
kit,t

(t−1)
(xt) + 2

T∑
t=1

1
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
≤

T∑
t=1

2CB
N

ϕ
kit,t

(t−1)
(xt) + 2

T∑
t=1

1
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
≤

T∑
t=1

2CB
N

ϕ
kit,t

(t−1)
(xt) + 2

T∑
t=1

1
{
k̃it,t−1 ̸= kit,t

}
+ 2

T∑
t=1

(
1
{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
≤

T∑
t=1

2CB
N

ϕ
kit,t

(t−1)
(xt) + 2

∑
i∈U

∑
t∈Ni(T )

1
{
k̃i,t−1 ̸= ki,t

}

+ 2

T∑
t=1

(
1
{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

})
The first term is essentially the upper regret bound of the reference algorithm mentioned earlier in this section, which
can be further upper bounded with probability at least 1− δ by:

T∑
t=1

2CBNϕ
kit,t

(t−1)(xt) =
∑
k∈[m]

∑
t∈Nϕ

k (T )

2CBNϕ
k (t−1)(xt) ≤

∑
k∈[m]

RLin(|Nϕ
k (T )|)

where RLin(|Nϕ
k (T )|) is the high probability upper regret bound in [20] (Theorem 3), which is defined as:

RLin(|Nϕ
k (T )|) = 4

√
d|Nϕ

k (T )| log (λ+
|Nϕ

k (T )|
d

)

σ
√
2 log

1

δ
+ d log (1 +

|Nϕ
k (T )|
dλ

) + λ1/2


= O

σd√|Nϕ
k (T )| log

2 |Nϕ
k (T )|+ σ

√
d|Nϕ

k (T )| log
|Nϕ

k (T )|
δ


Proof of Lemma 2.1.6

Now we have proved the intermediate regret upper bound in Eq (2.3). In this section, we continue to upper bound its
second term 2

∑
i∈U

∑
t∈Ni(T ) 1

{
k̃i,t−1 ̸= ki,t

}
, which essentially counts the total number of late detections in each

user, e.g., there is a mismatch between Mit,t−1 and the current ground-truth bandit parameter θit,t, but the learner fails
to detect this. To prove this lemma, we need the following lemmas that upper bound the probability of late detections.

As opposed to early detection in Lemma 2.1.4, late detection corresponds to type-II error of homogeneity test in
Lemma 2.1.3. Therefore we have the following lemma.

Lemma 2.1.8. When change has happened (k̃it,t−1 ̸= kit,t), we have

P
(
eit,t = 1

)
≥ ρ(1− δ

′
)
[
1− F (υe; 1, ψe)

]
where ψe = ∆2/σ2

1+1/
(

λ
′
4 Smin−8

(
log

dSmin

δ
′ +

√
Smin log

dSmin

δ
′

)) .

18



Proof of Lemma 2.1.8. Combining Lemma 2.1.3, Assumption 1 and 3, we can lower bound the probability that eit,t = 1
when change has happened as:

P
(
eit,t = 1

)
= P

(
s(Hit,t−1, {xt, yt}) > υe

)
≥ 1− F

(
υe; 1,

[x⊤
t (θit,c − θit,c−1)]

2/σ2

1 + x⊤
t (
∑

(xk,yk)∈Hit,t−1
xkx⊤

k )
−1xt

)

≥ 1− F

υe; 1, [x⊤
t (θit,c − θit,c−1)]

2/σ2

1 + ||xt||2
λmin(

∑
(xk,yk)∈Hit,t−1

xkx⊤
k )


≥ ρ

1− F

υe; 1, ∆2/σ2

1 + 1
λmin(

∑
(xk,yk)∈Hit,t−1

xkx⊤
k )


Since the minimum length of stationary period is Smin, by applying Lemma A.15, we can obtain the following lower
bound on minimum eigenvalue when change happens as:

λmin

 ∑
(xk,yk)∈Hit,t−1

xkx
⊤
k

 ≥ λ
′

4
Smin − 8

(
log

dSmin
δ′ +

√
Smin log

dSmin
δ′

)

with probability at least 1− δ
′
.

Denote ψe = ∆2/σ2

1+1/
(

λ
′
4 Smin−8

(
log

dSmin

δ
′ +

√
Smin log

dSmin

δ
′

)) . We obtain the following lower bound on the probabil-

ity of detection:
P
(
eit,t = 1

)
≥ ρ(1− δ

′
)
[
1− F (υe; 1, ψe)

]
when change has happened.

Lemma 2.1.9. When change has happened (k̃it,t−1 ̸= kit,t),

P

(
êit,t ≥ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≥ 1− δe

if the size of sliding window τ ≥ 2 log 1/δe

{[1−F (υe;1,ψe)]ρ(1−δ′ )−1+F (υe;1,0)}2 .

Proof of Lemma 2.1.9. Similarly to the proof of Lemma 2.1.4, applying Hoeffding inequality given in Lemma A.12,
we have:

P

(
êit,t ≤ E[ei,t]−

√
log 1/δe

2τ

)
≤ δe

P

(
êit,t ≥ E[ei,t]−

√
log 1/δe

2τ

)
≥ 1− δe

From Lemma 2.1.8, when change has happened, E[eit,t] ≥ ρ(1 − δ
′
) [1− F (υe; 1, ψe)], with ψe being a variable

dependent on environment as defined in Lemma 2.1.8. By substituting this into the above inequality, we have:

P

(
êi,t ≥ ρ(1− δ

′
) [1− F (υe; 1, ψe)]−

√
log 1/δe

2τ

)
≥ 1− δe
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Then by rearranging terms above, we can find that if the sliding window size τ is selected to satisfy:

τ ≥ 2 log 1/δe{
[1− F (υe; 1, ψe)]ρ(1− δ′)− 1 + F (υe; 1, 0)

}2

we can obtain:

P

(
êit,t ≥ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≥ 1− δe

P

(
êit,t ≤ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≤ δe

when change has happened (k̃it,t−1 ̸= kit,t).

Proof of Lemma 2.1.6. With results from Lemma 2.1.9, our solution to further upper bound the number of late detections
in each stationary period is similar to [12] (Theorem 3.2). We include the proof here for the sake of completeness.

Denote the probability of detection when change has happened as pd = P
(
êit,t ≥ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
,

and from Lemma 2.1.9, we have pd ≥ 1− δe. The probability distribution over the number of late detections when
change has happened follows a geometric distribution: P (nlate = k) = (1− pd)

k−1pd. Then by applying Chebyshev’s
inequality, we have P

(
nlate ≤ 2

1−δe

)
≥ 1− δe

1−δe .

Now we can upper bound the number of late detections
∑
i∈U

∑
t∈Ni(T ) 1

{
k̃it,t−1 ̸= kit,t

}
in user i. In Assump-

tion 1 we have assumed that the total number of change points of user i is Γi(T )−1. Therefore,
∑
t∈Ni(T ) 1

{
k̃it,t−1 ̸=

kit
}
≤
(
Γi(T )− 1

)
(τ + 2

1−δe ) with probability at least 1− δe
1−δe . Then we can upper bound the second term in Eq

(2.3) by:

2
∑
i∈U

∑
t∈Ni(T )

1
{
k̃it,t−1 ̸= kit,t

}
≤ 2

∑
i∈U

(
Γi(T )− 1

)
(τ +

2

1− δe
)

Proof of Lemma 2.1.7

The third term
∑T
t=1 1

{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
counts the total number of times that

there is no late detection, but cluster identification module fails to correctly cluster user models. We upper bound this
using a similar idea as [39], but is based on the properties of homogeneity test. For the proof of Lemma 2.1.7, we need
the following lemmas related to probability of errors of cluster identification.

Lemma 2.1.10. When the underlying bandit parameters ϕk̃i,t−1
and ϕk̃j,t−1

of two observation history Hi,t−1 and
Hj,t−1 are the same, the probability that cluster identification fails to cluster them together corresponds to the type-I
error probability given in Lemma 2.1.2, and it can be upper bounded by:

P
(
S(Hi,t−1,Hj,t−1) > υc | ϕk̃i,t−1

= ϕk̃j,t−1

)
≤ 1− F (υc; df, 0)

where df = rank(X1) + rank(X2)− rank(

[
X1

X2

]
).

Corollary 2.1.10.1 (Lower bound P
(
Nϕ
kit,t

(t− 1) ⊆ N̂ϕ

k̃it,t−1
(t− 1)

)
). Since Nϕ

kit,t
(t− 1) denotes the set of time

indices associated with all observations whose underlying bandit parameter is ϕkit,t , and N̂ϕ

k̃i,t−1
(t− 1) denotes those
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in the estimated neighborhood V̂it,t−1, when there is no late detection, i.e., we have k̃it,t−1 = kit,t. It naturally follows
Lemma 2.1.10 that:

P
(
Nϕ
kit

(t− 1) ⊆ N̂ϕ

k̃it,t−1
(t− 1)

)
≥ F (υc; df, 0)

Lemma 2.1.11. When the underlying bandit parameters ϕk̃i,t−1
and ϕk̃j,t−1

of two observation sequence Hi,t−1 and
Hj,t−1 are not the same, the probability that cluster identification module clusters them together corresponds to the
type-II error probability given in Lemma 2.1.3, which can be upper bounded by:

P
(
S(Hi,t−1,Hj,t−1) ≤ υc|ϕk̃i,t−1

̸= ϕk̃j,t−1

)
≤ F (υc; d, ψc)

under the condition that both λmin(
∑

(xk,yk)∈Hi,t−1
xkx

⊤
k ) and λmin(

∑
(xk,yk)∈Hj,t−1

xkx
⊤
k ) are at least 2ψcσ2

γ2 .

Proof of Lemma 2.1.11. Recall that type-II error probability of the homogeneity test can be upper bounded by
P
(
S(Hi,t−1,Hj,t−1) ≤ υc|ϕk̃i,t−1

̸= ϕk̃j,t−1

)
≤ F (υc; df, ψ) as discussed in Section 2.1.3. If either design ma-

trix of the two datasets is rank-deficient, the noncentrality parameter ψ is lower bounded by 0 (lower bound achieved
when the difference between two parameters lies in the null space of rank-deficient design matrix). Therefore, a nontriv-
ial upper bound of type-II error probability only exists when the design matrices of both datasets are rank-sufficient. In
this case, combining Lemma 2.1.3 and Assumption 2 gives:

P
(
S(Hi,t−1,Hj,t−1)

)
≤F

(
υc; d,

||ϕk̃i,t−1
− ϕk̃j,t−1

||2/σ2

1/λmin(
∑

(xk,yk)∈Hi,t−1
xkx⊤

k ) + 1/λmin(
∑

(xk,yk)∈Hj,t−1
xkx⊤

k )

)

≤F

(
υc; d,

γ2/σ2

1/λmin(
∑

(xk,yk)∈Hi,t−1
xkx⊤

k ) + 1/λmin(
∑

(xk,yk)∈Hj,t−1
xkx⊤

k )

)

Define ψc > 0; then by rearranging terms we obtain the conditions that, when both:

λmin

 ∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

 ≥ 2ψcσ2

γ2
and λmin

 ∑
(xk,yk)∈Hj,t−1

xkx
⊤
k

 ≥ 2ψcσ2

γ2

we have
P
(
S(Hi,t−1,Hj,t−1) ≤ υc|ϕk̃i,t−1

̸= ϕk̃j,t−1

)
≤ F (υc; d, ψc)

Lemma 2.1.12. If the cluster identification module clusters observation history Hi,t−1 and Hj,t−1 together, the probabil-
ity that they actually have the same underlying bandit parameters is denoted asP

(
ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤

υc
)
.

P
(
ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ F (υc; df, 0)

under the condition that both λmin

(∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

)
and λmin

(∑
(xk,yk)∈Hj,t−1

xkx
⊤
k

)
are at least 2ψcσ2

γ2 ,

where ψc = g−1
(p(1−F (υc;d,0))

1−p ; d, υc
)
.

Proof of Lemma 2.1.12. Compared with the type-I and type-II error probabilities given in Lemma 2.1.10 and 2.1.11,
the probability P (ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc) also depends on the population being tested on. Two

extreme examples would be 1) testing on a population that all user models have the same bandit parameter, and 2) every
user model has an unique bandit parameter. Then in the former case P (ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc) = 1

and in the latter case P (ϕk̃i,t−1
= ϕk̃j,t−1

|S(Hi,t−1,Hj,t−1) ≤ υc) = 0.
Denote the events

{
ϕk̃i,t−1

̸= ϕk̃j,t−1

}
∩
{
S(Hi,t−1,Hj,t−1) > υc

}
as True Positive (TP),

{
ϕk̃i,t−1

= ϕk̃j,t−1

}
∩{

S(Hi,t−1,Hj,t−1) ≤ υc
}

as True Negative (TN),
{
ϕk̃i,t−1

= ϕk̃j,t−1

}
∩
{
S(Hi,t−1,Hj,t−1) > υc

}
as False Positive
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(FP), and
{
ϕk̃i,t−1

̸= ϕk̃j,t−1

}
∩
{
S(Hi,t−1,Hj,t−1) ≤ υc

}
as False Negative (FN) of cluster identification, respectively.

We can rewrite the probabilities in Lemma 2.1.10, 2.1.11 and 2.1.12 as:

P
(
S(Hi,t−1,Hj,t−1) > υc|ϕk̃i,t−1

= ϕk̃j,t−1

)
=

P (FP)
P (TN + FP)

≤ 1− F (υc; df, 0)

P
(
S(Hi,t−1,Hj,t−1) ≤ υc|ϕk̃i,t−1

̸= ϕk̃j,t−1

)
=

P (FN)

P (FN + TP)
≤ F (υc; df, ψc)

P
(
ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
=

P (TN)

P (TN + FN)
≥ P (TN)

P (TN) + P (FN)
=

1

1 + P (FN)
P (TN)

We can upper bound P (FN)
P (TN) by:

P (FN)

P (TN)
≤ P (TP + FN)

P (TN + FP)
· F (υ

c; df, ψc)

F (υc; df, 0)

where P (TP+FN)
P (TN+FP) denotes the ratio between the number of positive instances (ϕk̃i,t−1

̸= ϕk̃j,t−1
) and negative instances

(ϕk̃i,t−1
= ϕk̃j,t−1

) in the population, which can be upper bounded by 1−p
p where p denotes the lower bound of the

portion that each unique bandit parameter occurs in all stationary periods, i.e. p = 1 means the same unique bandit
parameter occurs in all stationary periods.

It is worth noting that when either design matrix of Hi,t−1 or Hj,t−1 does not have full column rank, P
(
ϕk̃i,t−1

=

ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ 1/

(
1 + 1−p

p · F (υc;df,0)
F (υc;df,0)

)
≥ p, which is then trivially lower bounded by the

percentage of negative instances in the population.
Under the conditions given in Lemma 2.1.11, we have:

P
(
ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ 1/

(
1 +

1− p

p
· F (υ

c; d, ψc)

F (υc; d, 0)

)
Then by setting ψc = g−1

(p(1−F (υc;d,0))
1−p ; d, υc

)
, we have:

P
(
ϕk̃i,t−1

= ϕk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ 1/

(
1 +

1− p

p
· F (υ

c; d, ψc)

F (υc; d, 0)

)
= F (υc; df, 0)

Corollary 2.1.12.1 (Lower bound P
(
N̂ϕ

k̃it,t−1
(t− 1) ⊆ Nϕ

kit,t
(t− 1)

)
). It naturally follows Lemma 2.1.12 that:

P
(
N̂ϕ

k̃it,t−1
(t− 1) ⊆ Nϕ

kit,t
(t− 1)

)
≥ F (υc; df, 0)

under the condition that both λmin(
∑

(xk,yk)∈Hi,t−1
xkx

⊤
k ) and λmin(

∑
(xk,yk)∈Hj,t−1

xkx
⊤
k ) are at least 2ψcσ2

γ2 ,

where ψc = g−1
(p(1−F (υc;d,0))

1−p ; d, υc
)
.

Proof of Lemma 2.1.7. From Corollary 2.1.10.1 and Corollary 2.1.12.1, when both λmin(
∑

(xk,yk)∈Hi,t−1
xkx

⊤
k ) and

λmin(
∑

(xk,yk)∈Hj,t−1
xkx

⊤
k ) are at least 2ψcσ2

γ2 , with probability at leastF (υc; df, 0), we have event
{
k̃it,t−1 = kit,t

}
∩
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{
N̂ϕ

k̃it,t−1
(t− 1) = Nϕ

kit,t
(t− 1)

}
. Therefore, the third term in Eq (2.3) is upper bounded by:

2

T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}

≤2

T∑
t=1

1

∃H ∈ Ut−1 ∪Ot−1 : λmin

( ∑
(xk,yk)∈H

xkx
⊤
k

)
<

2ψcσ2

γ2


≤2

∑
i∈U

∑
t∈Ni(T )

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

)
<

2ψcσ2

γ2


Essentially, it counts the number of time steps in total when minimum eigenvalue of a user model M’s correlation
matrix is smaller than 2ψcσ2

γ2 . We further decompose the summation by considering each stationary period of each user.

2
∑
i∈U

∑
t∈Ni(T )

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

)
<

2ψcσ2

γ2


=2

∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

∑
t∈Si,s

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

)
<

2ψcσ2

γ2


where Si,s denotes the s’th stationary period of user i.

Borrowing the notation from [39], denote At as a correlation matrix constructed through a series of rank-
one updates using context vectors from {Ct}t∈S , where S denotes the set of time steps we performed model
update. Note that the choice of which context vector to select from Ct for t ∈ S can be arbitrary. Then we
denote the maximum number of updates it takes until λmin(At) is lower bounded by η as HD({Ct}t∈S , η) =

max {t ∈ S : ∃x1 ∈ C1, ...,xt ∈ Ct : λmin(At) ≤ η}, where At =
∑
u∈S:u≤t xux

⊤
u . Therefore, we obtain:

∑
i∈U

∑
t∈Ni(T )

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

)
<

2ψcσ2

γ2


=
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

∑
t∈Si,s

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
⊤
k

)
<

2ψcσ2

γ2


≤
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

HD
(
{Ct}t∈Si,s

,
2ψcσ2

γ2

)
Then similar to [39] (Lemma 1), by applying Lemma A.15 we can upper bound the third term in Eq (2.3):

2

T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂ϕ

k̃it,t−1
(t− 1) ̸= Nϕ

kit,t
(t− 1)

}
≤2
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

HD
(
{Ct}t∈Si,s

,
2ψcσ2

γ2

)
≤2
∑
i∈U

Γi(T )O
(2ψcσ2

γ2λ′2
log

d

δ′

)
with probability at least 1− δ

′
.
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2.2 Cooperation in decentralized environments: non-linear models
Most existing bandit solutions are designed under a centralized setting (i.e., data is readily available at a central server),
including the works in non-stationary bandits and clustered bandits introduced in Section 2.1. In response to the
increasing application scale and public concerns of privacy, there is a growing demand to keep data decentralized and
push the learning of bandit models to the client side. This has led to the increasing research effort on federated bandit
learning lately [28, 61, 62, 63, 64], i.e., N decentralized clients cooperate with limited communication bandwidth to
minimize the overall cumulative regret incurred over a finite time horizon T , while keeping each client’s raw data
local. Compared with standard federated learning [65, 66] that works with fixed datasets, federated bandit learning
is characterized by its online interactions with the environment, which continuously provides new data samples to
the clients over time. This brings in new challenges in addressing the conflict between the need of timely data/model
aggregation for regret minimization and the need of communication efficiency with decentralized data. A carefully
designed model update method and communication strategy become vital to strike this balance.

Existing federated bandit learning solutions only partially addressed this challenge by considering simple bandit
models, like context-free bandit [62] and contextual linear bandit [28, 61, 64], where closed-form solution for both
local and global model update exists. Therefore, efficient communication for global bandit model update is realized
by directly aggregating local sufficient statistics, such that the only concern left is how to control the communication
frequency over time horizon T . However, such a solution framework does not apply to the more complicated bandit
models that are often preferred in practice. Therefore, in this section, we propose algorithms that enable collaborative
exploration of more complex function classes, such as generalized linear bandit (GLB) and kernelized contextual bandit.

2.2.1 Related works
Generalized linear bandit GLB, as an important extension of linear bandit models, has demonstrated encouraging
performance in modeling binary rewards (such as clicks) that are ubiquitous in real-world applications [67]. The study
of GLB under a centralized setting dates back to Filippi et al. [25], who proposed a UCB-type algorithm that achieved
Õ(d

√
T ) regret. Li et al. [68] later proposed two improvements: a similar UCB-type algorithm that improves the result

of [25] by a factor of O(log T ), which has been popularly used in practice as it avoids the projection step needed in
[25]; and another impractical algorithm that further improves the result by a factor of O(

√
d) assuming fixed number

of arms. To improve the time and space complexity of the aforementioned GLB algorithms, followup works adopted
online regression methods. In particular, motivated by the online-to-confidence-set conversion technique from [69],
Jun et al. [70] proposed both UCB and Thompsan sampling algorithms with online Newton step, and Ding et al. [71]
proposed a Thompson sampling algorithm with online gradient descent, which, however, requires an additional context
regularity assumption to obtain a sub-linear regret.

Kernelized/Gaussian process bandit By using kernels and Gaussian processes, studies in [8, 26, 72] further extend
UCB-type algorithms to non-parametric reward functions in RKHS, i.e., the feature map associated with each arm is
possibly infinite. To improve computation efficiency of these algorithms, Nyström approximation method is adopted.
Specifically, Calandriello et al. [73] proposed an algorithm named BKB, which uses Ridge Leverage Score sampling
(RLS) to re-sample a new dictionary from the updated dataset after each interaction with the environment. A recent
work by Zenati et al. [74] further improved the computation efficiency of BKB by adopting an online sampling method
to update the dictionary. However, both of them updated the dictionary at each time step to ensure the dictionary
remains representative w.r.t. the growing dataset. Calandriello et al. [75] further proposed a variant of BKB, named
BBKB, for batched Gaussian process optimization. BBKB only needs to update the dictionary occasionally according
to an adaptive schedule, and thus addresses the issue mentioned above.

Federated bandits Recent years have witnessed increasing research efforts in distributed/federated bandit learning,
i.e., multiple agents collaborate in pure exploration [76, 77, 78], or regret minimization [62, 28, 64]. They mainly
differ in the relations of learning problems solved by the agents (i.e., homogeneous vs., heterogeneous) and the type of
communication network (i.e., peer-to-peer (P2P) vs., star-shaped). Most of these works assume linear reward functions,
and the clients communicate by transferring the O(d2) sufficient statistics. Korda et al. [79] considered a peer-to-peer
(P2P) communication network and assumed that the clients form clusters, i.e., each cluster is associated with a unique
bandit problem. However, they only focused on reducing per-round communication, and hence the communication
cost is still linear over time. Huang et al. [63] considered a star-shaped communication network as us, but their
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Figure 2.4: Illustration of federated bandit problem: a network of N clients sequentially taking actions and receiving
feedback from the environment, and a server coordinating their communication.

proposed phase-based elimination algorithm only works in the fixed arm set setting. The closest works to ours are
[28, 61, 64], which proposed event-triggered communication protocols to obtain sub-linear communication cost over
time for distributed linear bandits with a time-varying arm set. In comparison, federated GLB and kernelized contextual
bandits still remain under-explored.

Offline federated learning Another related line of research is the standard federated learning that considers offline
supervised learning problems [66]. Since its debut in [65], FedAvg has become the most popularly used algorithm for
offline federated learning. However, despite its popularity, several works [80, 81, 82] identified that FedAvg suffers
from a client-drift problem when the clients’ data are non-IID (which is an important signature of our case), i.e., local
iterates in each client drift towards their local minimum. This leads to a sub-optimal convergence rate of FedAvg:
for example, one has to suffer a sub-linear convergence rate for strongly convex and smooth losses, though a linear
convergence rate is expected under a centralized setting. To alleviate this, Pathak and Wainwright [83] proposed an
operator splitting procedure to guarantee linear convergence to a neighborhood of the global minimum. Later, Mitra et
al. [82] introduced variance reduction techniques to guarantee exact linear convergence to the global minimum.

2.2.2 General problem formulation
Consider a learning system with 1)N clients responsible for taking actions and receiving corresponding reward feedback
from the environment, e.g., each client being an edge device directly interacting with a user, and 2) a central server
responsible for coordinating the communication between the clients for joint model estimation. This is illustrated in
Figure 2.4.

At each time step t = 1, 2, ..., T , all N clients interact with the environment in a round-robin manner, i.e., each
client i ∈ [N ] chooses an arm xt,i from its time-varying candidate set At,i = {x(1)

t,i ,x
(2)
t,i , . . . ,x

(K)
t,i }, where x(a)

t,i ∈ Rd
denotes the context vector associated with the a-th arm for client i at time t. Without loss of generality, we assume
||x(a)

t,i ||2 ≤ 1,∀i, a, t. Then client i receives the corresponding reward yt,i ∈ R from the environment, which is drawn

from the reward distribution governed by an unknown parameter θ⋆ ∈ Rd (assume ∥θ⋆∥ ≤ S), i.e., yt,i ∼ pθ⋆(y|x
(a)
t,i ).

The interaction between the learning system and the environment repeats itself, and the goal of the learning system is to
minimize the cumulative (pseudo) regret over all N clients in the finite time horizon T , i.e., RT =

∑T
t=1

∑N
i=1 rt,i,

where rt,i = maxx∈At,i
E[y|x]−E[yt,i|xt,i].

In a federated learning setting, the clients cannot directly communicate with each other, but through the central
server, i.e., a star-shaped communication network. Raw data collected by each client i ∈ [N ], i.e., {(xs,i, ys,i)}s∈[T ], is
stored locally and cannot be shared with anyone else. Instead, the clients can only communicate the parameters of the
learning algorithm, e.g., models, gradients, or sufficient statistics; and the communication cost is measured by the total
number of times data being transferred across the system up to time T , which is denoted as CT .

Federated Linear Bandit Prior works have studied communication-efficient federated linear bandit [28, 61], i.e., the
reward function is a linear model yt,i = x⊤

t,iθ⋆ + ηt,i, where ηt,i denotes zero-mean sub-Gaussian noise. Consider an
imaginary centralized agent that has direct access to the data of all clients, so that it can compute the global sufficient
statistics At =

∑
i∈[N ]

∑
s∈[t] xs,ix

⊤
s,i, bt =

∑
i∈[N ]

∑
s∈[t] xs,iys,i. Then the cumulative regret incurred by this

distributed learning system can match that under a centralized setting, if all N clients select arms based on the global
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sufficient statistics {At, bt}. However, it requires N2T communication cost for the immediate sharing of each client’s
update to the sufficient statistics with all other clients, which is expensive for most applications.

To ensure communication efficiency, prior works like DisLinUCB [28] let each client i maintain a local copy
{At−1,i, bt−1,i} for arm selection, which receives immediate local update using each newly collected data sample, i.e.,
At,i = At−1,i + xt,ix

⊤
t,i, bt,i = bt−1,i + xt,iyt,i. Then client i checks whether the event (t− tlast) log(

detAt,i

detAtlast
) > D

is true, where tlast denotes the time step of last global update. If true, a new global update is triggered, such that the
server will collect all clients’ local update since tlast, aggregate them to compute {At, bt}, and then synchronize the
local sufficient statistics of all clients, i.e., set {At,i, bt,i} = {At, bt},∀i ∈ [N ].

2.2.3 Federated generalized linear bandit problem
In this work, we study federated bandit learning with generalized linear models, i.e., the conditional distribution of
reward y given context vector x is drawn from the exponential family [25, 68]:

pθ⋆(y|x) = exp

(
yx⊤θ⋆ −m(x⊤θ⋆)

g(τ)
+ h(y, τ)

)
(2.4)

where τ ∈ R+ is a known scale parameter. Given a function f : R → R, we denote its first and second derivatives
by ḟ and f̈ , respectively. It is known that ṁ(x⊤θ⋆) = E[y|x] := µ(x⊤θ⋆), which is called the inverse link function,
and m̈(x⊤θ⋆) = V(y|x⊤θ⋆). Based on Eq.(2.4), the reward yt,i observed by client i at time t can be equivalently
represented as yt,i = µ(x⊤

t,iθ⋆) + ηt,i, where ηt,i denotes the sub-Gaussian noise. Then we denote the negative
log-likelihood of yi,t given xi,t as l(x⊤

t,iθ⋆, yt,i) = − log pθ⋆(yt,i|xt,i) = −yt,ix⊤
t,iθ⋆ +m(x⊤

t,iθ⋆). In addition, we
adopt the following two assumptions about the reward, which are standard for GLB [25].

Assumption 4. The link function µ is continuously differentiable on (−S, S), kµ-Lipschitz on [−S, S], and infz∈[−S,S] µ̇(z) =
cµ > 0.

Assumption 5. E[ηt,i|Ft,i] = 0,∀t, i, where Ft,i = σ{xt,i, [xs,j , ys,j ](s,j):s<t∩j=i} denotes the σ-algebra generated
by client i’s previously pulled arms and observed rewards, and maxt,i |ηt,i| ≤ Rmax for some constant Rmax > 0.

GLB covers a wider range of non-linear parametric models, including linear, Poisson, logistic regression, etc.
However, to enable joint model estimation for GLB, the learning system needs to solve distributed convex optimization
problems for multiple times to adapt to the new data collected from the environment over time, and each requires
iterative gradient/model aggregation among the clients. This is much more expensive compared with linear models,
and it naturally leads to the question: whether a communication efficient solution to this challenging problem is still
possible? In [84], we answered this question affirmatively by proposing the first provably communication efficient
algorithm for distributed GLB.

New Challenges Compared with federated linear bandit discussed in Section 2.2.2, new challenges arise in designing
a communication-efficient algorithm for federated GLB due to the absence of a closed form solution:

• Iterative communication for global update: compared with the global update for federated linear bandit that only
requires one round of communication to share the sufficient statistics, now it takes multiple iterations of gradient
aggregation to obtain converged global optimization. Moreover, as the clients collect more data samples over
time during bandit learning, the required number of iterations for convergence also increases.

• Drifting issue with local update: during local model update, iterative optimization using only local gradient
can push the updated model away from the global model, i.e., forget the knowledge gained during previous
communications [85].

2.2.4 FedGLB-UCB algorithm
To ensure communication-efficient model updates for federated GLB, we propose to use online regression for local
update, i.e., update each client’s local model only with its newly collected data samples, and use offline regression for
global update, i.e., solicit all clients’ local gradients for joint model estimation. Based on the resulting sequence of
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Figure 2.5: Illustration of FedGLB-UCB algorithm, which uses online regression for local update, i.e., immediately
update each client’s local model θt,i using its newly collected data sample, and uses offline regression for global update,
i.e., synchronize all N clients to a globally updated model θtlast using all the data samples collected so far.

offline-and-online model updates, the confidence ellipsoid for θ⋆ is constructed for each client to select arms using
the OFUL principle. We name this algorithm Federated Generalized Linear Bandit with Upper Confidence Bound, or
FedGLB-UCB for short. We illustrate its key components in Figure 2.5 and describe its procedures in Algorithm 2. In
the following, we discuss about each component of FedGLB-UCB in details.

Algorithm 2 FedGLB-UCB
1: Input: threshold D, regularization parameter λ > 0, δ ∈ (0, 1) and cµ.
2: Initialize ∀i ∈ [N ]: A0,i =

λ
cµ

I ∈ Rd×d, b0,i = 0 ∈ Rd, θ0,i = 0 ∈ Rd,∆A0,i = 0 ∈ Rd×d; A0 = λ
cµ

I ∈
Rd×d, b0 = 0 ∈ Rd, θ0 = 0 ∈ Rd, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i
6: Select arm xt,i ∈ At,i by Eq.(2.8), and observe reward yt,i
7: Update client i: At,i = At−1,i + xt,ix

⊤
t,i, ∆At,i = ∆At−1,i + xt,ix

⊤
t,i

8: if (t− tlast) log
det(At,i)

det(At,i−∆At,i)
< D then

9: Client i: perform local update θt,i = ONS-Update(θt−1,i, At,i,∇l(x⊤
t,iθt−1,i, yt,i)), bt,i = bt−1,i +

xt,ix
⊤
t,iθt−1,i

10: else
11: Clients ∀i ∈ [N ]: send ∆At,i to server, and reset ∆At,i = 0
12: Server: compute At = Atlast +

∑N
i=1 ∆At,i

13: Server: perform global update θt = AGD-Update(θtlast , Jt) (see Eq.(2.6) for the choice of Jt), bt =

btlast +
∑N
i=1 ∆At,iθt, and set tlast = t

14: Clients ∀i ∈ [N ]: set θt,i = θt, At,i = At, bt,i = bt

Local update As mentioned earlier, iterative optimization over local dataset {(xs,i, ys,i)}s∈[t] leads to the drifting
issue that pushes the updated model to the local optimum. Due to the small size of this local dataset, the confidence
ellipsoid centered at the converged model has increased width, which leads to increased regret in bandit learning.
However, as we will prove in Section 2.2.5, completely disabling local update and restricting all clients to use the
previous globally updated model for arm selection is also a bad choice, because the learning system will then need
more frequent global updates to adapt to the growing dataset.
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To enable local update while alleviating the drifting issue, we adopt online regression in each client, such that
the local model estimation θt,i is only updated for one step using the sample (xt,i, yt,i) collected at time t. Prior
works [69, 70] showed that UCB-type algorithms with online regression can attain comparable cumulative regret to the
standard UCB-type algorithms [20, 68], as long as the selected online regression method guarantees logarithmic online
regret. As the negative log-likelihood loss defined in Section 2.2.3 is exp-concave and online Newton step (ONS) is
known to attain logarithmic online regret in this case [86, 70], ONS is chosen for the local update of FedGLB-UCB and
its description is given in Algorithm 3. At time step t, after client i pulls an arm xt,i ∈ At,i and observes the reward
yt,i, its model θt−1,i is immediately updated by the ONS update rule (line 9 in Algorithm 2), where ∇l(x⊤

t,iθt−1,i, yt,i)
denotes the gradient w.r.t. θt−1,i, and At,i denotes the covariance matrix for client i at time t.

Algorithm 3 ONS-Update
1: Input: θt−1,i, At,i,∇l(x⊤

t,iθt−1,i, yt,i)

2: θ′t,i = θt−1,i − 1
cµ
A−1
t,i ∇l(x⊤

t,iθt−1,i, yt,i)

3: θt,i = argminθ∈Bd(S)
||θ − θ′t,i||2At,i

4: Output: θt,i

Global update The global update of FedGLB-UCB requires communication among the N clients, which imposes
communication cost in two aspects: 1) each global update for federated GLB requires multiple rounds of communication
among N clients, i.e., iterative aggregation of local gradients; and 2) global update needs to be performed for multiple
times over time horizon T , in order to adapt to the growing dataset collected by each client during bandit learning.
Consider a particular time step t ∈ [T ] when global update happens, the distributed optimization objective is:

min
θ∈Θ

Ft(θ) :=
1

N

N∑
i=1

Ft,i(θ) (2.5)

where Ft,i(θ) = 1
t

∑t
s=1 l(x

⊤
s,iθ, ys,i) +

λ
2t ||θ||

2
2 denotes the average regularized negative log-likelihood loss for client

i ∈ [N ], and λ > 0 denotes the regularization parameter. Based on Assumption 4, {Ft,i(θ)}i∈[N ] are λ
Nt -strongly-

convex and (kµ +
λ
Nt )-smooth in θ (proof in Section 2.2.7), and we denote the unique minimizer of Eq.(2.5) as θ̂MLE

t .
In this case, it is known that the number of communication rounds Jt required to attain a specified sub-optimality ϵt,
such that Ft(θ) − minθ∈Θ Ft(θ) ≤ ϵt, has a lower bound Jt = Ω

(√
(kµNt)/λ+ 1 log 1

ϵt

)
[87], which means Jt

increases at least at the rate of
√
Nt. This lower bound is matched by the distributed version of accelerated gradient

descent (AGD) [88]:

Jt ≤ 1 +
√

(kµNt)/λ+ 1 log
(kµ + 2λ

Nt
)∥θ(1)t − θ̂MLE

t ∥22
2ϵt

(2.6)

where the superscript (i) denotes the i-th iteration of AGD.
In order to minimize the number of communication rounds in one global update, AGD is chosen as the offline

regression method for FedGLB-UCB, and its description is given in Algorithm 4 (subscript t is omitted for simplicity).
However, other federated/distributed optimization methods can be readily used in place of AGD, as our analysis only
requires the convergence result of the adopted method. We should note that ϵt is essential to the regret-communication
trade-off during the global update at time t: a larger ϵt leads to a wider confidence ellipsoid, which increases regret,
while a smaller ϵt requires more communication rounds Jt, which increases communication cost. In Section 2.2.5, we
will discuss the proper choice of ϵt to attain desired trade-off between the two conflicting objectives.

To reduce the total number of global updates over time horizon T , we adopt the event-triggered communication
from [28], such that global update is triggered if the following event is true for any client i ∈ [N ] (line 8):

(t− tlast) log
det(At,i)

det(At,i −∆At,i)
> D (2.7)
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Algorithm 4 AGD-Update
1: Input : initial θ, number of inner iterations J

2: Initialization: set θ(1) = ϑ(1) = θ, and define the sequences {υj :=
1+

√
1+4υ2

j−1

2 }j∈[J] (with υ0 = 0), and
{γj = 1−υj

υj+1
}j∈[J]

3: for j = 1, 2, . . . , J do
4: Clients compute and send local gradient {∇Fi(θ(j))}i∈[N ] to the server
5: Server aggregates local gradients ∇F (θ(j)) = 1

N

∑N
i=1 ∇Fi(θ(j)), and execute the following update rule to get

θ(j+1):

• ϑ(j+1) = θ(j) − 1
kµ+

λ
Nt

∇F (θ(j))

• θ(j+1) = (1− γj)ϑ
(j+1) + γjϑ

(j)

6: Output: argminθ∈Bd(S)
∥gt(θ(J+1))− gt(θ)∥A−1

t

where ∆At,i denotes client i’s local update to its covariance matrix since last global update at tlast, and D > 0 is the
chosen threshold for the event-trigger. During the global update, the model estimation θt,i, covariance matrix At,i and
vector bt,i for all clients i ∈ [N ] will be updated (line 11-14). We should note that the LHS of Eq.(2.7) is essentially
an upper bound of the cumulative regret that client i’s locally updated model has incurred since tlast. Therefore, this
event-trigger guarantees that a global update only happens when effective regret reduction is possible.

Arm selection To balance exploration and exploitation during bandit learning, FedGLB-UCB uses the OFUL principle
for arm selection [20], which requires the construction of a confidence ellipsoid for each client i. We propose a novel
construction of the confidence ellipsoid based on the sequence of model updates that each client i has received up to
time t: basically, there are 1) one global update at tlast, i.e., the joint offline regression across all clients’ accumulated
data till tlast: {(xs,i, ys,i)}s∈[tlast],i∈[N ], which resets all clients’ local models to θtlast ; and 2) multiple local updates from
tlast + 1 to t, i.e., the online regression on client i’s own data sequence {(xs,i, ys,i)}s∈[tlast+1,t] to get {θs,i}s∈[tlast+1,t]

step by step. This can be more easily understood by the illustration in Figure 2.5. The resulting confidence ellipsoid is
centered at the ridge regression estimator θ̂t,i = A−1

t,i bt,i [69, 70], which is computed using the predicted rewards given
by the past sequence of model updates {θtlast} ∪ {θs,i}s∈[tlast+1,t] (see the update of bt,i in line 9 and 13 of Algorithm 2).
Then at time step t, client i selects the arm that maximizes the UCB score:

xt,i = argmax
x∈At,i

x⊤θ̂t−1,i + αt−1,i||x||A−1
t−1,i

(2.8)

where αt−1,i is the parameter of the confidence ellipsoid given in Lemma 2.2.2. Note that compared with standard
federated/distributed learning where clients only need to communicate gradients for joint model estimation, in our
problem, due to the time-varying arm set, it is also necessary to communicate the confidence ellipsoid among clients,
i.e., At ∈ Rd×d and bt ∈ Rd (line 14 in Algorithm 2), as the clients need to be prepared for all possible arms x ∈ Rd
that may appear in future for the sake of regret minimization.

2.2.5 Regret and communication cost analysis
In this section, we construct the confidence ellipsoid based on the offline-and-online estimators described in Section
2.2.4. Then we analyze the cumulative regret and communication cost of FedGLB-UCB, followed by theoretical
comparisons with its different variants.

Construction of confidence ellipsoid Compared with prior works that convert a sequence of online regression
estimators to confidence ellipsoid [69, 70], our confidence ellipsoid is built on the combination of an offline regression
estimator θtlast for global update, and the subsequent online regression estimators {θs−1,i}s∈[tlast+1,t] for local updates on
each client i. This construction is new and requires proof techniques unique to our proposed solution. In the following,
we highlight the key steps, and defer the details to Section 2.2.7.
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To simplify the use of notations, we assume without loss of generality that the global update at tlast is triggered by the
N -th client, such that no more new data will be collected at tlast, i.e., the first data sample obtained after the global update
has index tlast + 1. We start our construction by considering the following loss difference introduced by the global and
local model updates:

∑tlast
s=1

∑N
i=1

[
l(x⊤

s,iθtlast , ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
+
∑t
s=tlast+1

[
l(x⊤

s,iθs−1,i, ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
,

where the first term is the loss difference between the globally updated model θtlast and θ⋆, and the second term is
between the sequence of locally updated models {θs−1,i}s∈[tlast+1,t] and θ⋆. This extends the definition of online regret
used in the construction in [69, 70]; and due to the existence of offline regression, the obtained upper bounds in Lemma
2.2.1 are unique to our solution.

Lemma 2.2.1 (Upper Bound of Loss Difference). Denote the sub-optimality of the global model update procedure at
time step tlast as ϵtlast , such that Ftlast(θ)−minθ∈Bd(S) Ftlast(θ) ≤ ϵtlast . Then under Assumption 4 and 5, we have

tlast∑
s=1

N∑
i=1

[
l(x⊤

s,iθtlast , ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
≤ B1 (2.9)

where B1 = Ntlastϵtlast +
λ
2S

2, and with probability at least 1− δ,

t∑
s=tlast+1

[
l(x⊤

s,iθs−1,i, ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
≤ B2 (2.10)

where

B2 =
1

2cµ

t∑
s=tlast+1

∥∇l(x⊤
s,iθs−1,i, ys,i)∥2A−1

s,i

+
cµ
2

[ 1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ)

+ 2Ntlast

√
2kµ
λcµ

+
2

Ntlastcµ

√
ϵtlast +

√
λ

cµ
S
]2

respectively.

Specifically, B1 corresponds to the convergence of the offline (distributed) optimization in previous global update;
B2 is essentially the online regret upper bound of ONS, with the major difference that it is initialized using the globally
updated model θtlast , instead of an arbitrary model as in standard ONS. Then due to the cµ-strongly-convexity of l(z, y)
w.r.t. z, i.e., l(x⊤

s θ, ys)− l(x⊤
s θ⋆, ys) ≥

[
µ(x⊤

s θ⋆)− ys
]
x⊤
s (θ − θ⋆) +

cµ
2

[
x⊤
s (θ − θ⋆)

]2
, and by rearranging terms

in Eq.(2.9) and Eq.(2.10), we have:
∑tlast
s=1

∑N
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2 ≤ 2
cµ
B1 + 2

cµ

∑tlast
s=1

∑N
i=1 ηs,ix

⊤
s,i(θtlast − θ⋆),

and
∑t
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2 ≤ 2
cµ
B2 + 2

cµ

∑t
s=tlast+1 ηs,ix

⊤
s,i(θs−1,i − θ⋆), whose LHS is quadratic in θ⋆.

To further upper bound the RHS, we should note that the term 2
cµ

∑t
s=tlast+1 ηs,ix

⊤
s,i(θs−1,i − θ⋆) is standard in

[69, 70] as x⊤
s,i(θs−1,i − θ⋆) is Fs,i-measurable for online estimator θs−1,i. However, this is not true for the term

2
cµ

∑tlast
s=1

∑N
i=1 ηs,ix

⊤
s,i(θtlast − θ⋆) as the offline regression estimator θtlast depends on all data samples collected till

tlast; and thus we have to develop a different approach to bound it. This leads to Lemma 2.2.2 below, which provides the
confidence ellipsoid for θ⋆.

Lemma 2.2.2 (Confidence Ellipsoid of FedGLB-UCB). With probability at least 1− 2δ, for all t ∈ [T ], i ∈ [N ],

∥θ̂t,i − θ⋆∥2At,i
≤ βt,i +

λ

cµ
S2 − ∥zt,i∥22 + θ̂⊤t,ibt,i := α2

t,i

where zt,i = [x⊤
1,1θtlast ,x

⊤
1,2θtlast , . . . ,x

⊤
tlast,N−1θtlast ,x

⊤
tlast,N

θtlast , x
⊤
tlast+1,iθtlast,i,x

⊤
tlast+2,iθtlast+1,i, . . . ,x

⊤
t,iθt−1,i]

⊤, and

βt,i =
8R2

max
c2µ

log
(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix⊤

s,i)
)
+ B1 + 4Rmax

cµ

√
2 log

(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix⊤

s,i)
)(

∥θtlast∥2 +

∥θ⋆∥2 +
√
B1

)
+ 4B2

cµ
+

8R2
max
c2µ

log
(

N
δ

√
4 + 8

cµ
B2 +

64R4
max

c4µ·4δ2

)
+ 1.
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Table 2.2: Comparison between FedGLB-UCB and its variants with different design choices.
Global Upd. Local Upd. Setting RT CT

AGD ONS D = T
Nd log(NT )

kµ(kµ+Rmax)

cµ
d
√
NT log(NT ) dN2

√
T log2(NT )

AGD no update B =
√
NT

kµRmax
cµ

d
√
NT log(NT ) N2T log(NT )

AGD ONS B = d2N log(NT )
kµ(kµ+Rmax)

cµ
d
√
NT log(NT ) log(T ) d2N2.5

√
T log2(NT )

ONS ONS B =
√
NT

kµ(kµ+Rmax)

cµ
d(NT )3/4 log(NT ) N1.5

√
T

Regret and communication cost From Lemma 2.2.2, we can see that αt,i grows at a rate of Ntlast
√
ϵtlast through its

dependence on the B2 term. To make sure the growth rate of αt,i matches that in standard GLB algorithms [68, 70], we
set ϵtlast =

1
N2t2last

, which leads to the following corollary.

Corollary 2.2.2.1 (Order of βt,i). With ϵtlast =
1

N2t2last
, βt,i = O

(
d logNT

c2µ
[k2µ +R2

max]
)
.

Then using a similar argument as the proof for Theorem 4 of [28], we obtain the following upper bounds on RT and
CT for FedGLB-UCB (proof in Section 2.2.7).

Theorem 2.2.3 (Regret and Communication Cost Upper Bound of FedGLB-UCB). Under Assumption 4, 5, and by
setting ϵt = 1

N2t2 ,∀t and D = T
Nd log(NT ) , the cumulative regret RT has upper bound

RT = O

(
kµ(kµ +Rmax)

cµ
d
√
NT log(NT/δ)

)
,

with probability at least 1− 2δ. The corresponding communication cost CT 1 has upper bound

CT = O
(
dN2

√
T log2(NT )

)
.

Theorem 2.2.3 shows that FedGLB-UCB recovers the standard O
(
d
√
NT log(NT )

)
rate in regret as in the central-

ized setting, while only incurring a communication cost that is sub-linear in T . Note that, to obtainO
(
d
√
NT log(NT )

)
regret for federated linear bandit, the DisLinUCB algorithm incurs a communication cost of O(dN1.5 log(NT )) [28],
which is smaller than that of FedGLB-UCB by a factor of

√
NT log(NT ). As the frequency of global updates is the

same for both algorithms (due to their use of the same event-trigger), this additional communication cost is caused by
the iterative optimization procedure for the global update, which is required for GLB model estimation. Moreover, as
we mentioned in Section 2.2.4, there is not much room for improvement here as the use of AGD already matches the
lower bound up to a logarithmic factor.

To facilitate the understanding of our algorithm design and investigate the impact of different components of
FedGLB-UCB on its regret and communication efficiency trade-off, we propose and analyze three variants, which
are also of independent interest, and report the results in Table 2.2. Detailed descriptions, as well as proof for these
results can be found in Section 2.2.8. Note that all three variants perform global update according to a fixed schedule
S = {t1 := ⌊ TB ⌋, t2 := 2⌊ TB ⌋, . . . , tB := B⌊ TB ⌋}, where B denotes the total number of global updates specified in
advance to trade-off between RT and CT , and these variants differ in their global and local update strategies. This
comparison demonstrates that our solution is proven to achieve a better regret-communication trade-off against these
reasonable alternatives. For example, when using standard federated learning methods (which assume fixed dataset) for
streaming data in real-world applications, it is a common practice to set some fixed schedule to periodically retrain the
global model to fit the new dataset, and FedGLB-UCB1 implements such behaviors. The design of FedGLB-UCB3 is
motivated by distributed online convex optimization that also deals with streaming data in a distributed setting.

2.2.6 Experiment setup & results
We performed extensive empirical evaluations of FedGLB-UCB on both synthetic and real-world datasets, and the
results (averaged over 10 runs) are reported in Figure 2.6. We included the three variants of FedGLB-UCB (listed in

1This is measured by the total number of times data is transferred. Some works [28] measure CT by the total number of scalars transferred, in
which case, we have CT = O

(
d3N1.5 log(NT ) + d2N2T 0.5 log2(NT )

)
.
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Table 2.2), One-UCB-GLM, N-UCB-GLM [68] and N-ONS-GLM [70] as baselines, where One-UCB-GLM learns a
shared bandit model across all clients, and N-UCB-GLM and N-ONS-GLM learn a separated bandit model for each
client with no communication.
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Figure 2.6: Experiment results on synthetic and real world datasets.

Synthetic dataset We simulated the federated GLB setting defined in Section 2.2.3, with T = 2000, N = 200, d =
10, S = 1, At (K = 25) uniformly sampled from a ℓ2 unit sphere, and reward yt,,i ∼ Bernoulli(µ(x⊤

t,,iθ⋆)), with
µ(z) = (1 + exp(−z))−1. To compare the algorithms’ RT and CT under different trade-off settings, we run FedGLB-
UCB with different threshold value D (logarithmically spaced between 10−1 and 103) and its variants with different
number of global updates B. Note that each dot in the result figure illustrates the CT (x-axis) and RT (y-axis) that
a particular instance of FedGLB-UCB or its variants obtained by time T , and the corresponding value for D or B is
labeled next to the dot. RT of One-UCB-GLM is illustrated as the red horizontal line, and RT of N-UCB-GLM and
N-ONS-GLM are labeled on the top of the figure. We can observe that for FedGLB-UCB and its variants, RT decreases
as CT increases, interpolating between the two extreme cases: independently learned bandit models by N-UCB-GLM,
N-ONS-GLM; and the jointly learned bandit model by One-UCB-GLM. FedGLB-UCB significantly reduces CT , while
attaining low RT , i.e., its regret is even comparable with One-UCB-GLM that requires at least CT = N2T (8× 107 in
this simulation) for gradient aggregation at each time step.
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Real-world dataset The results above demonstrate the effectiveness of FedGLB-UCB when data is generated by a
well-specified generalized linear model. To evaluate its performance in a more challenging and practical scenario, we
performed experiments using real-world datasets: CoverType, MagicTelescope and Mushroom from the UCI Machine
Learning Repository [89]. To convert them to contextual bandit problems, we pre-processed these datasets following
the steps in prior works [25], with T = 2000 and N = 20. Moreover, to demonstrate the advantage of GLB over
linear model, we included DisLinUCB [28] as an additional baseline. Since the parameters being communicated
in DisLinUCB and FedGLB-UCB are different, to ensure a fair comparison of CT in this experiment, we measure
communication cost (x-axis) by the number of integers or real numbers transferred across the learning system (instead of
the frequency of communications). Note that DisLinUCB has no CT ≥ 3× 106in Figure 2.6 because its global update
is already happening in every round and cannot be increased further. As mentioned earlier, due to the difference in
messages being sent, the communication in DisLinUCB’s per global update is much smaller than that in FedGLB-UCB.
However, because linear models failed to capture the complicated reward mappings in these three datasets, we can see
that DisLinUCB is clearly outperformed by FedGLB-UCB and its variants. This shows that, by offering a larger variety
of modeling choices, e.g., linear, Poisson, logistic regression, etc., FedGLB-UCB has more potential in dealing with the
complicated data in real-world applications.

2.2.7 Full proof of FedGLB-UCB algorithm
Omitted proof in Section 2.2.5

We first need to establish the following lemma.

Lemma 2.2.4 (Confidence Ellipsoid Centered at Global Model). Consider time step t ∈ [T ] when a global update
happens, such that the distributed optimization overN clients is performed to get the globally updated model θt. Denote
the sub-optimality of the final iteration as ϵt, such that Ft(θt)− Ft(θ̂

MLE
t ) ≤ ϵt; then with probability at least 1− δ, for

all t ∈ [T ],
||θt − θ⋆||At

≤ αt

whereαt = Nt
√

2kµ
λcµ

+ 2
Ntcµ

√
ϵt+

Rmax

cµ

√
d log (1 +Ntcµ/(dλ)) + 2 log (1/δ)+

√
λ
cµ
S, andAt = λ

cµ
I+
∑N
i=1

∑t
s=1 xs,ix

⊤
s,i.

Proof. Recall that the unique minimizer of Eq.(2.5) is denoted as θ̂MLE
t , so by taking gradient w.r.t. θ we have,

gt(θ̂
MLE
t ) =

∑N
i=1

∑t
s=1 xs,iys,i, where we define gt(θ) = λθ +

∑N
i=1

∑t
s=1 µ(x

⊤
s,iθ)xs,i. First, we start with

standard arguments [25, 68] to show that ∥θt − θ⋆∥At ≤ 1
cµ
∥gt(θt)− gt(θ⋆)∥A−1

t
. Specifically, by Assumption 4 and

the Fundamental Theorem of Calculus, we have

gt(θt)− gt(θ⋆) = Gt(θt − θ⋆)

where Gt =
∫ 1

0
∇gt(aθt + (1 − a)θ⋆)da. Again by Assumption 4, ∇gt(θ) = λI +

∑t
s=1

∑N
i=1 xs,ix

⊤
s,iµ̇(x

⊤
s,iθ)

is continuous, and ∇gt(θ) ≽ λI + cµ
∑t
s=1

∑N
i=1 xs,ix

⊤
s,i ≻ 0 for θ ∈ Bd(S), so Gt ≻ 0, i.e., Gt is invertible.

Therefore, we have

θt − θ⋆ = G−1
t [gt(θt)− gt(θ⋆)]

Note that Gt ≽ λI + cµ
∑t
s=1

∑N
i=1 xs,ix

⊤
s,i = cµAt, so G−1

t ≼ 1
cµ
A−1
t . Hence,

∥θt − θ⋆∥At = ∥G−1
t [gt(θt)− gt(θ⋆)]∥At ≤ ∥ 1

cµ
A−1
t [gt(θt)− gt(θ⋆)]∥At =

1

cµ
∥gt(θt)− gt(θ⋆)∥A−1

t

≤ 1

cµ
∥gt(θt)− gt(θ̂

MLE
t )∥A−1

t
+

1

cµ
∥gt(θ̂MLE

t )− gt(θ⋆)∥A−1
t

(2.11)

where the first term depends on the sub-optimality of the offline regression estimator θt to the unique minimizer θ̂(MLE)
t ,

and the second term is standard for GLB [68].
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Recall from Algorithm 4 that θt = argminθ∈Bd(S)
∥gt(θ̃t) − gt(θ)∥A−1

t
, where θ̃t denotes the AGD estimator

before projection. Therefore, for the first term, using triangle inequality and the definition of gt(·), we have

||gt(θt)− gt(θ̂
(MLE)
t )||A−1

t
≤ ||gt(θt)− gt(θ̃t)||A−1

t
+ ||gt(θ̃t)− gt(θ̂

(MLE)
t )||A−1

t

≤ 2||gt(θ̃t)− gt(θ̂
(MLE)
t )||A−1

t
= 2||λθt +

t∑
s=1

N∑
i=1

xs,iµ(x
⊤
s,iθt)−

t∑
s=1

N∑
i=1

xs,iys,i||A−1
t

= 2||
t∑

s=1

N∑
i=1

xs,i[−yi,s + µ(x⊤
s,iθt)] + λθt||A−1

t
= 2||Nt∇Ft(θt)||A−1

t

where the last equality is due to the definition of Ft(θ) in Eq.(2.5). We can further bound it using the property of
Rayleigh quotient and the fact that At ≽ λ

cµ
I , which gives us

||gt(θt)− gt(θ̂
(MLE)
t )||A−1

t
≤ 2Nt||∇Ft(θt)||2√

λmin(At)
≤ 2Nt||∇Ft(θt)||2√

λ/cµ

Based on Lemma A.19, Ft(θ) is (kµ + λ
Nt )-smooth, which means

1

2kµ + 2λ/(Nt)
∥∇Ft(θt)∥2 ≤ Ft(θt)− Ft(θ̂

MLE
t ) ≤ ϵt

where the second inequality is by definition of ϵt. Putting everything together, we have the following bound for the first
term

1

cµ
∥gt(θt)− gt(θ̂

MLE
t )∥A−1

t
≤ 2Nt

√
2kµ
λcµ

+
2

Ntcµ

√
ϵt

For the second term, similarly, based on the definition of gt(·), we have

1

cµ
||gt(θ̂MLE

t )− gt(θ⋆)||A−1
t

=
1

cµ
||

t∑
s=1

N∑
i=1

xs,iys,i −
t∑

s=1

N∑
i=1

µ(x⊤
s,iθ⋆)xs,i − λθ⋆||A−1

t

≤ 1

cµ
||

t∑
s=1

N∑
i=1

xs,iηs,i||A−1
t

+

√
λ

cµ
S

Then based on the self-normalized bound in Lemma A.17 (Theorem 1 of [20]), we have ||
∑t
s=1

∑N
i=1 xs,iηs,i||A−1

t
≤

Rmax
√
d log (1 +Ntcµ/dλ) + 2 log (1/δ),∀t, with probability at least 1− δ.

Substituting the upper bounds for these two terms back into Eq.(2.11), we have, with probability at least 1− δ,

∥θt − θ⋆∥At
≤ 1

cµ
∥gt(θt)− gt(θ̂

(MLE)
t )∥A−1

t
+

1

cµ
∥gt(θ̂(MLE)

t )− gt(θ⋆)∥A−1
t

≤ 2Nt

√
2kµ
λcµ

+
2

Ntcµ

√
ϵt +

Rmax
cµ

√
d log (1 +Ntcµ/(dλ)) + 2 log (1/δ) +

√
λ

cµ
S

which finishes the proof.

34



Proof of Lemma 2.2.1. Denote the two terms for loss difference asA1 =
∑tlast
s=1

∑N
i=1

[
l(x⊤

s,iθtlast , ys,i)−l(x⊤
s,iθ⋆, ys,i)

]
,

and A2 =
∑t
s=tlast+1

[
l(x⊤

s,iθs−1,i, ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
. We can upper bound the term A1 by

A1 =

tlast∑
s=1

N∑
i=1

[
l(x⊤

s,iθtlast , ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
− λ

2
∥θ⋆∥22 +

λ

2
∥θ⋆∥22

≤
tlast∑
s=1

N∑
i=1

l(x⊤
s,iθtlast , ys,i)−

tlast∑
s=1

N∑
i=1

l(x⊤
s,iθ̂

MLE
tlast

, ys,i)−
λ

2
∥θ̂MLE
tlast

∥22 +
λ

2
∥θ⋆∥22

≤
tlast∑
s=1

N∑
i=1

l(x⊤
s,iθtlast , ys,i) +

λ

2
∥θtlast∥22 −

tlast∑
s=1

N∑
i=1

l(x⊤
s,iθ̂

MLE
tlast

, ys,i)−
λ

2
∥θ̂MLE
tlast

∥22 +
λ

2
S2

≤ Ntlastϵtlast +
λ

2
S2 := B1

where the first inequality is because θ̂MLE
tlast

minimizes Eq.(2.5), such that
∑tlast
s=1 l(x

⊤
s,iθ̂

MLE
tlast

, ys,i) +
λ
2 ∥θ̂

MLE
tlast

∥22 ≤∑tlast
s=1 l(x

⊤
s,iθ, ys,i) +

λ
2 ∥θ∥

2
2 for any θ ∈ Bd(S), and the last inequality is because Ftlast(θtlast)− Ftlast(θ̂

MLE
tlast

) ≤ ϵtlast by
definition.

Now we start with standard arguments [70, 90] in order to bound the term A2, which is essentially the online regret
of ONS, except that its initial model is the globally updated model θtlast . First, since l(z, y) is cµ-strongly-convex w.r.t.
z, we have

l(x⊤
s,iθs−1,i, ys,i)− l(x⊤

s,iθ⋆, ys,i) ≤ [µ(x⊤
s,iθs−1,i)− ys,i]x

⊤
s,i(θs−1,i − θ⋆)−

cµ
2
||θs−1,i − θ⋆||2xs,ix⊤

s,i
(2.12)

To further bound the RHS of Eq.(2.12), recall from the ONS local update rule in Algorithm 3 that, for each client
i ∈ [N ] at the end of each time step s ∈ [tlast + 1, t],

θ′s,i = θs−1,i −
1

cµ
A−1
s,i∇l(x

⊤
s,iθs−1,i, ys,i)

θs,i = argmin
θ∈Bd(S)

||θ′s,i − θ||2As,i

Then due to the property of generalized projection (Lemma 8 of [86]), we have

∥θs,i − θ⋆∥2As,i

≤ ∥θs−1,i − θ⋆ −
1

cµ
A−1
s,i∇l(x

⊤
s,iθs−1,i, ys,i)∥2As,i

≤ ∥θs−1,i − θ⋆∥2As,i
− 2

cµ
∇l(x⊤

s,iθs−1,i, ys,i)
⊤(θs−1,i − θ⋆) +

1

c2µ
∥∇l(x⊤

s,iθs−1,i, ys,i)∥2A−1
s,i

By rearranging terms, we have

∇l(x⊤
s,iθs−1,i, ys,i)

⊤(θs−1,i − θ⋆)

≤ 1

2cµ
∥∇l(x⊤

s,iθs−1,i, ys,i)∥2A−1
s,j

+
cµ
2

(
∥θs−1,i − θ⋆∥2As,i

− ∥θs,i − θ⋆∥2As,i

)
=

1

2cµ
∥∇l(x⊤

s,iθs−1,i, ys,i)∥2A−1
s,i

+
cµ
2
∥θs−1,i − θ⋆∥2As−1,i

+
cµ
2

(
∥θs−1,i − θ⋆∥2As,i

− ∥θs−1,i − θ⋆∥2As−1,i

)
− cµ

2
∥θs,i − θ⋆∥2As,i

=
1

2cµ
∥∇l(x⊤

s,iθs−1,i, ys,i)∥2A−1
s,i

+
cµ
2
∥θs−1,i − θ⋆∥2As−1,i

+
cµ
2
∥θs−1,i − θ⋆∥2xs,ix

⊤
s,i

− cµ
2
∥θs,i − θ⋆∥2As,i
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Note that ∇l(x⊤
s,iθs−1,i, ys,i) = xs,i[µ(x

⊤
s,iθs−1,i)− ys,i], so with the inequality above, we can further bound the RHS

of Eq.(2.12):

l(x⊤
s,iθs−1,i, ys,i)− l(x⊤

s,iθ⋆, ys,i) ≤ [µ(x⊤
s,iθs−1,i)− ys,i]x

⊤
s,i(θs−1,i − θ⋆)−

cµ
2
||θs−1,i − θ⋆||2xs,ix⊤

s,i

≤ 1

2cµ
∥∇l(x⊤

s,iθs−1,i, ys,i)∥2A−1
s,i

+
cµ
2
∥θs−1,i − θ⋆∥2As−1,i

− cµ
2
∥θs,i − θ⋆∥2As,i

Then summing over s ∈ [tlast + 1, t], we have

A2 ≤ 1

2cµ

t∑
s=tlast+1

∥∇l(x⊤
s,iθs−1,i, ys,i)∥2A−1

s,i

+
cµ
2
∥θtlast,i − θ⋆∥2Atlast,i

− cµ
2
∥θt,i − θ⋆∥2At,i

where Atlast,i = Atlast , θtlast,i = θtlast ,∀i ∈ [N ] due to the global update (line 15 in Algorithm 2).
We should note that the second term above itself essentially corresponds to a confidence ellipsoid centered at the

globally updated model θtlast , and its appearance in the upper bound for the loss difference (online regret) of local
updates is because the local update is initialized by θtlast . And based on Lemma 2.2.4, with probability at least 1− δ,

∥θtlast,i − θ⋆∥Atlast,i
≤ 2Ntlast

√
2kµ
λcµ

+
2

Ntlastcµ

√
ϵtlast

+
1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ) +

√
λ

cµ
S

Therefore, with probability at least 1− δ,

A2 ≤ 1

2cµ

t∑
s=tlast+1

∥∇l(x⊤
s,iθs−1,i, ys,i)∥2A−1

s,i

+
cµ
2

[
2Ntlast

√
2kµ
λcµ

+
2

Ntlastcµ

√
ϵtlast

+
1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ) +

√
λ

cµ
S
]2

:= B2

which finishes the proof for Lemma 2.2.1.

