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Abstract

Sequential decision-making models, especially multi-armed bandits (MAB) and reinforcement learning (RL)

have found tremendous success in wide applications of cognitive radios, recommender systems, healthcare, and

beyond. However, the majority of these previous studies are focused on single-agent scenarios, which may fail

to capture many modern real-world multi-agent applications (e.g., multiple devices sharing communication

resources in cognitive radio). This thesis is thus motivated to extend previous single-agent decision-making

studies to their multi-agent settings, which raises new challenges in system modeling, communication strategies,

and beyond. In particular, this thesis focuses on two core topics in designing sequential decision-making

algorithms for intelligent multi-agent systems: how to communicate and how to collaborate.

First, communication is one unique component in multi-agent systems compared with their single-agent

counterparts. This thesis investigates this direction in providing efficient and robust information-sharing

mechanisms. In particular, focusing on a decentralized multi-player MAB system, novel communication

tools are developed, e.g., adaptive quantization, and error-correction coding. Besides communication, the

collaboration strategy is also the key to enabling effective multi-agent systems. In this part, this thesis

presents a line of works on federated MAB that extends the core principles of federated learning to MAB,

and in particular, summarizes a modularized design principle for federated contextual bandits.

With these advances, this thesis deepens the understanding of decision-making designs in multi-agent

systems and provides fundamental insights for future developments.
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Chapter 1

Introduction

Sequential decision-making models, especially multi-armed bandits (MAB) and reinforcement learning (RL)

have found wide applications in cognitive radios, recommender systems, healthcare, and beyond. Tremendous

successes have also been witnessed in recent years. Comprehensive overviews of related basics and recent

advances can be found in Lattimore and Szepesvári (2020); Sutton and Barto (2018).

However, the majority of previous MAB and RL studies are focused on single-agent scenarios. While

being the fundamental setting to study, it may fail to capture many real-world applications, especially in the

modern era where multi-agent systems commonly exist. In particular, in cognitive radio systems, there often

exist multiple devices sharing communication resources, and in recommender systems, the online shopping

platform typically serves hundreds and thousands of clients at the same time. Such applications motivate us

to extend previous single-agent MAB/RL studies to their multi-agent settings. While single-agent studies

provide many important insights, corresponding multi-agent designs remain challenging. In particular, two

core questions are: how to communicate and how to collaborate.

This thesis is centered around these two core questions. It first discusses how to efficiently and robustly

share information among agents in a decentralized multi-player MAB (MPMAB) system, where novel

communication tools are developed. In particular, to achieve higher communication efficiency, an adaptive

differential communication protocol is proposed, which contributes to closing a long-standing performance

gap in the heterogeneous MPMAB problem. At the same time, to guarantee the robustness of communication,

error-correction coding techniques are leveraged and nicely adapted to the MPMAB system and largely boost

the performance to approach centralized ones.

Then, for collaboration designs, this thesis presents a line of works on federated MAB which extends

the core principles of federated learning (FL) to MAB. Especially, this thesis covers collaboration designs in

1



Chapter 1 Introduction 2

different global-local relationships and varying generalization-personalization balance setups. Also, a general

modulized approach is provided to flexibly involve FL protocols.

These advances, presented by this thesis, deepen the understanding of decision-making designs in multi-

agent systems and provide fundamental insights for future developments. In particular, the proposed

communication and collaboration mechanisms are broadly applicable beyond the specific problems.



Chapter 2

Information-sharing Designs for

Multi-agent Decision Making

2.1 Decentralized Multi-player Multi-armed Bandits

Motivated by the application of cognitive radio (Anandkumar et al., 2010, 2011; Gai et al., 2010), the

multi-player version of the multi-armed bandits problem (MP-MAB) has sparked significant interest in recent

years. MP-MAB takes player interactions into account by having multiple decentralized players simultaneously

play the bandit game and interact with each other through arm collisions.

2.1.1 Problem Formulation

A decentralized MP-MAB model consists of K ∈ N arms and M ∈ N players. As commonly assumed in

Bistritz and Leshem (2020); Boursier et al. (2020), there are more arms than players, i.e., M ≤ K, and

initially the players have knowledge of K but not M . Furthermore, no explicit communications are allowed

among players, which results in a decentralized system. Also, time is assumed to be slotted, and at time step

t, each player m ∈ [M ] chooses and pulls an arm sm(t) ∈ [K]. The action vector of all players at time t is

denoted as S(t) := [s1(t), ..., sM (t)], which is referred to as a “matching” for convenience.

Individual Outcomes

For each player m, an outcome Ok,m(t) is associated with her action of pulling arm sm(t) = k at time t,

which is defined as

Ok,m(t) := Xk,m(t) · ηk(S(t)). (2.1)

3



2.1 Decentralized Multi-player Multi-armed Bandits 4

In Eqn. (2.1), Xk,m(t) is a random variable of arm utility and ηk(S(t)) is the no-collision indicator defined

by ηk(S) := 1{|Ck(S)| ≤ 1} with Ck(S) := {n ∈ [M ]|sn = k}. In other words, if player m is the only player

choosing arm k, the outcome is Xk,m(t); if multiple players choose arm k simultaneously, a collision happens

on this arm and the outcome is zero regardless of Xk,m(t).

For a certain arm-player pair, i.e., (k,m), the set of random arm utilities {Xk,m(t)}t≥1 is assumed to be

independently sampled from an unknown distribution ϕk,m, which has a bounded support on [0, 1] and an

unknown expectation E[Xk,m(t)] = µk,m. The homogeneous and heterogeneous settings are specified in the

following:

• Homogeneous setting: the expected utility of each arm is the same for all players, i.e., µk,m =

µk,∀m ∈ [M ],∀k ∈ [M ];

• Heterogeneous setting: the players may have different expected utilities of each arm, i.e., potentially,

µk,m ̸= µk,n when m ̸= n.

To ease the exposition, we define S = {S = [s1, ..., sM ]|sm ∈ [K],∀m ∈ [M ]} as the set of all possible

matchings S and abbreviate the arm k of player m as arm (k,m). We further denote µ = [µk,m](k,m)∈[K]×[M ]

and µS = [µsm,m]m∈[M ] for S = [s1, ..., sM ].

System Rewards

Besides players’ individual outcomes, with matching S(t) chosen at time t, a random system reward, denoted

as V (S(t), t), is collected for the entire system. The most commonly-studied reward function (Bistritz and

Leshem, 2020; Boursier et al., 2020) is the sum of outcomes from different players (referred to as the linear

reward function), i.e.,

V (S(t), t) :=
∑

m∈[M ]
Osm(t),m(t).

With this linear reward function, for matching S, the expected system reward is denoted as Vµ,S :=

E[V (S, t)] =
∑

m∈[M ] µsm,mηsm(S) under matrix µ. As almost all the existing MP-MAB literature focus on

the linear reward function, we also focus on this case first, but note that the problem formulation presented

in this section can be extended to general (nonlinear) reward functions.

Feedback Model

Different feedback models exist in the MP-MAB literature. Especially, we consider the collision-sensing and

no-sensing models specified in the following:
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• Collision-sensing model: player m can access her own outcome Osm(t),m(t) and the corresponding

no-collision indicator ηsm(t)(S(t));

• No-sensing model: player m can access her own outcome Osm(t),m(t) but not the corresponding

no-collision indicator ηsm(t)(S(t)).

Note that in both cases, neither the overall reward V (S(t), t) nor the outcomes of other players can be

observed by each player. In other words, at time t, player m chooses arm sm(t) based on her own history

Hm(t) =
{
sm(τ), Osm(τ),m(τ), ηsm(τ)(S(τ))

}
1≤τ≤t−1

(Collision-sensing)

or

Hm(t) =
{
sm(τ), Osm(τ),m(τ)

}
1≤τ≤t−1

(No-sensing).

Regret Definition

If µ is known a priori, the optimal choice is the matching that gives the highest expected reward Vµ,∗ :=

maxS∈S Vµ,S . We formally define the regret after T rounds of playing as

R(T ) = TVµ,∗ − E

[
T∑

t=1

V (S(t), t)

]
, (2.2)

where the expectation is w.r.t. the randomness of the policy and the environment.

2.1.2 Related Works

The MP-MAB setting were originally motivated from the application of cognitive radio and can be dated

back to Anandkumar et al. (2010, 2011); Gai et al. (2010). Since being proposed, most studies considered

the homogeneous collision-sensing setting (Liu and Zhao, 2010; Avner and Mannor, 2014; Rosenski et al.,

2016; Besson and Kaufmann, 2018). With implicit communications, Boursier and Perchet (2019); Wang et al.

(2020a) proved regrets that approach the centralized ones; thus, the homogeneous collision-sensing variant

was fairly well understood.

The Heterogeneous Variant

Compared with the homogeneous variant, the heterogeneous MP-MAB problems (Kalathil et al., 2014; Nayyar

et al., 2016) with player-dependent arm utilities, on the other hand, was less investigated. Some attempts

includes Bistritz and Leshem (2020); Magesh and Veeravalli (2019); Tibrewal et al. (2019); Boursier et al.
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(2020), whose regrets are far from the (natural) centralized lower bound as discussed later. Our work Shi

et al. (2021) filled this understanding gap with the BEACON algorithm proposed, whose regret, for the first

time, is capable of approaching the lower bound.

The No-sensing Variant

On the no-sensing model, there were also limited progress before our work Shi et al. (2020). In particular,

Lugosi and Mehrabian (2018); Boursier and Perchet (2019) touches upon the this setting. However, unlike

our work Shi et al. (2020), their proposed designs are incapable of approaching the centralized performance.

Other variants

Many other variants beyond the basic MP-MAB settings have also been investigated. First, while all the

aforementioned works are confined to the linear reward function, some attempts have been made to consider

other reward functions. For example, a fairness measurement was considered in Bistritz et al. (2020), while

“stable” allocations were investigated in Avner and Mannor (2016); Darak and Hanawal (2019). Our work

(Shi et al., 2021), instead, provided a general consideration towards this direction.

Secondly, the adversarial, instead of stochastic, rewards were studied in Alatur et al. (2020); Bubeck et al.

(2020). Our work (Shi and Shen, 2021b) makes additional contributions on this direction in understanding

how to perform robust communications in adversarial environments.