Proof of Lemma 2.2.2. Due to cµ-strongly convexity of l(z, y) w.r.t. z, we have l(x⊤
s,iθ, ys,i) − l(x⊤

s,iθ⋆, ys,i) ≥[
µ(x⊤

s,iθ⋆)− ys,i
]
x⊤
s,i(θ − θ⋆) +

cµ
2

[
x⊤
s,i(θ − θ⋆)

]2
. Substituting this to the LHS of Eq.(2.9) and Eq.(2.10), we have

B1 ≥
tlast∑
s=1

N∑
i=1

[
l(x⊤

s,iθtlast , ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
≥

tlast∑
s=1

N∑
i=1

[
µ(x⊤

s,iθ⋆)− ys
]
x⊤
s,i(θtlast − θ⋆) +

cµ
2

tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
B2 ≥

t∑
s=tlast+1

[
l(x⊤

s,iθs−1,i, ys,i)− l(x⊤
s,iθ⋆, ys,i)

]
≥

t∑
s=tlast+1

[
µ(x⊤

s,iθ⋆)− ys
]
x⊤
s,i(θs−1,i − θ⋆) +

cµ
2

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2
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By rearranging the terms, we have

tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2 ≤ 2

cµ
B1 +

2

cµ

tlast∑
s=1

N∑
i=1

ηs,ix
⊤
s,i(θtlast − θ⋆)

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2 ≤ 2

cµ
B2 +

2

cµ

t∑
s=tlast+1

ηs,ix
⊤
s,i(θs−1,i − θ⋆)

where the LHS is quadratic in θ⋆. For the RHS, we will further upper bound the second term as shown below.

Upper Bound for
∑t
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2
Note that x⊤

s,i(θs−1,i − θ⋆) is Fs,i-measurable, and ηs,i is Fs+1,i-
measurable and conditionally Rmax-sub-Gaussian. By applying Lemma A.18 (Corollary 8 of [69]) w.r.t. client i’s
filtration {Fs,i}∞s=tlast+1, where Fs,i = σ

(
[xk,j , ηk,j ]k,j:k≤tlast∩j≤N , [xk,j , ηk,j ]k,j:tlast+1≤k≤s−1∩j=i,xs,i

)
, and taking

union bound over all i ∈ [N ], with probability at least 1− δ, for all t ∈ [T ], i ∈ [N ],

t∑
s=tlast+1

ηs,ix
⊤
s,i(θs−1,i − θ⋆) ≤

Rmax

√√√√√2
(
1 +

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2) · log(N
δ

√√√√1 +

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2)
Therefore,

1 +

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2 ≤ 1 +
2

cµ
B2

+
2Rmax

cµ

√√√√√2
(
1 +

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2) · log(N
δ

√√√√1 +

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2) (2.13)

Then by applying Lemma 2 of [70], i.e., if q2 ≤ a + fq
√
log( q

δ/N ) then q2 ≤ 2a + f2 log(

√
4a+f4/(4δ2)

δ/N ) (for

a, f ≥ 0, q ≥ 1). And by setting q =
√
1 +

∑t
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2
, a = 1 + 2

cµ
B2, f = 2

√
2Rmax

cµ
, we have

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2 ≤ 1 +
4B2

cµ
+

8R2
max

c2µ
log

(
N

δ

√
4 +

8

cµ
B2 +

64R4
max

c4µ · 4δ2

)
,∀t, i (2.14)

with probability at least 1− δ.

Upper Bound for
∑tlast
s=1

∑N
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
Note that θtlast depends on all data samples in {(xs,i, ys,i)}s∈[tlast]

as a result of the offline regression method, and therefore x⊤
s,i(θtlast − θ⋆) is no longer Fs,i-measurable for s ∈ [1, tlast).
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Hence, we cannot use Lemma A.18 as before. Instead, we have

tlast∑
s=1

N∑
i=1

ηs,ix
⊤
s,i(θtlast − θ⋆) =

( tlast∑
s=1

N∑
i=1

ηs,ixs,i

)⊤
(θtlast − θ⋆)

=
( tlast∑
s=1

N∑
i=1

ηs,ixs,i

)⊤
(I +

tlast∑
s=1

N∑
i=1

xs,ix
⊤
s,i)

−1(I +

tlast∑
s=1

N∑
i=1

xs,ix
⊤
s,i)(θtlast − θ⋆)

≤

√√√√( tlast∑
s=1

N∑
i=1

ηs,ixs,i

)⊤
(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

−1
( tlast∑
s=1

N∑
i=1

ηs,ixs,i

)
· (θtlast − θ⋆)⊤(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)(θtlast − θ⋆)

=

√√√√∥
tlast∑
s=1

N∑
i=1

ηs,ixs,i∥2
(I+

∑tlast
s=1

∑N
i=1 xs,ix

⊤
s,i)

−1
· ∥θtlast − θ⋆∥2

(I+
∑tlast

s=1

∑N
i=1 xs,ix

⊤
s,i)

≤ Rmax

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
· ∥θtlast − θ⋆∥2

(I+
∑tlast

s=1

∑N
i=1 xs,ix

⊤
s,i)

,

with probability at least 1 − δ, where the first inequality is due to the matrix-weighted Cauchy-Schwarz inequality
in Lemma A.7, such that x⊤A−1Ay ≤

√
x⊤A−1x · y⊤A⊤A−1Ay =

√
x⊤A−1x · y⊤Ay for symmetric PD matrix

A, and the second inequality is obtained by applying the self-normalized bound in Lemma A.17 w.r.t. the filtration
{Fs}s∈{tp}B

p=1
, where Fs = σ

(
[xk,j , ηk,j ]k,j:k≤s−1∩j≤N , [xk,j , ηk,j ]k,j:k=s∩j≤N−1,xs,N

)
and {tp}Bp=1 denotes the

sequence of time steps when global update happens, and B denotes the total number of global updates.
By substituting it back, we have

tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2

≤ 2

cµ
B1 +

2Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
· ∥θtlast − θ⋆∥2

I+
∑tlast

s=1

∑N
i=1 xs,ix

⊤
s,i

≤ 2

cµ
B1 +

2Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
·
( tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
+ ∥θtlast − θ⋆∥22

)
(2.15)

Then by setting z =
√∑tlast

s=1

∑N
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
+ ∥θtlast − θ⋆∥22, a = ∥θtlast − θ⋆∥22 + 2

cµ
B1, as well as b =

2Rmax

cµ

√
2 log

(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

⊤
s,i)
)
, and using Proposition 9 of [69], i.e. if z2 ≤ a+bz then z ≤ b+

√
a

(for a, b ≥ 0), we have √√√√ tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
+ ∥θtlast − θ⋆∥22

≤2Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)
)
+
√

∥θtlast − θ⋆∥22 +B1

(2.16)
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Taking square on both sides, and rearranging terms, we have

tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
≤8R2

max

c2µ
log

(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
+B1

+
4Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)√
∥θtlast − θ⋆∥22 +B1

≤8R2
max

c2µ
log

(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
+B1

+
4Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
(∥θtlast − θ⋆∥2 +

√
B1)

≤8R2
max

c2µ
log

(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
+B1

+
4Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix⊤
s,i)

)
(∥θtlast∥2 + ∥θ⋆∥2 +

√
B1)

(2.17)

Now putting everything together, we have the following confidence region for θ⋆,

P
(
∀t, i,

tlast∑
s=1

N∑
i=1

[
x⊤
s,i(θtlast − θ⋆)

]2
+

t∑
s=tlast+1

[
x⊤
s,i(θs−1,i − θ⋆)

]2 ≤ βt,i
)
≥ 1− 2δ (2.18)

where βt,i =
8R2

max

c2µ
log
(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

⊤
s,i)
)
+B1+

4Rmax

cµ

√
2 log

(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

⊤
s,i)
)

(∥θtlast∥2 + ∥θ⋆∥2 +
√
B1) + 1 + 4B2

cµ
+

8R2
max

c2µ
log
(
N
δ

√
4 + 8

cµ
B2 +

64R4
max

c4µ·4δ2
)
.

Denote Xt,i =


x⊤
1,1

. . .
x⊤
tlast,N

x⊤
i,tlast+1

. . .
x⊤
i,t

 ∈ R(Ntlast+t−tlast)×d, and zt,i =


x⊤
1,1θtlast

. . .
x⊤
tlast,N

θtlast

x⊤
i,tlast+1θtlast,i

. . .
x⊤
i,tθt−1,i

 ∈ RNtlast+t−tlast . We can rewrite the

inequality above as

∥zt,i − Xt,iθ⋆∥22 +
λ

cµ
∥θ⋆∥22 ≤ βt,i +

λ

cµ
∥θ⋆∥22 ≤ βt,i +

λ

cµ
S2

⇔∥zt,i − Xt,iθ⋆∥22 +
λ

cµ
∥θ⋆∥22 − ∥zt,i − Xt,iθ̂t,i∥22 −

λ

cµ
∥θ̂t,i∥22 + ∥zt,i − Xt,iθ̂t,i∥22 +

λ

cµ
∥θ̂t,i∥22

≤ βt,i +
λ

cµ
S2

where θ̂t,i = A−1
t,i X⊤

t,izt,i denotes the Ridge regression estimator based on the predicted rewards given by the past
sequence of model updates, and the regularization parameter is λ

cµ
. Note that by expanding θ̂t,i, we can show
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θ̂⊤t,iAi,tθ̂t,i = z⊤i,tXi,tθ̂t,i, and θ̂⊤t,iAi,tθ⋆ = z⊤i,tXi,tθ⋆. Therefore, we have

∥θ̂t,i − θ⋆∥2At,i
≤ βt,i +

λ

cµ
S2 − (∥zt,i∥22 − θ̂⊤t,iX

⊤
t,izt,i)

which finishes the proof of Lemma 2.2.2.

Proof of Corollary 2.2.2.1. Under the condition that ϵtlast ≤ 1
N2t2last

,

B1 ≤ 1

Ntlast
+
λ

2
S2 = O(1)

B2 ≤ 1

2cµ

t∑
s=tlast+1

∥∇l(x⊤
s,iθs−1,i, ys,i)∥2A−1

s,i

+
cµ
2

[
2

√
2kµ
λcµ

+
2

Ntlastcµ
+

1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ) +

√
λ

cµ
S
]2

Note that ∇l(x⊤
s,iθs−1,i, ys,i) = xs,i[µ(x

⊤
s,iθs−1,i)− ys,i]. We can upper bound the squared prediction error by[

µ(x⊤
s,iθs−1,i)− ys,i

]2
=
[
µ(x⊤

s,iθs−1,i)− µ(x⊤
s,iθ⋆)− ηs,i

]2
≤ 2
[
µ(x⊤

s,iθs−1,i)− µ(x⊤
s,iθ⋆)

]2
+ 2η2s,i

≤ 2k2µ
[
x⊤
s,i(θs−1,i − θ⋆)

]2
+ 2η2s,i

≤ 8k2µS
2 + 2η2s,i

where the first inequality is due to AM-QM inequality, and the second inequality is due to the kµ-Lipschitz continuity
of µ(·) according to Assumption 4. Since |ηs,i| ≤ Rmax,

[
µ(x⊤

s,iθs−1,i)− ys,i
]2 ≤ k2µS

2 +R2
max. In addition, due to

Lemma 11 of [20], i.e.,
∑t
s=tlast+1∥xs,i∥2A−1

s,i

≤ 2 log(
det(At,i)
det(λI) ) Therefore,

1

2cµ

t∑
s=tlast+1

∥∇l(x⊤
s,iθs−1,i, ys,i)∥2A−1

s,i

= O
(d logNT

cµ
[k2µS

2 +R2
max]

)
so B2 = O

(
d logNT

cµ
[k2µS

2 +R2
max]

)
. Hence,

βt,i = O(d
R2

max

c2µ
logNT + d

k2µ
c2µ

logNT + d
R2

max

c2µ
logNT ) = O(

d logNT

c2µ
[k2µ +R2

max])

which finishes the proof.

Proof of Theorem 2.2.3. Since µ(·) is kµ-Lipschitz continuous, we have µ(x⊤
t,⋆θ⋆)− µ(x⊤

t,iθ⋆) ≤ kµ(x
⊤
t,⋆θ⋆ − x⊤

t,iθ⋆).
Then we have the following upper bound on the instantaneous regret,

rt,i
kµ

≤ x⊤
t,⋆θ⋆ − x⊤

t,iθ⋆ ≤ x⊤
t,iθ̃t−1,i − x⊤

t,iθ⋆

= x⊤
t,i(θ̃t−1,i − θ̂t−1,i) + x⊤

t,i(θ̂t−1,i − θ⋆)

≤ ∥xt,i∥A−1
t−1,i

∥θ̃t−1,i − θ̂t−1,i∥At−1,i
+ ∥xt,i∥A−1

t−1,i
∥θ̂t−1,i − θ⋆∥At−1,i

≤ 2αt−1,i · ∥xt,i∥A−1
t−1,i
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which holds for all i ∈ [N ], t ∈ [T ], with probability at least 1− 2δ. And θ̃t−1.i denotes the optimistic estimate in the
confidence ellipsoid that maximizes the UCB score when client i selects arm at time step t.

Now consider an imaginary centralized agent that has direct access to all clients’ data, and we denote its covariance
matrix as Ãt,i = λ

cµ
I+
∑t−1
s=1

∑N
j=1 xs,jxs,j+

∑i
j=1 xt,jx

⊤
t,j , i.e., Ãt,i is immediately updated after any client obtains

a new data sample from the environment. Then we can obtain the following upper bound for rt,i, which is dependent
on the determinant ratio between the covariance matrix of the imaginary centralized agent and that of client i, i.e.,
det(Ãt−1,i)/ det(At−1,i).

rt,i ≤ 2kµαt−1,i

√
x⊤
t,iA

−1
t−1,ixt,i ≤ 2kµαt−1,i

√
x⊤
t,iÃ

−1
t−1,ixt,i ·

det(Ãt−1,i)

det(At−1,i)

We refer to the time period in-between two consecutive global updates as an epoch, and denote the total number of
epochs as B ∈ R, i.e., the p-th epoch refers to the period from tp−1 + 1 to tp, for p ∈ [B], where tp denotes the
time step when the p-th global update happens. Then the p-th epoch is called a ‘good’ epoch if the determinant ratio
det(Atp )

det(Atp−1
) ≤ 2, where Atp is the aggregated sufficient statistics computed at the p-th global update. Otherwise, it is

called a ‘bad’ epoch. In the following, we bound the cumulative regret in ‘good’ and ‘bad’ epochs separately.
Suppose the p-th epoch is a good epoch, then for any client i ∈ [N ], and time step t ∈ [tp−1 + 1, tp], we have

det(Ãt−1,i)
det(At−1,i)

≤ det(Atp )

det(Atp−1
) ≤ 2, because At−1,i ≽ Atp−1 and Ãt−1,i ≼ Atp . Therefore, the instantaneous regret incurred

by any client i at any time step t of a good epoch can be bounded by

rt,i ≤ 2
√
2kµαt−1,i

√
x⊤
t,iÃ

−1
t−1,ixt,i

with probability at least 1− 2δ. Therefore, using standard arguments for UCB-type algorithms, e.g., Theorem 2 in [68],
the cumulative regret for all the ‘good epochs’ is

REGgood ≤ 2
√
2kµαt−1,i

T∑
t=1

N∑
i=1

∥xt,i∥Ã−1
t−1,i

= O

(
kµ(kµ +Rmax)

cµ
d
√
NT logNT

)
which matches the regret upper bound of GLOC [70].

Now suppose the p-th epoch is bad. Then the cumulative regret incurred by all N clients during this ‘bad epoch’
can be upper bounded by:

tp∑
t=tp−1+1

N∑
i=1

rt,i

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT ))

tp∑
t=tp−1+1

N∑
i=1

min(1, ||xt,i||A−1
t−1,i

)

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT ))

N∑
i=1

√
(tp − tp−1) log

det(Atp−1,i)

det(Atp−1,i −∆Atp−1,i)

≤ O(
kµ(kµ +Rmax)

cµ
N
√
d log (NT )D)

where the last inequality is due to the event-trigger design in Algorithm 2. Following the same argument as [28], there can
be at most R = ⌈d log (1 + NTcµ

λd )⌉ = O
(
d log(NT )

)
‘bad epochs’, because det(AtB ) ≤ det(ÃT,N ) ≤ ( λcµ + NT

d )d.
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Therefore, the cumulative regret for all the ‘bad epochs’ is

REGbad = O

(
kµ(kµ +Rmax)

cµ
d1.5 log1.5 (NT )ND0.5

)
Combining the regret upper bound for ‘good’ and ‘bad’ epochs, the cumulative regret

RT = O

(
kµ(kµ +Rmax)

cµ
(d
√
NT log(NT ) + d1.5 log1.5 (NT )ND0.5)

)
.

To obtain upper bound for the communication cost CT , we first upper bound the total number of epochs B. Denote
the length of an epoch, i.e., the number of time steps between two consecutive global updates, as α > 0, so that there
can be at most ⌈Tα ⌉ epochs with length longer than α. For a particular epoch p with less than α time steps, we have

tp − tp−1 < α. Moreover, due to the event-trigger design in Algorithm 2, we have (tp − tp−1) log
det(Atp )

det(Atp−1
) > D,

which means log
det(Atp )

det(Atp−1
) >

D
α . Since

∑B
p=1 log

det(Atp )

det(Atp−1
) ≤ R, the number of epochs with less than α time steps

is at most ⌈RαD ⌉. Therefore, the total number of epochs.

B ≤ ⌈T
α
⌉+ ⌈Rα

D
⌉

which is minimized it by choosing α =
√

DT
R , so B ≤

√
TR
D = O(d0.5 log0.5(NT )T 0.5D−0.5).

At the end of each epoch, FedGLB-UCB has a global update step that executes AGD among all N clients. As
mentioned in Section 2.2.4, the number of iterations required by AGD has upper bound

Jt ≤ 1 +

√
kµ
λ
Nt+ 1 log

(kµ + 2λ
Nt )∥θ

(1)
t − θ̂MLE

t ∥22
2ϵt

,

and under the condition that ϵt = 1
N2t2 ,∀t ∈ [T ], we have Jt = O

(√
NT log(NT )

)
,∀t ∈ [T ]. Moreover, each

iteration of AGD involves communication with N clients, so the communication cost

CT = O(d0.5 log1.5(NT )TN1.5D−0.5)

In order to match the regret under centralized setting, we set the threshold D = T
Nd log(NT ) , which gives us

RT = O(
kµ(kµ+Rmax)

cµ
d
√
NT log(NT )), and CT = O(dN2

√
T log2(NT )).

2.2.8 Full proof of variants of FedGLB-UCB algorithm
In this section, we describe and analyze the variants of FedGLB-UCB listed in Table 2.2. The first variant, FedGLB-
UCB1, completely disables local update, and we can see that it requires a linear communication cost in T to attain
the O(d

√
NT log(NT )) regret. As we mentioned in Section 2.2.4, this is because in the absence of local update,

FedGLB-UCB1 requires more frequent global updates, i.e.,
√
NT in total, to control the sub-optimality of the employed

bandit model w.r.t the growing training set. The second variant, denoted as FedGLB-UCB2, is exactly the same as
FedGLB-UCB, except for its fixed communication schedule. This leads to additional d

√
N global updates, as fixed

update schedule cannot adapt to the actual quality of collected data. The third variant, denoted as FedGLB-UCB3, uses
ONS for both local and global update, such that only one round of gradient aggregation among N clients is performed
for each global update, i.e., lazy ONS update over batched data. It incurs the least communication cost among all
variants, but its regret grows at a rate of (NT )3/4 due to the inferior quality of its lazy ONS update.

FedGLB-UCB1: scheduled communication + no local update

Though many real-world applications are online problems in nature, i.e., the clients continuously collect new data
samples from the users, standard federated/distributed learning methods do not provide a principled solution to adapt to
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the growing datasets. A common practice is to manually set a fixed global update schedule in advance, i.e., periodically
update and deploy the model.

To demonstrate the advantage of FedGLB-UCB over this straightforward solution, we present and analyze the
first variant FedGLB-UCB1, which completely disables local update, and performs global update according to a fixed
schedule S = {t1 := ⌊ TB ⌋, t2 := 2⌊ TB ⌋, . . . , tB := B⌊ TB ⌋}, where B is the total number of global updates up to time
step T . The description of FedGLB-UCB1 is presented in Algorithm 5.

Algorithm 5 FedGLB-UCB1

1: Input: communication schedule S, regularization parameter λ > 0, δ ∈ (0, 1) and cµ.
2: Initialize ∀i ∈ [N ]: θ0,i = 0 ∈ Rd, A0,i =

λ
cµ

I ∈ Rd×d,X0,i = 0 ∈ R0×d, y0,i = 0 ∈ R0, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i
6: Select arm xt,i ∈ At,i according to Eq. (2.19) and observe reward yt,i

7: Update client i: Xt,i =
[

Xt−1,i

x⊤
t,i

]
,yt,i =

[
yt−1,i

yt,i

]
8: if t /∈ S then
9: Clients: set θt,i = θt−1,i, At,i = At−1,i,∀i ∈ [N ]

10: else
11: Clients: send {X⊤

t,iXt,i}i∈[N ] to server
12: Server compute At = λ

cµ
I +

∑N
i=1 X⊤

t,iXt,i and send At to all clients.
13: Clients: set At,i = At, for i ∈ [N ]
14: Server update global model θt = AGD-Update(θtlast , Jt), and set tlast = t
15: Clients set local models θt,i = θt,∀i ∈ [N ]

In FedGLB-UCB1, each client stores a local model θt−1,i, and the corresponding covariance matrix At−1,i. Note
that {θt−1,i, At−1,i}i∈[N ] are only updated at time steps t ∈ S, and remain unchanged for t /∈ S. At time t, client i
selects the arm that maximizes the following UCB score:

xt,i = argmax
x∈At,i

x⊤θt−1,i + αt−1,i||x||A−1
t−1,i

(2.19)

where αt−1,i is given in Lemma 2.2.4. The regret and communication cost of FedGLB-UCB1 is given in the following
theorem.

Theorem 2.2.5 (Regret and Communication Cost Upper Bound of FedGLB-UCB1). Under the condition that ϵt = 1
N2t2 ,

and the total number of global synchronizations B =
√
NT , the cumulative regret RT has upper bound

RT = O

(
kµRmaxd

cµ

√
NT log(NT/δ)

)
with probability at least 1− δ. The cumulative communication cost has upper bound

CT = O(N2T log(NT ))

Proof. First, based on Lemma 2.2.4 and under the condition that ϵt = 1
N2t2 , we have

∥θt − θ⋆∥At
≤ αt

holds ∀t, whereαt =
√

2kµ
λcµ

+ 2
Ntcµ

+Rmax

cµ

√
d log (1 +Ntcµ/(dλ)) + 2 log (1/δ)+

√
λ
cµ
S = O(Rmax

cµ

√
d log(Nt)),

which matches the order in [68].
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Similar to the proof of Theorem 2.2.3, we decompose all B epochs into ‘good’ and ‘bad’ epochs according to the
log-determinant ratio: the p-th epoch, for p ∈ [B], is a ‘good’ epoch if the determinant ratio

det(Atp )

det(Atp−1
) ≤ 2. Otherwise,

it is a ‘bad’ epoch. In the following, we bound the cumulative regret in ‘good’ and ‘bad’ epochs separately.
Suppose epoch p is a good epoch, then for any client i ∈ [N ], and time step t ∈ [tp−1 + 1, tp], we have

det(Ãt−1,i)
det(At−1,i)

≤ det(Atp )

det(Atp−1
) ≤ 2, because At−1,i = Atp−1 and Ãt−1,i ≼ Atp . Therefore, the instantaneous regret incurred

by any client i at any time step t of a good epoch p can be bounded by

rt,i ≤ 2kµαtp−1

√
x⊤
t,iAt−1,ixt,i ≤ 2kµαtp−1

√
x⊤
t,iA

−1
t−1xt,i ·

det(Ãt−1,i)

det(At−1,i)

≤ 2
√
2kµαT

√
x⊤
t,iA

−1
t−1xt,i

By standard arguments [20, 68], the cumulative regret in all good epochs is bounded by O(
kµRmax

cµ
d
√
NT log(NT/δ))

with probability at least 1− δ.
By Assumption 1, µ(·) is Lipschitz continuous with constant kµ, i.e., |µ(x⊤θ1)− µ(x⊤θ2)| ≤ kµ|x⊤(θ1 − θ2)|,

so the instantaneous regret rt,i is uniformly bounded ∀t ∈ [T ], i ∈ [N ] by 2kµS. Now suppose epoch p is bad, then we
can upper bound the cumulative regret in this bad epoch by 2kµS

NT
B , where NT

B is the number of time steps in each
epoch. Since there can be at most O(d logNT ) bad epochs, the cumulative regret incurred in all bad epochs can be
upper bounded by O(NTB kµSd log(NT )). Combining both parts together, the cumulative regret upper bound is

RT = O

(
NT

B
kµSd log(NT ) +

kµRmaxd

cµ

√
NT log(NT )

)
To recover the regret under centralized setting, we set B =

√
NT , so

RT = O

(
kµRmax
cµ

d
√
NT log(NT )

)
Note that FedGLB-UCB1 has B =

√
NT global updates in total, and during each global update, there are Jt rounds of

communications, for t ∈ S . As mentioned earlier, for AGD to attain ϵt = 1
N2t2 sub-optimality, the required number of

inner iterations

Jt ≤ 1 +

√
kµ + λ

Nt
λ
Nt

log
(kµ + λ

Nt +
λ
Nt )∥θ

(0)
t − θ̂MLE

t ∥22
2ϵt

= O
(√

Nt log(Nt)
)

Therefore, the communication cost over time horizon T is

CT = N ·
∑
t∈S

Jt

= N ·
[√√

NT log(
√
NT ) +

√
2
√
NT log(2

√
NT ) + · · ·+

√√
NT ·

√
NT log(

√
NT ·

√
NT )

]
≤ N5/4T 1/4 log(NT )

[√
1 +

√
2 + · · ·+

√√
NT

]
≤ N5/4T 1/4 log(NT ) · 3

2
(
√
NT +

1

2
)3/2

= O(N2T log(NT ))

which finishes the proof.

FedGLB-UCB2: scheduled communication

For the second variant FedGLB-UCB2, we enabled local update on top of FedGLB-UCB1. Therefore, compared with
the original algorithm FedGLB-UCB, the only difference is that FedGLB-UCB2 uses scheduled communication instead
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of event-triggered communication. Its description is given in Algorithm 6.

Algorithm 6 FedGLB-UCB2

1: Input: communication schedule S, regularization parameter λ > 0, δ ∈ (0, 1) and cµ.
2: Initialize ∀i ∈ [N ]: A0,i =

λ
cµ

I ∈ Rd×d, b0,i = 0 ∈ Rd, θ0,i = 0 ∈ Rd,∆A0,i = 0 ∈ Rd×d; A0 = λ
cµ

I ∈
Rd×d, b0 = 0 ∈ Rd, θ0 = 0 ∈ Rd, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i
6: Select arm xt,i ∈ At,i by Eq.(2.8), and observe reward yt,i
7: Update client i: At,i = At−1,i + xt,ix

⊤
t,i, ∆At,i = ∆At−1,i + xt,ix

⊤
t,i

8: if t /∈ S then
9: Clients ∀i ∈ [N ]: θt,i = ONS-Update(θt−1,i, At,i,∇l(x⊤

t,iθt−1,i, yt,i)), bt,i = bt−1,i + xt,ix
⊤
t,iθt−1,i

10: else
11: Clients ∀i ∈ [N ]: send ∆At,i to server, and reset ∆At,i = 0
12: Server compute At = Atlast +

∑N
i=1 ∆At,i

13: Server perform global model update θt = AGD-Update(θtlast , Jt) (see Eq.(2.6) for choice of Jt), bt =

btlast +
∑N
i=1 ∆At,iθt, and set tlast = t

14: Clients ∀i ∈ [N ]: set θt,i = θt, At,i = At, bt,i = bt

The regret and communication cost of FedGLB-UCB2 is given in the following theorem.

Theorem 2.2.6 (Regret and Communication Cost Upper Bound of FedGLB-UCB2). Under the condition that ϵt = 1
N2t2 ,

and the total number of global synchronizations B = d2N log(NT ), the cumulative regret RT has upper bound

RT = O

(
kµ(kµ +Rmax)

cµ
d
√
NT log(NT/δ)

√
log

T

d2N logNT

)

with probability at least 1− δ. The cumulative communication cost has upper bound

CT = O(d2N2.5
√
T log2(NT ))

Proof. Compared with the analysis for FedGLB-UCB, the main difference in the analysis for FedGLB-UCB2 is how
we bound the regret incurred in ‘bad epochs’. Using the same argument, the cumulative regret for the ‘good epochs’ is
REGgood = O(

kµ(kµ+Rmax)
cµ

d
√
NT logNT/δ).

Now consider a particular bad epoch p ∈ [B]. Then the cumulative regret incurred by all N clients during this ‘bad
epoch’ can be upper bounded by:

tp∑
t=tp−1+1

N∑
i=1

rt,i

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT/δ))

tp∑
t=tp−1+1

N∑
i=1

min(1, ||xt,i||A−1
t−1,i

)

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT/δ))

N∑
i=1

√
(tp − tp−1) log

det(Atp−1,i)

det(Atp−1,i −∆Atp−1,i)

≤ O(
kµ(kµ +Rmax)

cµ
dN
√
log (NT/δ)

√
T

B
log(

T

B
))
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where the last inequality is because all epochs has length T
B as defined by S. Again, since there can be at most

O(d logNT ) ‘bad epochs’, the cumulative regret for the ‘bad epochs’ is upper bounded by

REGbad = O(
kµ(kµ +Rmax)

cµ
d2 log1.5 (NT/δ)N

√
T

B
log(

T

B
)).

Combining the cumulative regret for both ‘good’ and ‘bad’ epochs, and setting B = d2N log(NT ), we have

RT = O

(
kµ(kµ +Rmax)

cµ
d
√
NT log(NT/δ)

√
log(

T

d2N logNT
)

)

Now that FedGLB-UCB2 has B = d2N log(NT ) global updates in total, and during each global update, there are
Jt = O(

√
NT log(NT )) rounds of communications, for t ∈ S . Therefore, the communication cost over time horizon

T is

CT = N ·
∑
t∈S

Jt = O(N · d2N log(NT ) ·
√
NT log(NT ))

= O(d2N2.5
√
T log2(NT ))

which finishes the proof.

FedGLB-UCB3: scheduled communication + ONS for global update

The previous two variants both adopt iterative optimization method, i.e., AGD, for the global update, which introduces
a
√
NT log(NT ) factor in the communication cost. In this section, we try to avoid this by studying the third variant

FedGLB-UCB3 that adopts ONS for both local and global update, such that only one step of ONS is performed (based
on all new data samples N clients collected in this epoch). It can be viewed as the ONS-GLM algorithm [70] with lazy
batch update.

Algorithm 7 FedGLB-UCB3

1: Input: communication schedule S, regularization parameter λ > 0, δ ∈ (0, 1) and cµ
2: Initialize ∀i ∈ [N ]: θ0,i = 0 ∈ Rd, A0,i = λI ∈ Rd×d, V0,i = λI ∈ Rd×d, b0,i = 0 ∈ Rd; θ0 = 0 ∈ Rd, A0 =
λI ∈ Rd×d, V0 = λI ∈ Rd×d, b0 = 0 ∈ Rd, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i ∈ [N ]

6: Select arm xt,i = argmaxx∈At,i
x⊤θ̂t−1,i + αt−1,i∥x∥V −1

t−1,i
, where θ̂t−1,i = V −1

t−1,ibt−1,i and αt−1,i is
given in Lemma 2.2.8; and then observe reward yt,i

7: Compute loss l(zt,i, yt,i), where zt,i = x⊤
t,iθt−1,i

8: Update client i: At,i = At−1,i +∇l(zt,i, yt,i)∇l(zt,i, yt,i)⊤, Vt,i = Vt−1,i + xt,ix
⊤
t,i

9: if t /∈ S then
10: Clients ∀i ∈ [N ]: θt,i = ONS-Update(θt−1,i, At,i,∇l(zt,i, yt,i)), bt,i = bt−1,i + xt,izt,i
11: else
12: Clients ∀i ∈ [N ]: send gradient ∇Ft,i(θtlast) =

∑t
s=tlast+1 ∇l(x⊤

s,iθtlast , ys,i) and ∆Vt,i = Vt,i − Vtlast,i to
server

13: Server At = Atlast + (
∑N
i=1 ∇Ft,i(θtlast))(

∑N
i=1 ∇Ft,i(θtlast))

⊤, Vt = Vtlast +
∑N
i=1 ∆Vt,i, bt = btlast +∑N

i=1 ∆Vt,iθtlast , θt = ONS-Update(θtlast , At,
∑N
i=1 ∇Ft,i(θtlast))

14: Clients ∀i ∈ [N ]: θt,i = θt, At,i = At, Vt = Vt, bt,i = bt
15: Set tlast = t

Recall that the update schedule is denoted as S = {t1 := ⌊ TB ⌋, t2 := 2⌊ TB ⌋, . . . , tq := q⌊ TB ⌋, . . . , tB := B⌊ TB ⌋},
whereB denotes the total number of global updates up to T . Compared with [70], the main difference in our construction
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is that the loss function in the online regression problem may contain multiple data samples, i.e., for global update, or
one single data sample, i.e., for local update. Then for a client i ∈ [N ] at time step t (suppose t is in the (q + 1)-th
epoch, so t ∈ [tq + 1, tq+1]), the sequence of loss functions observed by the online regression estimator till time t is:

t1∑
s=1

N∑
i=1

l(x
⊤
s,iθ0, ys,i),

t2∑
s=t1+1

N∑
i=1

l(x
⊤
s,iθt1 , ys,i), . . . ,

tq∑
s=tq−1+1

N∑
i=1

l(x
⊤
s,iθtq−1

, ys,i)

︸ ︷︷ ︸
global updates at t1, t2, . . . , tq

, l(x
⊤
tq+1,iθtq , ytq+1,i), . . . , l(x

⊤
t,iθt−1,i, yt,i)︸ ︷︷ ︸

local updates at tq + 1, . . . , t

We can see that the first q terms correspond to the global ONS updates that are computed using the whole batch of data
collected by N clients in each epoch, and the remaining t− tq terms are local ONS updates that are computed using
each new data sample collected by client i in the (q + 1)-th epoch.

To facilitate further analysis, we introduce a new set of indices for the data samples, so that we can unify the
notations for the loss functions above. Imagine all the arm pulls are performed by an imaginary centralized agent, such
that, in each time step t ∈ [T ], it pulls an arm for clients 1, 2, . . . , N one by one. Therefore, the sequence of data sample
obtained by this imaginary agent can be denoted as (x1, y1), (x2, y2), . . . , (xs, ys), . . . , (xNT , yNT ). Moreover, we
denote np as the total number of data samples collected by all N clients till the p-th ONS update (including both global
and local ONS update), and denote the updated model as θp, for p ∈ [P ]. Note that P denotes the total number of
updates up to time t (total number of terms in the sequence above), such that P = q + t− tq. Then this sequence of
loss functions can be rewritten as:

F1(θ0), F2(θ1), . . . , Fq(θq−1)︸ ︷︷ ︸
global updates

, Fq+1(θq), . . . , FP (θP−1)︸ ︷︷ ︸
local updates

where Fp(θp−1) =
∑np

s=np−1+1 l(x
⊤
s θp−1, ys), for p ∈ [P ].

Online regret upper bound for lazily-updated ONS To construct the confidence ellipsoid based on this sequence of
global and local ONS updates, we first need to upper bound the online regret that ONS incurs on this sequence of loss
functions, which is given in Lemma 2.2.7.

Lemma 2.2.7 (Online regret upper bound). Under the condition that the learning rate of ONS is set to γ =
1
2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max)maxp∈[P ](np−np−1)
), then the cumulative online regret over P steps

P∑
p=1

Fp(θp−1)− Fp(θ⋆) ≤ BP

where BP = 1
2γ

∑P
p=1 ||∇Fp(θp−1)||2A−1

p
+ 2γλS2.

Proof of Lemma 2.2.7. Recall from the proof of Corollary 2.2.2.1 that |µ(x⊤
s θp−1)− ys| ≤

√
k2µS

2 +R2
max := G,∀s.

First, we need to show that Fp(θp−1) =
∑np

s=np−1+1 l(x
⊤
s θp−1, ys) is cµ

(np−np−1)G2 -exp-concave, or equivalently,
∇2Fp(θp−1) ≽

cµ
(np−np−1)G2∇Fp(θp−1)∇Fp(θp−1)

⊤ (Lemma 4.2 in [91]). Taking first and second order derivative
of Fp(θp−1) w.r.t. θp−1, we have

∇Fp(θp−1) =

np∑
s=np−1+1

xs[−ys + µ(x⊤
s θp−1)] = X⊤

p [µ(Xpθp−1)− yp],

∇2Fp(θp−1) =

np∑
s=np−1+1

xsx
⊤
s µ̇(x

⊤
s θp−1)

where Xp = [xnp−1+1,xnp−1+2, . . . ,xnp
]⊤ ∈ R(np−np−1)×d, and yp = [ynp−1+1, ynp−1+2, . . . , ynp

]⊤ ∈ Rnp−np−1 .
Then due to Assumption 1, we have ∇2Fp(θp−1) ≽ cµ

∑np

s=np−1+1 xsx
⊤
s = cµX

⊤
p Xp. For any vector u ∈ Rd, we
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can show that,

u⊤∇Fp(θp−1)∇Fp(θp−1)
⊤u

= u⊤X⊤
p [µ(Xpθp−1)− yp][µ(Xpθp−1)− yp]

⊤Xpu

=
[
(Xpu)

⊤[µ(Xpθp−1)− yp]
]2

≤ ∥Xpu∥22 · ∥µ(Xpθp−1)− yp∥22
≤ u⊤X⊤

p Xpu · (np − np−1)G
2

where the first inequality is due to Cauchy-Schwarz inequality, and the second inequality is because ∥µ(Xpθp−1)−
yp∥22 =

∑np

s=np−1+1[−ys+µ(x⊤
s θp−1)]

2 ≤ (np−np−1)G
2. Therefore, X⊤

p Xp ≽ 1
(np−np−1)G2∇Fp(θp−1)∇Fp(θp−1)

⊤,
which gives us

∇2Fp(θp−1) ≽
cµ

(np − np−1)G2
∇Fp(θp−1)∇Fp(θp−1)

⊤

Then due to Lemma 4.3 of [91], under the condition that γp ≤ 1
2 min( 1

4GS ,
cµ

(np−np−1)G2 ), we have

Fp(θp−1)− Fp(θ⋆)

≤ ∇Fp(θp−1)
⊤(θp−1 − θ⋆)−

γp
2
(θp−1 − θ⋆)

⊤∇Fp(θp−1)∇Fp(θp−1)
⊤(θp−1 − θ⋆) (2.20)

Then we start to upper bound the RHS of the inequality above. Recall that the ONS update rule is:

θ′p = θp−1 −
1

γ
A−1
p ∇Fp(θp−1)

θp = argmin
θ∈Θ

||θ′p − θ||2Ap

where Ap =
∑p
ρ=1 ∇Fρ(θρ−1)∇Fρ(θρ−1)

⊤, and γ is set to minp∈[P ] γp = 1
2 min( 1

4GS ,
cµ

G2 maxp∈[P ](np−np−1)
). So

we have

θ′p − θ⋆ = θp−1 − θ⋆ −
1

γ
A−1
p ∇Fp(θp−1)

Then due to the property of the generalized projection, and by substituting into the update rule, we have

||θp − θ⋆||2Ap
≤ ||θ′p − θ⋆||2Ap

≤ ||θp−1 − θ⋆||2Ap
− 2

γ
(θp−1 − θ⋆)

⊤∇Fp(θp−1) +
1

γ2
||∇Fp(θp−1)||2A−1

p

By rearranging terms,

∇Fp(θp−1)
⊤(θp−1 − θ⋆) ≤

1

2γ
||∇Fp(θp−1)||2A−1

p
+
γ

2

(
||θp−1 − θ⋆||2Ap

− ||θp − θ⋆||2Ap

)
After summing over P steps, we have

P∑
p=1

∇Fp(θp−1)
⊤(θp−1 − θ⋆) ≤

1

2γ

P∑
p=1

||∇Fp(θp−1)||2A−1
p

+
γ

2

P∑
p=1

(
||θp−1 − θ⋆||2Ap

− ||θp − θ⋆||2Ap

)
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The second term can be simplified,

P∑
p=1

(
||θp−1 − θ⋆||2Ap

− ||θp − θ⋆||2Ap

)
= ||θ0 − θ⋆||2A1

+

P∑
p=2

(
||θp−1 − θ⋆||2Ap

− ||θp−1 − θ⋆||2Ap−1

)
− ||θP − θ⋆||2AP

≤ ||θ0 − θ⋆||2A1
+

P∑
p=2

(
||θp−1 − θ⋆||2Ap

− ||θp−1 − θ⋆||2Ap−1

)
= ||θ0 − θ⋆||2A1

+

P∑
p=2

||θp−1 − θ⋆||2∇Fp(θp−1)∇Fp(θp−1)⊤

= ||θ0 − θ⋆||2A1
+

P∑
p=1

||θp−1 − θ⋆||2∇Fp(θp−1)∇Fp(θp−1)⊤
− ||θ0 − θ⋆||2∇F1(θ0)∇F1(θ0)⊤

= 4λS2 +

P∑
p=1

||θp−1 − θ⋆||2∇Fp(θp−1)∇Fp(θp−1)⊤

which leads to

P∑
p=1

∇Fp(θp−1)
⊤(θp−1 − θ⋆) ≤

1

2γ

P∑
p=1

||∇Fp(θp−1)||2A−1
p

+ 2γλS2

+
γ

2

P∑
p=1

||θp−1 − θ⋆||2∇Fp(θp−1)∇Fp(θp−1)⊤

By rearranging terms, we have

P∑
p=1

[
∇Fp(θp−1)

⊤(θp−1 − θ⋆)−
γ

2
||θp−1 − θ⋆||2∇Fp(θp−1)∇Fp(θp−1)⊤

]
≤ 1

2γ

P∑
p=1

||∇Fp(θp−1)||2A−1
p

+ 2γλS2

Combining with Eq.(2.20), we obtain the following upper bound for the P -step online regret

P∑
p=1

Fp(θp−1)− Fp(θ⋆) ≤
1

2γ

P∑
p=1

||∇Fp(θp−1)||2A−1
p

+ 2γλS2

where Ap =
∑p
ρ=1 ∇Fρ(θρ−1)∇Fρ(θρ−1)

⊤.

Corollary 2.2.7.1 (Order ofBP ). Under the condition that γ = 1
2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max)maxp∈[P ](np−np−1)
),

the online regret upper bound BP = O(
k2µ+R

2
max

cµ
d log (nP )maxp∈[P ](np − np−1)).

49



Proof of Corollary 2.2.7.1. Recall that Ap =
∑p
ρ=1 ∇Fρ(θρ−1)∇Fρ(θρ−1)

⊤. Therefore, we have

P∑
p=1

||∇Fp(θp−1)||2A−1
p

≤ log
det(AP )

det(λI)
= log

det(λI +
∑P
p=1 ∇Fp(θp−1)∇Fp(θp−1)

⊤)

det(λI)

≤ d log
(
1 +

1

dλ

P∑
p=1

∥∇Fp(θp−1)∥22
)

where the first inequality is due to Lemma 11 of [20], and the second due to the determinant-trace inequality

(Lemma 10 of [20]), i.e., det(λI +
∑P
p=1 ∇Fp(θp−1)∇Fp(θp−1)

⊤) ≤
( tr(λI+∑P

p=1 ∇Fp(θp−1)∇Fp(θp−1)
⊤)

d

)d
=(dλ+∑P

p=1∥∇Fp(θp−1)∥2
2

d

)d
. Also note that ∇Fp(θp−1) =

∑np

s=np−1+1 xs
[
µ(x⊤

s θp−1)− ys
]
, so we have

P∑
p=1

||∇Fp(θp−1)||22 =

P∑
p=1

||
np∑

s=np−1+1

xs
[
µ(x⊤

s θp−1)− ys
]
||22

≤ G2
P∑
p=1

||
np∑

s=np−1+1

xs||22 ≤ G2
P∑
p=1

(np − np−1)
2 ≤ G2n2P

where the second inequality is due to Jensen’s inequality and the assumption that ∥xs∥ ≤ 1,∀s. Substituting this back
gives us

P∑
p=1

Fp(θp−1)− Fp(θ⋆) ≤
1

2γ
d log

(
1 +

1

dλ
G2n2P

)
+ 2γλS2

=
(k2µS

2 +R2
max)maxp∈[P ](np − np−1)

cµ
d log

(
1 +

1

dλ
(k2µS

2 +R2
max)n

2
P

)
+

cµ
(k2µS

2 +R2
max)maxp∈[P ](np − np−1)

λS2

where the equality is because maxp∈[P ](np − np−1) dominates γ = 1
2 min( 1

4GS ,
cµ

G2 maxp∈[P ](np−np−1)
).

Construct confidence ellipsoid for FedGLB-UCB3 With the online regret bound BP in Lemma 2.2.7, the steps
to construct the confidence ellipsoid largely follows that of Theorem 1 in [70], with the main difference in our batch
update. We include the full proof here for the sake of completeness.

Lemma 2.2.8 (Confidence Ellipsoid for FedGLB-UCB3). Under the condition that the learning rate of ONS γ =
1
2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max)maxp∈[P ](np−np−1)
), we have ∀t ∈ [T ], i ∈ [N ]

∥θ⋆ − θ̂t,i∥2Vt,i
≤ λS2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

N

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}

− θ̂⊤t,ibt,i −
nP∑
s=1

z2s := α2
t,i

with probability at least 1− δ.
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Proof of Lemma 2.2.8. Due to cµ-strongly convexity of l(z, y) w.r.t. z, we have l(x⊤
s θp−1, ys) − l(x⊤

s θ⋆, ys) ≥[
µ(x⊤

s θ⋆)− ys
]
x⊤
s (θp−1 − θ⋆) +

cµ
2

[
x⊤
s (θp−1 − θ⋆)

]2
. Therefore,

Fp(θp−1)− Fp(θ⋆) =

np∑
s=np−1+1

l(x⊤
s θp−1, ys)− l(x⊤

s θ⋆, ys)

≥
np∑

s=np−1+1

[
µ(x⊤

s θ⋆)− ys
]
x⊤
s (θp−1 − θ⋆) +

cµ
2

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2
= −

np∑
s=np−1+1

ηsx
⊤
s (θp−1 − θ⋆) +

cµ
2

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2
where ηs is the R-sub-Gaussian noise in the reward ys. Summing over P steps we have

BP ≥
P∑

p=1

Fp(θp−1)− Fp(θ⋆) ≥
P∑

p=1

np∑
s=np−1+1

ηsx
⊤
s (θp−1 − θ⋆) +

cµ
2

P∑
p=1

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2
By rearranging terms, we have

P∑
p=1

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2 ≤ 2

cµ

P∑
p=1

np∑
s=np−1+1

ηsx
⊤
s (θp−1 − θ⋆) +

2

cµ
BP

Then as x⊤
s (θp−1 − θ⋆) for s ∈ [np−1 + 1, np] is Fs-measurable for lazily updated online estimator θp−1, we can use

Corollary 8 from [69], which leads to

P∑
p=1

np∑
s=np−1+1

ηsx
⊤
s (θp−1 − θ⋆) ≤

Rmax

√√√√√(
2 + 2

P∑
p=1

np∑
s=np−1+1

(x⊤
s (θp−1 − θ⋆))2

)
· log

(1
δ

√√√√1 +

P∑
p=1

np∑
s=np−1+1

(x⊤
s (θp−1 − θ⋆))2

)
Then we have

P∑
p=1

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2 ≤ 2

cµ
BP

+
2Rmax

cµ

√√√√√(
2 + 2

P∑
p=1

np∑
s=np−1+1

(x⊤
s (θp−1 − θ⋆))2

)
· log

(1
δ

√√√√1 +

P∑
p=1

np∑
s=np−1+1

(x⊤
s (θp−1 − θ⋆))2

)
Then by applying Lemma 2 from [70], we have

P∑
p=1

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2 ≤ 1 +
4

cµ
BP +

8R2
max

c2µ
log (

1

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)

Therefore, we have the following confidence ellipsoid (regularized with parameter λ):

{θ :

P∑
p=1

np∑
s=np−1+1

[
x⊤
s (θp−1 − θ⋆)

]2
+ λ∥θ∥22 ≤ λS2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

1

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2 )}

And this can be rewritten as a ellipsoid centered at ridge regression estimator θ̂t,i = V −1
t,i bt,i, where Vt,i = λI +
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∑P
p=1

∑np

s=np−1+1 xsx
⊤
s and bt,i =

∑P
p=1

∑np

s=np−1+1 xszs (recall that ONS’s prediction at time s is denoted as
zs = x⊤

s θp−1), i.e., ∀t ∈ [T ]

∥θ⋆ − θ̂t,i∥2Vt,i
≤ λS2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

1

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}+ θ̂⊤t,ibt,i −

nP∑
s=1

z2s

with probability at least 1− δ. Then taking union bound over all N clients, we have, ∀t ∈ [T ], i ∈ [N ]

∥θ⋆ − θ̂t,i∥2Vt,i
≤ λS2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

N

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}+ θ̂⊤t,ibt,i −

nP∑
s=1

z2s

with probability at least 1− δ.

Regret and communication upper bounds for FedGLB-UCB3 The regret and communication cost of FedGLB-
UCB3 is given in the following theorem.

Theorem 2.2.9 (Regret and Communication Cost Upper Bound of FedGLB-UCB3). Under the condition that the
learning rate of ONS γ = 1

2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max)
√
NT

), and the total number of global synchronizations

B =
√
NT , the cumulative regret RT has upper bound

RT = O

(
kµ(kµ +Rmax)

cµ
dN3/4T 3/4 log(NT/δ)

)
with probability at least 1− δ. The cumulative communication cost has upper bound

CT = O(N1.5
√
T )

Proof. Similar to the proof for the previous two variants of FedGLB-UCB, we divide the epochs into ‘good’ and ‘bad’
ones according to the determinant ratio, and then bound their cumulative regret separately.

Recall that the instantaneous regret rt,i incurred by client i ∈ [N ] at time step t ∈ [T ] has upper bound

rt,i
kµ

≤ x⊤
t,⋆θ⋆ − x⊤

t,iθ⋆ ≤ x⊤
t,iθ̃i,t − x⊤

t,iθ⋆

= x⊤
t,i(θ̃i,t − θ̂t,i) + x⊤

t,i(θ̂t,i − θ⋆)

≤ ∥xt,i∥V −1
t,i

∥θ̃i,t − θ̂t,i∥Vt,i + ∥xt,i∥V −1
t,i

∥θ̂t,i − θ⋆∥Vt,i

≤ 2αt,i∥xt,i∥V −1
t,i

Note that due to the update schedule S, we have maxp∈[P ](np − np−1) = NT
B . Then based on Corollary 2.2.7.1,

αt,i = O(
kµ+Rmax

cµ

√
d log(NT )

√
NT
B ), so we have, ∀t ∈ [T ], i ∈ [N ],

rt,i = O(
kµ(kµ +Rmax)

cµ

√
d log(NT )

√
NT

B
)∥xt,i∥A−1

t,i

with probability at least 1− δ.
Therefore, the cumulative regret for the ‘good epochs’ is REGgood = O(

kµ(kµ+Rmax)
cµ

dNT√
B
log(NT )).

Using the same argument as in the proof for FedGLB-UCB1, the cumulative regret for each ‘bad ’ epoch is upper
bounded by 2kµS

NT
B . Since there can be at most O(d logNT ) ‘bad epochs’, the cumulative regret for all the ‘bad

epochs’ is upper bounded by

REGbad = O(dNT log(NT ) · kµS
B

)
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Combining the regret incurred in both ‘good’ and ‘bad’ epochs, we have

RT = O
(kµ(kµ +Rmax)

cµ
d
NT√
B

log(NT ) + dNT log(NT ) · kµS
B

)
To recover the regret in centralized setting, we can B = NT , which leads to RT = O(

kµ(kµ+Rmax)
cµ

d
√
NT log(NT )).

However, this incurs communication cost CT = N2T . Alternatively, if we set B =
√
NT , we have RT =

O(
kµ(kµ+Rmax)

cµ
dN3/4T 3/4 log(NT )), and CT = O(N1.5

√
T ).

2.2.9 Distributed kernelized contextual bandit problem
In this section, we further investigate the collaborative exploration of non-parametric functions lying in a reproducing
kernel Hilbert space (RKHS) [26, 72], i.e., the expected reward is linear w.r.t. an action feature map of possibly infinite
dimensions. The ability to learn non-parametric models has made kernelized bandit algorithms a powerful tool for
optimizing black box functions based on noisy observations in various applications.

We consider the same star-shaped communication network as Section 2.2.2. To facilitate discussions in this section,
we introduce slightly different notations for indexing the selected arms and observed rewards compared with the ones
used in Section 2.2.3. Specifically, at each round l ∈ [T ], each client i ∈ [N ] chooses an arm xt from a candidate set
At, and then receives the corresponding reward feedback yt = f(xt) + ηt ∈ R, where the subscript t := N(l − 1) + i
indicates this is the t-th interaction between the learning system and the environment, and we refer to it as time step t
2. Note that At is a time-varying subset of A ⊆ Rd that is possibly infinite, f denotes the unknown reward function
shared by all the clients, and ηt denotes the noise.

Denote the sequence of indices corresponding to the interactions between client i and the environment up to time t
as Nt(i) = {1 ≤ s ≤ t : is = i} (if s mod N = 0, then is = N ; otherwise is = s mod N ) for t = 1, 2, . . . , NT . By
definition, |NNl(i)| = l,∀l ∈ [T ], i.e., the clients have equal number of interactions at the end of each round l.

Kernelized Reward Function We consider an unknown reward function f that lies in a RKHS, denoted as H, such
that the reward can be equivalently written as

yt = θ⊤⋆ ϕ(xt) + ηt,

where θ⋆ ∈ H is an unknown parameter, and ϕ : Rd → H is a known feature map associated with H. We assume
ηt is zero-mean R-sub-Gaussian conditioned on σ

(
(xs, ηs)s∈Nt−1(it)

)
,∀t, which denotes the σ-algebra generated by

client it’s previously pulled arms and the corresponding noise. In addition, there exists a positive definite kernel k(·, ·)
associated with H, and we assume ∀x ∈ A that, ∥x∥k ≤ L and ∥f∥k ≤ S for some L, S > 0.

Regret and Communication Cost The goal of the learning system is to minimize the cumulative (pseudo) regret for
all N clients, i.e., RNT =

∑NT
t=1 rt, where rt = maxx∈At

ϕ(x)⊤θ⋆ − ϕ(xt)
⊤θ⋆. Meanwhile, the learning system also

wants to keep the communication cost CNT low, which is measured by the total number of scalars being transferred
across the system up to time step NT .

2.2.10 DisKernelUCB algorithm
As a starting point to studying the communication efficient algorithm in Section 2.2.11 and demonstrate the challenges
in designing a communication efficient distributed kernelized contextual bandit algorithm, here we first introduce and
analyze a naive algorithm where the N clients collaborate on learning the exact parameters of kernel bandit, i.e., the
mean and variance of estimated reward. We name this algorithm Distributed Kernel UCB, or DisKernelUCB for short,
and its description is given in Algorithm 8.

2The meaning of index t is slightly different from prior works, e.g. DisLinUCB in [28], but this is only to simplify the use of notation and does
not affect the theoretical results
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Algorithm 8 Distributed Kernel UCB (DisKernelUCB)
1: Input threshold D > 0
2: Initialize tlast = 0, D0(i) = ∆D0(i) = ∅,∀i ∈ [N ]
3: for round l = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Client i chooses arm xt ∈ At according to Eq (2.21) and observes reward yt, where t = N(l − 1) + i
6: Client i updates KDt(i),Dt(i),yDt(i), where Dt(i) = Dt−1(i) ∪ {t}; and its upload buffer ∆Dt(i) =

∆Dt−1(i) ∪ {t}
// Global Synchronization

7: if the event Ut(D) defined in Eq (2.22) is true then
8: Clients ∀j ∈ [N ]: send {(xs, ys)}s∈∆Dt(j) to server, and reset ∆Dt(j) = ∅
9: Server: aggregates and sends back {(xs, ys)}s∈[t]; sets tlast = t

10: Clients ∀j ∈ [N ]: update KDt(j),Dt(j),yDt(i), where Dt(j) = [t]

Arm Selection For each round l ∈ [T ], when client i ∈ [N ] interacts with the environment, i.e., the t-th interaction
between the learning system and the environment where t = N(l − 1) + i, it chooses arm xt ∈ At based on the UCB
of the mean estimator (line 5):

xt = argmax
x∈At

µ̂t−1,i(x) + αt−1,iσ̂t−1,i(x) (2.21)

where µ̂t,i(x) and σ̂2
t,i(x) denote client i’s local estimated mean reward for arm x ∈ A and its variance, and αt−1,i is a

carefully chosen scaling factor to balance exploration and exploitation (see Lemma 2.2.10 for proper choice).
To facilitate further discussion, for time step t ∈ [NT ], we denote the sequence of time indices for the data

points that have been used to update client i’s local estimate as Dt(i), which include both data points collected
locally and those shared by the other clients. If the clients never communicate, Dt(i) = Nt(i),∀t, i; otherwise,
Nt(i) ⊂ Dt(i) ⊆ [t], with Dt(i) = [t] recovering the centralized setting, i.e., each new data point collected from the
environment immediately becomes available to all the clients in the learning system. The design matrix and reward
vector for client i at time step t are denoted by XDt(i) = [xs]

⊤
s∈Dt(i)

∈ R|Dt(i)|×d,yt,i = [ys]
⊤
s∈Dt(i)

∈ R|Dt(i)|,
respectively. By applying the feature map ϕ(·) to each row of XDt(i), we obtain ΦDt(i) ∈ R|Dt(i)|×p, where p is the
dimension of H and is possibly infinite. Since the reward function is linear in H, client i can construct the Ridge
regression estimator θ̂t,i = (Φ⊤

Dt(i)
ΦDt(i) + λI)−1Φ⊤

Dt(i)
yt,i, where λ > 0 is the regularization coefficient. This

gives us the estimated mean reward and variance in primal form for any arm x ∈ A, i.e., µ̂t,i(x) = ϕ(x)⊤A−1
t,i bt,i and

σ̂t,i(x) =
√
ϕ(x)⊤A−1

t,i ϕ(x), where At,i = Φ⊤
Dt(i)

ΦDt(i) + λI and bt,i = Φ⊤
Dt(i)

yt,i. Then using the kernel trick,
we can obtain their equivalence in the dual form that only involves entries of the kernel matrix, and avoids directly
working on H which is possibly infinite:

µ̂t,i(x) = KDt(i)(x)
⊤(KDt(i),Dt(i) + λI

)−1
yDt(i)

σ̂t,i(x) = λ−1/2

√
k(x,x)−KDt(i)(x)

⊤
(
KDt(i),Dt(i) + λI

)−1
KDt(i)(x)

where KDt(i)(x) = ΦDt(i)ϕ(x) = [k(xs,x)]
⊤
s∈Dt(i)

∈ R|Dt(i)|, and KDt(i),Dt(i) = Φ⊤
Dt(i)

ΦDt(i) = [k(xs,xs′)]s,s′∈Dt(i) ∈
R|Dt(i)|×|Dt(i)|.

Communication Protocol To reduce the regret in future interactions with the environment, the N clients need
to collaborate via communication, and a carefully designed communication protocol is essential in ensuring the
communication efficiency. In prior works like DisLinUCB [28], after each round of interaction with the environment,
client i checks whether the event {(|Dt(i)| − |Dtlast(i)|) log(

det(At,i)
det(Atlast,i)

) > D} is true, where tlast denotes the time step
of last global synchronization. If true, a new global synchronization is triggered, such that the server will require all
clients to upload their sufficient statistics since tlast, aggregate them to compute {At,bt}, and then synchronize the
aggregated sufficient statistics with all clients, i.e., set {At,i,bt,i} = {At,bt},∀i ∈ [N ].
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Using kernel trick, we can obtain an equivalent event-trigger in terms of the kernel matrix,

Ut(D) =

{
(|Dt(it)| − |Dtlast(it)|) log

(
det(I+ λ−1KDt(it),Dt(it))

det(I+ λ−1KDt(it)\∆Dt(it),Dt(it)\∆Dt(it))

)
> D

}
. (2.22)

where D > 0 denotes the predefined threshold value. If event Ut(D) is true (line 7), a global synchronization is
triggered (line 7-10), where the local datasets of all N clients are synchronized to {(xs, ys)}s∈[t]. We should note
that the transfer of raw data (xs, ys) is necessary for the update of the kernel matrix and reward vector in line 6 and
line 10, which will be used for arm selection at line 5. This is an inherent disadvantage of kernelized estimation in
distributed settings. Lemma 2.2.10 below shows that in order to obtain the optimal order of regret, DisKernelUCB
incurs a communication cost linear in T (proof given in Section 2.2.14), which is expensive for an online learning
problem.

Lemma 2.2.10 (Regret and Communication Cost of DisKernelUCB). With threshold D = T
NγNT

, αt,i =
√
λ∥θ⋆∥+

R
√
4 lnNT/δ + 2 ln det(I+KDt(i),Dt(i)/λ), we have

RNT = O
(√
NT (∥θ⋆∥

√
γNT + γNT )

)
,

with probability at least 1− δ, and

CNT = O(TN2d).

where γNT := maxD⊂A:|D|=NT
1
2 log det(KD,D/λ + I) is the maximum information gain after NT interactions

[72]. It is problem-dependent and can be bounded for specific arm set A and kernel function k(·, ·). For example,
γNT = O(d log(NT )) for linear kernel and γNT = O(log(NT )d+1) for Gaussian kernel.

Remark 1. In the distributed linear bandit problem, to attain O(d
√
NT ln(NT )) regret, DisLinUCB [28] requires

a total number of O(N0.5d log(NT )) synchronizations, and DisKernelUCB matches this result under linear kernel,
as it requires O(N0.5γNT ) synchronizations. We should note that the communication cost for each synchronization
in DisLinUCB is fixed, i.e., O(Nd2) to synchronize the sufficient statistics with all the clients, so in total CNT =
O(N1.5d3 ln(NT )). However, this is not the case for DisKernelUCB that needs to send raw data, because the
communication cost for each synchronization in DisKernelUCB is not fixed, but depends on the number of unshared
data points on each client. Even if the total number of synchronizations is small, DisKernelUCB could still incur
CNT = O(TN2d) in the worse case. Consider the extreme case where synchronization only happens once, but it
happens near NT , then we still have CNT = O(TN2d). The time when synchronization gets triggered depends
on {At}t∈[NT ], which is out of the control of the algorithm. Therefore, in the following section, to improve the
communication efficiency of DisKernelUCB, we propose to let each client communicate embedded statistics in some
small subspace during each global synchronization.

2.2.11 Approx-DisKernelUCB algorithm
In this section, we propose and analyze a new algorithm that improves the communication efficiency of DisKernelUCB
using the Nyström approximation, such that the clients only communicate the embedded statistics during event-triggered
synchronizations. We name this algorithm Approximated Distributed Kernel UCB, or Approx-DisKernelUCB for short.
Its description is given in Algorithm 9.