2.2 Heterogeneous Collision-sensing Model: Adaptive Differential

Communication

We first consider the collision-sensing setting in a heterogeneous MP-MAB model, which is defined in

Section 2.1.1 and summarized in the following:

• Heterogeneous setting: potentially µk,m ̸= µk,n when m ̸= n;

• Collision-sensing model: player m can access her own outcome Osm(t),m(t) and the corresponding

no-collision indicator ηsm(t)(S(t));

For this setting, we propose the BEACON – Batched Exploration with Adaptive COmmunicatioN algorithm

in Shi et al. (2021), whose design, analysis and evaluation are provided in the following subsections.
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2.2.1 The BEACON Algorithm

Algorithm Structure and Key Ideas

The BEACON algorithm starts with the orthogonalization procedure proposed in Wang et al. (2020a) at

the beginning of the game, during which each player individually estimates the number of players M and

assigns herself of a unique index m ∈ [M ]. Then, BEACON proceeds in epochs and each epoch consists of

two phases: (implicit) communication and exploration. While similar two-phase structures have been adopted

by other heterogeneous MP-MAB algorithms (Tibrewal et al., 2019; Boursier et al., 2020), those designs fail

to have regrets approaching the centralized lower bound.

The challenge in approaching the centralized lower bound is not only designing more efficient implicit

communications and explorations, but also connecting them in a way that neither phase dominates the overall

regret and both approach the centralized lower bound simultaneously. BEACON precisely achieves these

goals, with several key ideas that not only are crucial to closing the regret gap but also hold individual

values in MP-MAB research. First, a novel adaptive differential communication (ADC) method is proposed,

which is fundamental in improving the effectiveness and efficiency of implicit communications. Specifically,

ADC drastically reduces the communication cost from up to O(log(T )) per epoch in state-of-the-art designs

(Boursier et al., 2020) to O(1) per epoch, which ensures a low communication cost. Second, CUCB principles

(Chen et al., 2013) are incorporated with a batched exploration structure to ensure a low exploration loss.

CUCB principles address a critical challenge of large amount of matchings in heterogeneous MP-MAB (i.e.,

|S| = KM ), which hampered prior designs. The batched structure, on the other hand, is carefully embedded

and optimized such that the need of communication and exploration is balanced, leading to neither dominating

the overall regret.

Batched Exploration

To facilitate the illustration, we first present the batched exploration scheme and also a sketch of BEA-

CON under an imaginary communication-enabled setting. Specifically, players are assumed to be able to

communicate with each other freely in this subsection.

The batched exploration proceeds as follows. At the beginning of epoch r, each player m maintains an

arm counters prk,m for each arm k of hers. The counters are updated as prk,m = ⌊log2(T r
k,m)⌋, where T r

k,m is

the number of exploration pulls on arm (k,m) up to epoch r. Then, the leader (referring to the player with

index 1) collects arm statistics from followers (referring to the players other than the leader). Specifically, if

prk,m > pr−1
k,m, statistics µ̃r

k,m is collected from follower m; otherwise, µ̃r
k,m is not updated and kept the same as

µ̃r−1
k,m, where µ̃r

k,m is a to-be-specified characterization of arm (k,m)’s sample mean µ̂r
k,m. With the updated
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information, an upper confidence bound (UCB) matrix µ̄r = [µ̄r
k,m](k,m)∈[K]×[M ] is calculated by the leader,

where

µ̄r
k,m = µ̃r

k,m +

√
3 ln tr/2

pr
k,m+1,

and tr is the time step at the beginning of epoch r.

The UCB matrix µ̄r is then fed into a combinatorial optimization solver, denoted as Oracle(·), which

outputs the optimal matching w.r.t. the input. Specifically,

Sr = [sr1, ..., s
r
M ]← Oracle(µ̄r) = argmax

S∈S

{∑
sm∈S

µ̄r
sm,m

}
,

which can be computed with a polynomial time complexity using the Hungarian algorithm (Munkres, 1957).

We note that similar optimization solvers are also required by Boursier et al. (2020); Tibrewal et al. (2019).

Inspired by the exploration choice of CUCB, this matching Sr is chosen to be explored. The leader thus

assigns the matching Sr to followers, i.e., arm srm for player m.

After the assignment, the exploration begins. One important ingredient of BEACON is that the duration

of exploring the chosen matching, i.e., the adopted batch size, is determined by the smallest arm counter

in it. Specifically, for Sr, we denote pr = minm∈[M ] p
r
srm,m and the batch size is chosen to be 2pr . In other

words, during the following 2pr time steps, players are fixated to exploring the matching Sr. Then, epoch

r + 1 starts, and the same procedures are iterated.

Remark 2.2.1. BEACON directly selects the matching with the largest UCB to explore. It turns out that

this natural method significantly outperforms the “matching-elimination” scheme in Boursier et al. (2020),

and is critical to achieving a near-optimal exploration loss. In addition, the chosen batch size of 2pr ensures

sufficient but not excessive pulls w.r.t. the least pulled arm(s) in the chosen matching, which dominate the

uncertainties. Furthermore, while similar batched structures have been utilized in the bandit literature (Auer

et al., 2002; Hillel et al., 2013), the updating of arm counters in BEACON is carefully tailored. Last, the

leader collects followers’ statistics only when arm counters increase, i.e., prk,m > pr−1
k,m, which means µ̃r

k,m is

sufficiently more precise than µ̃r−1
k,m. This design contributes to a low communication frequency while not

affecting the exploration efficiency.

Efficient Implicit Communication

Since explicit communication is prohibited in decentralized MP-MAB problems, we now discuss how to use

implicit communication (Boursier and Perchet, 2019) to share information in BEACON. Specifically, players

can take predetermined turns to “communicate” by having the “receive” player sample one arm and the
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“send” player either pull (create collision; bit 1) or not pull (create no collision; bit 0) the same arm to transmit

one-bit information. Although information sharing is enabled, such a forced-collision communication approach

is inevitably costly, as collisions reduce the rewards. The challenge now is how to keep the communication

loss small, ideally O(log(T )).

Algorithm 1 BEACON: Leader

1: Initialization: r ← 0; ∀(k,m), prk,m ← −1, T r
k,m ← 0, µ̃r

k,m ← 0

2: Play each arm k ∈ [K] and T r+1
k,1 ← T r

k,1 + 1
3: while not reaching the time horizon do
4: r ← r + 1

5: ∀(k,m), prk,m ←
⌊
log2(T

r
k,m)

⌋
6: ∀k ∈ [K], update sample mean µ̂r

k,1 with the first 2p
r
k,1 exploratory samples from arm k

▷ Communication Phase
7: for (k,m) ∈ [K]× [M ] do
8: if prk,m > pr−1

k,m then

9: δ̃rk,m ← Receive(δ̃rk,m,m)

10: µ̃r
k,m ← µ̃r−1

k,m + δ̃rk,m
11: else
12: µ̃r

k,m ← µ̃r−1
k,m

13: end if
14: end for

15: ∀(k,m), µ̄r
k,m ← µ̃r

k,m +
√

3 ln tr/2
pr
k,m+1

16: Sr = [sr1, ..., s
r
M ]← Oracle(µ̄r)

17: ∀m ∈ [M ], Send(srm,m)
▷ Exploration Phase

18: pr ← minm∈[M ] p
r
srm,m

19: Play arm sr1 for 2pr times
20: Signal followers to stop exploration
21: Update ∀m ∈ [M ], T r+1

sm,m ← T r
sm,m + 2pr

22: end while

The batched exploration scheme plays a key role in reducing the communication loss via infrequent

information updating. In other words, players only communicate statistics and decisions before each batch

instead of each time step. With the aforementioned batch size, there are at most O(log(T )) epochs in horizon

T . Thus, intuitively, if the communication loss per epoch can be controlled of order O(1) irrelevant of T , the

overall communication loss would not be dominating. However, this requirement is challenging and none of

the existing implicit communication schemes (Boursier and Perchet, 2019; Boursier et al., 2020) can meet it,

which calls for a novel communication design.

From the discussion of the exploration phases, we can see that sharing arm statistics µ̃r
k,m is the most

challenging part. Specifically, as opposed to sharing integers of arm indices in Sr and the batch size parameter

pr, statistics µ̃
r
k,m is often a decimal while forced-collision is fundamentally a digital communication protocol.

We thus focus on the communication design for sharing statistics µ̃r
k,m, and propose the adaptive differential
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communication (ADC) method as detailed below. Details of sharing Sr and pr can be found in supplementary

material.

The first important idea is to let followers adaptively quantize sample means for communication.

Specifically, upon communication, the arm statistics µ̃r
k,m is not directly set as the collected sample mean

µ̂r
k,m. Instead, µ̃r

k,m is a quantized version of µ̂r
k,m using ⌈1 + prk,m/2⌉ bits. Since µ̃r

k,m is communicated

only upon an increase of the arm counter prk,m, this quantization length is adaptive to the arm counter (or

equivalently the arm pulls), and further to the adopted confidence bound, i.e.,
√
3 ln tr/2

pr
k,m+1. However,

this idea alone is not sufficient because prk,m is of order up to O(log(T )), instead of O(1).

To overcome this obstacle, the second key idea is differential communication, which significantly reduces

the redundancies in statistics sharing. Specifically, follower m first computes the difference

δ̃rk,m = µ̃r
k,m − µ̃r−1

k,m,

and then truncates the bit string of δ̃rk,m upon the most significant non-zero bit, e.g., 110 for 000110. She

only communicates this truncated version of δ̃rk,m in the transmission of µ̃r
k,m to the leader. The intuition

is that µ̃r
k,m and µ̃r−1

k,m are both concentrated at µk,m with high probabilities, which results in a small δ̃rk,m.

From an information-theoretic perspective, the conditional entropy of µ̃r
k,m on µ̃r−1

k,m, i.e., H(µ̃r
k,m|µ̃

r−1
k,m), is

often small because they are highly correlated.1

As will be clear in the regret analysis, putting these two ideas together results in an effective communication

design, i.e, the ADC scheme, whose expected regret is of order O(1) per epoch and O(log(T )) overall. This

method itself represents an important improvement over prior implicit communication protocols in MP-MAB,

whose loss is typically of order O(log(T )) per epoch and O(log2(T )) in total with multiple optimal matchings

(Boursier and Perchet, 2019; Boursier et al., 2020). Techniques similar to ADC have been utilized in areas

outside of MAB, e.g., wireless communications (Goldsmith and Chua, 1998), with proven success in practice

(Goldsmith, 2005).

Figure 2.1: A sketch of epoch r in BEACON. Yellow boxes and yellow lines indicate communications, green
boxes for explorations, and boxes with dotted frame for computations.

1Note that sharing the truncated version of δ̃rk,m results in another difficulty that its length varies for different player-arm

pairs and is unknown to the leader. A specially crafted “signal-then-communicate” scheme is designed to tackle this challenge.



2.2 Heterogeneous Collision-sensing Model: Adaptive Differential Communication 11

The complete BEACON algorithm can now be obtained by plugging ADC into the batched exploration

structure. A sketch of one BEACON epoch is illustrated in Fig. 2.1, and the leader’s algorithm is presented in

Algorithm 1. The follower’s algorithm can be found in the supplementary material, along with the definitions

of the implicit communication protocols denoted by functions Send() and Receive(). Note that the for-loops

with (k,m) and ∀(k,m) in the pseudo-codes indicate the iteration over all possible arm-player pairs of

[K]× [M ]. In addition, the communications of the leader to herself indicated by the pseudo-codes denote her

own calculations instead of real forced-collision communications (among the leader and followers), which is a

simplification for better exposition.