Arm selection For each round l ∈ [T ], when client i ∈ [N ] interacts with the environment, i.e., the t-th interaction
between the learning system and the environment where t := N(l − 1) + i, instead of using the UCB for the exact
estimator in Eq (2.21), client i chooses arm xt ∈ At that maximizes the UCB for the approximated estimator (line 5):

xt = argmax
x∈At,i

µ̃t−1,i(x) + αt−1,iσ̃t−1,i(x) (2.23)

where µ̃t−1,i(x) and σ̃t−1,i(x) are approximated using Nyeström method, and the statistics used to compute these
approximations are much more efficient to communicate as they scale with the maximum information gain γNT instead
of T .
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Algorithm 9 Approximated Distributed Kernel UCB (Approx-DisKernelUCB)
1: Input: threshold D > 0, regularization parameter λ > 0, δ ∈ (0, 1) and kernel function k(·, ·).
2: Initialize µ̃0,i(x) = 0, σ̃0,i(x) =

√
k(x,x), N0(i) = D0(i) = ∅, ∀i ∈ [N ]; S0 = ∅, tlast = 0

3: for round l = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: [Client i] selects arm xt ∈ At according to Eq (2.23) and observes reward yt, where t := N(l − 1) + i
6: [Client i] updates Z⊤

Dt(i);Stlast
ZDt(i);Stlast

and Z⊤
Dt(i);Stlast

yDt(i) using
(
z(xt;Stlast), yt

)
; sets Nt(i) =

Nt−1(i) ∪ {t}, and Dt(i) = Dt−1(i) ∪ {t}
// Global Synchronization

7: if the event Ut(D) defined in Eq (2.24) is true then
8: [Clients ∀i] sample St,i = RLS(Nt(i), q̄, σ̃

2
tlast,i

), and send {(xs, ys)}s∈St,i to server
9: [Server] aggregates and sends {(xs, ys)}s∈St back to all clients, where St = ∪i∈[N ]St,i

10: [Clients ∀i] compute and send {Z⊤
Nt(i);St

ZNt(i);St
,Z⊤

Nt(i);St
yNt(i)} to server

11: [Server] aggregates
∑N
i=1 Z

⊤
Nt(i);St

ZNt(i);St
,
∑N
i=1 Z

⊤
Nt(i);St

yNt(i) and sends it back
12: [Clients ∀i] updates Z⊤

Dt(i);St
ZDt(i);St

and Z⊤
Dt(i);St

yDt(i); sets Dt(i) = ∪Ni=1Nt(i) = [t] and tlast = t

Specifically, Nyström method works by projecting some original dataset D to the subspace defined by a small
representative subset S ⊆ D, which is called the dictionary. The orthogonal projection matrix is defined as

PS = Φ⊤
S
(
ΦSΦ

⊤
S
)−1

ΦS = Φ⊤
SK

−1
S,SΦS ∈ Rp×p

We then take eigen-decomposition of KS,S = UΛU⊤ to rewrite the orthogonal projection as PS = Φ⊤
SUΛ−1/2Λ−1/2U⊤ΦS ,

and define the Nyström embedding function

z(x;S) = P
1/2
S ϕ(x) = Λ−1/2U⊤ΦSϕ(x) = K

−1/2
S,S KS(x)

which maps the data point x from Rd to R|S|.
Therefore, we can approximate the Ridge regression estimator in Section 2.2.10 as θ̃t,i = Ã−1

t,i b̃t,i, where
Ãt,i = PSΦ

⊤
Dt(i)

ΦDt(i)PS + λI, and b̃t,i = PSΦ
⊤
Dt(i)

yDt(i), and thus the approximated mean reward and variance

in Eq (2.23) can be expressed as µ̃t,i(x) = ϕ(x)⊤Ã−1
t,i b̃t,i and σ̃t,i(x) =

√
ϕ(x)⊤Ã−1

t,i ϕ(x), and their kernelized
representation are (see Section 2.2.15 for detailed derivation)

µ̃t,i(x) = z(x;S)⊤
(
Z⊤

Dt(i);SZDt(i);S + λI
)−1

Z⊤
Dt(i);SyDt(i)

σ̃t,i(x) = λ−1/2
√
k(x,x)− z(x;S)⊤Z⊤

Dt(i);SZDt(i);S [Z
⊤
Dt(i);SZDt(i);S + λI]−1z(x|S)

where ZDt(i);S ∈ R|Dt(i)|×|S| is obtained by applying z(·;S) to each row of XDt(i), i.e., ZDt(i);S = ΦDt(i)P
1/2
S . We

can see that the computation of µ̃t,i(x) and σ̃t,i(x) only requires the embedded statistics: matrix Z⊤
Dt(i);SZDt(i);S ∈

R|S|×|S| and vector Z⊤
Dt(i);SyDt(i) ∈ R|S|, which, as we will show later, makes joint kernelized estimation among N

clients much more efficient in communication.
After obtaining the new data point (xt, yt), client i immediately updates both µ̃t−1,i(x) and σ̃t−1,i(x) using the

newly collected data point (xt, yt), i.e., by projecting xt to the finite dimensional RKHS spanned by ΦStlast
(line 6).

Recall that, we use Nt(i) to denote the sequence of indices for data collected by client i, and denote by Dt(i) the
sequence of indices for data that has been used to update client i’s model estimation µ̃t,i. Therefore, both of them need
to be updated to include time step t.

Communication Protocol With the approximated estimator, the size of message being communicated across the
learning system is reduced. However, a carefully designed event-trigger is still required to minimize the total number of
global synchronizations up to time NT . Since the clients can no longer evaluate the exact kernel matrices in Eq (2.22),
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we instead use the event-trigger in Eq (2.24), which can be computed using the approximated variance from last global
synchronization as,

Ut(D) =

 ∑
s∈Dt(i)\Dtlast (i)

σ̃2
tlast,i(xs) > D

 (2.24)

Similar to Algorithm 8, if Eq (2.24) is true, global synchronization is triggered, where both the dictionary and the
embedded statistics get updated. During synchronization, each client first samples a subset St(i) from Nt(i) (line 8)
using Ridge Leverage Score sampling (RLS) [73, 75], which is given in Algorithm 10, and then sends {(xs, ys)}s∈St(i)

to the server. The server aggregates the received local subsets to construct a new dictionary {(xs, ys)}s∈St , where
St = ∪Ni=1St(i), and then sends it back to all N clients (line 9). Finally, the N clients use this updated dictionary to
re-compute the embedded statistics of their local data, and then synchronize it with all other clients via the server (line
10-12).

Algorithm 10 Ridge Leverage Score Sampling (RLS)
1: Input: dataset D, scaling factor q̄, (possibly delayed and approximated) variance function σ̃2(·)
2: Initialize new dictionary S = ∅
3: for s ∈ D do
4: Set p̃s = q̄σ̃2(xs)
5: Draw qs ∼ Bernoulli(p̃s)
6: If qs = 1, add s into S
7: Output: S

Intuitively, in Algorithm 9, the clients first agree upon a common dictionary St that serves as a good representation
of the whole dataset at the current time t, and then project their local data to the subspace spanned by this dictionary
before communication, in order to avoid directly sending the raw data as in Algorithm 8. Then using the event-trigger,
each client monitors the amount of new knowledge it has gained through interactions with the environment from last
synchronization. When there is a sufficient amount of new knowledge, it will inform all the other clients to perform a
synchronization. As we will show in the following section, the size of St scales linearly w.r.t. the maximum information
gain γNT , and therefore it improves both the local computation efficiency on each client, and the communication
efficiency during the global synchronization.

2.2.12 Regret and communication cost analysis
Denote the sequence of time steps when global synchronization is performed, i.e., the event Ut(D) in Eq (2.24) is
true, as {tp}Bp=1, where B ∈ [NT ] denotes the total number of global synchronizations. Note that in Algorithm
9, the dictionary is only updated during global synchronization, e.g., at time tp, the dictionary {(xs, ys)}s∈Stp

is
sampled from the whole dataset {(xs, ys)}s∈[tp] in a distributed manner, and remains fixed for all the interactions
happened at t ∈ [tp + 1, tp+1]. Moreover, at time tp, all the clients synchronize their embedded statistics, so that
Dtp(i) = [tp],∀i ∈ [N ].

Since Algorithm 9 enables local update on each client, for time step t ∈ [tp + 1, tp], new data points are collected
and added into Dt(i), such that Dt(i) ⊇ [tp]. This decreases the approximation accuracy of Stp , as new data points
may not be well approximated by Stp . For example, in extreme cases, the new data could be orthogonal to the
dictionary. To formally analyze the accuracy of the dictionary, we adopt the definition of ϵ-accuracy from [92]. Denote
by S̄t,i ∈ R|Dt(i)|×|Dt(i)| a diagonal matrix, with its s-th diagonal entry equal to 1√

p̃s
if s ∈ Stp and 0 otherwise. Then

if

(1− ϵt,i)(Φ
⊤
Dt(i)

ΦDt(i) + λI) ⪯ Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) + λI ⪯ (1 + ϵt,i)(Φ

⊤
Dt(i)

ΦDt(i) + λI),

we say the dictionary {(xs, ys)}s∈Stp
is ϵt,i-accurate w.r.t. dataset {(xs, ys)}s∈Dt(i).

As shown below, the accuracy of the dictionary for Nyström approximation is essential as it affects the width of
the confidence ellipsoid, and thus affects the cumulative regret. Intuitively, in order to ensure its accuracy throughout
the learning process, we need to 1) make sure the RLS procedure in line 8 of Algorithm 9 that happens at each global
synchronization produces a representative set of data samples, and 2) monitor the extent to which the dictionary obtained
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in previous global synchronization has degraded over time, and when necessary, trigger a new global synchronization to
update it. Compared with prior work that freezes the model in-between consecutive communications [75], the analysis
of ϵ-accuracy for Approx-DisKernelUCB is unique to this work and the result is presented below.

Lemma 2.2.11. With q̄ = 6 1+ϵ
1−ϵ log(4NT/δ)/ϵ

2, for some ϵ ∈ [0, 1), and threshold D > 0, Algorithm 9 guarantees
that the dictionary is accurate with constant ϵt,i :=

(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵD

)
, and its size |St| = O(γNT ) for all t ∈ [NT ].

Based on Lemma 2.2.11, we can construct the following confidence ellipsoid for unknown parameter θ⋆.

Lemma 2.2.12 (Confidence Ellipsoid of Approximated Estimator). Under the condition that q̄ = 6 1+ϵ
1−ϵ log(4NT/δ)/ϵ

2,
for some ϵ ∈ [0, 1), and threshold D > 0, with probability at least 1− δ, we have ∀t, i that

∥θ̃t,i − θ⋆∥Ãt,i
≤

( 1√
−ϵ+ 1/( 1+ϵ

1−ϵ
D)

+ 1
)√

λ∥θ⋆∥+ 2R
√

lnNT/δ + γNT := αt,i.

Using Lemma 2.2.12, we obtain the regret and communication cost upper bound of Approx-DisKernelUCB, which
is given in Theorem 2.2.13 below.

Theorem 2.2.13 (Regret and Communication Cost of Approx-DisKernelUCB). Under the same condition as Lemma
2.2.12, and by setting D = 1

N , ϵ <
1
3 , we have

RNT = O
(√
NT (∥θ⋆∥

√
γNT + γNT )

)
with probability at least 1− δ, and

CNT = O
(
N2γ3NT

)
Here we provide a proof sketch for Theorem 2.2.13, and the complete proof can be found in Section 2.2.15.

Proof Sketch. Similar to the analysis of DisKernelUCB in Section 2.2.10 and DisLinUCB from [28], the cumulative
regret incurred by Approx-DisKernelUCB can be decomposed in terms of ‘good’ and ‘bad’ epochs, and bounded
separately. Here an epoch refers to the time period in-between two consecutive global synchronizations, e.g., the p-th
epoch refers to [tp−1 + 1, tp]. Now consider an imaginary centralized agent that has immediate access to each data
point in the learning system, and denote by At =

∑t
s=1 ϕsϕ

⊤
s for t ∈ [NT ] the matrix constructed by this centralized

agent. We call the p-th epoch a good epoch if ln(
det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≤ 1, otherwise it is a bad epoch. Note that

ln(
det(I+λ−1K[t1],[t1])

det(I) ) + ln(
det(I+λ−1K[t2],[t2])

det(I+λ−1K[t1],[t1])
) + · · ·+ ln(

det(I+λ−1K[NT ],[NT ])

det(I+λ−1K[tB ],[tB ])
) = ln(det(I+ λ−1K[NT ],[NT ])) ≤

2γNT , where the last equality is due to the matrix determinant lemma, and the last inequality is by the definition of the
maximum information gain γNT in Lemma 2.2.10. Then based on the pigeonhole principle, there can be at most 2γNT
bad epochs.

By combining Lemma 2.2.15 and Lemma 2.2.12, we can bound the cumulative regret incurred during all good epochs,
i.e., Rgood = O(

√
NTγNT ), which matches the optimal regret attained by the KernelUCB algorithm in centralized set-

ting. Our analysis deviates from that of DisKernelUCB in the bad epochs, because of the difference in the event-trigger.
The event-trigger of DisKernelUCB bounds each client’s regret in a bad epoch, i.e.,

∑
t∈Dtp (i)\Dtp−1

(i) σ̂t−1,i(xt) ≤√
(|Dtp(i)| − |Dtp−1(i)|) log

(
det(I+ λ−1KDt(it),Dt(it))/ det(I+ λ−1KDt(it)\∆Dt(it),Dt(it)\∆Dt(it))

)
<

√
D. However,

the event trigger of Approx-DisKernelUCB algorithm only bounds part of it, i.e.,
∑
t∈Dtp (i)\Dtp−1

(i) σ̃t−1,i(xt) ≤√
(|Dtp(i)| − |Dtp−1(i)|)D, which leads to Rbad = O(

√
TγNTN

√
D) that is slightly worse than that of DisKer-

nelUCB, i.e., a
√
T factor in place of the

√
γNT factor. By setting D = 1/N , we have RNT = O(

√
NTγNT ). Note

that, to make sure ϵt,i =
(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵ

1
N

)
∈ [0, 1) is still well-defined, we can set ϵ < 1/3.

For communication cost analysis, we bound the total number of epochsB by upper bounding the total number of sum-
mations like

∑tp
s=tp−1+1 σ̂

2
tp−1

(xs), over the time horizonNT . Using Lemma 2.2.15, our event-trigger in Eq (2.24) pro-

vides a lower bound
∑tp
s=tp−1+1 σ̂

2
tp−1

(xs) ≥ 1−ϵ
1+ϵD. Then in order to apply the pigeonhole principle, we continue to up-
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per bound the summation over all epochs,
∑B
p=1

∑tp
s=tp−1+1 σ̂

2
tp−1

(xs) =
∑B
p=1

∑tp
s=tp−1+1 σ̂

2
s−1(xs)

σ̂2
tp−1

(xs)

σ̂2
s−1(xs)

by de-

riving a uniform bound for the ratio
σ̂2
tp−1

(xs)

σ̂2
s−1(xs)

≤
σ̂2
tp−1

(xs)

σ̂2
tp

(xs)
≤ 1+

∑tp
s=tp−1+1 σ̂

2
tp−1

(xs) ≤ 1+ 1+ϵ
1−ϵ

∑tp
s=tp−1+1 σ̃

2
tp−1

(xs)

in terms of the communication thresholdD on each client. This leads to the following upper bound about the total number
of epochs B ≤ 1+ϵ

1−ϵ [
1
D + 1+ϵ

1−ϵ (N +L2/(λD))]2γNT , and with D = 1/N , we have CNT ≤ B ·Nγ2NT = O(N2γ3NT ),
which completes the proof.

Remark 2. Compared with DisKernelUCB’sO(TN2d) communication cost, Approx-DisKernelUCB removes the linear
dependence on T , but introduces an additional γ3NT dependence due to the communication of the embedded statistics.
In situations where γNT ≪ T 1/3d1/3, DisKernelUCB is preferable. As mentioned in Lemma 2.2.10, the value of γNT ,
which affects how much the data can be compressed, depends on the specific arm set of the problem and the kernel
function of the choice. By Mercer’s Theorem, one can represent the kernel using its eigenvalues, and γNT characterizes
how fast its eigenvalues decay. Vakili et al. [93] showed that for kernels whose eigenvalues decay exponentially, i.e.,
λm = O(exp(−mβe)), for some βe > 0, γNT = O(log1+

1
βe (NT )). In this case, Approx-DisKernelUCB is far more

efficient than DisKernelUCB. This includes Gaussian kernel, which is widely used for GPs and SVMs. For kernels
that have polynomially decaying eigenvalues, i.e., λm = O(m−βp), for some βp > 1, γNT = O(T

1
βp log

1− 1
βp (NT )).

Then as long as βp > 3, Approx-DisKernelUCB still enjoys reduced communication cost.

2.2.13 Experiment setup & results
In order to evaluate Approx-DisKernelUCB’s effectiveness in reducing communication cost, we performed extensive
empirical evaluations on both synthetic and real-world datasets, and the results (averaged over 3 runs) are reported in
Figure 2.7, 2.8 and 2.9, respectively. We included DisKernelUCB, DisLinUCB [28], OneKernelUCB, and NKernelUCB
[72] as baselines, where One-KernelUCB learns a shared bandit model across all clients’ aggregated data where data
aggregation happens immediately after each new data point becomes available, and N-KernelUCB learns a separated
bandit model for each client with no communication. For all the kernelized algorithms, we used the Gaussian kernel
k(x, y) = exp(−γ∥x − y∥2). We did a grid search of γ ∈ {0.1, 1, 4} for kernelized algorithms, and set D = 20
for DisLinUCB and DisKernelUCB, D = 5 for Approx-DisKernelUCB. For all algorithms, instead of using their
theoretically derived exploration coefficient α, we followed the convention [17, 94] to use grid search for α in {0.1, 1, 4}.

Synthetic dataset We simulated the distributed bandit setting defined in Section 2.2.9, with d = 20, T = 100, N =
100 (NT = 104 interactions in total). In each round l ∈ [T ], each client i ∈ [N ] (denote t = N(l − 1) + i) selects an
arm from candidate set At, where At is uniformly sampled from a ℓ2 unit ball, with |At| = 20. Then the corresponding
reward is generated using one of the following reward functions:

f1(x) = cos(3x⊤θ⋆)

f2(x) = (x⊤θ⋆)
3 − 3(x⊤θ⋆)

2 − (x⊤θ⋆) + 3

where the parameter θ⋆ is uniformly sampled from a ℓ2 unit ball.

UCI Datasets To evaluate Approx-DisKernelUCB’s performance in a more challenging and practical scenario, we
performed experiments using real-world datasets: MagicTelescope, Mushroom and Shuttle from the UCI Machine
Learning Repository [89]. To convert them to contextual bandit problems, we pre-processed these datasets following
the steps in [25]. In particular, we partitioned the dataset in to 20 clusters using k-means, and used the centroid of each
cluster as the context vector for the arm and the averaged response variable as mean reward (the response variable
is binarized by associating one class as 1, and all the others as 0). Then we simulated the distributed bandit learning
problem in Section 2.2.9 with |At| = 20, T = 100 and N = 100 (NT = 104 interactions in total).

MovieLens and Yelp dataset Yelp dataset, which is released by the Yelp dataset challenge, consists of 4.7 million
rating entries for 157 thousand restaurants by 1.18 million users. MovieLens is a dataset consisting of 25 million ratings
between 160 thousand users and 60 thousand movies [95]. Following the pre-processing steps in [96], we built the
rating matrix by choosing the top 2000 users and top 10000 restaurants/movies and used singular-value decomposition
(SVD) to extract a 10-dimension feature vector for each user and restaurant/movie. We treated rating greater than 2 as
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positive. We simulated the distributed bandit learning problem in Section 2.2.9 with T = 100 and N = 100 (NT = 104

interactions in total). In each time step, the candidate set At (with |At| = 20) is constructed by sampling an arm with
reward 1 and nineteen arms with reward 0 from the arm pool, and the concatenation of user and restaurant/movie feature
vector is used as the context vector for the arm (thus d = 20).

(a) cos(3x⊤θ⋆) (b) (x⊤θ⋆)3 − 3(x⊤θ⋆)2 − (x⊤θ⋆) + 3

Figure 2.7: Experiment results on synthetic datasets with different reward function f(x).

(a) MagicTelescope (b) Mushroom (c) Shuttle

Figure 2.8: Experiment results on UCI datasets.

Discussions When examining the experiment results presented in Figure 2.7, 2.8 and 2.9, we can first look at
the cumulative regret and communication cost of OneKernelUCB and NKernelUCB, which correspond to the two
extreme cases where the clients communicate in every time step to learn a shared model, and each client learns its
own model independently with no communication, respectively. OneKernelUCB achieves the smallest cumulative
regret in all experiments, while also incurring the highest communication cost, i.e., O(TN2d). This demonstrates
the need of efficient data aggregation across clients for reducing regret. Second, we can observe that DisKernelUCB
incurs the second highest communication cost in all experiments due to the transfer of raw data, as we have discussed
in Remark 1, which makes it prohibitively expensive for distributed setting. On the other extreme, we can see that
DisLinUCB incurs very small communication cost thanks to its closed-form solution, but fails to capture the complicated
reward mappings in most of these datasets, e.g. in Figure 2.7(a), 2.8(b) and 2.9(a), it leads to even worse regret than
NKernelUCB that learns a kernelized bandit model independently for each client. In comparison, the proposed Approx-
DisKernelUCB algorithm enjoys the best of both worlds in most cases, i.e., it can take advantage of the superior
modeling power of kernels to reduce regret, while only requiring a relatively low communication cost for clients to
collaborate. On all the datasets, Approx-DisKernelUCB achieved comparable regret with DisKernelUCB that maintains
exact kernelized estimators, and sometimes even getting very close to OneKernelUCB, e.g., in Figure 2.7(b) and 2.8(a),
but its communication cost is only slightly higher than that of DisLinUCB.
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(a) MovieLens (b) Yelp

Figure 2.9: Experiment results on MovieLens & Yelp datasets.

2.2.14 Full proof of DisKernelUCB algorithm
Confidence Ellipsoid for DisKernelUCB

In this section, we construct the confidence ellipsoid for DisKernelUCB as shown in Lemma 2.2.14.

Lemma 2.2.14 (Confidence Ellipsoid for DisKernelUCB). Let δ ∈ (0, 1). With probability at least 1 − δ, for all
t ∈ [NT ], i ∈ [N ], we have

∥θ̂t,i − θ⋆∥At,i ≤
√
λ∥θ⋆∥+R

√
2 ln(NT/δ) + ln(det(KDt(i),Dt(i)/λ+ I)).

Proof of Lemma 2.2.14. The analysis is rooted in [74] for kernelized contextual bandit, but with non-trivial extensions
to address the dependencies due to the event-triggered distributed communication. This problem also exists in prior
works of distributed linear bandit, but was not addressed rigorously (see Lemma H.1. of [28]). First, recall that the
Ridge regression estimator

θ̂t,i = A−1
t,i

∑
s∈Dt(i)

ϕsys = A−1
t,i

∑
s∈Dt(i)

ϕs(ϕ
⊤
s θ⋆ + ηs)

= θ⋆ − λA−1
t,i θ⋆ +A−1

t,i

∑
s∈Dt(i)

ϕsηs,

and thus, we have

∥A1/2
t,i (θ̂t,i − θ⋆)∥ = ∥−λA−1/2

t,i θ⋆ +A
−1/2
t,i

∑
s∈Dt(i)

ϕsηs∥

≤ ∥λA−1/2
t,i θ⋆∥+ ∥A−1/2

t,i

∑
s∈Dt(i)

ϕsηs∥

≤
√
λ∥θ⋆∥+ ∥A−1/2

t,i

∑
s∈Dt(i)

ϕsηs∥

(2.25)

where the first inequality is due to the triangle inequality, and the second is due to the property of Rayleigh quotient, i.e.,

∥A−1/2
t,i θ⋆∥ ≤ ∥θ⋆∥

√
λmax(A

−1
t,i ) ≤ ∥θ⋆∥ 1√

λ
.

Difference from standard argument Note that the second term may seem similar to the ones appear in the self-
normalized bound in previous works of linear and kernelized bandits [20, 72, 74]. However, a main difference is that
Dt(i), i.e., the sequence of indices for the data points used to update client i, is constructed using the event-trigger as
defined in Eq (2.22) . The event-trigger is data-dependent, and thus it is a delayed and permuted version of the original
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sequence [t]. It is delayed in the sense that the length |Dt(i)| < t unless t is the global synchronization step. It is
permuted in the sense that every client receives the data in a different order, i.e., before the synchronization, each client
first updates using its local new data, and then receives data from other clients at the synchronization. This prevents us
from directly applying Lemma 3.1 of [74], and requires a more careful treatment as shown in the following paragraph.

First, we should note that during the time steps of global synchronization, i.e., t ∈ {tp}p∈[B], we have Dt(i) =
[t],∀i ∈ [N ], which recovers the case under centralized setting, i.e., the centralized agent that has access to all data
points in the learning system. Therefore, analogous to the proof of RARELY SWITCHING OFUL algorithm in
Appendix D of [20], with the standard argument in [74], we have

∥A−1/2
t,i

∑
s∈Dt(i)

ϕsηs∥ ≤ R
√
2 ln(1/δ) + ln(det(KDt(i),Dt(i)/λ+ I))

for all t ∈ {tp}p∈[B] and i ∈ [N ], with probability at least 1 − δ. If our proposed algorithm has no local update, or
use the ‘hallucinating update’ as in [75], then this would suffice. However, the existence of local update requires us to
obtain self-normalized bounds for the local models that have been updated using each client’s newly collected data after
the synchronization step, which leads to the issue mentioned in the previous paragraph. Therefore, we need to address
this issue by a union bound over all possible time steps of global synchronization and all clients.

Specifically, consider some time step t /∈ {tp}p∈[B] and client i. We denote the time step of the most recent
global synchronization to t as tlast, and define the filtration {Fs}tlast

s=0 ∪ {Fs,i}∞s=tlast+1, where the σ-algebra Fs =

σ
(
(xτ , ητ )τ∈[s]

)
for s ∈ [0, tlast], and Fs,i = σ

(
(xτ , ητ )τ∈[tlast], (xτ , ητ )τ∈[tlast,s],iτ=i

)
for s ≥ tlast + 1. By applying

the standard argument for self-normalized bound using the filtration constructed above and then an union bound over N
clients, we have

∥A−1/2
t,i

∑
s∈Dt(i)

ϕsηs∥ ≤ R
√

2 ln(N/δ) + ln(det(KDt(i),Dt(i)/λ+ I))

for all t > tlast and i ∈ [N ], with probability at least 1 − δ. As the time step of global synchronization tlast is
data-dependent, and thus can take any value in [T ], we apply another union bound, which finishes the proof.

Proof of regret upper bound in Lemma 2.2.10

Based on Lemma 2.2.14 and the arm selection rule in Eq (2.21), we have

f(x⋆t ) ≤ µ̂t−1,it(x
⋆
t ) + αt−1,it σ̂t−1,it(x

⋆
t ) ≤ µ̂t−1,it(xt) + αt−1,it σ̂t−1,it(xt),

f(xt) ≥ µ̂t−1,it(xt)− αt−1,it σ̂t−1,it(xt),

and thus rt = f(x⋆t )− f(xt) ≤ 2αt−1,it σ̂t−1,it(xt), for all t ∈ [NT ], with probability at least 1− δ. Then following
similar steps as DisLinUCB of [28], we can obtain the regret and communication cost upper bound of DisKernelUCB.

We call the time period in-between two consecutive global synchronizations as an epoch, i.e., the p-th epoch refers
to [tp−1 + 1, tp], where p ∈ [B] and 0 ≤ B ≤ NT denotes the total number of global synchronizations. Now consider
an imaginary centralized agent that has immediate access to each data point in the learning system, and denote by
At =

∑t
s=1 ϕsϕ

⊤
s and K[t],[t] for t ∈ [NT ] the covariance matrix and kernel matrix constructed by this centralized

agent. Then similar to [28], we call the p-th epoch a good epoch if

ln

(
det(I+ λ−1K[tp],[tp])

det(I+ λ−1K[tp−1],[tp−1])

)
≤ 1,

otherwise it is a bad epoch. Note that ln(det(I + λ−1K[NT ],[NT ])) ≤ 2γNT by definition of γNT , i.e., the maximum

information gain. Since ln(det(I+λ
−1K[t1],[t1])

det(I) )+ln(
det(I+λ−1K[t2],[t2])

det(I+λ−1K[t1],[t1])
)+· · ·+ln(

det(I+λ−1K[NT ],[NT ])

det(I+λ−1K[tB ],[tB ])
) = ln(det(I+

λ−1K[NT ],[NT ])) ≤ 2γNT , and due to the pigeonhole principle, there can be at most 2γNT bad epochs.
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If the instantaneous regret rt is incurred during a good epoch, we have

rt ≤ 2αt−1,it∥ϕt∥A−1
t−1,it

≤ 2αt−1,it∥ϕt∥A−1
t−1

√
∥ϕt∥2A−1

t−1,it

/∥ϕt∥2A−1
t−1

= 2αt−1,it∥ϕt∥A−1
t−1

√
det(I+ λ−1K[t−1],[t−1])

det(I+ λ−1KDt−1(it),Dt−1(it))

≤ 2
√
eαt−1,it∥ϕt∥A−1

t−1

where the second inequality is due to Lemma A.8, and the last inequality is due to the definition of good epoch, i.e.,
det(I+λ−1K[t−1],[t−1])

det(I+λ−1KDt−1(it),Dt−1(it)
) ≤

det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
≤ e.

Define αNT :=
√
λ∥θ⋆∥ +

√
2 ln(NT/δ) + ln(det(K[NT ],[NT ]/λ+ I)). Then using standard arguments, the

cumulative regret incurred in all good epochs can be bounded by,

Rgood =

B∑
p=1

1{ln(
det(I+ λ−1K[tp],[tp])

det(I+ λ−1K[tp−1],[tp−1])
) ≤ 1}

tp∑
t=tp−1

rt ≤
NT∑
t=1

2
√
eαt−1,it∥ϕt∥A−1

t−1

≤ 2
√
eαNT

NT∑
t=1

∥ϕt∥A−1
t−1

≤ 2
√
eαNT

√
NT · 2 ln(det(I+ λ−1K[NT ],[NT ]))

≤ 2
√
eαNT

√
NT · 4γNT = O

(√
NT (∥θ⋆∥

√
γNT + γNT )

)
where the third inequality is due to Cauchy-Schwartz and Lemma A.9, and the forth is due to the definition of maximum
information gain γNT .

Then we look at the regret incurred during bad epochs. Consider some bad epoch p, and the cumulative regret
incurred during this epoch can be bounded by

tp∑
t=tp−1+1

rt =

N∑
i=1

∑
t∈Dtp (i)\Dtp−1

(i)

rt ≤ 2αNT

N∑
i=1

∑
t∈Dtp (i)\Dtp−1

(i)

∥ϕt∥A−1
t−1,i

≤ 2αNT

N∑
i=1

√
(|Dtp(i)| − |Dtp−1

(i)|)
∑

t∈Dtp (i)\Dtp−1
(i)

∥ϕt∥2A−1
t−1,i

≤ 2αNT

N∑
i=1

√√√√2(|Dtp(i)| − |Dtp−1
(i)|) ln(

det(I+ λ−1KDtp (i),Dtp (i)
)

det(I+ λ−1KDtp−1
(i),Dtp−1

(i))
)

≤ 2
√
2αNTN

√
D

where the last inequality is due to our event-trigger in Eq (2.22). Since there can be at most 2γNT bad epochs, the
cumulative regret incurred in all bad epochs

Rbad ≤ 2γNT · 2
√
2αNTN

√
D = O

(
ND0.5(∥θ⋆∥γNT + γ1.5NT )

)
Combining cumulative regret incurred during both good and bad epochs, we have

RNT = Rgood +Rbad = O
(
(
√
NT +N

√
DγNT )(∥θ⋆∥

√
γNT + γNT )

)
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Proof of communication upper bound in Lemma 2.2.10

For some α > 0, there can be at most ⌈NTα ⌉ epochs with length larger than α. With our event-trigger design, we have

(|Dtp(itp)|−|Dtp−1
(itp)|) ln(

det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≥ (|Dtp(itp)|−|Dtp−1

(itp)|) ln(
det(I+λ−1KDtp (itp ),Dtp (itp ))

det(I+λ−1KDtp−1
(itp ),Dtp−1

(itp ))
) ≥

D for any epoch p ∈ [B], where itp is the client who triggers the global synchronization at time step tp. Then if the

length of certain epoch p is smaller than α, i.e., tp − tp−1 ≤ α, we have ln(
det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≥ ND

α . Since

ln(
det(I+λ−1K[t1],[t1])

det(I) )+ln(
det(I+λ−1K[t2],[t2])

det(I+λ−1K[t1],[t1])
)+· · ·+ln(

det(I+λ−1K[tB ],[tB ])

det(I+λ−1K[tB−1],[tB−1])
) ≤ ln(det(I+λ−1K[NT ],[NT ])) ≤

2γNT , the total number of such epochs is upper bounded by ⌈ 2γNTα
ND ⌉. Combining the two terms, the total number of

epochs can be bounded by,

B ≤ ⌈NT
α

⌉+ ⌈2γNTα
ND

⌉

where the LHS can be minimized using the AM-GM inequality, i.e., B ≤
√

NT
α

2γNTα
ND =

√
2γNTT
D . To obtain

the optimal order of regret, we set D = O( T
NγNT

), so that RNT = O
(√
NT (∥θ⋆∥

√
γNT + γNT )

)
. And the total

number of epochs B = O(
√
NγNT ). However, we should note that as DisKernelUCB communicates all the unshared

raw data at each global synchronization, the total communication cost mainly depends on when the last global
synchronization happens. Since the sequence of candidate sets {At}t∈[NT ], which controls the growth of determinant,
is an arbitrary subset of A, the time of last global synchronization could happen at the last time step t = NT . Therefore,
CT = O(N2Td) in such a worst case.

2.2.15 Full proof of Approx-DisKernelUCB algorithm
Derivation of the Approximated Mean and Variance in Section 2.2.11

For simplicity, subscript t is omitted in this section. The approximated Ridge regression estimator for dataset
{(xs, ys)}s∈D is formulated as

θ̃ = argmin
θ∈H

∑
s∈D

(
(PSϕs)

⊤θ − ys

)2
+ λ∥θ∥22

where D denotes the sequence of time indices for data in the original dataset, S ⊆ D denotes the time indices for data
in the dictionary, and PS ∈ Rp×p denotes the orthogonal projection matrix defined by S . Then by taking derivative and
setting it to zero, we have (PSΦ

⊤
DΦDPS + λI)θ̃ = PSΦ

⊤
DyD, and thus θ̃ = Ã−1b̃, where Ã = PSΦ

⊤
DΦDPS + λI

and b̃ = PSΦ
⊤
DyD.

Hence, the approximated mean reward and variance for some arm x are

µ̃t,i(x) = ϕ(x)⊤Ã−1b̃

σ̃t,i(x) =

√
ϕ(x)⊤Ã−1ϕ(x)

To obtain their kernelized representation, we rewrite

(PSΦ
⊤
DΦDPS + λI)θ̃ = PSΦ

⊤
DyD

⇔ PSΦ
⊤
D(yD −ΦDPS θ̃) = λθ̃

⇔ θ̃ = PSΦ
⊤
Dρ

where ρ := 1
λ (yD − ΦDPS θ̃) = 1

λ (yD − ΦDPSPSΦ
⊤
Dρ). Solving this equation, we get ρ = (ΦDPSPSΦ

⊤
D +

λI)−1yD. Note that PSPS = PS , since projection matrix PS is idempotent. Moreover, we have (Φ⊤Φ+ λI)Φ⊤ =
Φ⊤(ΦΦ⊤ + λI), and (Φ⊤Φ+ λI)−1Φ⊤ = Φ⊤(ΦΦ⊤ + λI)−1. Therefore, we can rewrite the approximated mean
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for some arm x as

µ̃(x) = ϕ(x)⊤PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1yD

= (P
1/2
S ϕ(x))⊤(ΦDP

1/2
S )⊤[ΦDP

1/2
S (ΦDP

1/2
S )⊤ + λI]−1yD

= (P
1/2
S ϕ(x))⊤(P

1/2
S Φ⊤

DΦDP
1/2
S + λI)−1(ΦDP

1/2
S )⊤yD

= z(x;S)⊤
(
Z⊤

D;SZD;S + λI
)−1

Z⊤
D;SyD

To derive the approximated variance, we start from the fact that (PSΦ
⊤
DΦDPS + λI)ϕ(x) = PSΦ

⊤
DΦDPSϕ(x) +

λϕ(x), so

ϕ(x) = (PSΦ
⊤
DΦDPS + λI)−1PSΦ

⊤
DΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

= PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

Then we have

ϕ(x)⊤ϕ(x)

=
{
PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

}⊤{
PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λ(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

}
=ϕ(x)⊤PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSPSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x)

+ 2λϕ(x)⊤PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPS(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

+ λϕ(x)⊤(PSΦ
⊤
DΦDPS + λI)−1λI(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

=ϕ(x)⊤PSΦ
⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x) + λϕ(x)⊤(PSΦ

⊤
DΦDPS + λI)−1ϕ(x)

By rearranging terms, we have

σ̃2(x) =ϕ(x)⊤(PSΦ
⊤
DΦDPS + λI)−1ϕ(x)

=
1

λ

{
ϕ(x)⊤ϕ(x)− ϕ(x)⊤PSΦ

⊤
D(ΦDPSPSΦ

⊤
D + λI)−1ΦDPSϕ(x)

}
=
1

λ
{k(x,x)− z(x;S)⊤Z⊤

D;SZD;S [Z
⊤
D;SZD;S + λI]−1z(x|S)}

Omitted proof for Lemma 2.2.11 and Lemma 2.2.12 in Section 2.2.12

Proof of Lemma 2.2.11. In the following, we analyze the ϵt,i-accuracy of the dictionary for all t, i.
At the time steps when global synchronization happens, i.e., tp for p ∈ [B], Stp is sampled from [tp] = Dtp(i)

using approximated variance σ̃2
tp−1,i

. In this case, the accuracy of the dictionary only depends on the RLS procedure,
and Calandriello et al. [75] have already showed that the following guarantee on the accuracy and size of dictionary
holds ∀t ∈ {tp}p∈[B].

Lemma 2.2.15 (Lemma 2 of [75]). Under the condition that q̄ = 6 1+ϵ
1−ϵ log(4NT/δ)/ϵ

2, for some ϵ ∈ [0, 1), with prob-
ability at least 1− δ, we have ∀t ∈ {tp}p∈[B] that the dictionary {(xs, ys)}s∈St

is ϵ-accurate w.r.t. {(xs, ys)}s∈Dt(i),
and 1−ϵ

1+ϵσ
2
t (x) ≤ σ̃2

t (x) ≤ 1+ϵ
1−ϵσ

2
t (x),∀x ∈ A. Moreover, the size of dictionary |St| ≤ 3(1 + L2/λ) 1+ϵ1−ϵ q̄d̃, where

d̃ := Tr(K[NT ],[NT ](K[NT ],[NT ] + λI)−1) denotes the effective dimension of the problem, and it is known that
d̃ = O(γNT ) [72].

Lemma 2.2.15 guarantees that for all t ∈ {tp}p∈[B], the dictionary has a constant accuracy, i.e., ϵt,i = ϵ,∀i. In
addition, since the dictionary is fixed for t /∈ {tp}p∈[B], its size St = O(γNT ),∀t ∈ [NT ].

Then for time steps t /∈ {tp}p∈[B], due to the local update, the accuracy of the dictionary will degrade. However,
thanks to our event-trigger in Eq (2.24), the extent of such degradation can be controlled, i.e., a new dictionary update
will be triggered before the previous dictionary becomes completely irrelevant. This is shown in Lemma 2.2.16 below.
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Lemma 2.2.16. Under the condition that {(xs, ys)}s∈Stp
is ϵ-accurate w.r.t. {(xs, ys)}s∈Dtp (i)

, ∀t ∈ [tp+1, tp+1], i ∈
[N ], Stp is

(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵD

)
-accurate w.r.t. Dt(i).

Combining Lemma 2.2.15 and Lemma 2.2.16 finishes the proof of Lemma 2.2.11.

Proof of Lemma 2.2.16. Similar to [73], we can rewrite the ϵ-accuracy condition of Stp w.r.t. Dt(i) for t ∈ [tp+1, tp+1]
as

(1− ϵt,i)(Φ
⊤
Dt(i)

ΦDt(i) + λI) ⪯ Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) + λI ⪯ (1 + ϵt,i)(Φ

⊤
Dt(i)

ΦDt(i) + λI)

⇔− ϵt,i(Φ
⊤
Dt(i)

ΦDt(i) + λI) ⪯ Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) −Φ⊤

Dt(i)
ΦDt(i) ⪯ ϵt,i(Φ

⊤
Dt(i)

ΦDt(i) + λI)

⇔− ϵt,iI ⪯ (Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) −Φ⊤

Dt(i)
ΦDt(i))(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2 ⪯ ϵt,iI

⇔∥(Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(Φ⊤
Dt(i)

S̄⊤
t,iS̄t,iΦDt(i) −Φ⊤

Dt(i)
ΦDt(i))(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2∥ ≤ ϵt,i

⇔∥
∑
s∈Dtp

(
qs
p̃s

− 1)ψsψ
⊤
s +

∑
s∈Dt(i)\Dtp

(0− 1)ψsψ
⊤
s ∥ ≤ ϵt,i

where ψs = (Φ⊤
Dt(i)

ΦDt(i)+λI)
−1/2ϕs. Notice that the second term in the norm has weight −1 because the dictionary

Stp is fixed after tp. With triangle inequality, now it suffices to bound

∥
∑
s∈Dtp

(
qs
p̃s

− 1)ψs,jψ
⊤
s +

∑
s∈Dt(i)\Dtp

(0− 1)ψsψ
⊤
s ∥ ≤ ∥

∑
s∈Dtp

(
qs
p̃s

− 1)ψsψ
⊤
s ∥+ ∥

∑
s∈Dt(i)\Dtp

ψsψ
⊤
s ∥.

We should note that the first term corresponds to the approximation accuracy of Stp w.r.t. the dataset Dtp . And under
the condition that it is ϵ-accurate w.r.t. Dtp , we have ∥

∑
s∈Dtp

( qsp̃s − 1)ψsψ
⊤
s ∥ ≤ ϵ. The second term measures the

difference between Dt(i) compared with Dtp , which is unique to our work. We can bound it as follows.

∥
∑

s∈Dt(i)\Dtp

ψsψ
⊤
s ∥

=∥(Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(
∑

s∈Dt(i)\Dtp

ϕsϕ
⊤
s )(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2∥

=max
ϕ∈H

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i) + λI)−1/2(
∑
s∈Dt(i)\Dtp

ϕsϕ
⊤
s )(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1/2ϕ

ϕ⊤ϕ

=max
ϕ∈H

ϕ⊤(
∑
s∈Dt(i)\Dtp

ϕsϕ
⊤
s )ϕ

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i) + λI)ϕ

=1−min
ϕ∈H

ϕ⊤(Φ⊤
Dtp

ΦDtp
+ λI)ϕ

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i) + λI)ϕ

=1− 1

maxϕ∈H
ϕ⊤(Φ⊤

Dtp
ΦDtp

+λI)−1ϕ

ϕ⊤(Φ⊤
Dt(i)

ΦDt(i)
+λI)−1ϕ

=1− 1

maxx
σ2
tp,i(x)

σ2
t,i(x)
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We can further bound the term
σ2
tp,i(x)

σ2
t,i(x)

using the threshold of the event-trigger in Eq (2.24). For any x ∈ Rd,

σ2
tp,i

(x)

σ2
t,i(x)

≤ 1 +
∑

s∈Dt(i)\Dtp

σ̂2
tp,i(xs) ≤ 1 +

1 + ϵ

1− ϵ

∑
s∈Dt(i)\Dtp

σ̃2
tp,i(xs) ≤ 1 +

1 + ϵ

1− ϵ
D

where the first inequality is due to Lemma A.10, the second is due to Lemma 2.2.15, and the third is due to the event-
trigger in Eq (2.24). Putting everything together, we have that if Stp is ϵ-accurate w.r.t. Dtp , then it is

(
ϵ+1− 1

1+ 1+ϵ
1−ϵD

)
-

accurate w.r.t. dataset Dt(i), which finishes the proof.

Proof of Lemma 2.2.12. To prove Lemma 2.2.12, we need the following lemma.

Lemma 2.2.17. We have ∀t, i that

∥θ̃t,i − θ⋆∥Ãt,i
≤

(
∥ΦDt(i)(I−PS)∥+

√
λ
)
∥θ⋆∥+R

√
4 lnN/δ + 2 ln det((1 + λ)I+KDt(i),Dt(i))

with probability at least 1− δ.

Now we are ready to prove Lemma 2.2.12 by further bounding the term ∥ΦDt(i)(I−PStp
)∥. Recall that S̄t,i ∈

R|Dt(i)|×|Dt(i)| denotes the diagonal matrix, whose s-th diagonal entry equals to qs√
p̃s

, where qs = 1 if s ∈ Stp and 0

otherwise (note that for s /∈ Stp , we set p̃s = 1, so qs/p̃s = 0). Therefore, ∀s ∈ Dt(i) \ Dtp , qs = 0, as the dictionary
is fixed after tp. We can rewrite Φ⊤

Dt(i)
S̄⊤
t,iS̄t,iΦDt(i) =

∑
s∈Dt(i)

qs
p̃s
ϕsϕ

⊤
s , where ϕs := ϕ(xs). Then by definition of

the spectral norm ∥·∥, and the properties of the projection matrix PStp
, we have

∥ΦDt(i)(I−PStp
)∥ =

√
λmax

(
ΦDt(i)(I−PStp

)2Φ⊤
Dt(i)

)
=
√
λmax

(
ΦDt(i)(I−PStp

)Φ⊤
Dt(i)

)
. (2.26)

Moreover, due to Lemma 2.2.16, we know Stp is ϵt,i-accurate w.r.t. Dt(i) for t ∈ [tp + 1, tp+1], where ϵt,i =(
ϵ+ 1− 1

1+ 1+ϵ
1−ϵD

)
, so we have I−PStp

⪯ λ
1−ϵt,i (Φ

⊤
Dt(i)

ΦDt(i) + λI)−1 by the property of ϵ-accuracy (Proposition

10 of [73]). Therefore, by substituting this back to Eq (2.26), we have

∥ΦDt(i)(I−PStp
)∥ ≤

√
λmax

( λ

1− ϵt,i
ΦDt(i)(Φ

⊤
Dt(i)

ΦDt(i) + λI)−1Φ⊤
Dt(i)

)
≤

√√√√ λ

−ϵ+ 1
1+ 1+ϵ

1−ϵD

which finishes the proof.

Proof of Lemma 2.2.17. Recall that the approximated kernel Ridge regression estimator for θ⋆ is defined as

θ̃t,i = Ã−1
t,i PSΦ

⊤
Dt(i)

yDt(i)

where PS is the orthogonal projection matrix for the Nyström approximation, and Ãt,i = PSΦ
⊤
Dt(i)

ΦDt(i)PS + λI.
Then our goal is to bound

(θ̃t,i − θ⋆)
⊤Ãt,i(θ̃t,i − θ⋆)

=(θ̃t,i − θ⋆)
⊤Ãt,i(Ã

−1
t,i PSΦ

⊤
Dt(i)

yDt(i) − θ⋆)

=(θ̃t,i − θ⋆)
⊤Ãt,i[Ã

−1
t,i PSΦ

⊤
Dt(i)

(ΦDt(i)θ⋆ + ηDt(i))− θ⋆]

=(θ̃t,i − θ⋆)
⊤Ãt,i(Ã

−1
t,i PSΦ

⊤
Dt(i)

ΦDt(i)θ⋆ − θ⋆) + (θ̃t,i − θ⋆)
⊤Ãt,iÃ

−1
t,i PSΦ

⊤
Dt(i)

ηDt(i)
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Bounding the first term To bound the first term, we begin with rewriting

Ãt,i(Ã
−1
t,i PSΦ

⊤
Dt(i)

ΦDt(i)θ⋆ − θ⋆)

=PSΦ
⊤
Dt(i)

ΦDt(i)θ⋆ −PSΦ
⊤
Dt(i)

ΦDt(i)PSθ⋆ − λθ⋆

=PSΦ
⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆ − λθ⋆

and by substituting this into the first term, we have

(θ̃t,i − θ⋆)
⊤Ãt,i(Ã

−1
t,i PSΦ

⊤
Dt(i)

ΦDt(i)θ⋆ − θ⋆)

=(θ̃t,i − θ⋆)
⊤PSΦ

⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆ − λ(θ̃t,i − θ⋆)
⊤θ⋆

=(θ̃t,i − θ⋆)
⊤Ã

1/2
t,i Ã

−1/2
t,i PSΦ

⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆ − λ(θ̃t,i − θ⋆)
⊤Ã

1/2
t,i Ã

−1/2
t,i θ⋆

≤∥θ̃t,i − θ⋆∥Ãt,i

(
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

ΦDt(i)(I−PS)θ⋆∥+ λ∥θ⋆∥Ã−1
t,i

)
≤∥θ̃t,i − θ⋆∥Ãt,i

(
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

∥∥ΦDt(i)(I−PS)∥∥θ⋆∥+
√
λ∥θ⋆∥

)
≤∥θ̃t,i − θ⋆∥Ãt,i

(
∥ΦDt(i)(I−PS)∥+

√
λ
)
∥θ⋆∥

where the first inequality is due to Cauchy Schwartz, and the last inequality is because ∥Ã−1/2
t,i PSΦ

⊤
Dt(i)

∥ =√
ΦDt(i)PS(PSΦ⊤

Dt(i)
ΦDt(i)PS + λI)−1PSΦ⊤

Dt(i)
≤ 1.

Bounding the second term By applying Cauchy-Schwartz inequality to the second term, we have

(θ̃t,i − θ⋆)
⊤Ãt,iÃ

−1
t,i PSΦ

⊤
Dt(i)

ηDt(i)

≤∥θ̃t,i − θ⋆∥Ãt,i
∥Ã−1/2

t,i PSΦ
⊤
Dt(i)

ηDt(i)∥

=∥θ̃t,i − θ⋆∥Ãt,i
∥Ã−1/2

t,i PSA
1/2
t,i A

−1/2
t,i Φ⊤

Dt(i)
ηDt(i)∥

≤∥θ̃t,i − θ⋆∥Ãt,i
∥Ã−1/2

t,i PSA
1/2
t,i ∥∥A

−1/2
t,i Φ⊤

Dt(i)
ηDt(i)∥

Note that PSAt,iPS = PS(Φ
⊤
Dt(i)

ΦDt(i) + λI)PS = Ãt,i + λ(PS − I) and PS ⪯ I, so we have

∥Ã−1/2
t,i PSA

1/2
t,i ∥ =

√
∥Ã−1/2

t,i PSA
1/2
t,i A

1/2
t,i PSÃ

−1/2
t,i ∥ ≤

√
∥Ã−1/2

t,i (Ãt,i + λ(PS − I))Ã
−1/2
t,i ∥

=

√
∥I+ λÃ

−1/2
t,i (PS − I))Ã

−1/2
t,i ∥ ≤

√
1 + λ∥Ã−1

t,i ∥∥PS − I)∥

≤
√
1 + λ · λ−1 · 1 =

√
2

Then using the self-normalized bound derived for Lemma 2.2.14, the term ∥A−1/2
t,i Φ⊤

Dt(i)
ηDt(i)∥ = ∥Φ⊤

Dt(i)
ηDt(i)∥A−1

t,i

can be bounded by

∥Φ⊤
Dt(i)

ηDt(i)∥A−1
t,i

≤ R
√

2 ln(NT/δ) + ln(det(KDt(i),Dt(i)/λ+ I))

≤ R
√
2 ln(NT/δ) + 2γNT

for ∀t, i, with probability at least 1− δ. Combining everything finishes the proof.
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Omitted proof of Theorem 2.2.13 in Section 2.2.12

Regret analysis Consider some time step t ∈ [tp−1+1, tp], where p ∈ [B]. Due to Lemma 2.2.12, i.e., the confidence
ellipsoid for approximated estimator, and the fact that xt = argmaxx∈At,i

µ̃t−1,i(x) + αt−1,iσ̃t−1,i(x), we have

f(x⋆t ) ≤ µ̃t−1,i(x
⋆
t ) + αt−1,iσ̃t−1,i(x

⋆
t ) ≤ µ̃t−1,i(xt) + αt−1,iσ̃t−1,i(xt),

f(xt) ≥ µ̃t−1,i(xt)− αt−1,iσ̃t−1,i(xt),

and thus rt = f(x⋆t )− f(xt) ≤ 2αt−1,iσ̃t−1,i(xt), where

αt−1,i =

(
1√

−ϵ+ 1
1+ 1+ϵ

1−ϵD

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnNT/δ + 2 ln det((1 + λ)I+KDt−1(i),Dt−1(i)).

Note that, different from Section 2.2.14 the αt−1,i term now depends on the threshold D and accuracy constant ϵ, as a
result of the approximation error. As we will see in the following paragraphs, their values need to be set properly in
order to bound αt−1,i.

We begin the regret analysis of Approx-DisKernelUCB with the same decomposition of good and bad epochs as in

Section 2.2.14, i.e., we call the p-th epoch a good epoch if ln(
det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
) ≤ 1, otherwise it is a bad epoch.

Moreover, due to the pigeon-hold principle, there can be at most 2γNT bad epochs.
As we will show in the following paragraphs, using Lemma 2.2.15, we can obtain a similar bound for the cumulative

regret in good epochs as that in Section 2.2.14, but with additional dependence on D and ϵ. The proof mainly differs
in the bad epochs, where we need to use the event-trigger in Eq (2.24) to bound the cumulative regret in each bad
epoch. Compared with Eq (2.22), Eq (2.24) does not contain the number of local updates on each client since last
synchronization., and as mentioned in Section 2.3.10, this introduces a

√
T factor in the regret bound for bad epochs in

place of the
√
γNT term in Section 2.2.14.

Cumulative Regret in Good Epochs Let’s first consider some time step t in a good epoch p, i.e., t ∈ [tp−1 + 1, tp],
and we have the following bound on the instantaneous regret

rt ≤ 2αt−1,iσ̃t−1,i(xt) ≤ 2αt−1,iσ̃tp−1,i(xt) ≤ 2αt−1,i
1 + ϵ

1− ϵ
σtp−1,i(xt)

= 2αt−1,i
1 + ϵ

1− ϵ

√
ϕ⊤t A

−1
tp−1

ϕt ≤ 2αt−1,i
1 + ϵ

1− ϵ

√
ϕ⊤t A

−1
t−1ϕt

√
det(I+ λ−1K[t−1],[t−1])

det(I+ λ−1K[tp−1],[tp−1])

≤ 2
√
e
1 + ϵ

1− ϵ
αt−1,i

√
ϕ⊤t A

−1
t−1ϕt

where the second inequality is because the (approximated) variance is non-decreasing, the third inequality is due to

Lemma 2.2.15, the forth is due to Lemma A.8, and the last is because in a good epoch, we have det(I+λ−1K[t−1],[t−1])

det(I+λ−1K[tp−1],[tp−1])
≤

det(I+λ−1K[tp],[tp])

det(I+λ−1K[tp−1],[tp−1])
≤ e for t ∈ [tp−1 + 1, tp].

Therefore, the cumulative regret incurred in all good epochs, denoted by Rgood, is upper bounded by

Rgood ≤ 2
√
e
1 + ϵ

1− ϵ

NT∑
t=1

αt−1,i

√
ϕ⊤t A

−1
t−1ϕt ≤ 2

√
e
1 + ϵ

1− ϵ
αNT

√√√√NT ·
NT∑
t=1

ϕ⊤t A
−1
t−1ϕt

≤ 2
√
e
1 + ϵ

1− ϵ
αNT

√
NT · 2γNT

where αNT :=

(
1√

−ϵ+ 1

1+ 1+ϵ
1−ϵ

D

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnNT/δ + 2 ln det((1 + λ)I+K[NT ],[NT ]).
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Cumulative Regret in Bad Epochs The cumulative regret incurred in this bad epoch is

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

tp∑
t=tp−1+1

rt

≤ 2
B∑

p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

tp∑
t=tp−1+1

αt−1,iσ̃t−1,i(xt)

≤ 2αNT

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

∑
t∈Ntp (i)\Ntp−1

(i)

σ̃t−1,i(xt)

≤ 2αNT

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

√√√√(|Ntp (i)| − |Ntp−1
(i)|)

∑
t∈Ntp (i)\Ntp−1

(i)

σ̃2
t−1,i(xt)

≤ 2αNT

√
D

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

√
(|Ntp (i)| − |Ntp−1

(i)|)

≤ 2αNT

√
D

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

N∑
i=1

√
tp − tp−1

N

≤ 2αNT

√
DN

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

√
tp − tp−1

≤ 2αNT

√
DN

√√√√ B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}(tp − tp−1) ·

B∑
p=1

1{ln(
det(I + λ−1K[tp],[tp])

det(I + λ−1K[tp−1],[tp−1])
) > 1}

≤ 2αNT

√
DN

√
2NTγNT

where the third inequality is due to the Cauchy-Schwartz inequality, the forth is due to our event-trigger in Eq (2.24),
the fifth is due to our assumption that clients interact with the environment in a round-robin manner, the sixth is due to
the Cauchy-Schwartz inequality again, and the last is due to the fact that there can be at most 2γNT bad epochs.

Combining cumulative regret incurred during both good and bad epochs, we have

RNT ≤ Rgood +Rbad ≤ 2
√
e
1 + ϵ

1− ϵ
αNT

√
NT · 2γNT + 2αNT

√
DN

√
2NTγNT

Communication cost analysis Consider some epoch p. We know that for the client i who triggers the global
synchronization, we have

1 + ϵ

1− ϵ

tp∑
s=tp−1+1

σ2
tp−1

(xs) ≥
tp∑

s=tp−1+1

σ̃2
tp−1

(xs) ≥
∑

s∈Dtp(i)\Dtp−1(i)

σ̃2
tp−1

(xs) ≥ D

Then by summing over B epochs, we have

BD <
1 + ϵ

1− ϵ

B∑
p=1

tp∑
s=tp−1+1

σ2
tp−1

(xs) ≤
1 + ϵ

1− ϵ

B∑
p=1

tp∑
s=tp−1+1

σ2
s−1(xs)

σ2
tp−1

(xs)

σ2
s−1(xs)

.

Now we need to bound the ratio
σ2
tp−1

(xs)

σ2
s−1(xs)

for s ∈ [tp−1 + 1, tp].

σ2
tp−1

(xs)

σ2
s−1(xs)

≤
[
1 +

s∑
τ=tp−1+1

σ2
tp−1

(xτ )
]
≤
[
1 +

1 + ϵ

1− ϵ

s∑
τ=tp−1+1

σ̃2
tp−1

(xτ )
]

Note that for the client who triggers the global synchronization, we have
∑
s∈Dtp−1(i)\Dtp−1

(i) σ̃
2
tp−1

(xs) < D, i.e.,
one time step before it triggers the synchronization at time tp. Due to the fact that the (approximated) posterior variance
cannot exceed L2/λ, we have

∑
s∈Dtp (i)\Dtp−1

(i) σ̃
2
tp−1

(xs) < D + L2/λ. For the other N − 1 clients, we have
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∑
s∈Dtp (i)\Dtp−1

(i) σ̃
2
tp−1

(xs) < D. Summing them together, we have

tp∑
s=tp−1+1

σ̃2
tp−1

(xs) < (ND + L2/λ)

for the p-th epoch. By substituting this back, we have

σ2
tp−1

(xs)

σ2
s−1(xs)

≤
[
1 +

1 + ϵ

1− ϵ
(ND + L2/λ)

]
Therefore,

BD <
1 + ϵ

1− ϵ

[
1 +

1 + ϵ

1− ϵ
(ND + L2/λ)

] B∑
p=1

tp∑
s=tp−1+1

σ2
s−1(xs)

≤ 1 + ϵ

1− ϵ

[
1 +

1 + ϵ

1− ϵ
(ND + L2/λ)

]
2γNT

and thus the total number of epochs B < 1+ϵ
1−ϵ [

1
D + 1+ϵ

1−ϵ (N + L2/(λD))]2γNT .
By setting D = 1

N , we have

αNT =

(
1√

−ϵ+ 1
1+ 1+ϵ

1−ϵ
1
N

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnN/δ + 2 ln det((1 + λ)I+K[NT ],[NT ])

≤

(
1√

−ϵ+ 1
1+ 1+ϵ

1−ϵ

+ 1

)
√
λ∥θ⋆∥+R

√
4 lnN/δ + 2 ln det((1 + λ)I+K[NT ],[NT ])

because N ≥ 1. Moreover, to ensure −ϵ+ 1
1+ 1+ϵ

1−ϵ

> 0, we need to set the constant ϵ < 1/3. Therefore,

RNT = O
(√

NT (∥θ⋆∥
√
γNT + γNT )

)
and the total number of global synchronizations B = O(NγNT ). Since for each global synchronization, the communi-
cation cost is O(Nγ2NT ), we have

CNT = O
(
N2γ3NT

)

2.3 Cooperation in decentralized environments: asynchronous communica-
tion

Constraints from real-world applications should also be taken into consideration when designing the communication
strategy. For example, the clients often have various response time and even occasional unavailability in reality, due to
the differences in their computational and communication capacities. This hampers global synchronization employed in
existing federated bandit solutions [28, 61], which requires the server to first send a synchronization signal to all clients,
wait and collect their returned local updates, and finally send the aggregated update back to every client.

To address this challenge, we proposed the first asynchronous communication framework for federated bandit
learning [64], and it has been further improved and extended to more general problem settings in some recent works
[97, 98, 24]. We designed an event-triggered mechanism that offers a flexible way to balance between the regret-
minimization and communication-efficiency dilemma. Communication with a client happens only when the last
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communicated update to the client becomes irrelevant to the latest one; and we prove only by then effective regret
reduction can be expected in this client because of the communication. Under this asynchronous communication, each
client sends local update to and receives aggregated update from the server independently from other clients, with
no need for global synchronization. This improves our method’s robustness against possible delays and temporary
unavailability of clients.

2.3.1 General problem formulation
We consider the same star-shaped communication network as Section 2.2.2. At each time step t ∈ [T ], a client
it ∈ [N ] becomes active (assume P (it = i) > 0,∀i ∈ [N ]) and chooses an arm xt from a candidate set At =
{xt,1,xt,2, . . . ,xt,K} ⊆ Rd, and then receives the corresponding reward feedback yt = f(xt) + ηt ∈ R. Note that At

is time-varying and assumed to be chosen by an oblivious adversary, f denotes the unknown reward function shared by
all clients, and ηt denotes zero-mean sub-Gaussian noise with known variance σ2. at time step t.

The learning system’s goal is to minimize the cumulative (pseudo) regret for all N clients, i.e., RT =
∑T
t=1 rt,

where rt = maxx∈At
f(x)− f(xt). Meanwhile, the system also needs to keep the communication cost CT low, which

is measured by the total number of scalars being transferred across the system up to time T .

2.3.2 Asynchronous communication for federated linear bandit
To balance the two conflicting objectives, i.e., cumulative regret RT and communication cost CT , as well as ensuring
robustness against stragglers in the system, we introduce an asynchronous event-triggered communication framework
as illustrated in Figure 2.10(b). In this section, we study this communication framework under federated linear bandit
problem, which assumes the rewards received by all the clients are generated by the linear function:

f(x) = θ⊤x, ∀i ∈ [N ] (2.27)

where θ ∈ Rd is the unknown parameter and we assume ∥θ∥ ≤ 1 and ∥x∥ ≤ 1. Despite its simplicity, this setting
is commonly adopted in existing works for federated bandits [28, 61]. Later in this chapter, we will also introduce
extension to more general function classes, such as generalized linear bandits and kernelized bandits. Moreover, we
adopt the context regularity assumption from [27, 40, 99], which imposes a variance condition on the stochastic process
generating xt,a (for heterogeneous clients, it is imposed on global features x(g)

t,a ). This suggests the informativeness of
each observation in expectation.

Assumption 6 (Context regularity). At each time t, the context vector xt,a ∈ At for each arm a ∈ [K] is independently
generated from a random process, such that Et−1[xt,ax

⊤
t,a] := E[xt,ax⊤

t,a|{is,As, ηs}s∈[t−1]] = Σc ⪰ λcI, ∀t ∈ [T ]

where the constant λc > 0. Let also, for any fixed unit vector z ∈ Rd, the random variable (z⊤xt,a)
2 be conditionally

sub-Gaussian with variance parameter v2 ≤ λ2c/(8 log 4K).

We begin our discussion with an important observation about the instantaneous regret of linear bandit algorithms.
Denote the sufficient statistics (for θ) collected from all clients by time t as Vt =

∑t
τ=1 xτx

⊤
τ and bt =

∑t
τ=1 xτyτ .

In a centralized setting, at each time step t ∈ [T ], {Vt−1, bt−1} are readily available to make an informed choice of arm
xt ∈ At. It is known that the instantaneous regret rt incurred by the mentioned linear bandit algorithms is directly related
to the width of the confidence ellipsoid in the direction of xt. Specifically, from Theorem 3 in [20], with probability at

least 1− δ, the instantaneous regret rt incurred by LinUCB can be upper bounded by rt ≤ 2αt−1

√
x⊤
t V

−1
t−1xt, where

αt−1 = O
(√

d log T
δ

)
. However, as data is decentralized in our problem, {Vt−1, bt−1} are not readily available to

client it. Instead, the client only has a delayed copy, denoted by {Vit,t−1, bit,t−1}, which contains its own interactions
with the environment on top of the last communication with the server. Therefore, now the instantaneous regret

rt ≤ 2αit,t−1

√
x⊤
t V

−1
it,t−1xt = 2αit,t−1

√
x⊤
t V

−1
t−1xt

√
Γt−1, where Γt−1 =

x⊤
t V

−1
it,t−1xt

x⊤
t V

−1
t−1xt

measures how much wider

the confidence ellipsoid at client it’s estimation in the direction of xt is, compared with that under a centralized setting.
The value of Γt−1 depends on how frequent local updates are aggregated and shared. Also note that Γt−1 ≥ 1, as
Vt−1 ⪰ Vit,t−1,∀t, which suggests the regret in the decentralized setting is at best the same as that in the centralized
setting. Equality is attained when all the clients are synchronized in every time step.
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Figure 2.10: Comparison between the synchronous and asynchronous event-triggered communications for federated
linear bandit. The former requires all clients to upload their latest data at once and then download the aggregated data,
while latter performs both upload and download on a per-client basis.

Based on this observation, we can balance regret and communication cost by controlling the value of Γt−1. However,
in the decentralized setting, neither the server nor the clients has direct access to {Vt−1, bt−1}, and the closest thing
one can get is the aggregated sufficient statistics managed by the server, which we denote as {Vg,t−1, bg,t−1}. Hence,
we take an indirect approach by first ensuring {Vg,t−1, bg,t−1} do not deviate too much from {Vt−1, bt−1}, and then
{Vi,t−1, bi,t−1} do not deviate too much from {Vg,t−1, bg,t−1} for each client i ∈ [N ]. The former leads to the ‘upload’
event, i.e., each client decides whether to upload independently, and the latter leads to the ‘download’ event, i.e., the
server decides whether to send its latest statistics to each client independently as well.