2.2.2 Regret Analysis

With notations

Sc := {S ∈ S|∃m ̸= n, sm = sn}

as the set of collided matchings;

S∗ := {S ∈ S|Vµ,S = Vµ,∗}

as the set of optimal matchings;

Sb = S\(S∗ ∪ Sc)

as the set of collision-free suboptimal matchings;

∆k,m
min := Vµ,∗ −max{Vµ,S |S ∈ Sb, sm = k}

as the minimum sub-optimality gap for collision-free matchings containing arm-player pair (k,m);

∆min := min(k,m){∆k,m
min}

as the minimum sub-optimality gap for all collision-free matchings, the regret of BEACON with the linear

reward function is analyzed in the following theorem.

Theorem 2.2.2. With the linear reward function, the regret of BEACON is upper bounded as

Rlinear(T ) = Õ

 ∑
(k,m)∈[K]×[M ]

M log(T )

∆k,m
min

+M2K log(T )

 = Õ

(
M2K log(T )

∆min

)
.
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Note that in Eqn. (2.3), the first term represents the exploration regret of BEACON, and the second term

the communication regret. Compared with the state-of-the-art regret result Õ(M3K log(T )/∆min) for METC

(Boursier et al., 2020), the regret bound in Theorem 2.2.2 improves the dependence of M from M3 to M2. It

turns out that this quadratic dependence is optimal because the same dependence exists in the centralized

lower bound (hence a natural lower bound for decentralized MP-MAB) for the linear reward function, as

from Kveton et al. (2015):2

Rlinear(T ) = Ω

(
M2K

∆min
log(T )

)
. (2.3)

By comparing Theorem 2.2.2 and Eqn. (2.3), it can be observed that with the linear reward function,

BEACON achieves a regret that approaches the centralized lower bound. The efficiency and effectiveness of

both exploration and communication phases are critical in this achievement, as we can see that both terms in

Theorem 2.2.2 are non-dominating at Õ(M2K log(T )).

In addition to the problem-dependent bound given in Theorem 2.2.2, the following theorem establishes a

problem-independent bound, which can be thought of as a worst-case characterization.

Theorem 2.2.3. With the linear reward function, it holds that

Rlinear(T ) = O
(
M
√
KT log(T )

)
.

Theorem 2.2.3 not only improves the best known problem-independent bound O(M
3
2

√
KT log(T ))

(Boursier et al., 2020) in the decentralized MP-MAB literature, but also approaches the centralized lower

bound Ω(M
√
KT ) (Kveton et al., 2015; Merlis and Mannor, 2020) up to logarithmic factors.

Theorems 2.2.2 and 2.2.3 demonstrate that for the linear reward function, BEACON closes the performance

gap (both problem-dependent and problem-independent) between decentralized heterogeneous MP-MAB

algorithms and their centralized counterparts. The regret bounds of various MP-MAB algorithms, including

BEACON, are summarized in Table 2.1.

Remark 2.2.4. We note that it is also feasible to combine the ADC protocol and METC (Boursier et al.,

2020), which can address its communication inefficiency, especially with multiple optimal matchings. However,

with ideas from CUCB, BEACON is much more efficient in exploration than “Explore-then-Commit”-type of

algorithms (e.g., METC), which is the main reason we did not fully elaborate the combination of METC and

ADC in this work. Theoretically, this superiority can be reflected in the extra multiplicative factor in the

exploration loss of METC shown in Table 2.1.

2This lower bound holds for the cases with arbitrarily correlated arms, as considered in this work. Under additional arm
independence assumptions (Combes et al., 2015), lower regrets can be achieved.
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Table 2.1: Regret Bounds of Decentralized MP-MAB Algorithms

Algorithm/Reference
Reward
function

Assumptions

Regret
Known
horizon

T

Known
gap
∆min

Unique
optimal
matching

GoT †
(Bistritz and Leshem, 2020)

Linear No Yes Yes O
(
M log1+κ(T )

)
Decentralized MUMAB

(Magesh and Veeravalli, 2019)
Linear No Yes No O

(
K3 log(T )

)
ESE1

(Tibrewal et al., 2019)
Linear No No Yes O

(
M2K
∆2

min
log(T )

)
METC

(Boursier et al., 2020)
Linear Yes No Yes O

(
M3K
∆min

log(T )
)

METC
(Boursier et al., 2020)

Linear Yes No No O

(
MK

(
M2 log(T )

∆min

)1+ι
)

BEACON
(this work, Theorem 2.2.8)

General No No No Õ
(

MK∆max

(f−1(∆min))2
log(T )

)
BEACON

(this work, Theorem 2.2.2)
Linear No No No Õ

(
M2K
∆min

log(T )
)

Lower bound
(Kveton et al., 2015)

Linear N/A N/A N/A Ω
(

M2K
∆min

log(T )
)

†: tuning parameters in GoT requires knowledge of arm utilities;
κ, ι: arbitrarily small non-zero constants.

2.2.3 Beyond Linear Reward Functions

General Reward Functions

In this section, we move away from the linear reward functions in almost all prior MP-MAB research, and

extend the study to general (nonlinear) reward functions. Two exemplary nonlinear reward functions are

given below, with more examples provided in the supplementary material.

• Proportional fairness: V (S, t) =
∑

m∈[M ] ωm ln(ϵ+Osm,m(t)), where ϵ > 0 and ωm > 0 are constants.

It promotes fairness among players (Mo and Walrand, 2000);

• Minimal: V (S, t) = minm∈[M ]{Osm,m(t)}, which indicates the system reward is determined by the

least-rewarded player, i.e., the short board of the system;

These reward functions all hold their value in real-world applications, but are largely ignored and cannot be

effectively solved by previous approaches. The difficulty introduced by this extension not only lies in the

complex mapping from the (unreliable) individual outcomes to system rewards, but also comes from the

potential “coupling” effect among players (e.g., the minimal reward function).

To better characterize the problem, the following mild assumptions are considered.
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Assumption 2.2.5. There exists an expected reward function v(·) such that Vµ,S := E[V (S, t)] = v(µS ⊙ηS),

where ηS := [ηsm(S)]m∈[M ] and µS ⊙ ηS := [µsm,mηsm(S)]m∈[M ].

Assumption 2.2.6 (Monotonicity). The expected reward function is monotonically non-decreasing with

respect to the vector Λ = µS ⊙ ηS, i.e., if Λ ⪯ Λ′, we have v(Λ) ≤ v(Λ′).

Assumption 2.2.7 (Bounded smoothness). There exists a strictly increasing (and thus invertible) function

f(·) such that ∀Λ,Λ′, |v(Λ)− v(Λ′)| ≤ f(∥Λ−Λ′∥∞).

Assumption 2.2.5 indicates that the expected reward Vµ,S of matching S is determined only by its

expected individual outcomes. It is true for the linear reward function, and also generally holds if distributions

{ϕk,m} are mutually independent and determined by their expectations {µk,m}, e.g., Bernoulli distribution.

Assumptions 2.2.6 and 2.2.7 concern the monotonicity and smoothness of the expected reward function, which

are natural for most practical reward functions, including the above examples. Similar assumptions have

been adopted by Chen et al. (2013, 2016b); Wang and Chen (2018).

BEACON Adaption and Performance Analysis

In Section 2.2.2, a combinatorial optimization solver Oracle(·) is implemented for the linear reward function.

With ideas from CUCB (Chen et al., 2013), BEACON can be extended to handle a general reward function

with a corresponding solver Oracle(·) that outputs the optimal (non-collision) matching w.r.t. the input

matrix µ′, i.e., S′ ← Oracle(µ′) = argmaxS∈S\Sc
Vµ′,S .

With such an oracle, the following theorem provides performance guarantees of BEACON.

Theorem 2.2.8 (General reward function). Under Assumptions 2.2.5, 2.2.6, and 2.2.7, denoting

∆k,m
max := Vµ,∗ −min{Vµ,S |S ∈ Sb, sm = k} and ∆c := f(1), the regret of BEACON is upper bounded as

R(T ) = Õ

 ∑
(k,m)∈[K]×[M ]

[
∆k,m

min

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

1

(f−1(x))2
dx

]
log(T ) +M2K∆c log(T )


= Õ

 ∑
(k,m)∈[K]×[M ]

∆k,m
max log(T )

(f−1(∆k,m
min))

2
+M2K∆c log(T )

 .

With a stronger smoothness assumption, we can obtain a clearer exposition of the regret.

Corollary 2.2.9. Under Assumptions 2.2.5 and 2.2.6, if there exists B > 0 such that ∀Λ,Λ′, |v(Λ)−v(Λ′)| ≤

B∥Λ−Λ′∥∞, it holds that

R(T ) = Õ

 ∑
(k,m)∈[K]×[M ]

B2

∆k,m
min

log(T ) +M2KB log(T )

 .
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In addition, since the combinatorial optimization problems with general reward functions can be NP-hard,

it is more practical to adopt approximate solvers rather than the exact ones (Vazirani, 2013). To accommodate

such needs, we introduce the following definition of (α, β)-approximation oracle for α, β ∈ [0, 1] as in Chen

et al. (2013, 2016a,b); Wang and Chen (2017):

Definition 2.2.10. With a matrix µ′ = [µ′
k,m](k,m)∈[K]×[M ] as input, an (α, β)-approximation oracle outputs

a matching S′, such that P[Vµ′,S′ ≥ α · Vµ′,∗] ≥ β, where Vµ′,∗ = maxS∈S Vµ′,S.

With only an approximate solver, it is no longer fair to compare the performance against the optimal

reward. Instead, as in the CMAB literature (Chen et al., 2013, 2016a,b; Wang and Chen, 2017), an (α, β)-

approximation regret is considered: Rα,β(T ) = TαβVµ,∗ − E[
∑T

t=1 V (S(t), t)], where the performance is

compared to the αβ fraction of the optimal reward. As shown in the supplementary material, for this

(α, β)-approximation regret, an upper bound similar to Theorem 2.2.8 can be obtained.

2.2.4 Experimental Results

In this section, BEACON is empirically evaluated with both linear and general (nonlinear) reward functions.

All results are averaged over 100 experiments and the utilities follow mutually independent Bernoulli

distributions. Additional experimental details, empirical algorithm enhancements and more experimental

results (e.g., with a large game), can be found in the supplementary material.

Linear Reward Function.