In the proposed communication framework shown in Figure 2.10(b), each client i ∈ [N ] stores a local copy
of its sufficient statistics {Vi,t−1, bi,t−1}, and also an ‘upload’ buffer {∆Vi,t−1,∆bi,t−1}, i.e., local updates that
have not been sent to the server. At each time step t, client it ∈ [N ] interacts with the environment, and updates
Vit,t = Vit,t−1 + xtx

⊤
t , bit,t = bit,t−1 + xtyt, ∆Vit,t = ∆Vit,t−1 + xtx

⊤
t ,∆bit,t = ∆bit,t−1 + xtyt with the new

observation (xt, yt). Then it executes Algorithm 11, by first checking the following condition (line 2):

‘Upload’ event Client it sends {∆Vit,t,∆bit,t} to the server if event:

Ut(γU ) =

{
det(Vit,t)

det(Vit,t −∆Vit,t)
> γU

}
(2.28)

happens, and then sets ∆Vi,t = 0,∆bi,t = 0. Otherwise, {∆Vi,t,∆bi,t} remain unchanged. The server stores the
aggregated sufficient statistics {Vg,t−1, bg,t−1} over the local updates received from the clients, and also maintains
‘download’ buffers {∆V−j,t−1,∆b−j,t−1} for each client j ∈ [N ], i.e., the aggregated updates that have not been
sent to client j. Specifically, after the server receives {∆Vit,t,∆bit,t} via the ‘upload’ from client it, it updates
Vg,t = Vg,t−1 +∆Vit,t, bg,t = bg,t−1 +∆bit,t, and ∆V−j,t = ∆V−j,t−1 +∆Vit,t,∆b−j,t = ∆b−j,t−1 +∆bit,t for
all clients j ̸= it. Then it checks the following condition for each client j ̸= it (line 7):

‘Download’ event The server sends {∆Vj,t,∆bj,t} to client j if event:

Dt,j(γD) =

{
det(Vg.t)

det(Vg,t −∆V−j,t)
> γD

}
(2.29)

happens, and then sets ∆V−j,t = 0,∆b−j,t = 0. Otherwise, {∆V−j,t,∆b−j,t} remain unchanged. After client j
receives {∆V−j,t,∆b−j,t} via the ‘download’ communication, it updates Vj,t = Vj,t−1+∆V−j,t, bj,t = bj,t−1+∆b−j,t.

The following lemma specifies an upper bound of Γt−1 by executing Algorithm 11, which depends on the thresholds
{γU , γD} and the number of clients N .
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Algorithm 11 Asynchronous Communication Protocol
1: Input: thresholds γU , γD ≥ 1
2: if Event Ut(γU ) in Eq (2.28) happens then
3: Upload ∆Vit,t,∆bit,t (client it → server)
4: Update server: Vg,t += ∆Vit,t, bg,t += ∆bit,t, ∆V−j,t += ∆Vit,t,∆b−j,t += ∆bit,t, ∀j ̸= it
5: Client it sets ∆Vit,t = 0, ∆bit,t = 0
6: for j = 1, . . . , N do
7: if Event Dt,j(γD) in Eq (2.29) happens then
8: Download ∆V−j,t,∆b−j,t (server → client j)
9: Update client j: Vj,t += ∆V−j,t, bj,t += ∆b−j,t

10: Server sets ∆V−j,t = 0,∆b−j,t = 0

Lemma 2.3.1. Denote the total number of observations that have been used to update {Vi,t, bi,t} as τi. With Assumption
6, the ‘upload’ and ‘download’ events defined in Eq (2.28) and Eq (2.29), when τit ≥ τmin := ⌈ 64

3λc
log( 2NTdδ )⌉, with

probability at least 1− δ, Γt−1 ≤ 8γD
λc

[1 + (N − 1)(γU − 1)],∀t.

Proof of Lemma 2.3.1 is given in Section 2.3.6. The main idea is to use det(Vg,t−1) as an intermediate between
det(Vit,t−1) and det(Vt−1), which are separately controlled by the ‘download’ and ‘upload’ events. When setting
γD = γU = 1, Γt−1 = 1, ∀t ∈ [T ], which means global synchronization happens at each time step, it recovers the
regret incurred in the centralized setting.

Synchronous vs. asynchronous communication As shown in Figure 2.10(a), in the synchronous protocol (Appendix
G in [28]), when a synchronization round is triggered by a client it, the server asks all the clients to upload their
local updates (illustrated as solid lines), aggregates them, and then sends the aggregated update back (illustrated as
dashed lines). This ‘two-way’ communication is vulnerable to delays or unavailability of clients, which are common
in a distributed setting. In comparison, our asynchronous communication, as shown in Figure 2.10(b), is more robust
because the server only concerns the clients whose ‘download’ condition has been met, which does not need other
clients’ acknowledgement. In addition, when the clients have distinct availability of new observations, which is usually
the case for most applications, synchronizing all N clients leads to inefficient communication as some clients may have
very few new observations since last synchronization. We will show later that this unfortunately leads to an increased
rate in N in the upper bound of CT , compared with our asynchronous communication.

2.3.3 Async-LinUCB algorithm
Based on the asynchronous event-triggered communication, we design the Asynchronous LinUCB Algorithm (Async-
LinUCB) for homogeneous clients. Detailed steps are explained in Algorithm 12.

Arm selection To balance between exploration and exploitation during interactions with the environment, at each
time step t = 1, . . . , T , client it selects an arm xt ∈ At using the the UCB strategy based on its local copy of sufficient
statistics {Vit,t−1, bit,t−1}. Specifically, client it pulls arm xt that maximizes the following UCB score (line 8),

xt = argmax
x∈At

x⊤θ̂it,t−1(λ) + CBit,t−1(x) (2.30)

where θ̂it,t−1(λ) = Vit,t−1(λ)
−1bit,t−1 is the ridge regression estimator with regularization parameter λ; Vit,t−1(λ) =

Vit,t−1 + λI; and the confidence bound of reward estimation for arm x is CBit,t−1(x) = αit,t−1||x||Vit,t−1(λ)−1 ,

where αit,t−1 = σ

√
log

detVit,t−1(λ)

detλI + 2 log 1/δ +
√
λ. After client it observes reward yt and updates locally (line

9), it proceeds with the asynchronous event-triggered communication (line 10), and sends updates accordingly.
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Algorithm 12 Async-LinUCB
1: Input: thresholds γU , γD ≥ 1, σ, λ > 0, δ ∈ (0, 1)
2: Initialize server: Vg,0 = 0d,d, bg,0 = 0d
3: for t = 1, 2, ..., T do
4: Observe arm set At for client it ∈ [N ]
5: if client it is new then
6: Initialize client it: Vit,t−1 = 0d,d, bit,t−1 = 0d, ∆Vit,t−1 = 0d,d, ∆bit,t−1 = 0d
7: Initialize server’s download buffer for client it: ∆V−it,t−1 = Vg,t−1, ∆b−it,t−1 = bg,t−1

8: Pull arm xt ∈ At by Eq (2.30) and observe yt
9: Update client it: Vit,t += xtx

T
t , bit,t += xtyt, ∆Vit,t += xtx

T
t , ∆bit,t+ = xtyt

10: Event-triggered Communications (Algorithm 11)

2.3.4 Regret and communication cost analysis
The upper bounds of cumulative regret RT and communication cost CT incurred by Async-LinUCB are given in
Theorem 2.3.2 (complete proof is provided in Section 2.3.6).

Theorem 2.3.2 (Regret and Communication). With Assumption 6, and the communication thresholds γU , γD, then the
accumulative regret 3

RT = Õ

(
d
√
T log

T

δ
min(

√
N,

√
γD[1 + (N − 1)(γU − 1)])

)
with probability at least 1− δ, and the communication cost

CT = O
(
d3N log T/logmin (γU , γD)

)
.

The thresholds γU , γD can be flexibly adjusted to trade-off between RT and CT , e.g., interpolate between the two
extreme cases: clients never communicate (RT = O(N1/2d

√
T log T )); and clients are synchronized in every time

step (RT = O(d
√
T log T )). In practice, depending on whether the application at hand is performance-critical or

communication-critical, one can first specify the scaling factor for the regret bound or the communication bound and
solve for valid values of γU , γD. Details about threshold selection and the corresponding theoretical results are provided
in Section 2.3.6. For simplicity, we fix γU = γD = γ in the following discussions, but one can choose different
values to have a finer control especially for applications where the cost of upload and download communication differs.
Based on Theorem 2.3.2, to attain RT = Õ(N1/4d

√
T log T ), Async-LinUCB needs CT = O(N3/2d3 log T ) (by

setting γ = exp(N− 1
2 )). To attain the same RT , the corresponding CT of Sync-LinUCB 4 is smaller than ours by

a factor of O(N1/4) only under uniform client distribution (P (it = i) = 1
N ,∀i, t), while under non-uniform client

distribution, which is almost always the case in practice, it is higher than ours by a factor of O(N1/4). The description
and theoretical analysis of Sync-LinUCB under uniform and non-uniform client distribution are given in Section 2.3.6.

2.3.5 Experiment setup & results
We performed extensive empirical evaluations of Async-LinUCB on synthetic datasets (we set γU = γD = γ in all
experiments), and included Sync-LinUCB [28] as baseline.

We first conducted simulation experiment in to validate our theoretical comparison between Async-LinUCB and
Sync-LinUCB (see Section 2.3.4), i.e., how well the algorithms balance regret RT and communication cost CT under
uniform and non-uniform client distributions.

Synthetic dataset We simulated the federated linear bandit problem setting in Section 2.3.2, with T = 30000, N =
1000, and At (K = 25) uniformly sampled from a ℓ2 ball. To compare how the algorithms balance RT and CT under
uniform (P (it = i) = 1

N ,∀i, t) and non-uniform client distributions (P (it) is an arbitrary point on probability simplex),
we fixed d = 25, and ran Async-LinUCB and Sync-LinUCB with a large range of threshold values (logarithmically

3Õ(·) omits the logarithmic regret term incurred during the initial τmin time steps on each client
4Sync-LinUCB refers to DisLinUCB algorithm in Appendix G of [28] adapted to our setting.
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(a) Homogeneous (uniform client distribution) (b) Homogeneous (non-uniform client distribution)

Figure 2.11: Experiment results on synthetic dataset.

spaced between 10−2 and 103). Experiment results (averaged over 10 runs) on synthetic dataset are shown in Figure
2.11(a)-2.11(b). Note that in the scatter plots, each dot denotes the cumulative communication cost (x-axis) and regret
(y-axis) that an algorithm (Async-LinUCB or Sync-LinUCB) with certain threshold value (labeled next to the dot) has
obtained at iteration T .

Discussions From both Figure 2.11(a) and Figure 2.11(b), we can see that as the threshold value increases, CT
decreases and RT increases, and that the use of event-triggered communication significantly reduces CT while attaining
low RT , compared with synchronizing all the clients at each time step (Async-LinUCB with γ = 1). In Figure 2.11(a),
Sync-LinUCB has lower CT than Async-LinUCB under the same RT , and in Figure 2.11(b), Async-LinUCB has
lower CT than Sync-LinUCB under the same RT , which conform with our theoretical results that Sync-LinUCB has
inefficient communication under non-uniform client distribution.

2.3.6 Full proof of Async-LinUCB algorithm
Proof of Lemma 2.3.1 in Section 2.3.2

To show that Γt−1 ≤ 8γD
λc

[1 + (N − 1)(γU − 1)], we first need the following lemma.

Lemma 2.3.3. Denote the number of observations that have been used to update {Vi,t, bi,t} as τi, i.e., Vi,t =
λI +

∑τi
s=1 xsx

⊤
s . Then under Assumption 6, with probability at least 1− δ, we have:

λmin(Vi,t) ≥ λ+
λcτi
8

∀τi ∈ {τmin, τmin + 1, . . . , T}, i ∈ [N ], where τmin = ⌈ 64
3λc

log( 2NTdδ )⌉.

Proof of Lemma 2.3.3. This proof is based on standard matrix martingale arguments, and is included here for the sake
of completeness.

Consider the random variable (z⊤xs,a)
2, where z ∈ Rd is an arbitrary vector such that ∥z∥2 ≤ 1 and xs,a ∈

As = {xs,1,xs,2, . . . ,xs,K}. Then by Assumption 6, (z⊤xs,a)2 is sub-Gaussian with variance parameter v2. Now
we follow the same argument as Claim 1 of [27] to derive a lower bound for λmin(Σs). First we construct Za =
(z⊤xs,a)

2 − Es−1[(z
⊤xs,a)

2], for a ∈ [K]. Due to (conditional) sub-Gaussianity, we have

Ps−1(Za < −h) ≤ Ps−1(|Za| > h) ≤ 2e−
h2

2v2
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Then by union bound, and the fact that Es−1[(z
⊤xs,a)

2] = z⊤Σcz ≥ λc, we have:

Ps−1

(
min
a∈[K]

(z⊤xs,a) ≥ λc − h
)
≥ (1− 2e−

h2

2v2 )K

Therefore,
Es−1((z

⊤xs)
2) ≥ Es−1( min

a∈[K]
(z⊤xs,a)

2) ≥ (λc − h)(1− 2e−
h2

2v2 )K

Then by seting h =
√
2v2 log (4K), we have (1− 2e−

h2

2v2 )K = (1− 1
2K )K ≥ 1

2 because K ≥ 1, and (λc − h) ≥ λc

2

because of the assumption on v2. Now we have z⊤Σsz = Es−1((z
⊤xs)

2) ≥ 1
4λc,∀z, so λmin(Σs) ≥ 1

4λc.
Then we are ready to lower bound λmin(Vi,t) as shown below. Specifically, consider the sequence Yτi :=∑τi
s=1[xsx

⊤
s − Σs], for τi = 1, 2, . . . . And {Yτi}τi=1,2,... is a matrix martingale, because E[∥Yτi∥op] < +∞ and

Eτi−1[Yτi ] =
∑τi−1
s=1 [xsxs−Σs]+Eτi−1[xτix

⊤
τi −Στi ] = Yτi−1. Then with the Matrix Freedman inequality (Lemma

A.16), we have

P (∥
τi∑
s=1

(xsx
⊤
s − Σs)∥op ≥ u) ≤ 2d exp(

−u2/2
w2 + 2u/3

) (2.31)

where ∥·∥op denotes the operator norm. This can be rewritten as P (−∥
∑τi
s=1 Σs −

∑τi
s=1 xsx

⊤
s ∥op > −u) ≥

1− 2d exp( −u2/2
w2+2u/3 ). Then, we have

1− 2d exp(
−u2/2

w2 + 2u/3
) ≤ P (−∥

τi∑
s=1

Σs −
τi∑
s=1

xsx
⊤
s ∥op > −u) ≤ P (−λmin(

τi∑
s=1

Σs −
τi∑
s=1

xsx
⊤
s ) > −u)

≤ P (−λmin(

τi∑
s=1

Σs) + λmin(

τi∑
s=1

xsx
⊤
s ) > −u) ≤ P (−

τi∑
s=1

λmin(Σs) + λmin(

τi∑
s=1

xsx
⊤
s ) > −u)

≤ P (λmin(

τi∑
s=1

xsx
⊤
s ) >

τiλc
4

− u)

where the third and forth inequalities are due to Weyl’s inequality, i.e., λmin(A + B) ≥ λmin(A) + λmin(B) for
symmetric matrices A and B, and the fifth inequality is due to λmin(Σs) ≥ 1

4λc.
By setting u = λcτi

8 and w2 = τi
12 , we have P (λmin(

∑τi
s=1 xsx

⊤
s ) >

λcτi
8 ) ≥ 1 − 2d exp(−λcτi

64/3 ). Then when

τi ≥ 64
3λc

log( 2Tdδ ) := τmin, we have P (λmin(
∑τi
s=1 xsx

⊤
s ) >

λcτi
8 ) ≥ 1 − δ

T . By taking a union bound over all
τi ∈ {τmin, τmin+1, . . . , T}, we have P (λmin(Vi,t) > λ+ λcτi

8 ) ≥ 1−δ. Then we take union bound over all i ∈ [N ],
which finishes the proof of Lemma 2.3.3.

Proof of Lemma 2.3.1. Under Lemma A.1, we have

Γt−1 =
x⊤
t V

−1
it,t−1xt

x⊤
t V

−1
t−1xt

≤ λmax(Vit,t−1)

λmin(Vit,t−1)

x⊤
t Vt−1xt

x⊤
t Vit,t−1xt

Then when τit ≥ τmin, with Lemma 2.3.3 and the fact that λmax(Vit,t−1) ≤ λ+ τit , we have

Γt−1 ≤ λ+ τit
λ+ τitλc/8

· x⊤
t Vt−1xt

x⊤
t Vit,t−1xt

≤ 8

λc
· x⊤

t Vt−1xt
x⊤
t Vit,t−1xt

where the second inequality is because, for bounded context vector (∥xt,a∥2 ≤ 1), λc ≤ 1
d < 8, so λc

8 < 1. In this case,

rt ≤ 2αit,t−1

√
x⊤
t V

−1
t−1xt

√
8
λc

x⊤
t Vt−1xt

x⊤
t Vit,t−1xt

. Note that when τit < τmin, we can simply bound rt by the constant 2LS,

and in total this added regret is O( 64N3λc
log( 2NTdδ )), which is negligible compared with the O(

√
T ) term in the upper

bound of RT .
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Now we need to show that
x⊤
t Vt−1xt

x⊤
t Vit,t−1xt

≤ γD[1 + (N − 1)(γU − 1)]

In order to do this, we need the following two facts:

• Vit,t−1 −∆Vit,t−1 = Vg,t−1 −∆V−it,t−1, because they both equal to the copy of sufficient statistics in the most
recent communication between the client it and the server.

• Due to Lemma A.3, and our design of the ‘upload’ and ‘download’ triggering events in Eq (2.28) and Eq (2.29),
at the beginning of time t ∈ [T ], the inequalities

sup
x

x⊤(Vj,t−1)x

x⊤(Vj,t−1 −∆Vj,t−1)x
≤ det(Vj,t−1)

det(Vj,t−1 −∆Vj,t−1)
≤ γU (2.32)

and
sup
x

x⊤(Vg,t−1)x

x⊤(Vg,t−1 −∆V−j,t−1)x
≤ det(Vg,t−1)

det(Vg,t−1 −∆V−j,t−1)
≤ γD (2.33)

hold ∀j ∈ [N ],∀t ∈ [T ].

Then by decomposing x⊤
t Vt−1xt

x⊤
t Vit,t−1xt

, we have:

x⊤
t (Vt−1)xt

x⊤
t (Vit,t−1)xt

=
x⊤
t (Vg,t−1 +

∑N
j=1 ∆Vj,t−1)xt

x⊤t (Vit,t−1 −∆Vit,t−1 +∆Vit,t−1)xt

≤
x⊤
t (Vg,t−1 +

∑
j ̸=1 ∆Vj,t−1)xt

x⊤
t (Vit,t−1 −∆Vit,t−1)xt

=
x⊤
t (Vg,t−1)xt +

∑
j ̸=1 x

⊤
t (∆Vj,t−1)xt

x⊤
t (Vg,t−1 −∆V−it,t−1)xt

And the term
∑
j ̸=1 x

⊤
t (∆Vj,t−1)xt can be further upper bounded by:

∑
j ̸=1

x⊤
t (∆Vj,t−1)xt = x⊤

t Vg,t−1xt ·
∑
j ̸=it

x⊤
t (∆Vj,t−1)xt
x⊤
t Vg,t−1xt

≤ x⊤
t Vg,t−1xt ·

∑
j ̸=it

x⊤
t (∆Vj,t−1)xt

x⊤
t (Vg,t−1 −∆V−j,t−1)xt

= x⊤
t Vg,t−1xt ·

∑
j ̸=it

x⊤
t (∆Vj,t−1)xt

x⊤
t (Vj,t−1 −∆Vj,t−1)xt

= x⊤
t Vg,t−1xt ·

∑
j ̸=it

[ x⊤
t (Vj,t−1)xt

x⊤
t (Vj,t−1 −∆Vj,t−1)xt

− 1
]
≤ x⊤

t Vg,t−1xt · (N − 1)(γU − 1)

where the last inequality is due to Eq (2.32). Then by substituting this back, and using Eq (2.33), we have

x⊤
t (Vt−1)xt

x⊤
t (Vit,t−1)xt

≤ x⊤
t (Vg,t−1)xt[1 + (N − 1)(γU − 1)]

x⊤
t (Vg,t−1 −∆V−it,t−1)xt

≤ γD[1 + (N − 1)(γU − 1)]

which finishes the proof of Lemma 2.3.1.

Discussion Compared with the synchronous method, our asynchronous method needs an additional context regularity
assumption in the proof of Lemma 2.3.1. This is because we allow each client to decide on its own whether to upload,
based on how much its local data, i.e., Vj,t−1, has deviated from its last communicated data with the server, i.e.,
Vj,t−1 −∆Vj,t−1, and they are unaware of other clients’ new data. More specifically, as we mentioned in Section 2.3.2,
to guarantee each individual client’s sufficient statistics {Vi,t−1, bi,t−1} do not deviate too much from {Vt−1, bt−1},
we need to first ensue {Vg,t−1, bg,t−1} do not deviate too much from {Vt−1, bt−1} via asynchronous upload, and then
{Vi,t−1, bi,t−1} do not deviate too much from {Vg,t−1, bg,t−1} via asynchronous download. To better understand this,
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we can look at the following upper bound of Γt−1:

Γt−1 =
x⊤
t V

−1
it,t−1xt

x⊤
t V

−1
t−1xt

≤
det(V −1

it,t−1)

det(V −1
t−1)

=
det(Vt−1)

det(Vit,t−1)
=

det(Vg,t−1 +
∑N
j=1 ∆Vj,t−1)

det(Vit,t−1 −∆Vit,t−1 +∆Vit,t−1)

=
det(Vg,t−1 +∆Vit,t−1)

det(Vit,t−1 −∆Vit,t−1 +∆Vit,t−1)
·
det(Vg,t−1 +

∑N
j=1 ∆Vj,t−1)

det(Vg,t−1 +∆Vit,t−1)

≤ det(Vg,t−1)

det(Vit,t−1 −∆Vit,t−1)
·
det(Vg,t−1 +

∑N
j=1 ∆Vj,t−1)

det(Vg,t−1)

where the first inequality is due to Lemma A.3, and the second inequality is due to Lemma A.4. Note that according
to our ‘download’ event, the first term det(Vg,t−1)

det(Vit,t−1−∆Vit,t−1)
≤ γD. The difficulty mainly lies in the second term

det(Vg,t−1+
∑N

j=1 ∆Vj,t−1)

det(Vg,t−1)
, which essentially measures the difference in the volume of confidence ellipsoid between the

data under the ideal centralized setting and the data actually available to the server. In the synchronous method, the ratio
det(Vg,t−1+

∑N
j=1 ∆Vj,t−1)

det(Vg,t−1)
is simply pushed to 1 at every global synchronization step, since N clients will simultaneously

upload their local updates {∆Vj,t−1}j∈[N ] to the server. However, in our case, this ratio is jointly controlled by the
asynchronous uploads from each individual client who decides on its own whether to upload, based on the locally
available data. Ideally, to make sure the upload is effective in terms of regret reduction, each client j ∈ [N ] should

directly compute the value of
det(Vg,t−1+

∑N
j=1 ∆Vj,t−1)

det(Vg,t−1)
or its upper bound, and decide whether this ratio has grown

too large, i.e., the server’s data has become out-of-date, such that sending local updates to the server is necessary.
Unfortunately, with data being decentralized, this information is unavailable to any client. Instead, each client j only
knows the upper bound of det(Vg,t−1+∆Vj,t−1)

det(Vg,t−1)
:

det(Vg,t−1 +∆Vj,t−1)

det(Vg,t−1)
≤ det(Vg,t−1 −∆V−j,t−1 +∆Vj,t−1)

det(Vg,t−1 −∆V−j,t−1)
=

det(Vj,t−1)

det(Vj,t−1 −∆Vj,t−1)
≤ γU .

The information gap due to each client’s unawareness about what other clients have in their upload buffers makes it

difficult to obtain a non-trivial upper bound of
det(Vg,t−1+

∑N
j=1 ∆Vj,t−1)

det(Vg,t−1)
. In the worst case scenario where new data of

the clients are very different from each other, this leads to a trivial upper bound that is exponential in N , i.e., updating
Vg,t−1 with the new data ∆Vj,t−1 of each client j ∈ [N ] can scale up the determinant of Vg,t−1 by γU . Assumption 6
is a sufficient condition to circumvent this, but may not be a necessary condition. Finding a sufficient and necessary
condition to relax Assumption 1 will be an important future direction of this work.

Proof of Theorem 2.3.2 in Section 2.3.4

Regret analysis Based on the discussion in Section 2.3.2 that the instantaneous regret rt directly depends on Γt−1,
we can upper bound the accumulative regret of Async-LinUCB by

RT =

T∑
t=1

rt ≤
T∑
t=1

O

(√
d log

T

δ

)√
x⊤
t V

−1
t−1xt

√
Γt−1

≤ O

(√
d log

T

δ

)√√√√ T∑
t=1

x⊤V −1
t−1x

√√√√ T∑
t=1

Γt−1 ≤ O

(√
d log

T

δ

)√
log

det(VT−1)

det(λI)

√√√√ T∑
t=1

Γt−1
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where the second inequality is by the Cauchy–Schwarz inequality, and the third is based on Lemma 11 in [20]. Then
using the upper bound of Γt−1 given in Lemma 2.3.1, the accumulative regret

RT = O

(
d
√
T log (T/δ)min(

√
N,
√
γD[1 + (N − 1)(γU − 1)]) +

64N

3λc
log(

2NTd

δ
)

)
= Õ

(
d
√
T log (T/δ)min(

√
N,
√
γD[1 + (N − 1)(γU − 1)])

)
,

with probability at least 1− δ, where Õ(·) omits the logarithmic term.

Communication cost analysis As discussed in Section 2.3.2, clients collaborate by transferring updates of the
sufficient statistics, i.e., {∆V ∈ Rd×d,∆b ∈ Rd}. Therefore, each time of communication incurs a cost of (d2 + d),
i.e., size of the statistics. To analyze CT , we denote the sequence of time steps when either ‘upload’ or ‘download’ is
triggered up to time T as {t1, t2, . . . , tCT,i

}, where CT,i is the total number of communications between client i and
the server. Then the corresponding sequence of local covariance matrices is {λI, Vi,t1 , Vi,t2 , . . . , Vi,tCT,i

}. We can
decompose

log
detVi,tCT,i

detλI
= log

detVi,t1
detλI

+ log
detVi,t2
detVi,t1

+ . . . log
detVi,tCT,i

detVi,tCT,i−1

≤ log
detVT−1

detλI

Since the matrices in the sequence trigger either Eq (2.28) or Eq (2.29), each term in this summation is lower bounded
by logmin(γU , γD). When min(γU , γD) > 1, by the pigeonhole principle, CT,i ≤ log det(VT−1)−d log λ

logmin(γU ,γD) ; as a result,

the communication cost for N clients is CT = (d2 + d)
∑N
i=1 CT,i ≤ Nd2 log det(VT−1)−d log λ

logmin (γU ,γD) .

Synchronous communication method

The synchronous method DisLinUCB (Appendix G in [28]) imposes a stronger assumption about the appearance of
clients: i.e., they assume all N clients interact with the environment in a round-robin fashion (so Ni(T ) = T

N
5).

For the sake of completeness, we present the formal description of this algorithm adapted to our problem setting in
Algorithm 13 (which is referred to as Synchronous LinUCB algorithm, or Sync-LinUCB for short), and provide the
corresponding theoretical analysis about its regret RT and communication cost CT under both uniform and non-uniform
client distribution. In particular, in this setting we no longer assume uniform appearance of clients.

In our problem setting (Section 2.3.1), other than assuming each client has a nonzero probability to appear in each
time step, we do not impose any further assumption on the clients’ distribution or its frequency of interactions with the
environment. This is more general than the setting considered in [28], since the clients now may have distinct availability
of new observations. We will see below that this will cause additional communication cost for Sync-LinUCB, compared
with the case where all the clients interact with the environment in a round-robin fashion, i.e., all N clients have
equal number of observations. Intuitively, when one single client accounts for the majority of the interactions with the
environment and always triggers the global synchronization, all the other N − 1 clients are forced to upload their local
data despite the fact that they have very few new observations since the last synchronization. This directly leads to a
waste of communication. Below we give the analysis of RT and CT of sync-LinUCB considering both uniform and
non-uniform client distribution.

Regret analysis Most part of the proof for Theorem 4 in [28] extends to the problem setting considered in this work
(with slight modifications due to the difference in the meaning of T as mentioned in the footnote). Since now only one
client interacts with the environment in each time step, the accumulative regret for the ‘good epochs’ is REGgood =
O(d

√
T log(T )). Denote the first time step of a certain ‘bad epoch’ as ts and the last as te. The accumulative

regret for this ‘bad epoch’ can be upper bounded by: O(
√
d log T )

∑N
i=1

∑
τ∈Ni(te)\Ni(ts)

min(1, ||xτ ||V −1
i,τ−1

) ≤

O(
√
d log T )

∑N
i=1

√
∆ti,te log

det(Vi,te−1+λI)
det(Vi,te−1−∆Vi,te−1+λI)

≤ O(
√
d log TN

√
D). And using the same argument as in

the original proof, there can be at most R = O(d log T ) ‘bad epochs’, so that accumulative regret for the ‘bad epochs’
5It is worth noting the difference in the meaning of T between our work and [28]. In our work, T is the total number of interactions for all N

clients, while for [28], T is the total number of interactions for each client.
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Algorithm 13 Synchronous LinUCB Algorithm
Input: threshold D, σ, λ > 0, δ ∈ (0, 1)
Initialize server: Vg,0 = 0d×d ∈ Rd×d, bg,0 = 0d ∈ Rd
for t = 1, 2, ..., T do

4: Observe arm set At for client it ∈ [N ]
if client it is new then

Initialize client it: Vit,t−1 = 0d×d, bit,t−1 = 0d, ∆Vit,t−1 = 0d×d, ∆bit,t−1 = 0d, ∆tit,t−1 = 0
Select arm xt ∈ At by Eq (2.8) and observe reward yt

8: Update client it: Vit,t += xtx
T
t , bit,t += xtyt, ∆Vit,t += xtx

T
t , ∆bit,t+ = xtyt, ∆tit,t += 1

# Check whether global synchronization is triggered
if ∆tit,t log

det(Vit,t+λI)

det(Vit,t−∆Vit,t+λI)
> D then

for i = 1, . . . , N do
Upload ∆Vi,t,∆bi,t (i→ server)

12: Client i reset ∆Vi,t = 0, ∆bi,t = 0, ∆ti,t = 0
Update server: Vg,t += ∆Vi,t, bg,t += ∆bi,t

for i = 1, . . . , N do
Download Vg,t, bg,t (server → i)

16: Update client i: Vi,t = Vg,t, bj,t = bg,t

is upper bounded by REGbad = O(d1.5 log1.5 (T )N
√
D). Therefore, with the threshold D, the accumulative regret is

RT = O(d
√
T log(T )) +O(d1.5 log1.5 (T )N

√
D).

For the analysis of communication cost CT , we consider the settings of uniform and non-uniform client distributions
separately in the following two paragraphs.

Communication cost of Sync-LinUCB under uniform client distribution Denote the length of an epoch as α, so
that there can be at most ⌈Tα ⌉ epochs with length longer than α. For an epoch with less than α time steps, similarly,
we denote the first time step of this epoch as ts and the last as te, i.e., te − ts < α. Then since the users appear in a
uniform manner, the number of interactions for any user i ∈ [N ] satisfies ∆ti,te <

α
N . Therefore, log det(Vte )

det(Vts )
> DN

α .
Following the same argument as in the original proof, the number of epochs with less than α time steps is at most
⌈ RαDN ⌉. Then CT = Nd2 · (⌈Tα ⌉ + ⌈ RαDN ⌉), because at the end of each epoch, the synchronization round incurs 2N

communication cost. We minimize CT by choosing α =
√

DTN
R , so that CT = O(Nd2 ·

√
TR
DN ). Note that this result

is the same as [28] (we can see this by simply substituting T in our result with TN ), because T in our work denotes the
total number of iterations for all N clients.

Communication cost of Sync-LinUCB under non-uniform client distribution However, for most applications
in reality, the client distribution can hardly be uniform, i.e., the clients have distinct availability of new observations.
Then the global synchronization of Sync-LinUCB leads to a waste of communication in this more common situation.
Specifically, when considering epochs with less than α time steps, the number of interactions for any client i ∈ [N ]
can be equal to te − ts in the worst case, i.e., all the interactions with the environment in this epoch are done by
this single client. In this case, ∆ti,te < α, which is different from the case of uniform client distribution. Therefore,
log

det(Vte )
det(Vts )

> D
α . The number of epochs with less than α time steps is at most ⌈RαD ⌉. Then CT = Nd2 · (⌈Tα ⌉+ ⌈RαD ⌉).

Similarly, we choose α =
√

DT
R to minimize CT , so that CT = O(Nd2 ·

√
TR
D ). We can see that this is larger than

the communication cost under a uniform client distribution by a factor of
√
N .

Comparison between Async-LinUCB and Sync-LinUCB

In this section, we provide more details about the theoretical results of Async-LinUCB, and add the corresponding
results of Sync-LinUCB for comparison (see Table 2.3). Depending on the application, the thresholds γU and γD of
Async-LinUCB can be flexibly adjusted to get various trade-off between RT and CT . For all the discussions below,
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we constrain γU = γD = γ for simplicity. However, when necessary, different values can be chosen for γU and γD
for different clients. This gives our algorithm much more flexibility in practice, i.e., allows for a fine-grained control
of every single edge in the communication network, compared with Sync-LinUCB. For example, for users who are
less willing to participate in frequent uploads and downloads, a higher threshold can be chosen for their corresponding
clients to reduce communication, and vice versa.

Table 2.3: Upper bounds for RT and CT under different thresholds.

Algorithm Threshold RT CT (uniform) CT (non-uniform)

Async-LinUCB

γ = 1 d
√
T log T Nd2T Nd2T

γ = exp(N−1) d
√
T log T N2d3 log T N2d3 log T

γ = exp(N− 1
2 ) N

1
4 d

√
T log T N

3
2 d3 log T N

3
2 d3 log T

γ = +∞ N
1
2 d

√
T log T 0 0

Sync-LinUCB D = T/(N2d log T ) d
√
T log T N

3
2 d3 log T N2d3 log T

D = T/(N
3
2 d log T ) N

1
4 d

√
T log T N

5
4 d3 log T N

7
4 d3 log T

When setting γ = +∞, all communications in the learning system are blocked; and in this case, CT = 0 and
RT = Õ(N

1
2 d

√
T log T ), which recovers the regret of running an instance of LinUCB for each client independently.

When setting γ = 1, the upload and download events are always triggered, i.e., synchronize all N clients in each time
step. And in this case CT = NTd2 and RT = Õ(d

√
T log T ), which recovers the regret in the centralized setting.

What we prefer is to strike a balance between these two extreme cases, i.e., reduce the communication cost without
sacrificing too much on regret. Specifically, we should note that T is the dominating variable for almost all applications
instead of N or d. Since even without communication RT = Õ(N

1
2 d

√
T log T ) already matches the minimax lower

bound Ω(d
√
T ) in T (up to a logarithmic factor) and d, we are mostly interested in the case where CT ’s rate in T is

improved from O(T ) to O(log T ).
For example, we can set Async-LinUCB’s upper bound of the communication costCT ≤ Nd3 log T

log γ to beN
3
2 d log T ,

and thus γ = exp(N− 1
2 ). Then by substituting γ into the upper bound of RT , we have

RT = Õ
(√

(N − 1)γ2 + (2−N)γd
√
T log T

)
= Õ

(√
(N − 1)e2N

− 1
2 + (2−N)eN

− 1
2 d

√
T log T

)

Since limN→∞

√
(N−1)e2N

− 1
2 +(2−N)eN

− 1
2

N
1
4

= 1, we know
√
(N − 1)e2N

− 1
2 + (2−N)eN

− 1
2 = O(N

1
4 ). Therefore,

RT = Õ(N
1
4 d

√
T log T ). And similarly, by setting γ = exp(N−1), Async-LinUCB has CT = N2d3 log T and

RT = Õ(d
√
T log T ). For both choices of γ, at the cost of an increased rate in N , we have improved CT ’s rate in the

dominating variable T from O(T ) to O(log T ).
For comparison, we choose the threshold D for Sync-LinUCB such that its upper bound of RT matches that of

Async-LinUCB; and we include the corresponding results in Table 2.3 as well. We can see that Async-LinUCB’s
upper bound of CT is not influenced by whether the client distribution is uniform or not, while Sync-LinUCB is, as we
have shown in Section 2.3.6. Specifically, under the same regret RT = O(N

1
4 d

√
T log T ), in terms of CT ’s rate in N ,

Sync-LinUCB is slightly better than Async-LinUCB (by a factor of O(N
1
4 )) under the ideal case of uniform client

distribution, and slightly worse than Async-LinUCB (by a factor of O(N
1
4 )) under non-uniform client distribution.

2.3.7 Asynchronous communication for kernelized contextual bandit
In [100], we proposed the first algorithm for distributed kernel bandit that has sub-linear communication cost. We
achieved this via a Nyström embedding function [101] shared among all the clients, such that the clients only need to
transfer the embedded statistics for joint kernelized estimation. Nevertheless, the update of the Nyström embedding
function, as well as the communication of the embedded statistics, relies on a synchronization round that requires
participation of all the clients. To improve algorithm’s robustness against stragglers (i.e., slower clients) in the system,
we investigate the asynchronous communication for kernelized contextual bandit, such that the server can readily
perform model update when communication from a client is received, with no need to wait for others.
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The main bottleneck in addressing this limitation of [100] lies in computing Nyström approximation under
asynchronous communication. Specifically, during synchronization step, Approx-DiskernelUCB algorithm in [100] first
samples a small set of representative data points (i.e., the dictionary) from all clients, and then lets each client project
their local data to the subspace spanned by this dictionary and share statistics about the projected data with others.
However, new challenges arise in both algorithmic design and theoretical analysis when extending their solution to
asynchronous communication, since a ‘fresh’ re-sample from the data of all clients is no longer possible, and each client
has a different copy of the dictionary due to the asynchronous communication with the server, such that their local data
will be projected to different subspaces, and thus causes difficulty in joint kernel estimation. In this work, we address
these challenges and propose the first asynchronous algorithm for federated kernelized contextual bandits. Compared
with prior works in federated bandits, our algorithm simultaneously enjoys the modeling capacity of non-parametric
models and the improved robustness against delays and unavailability of clients, making it suitable for a wider range of
applications.

Kernelized reward function Following [26, 100], we assume the unknown reward function f lies in the RKHS,
denoted as H, such that the reward can be equivalently written as yt = θ⊤⋆ ϕ(xt) + ηt, where θ⋆ ∈ H is an unknown
parameter vector and ϕ : Rd → H is a known feature map associated with H. We assume that ηt is zero-mean
R-sub-Gaussian conditioned on σ

(
(is,xs, ηs)s∈[t−1], it,xt

)
, i.e., the σ-algebra generated by previous clients, their

pulled arms, and the corresponding noises. In addition, there exists a positive definite kernel k(·, ·) associated with H,
and we assume ∀x ∈ A := ∪t∈[T ]At that, ∥x∥k ≤ L and ∥f∥k ≤ S for some L, S > 0.

Throughout this section, we use D ⊆ [T ] to denote a set of time steps and |D| as its size. The design matrix and
reward vector constructed using data collected at these time steps, i.e., {xs, ys}s∈D, are denoted as XD = [xs]

⊤
s∈D ∈

R|D|×d and yD = [ys]
⊤
s∈D ∈ R|D|. Applying feature map ϕ(·) to each row of XD, we have ΦD ∈ R|D|×p, where p

denotes the dimension of H and is possibly infinite.

Kernel Ridge regression Since the reward function f is linear in H, one can construct the Ridge regression estimator
for θ⋆ as,

θ̂ = (Φ⊤
DΦD + λI)−1Φ⊤

DyD

where λ > 0 is the regularization parameter. This gives us the following estimated mean reward and standard deviation
in the primal form for any arm x ∈ A:

µ̂(x) = ϕ(x)⊤
(
Φ⊤

DΦD + λI
)−1

(Φ⊤
DyD)

σ̂(x) =

√
ϕ(x)⊤

(
Φ⊤

DΦD + λI
)−1

ϕ(x).

Note that directly working with the possibly infinite-dimension θ̂ ∈ Rp is impractical. Instead, using the kernel trick
[26, 100], we can obtain an equivalent dual form that only involves entries of the kernel matrix:

µ̂(x) = KD(x)
⊤(KD,D + λI

)−1
yD

σ̂(x) = λ−1/2

√
k(x,x)−KD(x)⊤

(
KD,D + λI

)−1
KD(x)

(2.34)

where KD(x) = ΦDϕ(x) = [k(xs,x)]
⊤
s∈D ∈ R|D| and KD,D = Φ⊤

DΦD = [k(xs,xs′)]s,s′∈D ∈ R|D|×|D|.

Nyström approximation Though Eq (2.34) avoids directly working in H, it requires computing the inverse of KD,D,
which is expensive in terms of both computation cost [73], i.e., O(T 3) as |D| = O(T ), and communication cost
[100], i.e., O(T ) as {(xs, ys)}s∈D needs to be transferred across the clients. Therefore, Nyström method is used to
approximate Eq (2.34), so clients can share embedded statistics, which improves communication efficiency.

83



As [75, 100], we project the original dataset D6 to the subspace defined by a small representative subset S ⊆ D,
i.e., the dictionary, and the orthogonal projection matrix is defined as

PS = Φ⊤
S
(
ΦSΦ

⊤
S
)−1

ΦS = Φ⊤
SK

−1
S,SΦS ∈ Rp×p.

Taking eigen-decomposition of KS,S = UΛU⊤ ∈ R|S|×|S|, we can rewrite the orthogonal projection as PS =

Φ⊤
SUΛ−1/2Λ−1/2U⊤ΦS , and define the Nyström embedding function as

z(x;S) = P
1/2
S ϕ(x) = Λ−1/2U⊤ΦSϕ(x) = K

−1/2
S,S KS(x),

which maps the data point x from Rd to R|S|. Therefore, we can approximate the Ridge regression estimator on dataset
D as θ̃ =

(
PSΦ

⊤
DΦDPS + λI

)−1 (
PSΦ

⊤
DyD

)
, and Eq (2.34) as

µ̃(x) = z(x;S)⊤
(
Z⊤

D;SZD;S + λI
)−1

Z⊤
D;SyD

σ̃(x) = λ−1/2
√
k(x,x)− z(x;S)⊤Z⊤

D;SZD;S [Z⊤
D;SZD;S + λI]−1z(x|S)

(2.35)

where ZD;S ∈ R|D|×|S| is obtained by applying z(·;S) to each row of XD, i.e., ZD;S = ΦDP
1/2
S . Note that the

computation of µ̃(x) and σ̃(x) only requires the embedded statistics, i.e., matrix Z⊤
D;SZD;S ∈ R|S|×|S| and vector

Z⊤
D;SyD ∈ R|S|, which makes joint kernelized estimation among N clients much more efficient in communication

compared with Eq (2.34).

2.3.8 Async-KernelUCB algorithm
In this section, we propose and analyze the first asynchronous algorithm for distributed kernelized contextual bandit
problem that addresses the aforementioned challenges, and name the resulting algorithm Async-KernelUCB, with its
description given in Algorithm 14.

We denote the embedded statistics used in the computation of Eq (2.35) by Ã(D;S) := Z⊤
D;SZD;S and b̃(D;S) :=

Z⊤
D;SyD, to explicitly emphasize they are computed by projecting the data points from dataset D to the subspace

spanned by dictionary S. We denote the sequence of time steps corresponding to the interactions between client i
and the environment up to time t as Nt(i) = {1 ≤ s ≤ t : is = i} for t ∈ [T ]. Throughout this section, we reserve
k as the index for communication, and use tk ∈ [T ] to denote the time step when the k-th communication happens.
Moreover, as each client has a different copy of the embedding function and embedded statistics due to asynchronous
communication, we use k(i) to denote the index of client i’s latest communication with the server, up to the k-th one: if
client i triggers the k-th communication, then k(i) = k.

Arm selection At each round t ∈ [T ], client it ∈ [N ] selects arm xt from the candidate set At by maximizing the
following upper confidence bound (line 5)

xt = argmax
x∈At

µ̃k(it)(x) + ασ̃k(it)(x) (2.36)

where µ̃k(it)(x) and σ̃k(it)(x) are approximated mean and standard deviation of arm x’s reward, computed using statis-
tics Ã(Dk(it),Sk(it)) and b̃(Dk(it),Sk(it)) that client it received from the server during the k(it)-th communication.
Proper choice of α is given in Lemma 2.3.7.

Event-triggered asynchronous communication After the interaction at time step t, µ̃k(it)(·) and σ̃k(it)(·) of active
client it will only be updated if the following event is true (line 7):∑

s∈Nt(it)\Ntk(it)
(it)

σ̃2
k(it)

(xs) > D, (2.37)

6Throughout this work, we will often use the set of indices D (or S) to refer to the actual dataset {xs, ys}s∈D (or dictionary {xs, ys}s∈S ) for
simplicity.
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Algorithm 14 Asynchronous KernelUCB (Async-KernelUCB)
1: Input: α, q̄, communication threshold D > 0, regularization parameter λ > 0, δ ∈ (0, 1) and kernel function
k(·, ·).

2: Initialize approximated mean and variance µ̃0(x) = 0, σ̃0(x) = λ−1/2
√
k(x,x), dataset D0 = ∅, dictionary

S0 = ∅, index of communication k = 0, and N0(i) = ∅ for each client i ∈ [N ]
3: for t = 1, 2, ..., T do
4: Client it ∈ [N ] becomes active, and observes arm set At

5: [Client it] Choose arm xt ∈ At according to Eq (2.36), and observe reward yt
6: // Set Nt(it) = Nt−1(it) ∪ {t}, and Nt(i) = Nt−1(i) for i ̸= it
7: if

∑
s∈Nt(it)\Ntk(it)

(it)
σ̃2
k(it)

(xs) > D then
// Denote ∆Dk = Nt(it) \ Ntk(it)

(it), and set k = k + 1

8: [Server → Client it] Send {xs, ys}s∈Sk−1
, Ã(Dk−1;Sk−1), b̃(Dk−1;Sk−1) to client it

9: [Client it] Select ∆Sk ⊆ ∆Dk via RLS sampling with probability q̄σ̃2
k−1(·)

// Set Sk = Sk−1 ∪∆Sk
10: [Client it] Compute Ã(∆Dk;Sk), b̃(∆Dk;Sk)
11: [Client it → Server] Send {xs, ys}s∈∆Sk

, Ã(∆Dk;Sk) and b̃(∆Dk;Sk) to server
// Set Dk = Dk−1 ∪∆Dk

12: [Server] Compute Ã(Dk;Sk), b̃(Dk;Sk) according to Eq (2.38)
13: [Server → Client it] Send Ã(Dk;Sk), b̃(Dk;Sk) to client it
14: [Client it] Update µ̃k(·) and σ̃k(·) using Ã(Dk;Sk), b̃(Dk;Sk) according to Eq (2.35)

where D > 0 denotes the communication threshold. This measures whether sufficient amount of new information has
been collected by client it since its lastest (the k(it)-th) communication with the server. If true, communication between
client it and the server is triggered (line 8-14), where the update procedure described in the following paragraphs will
be performed. And this procedure is also illustrated in Figure 2.12.

Dictionary and embedded statistics update During the k-th communication, the server first sends its latest dictionary
Sk−1, as well as its latest embedded statistics Ã(Dk−1;Sk−1) and b̃(Dk−1;Sk−1), to client it (line 8), which is
illustrated as the blue lines in Figure 2.12. Then client it selects a subset ∆Sk from the data it has collected since its
lastest communication (line 9), i.e., ∆Dk, which will be used to incrementally update dictionary Sk−1. This is done
by sampling qk,s ∼ B(p̃k,s) for each data point with time index s ∈ ∆Dk, where p̃k,s := q̄σ̃2

k−1(xs). This can be
considered as a variant of Ridge leverage score (RLS) sampling [75, 100]. It is worth noting that the only purpose of
sending Ã(Dk−1;Sk−1) and b̃(Dk−1;Sk−1) is to enable RLS sampling with the latest σ̃2

k−1(·). Otherwise, client it,
whose lastest communication with the server can be long time ago, would include unnecessary data points into ∆Sk
due to its unawareness of server’s current status. We will demonstrate in the proof of Lemma 2.3.6 that our design here
is necessary to obtain a compact dictionary under asynchronous communication. With the dictionary updated, client it
computes the embeddings of its new local data, i.e., Ã(∆Dk;Sk) and b̃(∆Dk;Sk), and sends them, as well as ∆Sk, to
the server (the yellow lines in Figure 2.12).

As shown in Figure 2.12, the server stores: 1) the last received embedded statistics from each client i ∈ [N ], i.e.,
Ã(Ntk(i)

(i);Sk(i)) ∈ R|Sk(i)|×|Sk(i)| and b̃(Ntk(i)
(i);Sk(i)) ∈ R|Sk(i)|; 2) their corresponding dictionary Sk(i). As

mentioned earlier, due to asynchronous communication, the statistics from different clients are based on different
dictionaries, which means they have different dimensions and thus cannot be directly aggregated as in [100]. We
propose to transform the statistics from each client i ∈ [N ] using the latest dictionary Sk. This is based on the
fact that ZNtk(i)

(i);Sk
= ΦNtk(i)

(i)P
1/2
Sk

= ΦNtk(i)
(i)P

1/2
Sk(i)

P
−1/2
Sk(i)

P
1/2
Sk

= ZNtk(i)
(i);Sk(i)

Tk(i),k, where the linear

transformation Tk(i),k := P
−1/2
Sk(i)

P
1/2
Sk

= Λ
1/2
Sk(i)

U⊤
Sk(i)

ΦSk(i)
Φ⊤

Sk
USk

Λ
−1/2
Sk

serves the purpose. Hence, we have

Ã(Ntk(i)
(i);Sk) = T ⊤

k(i),kÃ(Ntk(i)
(i);Sk(i))Tk(i),k,

b̃(Ntk(i)
(i);Sk) = T ⊤

k(i),k b̃(Ntk(i)
(i);Sk(i)),

(2.38)
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Figure 2.12: Illustration of asynchronous update of dictionary and embedded statistics

which makes the statistics received from all clients have the same dimension |Sk|. Then we compute Ã(Dk;Sk) =∑N
i=1 Ã(Ntk(i)

(i);Sk) and b̃(Dk;Sk) =
∑N
i=1 b̃(Ntk(i)

(i);Sk) (line 12), and send them to client it to update its UCB
(line 13-14), which is illustrated as the green line in Figure 2.12.

2.3.9 Dictionary accuracy and size analysis
As mentioned earlier, the key to low regret and low communication cost, is to have a dictionary Sk that can accurately
approximate the dataset Dk, while having a compact size |Sk|. In this section, we show that this is possible with our
update procedure in Section 2.3.8. First, we need some additional notations. We denote the total number of times up to
time T that communication is triggered, i.e., the number of times Eq (2.37) is true, as B, where B ∈ [0, T ]. Following
[75, 100], the approximation quality is formally defined using ϵ-accuracy: if the event{

(1− ϵ)(Φ⊤
Dk

ΦDk
+ λI) ⪯ Φ⊤

Dk
S̄⊤
k S̄kΦDk

+ λI ⪯ (1 + ϵ)(Φ⊤
Dk

ΦDk
+ λI)

}
(2.39)

is true, then we say the dictionary Sk is ϵ-accurate w.r.t. dataset Dk, for some ϵ ∈ (0, 1), where S̄k ∈ R|Dk|×|Dk|

denotes a diagonal matrix, with s-th diagonal entry equal to qk,s/
√
p̃k,s, where qk,s = 1 if s ∈ Sk, and qk,s = 0,

otherwise. Based on this notion, we prove Lemma 2.3.4 below.

Lemma 2.3.4 (Dictionary Accuracy and Size). With q̄ = 4 ln(2
√
2T/δ)β(1 + ϵ/3)/ϵ2, where β := (1 + ϵ)/(1− ϵ),

and λ ≤ k(x,x),∀x ∈ A, we have with probability at least 1− δ that dictionary Sk is ϵ-accurate w.r.t. dataset Dk,
and its size |Sk| ≤ 12β(1 + βD)q̄γT , ∀k, where δ ∈ (0, 1).

This shows that our incremental update procedure under asynchronous communication still matches the results in
prior works that perform synchronous re-sampling over the whole dataset for dictionary update [100, 75]. We provide a
proof sketch for Lemma 2.3.4 below to highlight our technical novelty and provide the detailed proof in Section 2.3.12.

Proof Sketch of Lemma 2.3.4. Let’s define the unfavorable event Hk = Ak ∪ Ek, where Ak is the event that the
dictionary Sk is not ϵ-accurate w.r.t. Dk, and Ek is the event that the size of dictionary |Sk| > 12β(1 + βD)q̄γT .
Therefore, the probability of ∪Bk=0Hk can be decomposed as

P
(
∪Bk=0Hk

)
= P

(
∪Bk=0Ak

)
+ P

(
(∪Bk=0Ek) ∩ (∪Bk=0Ak)

C
)
.

Bounding the first term: In [73, 75, 100], the first term is further decomposed as P
(
∪Bk=0Ak

)
≤
∑B
k=1 P(Ak ∩

ACk−1), because dictionary Sk is constructed by a fresh re-sampling over Dk using the latest approximated variance
σ̃2
k−1(·), and thus they only need to guarantee σ̃2

k−1(·) is a good approximation to σ2
k−1(·). In our case, Sk is

incrementally updated in each communication, i.e., Sk = ∪kk′=1∆Sk′ where each ∆Sk′ is sampled using σ̃2
k′−1(·).
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The accuracy of Sk depends on the accuracy of every Sk′ , i.e., ∩k−1
k′=1A

C
k′ . Therefore, we decompose P

(
∪Bk=0Ak

)
=

1−P
(
∩Bk=0A

C
k

)
= 1−

∏B
k=1[1−P

(
Ak|∩k−1

k′=0A
C
k′

)
] ≤

∑B
k=1 P

(
Ak|∩k−1

k′=0A
C
k′

)
using Bayes theorem and Weierstrass

product inequality, and bound each conditional probability separately, which leads to Lemma 2.3.5.

Lemma 2.3.5 (Bounding
∑B
k=1 P

(
Ak|∩k−1

k′=0A
C
k′

)
). By setting q̄ = 4 ln(2

√
2T/δ)β(1+ϵ/3)/ϵ2, we have

∑B
k=0 P

(
Ak|∩k−1

k′

ACk′
)
≤ δ/2, for δ ∈ (0, 1).

Bounding the second term: The second term can be decomposed as P
(
(∪Bk=0Ek)∩ (∪Bk=0Ak)

C
)
≤
∑B
k=0 P

(
Ek ∩

(∩Bk=0A
C
k )
)
. Note that the size of dictionary |Sk| =

∑
s∈Dk

qk,s by the definition of qk,s, and its analysis relies on upper
bounding

∑
s∈Dk

p̃k,s [75]. Again, due to asynchronous communication, for data point s that was added during the k′-th
communication, i.e., s ∈ ∆Dk′ , we have qk,s = qk′,s, p̃k,s = p̃k′,s and thus

∑
s∈Dk

p̃k,s =
∑k
k′=1

∑
s∈∆Dk′ p̃k′,s.

Compared with [100, 75] that re-sample all s ∈ Dk using p̃k,s = q̄σ̃2
k−1(xs), we use a different approximated variance

function for each ∆Sk′ . Nevertheless, with our design in Section 2.3.8, i.e., p̃k′,s = q̄σ̃2
k′−1(xs), we show in Lemma

2.3.6 that we can still ensure |Sk| = O(γT ), as long as a proper threshold D is chosen to avoid any ∆Dk′ being too
large.

Lemma 2.3.6 (Bounding
∑B
k=0 P

(
Ek ∩ (∩Bk=0A

C
k )
)
). By setting q̄ = 4 ln(2

√
2T/δ)β(1 + ϵ/3)/ϵ2, and λ ≤

k(x,x),∀x ∈ A, we have
∑B
k=0 P

(
Ek ∩ (∩Bk=0A

C
k )
)
≤ δ/2, for δ ∈ (0, 1).

Putting everything together, we have P
(
∪Bk=0Hk

)
≤ δ, for δ ∈ (0, 1), which finishes the proof.

2.3.10 Regret and communication cost analysis
Lemma 2.3.4 guarantees a compact and accurate dictionary for Nyström approximation throughout the learning process.
Based on it, we establish the upper bounds for the cumulative regret and communication cost of Async-KernelUCB.
First, motivated by the confidence ellipsoid for asynchronous linear bandits [97], we construct the following confidence
ellipsoid for our approximated estimator for kernel bandit defined in Section 2.3.7 (proof is provided in Section 2.3.12).

Lemma 2.3.7 (Confidence ellipsoid for approximated estimator). Under the same condition as Lemma 2.3.4, with
probability at least 1− 2δ, for δ ∈ (0, 1), we have ∀k that

∥θ̃k − θ⋆∥Ṽk
≤ (1/

√
1− ϵ+ 1)

√
λS + 2R

(√
1 +NDβ +N

√
2Dβ

)√
ln(1/δ) + γT := α,

where Ṽk := PSk
Φ⊤

Dk
ΦDk

PSk
+ λI and γT := maxD⊂A:|D|=T

1
2 log det(KD,D/(Dβλ) + I) 7 is the maximum

information gain after T interactions [72, 100].

Then based on Lemma 2.3.7, we establish Theorem 2.3.8 below.

Theorem 2.3.8. Under the same condition as Lemma 2.3.4, we have

RT ≤ 4NγTLS + 4
√
2
[
(1/

√
1− ϵ+ 1)

√
λS + 2R

(√
1 +NDβ +N

√
2Dβ

)√
ln(1/δ) + γT

]
·
√
Tβ[1 +Nβ(L2/λ+D)]γT

with probability at least 1− 2δ, and

CT ≤ 2γT (N + 4β/D)
[
3(|SB |2 + |SB |) + d|SB |

]
.

where the dictionary size |SB | ≤ 12β(1 + βD)q̄γT due to Lemma 2.3.4. By setting D = 1/N2, we have RT =

O
(
NγTLS +

√
T (S

√
γT + γT )

)
, and CT = Õ(N2γ3T ).

7As discussed in [100], γT is problem-dependent, showing how fast kernel’s eigenvalues decay. For kernels with exponentially decaying
eigenvalues, i.e., λm = O(exp(−mβe )), for βe > 0, γT = O(log1+1/βe (T )), which includes Gaussian kernel that is widely used for GPs and
SVMs. For kernels with polynomially decaying eigenvalues, i.e., λm = O(m−βp ), for βp > 1, γT = O(T 1/βp log1−1/βp (T )).
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2.3.11 Experiment setup & results
To validate Async-KernelUCB’s effectiveness in reducing communication cost, we performed extensive empirical
evaluations on both synthetic and real-world datasets, and reported the results (over 10 runs) in Figure 2.13. The
baselines included in our comparisons are: 1) OneKernelUCB [26], it learns a shared kernel bandit model across all
clients’ aggregated data where data aggregation happens immediately after each new data point becomes available; 2)
NKernelUCB, it learns a separate kernel bandit model for each client with no communication; 3) FedGLBUCB [84], it
is a synchronous distributed GLB algorithm; 4) DisLinUCB [28], it is a synchronous distributed linear bandit algorithm;
5) FedLinUCB [97], it is an asynchronous distributed linear bandit algorithm; and 6) Approx-DisKernelUCB [100], it
is a synchronous distributed kernel bandit algorithm. For all the kernel bandit algorithms, we used the Gaussian kernel
k(x, y) = exp(−γ∥x− y∥2), where we did a grid search of γ ∈ {0.1, 1, 4}, and for FedGLBUCB, we used Sigmoid
function µ(z) = (1 + exp(−z))−1 as link function. For all algorithms, instead of using their theoretically derived
exploration coefficient α, we followed the convention [17, 94] to use grid search for α in {0.1, 1, 4}.

Synthetic dataset We simulated the distributed bandit setting in Section 2.3.7, with d = 20, T = 104, N = 102.
At each time step t ∈ [T ], client it ∈ [N ] selects an arm from candidate set At (with |At| = 20), which is
uniformly sampled from a ℓ2 unit ball. Then the reward is generated using one of the following reward functions:
1) f1(x) = cos(3x⊤θ⋆), and 2) f2(x) = (x⊤θ⋆)

3 − 3(x⊤θ⋆)
2 − (x⊤θ⋆) + 3, where the parameter θ⋆ is uniformly

sampled from a ℓ2 unit ball and fixed.

UCI datasets We also performed experiments using MagicTelescope and Mushroom from the UCI Machine Learning
Repository [89], which are converted to bandit problem following [25]. Specifically, we partitioned the dataset into 20
clusters using k-means, and used the centroid of each cluster as the context for the arms and used the averaged response
as mean reward (the response is binarized by setting one class as 1, and all the others as 0). Then we simulated the
distributed bandit setting in Section 2.3.7 with |At| = 20, T = 104 and N = 102.

MovieLens and Yelp dataset Yelp dataset is released by the Yelp dataset challenge, and consists of 4.7 million rating
entries for 157 thousand restaurants by 1.18 million users. MovieLens consists of 25 million ratings between 160
thousand users and 60 thousand movies [95]. Following the pre-processing steps in [96], we built the rating matrix
by choosing the top 2,000 users and top 10,000 restaurants/movies and used singular-value decomposition to extract
a 10-dimension feature vector for each user and restaurant/movie. We treated ratings greater than 2 as positive, and
simulated the distributed bandit setting in Section 2.3.7 with T = 104 and N = 102. The candidate set At (with
|At| = 20) is constructed by sampling an arm with positive reward and nineteen arms with negative reward from the
arm pool, and the concatenation of user and restaurant/movie feature vector is used as the context vector for the arm
(thus d = 20).

Discussions OneKernelUCB and NKernelUCB correspond to the two extreme cases where the clients either commu-
nicate in every time step to learn a shared model, or they learn their own models independently with no communication.
As shown in Figure 2.13, OneKernelUCB achieved the smallest cumulative regret in almost all experiments, but also
incurred the highest communication cost, i.e., O(TNd) due to sending each new data point to all clients in every
round, which demonstrates the necessity of communication efficient bandit algorithms. On the other hand, distributed
linear bandit algorithms, e.g., DisLinUCB and FedLinUCB, incurred very low communication cost as they directly
communicate via the d× d statistics, but fail to capture the complicated reward mappings in most of these datasets, e.g.,
in Figure 2.13(d), they even had much worse regret than NKernelUCB that requries no communication. Equipped with
logistic function, distributed GLB algorithm FedGLBUCB attained both low regret and low communication cost on the
two classification datasets, i.e., Figure 2.13(c) and Figure 2.13(d), but required many iterations of distributed gradient
updates to converge on the other four datasets where logistic function may not fit, and led to huge communication costs.
In comparison, Approx-DisKernelUCB and our proposed Async-KernelUCB had consistently smaller regret than their
linear counterparts, while requiring relatively lower communication cost for joint kernel estimation. It is also worth not-
ing that despite having the same Õ(N2γ3T ) theoretical scaling in communication cost, Async-KernelUCB incurs much
smaller communication cost empirically, while having comparable or even better regret than Approx-DisKernelUCB.
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Figure 2.13: Experiment results on synthetic and real-world datasets.

2.3.12 Full proof of Async-KernelUCB algorithm
Omitted proof in Section 2.3.9

Let’s define the unfavorable event Hk = Ak ∪Ek, where Ak is the event that the dictionary Sk is not ϵ-accurate w.r.t.
Dk, and Ek is the event that the size of dictionary |Sk| is large, i.e., |Sk| > 12β(1 + βD)q̄γT . Therefore, we want to
bound the probability of ∪Bk=0Hk, which can be decomposed as

P
(
∪Bk=0Hk

)
= P

(
∪Bk=0(Ak ∪ Ek)

)
= P

(
(∪Bk=0Ak) ∪ (∪Bk=0Ek)

)
= P

(
∪Bk=0Ak

)
+ P

(
∪Bk=0Ek

)
− P

(
(∪Bk=0Ak) ∩ (∪Bk=0Ek)

)
= P

(
∪Bk=0Ak

)
+ P

(
(∪Bk=0Ek) ∩ (∪Bk=0Ak)

C
)

Note that, as in [92], we bound the second term as P
(
(∪Bk=0Ek) ∩ (∪Bk=0Ak)

C
)
= P

(
(∪Bk=0Ek) ∩ (∩Bk=0A

C
k )
)
=

P
(
∪Bk=0[Ek ∩ (∩Bk=0A

C
k )]
)
≤
∑B
k=0 P

(
Ek ∩ (∩Bk=0A

C
k )
)
. For the first term P

(
∪Bk=0Ak

)
, we need a decomposition

different from prior works [92, 73], since our dictionary is incrementally updated with a batch of samples at each
communication round (line 9 in Algorithm 14). Specifically, when bounding the probability of having an inaccurate
dictionary at the k-th communication, i.e., event Ak, we need to condition on the event that dictionaries at all previous
communications are ϵ-accurate, i.e., event ∩k−1

k′=0A
C
k′ . Hence, we decompose P

(
∪Bk=0Ak

)
= 1 − P

(
∩Bk=0A

C
k

)
=

1 − P(AC0 )
∏B
k=1 P

(
ACk | ∩

k−1
k′=0 A

C
k′

)
= 1 −

∏B
k=1[1 − P

(
Ak| ∩k−1

k′=0 A
C
k′

)
] ≤

∑B
k=1 P

(
Ak| ∩k−1

k′=0 A
C
k′

)
, where the

second equality is due to Bayes theorem, the third equality is because D0 = ∅ is well-approximated by S0 = ∅, and
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thus P
(
AC0
)
= 1, and the inequality is due to Weierstrass product inequality. Putting everything together, we have

P
(
∪Bk=0Hk

)
≤

B∑
k=1

P
(
Ak| ∩k−1

k′ ACk′
)
+

B∑
k=1

P
(
Ek ∩ (∩Bk=0A

C
k )
)

(2.40)

Then we can upper bound these two terms using Lemma 2.3.5 and Lemma 2.3.6 given in Section 2.3.9, which leads to
P
(
∪Bk=0Hk

)
≤ δ, for δ ∈ (0, 1), and thus finishes the proof of Lemma 2.3.4.