BEACON is evaluated along with the centralized CUCB (Chen et al., 2013) and the state-of-the-art

decentralized algorithm METC (Boursier et al., 2020). The decentralized GoT algorithm (Bistritz and

Leshem, 2020) is also evaluated but its regrets are over 100× larger than those of BEACON, and thus

is omitted in the plots. Fig. 2.2 reports results under the same instance in Boursier et al. (2020) with

K = 5,M = 5. Although this is a relatively hard instance with multiple optimal matchings and small sub-

optimality gaps, BEACON still achieves a comparable performance as CUCB, and significantly outperforms

METC: an approximate 7× regret reduction at the horizon.

To validate whether this significant gain of BEACON over METC is representative, we plot in Fig. 2.2(b)

the histogram of regrets with 100 randomly generated instances still with M = 5,K = 5, T = 106. Expected

arm utilities are uniformly sampled from [0, 1] in each instance. It can be observed that the gain of BEACON

is very robust – its average regret is approximately 6× lower than METC.
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(a) Linear, cumul. regret. (b) Linear, regret histo.

(c) Proportional fairness. (d) Minimal.

Figure 2.2: Regret comparisons between BEACON and other MP-MAB algorithms. The continuous curves
represent the empirical average values, and the shadowed areas represent the standard deviations. (a), (c)
and (d) are evaluated with specific game instances, and (b) is the regret histogram of 100 randomly generated
instances.

General Reward Function.

Two representative nonlinear reward functions are used to evaluate BEACON: (1) the proportional fairness

function with ∀m ∈ [M ], ωm = 1, ϵ = 10−2; (2) the minimal function. BEACON is compared with CUCB and

METC.3 Under a game instance with M = 6,K = 8, Fig. 2.2(c) reports the regrets under the proportional

fairness function, and Fig. 2.2(d) with the minimal function. From both results, it can be observed that

BEACON has slightly larger (but comparable) regrets than the centralized CUCB, while significantly

outperforming METC.

To summarize, BEACON not only significantly outperforms state-of-the-art decentralized MP-MAB

algorithms, but is also capable of empirically approaching the centralized performance, which is the first time

for a decentralized heterogeneous MP-MAB algorithm to the best of our knowledge.

3To make meaningful comparisons, non-trivial adjustments and enhancements have been applied to METC, which originally
applies only to the linear reward function. Details are given in the supplementary material.
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2.2.5 Omitted Algorithmic Details

Some omitted algorithmic details of BEACON are presented in this section.

Orthogonalization Procedure

In the orthogonalization (sometimes also referred to as the initialization) procedure, players estimate the

number of players in the MP-MAB game and obtain distinct indices in a fully distributed manner. The

initialization technique from Wang et al. (2020a) is adopted in BEACON. It consists of two sub-phases:

orthogonalization and rank assignment. The orthogonalization sub-phase aims at assigning each player with a

unique external rank k ∈ [K]. It contains a sequence of blocks with length K +1, where each player attempts

to fixate on arms without collision at first time step and states of fixation (successful or not) are broadcast

(enabled by implicit communication). Note that in the original scheme (Wang et al., 2020a), the broadcast is

performed on the reserved arm K, which results in the need of K > M . To accommodate the scenarios with

K = M , the broadcast can take place sequentially on arm 1 to arm K. In the rank assignment sub-phase, a

modified Round-Robin sequential hopping scheme helps the players convert their external ranks to internal

ranks m ∈ [M ] and estimate the overall number of players M . Detailed algorithms can be found in Wang

et al. (2020a). Using the same proofs in Lemma 1 and Lemma 2 in Wang et al. (2020a), we have the following

performance characterization.

Lemma 2.2.11. The expected duration of the orthogonalization procedure in BEACON is less than K2M
K−M +2K

time steps. Once the procedure completes, all players correctly learn the number of players M and each of

them is assigned with a unique index between 1 and M .

Detailed Communication Protocols

In this section, more details of the communication design are presented. First, as illustrated in Section 2.2.1,

the implicit communications are performed by having the “receive” player sample one arm and the “send”

player either pull (create collision; bit 1) or not pull (create no collision; bit 0) the same arm to transmit one-bit

information. Other players that are not communicating would fixate on other arms to avoid interruptions.

The arm(s) that the players pull for receiving or avoiding are referred to as “communication arm(s)”, which

is an arm-player matching and is assigned before the communication happens. In BEACON, the matching of

communication arms for epoch r > 1 is chosen as the exploration matching in the previous epoch, i.e., Sr−1.

The benefit of this choice is that with the increasing explorations, Sr−1 would gradually become near-optimal

with a high probability, which also leads to smaller communication losses. Specifically, in epoch r, follower

m > 1 (resp. the leader) communicates to the leader (resp. follower m > 1) by either pulling or not pulling
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arm sr−1
1 (resp. arm sr−1

m ), while the leader (resp. the follower m) stays on arm sr−1
1 (resp. arm sr−1

m ) during

receiving. To make this happen, in addition to the knowledge of index sr−1
m which is assigned to follower m

for explorations, index sr−1
1 should also be communicated to the followers in the communication phase of

epoch r − 1.

Then, as illustrated in Section 2.2.1, there are three kinds of information to be communicated, which are

separately discussed in the following.

Arm statistics. The main idea of the adaptive differential communication (ADC) design is illustrated

in Section 2.2.1. However, two important ingredients are missing. The first is when follower m quantizes

the arm statistics µ̃r
k,m from the collected sample mean µ̂r

k,m using ⌈1 + prk,m/2⌉ bits. The least significant

bit (LSB) is always ceiled to 1 if ⌈1 + prk,m/2⌉ bits cannot fully represent µ̂r
k,m. We refer such process of

quantizing µ̃r
k,m as ceil(µ̂r

k,m) with ⌈1+prk,m/2⌉ bits. This process is needed for the later theoretical analysis

to have µ̃r
k,m ≥ µ̂r

k,m.