Proof of Lemma 2.3.5: bounding
∑B
k=1 P

(
Ak| ∩k−1

k′ ACk′
)
. As [73], we can rewrite the event Ak, based on the defini-

tion of ϵ-accuracy given in (2.39), as

Ak =
{
∥
∑
s∈Dk

Gk,s∥ > ϵ
}

where Gk,s = (
qk,s

p̃k,s
− 1)ψk,sψ

⊤
k,s and ψk,s = (Φ⊤

Dk
ΦDk

+ λI)−1/2ϕ(xs). Then let’s define Fk := {qk,s, ηs}s∈Dk
for

k ∈ [B], which contains all randomness in the construction of Sk during the k-th communication. With conditioning,
we have

P(Ak | ∩k−1
k′ ACk′) = P

(
∥
∑
s∈Dk

Gk,s∥ > ϵ | ∩k−1
k′ ACk′

)
= EFk

[
1
{
∥
∑
s∈Dk

Gk,s∥ > ϵ
}
| ∩k−1

k′ ACk′
]

= EFk−1

[
EFk\Fk−1

[
1
{
∥
∑
s∈Dk

Gk,s∥ > ϵ
}
|Fk−1

]
| ∩k−1

k′ ACk′
]

= EFk−1:∩k−1

k′ AC
k′

[
EFk\Fk−1

[
1
{
∥
∑
s∈Dk

Gk,s∥ > ϵ
}
|Fk−1

]]
= EFk−1:∩k−1

k′ AC
k′

[
PFk\Fk−1

(
∥
∑
s∈Dk

(
qk,s
p̃k,s

− 1)ψk,sψ
⊤
k,s∥ > ϵ | Fk−1

)]
.

where the third equality holds because when conditioned on the event ∩k−1
k′ ACk′ , the outcomes associated with the

complement of this event have zero probability, and thus we can restrict the expectation to the outcomes where the
event ∩k−1

k′ ACk′ holds.
Consider the k-th communication for k ∈ [B]. We denote the client who triggers the k-th communication as

ck ∈ [N ], and the time step when the k-th communication happens as tk ∈ [T ]. In addition, recall that we denote the
sequence of time steps in-between client ck’s last communication (whose index is denoted as k(ck) ∈ [0, k − 1]) and
the current (the k-th) communication when client ck’s is active as ∆Dk := Ntk(ck) \ Ntk(ck)

(ck) = {tk(ck) < s ≤ tk :

is = ck}.
Note that due to our incremental update procedure, for some data point with time index s, that was added into Dk

during the k′-th communication (sent to the server in the form of embedded statistics), i.e., s ∈ ∆Dk′ , for k′ = 1, . . . , k,
we have qk,s = qk′,s and p̃k,s = p̃k′,s. When conditioned on Fk−1, qk,s for all s ∈ Dk are independent Bernoulli
random variable with mean p̃k,s, because they only correlate via the approximated variance function(s) that were used
for arm selection and RLS sampling up to the k-th communication, which are deterministic conditioned on Fk−1, and
thus both p̃k,s and ψk,s are deterministic as well.

Therefore, we can bound PFk\Fk−1

(
∥
∑
s∈Dk

(
qk,s

p̃k,s
− 1)ψk,sψ

⊤
k,s∥ > ϵ|Fk−1

)
using Lemma A.13. First, we need

to show that each term in the summation has zero mean and bounded norm, i.e., EFk\Fk−1
[Gk,s|Fk−1] = 0 and

∥Gk,s∥ ≤ R for some constant R:

EFk\Fk−1

[
(
qk,s
p̃k,s

− 1)ψk,sψ
⊤
k,s|Fk−1

]
= (

EFk\Fk−1

[
qk,s|Fk−1

]
p̃k,s

− 1)ψk,sψ
⊤
k,s = 0,

and

∥Gk,s∥ = ∥( qk,s
p̃k,s

− 1)ψk,sψ
⊤
k,s∥ ≤ (

qk,s
p̃k,s

− 1)∥ψk,sψ⊤
k,s∥ ≤ σ2

k(xs)

p̃k,s
,
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where the last inequality is because qk,s ≤ 1 and ∥ψk,sψ⊤
k,s∥ = ψ⊤

k,sψk,s = σ2
k(xs). As mentioned earlier, for

s ∈ ∆Dk′ , k′ = 1, . . . , k, we have p̃k,s = p̃k′,s = q̄σ̃2
k′−1(xs), i.e., during the k′-th communication, client ck′ first

receives server’s latest statistics to compute σ̃2
k′−1(·) for RLS sampling. Conditioned on ∩kk′=0A

C
k′ and by Lemma

A.11, we have σ̃2
k′−1(xs) ≥ σ2

k′−1(xs)/β, where β := (1 + ϵ)/(1− ϵ). Hence,

∥Gk,s∥ ≤ σ2
k(xs)

p̃k,s
=

σ2
k(xs)

q̄σ̃2
k′−1(xs)

≤ β

q̄

σ2
k(xs)

σ2
k′−1(xs)

≤ β

q̄
:= R.

where the last inequality is because the variance is non-increasing over time. Then by Lemma A.13,

PFk\Fk−1

(
∥
∑
s∈Dk

Gk,s∥ > ϵ|Fk−1

)
≤ 4|Dk| exp(−

ϵ2/2

∥
∑
s∈Dk

EFk\Fk−1
[G2

k,s|Fk−1]∥+Rϵ/3
)

Now we need to further upper bound the term ∥
∑
s∈Dk

EFk\Fk−1
[G2

k,s|Fk−1]∥. First, note that

EFk\Fk−1
[G2

k,s|Fk−1] = EFk\Fk−1

[
(
qk,s
p̃k,s

− 1)2ψk,sψ
⊤
k,sψk,sψ

⊤
k,s|Fk−1

]
= EFk\Fk−1

[
(
qk,s
p̃k,s

− 1)2|Fk−1

]
ψk,sψ

⊤
k,sψk,sψ

⊤
k,s,

and EFk\Fk−1
[(
qk,s

p̃k,s
−1)2|Fk−1] = EFk\Fk−1

[(
qk,s

p̃k,s
)2|Fk−1]−2EFk\Fk−1

[
qk,s

p̃k,s
|Fk−1]+1 = EFk\Fk−1

[
qk,s

p̃2k,s
|Fk−1]−

1 = 1
p̃k,s

− 1 ≤ 1
p̃k,s

. Substituting this to the RHS, we have

EFk\Fk−1
[G2

k,s|Fk−1] ⪯
1

p̃k,s
ψk,sψ

⊤
k,sψk,sψ

⊤
k,s ⪯

1

p̃k,s
∥ψk,sψ⊤

k,s∥ψk,sψ⊤
k,s ⪯ Rψk,sψ

⊤
k,s,

and thus,

∥
∑
s∈Dk

EFk\Fk−1
[G2

k,s|Fk−1]∥ ≤ R∥
∑
s∈Dk

ψk,sψ
⊤
k,s∥

= R∥
∑
s∈Dk

(Φ⊤
Dk

ΦDk
+ λI)−1/2ϕsϕ

⊤
s (Φ

⊤
Dk

ΦDk
+ λI)−1/2∥

= R∥(Φ⊤
Dk

ΦDk
+ λI)−1/2Φ⊤

Dk
ΦDk

(Φ⊤
Dk

ΦDk
+ λI)−1/2∥ ≤ R,

where the first equality is by definition of ψk,s. Putting everything together, we have

PFk\Fk−1

(
∥
∑
s∈Dk

Gk,s∥ > ϵ|Fk−1

)
≤ 4|Dk| exp(−

ϵ2/2

1 + ϵ/3
· q̄
β
),

and thus P(Ak | ∩k−1
k′=0A

C
k′) ≤ 4|Dk| exp(− ϵ2/2

1+ϵ/3 · q̄β ). Summing over B terms, we have

B∑
k=0

P
(
Ak| ∩k−1

k′=0 A
C
k′
)
≤ 4 exp(− ϵ2/2

1 + ϵ/3
· q̄
β
)

B∑
k=1

|Dk| ≤ 4T 2 exp(− ϵ2/2

1 + ϵ/3
· q̄
β
)

In order to make sure
∑B
k=0 P

(
Ak| ∩k−1

k′=0 A
C
k′

)
≤ δ

2 , we need to set q̄ = 4β 1+ϵ/3
ϵ2 ln( 2

√
2T
δ ).

Proof of Lemma 2.3.6: bounding
∑B
k=0 P

(
Ek ∩ (∩Bk=0A

C
k )
)
. First, note that P(E0 ∩ (∩Bk=0A

C
k )) = 0, because S0 =

∅, and by definition of qk,s for s ∈ Dk, the size of dictionary |Sk| =
∑
s∈Dk

qk,s. We formally define unfavorable
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event Ek as

Ek =
{∑
s∈Dk

qk,s > 12β(1 + βD)q̄γT
}
,

where β = (1 + ϵ)/(1 − ϵ). Similar to [92, 73], we will use a stochastic dominance argument to upper bound the
probability of event Ek. First, we use conditioning again to rewrite P

(
Ek ∩ (∩Bk=1A

C
k )
)

as

P(Ek ∩ (∩Bk=1A
C
k )) = P(Ek | ∩Bk=1A

C
k )P(∩Bk=1A

C
k ) ≤ P(Ek | ∩Bk=1A

C
k )

= P
(∑
s∈Dk

qk,s ≥ 12β(1 + βD)q̄γT | ∩Bk=1A
C
k

)
= EFk−1:∩B

k=1A
C
k

[
PFk\Fk−1

(∑
s∈Dk

qk,s ≥ 12β(1 + βD)q̄γT | Fk−1

)]
.

As discussed earlier, when conditioned on Fk−1, qk,s for s ∈ Dk becomes independent Bernoulli random variable, with
mean p̃k,s. In addition, as a result of our incremental dictionary update (line 9 in Algorithm 14), the partition in Dk that
were added during the k′-th communication for k′ ∈ 1, . . . , k, which is denoted by ∆Dk′ , is sampled using q̄σ̃2

k′−1(xs)
for s ∈ ∆Dk′ . Hence,

EFk\Fk−1

[∑
s∈Dk

qk,s|Fk−1

]
=
∑
s∈Dk

p̃k,s

=

k∑
k′=1

∑
s∈∆Dk′

p̃k′,s = q̄

k∑
k′=1

∑
s∈∆Dk′

σ̃2
k′−1(xs)

≤ βq̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1(xs) = βq̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs) ·

σ2
k′−1(xs)

σ2
k′−1,s−1(xs)

≤ βq̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs) · [1 +

∑
s′∈∆Dk′ :s′≤s−1

σ2
k′−1(xs′)]

≤ βq̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs) · [1 +

∑
s′∈∆Dk′ :s′≤s−1

σ2
k′(ck′ )(xs′)]

≤ βq̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs) · [1 + β

∑
s′∈∆Dk′ :s′≤s−1

σ̃2
k′(ck′ )(xs′)]

≤ β(1 + βD)q̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs)

where the imaginary variance function σ2
k′−1,s−1(·) is constructed using dataset

(
∪k

′−1
k=1 ∆Dk

)
∪ {s′ ∈ ∆Dk′ : s′ ≤

s− 1} (not computed in the actual algorithm); the first and forth inequality is due to Lemma A.11 as we conditioned on
∩Bk=0A

C
k ; the second is due to Lemma A.10; the third is because k′(ck′) ≤ k′ − 1 and the variance is non-increasing

over time; and the fifth is due to our event-trigger design in (2.7), i.e.,
∑
s∈∆Dk′ :s≤tk′−1 σ̃

2
k′(ck′ )

(xs) < D.
Now for each term in the summation on the RHS of the inequality above, we introduce an independent Bernoulli

random variable q̂k,s ∼ B
(
β(1+βD)q̄σ2

k′−1,s−1(xs)
)
. Since q̂k,s stochastically dominates qk,s, i.e., E

[
qk,s | Fk−1

]
=

p̃k,s ≤ β(1 + βD)q̄σ2
k′−1,s−1(xs) = E

[
q̂k,s
]
, we have

P
(∑
s∈Dk

qk,s > 12β(1 + βD)q̄γT | Fk−1

)
≤ P

(∑
s∈Dk

q̂k,s > 12β(1 + βD)q̄γT
)
.
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Then we can further upper bound the RHS

P
(∑
s∈Dk

q̂k,s > 12β(1 + βD)q̄γT
)

≤ P
(∑
s∈Dk

q̂k,s > 3β(1 + βD)q̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs)

)
≤ exp

(
−2β(1 + βD)q̄

k∑
k′=1

∑
s∈∆Dk′

σ2
k′−1,s−1(xs)

)
where the first inequality is because

∑k
k′=1

∑
s∈∆Dk′ σ

2
k′−1,s−1(xs) ≤ 4γT , and the second inequality is due to Lemma

A.14. By substituting q̄ = 4β 1+ϵ/3
ϵ2 ln( 2

√
2T
δ ) and under the condition that

∑k
k′=1

∑
s∈∆Dk′ σ

2
k′−1,s−1(xs) ≥ 1, we

have exp
(
−2β(1+βD)q̄

∑k
k′=1

∑
s∈∆Dk′ σ

2
k′−1,s−1(xs)

)
≤ exp

(
− ln(8T 2/δ)

)
. To ensure

∑k
k′=1

∑
s∈∆Dk′ σ

2
k′−1,s−1(xs) ≥

1, we can set λ ≤ k(x,x),∀x ∈ A. Finally, by summing over B terms, we have

B∑
k=0

P
(
Ek ∩ (∩Bk=0A

C
k )
)
≤ T exp

(
− ln(8T 2/δ)

)
≤ T · δ

8T 2
<
δ

2

where the last inequality is because T ≥ 1.

Proof of Lemma 2.3.7 in Section 2.3.10

Recall from Section 2.3.7 that the approximated kernel Ridge regression estimator for θ⋆ is defined as

θ̃k = Ṽ−1
k PSk

Φ⊤
Dk

yDk

where Ṽk := PSk
Φ⊤

Dk
ΦDk

PSk
+ λI. Then we can decompose

∥θ̃k − θ⋆∥2Ṽk
= (θ̃k − θ⋆)

⊤Ṽk(θ̃k − θ⋆)

=(θ̃k − θ⋆)
⊤Ṽk(Ṽ

−1
k PSk

Φ⊤
Dk

yDk
− θ⋆)

=(θ̃k − θ⋆)
⊤Ṽk[Ṽ

−1
k PSk

Φ⊤
Dk

(ΦDk
θ⋆ + ηDk

)− θ⋆]

= (θ̃k − θ⋆)
⊤Ṽk(Ṽ

−1
k PSk

Φ⊤
Dk

ΦDk
θ⋆ − θ⋆)︸ ︷︷ ︸

A1

+(θ̃k − θ⋆)
⊤PSk

Φ⊤
Dk
ηDk︸ ︷︷ ︸

A2

Since Ṽk(Ṽ
−1
k PSk

Φ⊤
Dk

ΦDk
θ⋆−θ⋆) = PSk

Φ⊤
Dk

ΦDk
θ⋆−PSk

Φ⊤
Dk

ΦDk
PSk

θ⋆−λθ⋆ = PSk
Φ⊤

Dk
ΦDk

(I−PSk
)θ⋆−

λθ⋆, we have

A1 =(θ̃k − θ⋆)
⊤PSk

Φ⊤
Dk

ΦDk
(I−PSk

)θ⋆ − λ(θ̃k − θ⋆)
⊤θ⋆

=(θ̃k − θ⋆)
⊤Ṽ

1/2
k Ṽ

−1/2
k PSk

Φ⊤
Dk

ΦDk
(I−PSk

)θ⋆ − λ(θ̃k − θ⋆)
⊤Ṽ

1/2
k Ṽ

−1/2
k θ⋆

≤∥θ̃k − θ⋆∥Ṽk

(
∥Ṽ−1/2

k PSk
Φ⊤

Dk
ΦDk

(I−PSk
)θ⋆∥+ λ∥θ⋆∥Ṽ−1

k

)
≤∥θ̃k − θ⋆∥Ṽk

(
∥Ṽ−1/2

k PSk
Φ⊤

Dk
∥∥ΦDk

(I−PSk
)∥∥θ⋆∥+

√
λ∥θ⋆∥

)
≤∥θ̃k − θ⋆∥Ṽk

(
∥ΦDk

(I−PSk
)∥+

√
λ
)
∥θ⋆∥

where the first inequality is due to Cauchy Schwartz, and the last inequality is because ∥Ṽ−1/2
k PSk

Φ⊤
Dk

∥ =√
ΦDk

PSk
(PSk

Φ⊤
Dk

ΦDk
PSk

+ λI)−1PSk
Φ⊤

Dk
≤ 1. Then by definition of the spectral norm ∥·∥, and the prop-
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erties of the orthogonal projection matrix PSk
, we have

∥ΦDk
(I−PSk

)∥ =
√
λmax

(
ΦDk

(I−PSk
)2Φ⊤

Dk

)
=
√
λmax

(
ΦDk

(I−PSk
)Φ⊤

Dk

)
.

Moreover, due to Lemma 2.3.4, Sk is ϵ-accurate w.r.t. Dk, for all k, so we have I−PSk
⪯ λ

1−ϵ (Φ
⊤
Dk

ΦDk
+ λI)−1 by

the property of ϵ-accuracy (Proposition 10 of [73]). Substituting this to RHS of the equality above, we have

∥ΦDk
(I−PSk

)∥ ≤
√

λ

1− ϵ
λmax

(
ΦDk

(Φ⊤
Dk

ΦDk
+ λI)−1Φ⊤

Dk

)
≤
√

λ

1− ϵ
.

Therefore, A1 ≤ ∥θ̃k − θ⋆∥Ṽk

(√
1

1−ϵ + 1
)√
λ∥θ⋆∥.

Similarly, by applying Cauchy-Schwartz inequality on term A2, we have

A2 =(θ̃k − θ⋆)
⊤Ṽ

1/2
k Ṽ

−1/2
k PSk

Φ⊤
Dk
ηDk

≤ ∥θ̃k − θ⋆∥Ṽk
∥Ṽ−1/2

k PSk
Φ⊤

Dk
ηDk

∥

=∥θ̃k − θ⋆∥Ṽk
∥Ṽ−1/2

k PSk
V

1/2
k V

−1/2
k Φ⊤

Dk
ηDk

∥

≤∥θ̃k − θ⋆∥Ṽk
∥Ṽ−1/2

k PSk
V

1/2
k ∥∥V−1/2

k Φ⊤
Dk
ηDk

∥

where Vk := Φ⊤
Dk

ΦDk
+λI. Note that PSk

VkkPSk
= PSk

(Φ⊤
Dk

ΦDk
+λI)PSk

= Ṽk +λ(PSk
− I) and PSk

⪯ I,
so we have

∥Ṽ−1/2
k PSk

V
1/2
k ∥ =

√
∥Ṽ−1/2

k PSk
V

1/2
k V

1/2
k PSk

Ṽ
−1/2
k ∥ ≤

√
∥Ṽ−1/2

k (Ṽk + λ(PSk
− I))Ṽ

−1/2
k ∥

=

√
∥I+ λṼ

−1/2
k (PSk

− I))Ṽ
−1/2
k ∥ ≤

√
1 + λ∥Ṽ−1

k ∥∥PSk
− I∥

≤
√
1 + λ · λ−1 · 1 =

√
2,

and thus A2 ≤
√
2∥θ̃k − θ⋆∥Ṽk

∥V−1/2
k Φ⊤

Dk
ηDk

∥.
As mentioned by [97], the standard self-normalized bound for vector-valued martingales cannot be directly applied

to bound the term ∥V−1/2
k Φ⊤

Dk
ηDk

∥, since Dk is constructed by the data that each client has uploaded so far during the
event-triggered communications. Therefore, in the following paragraphs, we bound this term by extending their results
to the kernel bandit problem considered in our work.

We first need to establish the following lemma.

Lemma 2.3.9. Let’s denote Vk(i) =
∑
s∈Ntk(i)

(i) ϕ(xs)ϕ(xs)
⊤, such that Vk = λI +

∑N
i=1 Vk(i), and then

denote the covariance matrix for client i’s data that hasn’t been uploaded to server by time step tk as ∆Vk(i) =∑
s∈Ntk

(i)\Ntk(i)
(i) ϕ(xs)ϕ(xs)

⊤ for i ∈ [N ]. Then we have

Vk ⪰ 1

βD
∆Vk(i), (2.41)

and ∀x ∈ Rd,

ϕ(x)⊤V−1
k ϕ(x)

ϕ(x)⊤(Φ⊤
[tk]

Φ[tk] + λI)−1ϕ(x)
≤ 1 +NβD.

Bounding ∥V−1/2
k Φ⊤

Dk
ηDk

∥: Recall that Dk contains data points that N clients have uploaded up to the k-th
communication, i.e., Dk = ∪Ni=1Ntk(i)

(i), where tk(i) denotes the time step of client i’s last communication with the
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server. Therefore, we have the following decomposition

V
−1/2
k Φ⊤

Dk
ηDk

=

N∑
i=1

V
−1/2
k Φ⊤

Ntk(i)
(i)ηNtk(i)

(i)

=

N∑
i=1

V
−1/2
k

[
Φ⊤

Ntk(i)
(i)ηNtk(i)

(i) +Φ⊤
Ntk

(i)\Ntk(i)
(i)ηNtk

(i)\Ntk(i)
(i)

]
−

N∑
i=1

V
−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)

= V
−1/2
k Φ⊤

[tk]
η[tk] −

N∑
i=1

V
−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i).

Then using triangle inequality, we have

∥V−1/2
k Φ⊤

Dk
ηDk

∥ ≤ ∥V−1/2
k Φ⊤

[tk]
η[tk]∥+

N∑
i=1

∥V−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥.

We can bound ∥V−1/2
k Φ⊤

[tk]
η[tk]∥ as

∥V−1/2
k Φ⊤

[tk]
η[tk]∥ = ∥Φ⊤

[tk]
η[tk]∥V−1

k
≤ ∥Φ⊤

[tk]
η[tk]∥(Φ⊤

[tk]
Φ[tk]+λI)−1

√
1 +NDβ

≤
√
1 +NDβR

√
2 ln(1/δ) + ln(det(K[T ],[T ]/λ+ I)),

with probability at least 1− δ, where the first inequality is due to Lemma 2.3.9, and the second inequality is due to the
standard self-normalized bound for kernelized contextual bandit, e.g., Lemma B.3. of [100].

Then we can bound ∥V−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥ as

∥V−1/2
k Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥

≤
√

2Dβ∥
[
DβλI+Φ⊤

Ntk
(i)\Ntk(i)

(i)ΦNtk
(i)\Ntk(i)

(i)

]−1/2
Φ⊤

Ntk
(i)\Ntk(i)

(i)ηNtk
(i)\Ntk(i)

(i)∥

=
√

2Dβ∥Φ⊤
Ntk

(i)\Ntk(i)
(i)ηNtk

(i)\Ntk(i)
(i)∥[

DβλI+Φ⊤
Ntk

(i)\Ntk(i)
(i)

ΦNtk
(i)\Ntk(i)

(i)

]−1

≤
√

2DβR
√
2 ln(1/δ) + ln(det(K[T ],[T ]/(Dβλ) + I))

where the first inequality is because Vk = λI +Φ⊤
Dk

ΦDk
⪰ 1

DβΦ
⊤
Ntk

(i)\Ntk(i)
(i)ΦNtk

(i)\Ntk(i)
(i) due to (2.41) in

Lemma 2.3.9, so Vk = λI+Φ⊤
Dk

ΦDk
⪰ 1

2Dβ (DβλI+Φ⊤
Ntk

(i)\Ntk(i)
(i)ΦNtk

(i)\Ntk(i)
(i)), and the second inequality

is again obtained using the standard self-normalized bound.
Putting everything together, we have

∥θ̃k − θ⋆∥Ṽk
≤ (
√
1/(1− ϵ) + 1)

√
λ∥θ⋆∥+ 2

(√
1 +NDβ +N

√
2Dβ

)
R
√

ln(1/δ) + γT ,

where γT := maxD⊂A:|D|=T
1
2 log det(KD,D/(Dβλ) + I).

Proof of Lemma 2.3.9. Note that by definition, ∆Vk(ck) = 0, where ck ∈ [N ] is the index of the client who triggers
the k-th communication. In the following, we first show that

Vk ⪰ 1

βD
∆Vk(i)
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for all i ∈ [N ]. For client ck, Vk ⪰ 0 = 1
βD∆Vk(ck). For client i ̸= ck, we have

ϕ(x)⊤V−1
k(i)ϕ(x)

ϕ(x)⊤
(
Vk(i) +∆Vk(i)

)−1
ϕ(x)

≤ 1 +
∑

s∈Ntk
(i)\Ntk(i)

(i)

ϕ(xs)
⊤V−1

k(i)ϕ(xs) = 1 +
∑

s∈Ntk
(i)\Ntk(i)

(i)

σ2
k(i)(xs)

≤ 1 + β
∑

s∈Ntk
(i)\Ntk(i)

(i)

σ̃2
k(i)(xs) ≤ 1 + βD,

where the first inequality is due to Lemma A.10, the second is due to property of ϵ-accuracy in Lemma A.11, and the
third is due to our event-trigger in (2.7).

This implies V−1
k(i) ⪯ (1+βD)

(
Vk(i)+∆Vk(i)

)−1
. Then due to Lemma A.5, we have (1+βD)Vk(i) ⪰ Vk(i)+

∆Vk(i), and thus Vk(i) ⪰ 1
βD∆Vk(i). In addition, since k(i) < k, ∀i ̸= ck, we have Vk ⪰ Vk(i) ⪰ 1

βD∆Vk(i).
By averaging (2.41) over all N clients, we have

Vk ⪰ 1

NβD

N∑
i=1

∆Vk(i),

and thus, we have

Φ⊤
[tk]

Φ[tk] + λI = Vk +

N∑
i=1

∆Vk(i) ⪯ (1 +NβD)Vk.

Using Lemma A.5 again finishes the proof.

Proof of communication cost in Theorem 2.3.8 in Section 2.3.10

Recall from Section 2.3.8 that Dk is the set of time indices for the data points that are used to construct the embedded
statistics on the server at the k-th communication round, for k = 1, . . . , B. We denote the corresponding (exact)
covariance matrix as Vk = λI + Φ⊤

Dk
ΦDk

∈ Rp×p, with V0 = λI, and kernel matrix as KDk,Dk
= ΦDk

Φ⊤
Dk

∈
R|Dk|×|Dk|.

Similar to [97], by defining kp = min{k ∈ [B] | det(I+λ−1KDk,Dk
) ≥ 2p)}, we have log

(det(I+λ−1KDkp+1
,Dkp+1

)

det(I+λ−1KDkp
,Dkp

)

)
≥

1 for each p ≥ 0. We call the sequence of time steps in-between tkp and tkp+1
an epoch, and denote the total number of

epochs as P . Note that since

log
(det(I+ λ−1KDk1

,Dk1
)

det(I)

)
+ log

(det(I+ λ−1KDk2
,Dk2

)

det(I+ λ−1KDk1
,Dk1

)

)
+ · · ·+ log

( det(I+ λ−1KDkP
,DkP

)

det(I+ λ−1KDkP−1
,DkP−1

)

)
≤ log

(
det(I+ λ−1K[T ],[T ])

)
≤ 2γT ,

there can be at most 2γT terms, i.e., P ≤ 2γT . Now that we have divided the time horizon [T ] into P epochs using
{tkp}p∈[P ], we prove the following lemma that upper bounds the total number of times communication is triggered in
each epoch.

Lemma 2.3.10 (Number of communications per epoch). For each epoch, i.e., the sequence of time steps in-between tkp
and tkp+1

, the number of communications is upper bounded by N + 4β
D .

Since there are at most 2γT epochs, the total number of communications B ≤ 2γT (N + 4β
D ). Moreover, by Lemma

2.3.4, we know that during each communication, the size of data being communicated is O
(
log2(T )γ2T

)
. Hence, with

D = 1
N2 , CT = O(N2γ3T log2(T )).
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Proof of Lemma 2.3.10. Consider the epoch [tkp , tkp+1 − 1] for some p = 0, 1, . . . , P . We denote the total number of
communications in this epoch as Qp, and the total number of communications in this epoch that are triggered by client
i as Qp,i for i ∈ [N ], i.e., Qp =

∑N
i=1Qp,i.

Let’s denote the indices associated with the communications triggered by some client i as κ1, κ2, . . . , κQp,i ∈
[kp, kp+1 − 1]. Then for each j = 2, 3, . . . , Qp,i, i.e., excluding client i’s first communication in this epoch, due to our
event-trigger design in (2.7), we have

β
∑

s∈∆Dκj

σ2
kp(xs) ≥ β

∑
s∈∆Dκj

σ2
κj−1

(xs) ≥
∑

s∈∆Dκj

σ̃2
κj−1

(xs) > D,

where the first inequality is because by definition of κj−1, we have κj−1 ≥ kp, so σ2
κj−1

(x) ≤ σ2
kp
(x),∀x, and the

second inequality is due to Lemma A.11. Therefore, we have
∑
s∈∆Dkj

σ2
kp
(xs) ≥ D/β. Since σ2

kp
(x) = ∥ϕ(x)∥2

V−1
kp

,

we have

D/β ≤
∑

s∈∆Dkj

∥ϕ(xs)∥2V−1
kp

≤ 4 log
(det(I+ λ−1KDkp∪∆Dκj

,Dkp∪∆Dκj
)

det(I+ λ−1KDkp ,Dkp
)

)
≤ −4 + 4

det(I+ λ−1KDkp∪∆Dκj
,Dkp∪∆Dκj

)

det(I+ λ−1KDkp ,Dkp
)

where the second inequality is by definition of epoch, i.e., det(I+λ−1KDkp+1−1,Dkp+1−1
)/ det(I+λ−1KDkp ,Dkp

) ≤ 2,
combined with Lemma A.9, and the third is because log(x) ≤ x− 1 for x > 0. Hence, we have

det(I+ λ−1KDkp∪∆Dκj
,Dkp∪∆Dκj

)

det(I+ λ−1KDkp ,Dkp
)

≥ 1 +
D

4β
,

and thus, we have det(I+ λ−1KDkp∪∆Dκj
,Dkp∪∆Dκj

)− det(I+ λ−1KDkp ,Dkp
) ≥ D

4β det(I+ λ−1KDkp ,Dkp
) for

all j = 2, 3, . . . ,Qp,i and all client i ∈ [N ].
Denote the indices associated with the communications of all clients in this epoch as κ′1, κ

′
2, . . . , κ

′
Qp

∈ {kp, kp+1−
1}. Then for each j ∈ [Qp], if client cκ′

j
has already communicated with the server ealier in this epoch, we have

det(I+ λ−1KDκ′
j
,Dκ′

j
)− det(I+ λ−1KDκ′

j−1
,Dκ′

j−1
)

= det(I+ λ−1KDκ′
j−1

∪∆Dκ′
j
,Dκ′

j−1
∪∆Dκ′

j
)− det(I+ λ−1KDκ′

j−1
,Dκ′

j−1
)

≥ det(I+ λ−1KDkp∪∆Dκ′
j
,Dkp∪∆Dκ′

j
)− det(I+ λ−1KDkp ,Dkp

)

≥ D

4β
det(I+ λ−1KDkp ,Dkp

)

where the first inequality is obtained via matrix determinant lemma and Lemma A.6, and the second is due to the
inequality we derived above. Summing over all communications in this epoch, we have

det(I+ λ−1KDkp+1−1,Dkp+1−1
)− det(I+ λ−1KDkp ,Dkp

)

=

Qp∑
j=1

det(I+ λ−1KDκ′
j
,Dκ′

j
)− det(I+ λ−1KDκ′

j−1
,Dκ′

j−1
)

≥
N∑
i=1

(Qp,i − 1)
D

4β
det(I+ λ−1KDkp ,Dkp

),
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and since det(I+ λ−1KDkp+1−1,Dkp+1−1
)/ det(I+ λ−1KDkp ,Dkp

) ≤ 2 by our definition of epoch, we have

1 +
D

4β

N∑
i=1

(Qp,i − 1) ≤ det(I+ λ−1KDkp+1−1,Dkp+1−1
)/ det(I+ λ−1KDkp ,Dkp

) ≤ 2,

so Qp =
∑N
i=1Qp,i ≤ N + 4β

D , which finishes the proof.

Proof of cumulative regret in Theorem 2.3.8 in Section 2.3.10

To facilitate regret analysis of Async-KernelUCB, we need to introduce some additional notations. First, let’s denote
the client who triggers the k-th communication as ck ∈ [N ], the index of its next communication as k̄(ck), and the time
step when the k̄(ck)-th communication happens is tk̄(ck) (tk̄(ck) = T if k is client ck’s final communication with the
server). Then we denote the set of time steps in-between (but not including) the current (the k-th) communication and
client ck’s next communication when client ck is active as Pk := {tk < s < tk̄(ck) : is = ck}, and thus by definition
∆Dk̄(ck) = Ntk̄(ck)

(ck) \ Ntk(ck) = Pk ∪ {tk̄(ck)}. We also define P0 as the union over the set of time steps before
the first communication of each client i ∈ [N ]. Therefore, we have

(
∪Bk=0Pk

)
∪ {tk}k∈[B] = [T ]. Since in Algorithm

14, the approximated mean and variance of each client only get updated when it triggers communication, and then
remain fixed until after its next communication, we have that all the interactions in Pk ∪ {tk̄(ck)} are based on the same
{µ̃k(·), σ̃k(·)}, for k = 0, 1, . . . , B. In addition, an important observation is that, based on our event-trigger in (2.7),
we have ∑

s∈Pk

σ̃2
k(xs) ≤ D,

[∑
s∈Pk

σ̃2
k(xs)

]
+ σ̃2

k(xtk̄(ck)
) > D.

(2.42)

Now we are ready to upper bound the cumulative regret. Consider some time step t ∈ Pk ∪ {tk̄(ck)}. Due to our
arm selection rule (line 5 of Algorithm 14), we have xt = argmaxx∈At

µ̃k(x)+ασ̃k(x). Combining this with Lemma
2.3.7, with probability at least 1− δ, we have

f(x⋆t ) ≤ µ̃k(x
⋆
t ) + ασ̃k(x

⋆
t ) ≤ µ̃k(xt) + ασ̃k(xt),

f(xt) ≥ µ̃k(xt)− ασ̃k(xt),

where x⋆t := argmaxx∈At
f(x) = argmaxx∈At

ϕ(x)⊤θ⋆ is the optimal arm at time step t, and thus rt = f(x⋆t ) −
f(xt) ≤ 2ασ̃k(xt). The cumulative regret RT can be rewritten as

RT =

B∑
k=0

∑
s∈Pk

rs +

B∑
k=1

rtk ≤
B∑
k=0

∑
s∈Pk

min(2LS, 2ασ̃k(xs)) +

B∑
k=1

min{2LS, 2ασ̃k(ck)(xtk)}.

Bounding first term: To bound the first term, we introduce an imaginary variance function σ2
k,s−1(·) (not computed

in the actual algorithm) for s ∈ Pk and k = 0, 1, . . . , B, which is constructed using dataset
(
∪k−1
k′=0Pk′

)
∪ {s′ ∈ Pk :

s′ ≤ s− 1}. In the following paragraph, we will bound the first term by showing that
∑B
k=0

∑
s∈Pk

σ̃2
k(xs) is not too

much larger than
∑B
k=0

∑
s∈Pk

σ2
k,s−1(xs).

This requires us to bound the ratio σ2
k(xs)

σ2
k,s−1(xs)

for s ∈ Pk and k = 0, 1, . . . , B. Recall that σ2
k(·) is constructed

using data points that N clients have uploaded to the server up to the k-th communication, i.e., Dk = ∪Ni=1Ntk(i)
(tk),

which is a subset of Dk ∪
(
∪Ni=1∆Dk̄(i)

)
= Dk ∪

(
∪Ni=1Pk(i)∪{tk̄(i)}

)
. However, as shown in (2.42), the event-trigger

cannot be directly used to upper bound the summation of approximated variances in Pk(i) ∪ {tk̄(i)}, but can be used to
upper bound that in Pk(i), which is why we construct the imaginary variance function without using data points with
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time indices {tk}k∈[B]. Specifically, using the notations we just introduced, we can rewrite the variance as

σ2
k(x) = ϕ(x)⊤

(
Φ⊤

Dk
ΦDk + λI

)−1
ϕ(x)

σ2
k,s−1(x) = ϕ(x)⊤

(
Φ⊤

Dk\{tk′}k′∈[k]
ΦDk\{tk′}k′∈[k]

+ λI+
∑
i ̸=ck

Φ⊤
Pk(i)

ΦPk(i)

+Φ⊤
{s′∈Pk:s

′≤s−1}Φ{s′∈Pk:s
′≤s−1}

)−1
ϕ(x)

≥ ϕ(x)⊤
(
Φ⊤

Dk
ΦDk + λI+

∑
i̸=ck

Φ⊤
Pk(i)

ΦPk(i)
+Φ⊤

{s′∈Pk:s
′≤s−1}Φ{s′∈Pk:s

′≤s−1}
)−1

ϕ(x)

The following lemma provides a upper bound for this ratio.

Lemma 2.3.11 (Bounding σ2
k(xs)/σ

2
k,s−1(xs)). Under the same condition as Lemma 2.3.4, with communication

threshold D, we have ∀k, s that

σ2
k(xs)/σ

2
k,s−1(xs) ≤ 1 +NβD.

With Lemma 2.3.11, we can bound the first term as

B∑
k=0

∑
s∈Pk

min(2LS, 2ασ̃k(xs)) ≤ 2α

√√√√T

B∑
k=0

∑
s∈Pk

σ̃2
k(xs) ≤ 2α

√√√√Tβ

B∑
k=0

∑
s∈Pk

σ2
k(xs)

= 2α

√√√√Tβ

B∑
k=0

∑
s∈Pk

σ2
k,s−1(xs) ·

σ2
k(xs)

σ2
k,s−1(xs)

≤ 2α

√√√√Tβ(1 +NβD)

B∑
k=0

∑
s∈Pk

σ2
k,s−1(xs)

≤ 4α
√
Tβ(1 +NβD)γT

≤ 4
[
(1/

√
1− ϵ+ 1)

√
λS + 2R

(√
1 +NDβ +N

√
2Dβ

)√
ln(1/δ) + γT

]√
Tβ(1 +NβD)γT

with probability at least 1− 2δ, where the first inequality is due to Cauchy-Schwarz, and second is due to the property
of ϵ-accuracy in Lemma A.11, the third is due to Lemma 2.3.11, the forth is by definition of maximum information gain
γT , and the last is by substituting α defined in Lemma 2.3.7.

Bounding second term: For the second term
∑B
k=1 min{2LS, 2ασ̃k(ck)(xtk)}, we should note that σ̃k(ck)(·) is the

approximated variance function that client ck received during its last communication with the server, instead of σk−1(·)
as in our proof of Lemma 2.3.6 when bounding the size of dictionary. Ideally, we want to relate each σk(ck)(·) to σk(·)
and then apply the elliptical potential argument, but as we do not make any assumption on how frequent client arrives, it
is possible that for clients who show up infrequently, these two functions are very different.

However, by using the epoch argument as in the proof for communication cost, we can show that this undesirable
situation only occurs at most 2γT times. Specifically, recall that Vk = λI + Φ⊤

Dk
ΦDk

, with V0 = λI, and kernel
matrix as KDk,Dk

= ΦDk
Φ⊤

Dk
∈ R|Dk|×|Dk|. We define kp = min{k ∈ [B] | det(I + λ−1KDk,Dk

) ≥ 2p)}, such
that log

(
det(I + λ−1KDkp+1

,Dkp+1
)/ det(I + λ−1KDkp ,Dkp

)
)
≥ 1 for each p ≥ 0. We call the sequence of time

steps in-between tkp and tkp+1
an epoch, and denote the total number of epochs as P . As shown in the proof for

communication cost, we have P ≤ 2γT .
Consider the epoch [tkp , tkp+1

− 1] for some p = 0, 1, . . . , P . We denote the total number of communications in
this epoch that are triggered by client i as Qp,i for i ∈ [N ], and the indices associated with these communications
triggered by client i as κ1, κ2, . . . , κQp,i ∈ [kp, kp+1 − 1].

As mentioned above, the approximated variance used during arm selection at tκ1
, i.e, σ2

κ1(cκ1
)(·) could be from a

very long time ago. Therefore, we simply bound its regret by 2LS, and in total, there can be at most 2γTN such terms
for all N clients, leading to a upper bound of 4NγTLS.
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Now we only need to be concerned about the communications at j = 2, 3, . . . , Qp,i, and show that σ2
κj(cκj

)(x) is

close to σ2
κj
(x) for all x. Specifically, we have

σ2
κj(cκj

)(x) = σ2
κj−1

(x) = σ2
κj
(x)

σ2
κj−1

(x)

σ2
κj
(x)

≤ 2σ2
κj
(x),

where the first equality is because by definition κj(cκj
) = κj−1, the first inequality is because σ2

κj−1
(x)/σ2

κj
(x) ≤

det(I+ λ−1KDkp+1−1,Dkp+1−1
)/ det(I+ λ−1KDkp ,Dkp

) ≤ 2 due to Lemma A.8, Lemma A.5 and the definition of
epoch. Therefore, further applying Cauchy-Schwarz and the ϵ-accuracy property in Lemma A.11, the second term can
be bounded by

B∑
k=1

min{2LS, 2ασ̃k(ck)(xtk)} ≤ 4NγTLS + 2α

√√√√2Bβ

B∑
k=1

σ2
k(xtk)

≤ 4NγTLS + 2α

√√√√2Bβ

B∑
k=1

σ2
k−1,tk−1(xtk) < 4NγTLS + 2α

√√√√2Bβ

B∑
k=1

∑
s∈∆Dk

σ2
k−1,s−1(xs)

≤ 4NγTLS + 4α
√
2TβγT

where the imaginary variance function σ2
k−1,s−1(·) is constructed using dataset

(
∪k−1
k′=1∆Dk′

)
∪ {s′ ∈ ∆Dk : s′ ≤

s− 1}, the second inequality is because variance is non-increasing over time, the third is because variances are positive,
and the last is due to definition of maximum information gain γT and that B ≤ T .

Putting upper bounds for the first and second term together, we haveRT ≤ 4NγTLS+4
√
2
[
(1/

√
1− ϵ+1)

√
λS+

2R
(√

1 +NDβ +N
√
2Dβ

)√
ln(1/δ) + γT

]√
Tβ(1 +NβD)γT .

Proof of Lemma 2.3.11. We denote Vk = λI+Φ⊤
Dk

ΦDk
, ∆Vk,s−1(i) = Φ⊤

Pk(i)
ΦPk(i)

for i ̸= ck and ∆Vk,s−1(ck) =

Φ⊤
{s′∈Pk:s′≤s−1}Φ{s′∈Pk:s′≤s−1}.

In the following, we first show that

Vk ⪰ 1

βD
∆Vk,s−1(i) (2.43)

for all i ∈ [N ]. Note that for any client i ̸= ck, we have

x⊤V−1
k(i)x

x⊤
(
Vk(i) +∆Vk,s−1(i)

)−1
x

≤ 1 +
∑

s∈Pk(i)

x⊤
s V

−1
k(i)xs

= 1 +
∑

s∈Pk(i)

σ2
k(i)(xs) ≤ 1 + β

∑
s∈Pk(i)

σ̃2
k(i)(xs)

≤ 1 + βD,

where the first inequality is due to Lemma A.10, the second inequality is due to Lemma 2.3.4 and Lemma A.11, and the
last inequality is due to (2.42).

This implies V−1
k(i) ⪯ (1 + βD)

(
Vk(i) +∆Vk,s−1(i)

)−1
. Then due to Lemma A.5, we have (1 + βD)Vk(i) ⪰

Vk(i) +∆Vk,s−1(i), and thus Vk(i) ⪰ 1
βD∆Vk,s−1(i). Moreover, since k(i) < k, ∀i ̸= ck, we have Vk ⪰ Vk(i) ⪰

1
βD∆Vk,s−1(i). Similarly for client ck, we have

x⊤V−1
k x

x⊤
(
Vk +∆Vk,s−1(ck)

)−1
x

≤ 1 +
∑

s′∈Pk:s′≤s−1

σ2
k(xs′) ≤ 1 + βD.
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Again, this implies Vk ⪰ 1
βD∆Vk,s−1(ck), which finishes the proof of (2.43).

By averaging (2.43) over all N clients, we have

Vk ⪰ 1

NβD

N∑
i=1

∆Vk,s−1(i),

and thus, we have

Vk +

N∑
i=1

∆Vk,s−1(i) ⪯ (1 +NβD)Vk.

Using Lemma A.5 again, we have (1 +NβD)(Vk +
∑N
i=1 ∆Vk,s−1(i))

−1 ⪰ V−1
k . Therefore, we have

σ2
k(x)

σ2
k,s−1(x)

≤
ϕ(x)⊤V−1

k ϕ(x)

ϕ(x)⊤
(
Vk +

∑N
i=1 ∆Vk,s−1(i)

)−1
ϕ(x)

≤ 1 +NβD

2.4 Conclusion
In conclusion, this chapter delved into the realm of cooperative decision-making algorithms for agents operating in
heterogeneous and non-stationary environments, as well as in decentralized environments. The investigation aimed to
understand the intricacies and challenges associated with cooperation in these complex scenarios and propose effective
solutions to enhance the decision-making capabilities of cooperative agents.

We studied a new bandit problem formulation, named clustered and non-stationary bandit, where the reward function
of each agent changes over time, which induces changes in the task similarities between agents. In this case, directly
pooling agents’ data together to learn a single model may have negative impacts on the performance. Instead, the
decision making system needs to carefully decide when and with whom the agents should collaborate, in order to enjoy
improved performance compared with learning a separate model on each agent. Existing cooperative decision making
algorithms cannot cope with this situation, as they usually impose stationary assumptions about the environment, and in
the meantime, existing algorithms designed for non-stationary environments cannot enjoy the benefit of cooperation, as
they only focus on mitigating the influence of outdated data on model estimation for a single agent. In [99, 102], we
proposed solutions that strictly generalize both lines of works, i.e., they work for non-stationary setting and cooperative
multi-agent setting simultaneously, by equipping the agents with statistical hypothesis tests, such that they can readily
adjust the group of agents to cooperate with, whenever change in the reward distribution is detected. With effective data
sharing across agents, the proposed algorithms were proved to achieve optimal theoretical guarantee, and demonstrated
superior performance on real-world recommendation datasets.

We then studied federated bandit problem, where data storage and computation are distributed to each agent. In this
case, communication bandwidth becomes the main bottleneck for cooperative decision making, e.g., communication in
a network of mobile devices can be slower than local computation by several orders of magnitude. This gives rise to the
conflict between the need of timely data/model aggregation for regret minimization and the need of communication
efficiency, and thus a well-designed communication strategy becomes vital to strike the balance. In [64, 84, 100, 98],
we designed cooperative decision making algorithms that attain provably optimal regret, while effectively reducing the
communication cost incurred during the online learning process.

Overall, the findings from our study highlight the importance of designing decision-making algorithms for coop-
erative agents in complex and diverse environments. The proposed approaches provide a solid foundation for future
research in the field of cooperative multi-agent systems, offering insights into addressing challenges in heterogeneous
and non-stationary environments, as well as decentralized scenarios. In conclusion, the advancements made in this
chapter contribute to the broader goal of developing cooperative decision-making algorithms that can enable agents to
effectively collaborate, adapt, and make optimal choices in heterogeneous, non-stationary, and decentralized environ-
ments. By fostering cooperation among agents, we can unlock tremendous potential for solving complex problems and
achieving collective goals that surpass the capabilities of individual entities alone.
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Chapter 3

Decision Making with Non-cooperative
Agents

As we discussed in Chapter 1, in non-cooperative multi-agent systems, where agents pursue self-interest and compete
for limited resources, the decision making problem takes on a more competitive nature, and collectively they may make
sub-optimal decisions. In this case, it is essential to factor in their self-interested behaviors, i.e., by carefully modeling
their various non-cooperative or even competitive behaviors, such as: 1) agents withhold the actual feedback, and the
system can only learn from their revealed preference feedback; 2) agents refuse to participate in cooperation, unless the
benefits of cooperation outweighs the risks, e.g., of privacy leakage; 3) agents are strictly competitive, i.e., the actions of
one agent negatively affect the utilities of the others. Therefore, for decision making systems with such non-cooperative
agents, we propose mechanisms/strategies on the system side to combat such non-cooperative behaviors for optimal
decision making. This chapter mainly uses recommender systems as motivating examples for various strategic behaviors
of the agents, but the proposed algorithms and theoretical results can be applied to much wider range of application
scenarios where self-interest and individual objectives take precedence over collaborative effort.

3.1 Learn optimal action from revealed preference feedback
A recommender system (hereinafter referred to as system) is designed to predict users’ preferences over items so as
to maximize the utility of the recommended items [103, 104]. Driven by this principle, there has been a tremendous
amount of research efforts and industry practices on developing various recommendation algorithms that predict item
utility for each user based on the observed user-item interactions, including collaborative filtering [103, 105, 106],
latent factor models [104, 107, 108], neural recommendation models [109, 110, 111], and sequential recommendation
models [112, 113, 114].

Nevertheless, this paradigm is built on an overly simplified user model: users are omniscient about the (millions
of) items and are willing to spend efforts to provide detailed feedback, so that the system can directly query their
preferences. This assumption ceases to be true in real-world recommendation applications where the size of the item
space could be formidably large. As a result, instead of being a static “classifier” [115, 17, 106], an ordinary user
typically is also learning the item utility from her interactions with the system. For instance, a user might be new to
a category of items; thus, her responses to such items can only be accurate after consuming the recommended items,
possibly even after multiple times.

This “inaccuracy” in users’ feedback cannot be simply modeled as random noise, since it naturally depend on the
interaction history and thus could be biased by her previous choices. More specifically, any small bias (e.g., towards
a particular item category) in the system’s past recommendations will bias the user’s learning, which consequently
leads to biased user feedback, which then further bias the system’s subsequent recommendations. This forms a vicious
circle – even if an optimal item is recommended to the user, she might not take it due to her currently inaccurate utility
estimation; but failing to consume the optimal item will stop the user from exploring that direction, and thus leading
to repeated future rejections of the same optimal recommendations. This is similar to the explore-exploit dilemma in
bandit problems, but is much worse because in bandit problems the noise of user feedback is independent from the
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interaction history, whereas here the bias will accumulate. Our problem setting also differs from reinforcement learning
where the reward function is fixed by the environment and independent from the agent’s actions.

To address the limitation caused by the previous omniscient user assumption, we propose to model a user as an
autonomous agent who is learning to evaluate the utility of system’s recommendations from her interaction history. We
formulate the system-user interaction in a dueling bandit setup [116], such that the user does not explicitly disclose
their estimated utility of a chosen item. This more challenging feedback assumption is motivated by the observation
that an ordinary user will most often take action that fulfills her information needs with the least effort, and thus does
not bother providing details, e.g., numerical ratings [15]. Specifically, we assume at each time step, the system proposes
two items for the user and can only observe the user’s choice between the two items, i.e., revealed preference feedback.
The system aims at minimizing the cumulative regret from the interaction with the user in a given period T .

3.1.1 Related works
The first related direction is the dueling bandit problem. First proposed by [117], dueling bandit models an online
learning problem where the feedback at each step is restricted to a noisy comparison between a pair of arms. In follow-up
works, [118] developed solutions by proposing a black-box reduction from dueling bandit to classic multi-armed bandit
(MAB), [119] studied the adversarial and contextual extensions of dueling bandit and generalized the solution concept.
Our feedback assumption is fundamentally different from that in dueling bandit as the user’s feedback evolves as she
learns from the realized rewards. This coupled environment results in the failure of almost all existing dueling bandit
algorithms, including those mentioned above, as we will demonstrate in our empirical study.

The ellipsoid method serves as a key building block in our algorithm design. First proposed by [120, 121], the
ellipsoid method is used to prove linear programs are solvable in polynomial time. Such an elegant idea has found
applications in preference elicitation [122], recommender systems design [123, 124], and feature-based dynamic pricing
[125, 126]. The main challenge in applying the ellipsoid method to our problem is that due to the user’s inaccurate
feedback, the system cannot control the intersection of the cutting hyperplane and thus needs to determine when to
shrink the uncertainty set adaptively.

3.1.2 Contemporaneous system-user learning problem
Our setup inherits from the celebrated contextual dueling bandit problem but considers intrinsically different user
behaviors, i.e., a learning and thus dynamically evolving user. Let A be the set of candidate items (henceforth, the arms)
that the system can recommend at each round t ∈ [T ]. We are interested in scenarios where A is formidably large and
diverse. Our results hold for arbitrary A, continuous or discrete, so long as it has a non-trivial interior and is sufficiently
“dense” (see formal definitions later). The user’s expected utility of consuming any arm a ∈ A is governed by a hidden
preference parameter θ∗ ∈ Rd and, specifically, is realized by the linear reward function θ⊤∗ a. At each round t, the
system recommends a pair of arms (a0,t,a1,t) and the user chooses one of them, i.e., the comparative feedback as in
dueling bandits. We assume that the user does not know θ∗ either and relies on her current estimation θt to make a
choice between (a0,t,a1,t). Since any non-zero scaling on θ∗ does not affect the user’s feedback, we assume ∥θ∗∥2 = 1
without loss of generality.

The key conceptual contribution of our problem setup is a formal non-stationary user model that captures a wide
range of user-system interactions yet still permits tractable analysis of online learning with non-trivial regret guarantees.
We defer a formal description of this user model to the following paragraphs, and only summarize the interaction
protocol at each round t ∈ [T ] as follows:

1. The system recommends (a0,t,a1,t) ∈ A2 to the user.

2. The user uses θt, i.e., her estimation of θ∗ at time t, to choose an arm from (a0,t,a1,t), denoted as at.

3. The user observes reward rt and updates θt+1 based on her observed history Ht = {(as, rs)}ts=1.

4. The system observes the user’s choice at and updates its recommendation policy.

The learning objective for the system is to minimize the regret defined as

RT =

T∑
t=1

θ⊤∗ (2a∗ − a0,t − a1,t), (3.1)
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where a∗ = argmaxa∈A θ
⊤
∗ a.

Next we introduce the remaining core components of the user behavior model by specifying: 1). her method for
estimating θt; and 2). her strategy for selecting an arm based on θt. We refer to them as the estimation rule and the
decision rule respectively.

Modeling a Learning User We consider a general model of a learning user as follows.

1. (Estimation Rule) The user collects the past observations Ht−1 and calculate θt = F (Ht−1) using any learning
algorithm F , such that

∥θ∗ − θt∥Vt ≤ c1t
γ1g(δ) (3.2)

holds with probability 1 − δ, where Vt = V0 +
∑t−1
s=1 asa

⊤
s , γ1 ∈ (0, 12 ) and c1 are constants such that c1 is

independent of t. V0 is assumed to be any Positive Semi-definite (PSD) matrix that summarizes the user’s prior
knowledge regarding the item space. One can interpret V0 as

∑n
i=1 a−ia

⊤
−i, where a−i is the user’s consumed

item before engaging with the system. The spectrum of V0 thus reflects the estimation accuracy regarding
different directions of the item space. For example, if V0 has some small eigenvalues, the user’s response can be
inaccurate in the corresponding eigen-directions. Our algorithm does not depend on the exact knowledge about
V0, but only on a lower bound estimation of its smallest eigenvalue.

2. (Decision Rule) When facing recommendations (a0,t,a1,t), the user makes the decision based on the following
index which combines her estimated utility and an explorative bonus term

r̂i = θ⊤t ai,t + β
(i)
t ∥ai,t∥V −1

t
, i = {0, 1}, (3.3)

where {β(0)
t }t∈[T ] and {β(1)

t }t∈[T ] are two arbitrary sequences satisfying β
(i)
t ∈ [−c2tγ2 , c2tγ2 ] for some

constant c2 and γ2. Then, the user returns her choice at with the largest index r̂ (breaking ties arbitrarily).

In essence, the estimation rule captures a crucial property of a learning user – the utility estimation for an item
becomes more accurate only when the user has experienced more similar items before. This is reflected in the data-
weighted matrix norm in (3.2). In other words, the user’s response will not be reliable if the recommended item is barely
related to her previously experienced items. A similar assumption is made to capture the user’s explorative behaviors
for previously unseen items, as described by (3.3). This is fundamentally different from classical recommendation
settings, where the uncertainty in user feedback is modeled by homogeneous noise of the same scale throughout the
course of user-system interactions.

Next we describe a learning user example, which is also the running example of our (more general) user behavior
model. As the true underlying utility function is linear, i.e., rt = θ⊤∗ at + ηt, where ηt is sub-Gaussian noise, linear
regression is a natural choice for a learning user’s estimation rule and its estimation confidence bound satisfies

∥θ∗ − θt∥Vt
≤ O

(√
d log t

δ

)
with probability 1 − δ [127]. In this case, γ1 can be any positive number and g(δ) =√

log 1
δ . But our user model covers more general estimation methods than linear regression. For example, to capture

the scenario where an ordinary user does not necessarily have the capacity to precisely execute such a sophisticate
estimation method, we allow the user’s estimation to have much larger error at the order of O(tγ1) as in (3.2), where
the parameter γ1 controls the convergence rate of user learning.

The decision rule accounts for a user’s potential exploration behavior when facing uncertainty, which has been
observed and supported in many studies in cognitive science [128, 129] and behavior science [130, 131]. One natural
option is to follow the “optimism in the face of uncertainty” (OFUL) principle [20]. Specifically, if θt is the least square
estimator, a learning user employing the celebrated LinUCB can be realized by setting β(0)

t = β
(1)
t = O(

√
log t) in

(3.3). But our decision rule in (3.3) is, again, much more general. To capture cases where users use a much looser
confidence bound estimation or even less rational arm choices, we allow β

(i)
t to deviate in a much larger range with

O(tγ2) (compared to O(
√
log t) in LinUCB). Additionally, we allow {β(i)

t }t∈[T ] to be arbitrary and even consist of
negative values. This enables us to model highly non-stationary user behaviors, e.g., being optimistic, pessimistic,
purely myopic (when β1

t = β0
t = 0), or an arbitrary mixture of any of them.

Parameters {γ1, γ2} depict the user learning’s convergence rate and user’s exploration strength, respectively.
Notably, we are only interested in the regime (γ1, γ2) ∈ [0, 12 )× [0, 12 ), because trace(Vt) is in the order of O(t) by the
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Figure 3.1: The unit ball (dashed line) is centered at the origin. Lt crosses the origin, cuts Et through its center xt and
yields Et+1. In a high dimensional space, we have additional degree of freedom to pick Lt that shrinks Et along all
possible directions.

definition of Vt. Therefore, we must have ∥θ∗ − θt∥Vt
= O(

√
t) whenever θ∗ is within a constant ℓ2 distance to the

user’s estimated parameter θt. As a result, if γ1 ≥ 1/2, it must be that the estimated θt is at least a constant distance
away from the true θ∗, and so is the estimated reward r̂i from the expected true reward. This makes it impossible for the
system to do no-regret learning. Similarly, ∥ai,t∥V −1

t
will be Θ(

√
t) for some ai,t and a γ2 ≥ 1/2 will also make the

estimated r̂i arbitrarily bad. As we will demonstrate in later analysis, the estimation error of r̂ turns out to be governed
by max{γ1, γ2}. Hence, for the ease of references, in the following analysis we conveniently refer to the above user
behaviors as (c, γ)-rationality, formally defined as:

Definition 3.1.1. [(c, γ)−rationality] Any user characterized by Estimation Rule (3.2) and Decision Rule (3.3) is said
to be (c, γ)−rational if γ ≥ max{γ1, γ2}, c ≥ max{c1, c2}.

As a concrete example, a user is (c, γ)-rational for an arbitrarily small γ if she runs LinUCB 1. This is because
under LinUCB we have ∥θ∗ − θt∥Vt

= O(
√
log t) and {β(0)

t , β
(1)
t } are also both in the order O(

√
log t). Therefore, γ

here can be an arbitrarily small positive number since log t
tγ → 0 as t→ ∞ for any γ > 0.

3.1.3 AES algrithm
In this section, we develop an efficient learning algorithm for the system to learn from any (c, γ)-rational user. The
regret of our algorithm has an order of Õ(cd2T

1
2+γ). Recall that, a user using the LinUCB algorithm corresponds to

an arbitrarily small γ. In this case, system learning essentially recovers the optimal O(
√
T ) regret in bandit learning,

despite that the system (1) only has limited comparative feedback about the user’s utility estimation; and (2) faces
non-stationary and non-stochastic user behaviors. More interestingly, our algorithm’s regret deteriorates gracefully as
γ ∈ [0, 12 ) increases, i.e., as the user’s learning converges at a slower rate or being more explorative as captured by γ.
The key conceptual message from our theoretical findings is that it is possible for a system to learn from a learning user,
and the convergence rate of the system’s learning deteriorates linearly in the convergence rate of the user’s learning.

The only caveat for our analysis is the O(d2) dependence in the regret upper bound, which is worse than the regret’s
linear dependence on d for standard no-regret learning problems. We believe this worse dependence is fundamentally
due to the fact that the system has to learn from the users’ binary feedback with diminishing yet non-stochastic noise.
This more challenging setup invalidates classic linear contextual bandit algorithms that rely on rewards with stochastic
noise. We thus develop an entirely different solution, which is a novel use of the celebrated ellipsoid method originally
developed for solving linear programs (necessary technical details of the ellipsoid method are provided in Section 3.1.7
for curious readers) [132, 120]. Our idea is to maintain a sequence of confidence ellipsoid {Et} for θ∗ and reduce the
volume of Et via a carefully chosen cutting hyperplane. The user’s binary comparative feedback then tells which side of
the hyperplane contains the true parameter, which prepares the subsequent cuts.

Warm-up: fast learning from a perfect user To illustrate the main idea of our solution, we start with a stylized
situation, where we make the following simplifications: 1). the user knows θ∗ precisely and makes decisions by directly
comparing θ⊤∗ a0,t and θ⊤∗ a1,t; 2). the action set is simply the unit ball A = {a : ∥a∥2 ≤ 1}.

1This is also the reason for our terminology “rationality”. That is, there exists (essentially) 0-rational learning users, so a γ-rational user for some
γ > 0 must not be perfectly rational.
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Algorithm 15 Active Ellipsoid Search on Unit Sphere
1: Input Dimension d > 0, number of iterations T > 0.
2: Initialization x0 = 0, P0 = Id
3: while 0 ≤ t ≤ T do
4: Compute eigen-decomposition Pt =

∑d
i=1 σ

(t)
i u

(t)
i u

(t)⊤
i , σ

(t)
1 ≥ · · · ≥ σ

(t)
d

5: Compute any unit vector gt ∈ span{u(t)
1 ,u

(t)
2 } that is orthogonal to xt;

6: Pick (a0,t,a1,t) = (−gt,gt); and observe the user’s choice ai,t, i ∈ {0, 1}.
7: Set g̃t = (2i− 1)gt/∥gt∥Pt

;
8: Update xt+1 = xt − 1

d+1Ptg̃t, and Pt+1 = d2

d2−1

(
Pt − 2

d+1Ptg̃tg̃
⊤
t Pt

)
.

9: Output: The estimation of θ∗ :θ̂T = u
(T )
1 .

Technical highlight I: novel use of the ellipsoid method Algorithm 15 describes our solution under this simplified
problem setting. We should note Algorithm 15 differs from the classic ellipsoid method in two aspects. First, our
algorithm has the freedom to actively choose the hyperplane Lt by picking {a0,t,a1,t} (thus named “Active Ellipsoid
Search”), while the classic ellipsoid method is always passively fed with an arbitrary separating hyperplane. Second,
Lt has to cross the origin by construction. Therefore, to accelerate the shrinkage of the volume of Et (i.e., Vol(Et)),
we prefer a cutting direction gt = a0,t − a1,t such that Lt goes through the center xt, i.e., g⊤

t xt = 0, and Vol(Et) is
halved after each iteration, as illustrated in Figure 3.1.

Though given more freedom, we also face a strictly harder problem. Specifically, when solving LPs, it suffices to
reach an ellipsoid Et with a small volume where the LP objective is guaranteed to be approximately optimal. However,
our goal here is to identify the direction of θ∗ with small error, and thus a small Vol(Et) is necessary but not sufficient.
For instance, a zero-volume ellipsoid in Rd can still enclose a d− 1 dimensional subspace and thus contains a very
diverse set of directions that are far from θ∗.

To achieve this strictly harder objective, we need Lt to cut Et along the direction in which Et has the largest width,
i.e., the most uncertain direction. This requires gt to be aligned with the eigenvector corresponding to the largest
eigenvalue of Pt, which is in general not compatible with g⊤

t xt = 0. Here then comes the crux of our approach – we
relax the second condition by picking gt from a two-dimensional space spanned by the eigenvectors corresponding to
the top-2 largest eigenvalues of Pt. Under this choice of gt, Et is guaranteed to converge to a skinny-shaped ellipsoid
with its longest axis converging to the direction of θ∗ at an exponential rate. The detail is presented in Algorithm 15,
and the convergence analysis of Algorithm 15 is formalized in the following theorem.

Theorem 3.1.2. At each time step t in Algorithm 15, let the eigenvalues of Pt be σ(t)
1 ≥ · · · ≥ σ

(t)
d . For any

d > 1, T > 0, we have

1. for any 2 ≤ i ≤ d,

σ
(T )
i ≤ exp

(4
d
− T

d2

)
, (3.4)

2. the ℓ2 estimation error for θ∗ is given by∥∥∥θ∗ − θ̂T

∥∥∥
2
≤ 2

√
d− 1 exp

(2
d
− T

2d2

)
. (3.5)

We postpone the proof of Theorem 3.1.2 to Section 3.1.7. This theorem indicates that the ℓ2 estimation error for θ∗
converges to zero at the rate of O

(
d

1
2 exp (− T

2d2 )
)
. In other words, to guarantee ∥θ∗ − θ̂T ∥2 < ϵ, at most O(d2 log d

ϵ )
iterations are needed.

3.1.4 RAES algrithm
The previous section illustrates our system learning principle, but under a greatly simplified setting with a perfect user.
In this section, we extend the solution to account for a learning user who does not know θ∗ and keeps refining her
estimation θt. Here, the user’s feedback still provides a linear inequality regarding θ∗ and thus similarly serves as a
cutting hyperplane. But since the user acts based on the index r̂i = θ⊤t ai,t + β

(i)
t ∥ai,t∥V −1

t
, the cutting hyperplane
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now has the form Lt = {z : z⊤(a0,t − a1,t) = β
(1)
t ∥a1,t∥V −1

t
− β

(0)
t ∥a0,t∥V −1

t
}. Importantly, the intercept term now

depends on {β(0)
t , β

(1)
t } which are arbitrary within the uncertainty region [−ctγ , ctγ ].

Technical highlight II: ellipsoid search with noise Due to the aforementioned noise in the users’ binary feedback,
we thus face an interesting challenge – how to perform the ellipsoid search under (non-stochastic) noisy feedback?
Somewhat surprisingly, this basic question was not addressed in literature about ellipsoid method. We tackle this
challenge by refining the ellipsoid method to tolerate carefully chosen scales of noise and decreasing the tolerance as the
ellipsoid shrinks. In order to elicit more accurate feedback, our algorithm must ensure the diversity of the recommended
items to prepare the user for improved precision of her responses in all directions. To this end, we improve Algorithm
15 by adaptively preparing the user until a desirable level of accuracy of her estimated θt is reached and then cut the
ellipsoid. To our knowledge, this noise-robust version of ellipsoid method is novel by itself and may be of independent
interest. We coin this new algorithm “Noise-robust Active Ellipsoid Search”, or RAES in short.

Algorithm 16 Noise-robust Active Ellipsoid Search (RAES)
1: Input: Action set A ⊂ Rd with constants (D1, D0, L, ϵ0), time horizon T0 and T , cutting threshold k > 1, and

probability threshold δ > 0
2: Initialization: A user who is (c, γ)−rational, λ0 > 0 be any lower bound estimation of the minimum eigenvalue

of V0, set V0 = λ0Id, x0 = 0, P0 = Id.
3: while 0 ≤ t ≤ T do
4: Compute eigen-decomposition

Pt =
∑d
i=1 σ

(t)
i u

(t)
i u

(t)⊤
i , σ

(t)
1 ≥ · · · ≥ σ

(t)
d .

5: Compute a unit vector gt ∈ span{u(t)
1 ,u

(t)
2 } that is orthogonal to xt;

6: Pick any pair (ā0,t, ā1,t) such that ā1,t − ā0,t = mgt, m ≥ 2D0, and compute αt according to (3.8);
7: if t ≤ T0 and αt ≥ − 1

kd then
8: Recommend (a0,t,a1,t), observe the user’s choice at = ai,t, i ∈ {0, 1};
9: Set g̃t = (2i− 1)gt/∥gt∥Pt ;

10: Update

xt+1 = xt −
1 + dαt

d+ 1
Ptg̃t; (3.6)

Pt+1 =
d2(1− α2

t )

d2 − 1

(
Pt −

2(1 + dαt)Ptg̃tg̃
⊤
t Pt

(d+ 1)(1 + αt)

)
; (3.7)

11: else if t ≤ T0 then
12: Compute v1 and vd, the two eigenvectors associated with the largest and smallest eigenvalues of Vt, and pick

(ā0,t, ā1,t) = D0(
4
5v1 ± 3

5vd);
13: Recommend (a0,t,a1,t), observe user’s choice at;
14: (xt+1, Pt+1) = (xt, Pt);
15: else
16: Compute at = argmaxa∈A u

(t)⊤
1 a;

17: Recommend (at,at);
18: (xt+1, Pt+1) = (xt, Pt);
19: Update Vt+1 = Vt + ata

⊤
t .

Regularity assumptions on the action set Before introducing the RAES algorithm, we first pose several natural
and technical assumptions regarding the action set A ⊂ Rd. Specifically, Bdp(0, r) denotes the d-dimensional ℓp ball
centered at the origin with radius r. Without loss of generality, we assume 0 ∈ A ⊂ Bd2(0, D1) since one can always
shift all actions by the same amount and then re-scale the actions without changing the users’ responses.

The first assumption is a familiar one, as also used in previous works such as [133].

Assumption 7 (L-Smooth Best Arm Response Condition, L-SRC). Let x∗
A = argmaxx′∈A x⊤x′,∀x ∈ A. There

exists a constant L > 0 such that for any pair of non-zero unit vectors x,y ∈ Rd, we have

∥x∗
A − y∗

A∥2 ≤ L · ∥x− y∥2.
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A compact set A satisfies L-SRC if and only if A can be represented as the intersection of closed balls of radius L.
Intuitively, the L-SRC condition requires the boundary of A to have a curvature that is bounded below by a positive
constant. For instance, the unit ball satisfies 1-SRC, and an ellipsoid of the form {u ∈ Rd : u⊤P−1u ≤ 1}, where P is
a PSD matrix, satisfies the λmax(P )√

λmin(P )
-SRC.

Assumption 8 (ϵ-Dense Condition, ϵ-DC). A is an ϵ-cover of a continuous set Ā, i.e., Ā ⊂ ∪x∈ABd2(x, ϵ). In addition,
there exists constants D1 > D0 > 0 such that Bd2(0, D0) ⊆ A, Ā ⊆ Bd2(0, D1).

This assumption suggests the action set A is sufficiently dense. A continuous A is 0-DC. However, ϵ-DC relaxes
the continuity requirement on A by allowing A to take the form of an ϵ-net of a continuous set Ā. For convenience of
references, we associate any element ā ∈ Ā with an element a ∈ A such that ∥a − ā∥2 ≤ ϵ. For our analysis, this
relation does not need to be exclusive or reversible.

As indicated in the initialization of Algorithm 16, RAES does not rely on the exact values of (c, γ, V0), which
could be difficult to attain in reality. Instead, any reasonable upper bounds for c and γ, and a lower bound of λmin(V0)
suffice. Similar to Algorithm 15, RAES also maintains a sequence of confidence ellipsoids {Et}. A hyper-parameter
T0 separates the time horizon T into two phases. At time step t, the system first proposes the most promising cutting
direction gt. However, different from Algorithm 15 which always cuts Et immediately, RAES needs to compute the
cutting depth αt (defined in (3.8)) and determine whether the user’s feedback is precise enough for the system to yield
an improved estimation. Intuitively, αt measures the normalized signed distance between the center of Et and the
cutting hyperplane Lt: αt ∈ (− 1

d , 0) corresponds to a shallow-cut where Lt removes less than half of the volume of the
ellipsoid; αt ∈ (0, 1) corresponds to a deep-cut where more than half of the volume is reduced; and αt = 0 happens
only when Lt cuts Et through the center. Since we need to deal with the uncertainty in the user’s response, we may only
expect shallow-cuts. Depending on αt and T0, the system makes a decision among the following three options, which
we refer to as cut, exploration, and exploitation:

1. (Cut) If t ≤ T0 and αt ≥ − 1
kd , cut Et and update (xt, Pt).

2. (Exploration) If t ≤ T0 and αt < − 1
kd , make recommendations to ensure the user is exposed to the least explored

directions in Vt.

3. (Exploitation) If t > T0, recommend the empirically best arm to the user.

The purpose of an exploration step is to prepare the user such that a smaller α can be expected in the future. By
the definition of αt, the only way to decrease it is by increasing λmin(Vt), which can be achieved by presenting the
least exposed direction to the user 2. Finally, when the system believes the user’s estimation error of θ∗ is acceptable
to induce a small regret, it stops preparing the user and recommends the empirically best arm when no further cut is
available. The algorithm can be understood as a phase of exploration of length T0 followed by a phase of exploitation,
with a sequence of cut steps scattered within. The sublinear regret can be guaranteed by carefully choosing T0.

3.1.5 Regret analysis
Before analyzing RAES, we provide an intuitive explanation for it. First of all, the cutting direction gt is the same as
the choice in Algorithm 15, which ensures the separation hyperplane can intersect Et along the most uncertain direction.
Next, we translate the user’s comparative feedback regarding θt into an inequality regarding θ∗ with high probability,
i.e., θ⊤∗ gt ≤ (or ≥)b, by pinning down the intersection term b. This can be realized by leveraging the property of the
user’s estimation and decision rules, resulting in the explicit form of αt. To simplify the technical analysis, with a
slight abuse of notation, we use the subscript t in {(xt, Pt)}Nt=1 to describe the confidence ellipsoids after the t-th cut in
RAES, and N is the total number of cuts in horizon T . Lemma 3.1.3 characterizes the effect from each cut, exploration,
and exploitation step:

Lemma 3.1.3. If we choose

αt = −
ctγ

(
∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
+ g(δ)∥a0,t − a1,t∥V −1

t

)
+ 2ϵ0

∥gt∥Pt

(3.8)

2A straightforward way for increasing λmin(Vt) is to feed the user with the eigenvector corresponding to λmin(Vt). However, to avoid forcing a
user to choose between two identical items (if they are not optimal), we let the system recommend two different items.
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in Algorithm 16, we have

1. After each cut, Vol(Et+1) ≤ exp
(
− (k−1)2

2k2d

)
Vol(Et).

2. If at least d exploration steps are taken starting from any time step t0 to t0 + n, we have λmin(Vn+t0) ≥
λmin(Vt0) +

4D0

25 − 3ϵ0.

3. At any exploitation step t, the instantaneous regret is upper bounded by 2L∥θ∗ − u
(t)
1 ∥22.

Using Lemma 3.1.3, we can derive the convergence rate of σ(t)
i and the regret upper bound of RAES in the following

Theorem 3.1.4, whose proof can be found in Section 3.1.7.

Theorem 3.1.4. For any d > 1, n > 0, let σ(n)
i be the i-th largest eigenvalue of Pn after the n-th cut, we have

1. For any 2 ≤ i ≤ d,

σ
(n)
i ≤ exp

(4
d
− (k − 1)2n

k2d2

)
. (3.9)

2. When T0 = O
(
cL

1
2D

1
2
1 D

− 3
2

0 g(δ)d2T
1
2+γ

)
and ϵ0 < O

(
cD1D

− 1
2

0 d−
1
2T− 1

4+
γ
2

)
, the regret of RAES is upper

bounded by O
(
cL

1
2D

3
2
1 D

− 3
2

0 g( δT0
)d2T

1
2+γ

)
with probability 1− δ.

Theorem 3.1.4 suggests when A is continuous or sufficiently dense, RAES achieves a regret upper bound
Õ(cd2T

1
2+γ) when g( δT0

) grows logarithmically in T0. Recall that γ ∈ [0, 12 ) denotes the rationality of the user:
when γ is large, the system obtains less accurate responses from the user and thus suffers from a worse regret guarantee.
When γ = 0, e.g., the user executes LinUCB, we get an upper bound of the order Õ(

√
T ), which nearly matches the

lower bound, as we will show in the following section.
We conclude this technical section by showing a regret lower bound for the system’s learning. This lower bound

applies for any γ > 0, and it nearly matches the above upper bound w.r.t. time horizon T when γ is close to zero. This
result leaves an intriguing open question about how tight our Algorithm 16 is for general γ, i.e., for every γ ∈ (0, 1/2),
what is the best possible regret for the system? We remark that resolving this open question appears to require
significantly different machinaries as used in current lower bound proofs for bandit algorithms since these arguments are
primarily based on information theory and thus intrinsically rely on assumption of random noises [127, 133], whereas
the user’s feedback noise in our model is arbitrary (though also diminishing with more rounds). We thus leave this as an
interesting future direction to explore.

Theorem 3.1.5. For any γ > 0, there exists a function T0(d) > 0 such that for any d ≥ 1, T > T0(d), and any
algorithm G that has merely access to the comparison feedback given by a rational user defined in Definition 3.1.1,
there exists θ∗ ∈ ∂Bd1 such that the expected regret RT defined in Eq (3.1) obtained by G satisfies

R
(s)
T (G, θ∗) ≥

exp(−2)

4
(d− 1)

√
T . (3.10)

Theorem 3.1.5 may appear not surprising since, intuitively, the system’s learning task appears no easier than the
standard stochastic linear bandit problems for which the lower bound is already O(

√
T ) [133]. However, it turns out

that delivering a rigorous proof is more subtle than this intuition, and for that we have to overcome two technical
challenges: 1). adapting the current minimax lower bound proof for stochastic linear bandits to the setup where the
norm of θ∗ is bounded away from zero; 2). constructing a black-box reduction from the system’s regret to the user’s
regret. Due to the space limit, we defer the proof details to Section 3.1.7.

3.1.6 Experiment setup & results
In this section, we study the empirical performance of RAES to validate our theoretical analysis by running simulations
on synthetic datasets in comparison with several baselines.

There is no direct baseline for comparison since the learning environment we studied is new. Given the linear
reward and the binary comparative feedback assumptions, we take several contextual dueling bandit algorithms for
comparison, including Dueling Bandit Gradient Descent (DBGD) [117], Doubler [118], and Sparring [118, 134].
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Figure 3.2: The regret of RAES against a learning user with different V0 and γ over time. Left: Fix γ = 0.1, plot for
different choices of V0; Right: Fix V0 = Id, plot for different choices of γ.

Configuration of baseline algorithms DBGD [117] maintains the currently best candidate at and compares it
with a neighboring point at + ηut along a random direction ut. An update is taken when the proposed point wins
the comparison. DBGD works for continuous convex action set and has a regret guarantee of O(T 3/4). Although
its theoretical guarantee only holds under a strictly concave utility function, it can be reasonably adapted to our
problem setting empirically. DBGD’s hyper-parameters include the starting point w0, and two learning rates δ, γ that
control the step-lengths for proposing new points and update the current points, respectively. In the experiment, these
hyper-parameters are set to (w0, δ, γ) = (0, d−

1
2T− 1

4 , T− 1
2 ), as recommended in [117].

Doubler [118] is the first approach that converts a dueling bandit problem into a conventional multi-armed bandit
(MAB) problem. Doubler proceeds in epochs of exponentially increasing size: in each epoch, the left arm is sampled
from a fixed distribution, and the right arm is chosen using an MAB algorithm to minimize regret against the left arm.
The feedback received by the MAB algorithm is the number of wins the right arm encounters when compared against
the left arm. Doubler is proved to have Õ(T 1/2) regret for continuous action set under the linear reward assumption.
The black-box MAB algorithm that is needed to initiate Doubler is set to the OFUL algorithm in [20].

Sparring [118, 134] is also a general reduction from dueling bandit to MAB. Like Doubler, it also requires black-box
calls to an MAB algorithm and achieves regret of the same order as the MAB algorithm. Instead of comparing with
a fixed distribution, Sparring initializes two MAB instances and lets them “spar” against each other. As a heuristic
improvement of Doubler, Sparring does not have a regret upper bound guarantee but is reported to enjoy a better
performance compared to Doubler [118]. The black-box MAB algorithm that is needed to initiate Sparring is set to the
OFUL algorithm in [20].

Simulation environment and metrics In all experiments, we fix the action set A = Bd2(0, 1), i.e., D0 = D1 = 1,
and δ = 0.1, k = 1.05. We consider a (1, γ)-rational user with γ ∈ {0, 0.2} and prior knowledge matrix V0. The
user’s decision sequence {β(0)

t } and {β(1)
t } are independently drawn from [−tγ , tγ ]. The ground-truth parameter θ∗ is

sampled from ∂Bd2(0, 1) and the reported results are collected from the same problem instance and averaged over 10
independent runs.

Robustness of RAES against a learning user We first demonstrate the performance of RAES under (T, T0, d) =
(10000, 1500, 5) against a (1, γ)-rational user with different γ and V0 in Figure 3.2. The x-axis denotes time step t and
y-axis denotes the accumulated regret up to the time step t. The left panel illustrates the performance of RAES when
γ = 0.1 and V0 ∈ {V0(i) : 0 ≤ i ≤ 5}, where V0(i) is the diagonal matrix with i diagonal entries being 1 while other
5− i entries being 100. Unsurprisingly, RAES achieves the best performance when the user has the most informative
prior V0(0). When V0 has small eigenvalues, RAES needs more exploration steps in the first T0 rounds, but the resulting
added regret is not significant. The right panel shows the result when V0 = Id and γ ∈ {0, 0.1, 0.2, 0.3} which confirms
our theoretical analysis that the regret of RAES grows in order O(T

1
2+γ).
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Figure 3.3: The accumulated regret of RAES and three baseline algorithms. Different colors specify different algorithms.
Each star represents the accumulated regret (y-axis) of the algorithm given time horizon T (x-axis) with γ = 0. Left:
V0 = 100Id; right: V0 = diag(100, 10, 5, 2, 1).

Comparison with baseline algorithms The comparison between RAES and the three baselines against learning users
are shown in Figure 3.3, where the x-axis denotes different time horizons T , and the y-axis denotes the corresponding
accumulated regret. {γ, T0} are set to 0 and 0.25× d2

√
T . The left panel shows the result with V0 = 100Id, i.e., each

algorithm is facing a well-prepared user, while the right panel is plotted with V0 = diag(100, 20, 5, 2, 1). The result
demonstrates that RAES enjoys the best performance and is robust against different types of learning users. Since
Doubler and Sparring employ a black-box linear bandit algorithm as their subroutine, the violation of the stochastic
reward assumption breaks down the linear bandit algorithm and thus the failure of the algorithms themselves. For
DBGD, the left panel suggests that it can still enjoy a sub-linear regret under milder users’ rationality assumptions.
However, when the user’s prior V0 is ill-posed (i.e., λmin(V0) is small), the performance of DBGD deteriorates seriously.
In particular, under an ill-posed V0, the user’s feedback can be misleading along certain directions, and the design of
DBGD does not provide any mechanism to increase the accuracy of user feedback along these directions.

3.1.7 Full proof of AES and RAES algorithm
Preliminaries on ellipsoid method

A d × d matrix A is symmetric when A = A⊤, and any symmetric matrix A admits an eigenvalue decomposition
A = UΣU⊤, where U is a orthogonal matrix and Σ = diag(σ1, · · · , σd) is a diagonal matrix with diagonal elements
σ1 ≥ · · · ≥ σd. We refer to σi(A) as the i-th largest eigenvalue of A. A symmetric matrix A is called positive definite
(PD) if all its eigenvalues are strictly positive.

{g⊤(z− x) ≤ b} ∩ E ′(x′, P ′)

An ellipsoid is a subset of Rd defined as

E(x, P ) = {z|(z− x)⊤P−1(z− x) ≤ 1},

where x ∈ Rd specifies its center and the PD matrix P specifies its geometric shape. Each of the d radii of E(x, P )
corresponds to the square root of an eigenvalue of P and the volume of the ellipsoid is given by

Vol(E(x, P )) = Vd
√
detP = Vd

√√√√ d∏
i=1

σd,

where Vd is a constant that represents the volume of the unit ball in Rd. If a hyperplane g⊤(z− x) = b with normal
direction g and intersection b cuts the ellipsoid E(x, P ) to two pieces, the smallest ellipsoid containing the area
{g⊤(z− x) ≤ b} ∩ E(x, P ) can be captured by E ′(x′, P ′), where the new center x′ and the shape matrix P ′ can be
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computed via the following closed form formula:

x′ = x− 1 + dα

d+ 1
P g̃, (3.11)

P ′ =
d2(1− α2)

d2 − 1

(
P − 2(1 + dα)

(d+ 1)(1 + α)
P g̃g̃⊤P

)
, (3.12)

α = − b√
g⊤Pg

, (3.13)

g̃ =
1√

g⊤Pg
g, (3.14)

where α represents the cutting-depth which we will elaborate on later. To narrow down the feasible region of the target
parameters, it is desirable to let Vol(E ′) as small as possible. At least, we need to ensure that Vol(E ′) < Vol(E). Basic
algebraic calculation shows that

Vol(E ′
)

Vol(E)
=

√
detP ′

detP
=
(d2(1− α2)

d2 − 1

) d
2
(
1− 2(1 + dα)

(d+ 1)(1 + α)

) 1
2

(3.15)

=
(
1 +

1 + dα

d− 1

) d−1
2
(
1− 1 + dα

d+ 1

) d+1
2

=
(d(1 + α)

d− 1

) d−1
2
(d(1− α)

d+ 1

) d+1
2

, (3.16)

where Eq (3.15) is from Eq (3.12) and the fact that det(P − βvv⊤) = (1 − β∥v∥2P ) det(P ). Eq (3.16) indicates
that Vol(E ′) < Vol(E) if and only if α ∈ (− 1

d , 1). The quantity α serves as an indicator of the “depth” of the cut:
α ∈ (− 1

d , 0) corresponds to a shallow-cut where the proposed cutting hyperplane removes less than half of the volume
of the ellipsoid; α ∈ (0, 1) corresponds to a deep-cut where more than half of the volume is removed. And α = 0
happens only when b = 0, meaning the cutting hyperplane goes through the center x and exactly half of the volume is
removed. In our problem setting, since we need to deal with the uncertainty in the user’s response, we may only expect
shallow-cuts. In addition, from Eq (3.16) we can show that for any − 1

d < α < 1,

Vol(E ′
)

Vol(E)
≤ exp

(
− (1 + dα)2

2d

)
. (3.17)

Omitted proof in Section 3.1.3

To prove Theorem 3.1.2, we need the following technical lemmas. Lemma 3.1.6 states that the product of the largest two
eigenvalues of Pt must shrink w.r.t. a constant factor after each cut. Since det(Pt) approaches zero at an exponential
rate (from Eq (3.17)), Pt can only have one potentially large eigenvalue while all other eigenvalues must approach
zero. Lemma 3.1.7 implies that at any time step t, the “gap” between Pt’s second-largest eigenvalue and the smallest
eigenvalue can be upper bounded by a constant. Given that the determinant of Pt converges to 0 at an exponential rate,
all the eigenvalues of Pt except the largest one must also converge to 0 exponentially fast.

Lemma 3.1.6. In Algorithm 15, let the eigenvalues of Pt be σ1 ≥ · · · ≥ σd and the eigenvalues of Pt+1 be {σ′
1, · · · , σ′

d}.
Then we have

1. for any 3 ≤ i ≤ d, we have equalities

σ′
i =

d2

d2 − 1
σi.

2. for σ′
1, σ

′
2, we have σ′

1σ
′
2

σ1σ2
= d4

(d+1)3(d−1) < 1 and the following bound

max{σ′
1, σ

′
2} ∈ [

d2

(d+ 1)2
σ1,

d2

d2 − 1
σ1], (3.18)
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min{σ′
1, σ

′
2} ∈ [

d2

(d+ 1)2
σ2,

d2

d2 − 1
σ2]. (3.19)

Proof. Claim 1. Suppose Pt = UΣU⊤, where Σ = diag(σ1, · · · , σd) and U = [u1, · · · ,ud]. From the update rule of
Pt+1, for any 3 ≤ i ≤ d we have

Pt+1ui =
d2

d2 − 1

(
Pt −

2

d+ 1
Ptg̃tg̃

⊤
t Pt

)
ui

=
d2

d2 − 1
σiui −

d2

d2 − 1
· 2σi
d+ 1

Ptg̃t(g̃
⊤
t ui)

=
d2

d2 − 1
σiui, (3.20)

where Eq (3.20) holds because g̃t ∈ span{u1,u2}. Therefore, { d2

d2−1σi}
d
i=3 are d− 2 eigenvalues of Pt+1.

Claim 2. By the choice of gt, the cutting hyper plane always goes through xt (i.e., α = 0). Therefore, by Eq (3.17) we

obtain
∏d

i=1 σ
′
i∏d

i=1 σi
= d2

(d+1)2 ·
(

d2

d2−1

)d−1

. Consider Eq (3.20), we conclude that the remaining two eigenvalues of Pt+1

satisfy
σ′
1σ

′
2

σ1σ2
=

d2

(d+ 1)2
· d2

d2 − 1
=

d4

(d+ 1)3(d− 1)
< 1. (3.21)

Next we derive the bound for σ′
1, σ

′
2. Let gt = pu1 + qu2, and

Ptg̃t =
pσ1√

p2σ1 + q2σ2
u1 +

qσ2√
p2σ1 + q2σ2

u2 ≜ v1u1 + v2u2.

It is easy to see that d
2−1
d2 σ′

1,
d2−1
d2 σ′

2 are the two eigenvalues of the following 2× 2 matrix

A =

[
σ1 0
0 σ2

]
− 2

d+ 1

[
v1
v2

]
·
[
v1 v2

]
. (3.22)

Without loss of generality, we assume σ′
1 ≥ σ′

2. Applying Weyl’s inequality in matrix theory [135, 136] to matrix A
yields

σ1 ≥ d2 − 1

d2
σ′
1 ≥ σ2 ≥ d2 − 1

d2
σ′
2. (3.23)

On the other hand, from Eq (3.21) we also have

σ′
1

σ1
=

d4

(d+ 1)3(d− 1)

σ2
σ′
2

≥ d4

(d+ 1)3(d− 1)
· d

2 − 1

d2
=

d2

(d+ 1)2
, (3.24)

σ′
2

σ2
=

d4

(d+ 1)3(d− 1)

σ1
σ′
1

≥ d4

(d+ 1)3(d− 1)
· d

2 − 1

d2
=

d2

(d+ 1)2
. (3.25)

From Eq (3.23), (3.24), (3.25), we obtain Eq (3.18), (3.19) and therefore complete the proof.

Lemma 3.1.7. At each time step t in Algorithm 15, let the eigenvalue of Pt be σ(t)
1 ≥ · · · ≥ σ

(t)
d . Further let

Dt = σ
(t)
2 /σ

(t)
d , we claim

1. for any t ≥ 0, Dt+1 ≤ d+1
d−1 ·Dt;

2. if Dt >
d+1
d−1 , Dt+1 ≤ Dt.

3. for any n ≥ 0,

max
0≤t≤n

Dt ≤
(d+ 1

d− 1

)2
. (3.26)
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Proof. From Lemma 3.1.6, we know that the eigenvalues of Pt+1 is {σ′
1, σ

′
2,

d2

d2−1σ
(t)
3 , · · · , d2

d2−1σ
(t)
d }, where σ′

1 ≥ σ′
2

and
d2

(d+ 1)2
σ
(t)
2 ≤ σ′

2 ≤ d2

d2 − 1
σ
(t)
2 (3.27)

Claim 1. Because σ′
1 ≥ σ′

2, σ(t)
3 ≥ · · · ≥ σ

(t)
d , and note that σ(t+1)

2 and σ(t+1)
d are the second-largest element and the

smallest element of {σ′
1, σ

′
2,

d2

d2−1σ
(t)
3 , · · · , d2

d2−1σ
(t)
d }, the value of (σ(t+1)

2 , σ
(t+1)
d ) must satisfy one of the following

situation:

1. if (σ(t+1)
2 , σ

(t+1)
d ) = (σ′

2,
d2

d2−1σ
(t)
d ), from Eq (3.27) we have

Dt+1

Dt
=
d2 − 1

d2
· σ

′
2

σ2
≤ 1. (3.28)

2. if (σ(t+1)
2 , σ

(t+1)
d ) = ( d2

d2−1σ
(t)
i , d2

d2−1σ
(t)
d ) for some 3 ≤ i ≤ d− 1, we have

Dt+1

Dt
=
σ
(t)
i /σ

(t)
d

σ
(t)
2 /σ

(t)
d

≤ 1. (3.29)

3. if (σ(t+1)
2 , σ

(t+1)
d ) = ( d2

d2−1σ
(t)
i , σ′

2) for some 3 ≤ i ≤ d− 1, from Eq (3.27) we have

Dt+1

Dt
=

d2

d2 − 1
· σ

(t)
i

σ′
2

·
σ
(t)
d

σ
(t)
2

≤ d2

d2 − 1
· σ

(t)
2

σ′
2

≤ d2

d2 − 1
· (d+ 1)2

d2
=
d+ 1

d− 1
. (3.30)

By Eq (3.28), (3.29), (3.30), the first claim holds.
Claim 2. It suffices to show that the situation (3) cannot happen when Dt >

d+1
d−1 . In fact, when Dt >

d+1
d−1 , from Eq

(3.27) we have

σ′
2 ≥ d2

(d+ 1)2
σ
(t)
2 =

d2

(d+ 1)2
σ
(t)
d Dt >

d2

(d+ 1)2
· d+ 1

d− 1
· σ(t)

d =
d2

d2 − 1
σ
(t)
d ,

meaning σ′
2 cannot be the smallest eigenvalue of Pt+1. As a result, the second claim holds by Eq (3.28), (3.29).

Claim 3. We prove Eq (3.26) by contradiction. Let n0 be the smallest index in set argmax0≤t≤nDt. If n0 = 0, we

have max0≤t≤nDt = D0 = 1 <
(
d+1
d−1

)2
. Now consider the case n0 ≥ 1 and suppose Dn0 >

(
d+1
d−1

)2
. By Claim

1, we have Dn0−1 ≥ d−1
d+1Dn0

> d+1
d−1 . Apply Claim 2 to Dn0−1, we obtain Dn0

≤ Dn0−1, which contradicts the
definition of n0. Hence, Claim 3 holds.

Now we are ready to present the proof of the convergence theorem for Algorithm 15:

Theorem 3.1.8. At each time step t in Algorithm 15, let the eigenvalues of Pt be σ(t)
1 ≥ · · · ≥ σ

(t)
d . For any

d > 1, T > 0, we have

1. for any 2 ≤ i ≤ d,

σ
(T )
i ≤ exp

(4
d
− T

d2

)
. (3.31)

2. the ℓ2 estimation error for θ∗ is given by∥∥∥θ∗ − θ̂T

∥∥∥
2
≤ 2

√
d− 1 exp (

2

d
− T

2d2
), (3.32)
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Proof. Since the depth of the cut α = 0 through out the execution of Algorithm 15, from Eq (3.17) we have

d∏
i=1

σ
(T )
i =

detPn
detP0

≤ exp
(
− T

d

)
. (3.33)

From Lemma 3.1.7, we have σ(T )
i ≥ σ

(T )
d ≥

(
d−1
d+1

)2 · σ(n)
2 ,∀3 ≤ i ≤ d. Therefore,

exp
(
− T

d

)
≥

d∏
i=1

σ
(T )
i

≥ σ
(T )
2 · σ(T )

2 ·
[(d− 1

d+ 1

)2 · σ(T )
2

]d−2

= [σ
(T )
2 ]d ·

(
1− 2

d+ 1

)2d−4

≥ exp (−4) · [σ(T )
2 ]d.

Rearranging terms yields σ(T )
2 ≤ exp

(
4
d − T

d2

)
, and thus σ(T )

i ≤ exp
(

4
d − T

d2

)
,∀2 ≤ i ≤ d.

Let ⟨x,y⟩ = arccos ( x·y
∥x∥·∥y∥ ) denote the included angle between vector x and y, now we are prepared to upper

bound the directional estimation error sin⟨θ̂T , θ∗⟩. First of all, note that θ∗,0 ∈ ET for any n ≥ 0, meaning there exists
{(pi, qi)}di=1 such that

θ∗ = xT +

d∑
i=1

piu
(T )
i ,

d∑
i=1

p2i

σ
(T )
i

≤ 1. (3.34)

0 = xT +

d∑
i=1

qiu
(T )
i ,

d∑
i=1

q2i

σ
(T )
i

≤ 1. (3.35)

As a result, θ∗ =
∑d
i=1(pi − qi)u

(T )
i , and pi, qi ≤

√
σ
(T )
i , 2 ≤ i ≤ d. Therefore,

sin⟨θ∗, θ̂T ⟩ =
√
1− cos2⟨θ∗, θ̂T ⟩ =

√
1− (θ⊤∗ u1)2

∥θ∗∥22
=

1

∥θ∗∥2
·

√√√√ d∑
i=2

(pi − qi)2

≤ 2

∥θ∗∥2
·

√√√√ d∑
i=2

σ
(T )
i ,

Now we know that the directional inference error for θ∗ converges to zero at rate O
(
d

1
2 exp (− T

2d2 )
)
. When the system

knows ∥θ∗∥2 = 1, the ℓ2 estimation error for θ∗ can be obtained from∥∥∥θ∗ − ∥θ∗∥2 ·
θ̂T

∥θ̂T ∥2

∥∥∥
2
≤ 2∥θ̂T ∥2 sin(⟨θ∗, θ̂T ⟩/2)

≤ 2

√√√√ d∑
i=2

σ
(T )
i (3.36)

where the last inequality holds because sinx ≤ x, ∀x > 0. In particular, plugin Eq (3.4) into the R.H.S. of Eq (3.36),
we obtain Eq (3.5).
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Proof of Theorem 3.1.4 in Section 3.1.5

The following Lemma 3.1.9 and 3.1.10 are used in the proof of Theorem 3.1.4. Lemma 3.1.9 and 3.1.10 are generaliza-
tions of Lemma 3.1.6 and 3.1.7 under arbitrary cutting depth αt.

Lemma 3.1.9. In Algorithm 16, suppose a valid cut is executed at step t with depth − 1
kd ≤ αt ≤ 0. Let the eigenvalues

of Pt be σ1 ≥ · · · ≥ σd and the eigenvalues of Pt+1 be {σ′
1, · · · , σ′

d}. Then we have

1. for any 3 ≤ i ≤ d, we have equalities

σ′
i =

d2(1− α2
t )

d2 − 1
σi.

2. for σ′
1, σ

′
2, we have σ′

1σ
′
2

σ1σ2
= d4(1−αt)

3(1+αt)
(d+1)3(d−1) < 1 and the following bound

max{σ′
1, σ

′
2} ∈ [

d2(1− αt)
2

(d+ 1)2
σ1,

d2(1− α2
t )

d2 − 1
σ1], (3.37)

min{σ′
1, σ

′
2} ∈ [

d2(1− αt)
2

(d+ 1)2
σ2,

d2(1− α2
t )

d2 − 1
σ2]. (3.38)

Proof. Claim 1. Suppose Pt = UΣU⊤, where Σ = diag(σ1, · · · , σd) and U = [u1, · · · ,ud]. From the update rule of
Pt+1, for any 3 ≤ i ≤ d we have

Pt+1ui =
d2(1− α2

t )

d2 − 1

(
Pt −

2(1 + dαt)

(d+ 1)(1 + αt)
Ptg̃tg̃

⊤
t Pt

)
ui

=
d2(1− α2

t )

d2 − 1
σiui −

d2(1− α2
t )

d2 − 1
· 2(1 + dαt)σi
(d+ 1)(1 + αt)

Ptg̃t(g̃
⊤
t ui)

=
d2(1− α2

t )

d2 − 1
σiui, (3.39)

where Eq (3.39) holds because g̃t ∈ span{u1,u2}. Therefore, {d
2(1−α2

t )
d2−1 σi}di=3 constitute d− 2 eigenvalues of Pt+1.

Claim 2. From Eq (3.17) we have
∏d

i=1 σ
′
i∏d

i=1 σi
= d2(1−αt)

2

(d+1)2 ·
(
d2(1−α2

t )
d2−1

)d−1

. Consider Eq (3.39), we conclude that the
remaining two eigenvalues of Pt+1 satisfy

σ′
1σ

′
2

σ1σ2
=
d2(1− αt)

2

(d+ 1)2
· d

2(1− α2
t )

d2 − 1
=
d4(1− αt)

3(1 + αt)

(d+ 1)3(d− 1)
< 1. (3.40)

Next we derive the bound for σ′
1, σ

′
2. Let gt = pu1 + qu2, and

Ptg̃t =
pσ1√

p2σ1 + q2σ2
u1 +

qσ2√
p2σ1 + q2σ2

u2 ≜ v1u1 + v2u2.

It is easy to see that d2−1
d2(1−α2

t )
σ′
1,

d2−1
d2(1−α2

t )
σ′
2 are the two eigenvalues of the following 2× 2 matrix

A =

[
σ1 0
0 σ2

]
− 2(1 + dαt)

(d+ 1)(1 + αt)

[
v1
v2

]
·
[
v1 v2

]
. (3.41)

Without loss of generality, we assume σ′
1 ≥ σ′

2. Applying Weyl’s inequality in matrix theory [135, 136] to matrix A
yields

σ1 ≥ d2 − 1

d2(1− α2
t )
σ′
1 ≥ σ2 ≥ d2 − 1

d2(1− α2
t )
σ′
2. (3.42)
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On the other hand, from Eq (3.40) we also have

σ′
1

σ1
=
d4(1− αt)

3(1 + αt)

(d+ 1)3(d− 1)

σ2
σ′
2

≥ d4(1− αt)
3(1 + αt)

(d+ 1)3(d− 1)
· d2 − 1

d2(1− α2
t )

=
d2(1− αt)

2

(d+ 1)2
, (3.43)

σ′
2

σ2
=
d4(1− αt)

3(1 + αt)

(d+ 1)3(d− 1)

σ1
σ′
1

≥ d4(1− αt)
3(1 + αt)

(d+ 1)3(d− 1)
· d2 − 1

d2(1− α2
t )

=
d2(1− αt)

2

(d+ 1)2
. (3.44)

From Eq (3.42), (3.43), (3.44), we obtain Eq (3.18), (3.19) and therefore complete the proof.

Lemma 3.1.9 characterizes the convergence of Pt: the product of the largest two eigenvalues shrinks by a constant
factor after each step. Since det(Pt) approaches zero at an exponential rate (from Eq (3.17)), Pt can only have one
potentially large eigenvalue while all other eigenvalues must approach zero. We formalize the claim in the following
Lemma 3.1.10.

Lemma 3.1.10. Suppose a valid cut is executed at step t with depth − 1
kd ≤ αt ≤ 0 in Algorithm 16. Let the eigenvalue

of Pt be σ(t)
1 ≥ · · · ≥ σ

(t)
d . Further let Dt = σ

(t)
2 /σ

(t)
d , we claim

1. for any t ≥ 0, Dt+1 ≤ (d+1)(1+αt)
(d−1)(1−αt)

·Dt;

2. if Dt >
(d+1)(1+αt)
(d−1)(1−αt)

, Dt+1 ≤ Dt.

3. for any n ≥ 0,

max
0≤t≤n

Dt ≤
(d+ 1

d− 1

)2
. (3.45)

Proof. From Lemma 3.1.9, we know that the eigenvalues of Pt+1 is {σ′
1, σ

′
2,
d2(1−α2

t )
d2−1 σ

(t)
3 , · · · , d

2(1−α2
t )

d2−1 σ
(t)
d }, where

σ′
1 ≥ σ′

2 and
d2(1− αt)

2

(d+ 1)2
σ
(t)
2 ≤ σ′

2 ≤ d2(1− α2
t )

d2 − 1
σ
(t)
2 (3.46)

Claim 1. Because σ′
1 ≥ σ′

2, σ(t)
3 ≥ · · · ≥ σ

(t)
d , and note that σ(t+1)

2 and σ(t+1)
d are the second-largest element and

the smallest element of {σ′
1, σ

′
2,
d2(1−α2

t )
d2−1 σ

(t)
3 , · · · , d

2(1−α2
t )

d2−1 σ
(t)
d }, the value of (σ(t+1)

2 , σ
(t+1)
d ) must satisfy one of the

following situation:

1. if (σ(t+1)
2 , σ

(t+1)
d ) = (σ′

2,
d2(1−α2

t )
d2−1 σ

(t)
d ), from Eq (3.46) we have

Dt+1

Dt
=

d2 − 1

d2(1− α2
t )

· σ
′
2

σ
(t)
2

≤ 1. (3.47)

2. if (σ(t+1)
2 , σ

(t+1)
d ) = (

d2(1−α2
t )

d2−1 σ
(t)
i ,

d2(1−α2
t )

d2−1 σ
(t)
d ) for some 3 ≤ i ≤ d− 1, we have

Dt+1

Dt
=
σ
(t)
i /σ

(t)
d

σ
(t)
2 /σ

(t)
d

≤ 1. (3.48)

3. if (σ(t+1)
2 , σ

(t+1)
d ) = (

d2(1−α2
t )

d2−1 σ
(t)
i , σ′

2) for some 3 ≤ i ≤ d− 1, from Eq (3.46) we have

Dt+1

Dt
=
d2(1− α2

t )

d2 − 1
·σ

(t)
i

σ′
2

·
σ
(t)
d

σ
(t)
2

≤ d2(1− α2
t )

d2 − 1
·σ

(t)
2

σ′
2

≤ d2(1− α2
t )

d2 − 1
· (d+ 1)2

d2(1− αt)2
=

(d+ 1)(1 + αt)

(d− 1)(1− αt)
. (3.49)

By Eq (3.47), (3.48), (3.49), the first claim holds.
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Claim 2. It suffices to show that the situation (3) cannot happen when Dt >
d+1
d−1 . In fact, when Dt >

d+1
d−1 , from Eq

(3.46) we have

σ′
2 ≥ d2(1− αt)

2

(d+ 1)2
σ
(t)
2 =

d2(1− αt)
2

(d+ 1)2
σ
(t)
d Dt >

d2(1− αt)
2

(d+ 1)2
· (d+ 1)(1 + αt)

(d− 1)(1− αt)
· σ(t)

d =
d2(1− α2

t )

d2 − 1
σ
(t)
d ,

meaning σ′
2 cannot be the smallest eigenvalue of Pt+1. As a result, the second claim holds by Eq (3.47), (3.48).

Claim 3. We prove Eq (3.45) by contradiction. Let n0 be the smallest index in set argmax0≤t≤nDt. If n0 = 0, we

have max0≤t≤nDt = D0 = 1 <
(
d+1
d−1

)2
. Now consider the case n0 ≥ 1 and suppose Dn0

>
(
d+1
d−1

)2
. By Claim

1 and the fact that − 1
2d ≤ αn0−1 ≤ 0, we have Dn0−1 ≥ (d−1)(1−αn0−1)

(d+1)(1+αn0−1)
Dn0 >

(d+1)(1+αn0−1)

(d−1)(1−αn0−1)
. Apply Claim 2 to

Dn0−1, we obtain Dn0
≤ Dn0−1, which contradicts the definition of n0. Hence, Claim 3 holds.

Lemma 3.1.11. With the choice of αt given in Eq (3.8), we conclude that

1. After each cut step, Vol(Et+1) ≤ exp
(
− (k−1)2

2k2d

)
Vol(Et).

2. If at least d exploration steps are taken during t0 ≤ t < t0 +n, we have λmin(Vn+t0) ≥ λmin(Vt0)+
4D0

25 − 3ϵ0.

3. At any exploitation step t, the instantaneous regret is upper bounded by 2L∥θ∗ − u
(t)
1 ∥22.

Proof. First Claim: We first justify our choice of αt. With out loss of generality, assume a1,t is preferred over a0,t,
then according to the user’s decision rule (3.3) we have

θ⊤t (a0,t − a1,t) ≤ |βt| · (∥a0,t∥V −1
t

+ ∥a1,t∥V −1
t

) ≤ c2t
γ2 · (∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
). (3.50)

Next we translate Eq (3.50) into the estimation with respect to θ∗. According to the Estimation rule (3.2), with
probability 1− δ,

(θ∗ − θt)
⊤(a0,t − a1,t) ≤ ∥θ∗ − θt∥Vt

· ∥a0,t − a1,t∥V −1
t

≤ c1g(δ)t
γ1∥a0,t − a1,t∥V −1

t
,

and therefore according to the (c, γ)−rational assumption, we obtain

(a0,1 − a1,t)
⊤(θ∗ − x) ≤ 0

θ⊤∗ (a0,t − a1,t) ≤ θ⊤t (a0,t − a1,t) + (θ∗ − θt)
⊤(a0,t − a1,t)

≤ c2t
γ2 · (∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
) + c1g(δ)t

γ1∥a0,t − a1,t∥V −1
t

≤ ctγ
(
∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
+ g(δ) · ∥a0,t − a1,t∥V −1

t

)
. (3.51)

According to ϵ0-DC and the definition of gt, we have

∥gt − (a0,t − a1,t)∥2 ≤ ∥a0,t − ā0,t∥2 + ∥a1,t − ā1,t∥2 ≤ 2ϵ0. (3.52)

Using Eq (3.52), we may relax Eq (3.51) by replacing a0,t − a1,t with gt = ā0,t − ā1,t, accounting for the error
introduced by the inaccuracy of the exploration direction as below:
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g⊤
t (θ∗ − xt) = g⊤

t θ∗

=(a0,t − a1,t)
⊤θ∗ + (gt − (a0,t − a1,t))

⊤θ∗

≤ctγ
(
∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
+ g(δ) · ∥a0,t − a1,t∥V −1

t

)
+ ∥gt − a0,t + a1,t∥2 · ∥θ∗∥2

≤ctγ
(
∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
+ g(δ) · ∥a0,t − a1,t∥V −1

t

)
+ 2ϵ0, (3.53)

where Eq (3.53) holds because we assume ∥θ∗∥2 = 1. Hence, by equation (3.13), the cutting depth

αt = −
ctγ
(
∥a0,t∥V −1

t
+ ∥a1,t∥V −1

t
+ g(δ) · ∥a0,t − a1,t∥V −1

t

)
+ 2ϵ0

∥gt∥Pt

. (3.54)

Therefore, we may leverage Eq (3.54) to evaluate the cutting depth αt and perform a cut whenever αt ≥ − 1
kd > − 1

d

is satisfied. From Eq (3.17), we therefore conclude Vol(Et+1) ≤ exp
(
− (k−1)2

2k2d

)
Vol(Et).

Second Claim: To prove the second claim, we need the following auxiliary lemma:

Lemma 3.1.12. A is a d× d PSD matrix with eigendecomposition A = Udiag(σ1, · · · , σd)UT , where σ1 ≤ · · · ≤ σd
and U = [u1, · · · ,ud]. For any v ∈ Rd, let the eigenvalues of A+ vvT be σ′

1 ≤ · · · ≤ σ′
d. Then we have

1. σ1 ≤ σ′
1 ≤ σ2 ≤ σ′

2 ≤ · · · ≤ σd ≤ σ′
d ≤ σd + vTv.

2. if v = pu1 + qud + ϵ for some p2 + q2 = 1, ∥ϵ∥2 = ϵ < 1, {σi}di=1 and {σ′
i}di=1 have at least d− 2 common

values. Furthermore, conditioned on σd > σ1 + p2 − q2, at least one of the following claims is true:
a) σ′

1 ≥ σ1 + p2 − |pq| − 3ϵ.
b) σ′

1 = σ2, and σ′
i ≥ σ1 + p2 − |pq| − 3ϵ for some 2 ≤ i ≤ d.

Proof. The first claim is a direct corollary of Weyl’s inequality in matrix theory [135, 136]. Now we prove the second
claim for the special case ϵ = 0. From Secular Equations, we know that σ′

1 is the smallest root of the following equation

f(λ) =

d∏
i=1

(σi − λ) + p2
d∏
j ̸=1

(σj − λ) + q2
d∏
j ̸=d

(σj − λ)

=
[
(σ1 − λ)(σd − λ) + p2(σd − λ) + q2(σ1 − λ)

] d∏
j ̸=1,d

(σj − λ)

=
[
λ2 − (1 + σ1 + σd)λ+ q2σ1 + p2σd + σ1σd

] d∏
j ̸=1,d

(σj − λ).

Therefore, σ′
1 is the smaller one between σ2 and the smallest root of the quadratic equation λ2 − (1 + σ1 + σd) +

q2σ1 + p2σd + σ1σd = 0, i.e.,

σ′
1 = min{σ2,

1 + σ1 + σd −
√
(1 + σ1 + σd)2 − 4(q2σ1 + p2σd + σ1σd)

2
}. (3.55)
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Note that when σd > σ1 + p2 − q2, we have

1 + σ1 + σd −
√

(1 + σ1 + σd)2 − 4(q2σ1 + p2σd + σ1σd)

2

=
1 + σ1 + σd −

√
(p2 − q2 + σ1 − σd)2 + 4p2q2

2

≥1

2
(1 + σ1 + σd − |p2 − q2 + σ1 − σd| − 2|pq|) (3.56)

=σ1 + p2 − |pq|, (3.57)

where Eq (3.56) holds because
√
a2 + b2 ≤ |a|+ |b|. From Eq (3.55) and Eq (3.57) we conclude the proof.

Next it remains to show that with a small perturbation ϵ on v, the change of the smallest eigenvalue will only
deviate at most 3ϵ. From Weyl’s eigenvalue perturbation inequality, for any Hermitian matrices M,∆, we have
|λk(M +∆)− λk(M)| ≤ ∥∆∥2, where λk(·) denotes the k−th largest eigenvalue of a given matrix. Using this tool,
we can upper bound the difference between the smallest eigenvalues of matrix A+ vv⊤ and A+ (v + ϵ)(v + ϵ)⊤ as
below:

λ1(A+ (v + ϵ)(v + ϵ)⊤)− λ1(A+ vv⊤)

≤∥ϵv⊤ + vϵ⊤ + ϵϵ⊤∥2 ≤ ∥ϵv⊤ + vϵ⊤∥2 + ∥ϵϵ⊤∥2
≤2ϵ+ ϵ2 < 3ϵ, (3.58)

where Eq (3.58) holds because for any ∥x∥2 = 1, x⊤(ϵv⊤ + vϵ⊤)x ≤ 2∥ϵ∥2 and x⊤(ϵϵ⊤)x ≤ ∥ϵ∥22.

Now we are ready to prove the second claim. Without loss of generality, we consider the case D0 = 1. Suppose
Algorithm 16 had executed d exploration steps from t = t0 to t = t0 + n. By the first claim of Lemma 3.1.12, we
know {σ(τ)

1 }tτ=1 is always non-decreasing. Therefore, it suffices to prove that after d consecutive exploration steps,
σ
(t0+d)
1 ≥ σ

(t0)
1 + p2 − |pq| − 3ϵ0.

From the second claim in Lemma 3.1.12:

1. if situation a) happens at least once during the d exploration steps, we already obtain σ(t0+d)
1 ≥ σ

(t0)
1 + p2 −

|pq| − 3ϵ0.

2. if we always observe situation b), consider the set Ct = {i : σ(t0+t)
i < σ

(t0)
1 + p2 − |pq| − 3ϵ0}. From Lemma

3.1.12, we can prove |Ct+1| ≤ |Ct|− 1. Since σ(t0)
d > σ

(t0)
1 + p2−|pq|− 3ϵ0, we have |C1| ≤ d− 1. Therefore,

there must exists 1 ≤ k ≤ d such that |Ck| = 0, meaning σ(t0+d)
1 ≥ σ

(k)
1 ≥ σ

(t0)
1 + p2 − |pq| − 3ϵ0.

By taking (p, q) = (45 ,
3
5 ), we obtain the desirable result.

Thrid Claim: Given ∥θ∗∥2 = 1, denote θ̂ = u
(t)
1 and ∥θ∗ − θ̂∥2 = ϵ. Let x∗ = argmaxx∈A x

T θ∗ and
x̂ = argmaxx∈A x

T θ̂. We have

θT∗ (x∗ − x̂) = (θ∗ − θ̂)Tx∗ + (x∗ − x̂)T θ̂ + (θ̂ − θ∗)
T x̂

≤ (θ∗ − θ̂)Tx∗ + (θ̂ − θ∗)
T x̂ by definition of x̂

= (θ̂ − θ∗)
T (x̂− x∗)

≤ ∥θ̂ − θ∗∥2 · ∥x̂− x∗∥2 by Cauchy-Schwarz

≤ L · ∥θ̂ − θ∗∥22. by L-SRC

As a result, the instantaneous regret is upper bounded by 2L∥u(t)
1 − θ∗∥22.
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Now we are ready to analyze the regret of Algorithm 16:

Theorem 3.1.13. For any d > 1, n > 0, let σ(n)
i be the i-th largest eigenvalue of Pn after the n-th cut, we have

1. For any 2 ≤ i ≤ d,

σ
(n)
i ≤ exp

(4
d
− (k − 1)2n

k2d2

)
. (3.59)

2. When T0 = O
(
cL

1
2D

1
2
1 D

− 3
2

0 g(δ)d2T
1
2+γ

)
and ϵ0 < O

(
cD1D

− 1
2

0 d−
1
2T− 1

4+
γ
2

)
, the regret of RAES is upper

bounded by O
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1
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3
2
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0 g( δT0
)d2T

1
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)
with probability 1− δ.

Proof. Since the depth of the cut αt ≥ − 1
kd through out the execution of Algorithm 16, from Lemma 3.1.3 and Eq

(3.17) we have
d∏
i=1

σ
(n)
i =

n−1∏
i=0

detPi+1

detPi
≤
n−1∏
i=0

Vol(Ei+1)

Vol(Ei)
= exp

(
− (k − 1)2n

k2d

)
. (3.60)

From Lemma 3.1.10, we have σ(n)
i ≥ σ

(n)
d ≥

(
d−1
d+1

)2 · σ(n)
2 ,∀3 ≤ i ≤ d. Therefore,

exp
(
− (k − 1)2n

k2d

)
≥

d∏
i=1

σ
(n)
i

≥ σ
(n)
2 · σ(n)

2 ·
[(d− 1

d+ 1

)2 · σ(n)
2

]d−2

= [σ
(n)
2 ]d ·

(
1− 2

d+ 1

)2d−4

≥ exp (−4) · [σ(n)
2 ]d.

Rearranging terms yields σ(n)
2 ≤ exp

(
4
d − (k−1)2n

k2d2

)
, and thus σ(n)

i ≤ exp
(

4
d − (k−1)2n

k2d2

)
,∀2 ≤ i ≤ d.

Next we show the second claim. Suppose the total number of cut during the first T0/2 step is N0.

1. if N0 ≥ d2k2

(k−1)2 log T0 +
4dk2

(k−1)2 , from Eq (3.59) we have σ(N0)
i ≤ 1

T0
.

2. if N0 <
d2k2

(k−1)2 log T0 +
4dk2

(k−1)2 , for sufficiently large T , there are at least T0/2−N ≥ T0/2− d2k2

(k−1)2 log T0 −
4dk2

(k−1)2 > T0

3 exploration steps during the first T0/2 iterations. From the second claim of Lemma 3.1.3,

λmin(VT0) ≥ βT0

d , where β = 1
3 (

4D0

25 − 3ϵ0) is a positive constant. Using the definition of matrix norm,

we have for any t, ∥a0,t∥V −1
t
, ∥a1,t∥V −1

t
≤ D1

√
λmax(V

−1
t ), ∥a0,t − a1,t∥V −1

t
≤ 2D1

√
λmax(V

−1
t ), and

∥gt∥Pt
≥ D0(σ

(t)
2 )−

1
2 . Therefore, we have

αt ≥ −2
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)
·
√
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According to Algorithm 16, as long as we have −2
[
ctγD1D

−1
0

(
1+g(δ)

)
·
√
λmax(V

−1
t )+ϵ0D

−1
0

]
·(σ(t)

2 )−
1
2 ≥

− 1
kd , a cut will happen at step t and we can shrink

√
σ
(t)
2 with probability 1− δ. In other words, after the last

time Algorithm 16 choose to cut during the first T0 round, we have√
σ
(t)
2 ≤ 2D1ckd

1.5tγ(1 + g(δ))

D0

√
βT0

+
2kdϵ0
D0

<
3D1ckd

1.5T γ0 (1 + g(δ))

D0

√
βT0

, (3.61)

where the last inequality holds because ϵ0 < cD1

2
√
β
d−

1
2T− 1

4+
γ
2 . On the other hand, the total number of cuts n

such that Eq (3.61) is satisfied is upper bounded by O(log T0) since σ(t)
2 shrinks exponentially w.r.t. the cut
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number t. Therefore, when T is reasonably large, we can guarantee n < T0/2 and conclude that Eq (3.61) holds
for all t > T0.

According to Eq (3.36) and the third claim in Lemma 3.1.3, when algorithm 16 enters the exploitation phase when
t > T0, with probability 1− T0δ, the instantaneous regret is upper bounded by

θ⊤∗ [(a∗ − a0,t) + (a∗ − a1,t)] ≤ 8(d− 1) · L ·
(3D1ckd

1.5T γ0 (1 + g(δ))

D0

√
βT0

)2
(3.62)

≤ 72D2
1Lc

2k2d4(1 + g(δ))2

βD2
0T

1−2γ
0

(3.63)

For each cut or exploration step in the first T0 rounds, the incurred instantaneous regret is at most T0D1. For each
following exploitation step, the regret is upper bounded by 72D2

1Lc
2k2d4(1+g(δ))2

D2
0βT

1−2γ
0

. Hence, we can upper bound the
accumulated regret by

RT ≤ D1T0 +
72D2

1Lc
2k2d4(1 + g(δ))2

D2
0βT0

· T 1+2γ

≤ 12D1
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√
2LD1

β
ck(1 + g(δ)) · d2T 1

2+γ , (3.64)

where the optimal regret is achieved when T0 = 6ck
D0

√
6LD1

4D0
25 −3ϵ0

(
1+g(δ)

)
d2T

1
2+γ , we haveRT ≤ 12ckD1
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√
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4D0
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1+
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d2T
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2+γ . By applying the union bound to the first T0 rounds, we thus conclude that with probability 1− δ,

RT ≤ 60D1
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4D0 − 75ϵ0
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δ

T0
)
)
· d2T 1
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Proof of Theorem 3.1.5 in Section 3.1.5

To derive our lower bound result, we need to leverage the minimax lower bound result for stochastic linear bandits
(adapted from Theorem 24.1 in [127]). For convenience, we use θi:j to denote the slice of vector θ from the i−th
element to the j−th element.

Theorem 3.1.14. There exists a function T0(d) > 0 such that for any d ≥ 1, T > T0(d), and any algorithm G that has
merely access to the comparison feedback given by a rational user defined in Definition 3.1.1, there exists θ ∈ ∂Bd1
such that the expected regret RT given by Eq (3.1) obtained by G satisfies

R
(s)
T (G, θ) ≥ exp(−2)

4
(d− 1)

√
T . (3.65)

Proof. We prove our claim by contradiction using Theorem 3.1.15. Essentially, we show that if the system has a
powerful algorithm to achieve an expected regret lower than the RHS of Eq. (3.10), then we can leverage this algorithm
for the linear bandit problem in Theorem 3.1.15 with an expected regret even lower than the lower bound and thus draw
the contradiction.

Suppose for any d > 0, there exists sufficiently large T and an algorithm G such that for any parameter θ∗ ∈ ∂Bd1,
we have

E
[ T∑
t=1

θ⊤∗ (2a∗ − a0,t − a1,t)
]
= R

(s)
T (G, θ∗) <

exp(−2)

4
(d− 1)

√
T .
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As a result, the following inequalities must hold simultaneously:

E
[ T∑
t=1

θ⊤∗ (a∗ − a0,t)
]
<

exp(−2)

4
(d− 1)

√
T ,

E
[ T∑
t=1

θ⊤∗ (a∗ − a1,t)
]
<

exp(−2)

4
(d− 1)

√
T .

(3.66)

Now suppose a principal can observe the interaction between a user and a system equipped with algorithm G, then
he can construct two algorithms G0,G1 for linear bandit as follows:

Algorithm Gi :
Input: the time horizon T .
For t ∈ [T ]:

1. Call algorithm G to generate two candidates (a0,t, a1,t).

2. Present (a0,t, a1,t) to the user and and let her decide the winner a∗,t using decision rule 3.3.

3. Return the feedback a∗,t to algorithm G and update the internal state of G accordingly.

Output: the sequential decisions {ai,t}Tt=1.

From Eq. (3.66), we know that both G0 and G1 achieve an expected regret no greater than exp(−2)
4 (d−1)

√
T , which

draws a contradiction to Theorem 3.1.15.

To prove Theorem 3.1.14, we need the following technical lemma:

Lemma 3.1.15. Let d ≥ 2 and T ≥ d2, the action set A = [−1, 1]d be a hypercube in Rd, and

Θ =
{
θ ∈ Rd : ∥θ∥1 = 1, θ1:d−1 ∈ {− 1√

T
,

1√
T
}d−1

}
.

Let the expected regret for a linear bandit problem induced by any fixed algorithm G and parameter θ be

RT (G, θ) = T max
a∈A

⟨a, θ⟩ − E[
T∑
t=1

⟨at, θ⟩], (3.67)

where the expectation is taken with respect to the randomness generated by the standard Gaussian noise N (0, 1) in the
reward. Then there must exist a parameter vector θ ∈ Θ such that

RT (G, θ) ≥
exp(−2)

8
(d− 1)

√
T . (3.68)

Proof. Fix an algorithm G and a time horizon T . For any θ ∈ Θ, let Pθ be the probability measure on the probability
space induced by the T -round interconnection of policy G and the problem instance given by θ. Let D(·, ·) denote the
relative entropy, from the general form of divergence decomposition lemma (Lemma 15.1 in [127]), we have

D(Pθ,Pθ′) = Eθ
[ T∑
t=1

D(N (⟨at, θ⟩, 1),N (⟨at, θ′⟩, 1))
]

=
1

2

T∑
t=1

Eθ[⟨at, θ − θ′⟩2]. (3.69)
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For any i ∈ [d− 1] and θ ∈ Θ, let at,i and θi be the i-th element of at and θ and define

pθi = Pθ
( T∑
t=1

I{sign(at,i) ̸= sign(θi)} ≥ T

2

)
.

Let θ, θ′ be any pair of elements in Θ such that they only differ in the i−th element. Therefore, by the Bretagnolle-
Huber inequality (Theorem 14.2 in [127]) and Eq. (3.69),

pθi + pθ′i ≥
1

2
exp

(
−D(Pθ,Pθ′)

)
=
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2
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− 1

2
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)
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2
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(
− 1

2
· T
( 2√

T

)2)
=

1

2
exp(−2).

Fix i ∈ [d− 1], there are |Θ| = 2d−1 such pairs (θ, θ′). Take summation over i and all such pairs, we obtain

∑
θ∈Θ

1

|Θ|

d∑
i=1

pθi ≥
1

|Θ|

d−1∑
i=1

∑
θ∈Θ
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|Θ|

d−1∑
i=1
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2

∑
(θ,θ′)

(pθi + pθ′i)

≥ d− 1

4
exp(−2),

which implies that there exists a θ ∈ Θ such that
∑d
i=1 pθi ≥

d−1
4 exp(−2). By the definition of pθi , the regret of G

for this problem instance with parameter θ is at least

RT (A, θ) = Eθ
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d∑
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(sign(θi)− at,i)θi
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Pθ
( T∑
t=1

I{sign(ati) ̸= sign(θi)} ≥ T
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√
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exp(−2)
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(d− 1)

√
T ,

where the first line follows since the optimal action satisfies a∗i = sign(θi) and for i ∈ [d], the first inequality follows
from a simple case-based analysis showing that (sign(θi)− ati)θi ≥ |θi|I{sign(ati) ̸= sign(θi)}, the second inequality
is from Markov’s inequality, and the last inequality follows from the choice of θ.

3.2 Incentivize communication in federated bandit
Despite our extensive exploration of various settings of federated bandit learning in Section 2.2 and Section 2.3, all these
proposed algorithms rely on the assumption that every client in the system is willing to share their local data/model
with the server, regardless of the communication protocol design. For instance, synchronous protocols [28, 84, 100]
require all clients to simultaneously engage in data exchange with the server in every communication round. Similarly,
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asynchronous protocols [64, 97, 98] also assume clients must participate in communication as long as the individualized
upload or download event is triggered, albeit allowing interruptions by external factors (e.g., network failure).

In contrast, this work is motivated by the practical observation that many clients in a federated system are inherently
self-interested and thus reluctant to share data without receiving explicit benefits from the server [16]. For instance,
consider the following scenario: a recommendation platform (server) wants its mobile app users (clients) to opt in its
new recommendation service, which switches previous on-device local bandit algorithm to a federated bandit algorithm.
Although the new service is expected to improve the overall recommendation quality for all clients, particular clients
may not be willing to participate in this collaborative learning, as the expected gain for them might not compensate
their locally increased cost (e.g., communication bandwidth, added computation, lost control of their data, and etc).
In this case, additional actions have to be taken by the server to encourage participation, as it has no power to force
clients. This exemplifies the most critical concern in the real-world application of federated learning [16]. And a typical
solution is known as incentive mechanism, which motivates individuals to contribute to the social welfare goal by
offering incentives such as monetary compensation.

While recent studies have explored incentivized data sharing in federated learning [137, 138], most of which only
focused on the supervised offline learning setting [16]. In this section, we propose the first work that studies incentive
design for federated bandit learning, which inherently imposes new challenges.

First, there is a lack of well-defined metric to measure the utility of data sharing, which rationalizes a client’s
participation. Under the context of bandit learning, we measure data utility by the expected regret reduction from the
exchanged data for each client. As a result, each client values data (e.g., sufficient statistics) from server differently,
depending on how such data aligns with their local data (e.g., the more similar the less valuable). Second, the server is
set to minimize regret across all clients through data exchange. But as the server does not generate data, it can be easily
trapped by the situation where its collected data cannot pass the critical mass to ensure every participating client’s regret
is close to optimal (e.g., the data under server’s possession cannot motivate the clients who have more valuable data to
participate). To break the deadlock, we give the server the ability to provide monetary incentives. Subsequently, the
server needs to minimize its cumulative monetary payments, in addition to the regret and communication minimization
objectives as required by federated bandit learning.

3.2.1 Related works
In this work, we situate the incentivized federated bandit learning problem under linear bandits with time-varying
arm sets, which is a popular setting in many recent works [28, 61, 64, 97]. But we do not assume the clients will
always participate in data sharing: they will choose not to share its data with the server if the resulting benefit of data
sharing is not deemed to outweigh the cost. Here we need to differentiate this new setting from the one considered in
our prior work about asynchronous communication [64], which still assumes all clients are willing to share, though
sometimes the communication can be interrupted by some external factors (e.g., network failure). Here we do not
assume communication failures and leave it as our future work. Instead, we assume the clients need to be motivated to
participate in federated learning, and our focus is to devise the minimum incentives to obtain the desired regret and
communication cost for all participating clients.

Incentivized Federated Learning Data sharing is essential to the success of federated learning [137], where client
participation plays a crucial role. However, participation involves costs, such as the need for additional computing and
communication resources, and the risk of potential privacy breaches, which can lead to opt-outs [139, 140]. In light of
this, recent research has focused on investigating incentive mechanisms that motivate clients to contribute, rather than
assuming their willingness to participate. Most of the existing research involves multiple decentralized clients solving
the same task, typically with different copies of IID datasets, where the focus is on designing data valuation methods
that ensure fairness or achieve a specific accuracy objective [141, 142, 143]. On the other hand, Donahue et al. [144]
study voluntary participation in model-sharing games, where clients may opt out due to biased global models caused by
the aggregated non-IID datasets. More recently, Karimireddy et al. [16] investigated incentive mechanism design for
data maximization while avoiding free riders. For a detailed discussion of this topic, we refer readers to recent surveys
on incentive mechanism design in federated learning [145, 138].

However, most works on incentivized federated learning only focus on better model estimation among fixed offline
datasets, which does not apply to the bandit learning problem, where the exploration of growing data is also part of
the objective. More importantly, in our incentivized federated bandit problem, the server is obligated to improve the
overall performance of the learning system, i.e., minimizing regret among all clients, which is essentially different
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from previous studies where the server only selectively incentivizes clients to achieve a certain accuracy [141] or to
investigate how much accuracy the system can achieve without payment [16].

3.2.2 Incentivized federated bandit problem
Here we adopt the federated bandit problem formulation from Section 2.3.1. Specifically, at each time step t ∈ [T ], an
arbitrary client it ∈ [N ] becomes active and chooses an arm xt from a candidate set At ⊆ Rd, and then receives the
corresponding reward feedback yt = f(xt) + ηt ∈ R. Note that At is time-varying, f denotes the unknown reward
function shared by all clients, and ηt denotes zero mean sub-Gaussian noise with known variance σ2.

Different from the works discussed in Section 2.2 and Section 2.3, where all clients altruistically share their data
with the server whenever a communication round is triggered, we are intrigued in a more realistic setting where clients
are self-interested and thus reluctant to share data with the server if not well motivated. Formally, each client in the
federated system inherently experiences a cost3 of data sharing, denoted by D̃p

i ∈ R, due to their individual consumption
of computing resources in local updates or concerns about potential privacy breaches caused by communication with
the server. Moreover, as the client has nothing to lose when there is no local update to share in a communication round
at time step t, in this case we assume the cost is 0, i.e., Dp

i = D̃p
i · I(∆Vi,t ̸= 0). As a result, the server needs to

motivate clients to participate in data sharing via the incentive mechanism M : RN × Rd×d → RN , which takes as
inputs a collection of client local updates ∆Vi,t ∈ Rd×d and a vector of cost values Dp = {Dp

1 , · · · , D
p
N} ∈ RN , and

outputs the incentive I = {I1,t, · · · , IN,t} ∈ RN to be distributed among the clients. Specifically, to make it possible
to measure gains and losses of utility in terms of real-valued incentives (e.g., monetary payment), we adopt the standard
quasi-linear utility function assumption, as is standard in economic analysis [146, 147].

At each communication round, a client decides whether to share its local update with the server based on the
potential utility gained from participation, i.e., the difference between the incentive and the cost of data sharing. This
requires the incentive mechanism to be individually rational:

Definition 3.2.1 (Individual Rationality [148]). An incentive mechanism M : RN×Rd×d → RN is individually rational
if for any i in the participant set St at time step t, we have

Ii,t ≥ Dp
i (3.70)

In other words, each participant must be guaranteed non-negative utility by participating in data sharing under M.

The server coordinates with all clients and incentivizes them to participate in the communication to realize its own
objective (e.g., collective regret minimization). This requires M to be sufficient:

Definition 3.2.2 (Sufficiency). An incentive mechanism M : RN × Rd×d → RN is sufficient if the resulting outcome
satisfies the server’s objective.

Typically, under different application scenarios, the server may have different objectives, such as regret minimization
or best arm identification. In this work, we set the objective of the server to minimize the regret across all clients; and
ideally the server aims to attain the optimal Õ(d

√
T ) regret in centralized setting via the incentivized communication.

Therefore, we consider an incentive mechanism is sufficient if it ensures that the resulting accumulated regret is bounded
by Õ(d

√
T ).

3.2.3 INC-FEDUCB algorithm
The communication backbone of our solution derives from DisLinUCB [28], which is a widely adopted paradigm for
federated linear bandits. We adopt their strategy for arm selection and communication trigger, so as to focus on the
incentive mechanism design. We name the resulting algorithm INC-FEDUCB, and present it in Algorithm 17. Note
that the two incentive mechanisms to be presented in Section 3.2.4 and 3.2.5 are not specific to any federated bandit
learning algorithms, and each of them can be easily extended to alternative workarounds as a plug-in to accommodate
the incentivized federated learning setting.

Our framework comprises three main steps: 1) client’s local update; 2) communication trigger; and 3) incentivized
data exchange among the server and clients. Specifically, after initialization, an active client performs a local update

3Note that if the costs are trivially set to zero, then clients have no reason to opt-out of data sharing and our problem essentially reduces to the
standard federated bandits problem [28].
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in each time step and checks the communication trigger. If a communication round is triggered, the system performs
incentivized data exchange between clients and the server. Otherwise, no communication is needed.

Algorithm 17 INC-FEDUCB Algorithm
1: Input Dc ≥ 0, Dp = {Dp

1 , · · · , D
p
N}, σ, λ > 0, δ ∈ (0, 1)

2: Initialize: [Server] Vg,0 = 0d×d ∈ Rd×d, bg,0 = 0d ∈ Rd
∆V−j,0 = 0d×d,∆b−j,0 = 0d, ∀j ∈ [N ]

[All clients] Vi,0 = 0d×d, bi,0 = 0d, ∆Vi,0 = 0d×d, ∆bi,0 = 0d, ∆ti,0 = 0,∀i ∈ [N ]
3: for t = 1, 2, . . . , T do
4: [Client it] Observe arm set At

5: [Client it] Select arm xt ∈ At by Eq. (3.71) and observe reward yt
6: [Client it] Update: Vit,t += xtx

⊤
t , bit,t += xtyt

∆Vit,t += xtx
⊤
t , ∆bit,t += xtyt, ∆tit,t += 1

7: if ∆tit,t log
det(Vit,t+λI)

det(Vit,t−∆Vit,t+λI)
> Dc then

8: [All clients → Server] Upload ∆Vi,t such that S̃t = {∆Vi,t|∀i ∈ [N ]}
9: [Server] Select incentivized participants St = M(S̃t) {//Incentive Mechanism }

10: for i : ∆Vi,t ∈ St do
11: [Participant i→ Server] Upload ∆bi,t
12: [Server] Update: Vg,t += ∆Vi,t, bg,t += ∆bi,t

∆V−j,t += ∆Vi,t, ∆b−j,t += ∆bi,t,∀j ̸= i
13: [Participant i] Update: ∆Vi,t = 0, ∆bi,t = 0, ∆ti,t = 0
14: for ∀i ∈ [N ] do
15: [Server → All Clients] Download ∆V−i,t, ∆b−i,t
16: [Client i] Update: Vi,t += ∆V−i,t, bi,t += ∆b−i,t
17: [Server] Update: ∆V−i,t = 0, ∆b−i,t = 0

Formally, at each time step t = 1, . . . , T , an arbitrary client it becomes active and interacts with its environment
using observed arm set At (Line 5). Specifically, it selects an arm xt ∈ At that maximizes the UCB score as follows
(Line 6):

xt = argmax
x∈At

x⊤θ̂it,t−1(λ) + αit,t−1||x||V −1
it,t−1(λ)

(3.71)

where θ̂it,t−1(λ) = V −1
it,t−1(λ)bit,t−1 is the ridge regression estimator of θ⋆ with regularization parameter λ > 0,

Vit,t−1(λ) = Vit,t−1 + λI , and αit,t−1 = σ
√
log

det(Vit,t−1(λ))

det (λI) + 2 log 1/δ +
√
λ. Vit,t(λ) denotes the covariance

matrix constructed using data available to client it up to time t. After obtaining a new data point (xt, yt) from the
environment, client it checks the communication event trigger ∆tit,t · log

det(Vit,t(λ))

det(Vit,tlast (λ))
> Dc (Line 9), where ∆tit,t

denotes the time elapsed since the last time tlast it communicated with the server and Dc ≥ 0 denotes the specified
threshold.

Incentivized Data Exchange With the above event trigger, communication rounds only occur if (1) a substantial
amount of new data has been accumulated locally at client it, and/or (2) significant time has elapsed since last
communication. However, in our incentivized setting, triggering a communication round does not necessarily lead to
data exchange at time step t, as the participant set St may be empty (Line 11). This characterizes the fundamental
difference between INC-FEDUCB and DisLinUCB [28]: we no longer assume all N clients will share their data with
the server in an altruistic manner; instead, a rational client only shares its local update with the server if the condition in
Eq. (3.70) is met. In light of this, to evaluate the potential benefit of data sharing, all clients must first reveal the value
of their data to the server before the server determines the incentive. Hence, after a communication round is triggered,
all clients upload their latest sufficient statistics update ∆Vi,t to the server (Line 10) to facilitate data valuation and
participant selection in the incentive mechanism (Line 11). Note that this disclosure does not compromise clients’
privacy, as the clients’ secret lies in ∆bi,t that is constructed by the rewards. Only participating clients will upload
their ∆bi,t to the server (Line 13). After collecting data from all participants, the server download the aggregated
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Algorithm 18 Payment-free Incentive Mechanism

1: Input Dp = {Dp
i |i ∈ [N ]}, S̃t = {∆Vi,t|i ∈ [N ]}

2: Initialize participant set St = S̃t
3: while St ̸= ∅ do
4: StableFlag = True {//iteratively update St until it becomes stable}
5: for i : ∆Vi,t ∈ St do
6: if Ii,t < Dp

i (Eq. 3.73) then
7: Update participant set St = St \ {∆Vi,t} {//remove client j from St}
8: StableFlag = False
9: break

10: if StableFlag = True then
11: break
12: Return St ⊆ S̃t

updates ∆V−i,t and ∆b−i,t to every client i (Line 17-20). Follow the convention in federated bandit learning [28], the
communication cost is defined as the total number of scalars transferred during this data exchange process.

3.2.4 Payment-free incentive mechanism
As showed in Section 2.2 and Section 2.3, in federated bandit learning, clients can reduce their regret by using

models constructed via shared data. Denote Ṽt as the covariance matrix constructed by all available data in the system
at time step t. As discussed in Section 2.3.2, the instantaneous regret of client it is upper bounded by:

rt ≤ 2αit,t−1

√
x⊤
t Ṽ

−1
t−1xt ·

√
det(Ṽt−1)

det(Vit,t−1)
= O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
det(Ṽt−1)

det(Vit,t−1)
(3.72)

where the determinant ratio reflects the additional regret due to the delayed synchronization between client it’s local
sufficient statistics and the global optimal oracle. Therefore, minimizing this ratio directly corresponds to reducing
client it’s regret. For example, full communication keeps the ratio at 1, which recovers the Õ(

√
T ) regret of the

centralized setting.
Therefore, given the client’s desire in regret minimization, data itself can be used as a form of incentive by the

server. And the star-shaped communication network also gives the server an information advantage over any single
client in the system: a client can only communicate with the server, while the server can communicate with every client.
Therefore, the server should utilize this advantage to create incentives (i.e., the LHS of Eq (3.70)), and a natural design
to evaluate this data incentive is:

Ii,t := Idi,t =
det (Di,t(St) + Vi,t)

det(Vi,t)
− 1. (3.73)

where Di,t(St) =
∑
j:{∆Vj,t∈St}∧{j ̸=i} ∆Vj,t +∆V−i,t denotes the data that the server can offer to client i during the

communication at time t (i.e., current local updates from other participants that have not been shared with the server)
and ∆V−i,t is the historically aggregated updates stored in server that has not been shared with client i. Eq. (3.73)
suggests a substantial increase in the determinant of the client’s local data is desired by the client, which results in regret
reduction.

With the above data valuation in Eq. (3.73), we propose the payment-free incentive mechanism that motivates clients
to share data by redistributing data collected from participating clients. We present this mechanism in Algorithm 18,
and briefly sketch it below. First, we initiate the participant set St = S̃t, assuming all clients agree to participate. Then,
we iteratively update St by checking the willingness of each client i in St according to Eq. (3.70). If St is empty or all
clients in it are participating, then terminate; otherwise, remove client i from St and repeat the process.

While this payment-free incentive mechanism is neat and intuitive, it has no guarantee on the amount of data that
can be collected. To see this, we provide a theoretical negative result with rigorous regret analysis in Theorem 3.2.3
(see proof in Section 3.2.7).
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Algorithm 19 Payment-efficient Incentive Mechanism

1: Input S̃t = {∆Vi,t|i ∈ [N ]}, data-incentivized participant set Ŝt ⊆ S̃t, threshold β
2: for client i : ∆Vi,t ∈ S̃t \ Ŝt do
3: Compute client’s potential contribution to the server (i.e., marginal gain in determinant):

ci,t(Ŝt) = det(∆Vi,t + Vg,t(Ŝt))/ det(Vg,t(Ŝt)), Vg,t(St) = Vg,t−1 +Σ(St) (3.75)

4: Rank clients {i1, . . . , im} by their potential contribution, where m = |S̃t \ Ŝt|
5: Segment the list by finding α = min{j | det(Vg,t(Ŝt)+∆Vij ,t

)

det(Vg,t(S̃t))
≥ β, ∀j ∈ [m]}

6: k = α− 1, Imlast = Dp
iα

− Idiα,t
7: Return participant set St = Heuristic Search(k, Imlast) {// Algorithm 20}

Theorem 3.2.3 (Sub-optimal Regret). When there are at most c
2C

N
log(T/N) number of clients (for some constant

C, c > 0), whose cost value Dp
i ≤ (1 + L2

λ )T , there exists a linear bandit instance with σ = L = S = 1 such that
for T ≥ Nd, the expected regret for INC-FEDUCB algorithm with payment-free incentive mechanism is at least
Ω(d

√
NT ).

Note that when there is no communication RT is upper bounded by O(d
√
NT ). Hence, in the worst case scenario,

the payment-free incentive mechanism might not motivate any client to participate. It is thus not a sufficient mechanism.

3.2.5 Payment-efficient incentive mechanism
To address the insufficiency issue, we further devise a payment-efficient incentive mechanism that introduces additional
monetary incentives to motivate clients’ participation:

Ii,t := Idi,t + Imi,t (3.74)

where Idi,t is the data incentive defined in Eq (3.73), and Imi,t is the real-valued monetary incentive, i.e., the payment
assigned to client for its participation. Specifically, we are intrigued by the question: rather than trivially paying
unlimited amounts to ensure everyone’s participation, can we devise an incentive mechanism that guarantees a certain
level of client participation such that the overall regret is still nearly optimal but under acceptable monetary incentive
cost?

Inspired by the determinant ratio principle discussed in Eq. (3.72), we propose to control the overall regret by
ensuring that every client closely approximates the oracle after each communication round, which can be formalized as
det(Vg,t)/ det(Ṽt) ≥ β, where Vg,t = Vg,t−1+Σ(St) is to be shared with all clients and Σ(St) =

∑
j:{∆Vj,t∈St} ∆Vj,t.

The parameter β ∈ [0, 1] characterizes the chosen gap between the practical and optimal regrets that the server commits
to. Denote the set of clients motivated by Idi,t at time t as Sdt and those motivated by Imi,t as Smt , and thus St = Smt ∪Sdt .
At each communication round, the server needs to find the minimum Imi,t such that pooling local updates from St
satisfies the required regret reduction for the entire system.

Algorithm 18 maximizes Idi,t, and thus the servers should compute Imi,t on top of optimal Idi,t and resulting Sdt ,
which however is still combinatorially hard. First, a brute-force search can yield a time complexity up to O(2N ).
Second, different from typical optimal subset selection problems [149], the dynamic interplay among clients in our
specific context brings a unique challenge: once a client is incentivized to share data, the other uninvolved clients may
change their willingness due to the increased data incentive, making the problem even more intricate.

To solve the above problem, we propose a heuristic ranking-based method, as outlined in Algorithm 19. We rank
clients by the marginal gain they bring to the server’s determinant, as formally defined in Eq (3.75). This helps minimize
the number of clients requiring monetary incentives, while empowering the participation of other clients motivated by
the aggregated data. This forms an iterative search process. First, we rank all m non-participating clients (Line 2-3) by
their potential contribution to the server (with participant set St committed). Then, we segment the list by β, anyone
whose participation satisfies the overall β gap constraint is an immediately valid choice (Line 4). The first client iα in
the valid list and its payment Imlast (∞ if not available) will be our last resort (Line 5). Lastly, we check if there exist
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potentially more favorable solutions from the invalid list (Line 6). Specifically, we try to elicit up to k = α− 1 (k = m
if iα is not available) clients from the invalid list in n ≤ k rounds, where only one client will be chosen using the same
heuristic in each round. If having n clients from the invalid list also satisfies the β constraint and results in a reduced
monetary incentive cost compared to Imlast, then we opt for this alternative solution. Otherwise, we will adhere to the last
resort. This Heuristic Search is detailed in the following paragraph, and it has a time complexity of only O(N) in the
worst-case scenarios, i.e., n = m = N .

Algorithm 20 Heuristic Search

1: Input invalid client list {i1, i2, · · · , ik}, data-incentivized participant set Ŝt, and the last resort cost Imlast

2: Initialization: St = Ŝt
3: for n ∈ [k] do
4: Rank clients {i1, . . . , ik−n+1} (in new order) by Eq (3.75)
5: St = St ∪ {ik−n+1} {// add the client with the largest contribution}
6: for client j ∈ {i1, . . . , ik−n} do
7: Compute data incentive Idj,t for client j by Eq (3.73) {// find extra data-incentivized participants}
8: if Idj,t > Dp

j then
9: St = St ∪ {∆Vj,t}

10: Compute total payment Imn,t =
∑
i∈S̃t\St

Imi,t by Eq (3.74)
11: if Imn,t ≤ Imlast then
12: Return St = Ŝt ∪ {∆Viα,t} {// return last resort}
13: else
14: if det(Σ(St) + Vg,t−1)/ det(Σ(S̃t) + Vg,t−1) > β then
15: Return St {// return search result}

Heuristic Search Algorithm As sketched in Section 3.2.5, we devised an iterative search method based on the
following ranking heuristic (formally defined in Eq (3.75)): the more one client assists in increasing the server’s
determinant, the more valuable its contribution is, and thus we should motivate the most valuable clients to participate.
Denote n ≤ k (initialized as 1) as the number of clients to be selected from the invalid list {i1, . . . , ik}, and initialize the
participant set St = Ŝt. In each round n, we rank the remaining k − n+ 1 clients based on their potential contribution
to the server by Eq (3.75), and add the most valuable one to St (Line 3-4). With the latest St committed, we then
proceed to determine additional data-incentivized participants by Eq (3.73) (Line 5-8), and compute the total payment
by Eq 3.74 (Line 9). If having n clients results in the total cost Imn,t > Imlast, then we terminate the search and resort to
our last resort (Line 10-11). Otherwise, if the resulting St enables the server to satisfy the β gap requirement, then
we successfully find a better solution than last resort and can terminate the search. However, if having n client is
insufficient for the server to pass the β gap requirement, we increase n = n+ 1 and repeat the search process (Line
12-14). In particular, if the above process fails to terminate (i.e., having all m clients still not suffices, we will still use
the last resort. Note that, by utilizing matrix computation to calculate the contribution list in each round, this method
only incurs a linear time complexity of O(N), when n = m = N .

Theorem 3.2.4 guarantees the sufficiency of this mechanism w.r.t communication and payment bounds (proof given
in Section 3.2.7).

Theorem 3.2.4. Under threshold β and clients’ committed data sharing cost Dp = {Dp
1 , · · · , D

p
N}, with high

probability the monetary incentive cost of INC-FEDUCB satisfies

MT = O

(
maxDp · P ·N −

N∑
i=1

Pi ·
(
det(λI)

det(VT )

) 1
Pi

)
.

where Pi is the number of epochs client i participated throughout time horizon T , P is the total number of epochs,

which is bounded P = O(Nd log T ) by setting communication threshold Dc = T
N2d log T −

√
T 2

N2dR log T log β,
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where R =
⌈
d log(1 + T

λd )
⌉
. Henceforth, the communication cost satisfies CT = O(Nd2) · P = O(N2d3 log T ).

Furthermore, by setting β ≥ e−
1
N , the cumulative regret is RT = O

(
d
√
T log T

)
.

3.2.6 Experiment setup & results
We simulate the incentivized federated bandit problem under various environment settings. Specifically, we create an
environment of N = 50 clients with cost of data sharing Dp = {Dp

1 , · · · , D
p
N}, total number of iterations T = 5, 000,

feature dimension d = 25, and time-varing arm pool size K = 25. By default, we set Dp
i = Dp

⋆ ∈ R,∀i ∈ [N ].

(a) Dp
⋆ = 1 (b) Dp

⋆ = 10 (c) Dp
⋆ = 100

Figure 3.4: Comparison between payment-free vs. payment-efficient incentive designs.

Payment-free vs. Payment-efficient We first empirically compared the performance of the payment-free mechanism
(named as INC-FEDUCB-PF) and the payment-efficient mechanism INC-FEDUCB in Figure 3.4. It is clear that the
added monetary incentives lead to lower regret and communication costs, particularly with increased Dp

⋆ . Lower regret
is expected as more data can be collected and shared; while the reduced communication cost is contributed by reduced
communication frequency. When less clients can be motivated in one communication round, more communication
rounds will be triggered as the clients tend to have outdated local statistics.

Ablation Study on Heuristic Search To investigate the impact of different components in our heuristic search, we
compare the full-fledged model INC-FEDUCB with following variants on various environments: (1) INC-FEDUCB (w/o
PF): without payment-free incentive mechanism, where the server only use money to incentivize clients; (2) INC-
FEDUCB (w/o IS): without iterative search, where the server only rank the clients once. (3) INC-FEDUCB (w/o PF +
IS): without both above strategies.

(a) Accumulative Regret (b) Communication Cost (c) Payment Cost

Figure 3.5: Ablation Study on Heuristic Search (w.r.t Dp
⋆ ∈ [1, 10, 100]).

In Figure 3.5, we present the averaged learning trajectories of regret and communication cost, along with the final
payment costs (normalized) under different Dp

⋆ . The results indicate that the full-fledged INC-FEDUCB consistently
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outperforms all other variants in various environments. Additionally, there is a substantial gap between the variants
with and without the PF strategy, emphasizing the significance of leverage server’s information advantage to motivate
participation.

Environment & hyper-parameter study We further explored diverse β hyperparameter settings for INC-FEDUCB in
various environments with varying Dp

⋆ , along with the comparion with DisLinUCB [28] (only comparable when
Dp
⋆ = 0). As shown in Table 3.1, when all clients are incentivized to share data, our INC-FEDUCB essentially recover

the performance of DisLinUCB, while overcoming its limitation in incentivized settings when clients are not willing to
share by default. Moreover, by reducing the threshold β, we can substantially save payment costs while still maintaining
highly competitive regret, albeit at the expense of increased communication costs. And the reason for this increased
communication cost has been explained before: more communication rounds will be triggered, as clients become more
outdated.

d = 25,K = 25 DisLinUCB INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3)

T = 5, 000, N = 50, Dp
⋆ = 0

Regret (Acc.) 48.46 48.46 48.46 (∆ = 0%) 48.46 (∆ = 0%)

Commu. Cost 7,605,000 7,605,000 7,605,000 (∆ = 0%) 7,605,000 (∆ = 0%)

Pay. Cost \ 0 0 (∆ = 0%) 0 (∆ = 0%)

T = 5, 000, N = 50, Dp
⋆ = 1

Regret (Acc.) \ 48.46 47.70 (∆− 1.6%) 48.38 (∆− 0.2%)

Commu. Cost \ 7,605,000 7,668,825 (∆+ 0.8%) 7,733,575 (∆+ 1.7%)

Pay. Cost \ 75.12 60.94 (∆− 18.9%) 22.34 (∆− 70.3%)

T = 5, 000, N = 50, Dp
⋆ = 10

Regret (Acc.) \ 48.46 48.21 (∆− 0.5%) 47.55 (∆− 1.9%)

Commu. Cost \ 7,605,000 7,779,425 (∆+ 2.3%) 8,599,950 (∆+ 13%)

Pay. Cost \ 12,819.61 9,050.61 (∆− 29.4%) 4,859.17 (∆− 62.1%)

T = 5, 000, N = 50, Dp
⋆ = 100

Regret (Acc.) \ 48.46 48.22 (∆− 0.5%) 48.44 (∆− 0.1%)

Commu. Cost \ 7,605,000 7,842,775 (∆+ 3.1%) 8,718,425 (∆+ 14.6%)

Pay. Cost \ 190,882.45 133,426.01 (∆− 30.1%) 88,893.78 (∆− 53.4%)

Table 3.1: Study on Hyper-Parameter of INC-FEDUCB and Environment

3.2.7 Full proof of INC-FEDUCB algorithm
Proof of Theorem 3.2.3

Our proof relies on the following lower bound result for federated linear bandits established in [97].

Lemma 3.2.5 (Theorem 5.3 of [97]). Let pi denote the probability that an agent i ∈ [N ] will communicate with the
server at least once over time horizon T . Then for any algorithm with

N∑
i=1

pi ≤
c

2C
· N

log(T/N)
(3.76)

there always exists a linear bandit instance with σ = L = S = 1, such that for T ≥ Nd, the expected regret of this
algorithm is at least Ω(d

√
NT ).

In the following, we will create a situation, where Eq (3.76) always holds true for payment-free incentive mechanism.
Specifically, recall that the payment-free incentive mechanism (Section 3.2.4) motivates clients to participate using
only data, i.e., the determinant ratio defined in Eq (3.73) that indicates how much client i’s confidence ellipsoid can
shrink using the data offered by the server. Based on matrix determinant lemma [150], we know that Ii,t ≤ (1 + L2

λ )T .
Additionally, by applying the determinant-trace inequality (Lemma 10 of [20]), we have Ii,t ≤ (1 + TL2

λd )d. Therefore,
as long as Dp

i > min{(1 + L2

λ )T , (1 + TL2

λd )d}, where the tighter choice between the two upper bounds depends on the
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specific problem instance (i.e., either d or T being larger), it becomes impossible for the server to incentivize client i to
participate in the communication. Now based on Lemma 3.2.5, if the number of clients that satisfy Ii,t ≤ (1 + L2

λ )T

is smaller than c
2C · N

log(T/N) , a sub-optimal regret of the order Ω(d
√
NT ) is inevitable for payment-free incentive

mechanism, which finishes the proof. □

Proof of Theorem 3.2.4

To prove this theorem, we first need the following lemma.

Lemma 3.2.6 (Communication Frequency Bound). By setting the communication threshold Dc = T
N2d log T −√

T 2

N2dR log T log β, the total number of epochs defined by the communication rounds satisfies,

P = O(d log T )

where R =
⌈
d log(1 + T

λd )
⌉
= O(d log T ).

Proof of Lemma 3.2.6. Denote P as the total number of epochs divided by communication rounds throughout the
time horizon T , and Vg,tp as the aggregated covariance matrix at the p-th epoch. Specifically, Vg,t0 = λI , ṼT is the
covariance matrix constructed by all data points available in the system at time step T .

Note that according to the incentivized communication scheme in INC-FEDUCB, not all clients will necessarily
share their data in the last epoch, hence det(Vg,tP ) ≤ det(ṼT ) ≤

(
tr(ṼT )
d

)
≤ (λ+ T/d)d. Therefore,

log
det(Vg,tP )

det(Vg,tP−1
)
+ log

det(Vg,tP−1
)

det(Vg,tP−2
)
+ · · ·+ log

det(Vg,t1)

det(Vg,t0)
= log

det(Vg,tP )

det(Vg,t0)
≤
⌈
d log(1 +

T

λd
)

⌉
Let α ∈ R+ be an arbitrary positive value, for epochs with length greater than α, there are at most ⌈Tα ⌉ of them.

For epochs with length less than α, say the p-th epoch triggered by client i, we have

∆ti,tp · log
det(Vi,tp)

det(Vi,tlast)
> Dc

Combining the β gap constraint defined in Section 3.2.5 and the fact that the server always downloads to all clients
at every communication round, we have ∆ti,tp ≤ α and hence

log
det(g, Vtp)

det(Vg,tp−1)
≥ log

β · det(Ṽtp)
det(Vg,tp−1)

≥ log
β · det(Vi,tp)
det(Vg,tp−1)

≥ log
β · det(Vi,tp)
det(Vi,tlast)

≥ Dc

α
+ log β

LetR =
⌈
d log(1 + T

λd )
⌉
= O(d log T ), therefore, there are at most ⌈ R

Dc
α +log β

⌉ epochs with length less than α time

steps. As a result, the total number of epochs P ≤ ⌈Tα ⌉+ ⌈ R
Dc
α +log β

⌉. Note that ⌈Tα ⌉+ ⌈ R
Dc
α +log β

⌉ ≥ 2
√

TR
Dc+α log β ,

where the equality holds when α =
√

T (Dc+α log β)
R .

Furthermore, let Dc =
T

N2d log T − α log β, then α =
√

T 2

N2dR log T , we have

P = O

(√
TR

Dc + α log β

)
= O(N

√
dR log T ) = O(Nd log T ) (3.77)

This concludes the proof of Lemma 3.2.6. □

Communication Cost The proof of communication cost upper bound directly follows Lemma 3.2.6. In each epoch,
all clients first upload O(d2) scalars to the server and then download O(d2) scalars. Therefore, the total communication
cost is CT = P ·O(Nd2) = O(N2d3 log T ) □
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Monetary incentive cost Under the clients’ committed data sharing cost Dp = {Dp
1 , · · · , D

p
N}, during each

communication round at time step tp, we only pay clients in the participant set Stp . Specifically, the payment (i.e.,
monetary incentive cost) Imi,tp = 0 if the data incentive is already sufficient to motivate the client to participate, i.e.,
when Idi,tp ≥ Dp

i . Otherwise, we only need to pay the minimum amount of monetary incentive such that Eq (3.70) is
satisfied, i.e., Imi,tp = Dp

i − Idi,tp . Therefore, the accumulative monetary incentive cost is

MT =

P∑
p=1

N∑
i=1

Imi,tp =

P∑
p=1

N∑
i=1

max
{
0, Dp

i − Idi,tp
}
· I(∆Vi,tp ∈ Stp)

≤
P∑
p=1

N∑
i=1

max

{
0,max
i∈[N ]

{Dp
i } − Idi,tp

}
· I(∆Vi,tp ∈ Stp)

≤
P∑
p=1

∑
i∈N̄p

(max
i∈[N ]

{Dp
i } − Idi,tp) · I(∆Vi,tp ∈ Stp)

≤ max
i∈[N ]

{Dp
i }

P∑
p=1

N∑
i=1

I(∆Vi,tp ∈ Stp)−
P∑
p=1

∑
i∈N̄p

Idi,tp · I(∆Vi,tp ∈ Stp)

= max
i∈[N ]

{Dp
i }

P∑
p=1

Np −
N∑
i=1

∑
p∈P̄i

Idi,tp

where P and N represent the number of epochs and clients, Np is the number of participants in p-th epoch, N̄p is the
set of money-incentivized participants in the p-th epoch, P̄i is the set of epochs where client i gets monetary incentive,
whose size is denoted as Pi = |P̄i|. Denote Dp

max = maxi∈[N ]{Dp
i } to simplify our later discussion.

Recall the definition of data incentive and Di,tp(Stp) =
∑
j:{∆Vj,tp∈Stp}∧{j ̸=i} ∆Vj,tp +∆V−i,tp introduced in

Eq (3.73), we can show that

Idi,tp =
det
(
Di,tp(Stp) + Vi,tp

)
det(Vi,tp)

− 1

≥
det(Vg,tp)

det(Vi,tp)
− 1

Therefore, we have

MT ≤ Dp
max ·

P∑
p=1

Np +

N∑
i=1

∑
p∈P̄i

1−
N∑
i=1

∑
p∈P̄i

det(Vg,tp)

det(Vi,tp)

≤ Dp
max ·

P∑
p=1

Np +

N∑
i=1

Pi −
N∑
i=1

Pi ·

(
det(Vg,t1)

det(Vi,t1)
· det(Vg,t2)
det(Vi,t2)

· · ·
det(Vg,tPi

)

det(Vi,tPi
)

) 1
Pi

≤ Dp
max ·

P∑
p=1

Np +

N∑
i=1

Pi −
N∑
i=1

Pi ·

(
det(Vg,t1)

det(Vi,t1)
· det(Vi,t1)
det(Vi,t2)

· · ·
det(Vi,tPi−1

)

det(Vi,tPi
)

) 1
Pi

= Dp
max ·

P∑
p=1

Np +

N∑
i=1

Pi −
N∑
i=1

Pi ·

(
det(Vg,t1)

det(Vi,tPi
)

) 1
Pi

≤ (1 +Dp
max) · P ·N −

N∑
i=1

Pi ·
(
det(λI)

det(VT )

) 1
Pi
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where the second step holds by Cauchy-Schwarz inequality and the last step follows the facts that Pi ≤ P , Np ≤ N ,
det(Vg,t1) ≥ det(λI), and det(Vi,tPi

) ≤ det(VT ).

Specifically, by setting the communication thresholdDc =
T

N2d log T−
√

T 2

N2dR log T log β, whereR =
⌈
d log(1 + T

λd )
⌉
,

we have the total number of epochs P = O(Nd log T ) (Lemma 3.2.6). Therefore,

MT ≤ (1 +Dp
max) ·O(N2d log T )−

N∑
i=1

Pi ·
(
det(λI)

det(VT )

) 1
Pi

= O(N2d log T )

which finishes the proof. □

Cumulative regret To prove the regret upper bound, we first need the following lemma.

Lemma 3.2.7 (Instantaneous Regret Bound). Under threshold β, with probability 1−δ, the instantaneous pseudo-regret
rt = ⟨θ∗,x∗ − xt⟩ in j-th epoch is bounded by

rt = O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
1

β
·

det(Vg,tj )

det(Vg,tj−1
)

Proof of Lemma 3.2.7. Denote Ṽt as the covariance matrix constructed by all available data in the system at time step t.
As introduced in Eq (3.72), the instantaneous regret of client i is upper bounded by

rt ≤ 2αit,t−1

√
x⊤
t Ṽ

−1
t−1xt ·

√
det(Ṽt−1)

det(Vit,t−1)
= O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
det(Ṽt−1)

det(Vit,t−1)

Suppose the client it appears at the j-th epoch, i.e., tj−1 ≤ t ≤ tj . As the server always downloads the aggregated data
to every client in each communication round, we have

det(Ṽt)

det(Vit,t)
≤ det(Ṽt)

det(Vit,tj−1
)
≤ det(Ṽt)

det(Vg,tj−1
)

Combining the β gap constraint defined in Section 3.2.5, we can show that

det(Ṽt)

det(Vit,t)
≤ det(Ṽt)

det(Vg,tj−1)
≤

det(Vg,tj )/β

det(Vg,tj−1)
=

1

β
·

det(Vg,tj )

det(Vg,tj−1)

Lastly, plugging the above inequality into Eq (3.72), we have

rt = O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
1

β
·

det(Vg,tj )

det(Vg,tj−1)

which finishes the proof of Lemma 3.2.7. □
Now, we are ready to prove the accumulative regret upper bound. Similar to DisLinUCB [28], we group the

communication epochs into good epochs and bad epochs.

Good epochs Note that for good epochs, we have 1 ≤ det(Vg,tj
)

det(Vg,tj−1
) ≤ 2. Therefore, based on Lemma 3.2.7, the

instantaneous regret in good epochs is

rt = O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·
√

2

β
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Denote the accumulative regret among all good epochs as REGgood, then using the Cauchy–Schwarz inequality we
can see that

REGgood =
∑

p∈Pgood

∑
t∈Bp

rt

≤
√
T ·

∑
p∈Pgood

∑
t∈Bp

r2t

≤ O


√√√√T · d log T

δ
· 2
β

∑
p∈Pgood

∑
t∈Bp

∥xt∥2Ṽ −1
t−1


Combining the fact x ≤ 2 log(1 + x),∀x ∈ [0, 1] and Lemma A.2, we have

REGgood ≤ O

√√√√T · d
β
log

T

δ

∑
p∈Pgood

∑
t∈Bp

2 log

(
1 + ∥xt∥2Ṽ −1

t−1

)
≤ O

√√√√T · d
β
log

T

δ
·
∑

p∈Pgood

log
det(Ṽtp)

det(Ṽtp−1
)


≤ O

√√√√T · d
β
log

T

δ

∑
p∈PAll

log
det(Ṽtp)

det(Ṽtp−1)


= O

(√
T · d

β
log

T

δ
· log det(ṼtP )

det(Ṽt0)

)

≤ O

(√
T · d

β
log

T

δ
· d log

(
1 +

T

λd

))

= O

(
d√
β
·
√
T ·
√

log
T

δ
· logT

)

Bad epochs Now moving on to the bad epoch. For any bad epoch starting from time step ts to time step te, the regret in
this epoch is

REG =

te∑
t=ts

rt =
N∑
i=1

∑
τ∈Ni(te)\Ni(ts)

rτ

where Ni(t) = {1 ≤ τ ≤ t : iτ = i} denotes the set of time steps when client i interacts with the environment up to t.
By standard optimism argument for linear bandit [20, 28], we have

rτ ≤ min{2, 2αiτ ,τ−1

√
x⊤
τ V

−1
iτ ,τ−1xτ} = O

(√
d log

T

δ

)
min{1, ∥xτ∥V −1

iτ ,τ−1
}
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Therefore,

REG ≤ O

(√
d log

T

δ

)
N∑
i=1

∑
τ∈Ni(te)\Ni(ts)

min{1, ∥xτ∥V −1
i,τ−1

}

≤ O

(√
d log

T

δ

)
N∑
i=1

√
∆ti,te

∑
τ∈Ni(te)\Ni(ts)

min{1, ∥xτ∥2V −1
i,τ−1

}

≤ O

(√
d log

T

δ

)
N∑
i=1

√√√√∆ti,te
∑

τ∈Ni(te)\Ni(ts)

log

(
1 + ∥xτ∥2V −1

i,τ−1

)

= O

(√
d log

T

δ

)
N∑
i=1

√√√√∆ti,te
∑

τ∈Ni(te)\Ni(ts)

log

(
det(Vi,τ )

det(Vi,τ−1)

)

≤ O

(√
d log

T

δ

)
N∑
i=1

√
∆ti,te · log

det(Vi,te)

det(Vi,tlast)

≤ O

(√
d log

T

δ

)
N ·

√
Dc.

where the second step holds by the Cauchy-Schwarz inequality, the third step follows from x ≤ 2 log(1+x),∀x ∈ [0, 1],
the fourth step utilizes the elementary algebra, and the last two steps follow the fact that no client triggers the
communication before te.

Recall that, as introduced in Lemma 3.2.6, the number of bad epochs is less thanR = ⌈d log(1+ T
δ )⌉ = O(d log T ),

therefore the regret across all bad epochs is

REGbad = O

(√
d log

T

δ

)
N ·

√
Dc ·O(d log T ) = O

(
Nd1.5

√
Dc · log

T

δ
log T

)

Combining the regret for all good and bad epochs, we have accumulative regret

RT = REGgood +REGbad = O

(
d√
β
·
√
T ·
√

log
T

δ
· log T

)
+O

(
Nd1.5

√
Dc · log

T

δ
log T

)

According to Lemma 3.2.7, the above regret bound holds with high probability 1− δ. For completeness, we also
present the regret when it fails to hold, which is bounded by δ ·

∑
rt ≤ 2T · δ in expectation. And this can be trivially

set to O(1) by selecting δ = 1/T . In this way, we can primarily focus on analyzing the following regret when the
bound holds.

RT = O

(
d√
β

√
T log T

)
+O

(
Nd1.5 log1.5 T ·

√
Dc

)
With our choice of Dc =

T
N2d log T −

√
T 2

N2dR log T log β in Lemma 3.2.6, we have

RT = O

(
d√
β

√
T log T

)
+O

Nd1.5 log1.5 T ·

√√√√ T

N2d log T
−

√
T 2

N2dR log T
log β


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Plugging in R =
⌈
d log(1 + T

λd )
⌉
= O(d log T ), we get

RT = O

(
d√
β

√
T log T

)
+O

(
Nd1.5 log1.5 T ·

√
T

N2d log T
+

T

Nd log T
log

1

β

)

Furthermore, by setting β > e−
1
N , we can show that T

N2d log T > T
Nd log T log 1

β , and therefore

RT = O

(
d√
β

√
T log T

)
+O

(
d
√
T log T

)
= O

(
d
√
T log T

)
This concludes the proof. □

3.3 Mediate content creator competition for social welfare
Online recommendation platforms such as Instagram and YouTube have become prevalent in our daily life [151]. At
the core of those platforms is a recommender system (RS) designed to match each user with the most relevant content
based on predicted relevance. Such a practice, often referred to as the top-K recommendation, is believed to improve
user satisfaction and has served as a rule-of-thumb principle in both academia and industry for decades [105, 104, 109].

Until recently, the community came to realize that users’ utilities cannot be maximized unilaterally due to the
potential strategic behaviors of content creators [4]. Because the content creators’ utilities are directly tied to their
content’s exposure, they are motivated to adaptively maximize their own utilities. This leads to competition that may
potentially harm the social welfare (defined as the total user satisfaction/engagement) [152]. For example, consider
a scenario where the user population contains a large group of sports fans and a small group of travel enthusiasts.
Social welfare is maximized when the available content for recommendation covers both topics. However, one possible
equilibrium of the competition is that all creators post homogeneous sports content when the gain from creating niche
content cannot compensate for the utility loss caused by abandoning the exposure from the majority of users. It is thus
urgent to understand in the long run how bad the social welfare loss could be under strategic content creators driven by
a top-K RS.

In this work, we propose the competing content creation game to model the impact of the creators’ competition on
user engagement in a top-K RS. We measure the social welfare guarantee through the lens of Price of Anarchy (PoA)
[153], which quantifies the inefficiency of selfish behavior by the ratio between the worst-case welfare value of the
game’s equilibrium and that of an optimal outcome. Some previous works touched upon this question under different
competition models, and their answers are all pessimistic. For example, [154] noticed that the PoA of social welfare
under the RS implemented by a Shapley mediator is unbounded. [155] studied a competition model in 1-dimensional
space and showed that the PoA under the top-1 matching principle could be as bad as a constant 2. These negative
results are either based on a deterministic user choice model or assume creators compete for the shares of content
exposure. We overturn these pessimistic conclusions by showing that the PoA induced by a top-K RS is at most
1+O( 1

logK ) when (1) K > 1, (2) user choices have mild stochastic noises, and (3) creators are incentivized to compete
for user engagement instead of content exposure. We also prove its tightness by analyzing a lower-bound instance.
Thus an RS under these assumptions will approach the optimal efficiency (i.e., PoA ratio approaches 1) when K grows,
though at a relatively slow rate of 1/ logK. Notably, our PoA upper bound also holds in dynamic settings where
creators gradually learn to improve their strategies in an online fashion. Extensive synthetic and real-world data based
simulations also support these theoretical findings. Overall, our results robustly demonstrate that content creation
competitions are efficient under properly set incentives.

Our results rely on three key assumptions, all of which find their roots in recommendation literature and practice.
First, on the platform side, we assume the top-K RS is based on a relevance function that best predicts user satisfaction
if recommended content is consumed. To simplify our setting, we assume the true relevance function is known to
the RS, since a tremendous amount of research has been spent on this aspect [151, 105, 104, 109] and the goal of
our study is not to improve its estimation. Second, on the user side, we employ the well-established Random Utility
(RU) model [156] to specify the distributional structure of a user’s choices and resulting utility when presented with
a list of recommendations. The RU model has been widely adopted and found its success in marketing research to
model consumer choices [157]. Third, on the creator side, we assume that their utilities collected from matching their
content with a user are proportional to the user’s utility, as it is a common practice by platforms to set revenue sharing
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with content creators proportional to the user’s satisfaction or engagement [158, 159, 160, 161]. When we move on to
the dynamic setting where the creators do not have oracle access to their utility functions, we allow creators to adopt
arbitrary no-regret learning algorithms, which cover a variety of rational learning behaviors.

3.3.1 Related works
The theoretical studies of content creators’ strategic behavior under the mediation of an RS date back to the seminal
works from [154, 162], where they extended the game setting in search and ranking systems [163, 164] and proposed
an RS based on Shapley value that leads to the unique PNE and several fairness-related requirements. However, they
showed that the social welfare under the proposed Shapley mediator could be arbitrarily bad.

Another line of work studies the RS with strategic content creators under the Hotelling’s spatial competition
framework [165]. First introduced by [165], Hotelling’s model studied two restaurants trying to determine their
locations to attract customers who are evenly distributed on the segment [0, 1]. The Nash equilibrium (NE) of the
resulting game is that both restaurants locate at the center, known as the “principle of minimum differentiation”.
Recently, [166] proposed a variant of Hotelling’s competition in which each player has its attraction region, and they
showed that the PoA is 2 in the worse case. We show that their game settings are special cases of our proposed
competing content creation game in Section 3.3.7, and thus our main result directly implies their PoA bound. A more
closely related work is from [155], where they introduce the RS into the competition as a mediator who directs users to
facilities. They studied mediators with different levels of intervention and proposed a limited intervention mediator with
a good trade-off between social welfare and intervention cost. Interestingly, their game setting under a no-intervention
mediator also turns out to be a special case of ours. We also note that the problem settings and theoretical discussions in
both [166] and [155] are limited to pure strategy in 1-dimensional cases with a distance-induced user utility function,
while our model and result apply to arbitrary dimensions and a generic form of user utility functions.

Two recent works [167, 168] studied the supply-side competition where the creators’ strategy space is high
dimensional. Their models assume creators directly compete for user exposure without considering the role of an RS.
They focused on the characterization of NE and the identification of conditions under which specialization among
creators’ strategies may occur. In contrast, we study the social welfare under the impact of a top-K RS without being
limited to the existence of NE, and our result applies to general user utility functions.

Our user decision model (see Section 3.3.2) stems from the RU model [157] in econometrics, which explains how
an individual makes choices among a discrete set of alternatives. In the RU model, the utility that a decision maker
could obtain from alternative j is decomposed into Uj = Vj + ϵj , where Vj is the known parameterized part, and ϵj
is the unknown stochastic part. The observed choice is then given by the alternative with the maximum utility. It is
shown that if the unobserved stochastic utility follows the extreme value distribution (i.e., Gumbel distribution), then
the choice probability is given by the logit formula, i.e., Pj ∝ exp(Vj) [169]. In our work, we apply the RU model to
explain how a typical user allocates her attention across the recommended list.

To analyze the equilibrium efficiency of the competing content creation game, we employed the standard framework
of the price of anarchy (PoA). This originates from the seminal work of [153] and has since led to an extensive literature
on understanding the efficiency of numerous strategic games. Our discussion by no means can do justice to this rich
literature; here, we only mention the few works that are closely related to ours. Since Nash equilibrium (NE) is not
guaranteed to exist in our problem with non-continuous agent utilities [167], it is thus crucial for us to consider a
solution concept that is weaker than NE and thus to prove a stronger PoA bound. Specifically, we consider coarse
correlated equilibrium (CCE). The PoA for CCE is first studied by [170], who considered the efficiency of a dynamic
setup with no-regret learners and coined the new notion of the price of total anarchy, which turns out to be equivalent to
the PoA bound for CCE. This is precisely the question we want to address, but the structure of our new competing
content creation game is significantly different from the games they studied, such as Hotelling’s game on a graph and
the valid utility game of [171]. Thus their techniques are not readily applicable to our problem. We instead employed a
recent framework of [172] using the smoothness argument. It is well-known that this framework can yield strong PoA
bound applicable to CCE. However, the bounds obtained by this powerful framework are usually not tight; so far, it is
only known that it yields tight PoA bounds for linear cost congestion games [173], second price auctions [174], and the
valid utility games [171]. Interestingly, We show that the smoothness argument also yields a tight PoA bound for our
competing content creation game and thus register an additional member to this important list of games.
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3.3.2 Competing content creation game
In this section, we formalize the competing content creation game. The game G is defined by a tuple ({Si}ni=1,X , σ, β,K)
with the following ingredients:

1. A finite set of users X = {xj ∈ Rd}mj=1, and a set of players (i.e., content creators4) denoted by [n] = {1, · · · , n}.
Each player i can take an action si, often referred to as a pure strategy in game-theoretic literature, from an action
set5 Si ⊂ Rd. si can be understood as the embedding for the type of content that creator i can produce. Let
S =

∏n
i=1 Si denote the space of joint strategies. As a convention, for any s = (s1, · · · , sn) ∈ S , we use s−i to

denote the joint strategy s excluding si. Moreover, we use αi ∈ ∆(Si) to denote a mixed strategy of player i,
which is a probability measure with support Si. Similarly, α ∈ ∆(S) is used to represent a (possibly correlated)
joint strategy profile distribution over all players.

2. A relevance function σ(s,x) : Rd×Rd → R≥0 which measures the relevance between a user x ∈ X and content
s. Without loss of generality, we normalize σ to [0, 1], where 1 suggests perfect matching. We focus on modeling
the strategic behavior of creators and thus abstract away the estimation of σ.

3. Recommendation policy: given a joint strategy s = (s1, · · · , sn) ∈ S for all players, for each user xj , the RS
first calculates the relevance scores {σ(si,xj)}ni=1 over all available content and then generates Tj(s;K), the
subset of s containing the top-K recommendations for user j. Formally,

Tj(s;K) = {sli |i = 1, · · · ,K}, (3.78)

where (li)
n
i=1 is a permutation of [n] such that σ(sl1 ,xj) ≥ σ(sl2 ,xj) ≥ · · · ≥ σ(sln ,xj).

6

4. User utility and choice model: we employ the widely adopted random utility (RU) model to capture users’ utility
and choices of recommendations. Formally, the RU model assumes that the utility for user xj to consume content
si is σ(si,xj) + εi, where εi is a noise term containing any additional uncertainty that cannot be captured
by the RS’s prediction σ(si,xj) (e.g., user’s mood at that moment). The RU model assumes that {εi} are
i.i.d. random, which are often assumed to follow the Gumbel distribution with cumulative distribution function

Gumbel(µ, β) = e−e
− x−µ

β .7 We further assume εi is zero mean, thus implying µ = −βγ where γ ≈ 0.577 is
the Euler–Mascheroni constant. The variance of Gumbel(−βγ, β) is πβ√

6
and the parameter β measures the noise

level.

Upon receiving the recommended list Tj(s;K), user j chooses i∗j ∈ Tj(s;K) that maximizes her utility:

i∗j = arg max
si∈Tj(s;K)

{σ(si,xj) + εi}. (3.79)

Note that i∗j is random, with randomness inherited from {εi}. Consequently, user j derives the following expected
utility πj from consuming the selected content

πj(s) ≜ E{εi}

[
max

si∈Tj(s;K)
{σ(si,xj) + εi}

]
. (3.80)

5. Player utilities: following the convention, we assume that each player i’s expected utility is the sum of the utilities
from users that i served, i.e.,

ui(s) =

m∑
j=1

E[σ(si,xj) + εi|xj � si] ·Pr[xj � si], (3.81)

4We use these two terms interchangeably when there is no ambiguity.
5The action sets are not assumed to be finite and thus can be continuous.
6When (li)

n
i=1 is not unique, Tj(s;K) can be the top-K truncation of any such permutation with equal probability.

7There are many natural reasons to use the Gumbel noise model. This noise model is nearly indistinguishable from a Gaussian distribution
empirically, but has slightly thicker tails, allowing for more aberrant user behavior. The RU model with Gumbel noise is also known as the multinomial
logit model [175]. It deeply connects to the discrete choice model [176], quantal response equilibrium to capture bounded rational behaviors [177],
and entropy regularizer for optimizing randomized strategies [178].
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where “xj � si” denotes the event i∗j defined in (3.79) equals i. Elegantly, Pr[xj � si] ∝ eβσ(xj ,si) for any
i ∈ Tj(s;K) [175] and Pr[xj � si] = 0 if i /∈ Tj(s;K).

6. Social welfare: the social welfare function is defined as the total utilities from all the users:

W (s) =

m∑
j=1

πj(s). (3.82)

Note that under the player utility function (3.81), we have W (s) =
∑n
i=1 ui(s). That is, the social welfare is

also the total utility of players.

We remark that the player i’s utility defined in (3.81) depends on not only the proportion of users matched with i,
but also the user’s engagement reflected in the term E[σ(si,xj)+εi|xj � si]. This differs crucially from the settings in
Hotelling’s competition [165] and its recent applications to recommender systems [166, 155, 167, 168], where players’
utilities are set to the total user exposure, i.e., total number or proportion of user visits (regardless of how satisfied
the users are with the recommendations). Both metrics have been widely used in current industry practice to reward
creators [158, 159]. In this work, we primarily consider user engagement (i.e., the previously less studied case) as the
creator’s utility, and in Section 3.3.4 we will compare it with the user exposure metric to highlight their different impact.
Our research question and equilibrium concept. We are particularly interested in quantifying the average social
welfare when creators learn to update their strategies adaptively. Specifically, we consider the repeated form of a
competing content creation game played by n creators over a period of time T . At each time t, each creator chooses
an action, observes the utility induced by all creators’ strategies at that round, and uses the feedback to adjust their
subsequent actions. Naturally, creators aim to optimize their accumulated utility over the course of interactions.
However, in real-world online recommendation platforms, creators can only evaluate the utility of their chosen actions
and have to gradually learn their optimal strategies through trial and error with such limited information (i.e., bandit
feedback). A natural notion for capturing the “reasonable” learning behavior under such an environment is no regret.
The (external) regret Ri(T ) for player i is defined as the difference between her optimal utility in hindsight and the
realized accumulated utilities, i.e.,

Ri(T ) = max
s′i

T∑
t=1

Es−i∼αt
−i

[ui(s
′
i, s−i)]−

T∑
t=1

Es∼αt [ui(s)] (3.83)

where αt =
∏n
i=1 α

t
i denotes the joint-strategy distribution at time t. Player i’s learning has no regret if Ri(T ) = o(T ),

or equivalently, the average regret Ri(T )/T → 0 as T goes to infinity. Note that such no-regret algorithms exist since
any no-regret adversarial online learning algorithm (e.g., Exp3 in bandit literature [179]) guarantees no regret in such a
multi-agent learning setup.

To characterize the outcome under no-regret learning players, we focus on an equilibrium concept termed coarse
correlated equilibrium (CCE), as it is well known that the empirical action distribution of any no-regret playing sequence
in a repeated game converges to its set of CCEs [170]. The formal definition of CCE is as follows:

Definition 3.3.1. A coarse correlated equilibrium (CCE) is a distribution α over the space of joint-strategy profile S
such that for every player i and every action s′i ∈ Si,

Es∼α[ui(s)] ≥ Es∼α[ui(s
′
i, s−i)]. (3.84)

Thanks to the nice connection between no-regret dynamics and CCE, we first establish the welfare guarantee for
CCE in Section 3.3.3 and then extend it to account for the accumulated welfare induced by repeated plays in Section
3.3.4.

We also note that the concept of CCE is particularly useful for two additional reasons. First, CCE always exists in
any finite games (thus in our game), hence eliminating the necessity to address the existence of Nash equilibrium (NE),
perhaps the most celebrated solution concept, as in previous research [167]. In fact, when the action sets are continuous,
the existence of NE (either pure or mixed) cannot be guaranteed in our game as the player utility function defined in
(3.81) is not continuous. This is an inherent challenge of the problem, as any change in σ(s,x) may result in a different
top-K recommendation list Tj(s;K), leading to dramatically different player utilities. Similar challenges and the
non-existence of mixed NE have also been observed by [167], though their utility model and research questions differ
from ours. Second, even in situations where NE exists, it is more realistic to assume that players eventually achieve
some CCE rather than NE due to various criticisms about NE, including the computational concerns [180] of NE.
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3.3.3 The price of anarchy analysis
We analyze the social welfare of any top-K RS under any possible CCE; or more specifically, how bad can the welfare
possibly be due to the competition among self-interested content creators – compared to the idealized non-strategic
situation in which the platform can “dictate” all creators’ content choices and thus globally optimize the welfare function
(3.82). This can be captured by the celebrated concept of the Price of Anarchy (PoA) [153]. As its name indicates,
PoA captures the welfare inefficacy due to players’ selfish behavior. Our main result in this section is a comprehensive
characterization of the PoA of competing content creation games.

Definition 3.3.2 (PoA under CCE). Define the price of anarchy of a game G as

PoA(G) = maxs∈S W (s)

minα∈CCE(G) Es∼α[W (s)]
, (3.85)

where CCE(G) is the set of CCEs of G.

By definition, PoA(G) ≥ 1 always holds and larger values indicate worse welfare. Our choice of the CCE concept
leads to the strongest possible welfare guarantee in the sense that any upper bound of PoA under CCE also trivially
holds for the PoA under refined solution concepts such as correlated equilibrium (CE), PNE or mixed NE (if they exist),
since these are all CCEs as well. Unless otherwise emphasized, any PoA in this work refers to the PoA under CCE.

Matching PoA Upper and Lower Bounds Our main theoretical findings are an upper and lower bound for the PoA,
which match with each other and thus demonstrates the tightness of our analysis. We first present the upper bound as
follows.

Theorem 3.3.3. The PoA of any competing content creation game instance G with parameter β ≥ 0 and K ≥ 1
satisfies

PoA(G) < 1 +
1

c(β,K)
, (3.86)

where c(β,K) is defined as

c(β,K) =
(b+ 1) log(b+K)

(b+K)(log(b+K)− logK)
, b = e

1
β − 1. (3.87)

The proof of Theorem 3.3.3 is intricate and thus the detailed arguments are relegated to Section 3.3.6. The primary
challenge in the proof is to analyze various smoothness properties of the welfare and players’ utility functions, especially
how the welfare function changes after excluding any player i’s participation. In Section 3.3.6, we highlight some of
the noteworthy properties of the welfare function, including its submodularity, which we develop en route to proving
Theorem 3.3.3 but is also of independent merit towards understanding the competing content creation game.

The format of c(β,K) may not be intuitive enough for the readers to appreciate the derived PoA upper bound.
We thus provide the following observations, which reveal various properties of c(β,K) aiding the interpretation of
Eq (3.86):

1. For any β > 0 and K ≥ 1, we have c(β,K) ≥ 1 and thus PoA(G) < 2 always holds.

2. c(β,K) = 1 if and only if K = 1 or β → 0.

3. Fix any β > 0, c(β,K) monotonically increases inK; similarly, fix anyK ≥ 1, c(β,K) monotonically increases
in β.

4. For sufficiently large β and K, c(β,K) ≈ (1 + β) logK asymptotically, and therefore

PoA(G) < 1 +
1

(1 + β) logK
. (3.88)

Based on these observations, Theorem 3.3.3 has multiple interesting and immediate implications. First, the welfare
loss under any CCE is at most half in any situation, as the PoA is always upper bounded by 2. The second and third
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facts above show that such worst-case PoA occurs and only occurs when users’ choices are made in a “hard” manner:
either the RS dictates the user’s choice by setting K = 1 or the randomness in users’ choices is extremely low (i.e.,
β → 0). Note that in the latter case, the user will only consume the most relevant content (i.e., the top-ranked content)
due to small decision randomness.

Second, the welfare guarantee improves as eitherK increases (i.e., more items are recommended) or β increases (i.e.,
users’ choices have more randomness). Welfare improvement in the latter situation is intuitive because when supplied
with multiple items, the user can pick the content with large εi (i.e., the reward component that is not predictable by the
RS) to gain utility. These together reveal an interesting operational insight that when the RS cannot perfectly predict
user utility (i.e., β > 0), providing more items can help improve social welfare. This justifies top-K recommendation
and the necessity of diversity in recommendation [181].

Our following second main result shows that this PoA upper bound is tight, up to negligible constants.

Theorem 3.3.4. Given any 0 ≤ β ≤ 1, n > 2 and any 1 ≤ K ≤ min{n− 1, e
1
5β }, there exists a competing content

creation game instance G({Si}ni=1,X , σ, β,K) such that

PoA(G) > n− 1

n
+

1

1 + 5β logK
. (3.89)

This theorem also implies that the argument we employed for Theorem 3.3.3, which is based on the smoothness
proof developed by [172], yields a tight PoA bound for our proposed game. The tightness of the smoothness argument
is itself an intriguing research question. Only three classes of games are known to enjoy a tight PoA bound derived from
the smoothness argument: congestion games with affine cost [173], second price auctions [174], and the valid utility
game [171], which are all fundamental classes of games. Theorem 3.3.4 suggests that our competing content creation
game subscribes to this list. The proof of Theorem 3.3.4 is to explicitly construct a game instance which provably yields
the stated PoA lower bound (see Section 3.3.6 for more details).

3.3.4 Implications of the PoA bounds
We have discussed some direct implications of Theorem 3.3.3. Now we develop new results which are either derived
from or can be compared to Theorem 3.3.3 and 3.3.4. They will reveal additional insights from our main theoretical
results.
Welfare implications to learning content creators. The PoA bounds presented in Theorem 3.3.3 and 3.3.4 are based
on the assumption that creators are aware of the game parameters and play some CCEs of the game. While CCE is
a reasonable equilibrium concept, one potential critique is that to find the CCE, it is assumed that each creator has
knowledge about the system parameters (e.g., all other creators’ strategies and the σ function), which can be unrealistic.
Fortunately, in real-world scenarios where creators utilize no-regret algorithms to play a repeated competing content
creation game with bandit feedback, we can still establish a slightly worse PoA upper bound leveraging the fact that the
average strategy history of no-regret players converges to a CCE, as shown in the following Corollary 3.3.4.1.

Corollary 3.3.4.1. [Dynamic Version of Theorem 3.3.3] Suppose each player in a repeated competing content
creation game G({Si}ni=1,X , σ, β,K) independently executes some no-regret learning algorithm, with worst regret
R(T ) = maxiRi(T ) as defined in (3.83). Then we have

maxs∈S W (s)
1
T

∑T
t=1 Es∼αt [W (s)]

< 1 +
(
1 +

n

β logK
· R(T )

T

)
· 1

c(β,K)
, (3.90)

where αt denotes the joint-strategy distribution at step t and c(β,K) is the constant defined in (3.87).

In other words, the average welfare across all rounds 1
T

∑T
t=1 Es∼αt [W (s)] is close to the maximum possible

welfare maxs∈S W (s), up to a constant factor. The quantity in the LHS of (3.90) is also known as the “price of total
anarchy” [170]. It is a substitute for PoA when we want to characterize the welfare of an outcome from repeated play
which does not necessarily fall into any equilibrium concept. The proof of Corollary 3.3.4.1 is presented in Section 3.3.6.
Because R(T )/T → 0 as T → ∞ for any no-regret algorithm (most no-regret algorithms have R(T ) = O(

√
T )), the

RHS of (3.90) is still strictly less than 2 for any fixed constants (n, β,K).
Theorem 3.3.3 relies on two crucial platform features: 1. the player’s utility in (3.81) is defined as the total user

engagement that accounts for the user utility σ(si,xj) + εj , as opposed to just “user exposure” (i.e., the expected total
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number of matches); 2. the platform uses the top-K recommendation policy. Next, we illustrate the insights revealed
from Theorem 3.3.3 with respect to these two key features.
The importance of rewarding user engagement rather than solely exposure. A key reason for the nice
PoA guarantee in our competing content creation game is each player i’s utility is chosen as the user engagement∑
j E[σ(si,xj) + εi|xj � si]Pr(xj � si) in (3.81), while not the following user exposure metric:

User exposure for player i :
m∑
j=1

Pr(xj � si). (3.91)

Our next result shows that incentivizing creators to maximize user exposure can lead to significantly worse welfare.

Proposition 1. Let G̃ denote the variant of the competing content creation game G = ({Si}ni=1, {xj}mj=1, σ, β,K)
by substituting player utility function in (3.81) by the above user exposure in (3.91). Then for any K ≥ 1, 0 ≤ β ≤
min{0.14, 1

5 logK }, there exist G and G̃ such that

PoA(G̃) > 2 > PoA(G). (3.92)

Moreover, when K = 1 or β approaches 0, PoA(G̃) can be arbitrarily large.

In stark contrast to Theorem 3.3.3 guaranteeing PoA(G) < 2, Proposition 1 implies the deterioration of user
welfare when content creators are incentivized to compete for the expected exposure of their content. However, we
find in practice both metrics are used: for example, user engagement has been used more often as a reward metric for
established creators, whereas user exposure is used more for new creators [158, 159]. Our result serves as a theoretical
defense for rewarding creators by user engagement if the system aims to improve overall welfare of the users.

To prove Proposition 1, we construct a game instance in which the user welfare at NE is arbitrarily close to zero.
Our construction also reveals interesting insights about situations where user welfare can be very bad. Hence, we briefly
explain our construction here and leave our formal arguments in Section 3.3.6. Our constructed game has two groups of
users: one dispersed group that is fine with any content but is never very happy with it (i.e., a low relevant score for all
content) and one focused group who looks for a specific type of high-quality content (a high relevance score on such
content); but only a small group of specialized creators can produce such high-quality content. However, if players
are incentivized to compete for exposure, even creators from the small group tend to produce low-quality content that
appeals to the dispersed group rather than high-quality content that benefits the focused group. This, in the worse case,
can lead to arbitrarily worse welfare for the platform.
The welfare efficiency of top-K recommendation policy. One may wonder whether the top-K recommendation
is indeed a good policy for securing the platform’s welfare, i.e., is it possible that other recommendation policies
(e.g., a probabilistic policy based on Plackett-Luce model [182, 183]) may even lead to better equilibrium outcomes?
Our following analysis, as a corollary of Theorem 3.3.3, shows that the answer is to some extent no since any
recommendation policy cannot be better than the top-K rule by more than a tiny fraction of the theoretical optimality.
We believe this finding also serves as a theoretical justification for the wide adoption of the top-K principle in practice.

Corollary 3.3.4.2. Consider an arbitrary recommendation policy providing at most K recommendations, which
induces a different competing content creation game G′. Let CCE(G′) denote the corresponding CCE set of G′ and
W (G′) = minα∈CCE(G′) Es∼α[W (s)] be its worst-case CCE welfare. Then we have

W (G′) ≤W (G) +W ∗
K/
(
1 +

K log(K + b)

K + b

)
, (3.93)

where W ∗
K is the best possible social welfare achieved via any centralized recommendation policy with K slots.

As indicated by (3.93), the fraction of the loss of welfare is approximately O( 1
logK ) as K

K+b ∼ O(1) when K is
large. The proof is straightforward based on Theorem 3.3.3 and can be found in Section 3.3.6.

3.3.5 Experiment setup & results
To confirm our theoretical findings and also to empirically measure the social welfare induced by creators’ competition,
we conduct simulations on game instances G({Si}ni=1,X , σ, β,K) constructed from two synthetic datasets and the
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Table 3.2: PoA under β = 0.1. Results reflect the worst cases obtained from 10 independently sampled game instances.

K
n

* 2 3 4 5

1 2.00 1.33 1.54 1.66 1.72
2 1.93 1.28 1.46 1.56 1.60
3 1.89 1.42 1.47 1.51
4 1.86 1.43 1.42
5 1.84 1.42
∗ denotes the theoretical upper bound.

MovieLens-1m dataset [95]. Before presenting our results, we provide a detailed overview of the simulation environment,
including the characteristics of the datasets utilized and the metrics employed for evaluation.

Synthetic dataset-1 Dataset-1 simulates the situation where content creators compete over an unbalanced user interest
distribution. We construct n user clusters with the largest cluster containing half of the population, and let each strategy
from a creator’s action set generate content that only appeals to a specific user group.

Specifically, the user population is given by disjoint clusters X = ∪ni=1Xi such that |X1| = m
2 , and the sizes of

smaller clusters |Xl| are sampled uniformly at random such that
∑n
l=2 |Xl| =

m
2 . Players share the same action set

Si = {s1, · · · , sn}, and the σ function satisfies that for any i ∈ [n],

σ(si,x) =

{
1, if x ∈ Xi,
0, otherwise. (3.94)

Dataset-1 depends on the randomness of the partition ∪ni=1Xi.

Synthetic dataset-2 Dataset-2 simulates the situation where content creators can either “chase the trend” by generating
mediocre content or cater to a specific user interest group with high-quality content. Similar to the construction of
dataset-1, we let the user population comprise of n clusters and allow each player to take actions targeting at any specific
user group. But, in addition, we also allow each player to take a “safe” action s0 by producing some popular content
that can satisfy all users to a certain extent δ.

Specifically, the user population is also given by disjoint clusters X = ∪ni=1Xi, where the sizes of all clusters |Xl|
are sampled uniformly at random such that

∑n
l=i |Xl| = m. Players share the same action set Si = {s0, s1, · · · , sn},

and the σ function satisfies that for any i ∈ [n],

σ(si,x) =

 1, if x ∈ Xi, i ≥ 1
δ, if i = 0
0, otherwise.

(3.95)

Dataset-2 depends on the randomness of the partition ∪ni=1Xi and the parameter δ ∈ [0, 1].

MovieLens-1m dataset We use deep matrix factorization [184] to train user and movie embeddings targeted at
movie ratings from 1 to 5. The total number of users m = 6040, the number of movies k = 3883, and the embedding
dimension is set to d = 32. To validate the quality of the trained representations, we first performed a 5-fold cross-
validation and obtain an averaged RMSE =0.883 on the test sets, and then train the user/item embeddings with the
complete dataset. The resulting user embeddings X = {xj}j∈[m] are used as the user population. To construct each
player-i’s action set Si, we randomly sample 500 vectors from the trained movie embedding set M (|M| = 3883)
independently. To normalize the relevance score to [0, 1], we let σ(s,x) = 1 when the predicted rating of movie s to
user x is at least 4, i.e., σ(s,x) = I[⟨s,x⟩ ≥ 4].

Evaluation Metrics We use both PoA and PotA in our experiments. The evaluation of PoA requires solving two
optimization problems, which are both intractable in general due to the non-concavity of W (·) and the undetermined
structure of CCE(G). As a result, we use simulated annealing to approach maxs∈S W (s) when the exact computation
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Table 3.3: PotA under β = 0.1. Results reflect the worst cases obtained from 10 independently sampled game instances.

K
n

* 5 10 15 20 40

1 2.00 1.59 1.59 1.60 1.50 1.38
3 1.89 1.37 1.39 1.42 1.41 1.32
5 1.84 1.35 1.34 1.33 1.36 1.31
7 1.80 1.30 1.31 1.30 1.29

∗ denotes the theoretical upper bound.

is intractable. To compute minα∈CCE(G) Es∼α[W (s)], we compute its exact solution by solving a linear program
with kn variables and kn constraints [185] for small n and a moderate size of action set k. To deal with larger
problems, we let each player run Exp3 [179] over T = 5000 rounds and compute the price of total anarchy PotA(G) =

maxs∈S W (s)
1
T

∑T
t=1 Es∼αt [W (s)]

.

Empirical PoA from simulations We first demonstrate the empirical welfare under different game parameter
(n,K, β) for dataset-1. We fix β = 0.1 and report PoA and PotA under varying n and K. Results are reported in Table
3.2 and 3.3. We observe that for fixed n, both PoA and PotA decrease w.r.t. K and β, as revealed in Theorem 3.3.3.
Furthermore, under fixed (β,K), PoA approaches its theoretical upper bound as n increases. However, PotA follows
this trend for values of n less than 15, but begins to decrease as n increases further. This discrepancy can be attributed
to the fact that for larger values of n (i.e., in Table 3.3), the approximated optimal welfare becomes less accurate and as
such, the PotA tends to be underestimated.

Comparison between user engagement/exposure metrics Next we investigate the consequence of utilizing two
different incentive metrics, namely user engagement vs., user exposure. However, Dataset-1 is no longer a good bench-
mark for this purpose, as the utility functions derived under a simple binary valued σ(·, ·) are almost indistinguishable
under these two metrics. To this end, we use dataset-2, which has a more complex σ(·, ·) function that models the
situation in which creators could focus on chasing the trends other than paying attention to the content quality.

We fix (β,K) = (0.1, 2) and report PotA under different n and δ. The results, shown in Figure 3.6, demonstrate the
advantage of using the user engagement metric, which consistently leads to a smaller PotA across different values of n
and δ. For n larger than 10, PotA with user-exposure can exceed 2 as revealed by Proposition 18. The performance gap
between the two metrics is more distinct when δ gets smaller, which can be understood as when creators can produce
popular content with lower effort, simply using exposure to reward creators can be catastrophic to the total user welfare.

Social welfare under different levels of rationality In this experiment, we aim to investigate the competition
outcomes when players utilize online-learning algorithms with varying levels of rationality. To better simulate what
happens in practice, we employed the dataset generated from MovieLens-1m [95]. In our simulation, we model the
scenario in which each player runs Exp3 under different exploration rates ϵ (i.e., with probability ϵ, each player will
take a random action in each round). We use this simulation setup to examine a practical situation, i.e., creators try
to optimize their accumulated regret but with bounded rationality: since Exp3 is known to enjoy a sub-linear regret

when ϵ ∼ O(
√

k log k
T ) [179], it would be less rational for creators to set ϵ to be too large or too small as it would incur

a larger regret R(T ). We fix (β,K, T ) = (0.1, 5, 1000) and report the averaged social welfare over T rounds, i.e.,
W̄ = 1

mT

∑T
t=1W (s(t)) under different n and ϵ, as illustrated in Figure 3.7.

Our results indicate that the optimal exploration rate associated with the maximum welfare is around ϵ = 0.1 across
different values of n. When ϵ is set to be either too small or too large, the average welfare decreases, thereby confirming
our claim in Corollary 3.3.4.1 that the welfare guarantee deteriorates as the accumulated regret of each player’s learning
algorithm increases. Additionally, we observed that the average welfare increases when more creators are involved,
which is not unexpected given that users will have a higher chance of receiving a satisfactory recommendation when
there is a larger pool of content on the platform. Furthermore, when the number of players is sufficiently large (n = 100),
the welfare is fairly good even when players adopt nearly randomized strategies (ϵ = 0.9).

8Again, due to the approximation error in computing optimal W , the PotA could be underestimated as n gets larger.
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Figure 3.6: PotA under exposure/engagement metrics with (β,K) = (0.1, 2). δ is the relevance score obtained from
creators’ “safe” action. The error bars indicate the largest/smallest values from 10 independent trials and the dots
correspond to the mean values.

3.3.6 Full proof of the PoA bounds
Proof highlights of Theorem 3.3.3

Our first step is to derive clean characterizations for the game primitives by utilizing properties of Gumbel distribution.
The form of the user utility πj and welfare W are corollaries of RU models [157], however, the closed-form of the
creator utility ui is a new property we derive.

The main proof of Theorem 3.3.3 is based on a smoothness argument framework developed in the seminal work
by [172]. For any strategy profile s, W (s) =

∑
i ui(si, s−i) is its total welfare function. A game is (λ, µ)-smooth

if λW (s′)− µW (s) ≤
∑
i ui(s

′
i, s−i) for any (s, s′) ∈ S. [172] observes that the PoA of any (λ, µ)-smooth game

can be upper bounded by 1+µ
λ . After plugging in the expression of W (s), the (λ, µ)-smoothness condition can be

re-written as ∑
i

[λui(s
′
i, s

′
−i)− ui(s

′
i, s−i)] ≤

∑
i

µui(s).

Intuitively, the smoothness parameters bound how much externality other players’ actions (i.e., s′−i or s−i) impose on
any player i’s utility. Moreover, the tighter this bound is, the smoother the game is and the smaller the PoA is. To gain
some intuition and also as a sanity check, consider the extreme situation in which each player’s utility is not affected
by other players’ actions at all (i.e., the no externality situation), we have λ = 1 and µ = 0 implying PoA=1. That
is, if any player’s utility is not affected by others, then self-interested utility-maximizing behaviors also maximize
social welfare, which is a straightforward observation. Certainly, we cannot hope for such a nice property to hold in
general, but fortunately, many well-known games have been shown to be smooth. For example, second-price auctions
are (1, 1)-smooth as shown by [174], congestion games are ( 53 ,

1
3 )-smooth as shown by [172], and all-pay auctions are

(1/2, 1)-smooth as shown by [186].
Hence, the key challenge in proving Theorem 3.3.3 is to pin down the tightest possible (λ, µ) parameters for our

competing content creation game. This boils down to a fundamental question in top-K RS – i.e., to what extent does the
existence of other competing content creators affect a creator’s utility? To answer this question, we discover multiple
interesting properties of the welfare and creator utility functions formulated as follows. Besides proving our main result
in Theorem 3.3.3, we believe these properties are also of interest for us to understand recommender systems.

Our Lemma 3.3.5 demonstrates the sub-modularity of W (s). That is, the marginal gain of welfare from adding
a new player decreases as the total number of creators increases. Lemma 3.3.6 further relates this marginal welfare
increase with the added player’s own utility. It shows that the increased welfare after introducing a new player i with
strategy si is at most i’s utility under si, multiplied by a shrinkage factor c−1(β,K) ∈ (0, 1]. These two lemmas
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Figure 3.7: The averaged welfare W̄ over T = 1000 rounds under different exploration rate ϵ and number of players n.
Results are averaged over 10 independent runs under (β,K) = (0.1, 5).

together allow us to prove that the competing content creation game is (c−1(β,K), c−1(β,K))-smooth, yielding
Theorem 3.3.3.

Lemma 3.3.5. [Submodularity of Welfare] For any s = (s1, · · · , sn) ∈ S, let S = {s1, · · · , sn}. The social welfare
function defined in Eq (3.82) is submodular as a set function, i.e., for any S, sx, sy it holds that

W (S ∪ {sx})−W (S) ≥W (S ∪ {sx, sy})−W (S ∪ {sy}).

Lemma 3.3.6. [Smoothness of Welfare] For any s = (s1, · · · , sn) ∈ S, i ∈ [n] and c(β,K) defined in Eq (3.87),
player-i’s utility function ui(s) defined in Eq (3.81) satisfies

W (s)−W (s−i) ≤ c−1(β,K) · ui(si; s−i).

Full proof of Theorem 3.3.3

First we derive the closed-forms of the utility and welfare functions of competing content creation game.

Lemma 3.3.7 (Closed forms of utility and welfare functions). Given {εi} are drawn i.i.d. from zero-mean Gumbel(−βγ, β),
the utility and welfare functions defined in (3.80), (3.81) and (3.82) have the following closed forms

πj(s) = β log
[ ∑
sk∈Tj(s;K)

exp (β−1σ(sk,xj))
]
, (3.96)

ui(s) =

m∑
j=1

πj(s)
I[si ∈ Tj(s;K)] exp(β−1σ(si,xj))∑

sk∈Tj(s;K) exp(β
−1σ(sk,xj))

, (3.97)

W (s) = β

m∑
j=1

log
[ ∑
sk∈Tj(s;K)

exp (β−1σ(sk,xj))
]
. (3.98)

Proof of Lemma 3.3.7. We start with a few known and useful properties of Gumbel distributions.

Lemma 3.3.8. [e.g., [187]] Let (v1, · · · , vn) ∈ Rn be any real-valued vector and ε1, · · · , εn be independent samples
from Gumbel(µ, β). Then

argmax
i

(vi + εi) ∼ Categorical
( exp(β−1vi)∑n

j=1 exp(β
−1vj)

)
, (3.99)
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and

max
i

(vi + εi) ∼ Gumbel
(
µ+ β log

( n∑
j=1

exp(β−1vj)
)
, β
)
. (3.100)

Derivation of user utility and welfare. These derivations follow easily from Lemma 3.3.8. Since we assumed
that εi ∼Gumbel(−βγ, β), leveraging properties in Lemma 3.3.8 we conclude that xj’s choice distribution over K
alternatives {s1, · · · , sK} = Tj(s;K) follows the soft-max rule

Pr[xj � si] =
exp(β−1σ(si,xj))∑

sk∈Tj(s;K) exp(β
−1σ(sk,xj))

, (3.101)

and the expected user utility after making choices has the following form

πj(xj) = E
[
max
i∈[K]

{σ(si,xj) + εi}
]
= β log

 ∑
sk∈Tj(s;K)

exp(β−1σ(sk,xj))

 . (3.102)

Taking expectation over all users, we obtain the following welfare function

W (s) =

m∑
j=1

E
[

max
sk∈Tj(s;K)

{σ(sk,xj) + εi}
]
= β

m∑
j=1

log

 ∑
sk∈Tj(s;K)

exp (β−1σ(sk,xj))

 . (3.103)

By setting W̃ (s) = βW (s), σ̃(s,x) = β−1σ(s,x), we have W̃ (s) =
∑m
j=1 log[

∑
sk∈Tj(s;K) exp (σ̃(sk,xj))].

Therefore, under a rescaling of constant β it is with out loss of generality to consider a scoring function σ ∈ [0, 1
β ], the

user utility function and the social welfare function in the following form

πj(s) = log
[ ∑
sk∈Tj(s;K)

exp (σ(sk,xj))
]
, (3.104)

W (s) =

m∑
j=1

log
[ ∑
sk∈Tj(s;K)

exp (σ(sk,xj))
]
. (3.105)

Derivation of creator utility. This turns out to be a new result which requires non-trivial arguments. The players’
utility is given by

ui(s) =

m∑
j=1

E[σ(si,xj) + εi|xj � si] ·Pr[xj � si] (3.106)

=

m∑
j=1

E[σ(si,xj) + εi|xj � si] ·
exp(σ(si,xj))∑

sk∈Tj(s;K) exp(σ(sk,xj))
, (3.107)

According to the definition in (3.107), what we need to show is that for i.i.d. random variables {εi}Ki=1 sampled
from Gumbel(−βγ, β),

E[σ(si,xj) + εi|xj � si] = E[max
k∈[K]

{σ(sk,xj) + εi}] = log
[ ∑
sk∈Tj(s;K)

exp (σ(sk,xj))
]
, (3.108)

i.e., for any (v1, · · · , vK) ∈ RK and i.i.d. random variables {εi}Ki=1 sampled from Gumbel(0, 1),

E[vi + εi|i = arg max
k∈[K]

(vk + εk)] = γ + log
( K∑
k=1

exp(vk)
)
. (3.109)
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Let Yi = maxk∈[K],k ̸=i(vk + εk) ∼ Gumbel(log(
∑
k ̸=i exp(vk)), 1) and Xi = vi + εi ∼ Gumbel(vi, 1). Then

Xi has the probability density function

fi(x) = exp(−((x− vi) + e−(x−vi))), (3.110)

and Y has the cumulative distribution function

Fi(y) = exp(−e−(y−log(
∑

k ̸=i exp(vk))))). (3.111)

Therefore we can explicitly compute the conditional expectation of Xi as follows:

E[vi + εi|i = arg max
k∈[K]

(vk + εk)]

=E[vi + εi|vi + εi ≥ max
k∈[K],k ̸=i

(vk + εk)]

=E[X|X ≥ Y,X ∼ Gumbel(vi, 1), Y ∼ Gumbel(log(
∑
k ̸=i

exp(vk)), 1)] (3.112)

=

∫
R xfi(x)Fi(x)dx∫
R fi(x)Fi(x)dx

=

∫
R x exp(−((x− vi) + e−(x−vi))) exp(−e−(x−log(

∑
k ̸=i exp(vk)))))dx∫

R exp(−((x− vi) + e−(x−vi))) exp(−e−(x−log(
∑

k ̸=i exp(vk)))))dx

=

∫
R≥0

− ln t · exp(−t
∑K
k=1 exp(vk))dt∫

R≥0
exp(−t

∑K
k=1 exp(vk))dt

(3.113)

= ln
( K∑
k=1

exp(vk))
)
+

∫
R≥0

− ln s · exp(−s)ds∫
R≥0

exp(−s)ds
(3.114)

= ln
( K∑
k=1

exp(vk))
)
− d

dα

∫
R≥0

sαe−sds

= ln
( K∑
k=1

exp(vk))
)
− d

dα
Γ(α+ 1)

∣∣∣
α=0

= ln
( K∑
k=1

exp(vk))
)
+ γ. (3.115)

where (3.112) holds because of Lemma 3.3.8, (3.113) and (3.114) hold by change of variables t = e−x and s =

t
∑K
k=1 exp(vk)), and (3.115) is from the definition of Euler-Mascheroni constant. Therefore we show (3.109) and the

players’ utility function has the following form

ui(s) =

m∑
j=1

(
log
[ ∑
sk∈Tj(s;K)

exp (σ(sk,xj))
]) I[si ∈ Tj(s;K)] exp(σ(si,xj))∑

sk∈Tj(s;K) exp(σ(sk,xj))
. (3.116)

This finishes the proof of Lemma 3.3.7.

We consider the utility and welfare functions given in (3.104), (3.116) and (3.105) under the re-scaling of constant
β with the new assumption that σ(s,x) ∈ [0, 1

β ],∀s ∈ ∪ni=1Si,x ∈ X . To simplify the subsequent analysis, we
first specify some useful notations and conventions. For any joint strategy profile s = (s1, · · · , sn), we use capital
letter S to denote its set representation, i.e., S = {s1, · · · , sn}. In this way we can view Tj(s;K), πj(s), ui(s),W (s)
defined in (3.78), (3.80), (3.81), (3.82) as set functions Tj(S;K), πj(S), ui(S),W (S). From now on, we will use the
set notation S and the vector notation s interchangeably, depending on the context. Similarly, we use S−i to denote the
set {s1, · · · , sn} excluding element si. Moreover, we extend the definition of Tj(S;K) by allowing |S| = K − 1 in
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the following sense: when |S| = K − 1, we let Tj(S;K) = S ∪ {s̄}, where s̄ is a default external choice such that
σ(s̄,x) = 0 for all x ∈ X . This extension captures the situation when the system does not have enough active content
creators to allocate to the users. When such a situation happens, the system will put a default choice s̄ in the top-K
list without any utility guarantee. We remark that this extended definition is introduced merely for the convenience of
presentation and does not affect the implication of our main result.

Prior to the proofs for Lemma 3.3.5 and 3.3.6, we present two intermediate results in Proposition 2 and Lemma
3.3.9. Proposition 2 reveals a rather basic property of social welfare W which is useful in the proof of Theorem 3.3.3,
and Lemma 3.3.9 is useful in the proof of Lemma 3.3.6.

Proposition 2. Fix a joint strategy S = {s1, ..., sn} in any n−player competing content creation game G. If we add
an additional player indexed by n+ 1 with pure strategy sn+1 to the game and let S′ = {s1, ..., sn, sn+1}, the social
welfare W will strictly increase, i.e.,

W (S′) > W (S). (3.117)

Proof. By definition,

W (S′) =

m∑
j=1

(
log
[ ∑
s∈Tj(S′;K)

exp (σ(s,xj))
])
, (3.118)

W (S) =

m∑
j=1

(
log
[ ∑
s∈Tj(S;K)

exp (σ(s,xj))
])
, (3.119)

It is obvious that for any fixed user j, the sum of exponential scores of top-K choices from S′ is better than that from S ,
i.e., ∑

s∈Tj(S′;K)

exp (σ(s,xj)) ≥
∑

s∈Tj(S′;K)

exp (σ(s,xj)).

Therefore, (3.117) holds immediately by the monotonicity of the logarithmic function.

Proposition 2 reveals an important yet natural property of real-world content provider competitions: when there are
more competitors in the market, users are facing more alternatives and thus their welfare will always increase.

Lemma 3.3.9. The following function

f(x, y) =
(x+ 1) log(x+ y)

(x+ y)(log(x+ y)− log y)
, (x, y) ∈ R+ × N+, (3.120)

is monotonically increasing in y for any x ∈ R+, and is monotonically decreasing in x for any integer y ∈ N+.

Proof. We first demonstrate the monotonicity of f(·, y) by directly calculating its partial derivatives. Note that
t ≥ log(1 + t) holds for any t ≥ 0, we have

1

x+ 1

∂f(x, y)

∂y
=

log(1 + x
y ) + log(x+ y)[xy − log(1 + x

y )]

[(x+ y)(log(x+ y)− log y)]2
> 0, (3.121)

which implies that f(x, y) is increasing in y. Now it remains to show the monotonicity w.r.t. x when fixing y = K,
which is slightly more intricate. The derivative of f(x,K) w.r.t. x now writes

f ′(x,K) =
(K − 1) log(x+K) log(1 + x

K )− (x+ 1) logK

[(x+K)(log(x+K)− logK)]2
≜

−g(x,K)

[(x+K)(log(x+K)− logK)]2
, (3.122)
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and

g′(x,K) =
1

x+K

[
(2K + x− 1) logK − 2(K − 1) log(x+K)

]
(3.123)

=
2(K − 1)

x+K

[2K + x− 1

2(K − 1)
logK − log(x+K)

]
=

2(K − 1)

x+K

[ x+ 1

2(K − 1)
logK − log(1 +

x

K
)
]

(3.124)

≥ 2(K − 1)

x+K

[ x+ 1

2(K − 1)
logK − x

K

]
≥ x

x+K

[
logK − 2(K − 1)

K

]
. (3.125)

We claim g′(x,K) ≥ 0,∀K ∈ N+, and this is because

1. if K = 1, from (3.123) we have g′(x,K) = 0.

2. for K ≥ 5, we can verify logK − 2(K−1)
K > 0. From (3.125) we have g′(x,K) > 0.

3. for K ∈ {2, 3, 4}, we can verify x+1
2(K−1) logK − log(1 + x

K ) > 0 for any x ≥ 0. Therefore (3.124) we have
g′(x,K) > 0.

Now since g′(x,K) ≥ 0, we conclude that g(x,K) ≥ g(0,K) = logK ≥ 0, which implies f ′(x,K) ≤ 0,∀K ∈ N+.
Hence, f(x,K) is decreasing in x.

Now we are ready to prove Lemma 3.3.5 and 3.3.6.

Proof of Lemma 3.3.5. By the definition we only need to show the submodularity of πj(S) for any j ∈ [m], i.e.,

πj(Tj(S ∪ {sx};K))− πj(Tj(S;K)) ≥ πj(Tj(S ∪ {sx, sy};K))− πj(Tj(S ∪ {sy};K)). (3.126)

With out loss of generality we assume σ(sx,xj) ≥ σ(sy,xj), and let

{v1, · · · , vK} = {exp(σ(s,xj))|s ∈ Tj(S;K)},

where v1 ≤ · · · ≤ vK . Then depending on the values of vx = exp(σ(sx,xj)), vy = exp(σ(sy,xj)) and K, there are
three situations :

1. vx ≤ v1: (3.126) holds because its LHS and RHS are both equal to 0.

2. vx > v1,K = 1: The LHS of (3.126) is equal to log vx
v1
> 0, the RHS of (3.126) is equal to 0.

3. vx > v1,K ≥ 2: The LHS of (3.126) is equal to log vx+v2+a
v1+v2+a

, the RHS of (3.126) is equal to log
vx+vy+a
vy+v2+a

,

where a =
∑K
k=3 vk if K ≥ 3 and a = 0 if K = 2. We can verify

(vx + v2 + a)(vy + v2 + a)− (v1 + v2 + a)(vx + vy + a)

=(v2 − v1)(a+ v1 + v2) + (vx − v1)(vy − v1) ≥ 0.

Therefore, (3.126) holds and Lemma 3.3.5 follows by summing (3.126) over all j ∈ [m].

Proof of Lemma 3.3.6. By definition,

ui(si; s−i) =

m∑
j=1

(
log
[ ∑
s′∈Tj(S;K)

exp (σ(s′,xj))
]) I[si ∈ Tj(S;K)] exp(σ(si,xj))∑

s′∈Tj(S;K) exp(σ(s
′,xj))

, (3.127)

152



and

W (S) =

m∑
j=1

πj(Tj(S;K)). (3.128)

It is sufficient to prove that for any user j,(
log
[ ∑
s′∈Tj(S;K)

exp (σ(s′,xj))
]) I[si ∈ Tj(S;K)] exp(σ(si,xj))∑

s′∈Tj(S;K) exp(σ(s
′,xj))

≥ c(β,K) ·
[
πj(Tj(S;K))−πj(Tj(S−i;K))

]
.

(3.129)
Note that when si /∈ Tj(S;K), (3.129) is trivial as its LHS=RHS=0. Now we suppose si ∈ Tj(S;K) and thus

Tj(S−i;K) and Tj(;K) only differ in one element. Without loss of generality we let

{exp(σ(s,xj))|s ∈ Tj(S−i;K)} = {v′1, v2, · · · , vK},

and
{exp(σ(s,xj))|s ∈ Tj(S;K)} = {v1, v2, · · · , vK}, v1 ≥ v′1.

Because of our extended definition of Tj(S;K), Tj(S−i,K) is well defined when K = n, under which case we
have v′1 = exp(σ(s̄,xj)) = 1. Now we let z = v2 + · · ·+ vK , (3.129) is equivalent to

v1
v1 + z

log(v1 + z) ≥ c(β,K) · log
[v1 + z

v′1 + z

]
. (3.130)

Since v′1 = exp(σ(·,xj)) ≥ 1, a sufficient condition for (3.130) to hold is

v1
v1 + z

· log(v1 + z)

log(v1 + z)− log(1 + z)
≥ c(β,K). (3.131)

Note that x = v1 − 1 ∈ [0, e1/β − 1], y = z + 1 ∈ [K, (K − 1)e1/β + 1], the LHS of (3.131) becomes a function
of (x, y) which has the following form

f(x, y) =
(x+ 1) log(x+ y)

(x+ y)(log(x+ y)− log y)
. (3.132)

From Lemma 3.3.9 we know f(x, y) is monotonically increasing in y for any x > 0 and is monotonically decreasing in
x any integer K ≥ 1. Therefore, it holds that

f(x, y) ≥ f(x,K) ≥ f(e1/β − 1,K) = c(β,K). (3.133)

Hence, (3.129) holds and we complete the proof of Lemma 3.3.6.

With the help of Proposition 2, Lemma 3.3.6 and 3.3.5, now we are ready to prove our claim in Theorem 3.3.3. We
will demonstrate that any competing content creation game instance G({Si}ni=1,X , σ, β,K) is a smooth game with
parameter (λ, µ) = (c(β,K), c(β,K)) so that its PoA can be upper bounded by 1+µ

λ = 1 + 1
c(β,K) .

Let s = (s1, ..., sn) and s∗ = (s∗1, ..., s
∗
n) be two different strategy profiles. First, due to function W ’s sub-modular

property disclosed in Lemma 3.3.5, for every i ∈ [n] we have

W ([s∗i , s−i])−W (s−i) ≥W ([s∗1, · · · , s∗i−1, s
∗
i , s])−W ([s∗1, · · · , s∗i−1, s]). (3.134)
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Summing over all player i we obtain

n∑
i=1

(W ([s∗i , s−i])−W (s−i)) ≥
n∑
i=1

(W ([s∗1, · · · , s∗i−1, s
∗
i , s])−W ([s∗1, · · · , s∗i−1, s]))

=W ([s∗, s])−W (s)

> W (s∗)−W (s), (3.135)

where the last inequality holds because of Proposition 2. On the other hand, from Lemma 3.3.6 it also holds that

ui(s
∗
i ; s−i) ≥ c(β,K) ·

[
W ([s∗i , s−i])−W (s−i)

]
, (3.136)

And therefore
n∑
i=1

ui(s
∗
i ; s−i) ≥ c(β,K) ·

n∑
i=1

[
W ([s∗i , s−i])−W (s−i)

]
(3.137)

> c(β,K)[W (s∗)−W (s)]. (3.138)

where inequality (3.137) holds by (3.136), and inequality (3.138) holds by (3.135).
Since (3.138) holds for any s ∈ S, for any α ∈ CCE(G) we can take expectation over s ∼ α and obtain

n∑
i=1

Es∼α[ui(s
∗
i ; s−i)] > c(β,K)[W (s∗)− Es∼α[W (s)]]. (3.139)

Therefore,

Es∼α[W (s)] = Es∼α[

n∑
i=1

ui(s)]

≥ Es∼α[

n∑
i=1

ui(s
∗
i ; s−i)] (3.140)

≥ c(β,K) ·
n∑
i=1

[
Es∼α[W ([s∗i , s−i])]− Es∼α[W (s−i)]

]
> c(β,K)[W (s∗)− Es∼α[W (s)]]. (3.141)

where inequality (3.140) follows by the definition of CCE and inequality (3.141) holds by (3.138). Rearranging terms
we obtain

PoA(G) = maxs∈S W (s)

minα∈CCE(G) Es∼α[W (s)]
< 1 +

1

c(β,K)
. (3.142)

Proof of the Property of c(β,K) The c(β,K) function has the following form:

c(β,K) =
(b+ 1) log(b+K)

(b+K)(log(b+K)− logK)
, b = e

1
β − 1. (3.143)

We prove the following facts one by one.

1. Fix any β > 0, c(β,K) is monotonically increasing in K; similarly, fix any K ≥ 1, c(β,K) is monotonically
increasing in β.

Note that e
1
β − 1 is decreasing in β, from Lemma 3.3.9 the claim holds.

2. c(β,K) = 1 if and only if K = 1 or β → 0.
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When K = 1, c(β,K) = 1 directly holds. When β → 0, b → +∞ and c(β,K) → 1. The “only if” direction
follows from the monotonicity property of c(β,K).

3. For any β > 0 and K ≥ 1, we have c(β,K) ≥ 1 and thus PoA(G) < 2 always holds.

By the monotonicity of c, c(β,K) ≥ c(β, 1) = 1. Hence, PoA(G) < 1 + 1
c(β,K) ≤ 2.

4. For sufficiently large β and K, c(β,K) ≈ (1 + β) logK asymptotically, and therefore

PoA(G) < 1 +
1

(1 + β) logK
. (3.144)

When β is sufficiently large, b = e
1
β − 1 ≈ 1

β → 0. Therefore,

c(β,K) =
(b+ 1) log(b+K)

(b+K) log(1 + b
K )

≈ (b+ 1)K log(b+K)

(b+K)b
since log(1 + x) ≈ x as x→ 0

≈ (b+ 1) logK

b
since K >> b

≈ (1 + β) logK. since b ≈ 1
β

Proof of Corollary 3.3.4.1

Proof. Let ϵ(T ) = R(T )
T , and s∗ = (s∗1, ..., s

∗
n) be a global maximizer of W (s). By definition,

Es∼α[ui(s)] ≥ Es∼α[ui(s
∗
i , s−i)]− ϵ(T ). (3.145)

Summing over all player i ∈ [n] we obtain

Es∼α[W (s)] =

n∑
i=1

Es∼α[ui(s)] ≥
n∑
i=1

Es∼α[ui(s
∗
i , s−i)]− nϵ(T ). (3.146)

On the other hand, by (3.138) from the proof of Theorem 3.3.3, we have

n∑
i=1

ui(s
∗
i ; s−i) > c(β,K)[W (s∗)−W (s)],∀s ∈ S. (3.147)

Taking the expectation of s over distribution α we obtain

n∑
i=1

Es∼α[ui(s
∗
i ; s−i)] > c(β,K)

(
W (s∗)− Es∼α[W (s)]

)
. (3.148)

(3.146) and (3.148) together imply that

Es∼α[W (s)] + nϵ(T ) > c(β,K)
(
W (s∗)− Es∼α[W (s)]

)
. (3.149)

Note that for any s ∈ S, we have W (s) =
∑m
j=1

(
log
[∑

s∈Tj(s;K) exp (σ(s,xj))
])

≥ β logK and therefore,

nϵ(T ) ≤ nϵ(T )
β logKEs∼α[W (s)]. Substituting it into (3.149), we obtain (3.90).
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Proof of Corollary 3.3.4.2

Proof. Note that fix any players’ strategy profile s, the top-K matching mechanism maximizes the social welfare W .
Therefore, W (G′) ≤W ∗

K . On the other hand, from the PoA bound in Theorem 3.3.3 it holds that

W ∗
K

W (G)
< 1 +

(b+K)(log(1 + b/K))

(b+ 1) log(b+K)

< 1 +
(b+K)(b/K)

(b+ 1) log(b+K)

= 1 +
b+K

K log(b+K)
.

Rearranging term yields W (G′)−W (G) ≤W ∗
K −W (G) ≤W ∗

K/(1 +
K log(b+K)

b+K ).

Proof of Theorem 3.3.4

Proof. Let b = exp(1/β) − 1. Consider an n-player game where each player-i has the same action set Si =
{x1, · · · ,xn}. Let the user population X be a set with size m = n+ (n− 1)a, in which n users have profile x1 and a
users have profile xi for i = 2, · · · , n. Here a = β logK + 1 is a constant whose choice will become clear later. Let
the scoring function σ be the indicator function defined as follow:

σ(s,x) =

{
1, if s = x,
0, otherwise. (3.150)

First we lower bound the optimal welfare maxs∈S W (s). Consider the joint-strategy profile s∗ = (x1,x2, · · · ,xn),
under which each user gets one player with σ score 1 and K − 1 player with σ score 0. In this case, each user-j’s utility
πj(s) = β log(b+K) and the social welfare W (s) = mβ log(b+K). Therefore, the optimal social welfare

max
s∈S

W (s) ≥W (s∗) = mβ log(b+K). (3.151)

Next we show that s = (x1,x1, · · · ,x1) is a pure NE of G and thus s ∈ CCE(G). Given players’ joint-strategy s,
n users will be assigned with K players with σ score 1 and (n − 1)a users will be assigned with K players with σ
score 0. Therefore, the utility for an arbitrary player-i is given by

ui(s) =
[
n · (β logK + 1) + a(n− 1) · β logK

]
/n

= β logK + 1 +
a(n− 1)β logK

n
. (3.152)

If player-i switches from strategy s1 to sj , n users still get K players with score 1, (n− 2)a users get players with
score 0, and a users get K players with scores (1, 0, · · · , 0). Therefore, player-i’s utility after the deviation is

ui(sj , s−i) = n · 0 + a(n− 2) · β logK · 1
n
+ a · β log(b+K) · e

1
β

e
1
β +K − 1

=
a(n− 2)β logK

n
+

b+ 1

b+K
· aβ log(b+K).

We can verify that ui(s) ≥ ui(sj , s−i) for any 2 ≤ j ≤ n if we take

a = β logK + 1 ≤ β logK + 1

β
(
b+1
b+K log(b+K)− 1

n logK
) . (3.153)
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This is because: 1. The inequality in (3.153) always holds as b+1
b+K log(b+K) < log(b+ 1) = 1

β when β ∈ [0, 1] (this

is due to the monotonicity of log x/x); 2. ui(s) = ui(sj , s−i) when a = β logK+1

β

(
b+1
b+K log(b+K)− 1

n logK

) . Hence, s is an

NE of G. Putting (3.151), (3.152), and (3.153) together, we have

PoA(G) = maxs∈S W (s)

minα∈CCE(G) Es∼α[W (s)]
≥ W (s∗)

W (s)

=
mβ log(b+K)

nui(s)
≥ m

nui(s)
(3.154)

=
n+ (n− 1)a

n(β logK + 1) + a(n− 1)β logK

=
n− 1

n
+

1− t2a(a− 1)

a+ ta(a− 1)
(t =

n− 1

n
)

>
n− 1

n
+

1

5a− 4
(3.155)

=
n− 1

n
+

1

1 + 5β logK
.

where inequality (3.154) holds because β log(b + K) ≥ β log(b + 1) = 1, and (3.155) holds because when a =

1 + β logK ∈ [1, 1.2] and t = n−1
n ∈ [0.5, 1), it is easy to verify that 1−t2a(a−1)

a+ta(a−1) > 1
5a−4 . It is equivalent to

4t2a+ 4 > 5t2a2 + ta, which is true because t2a(5a− 4) + ta < a(5a− 4) + a < 4.

Proof of Proposition 1

Proof. Consider a population of two users X = {x1,x2} and n players in which one player has two pure strategies
and the other n− 1 players only have access to a single strategy, i.e, Si = {s0}, i = 2, . . . , n and S1 = {s1, s2}. Let
the scoring function σ be

σ(s,x) =

 1, if s = s1,x = x1,
δ, if s = s2,
0, otherwise.

(3.156)

We will show that for any given K ≥ 1, 0 ≤ β ≤ min{0.14, 1
5 logK } there exists δ ∈ (0, 1) such that the PoA of game

G̃({Si}ni=1,X , σ, β,K) is always strictly greater than 2.
From the proof of Lemma 3.3.7, the user utility and welfare functions of G̃ share the same form as in (3.96), (3.98),

while the player utility functions of G̃ have the following form

ui(s) =

m∑
j=1

I[si ∈ Tj(s;K)] exp(β−1σ(si,xj))∑
sk∈Tj(s;K) exp(β

−1σ(sk,xj))
. (3.157)

Let b = exp(1/β)−1 and we choose any δ ∈ [δ0, 1) such that exp(δ0/β)+K−1 = 2
1
K + 1

b+K

. Such δ0 ∈ (0, 1) must

exist because function f(δ) = exp(δ/β)+K−1 is monotonically increasing in [0, 1] with range [K, b+K] ⊃ 2
1
K + 1

b+K

.
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Given such choice of δ, we can verify that

2u1(s2, s0, · · · , s0) =
2 exp(δ/β)

exp(δ/β) +K − 1

≥ 2 exp(δ0/β)

exp(δ0/β) +K − 1

=
exp(1/β)

exp(1/β) +K − 1
+

1

K

≥ exp(1/β)

exp(1/β) +K − 1
+

1

n
= 2u1(s1, s0, · · · , s0),

which indicates that (s2, s0, · · · , s0) is a PNE of G̃. Therefore, by picking δ = δ0 we have

PoA(G̃) = maxs∈S W (s)

minα∈CCE(G̃) Es∼α[W (s)]
≥ W (s1, s0, · · · , s0)
W (s2, s0, · · · , s0)

=
log(exp(1/β) +K − 1) + logK

2 log(exp(δ0/β) +K − 1)
(3.158)

=
log(b+K) + logK

2 log[2K(b+K)]− 2 log(b+ 2K)
by the choice of δ0 (3.159)

> 2, (3.160)

where (3.160) holds because (3.160) is equivalent to

(b+ 2K)4 > 16K3(b+K)3. (3.161)

And we show the correctness of (3.161) by verifying the following situations:

1. when K ∈ {2, 3}, (3.161) holds for all β ∈ [0, 0.14], b = exp(1/β)− 1.

2. whenK ≥ 4, from β ≤ 1
5 logK we know b+K = exp(1/β)+K−1 > K5 and thus (b+2K)4

(b+K)3 > b > K5 ≥ 16K3.
Therefore, (3.161) holds.

Finally we show that when K = 1 or β → 0, PoA(G̃) can be arbitrarily large.

1. when β → 0, we have b→ ∞. From (3.159) we have for any fixed K,

lim
β→0

PoA(G̃) = lim
b→+∞

{ log(b+K) + logK

2 log[2K(b+K)]− 2 log(b+ 2K)

}
= lim
b→+∞

log(b+K) → +∞.

2. when K = 1, the user’s choice is deterministic and thus any δ ∈ (0, 1) makes (s2, s0, · · · , s0) a PNE of G̃. Let
δ → 0 and from (3.158) we have for any fixed β,

lim
δ→0

PoA(G̃) = lim
δ→0

{ log(exp(1/β) +K − 1) + logK

2 log(exp(δ/β) +K − 1)

}
= lim
δ→0

1

2δ
→ +∞.

3.3.7 Connections to existing models
As an extended discussion to the related work, we show how our competing content creation games connect to the
following three previously proposed competition models for content creators. All the following models do not consider
the presence of an RS and match each user with all content creators (players), which corresponds to the case K = n in
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our setting. Interestingly, we found that each of them turns out to be a special case of our competing content creation
game.
Facility location games under the no intervention mediator [155]

Consider the following competing content creation game instance:

1. the user population X ⊆ [0, 1] is a finite set of size m,

2. each player i ∈ [n] shares the same action set Si = [0, 1],

3. the scoring function is given by σ(s, x) = |s− x|,

4. (β,K) = (0, n),

5. utility function is the user exposure metric, i.e., ui(s) =
∑
x∈X Pr(x � si).

If we let m → ∞ so that X becomes a continuum with density function g over the unit interval [0, 1], the game
instance G̃({Si}ni=1,X , σ, β,K) 9 defined above is equivalent to the facility location game under the no intervention
mediator proposed by [155].
Hotelling-Downs model with limited attraction under support utility functions [166]

Consider the following competing content creation game instance:

1. the user population X = {x1, · · · , xm} ⊆ [0, 1] is a finite set of size m,

2. each player i ∈ [n] shares the same action set Si = [0, 1]× [0, 1]. For each action si = (si, wi) taken by player-i,
it is associated with an attraction region Ri = [si − wi

2 , si +
wi

2 ] ∩ [0, 1].

3. for each i ∈ [n], the scoring function is given by σ(si, x) = I[x ∈ Ri],

4. (β,K) = (0, n),

5. the utility function is induced by the user engagement metric, i.e., ui(s) =
∑m
j=1 πj(s)Pr(xj � si).

In fact, given β = 0 and the above definition of σ, we can see the utility functions under both exposure and
engagement metrics are identical, because it holds that πj(s) ∈ {0, 1} and πj(s) = 1 if and only if Pr(xj � si) > 0.
We can verify that the game instance G({Si}ni=1,X , σ, β,K) defined above is equivalent to the Hotelling-Downs model
with limited attraction under support utility functions proposed by [166].
Exposure games [167]

Consider the following competing content creation game instance:

1. the user population X ⊆ Rd is a finite set of size m,

2. each player i ∈ [n] is associated with an action set Si on the unit sphere in Rd, i.e., Si ∈ Sd−1,

3. the scoring function is given by the inner product, i.e., σ(s,x) = ⟨s,x⟩,

4. (β,K) = (τ, n),

5. the utility function is induced by the user exposure metric, i.e., ui(s) =
∑
x∈X Pr(x � si).

Note that in exposure games the parameter β no longer represents the user decision noise but becomes a temperature
parameter τ controlling the spread of exposure probabilities over items. The game instance G̃({Si}ni=1,X , σ, β,K)
defined above is equivalent to the exposure games proposed by [167].

9Note that we use G̃ to refer to the variant of G that utilizes the user exposure metric instead of the user engagement metric in player utility
functions.
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3.4 Conclusion
In conclusion, the investigation of decision-making algorithms for non-cooperative agents has shed light on the
complexities and nuances involved in navigating interactions among agents with diverse preferences and motivations.
Throughout this chapter, we explored three distinct scenarios: decision making in the face of learning agents that
provides revealed preference feedback, agents who require incentives to participate in federated learning, and agents
driven by competitiveness. These scenarios provide valuable insights into the dynamics of non-cooperative environments
and offer opportunities for designing effective strategies and algorithms.

Motivated by the observation that users’ feedback can be coupled with their interaction history with a recommender
system, in [188, 189], we proposed a new problem setting where the system learns from reveal preference feedback of a
learning user. We formulate the problem of “learning from a learner” and establish efficient learning algorithms for the
system, i.e., the system can help the user identify the globally optimal item in sub-linear time if the user is a no-regret
learner. Besides the new algorithms, our user learning model also provides a new perspective to studying the feedback
loop in recommender systems. A key insight of our proposed solutions is that a healthy recommender system needs to
expose a diversified spectrum of items to its users and thus “foster” them to respond with informed feedback. This leads
to the win-win outcome for both users and the system in exploring the item space.

Motivated by the application scenarios where multiple companies/organizations cooperate in large scale model
training and decision making, we proposed a new problem of “incentivized federated bandit”. Compared with our
works in Section 2.2 and Section 2.3, it factored in some additional practical concerns of these self-interested agents:
cooperation may help their competitors, or cause privacy and security issues, and thus an agent will only cooperate
when the benefits outweigh such risks. To minimize the overall regret incurred by all agents, we proposed incentive
mechanisms, in the form of data exchange and monetary payment, to enable cooperation among self-interested agents.

Motivated by the observation that content creators may strategically generate contents to maximize their own
utilities in online recommendation platform, we proposed the “competing content creation game”, a game-theoretical
framework for analyzing the strategic behaviors of content creators. Our primary contribution is a comprehensive
characterization of social welfare as the outcome of competition among creators, which suggests that the traditional
top-K recommendation principle is effective when the platform utilizes user engagement as an incentive metric and
offers a sufficient number of choices to users, resonating with the well-known “invisible hand” argument posited by
Adam Smith.

In conclusion, the study of decision-making algorithms for non-cooperative agents offers valuable insights and
techniques for addressing challenges in cooperative and competitive environments. By considering the preferences,
incentives, and competitiveness of agents, we can design algorithms that effectively navigate interactions among diverse
agents. These findings contribute to the broader field of multi-agent systems, paving the way for the development of
intelligent and adaptable decision-making frameworks that facilitate cooperation and optimize outcomes in complex
environments.
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Chapter 4

Conclusion and Future Work

In this dissertation, we explored decision-making in multi-agent systems for both cooperative and non-cooperative
agents, investigating various scenarios and environments. This research aimed to provide a comprehensive understanding
of decision-making dynamics and strategies in different agent settings.

For cooperative agents studied in Chapter 2, we focused on two main aspects: cooperation in heterogeneous and
non-stationary environments (Section 2.1), and cooperation in decentralized environments (Section 2.2 and Section
2.3). By studying these contexts, we gained valuable insights into the challenges and opportunities associated with
cooperative decision making. Our findings highlighted the importance of adaptive and flexible algorithms that can
account for diverse agent capabilities and changing environments. Additionally, we uncovered the significance of
communication and coordination mechanisms to facilitate effective cooperation among agents.

For non-cooperative agents studied in Chapter 3, our investigation encompassed decision making when we can
only observe revealed preference feedback from another learning agent (Section 3.1), when agents require incentives
to participate in federated optimization (Section 3.2), and when agents engage in competitive behavior under the
context of content creation in recommender systems (Section 3.3). These scenarios posed unique challenges that
required us to explore novel decision-making algorithms. By delving into these areas, we shed light on the intricacies of
decision making when individual agents prioritize their own interests. We identified the need for sophisticated incentive
mechanisms, and strategic reasoning models to encourage cooperation and navigate competitive landscapes.

Overall, this dissertation contributes to the growing field of multi-agent systems and decision making by providing
comprehensive insights into cooperative, non-cooperative and competitive behaviors. By addressing heterogeneous
and non-stationary environments, decentralized settings, and various forms of non-cooperation, we have expanded the
understanding of decision-making dynamics in complex agent interactions. Our findings have practical implications for
real-world applications, such as autonomous systems, distributed networks, and economic markets, where multiple
agents make decisions in a cooperative or competitive manner. There are several avenues for future research that can
further extend the current knowledge and contribute to practical applications.

Privacy and security For many decision making systems, it is important to consider: potential privacy breaches
especially when people’ personal information is involved, e.g., purchasing history, or medical records; and adversarial
attacks that target model estimation and decision making pipelines, e.g., data, model, and action poisoning attacks that
aim to degrade the performance of the decision making systems. The multi-agent setting brings in several new dimension
that complicates the privacy and security aspects of decision making algorithms. For example, the decentralized nature
of many multi-agent system poses bigger challenge in ensuring privacy and security compared with centralized setting,
as the agents need to share information with each other to make informed decisions. Moreover, the complex decision
space introduces challenges in understanding and analyzing the privacy and security implications, and the interactions
between agents can lead to behaviors that may have unforeseen privacy or security risks, e.g., malicious agents collude
with each other to manipulate the system or exploit vulnerabilities for personal gains.

Hybrid agent behaviors In complex real-world scenarios, agents often encounter situations where they need to
switch between cooperative and competitive behaviors based on the context or external factors. This flexibility is crucial
for agents to adapt to dynamic environments and optimize their decision-making processes. In this case, the decision
making algorithm needs to assess the current context and adapt the behavior of agents accordingly. For instance, an
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agent may exhibit cooperative behavior when resources are abundant and cooperation is beneficial, but switch to a
competitive strategy when resources become scarce or when faced with a rival agent. Pursuit in this direction can
further enhance the efficiency, adaptability, and robustness of multi-agent systems, enabling agents to achieve optimal
outcomes in a wide range of cooperative and competitive environments.
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[42] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit problems. In
Proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT’11, pages 174–188,
Berlin, Heidelberg, 2011. Springer-Verlag.

[43] Cédric Hartland, Sylvain Gelly, Nicolas Baskiotis, Olivier Teytaud, and Michéle Sebag. Multi-armed bandit,
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Appendix

A Technical lemmas
Here are the technical lemmas needed for the proofs in this dissertation.

Lemma A.1. For a symmetric positive definite matrix A ∈ Rd×d and any vector x ∈ Rd, we have the following
inequality

x⊤x ≤ x⊤Ax · x⊤A−1x ≤ ||x||42λmax(A)
λmin(A)

Lemma A.2 (Lemma 11 of [20]). Let {Xt}∞t=1 be a sequence in Rd, V is a d× d positive definite matrix and define
Vt = V +

∑t
s=1XsX

⊤
s . Then we have that

log

(
det (Vn)

det(V )

)
≤

n∑
t=1

∥Xt∥2V −1
t−1

.

Further, if ∥Xt∥2 ≤ L for all t, then

n∑
t=1

min
{
1, ∥Xt∥2V −1

t−1

}
≤ 2 (log det (Vn)− log detV ) ≤ 2

(
d log

((
trace(V ) + nL2

)
/d
)
− log detV

)
.

Lemma A.3 (Lemma 12 of [20]). Let A, B and C be positive semi-definite matrices such that A = B + C. Then, we
have that:

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)

Lemma A.4. Let A be symmetric positive-definite matrix, and B,C be symmetric positive semi-definite matrices, we
have

det(A+B + C)

det(A+ C)
≤ det(A+B)

det(A)

Lemma A.5 (Corollary 7.7.4. (a) of [190]). Let A,B be positive definite matrices, such that A ⪰ B, then we have

A−1 ⪯ B−1.

Lemma A.6 (Lemma 2.2 of [191]). For any positive semi-definite matrices A,B and C, it holds that det(A+ B +
C) + det(A) ≥ det(A+B) + det(A+ C).

Lemma A.7 (Matrix Weighted Cauchy-Schwarz). If A ∈ Rd×d is a PSD matrix, then xTAy ≤
√
xTAx · yTAy holds

for any vectors x, y ∈ Rd.

Proof. Consider a quadratic function (x+ ty)TA(x+ ty) = xTAx+2(xTAy)t+ (yTAy)t2 for some variable t ∈ R,
where x, y ∈ Rd are arbitrary vectors. Since A is PSD, the value of this quadratic function (x + ty)TA(x + ty) =
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xTAx+ 2(xTAy)t+ (yTAy)t2 ≥ 0,∀t, which means there can be at most one root. This is equivalent to saying the
discriminant of this quadratic function 4(xTAy)2 − 4xTAx · yTAy ≤ 0, which finishes the proof.

Lemma A.8 (Extension of Lemma A.3 to kernel matrix). Define positive definite matrices A = λI+Φ⊤
1 Φ1 +Φ⊤

2 Φ2

and B = λI+Φ⊤
1 Φ1, where Φ⊤

1 Φ1,Φ
⊤
2 Φ2 ∈ Rp×p and p is possibly infinite. Then, we have that:

sup
ϕ̸=0

ϕ⊤Aϕ

ϕ⊤Bϕ
≤ det(I+ λ−1KA)

det(I+ λ−1KB)

where KA =

[
Φ1

Φ2

] [
Φ⊤

1 ,Φ
⊤
2

]
and KB = Φ1Φ

⊤
1 .

Proof of Lemma A.8. Similar to the proof of Lemma 12 of [20], we start from the simple case when Φ⊤
2 Φ2 = mm⊤,

where m ∈ Rp. Using Cauchy-Schwartz inequality, we have

(ϕ⊤m)2 = (ϕ⊤B1/2B−1/2m)2 ≤ ∥B1/2ϕ∥2∥B−1/2m∥2 = ∥ϕ∥2B∥m∥2B−1 ,

and thus,

ϕ⊤(B +mm⊤)ϕ ≤ ϕ⊤Bϕ+ ∥ϕ∥2B∥m∥2B−1 = (1 + ∥m∥2B−1)∥ϕ∥2B ,

so we have

ϕ⊤Aϕ

ϕ⊤Bϕ
≤ 1 + ∥m∥2B−1

for any ϕ. Then using the kernel trick, e.g., see the derivation of Eq (27) in [74], we have

1 + ∥m∥2B−1 =
det(I+ λ−1KA)

det(I+ λ−1KB)
,

which finishes the proof of this simple case. Now consider the general case where Φ⊤
2 Φ2 = m1m

⊤
1 + m2m

⊤
2 +

· · ·+mt−1m
⊤
t−1. Let’s define Vs = B +m1m

⊤
1 +m2m

⊤
2 + · · ·+ms−1m

⊤
s−1 and the corresponding kernel matrix

KVs =


Φ1

m⊤
1

. . .
m⊤
s−1

 [Φ⊤
1 ,m1, . . . ,ms−1

]
, and note that ϕ

⊤Aϕ
ϕ⊤Bϕ

= ϕ⊤Vtϕ
ϕ⊤Vt−1ϕ

ϕ⊤Vt−1ϕ
ϕ⊤Vt−2ϕ

. . . ϕ
⊤V2ϕ
ϕ⊤Bϕ

. Then we can apply the

result for the simple case on each term in the product above, which gives us

ϕ⊤Aϕ

ϕ⊤Bϕ
≤ det(I+ λ−1KVt

)

det(I+ λ−1KVt−1)

det(I+ λ−1KVt−1)

det(I+ λ−1KVt−2)
. . .

det(I+ λ−1KV2
)

det(I+ λ−1KB)

=
det(I+ λ−1KVt

)

det(I+ λ−1KB)
=

det(I+ λ−1KA)

det(I+ λ−1KB)
,

which finishes the proof.

Lemma A.9 (Eq (26) and Eq (27) of [74]). Let {ϕt}∞t=1 be a sequence in Rp, V ∈ Rp×p a positive definite matrix,
where p is possibly infinite, and define Vt = V +

∑t
s=1 ϕsϕ

⊤
s . Then we have that

n∑
t=1

min
(
∥ϕt∥2V −1

t−1

, 1
)
≤ 2 ln

(
det(I+ λ−1KVt

)
)
,

where KVt is the kernel matrix corresponding to Vt as defined in Lemma A.8.

175



Lemma A.10 (Lemma 4 of [75]). For t > tlast, we have for any x ∈ Rd

σ̂2
t (x) ≤ σ̂2

tlast
(x) ≤

(
1 +

t∑
s=tlast+1

σ̂2
tlast

(xs)
)
σ̂2
t (x)

Lemma A.11 (Lemma 6 of [73]). If Sk is ϵ-accurate w.r.t. Dk, then

1− ϵ

1 + ϵ
σ2(x) ≤ min(σ̃2

k(x), 1) ≤
1 + ϵ

1− ϵ
σ2(x)

for all x ∈ Rd.

Lemma A.12 (Hoeffding inequality). Suppose that we have independent variables xi, i = 1, . . . , n, and xi has mean
µi and sub-Gaussian parameter σi. Then for all h ≥ 0, we have

P
( n∑
i=1

(xi − µi) ≥ h
)
≤ exp

(
− h2

2
∑n
i=1 σ

2
i

)
Lemma A.13 (Proposition 7 of [73]). Let G1, . . . , Gn be a sequence of independent self-adjoint random operators
such that E[Gi] = 0 and ∥Gi∥ ≤ R. Then for any ϵ ≥ 0, we have

P
(
∥

t∑
i=1

Gi∥ ≥ ϵ
)
≤ 4t exp

(
− ϵ2/2

∥
∑t
i=1 E[G2

i ]∥+Rϵ/3

)
.

Lemma A.14 (Proposition 8 of [73]). Let {qs}ts=1 be independent Bernoulli random variables, each with success
probability ps. Then we have

P
( t∑
s=1

qs ≥ 3

t∑
s=1

ps
)
≤ exp(−2

t∑
s=1

ps).

Lemma A.15 (Lemma 1 of [39]). Under Assumption 3 that, at each time t, arm set Ct is generated i.i.d. from a
sub-Gaussian random vector X ∈ Rd, such that E[XX⊤] is full-rank with minimum eigenvalue λ′ > 0; and the
variance ς2 of the random vector satisfies ς2 ≤ λ′2

8 ln 4K . Then we have the following lower bound on minimum eigenvalue
of the correlation matrix of observation history H:

λmin

( ∑
(xk,yk)∈H

xkx
⊤
k

)
≥ λ

′

4
|H| − 8

(
log

d|H|
δ′ +

√
|H| log d|H|

δ′

)
with probability at least 1− δ

′
.

Lemma A.16 (Matrix Freedman’s inequality [192]). Consider a matrix martingale {Ys}s=1,2,... whose values are
matrices with dimension d1 × d2, and let {Zs}s=1,2,... be the corresponding martingale difference sequence. Assume
that the difference sequence is almost surely uniformly bounded, i.e., ||Zs||op ≤ R, for s = 1, 2, . . . .

Define two predictable quadratic variation processes of the martingale:

Wcol,t :=

t∑
s=1

Es−1[ZsZ
⊤
s ] and

Wrow,t :=

t∑
s=1

Es−1[Z
⊤
s Zs] for t = 1, 2, . . .
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Then for all u ≥ 0 and ω2 ≥ 0, we have

P (∃t ≥ 0 : ||Yt||op ≥ u, and max{||Wcol,t||op, ||Wrow,t||op} ≤ ω2) ≤ (d1 + d2) exp

(
− u2/2

ω2 +Ru/3

)
Lemma A.17 (Vector-valued self-normalized bound (Theorem 1 of [20])). Let {Ft}∞t=1 be a filtration. Let {ηt}∞t=1 be
a real-valued stochastic process such that ηt is Ft+1-measurable, and ηt is conditionally zero mean R-sub-Gaussian
for some R ≥ 0. Let {Xt}∞t=1 be a Rd-valued stochastic process such that Xt is Ft-measurable. Assume that V is a
d× d positive definite matrix. For any t > 0, define

Vt = V +

t∑
τ=1

XτX
⊤
τ St =

t∑
τ=1

ητXτ

Then for any δ > 0, with probability at least 1− δ,

||St||V −1
t

≤ R

√
2 log

det(Vt)1/2

det(V )1/2δ
, ∀t ≥ 0

Lemma A.18 (Corollary 8 of [69]). Under the same assumptions as Lemma A.17, consider a sequence of real-valued
variables {Zt}∞t=1 such that Zt is Ft-measurable. Then for any δ > 0, with probability at least 1− δ,

|
t∑

τ=1

ητZτ | ≤ R

√√√√√2(V +

t∑
τ=1

Z2
τ ) log


√
V +

∑t
τ=1 Z

2
τ

δ
√
V

,∀t ≥ 0

Lemma A.19. Under Assumption 4, Fi,t(θ) for i = 1, 2, . . . , N is smooth with constant kµ + λ
Nt

Proof. By Assumption 4, µ(·) is Lipschitz continuous with constant kµ, i.e., |µ(x⊤θ1)−µ(x⊤θ2)| ≤ kµ|x⊤(θ1− θ2)|.
Then we can show that

||∇Fi,t(θ1)−∇Fi,t(θ2)||

= ||1
t

t∑
s=1

xs,i[µ(x
⊤
s,iθ1)− µ(x⊤

s,iθ2)] +
λ

Nt
(θ1 − θ2)||

≤ 1

t

t∑
s=1

||xs,i[µ(x⊤
s,iθ1)− µ(x⊤

s,iθ2)]||+
λ

Nt
||θ1 − θ2||

≤ 1

t

t∑
s=1

|µ(x⊤
s,iθ1)− µ(x⊤

s,iθ2)|+
λ

Nt
||θ1 − θ2||

≤ kµ
t

t∑
s=1

|x⊤
s,i(θ1 − θ2)|+

λ

Nt
||θ1 − θ2|| ≤ (kµ +

λ

Nt
)||θ1 − θ2||

Therefore, ∇Fi,t(θ) is Lipschitz continuous with constant kµ + λ
Nt , and ∇Ft(θ) = 1

N

∑N
i=1 ∇Fi,t(θ) is Lipschitz

continuous with constant kµ + λ
Nt as well.
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