The second missing component in ADC is referred to as the signal-then-communicate approach. The

purpose of this approach is to synchronize the communication order and communication duration among

players. It consists of two parts: the leader would first create a collision on the follower’s communication arm

to indicate the beginning of her statistics sharing; then, since the length of non-zero LSB at the end of δrk,m

is not fixed, after receiving the start signal, the follower m would take the following approach to transmit L

bits (L is however unknown to the leader), in which creating no collision indicates there are more bits to

transmit while creating collision means the end of transmission:

collision: start signal→ no collision→ one information bit→ · · ·

→ no collision→ one information bit→ collision: end signal.

Using no collision as an indicator also reduces the practical communication loss, as it avoids creating

collisions during communications. In summary, with this signal-to-communicate approach, the original L-bits

information of arm statistics would require no more than (2L+ 2)-bits.

The chosen matching and leader’s communication arm. In epoch r, the leader needs to notify follower m

of both srm (for exploration) and sr1 (for communication in the next epoch). Similar to sharing arm statistics,

the leader has to initiate the communication with a specific follower by creating a collision. Since both arm

indices can be communicated via a fixed length of ⌈log2(K)⌉ bits, they can be directly transmitted without

using no-collisions to synchronize. Thus, with K arms for each player, this part of communication can be

done in 2⌈log2(K)⌉+ 1 bits for each follower.

Batch size. A naive idea to transmit the batch size pr is to directly notify the followers of this number.
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However, the value of pr is at most O(log(T )), which requires O(log log(T )) bits. With at most O(log(T ))

epochs of communication, directly sharing pr may lead to a dominating regret. Luckily, sharing pr only

serves to let players explore the same length, which can be achieved by a much simpler and more efficient

stop-upon-signal approach. Specifically, while pr is calculated by the leader, rather than broadcasting it

to the followers via implicit collisions, she counts the exploration length herself and creates a collision on

the exploration arm of each follower upon the end of exploration in this epoch. Upon perceiving collisions,

followers become aware that the current exploration phase has ended.

2.2.6 Full Proofs

Proof for Theorem 2.2.8

We begin with the analysis of BEACON with general reward functions, i.e., Theorem 2.2.8, since it is more

intuitive than the one for the linear reward function, i.e., Theorem 2.2.2. The latter follows the same spirit of

the former but is carefully tailored to the linear reward function.

The complete version of Theorem 2.2.8 is first presented in the following.

Theorem 2.2.12 (Complete version of Theorem 2.2.8). Under Assumptions 2.2.5, 2.2.6, and 2.2.7,

the regret of BEACON is upper bounded as

R(T ) ≤
∑

(k,m)∈[K]×[M ]

[
28∆k,m

min ln(T )

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

]

+
6

ln 2
M2K log2(K)∆c ln(T ) +

18

ln 2
MK∆c ln(T ) +MK∆c +

(
K2M

K −M
+ 2K

)
∆c +K∆max

= Õ

 ∑
(k,m)∈[K]×[M ]

[
∆k,m

min

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

1

(f−1(x))2
dx

]
log(T ) +M2K∆c log(T )


= Õ

 ∑
(k,m)∈[K]×[M ]

∆k,m
max log(T )

(f−1(∆k,m
min))

2
+M2K∆c log(T )

 .

To facilitate the proof, we introduce (or recall) the following notations:

Vµ,∗ = max{Vµ,S |S ∈ S} = max{v(µS ⊙ ηS)|S ∈ S}: the optimal reward value;

S∗ = {S|S ∈ S, Vµ,S = Vµ,∗}: the set of the optimal matchings;

Sc = {S|∃m ̸= n, sm = sn}: the set of matchings with collisions;

Sb = S\(S∗ ∪ Sc): the set of collision-free suboptimal matchings;

∆k,m
min = Vµ,∗ −max{Vµ,S |S ∈ Sb, sm = k};
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∆k,m
max = Vµ,∗ −min{Vµ,S |S ∈ Sb, sm = k};

∆min = min{∆k,m
min}: the smallest reward gap among collision-free matchings;

∆max = max{∆k,m
max}: the largest reward gap among collision-free matchings;

∆c = Vµ,∗ −min{Vµ,S |S ∈ Sc} ≤ f(1): the largest possible per-step loss upon collisions.

Proof for Theorems 2.2.8 and 2.2.12. The overall regret R(T ) can be decomposed into three parts: the

exploration regret Re(T ), the communication regret Rc(T ), and the other regret Ro(T ), i.e.,

R(T ) = Re(T ) +Rc(T ) +Ro(T ).

The exploration regret Re(T ) and the communication regret Rc(T ) are caused by exploration and communi-

cation phases, respectively, and are analyzed in the following subsections. The other regret Ro(T ) contains

the regret caused by orthogonalization and activation, i.e., the explorations before epoch 1, and can be easily

bounded as

Ro(T ) ≤
(

K2M

K −M
+ 2K

)
∆c +K∆max, (2.4)

where the first term is the regret from orthogonalization (Lemma 2.2.11) and the second term is the regret

from activation.

With Lemmas 2.2.13 and 2.2.14, which bound Rc(T ) and Re(T ) respectively, established in the following

subsections, and the bound on Ro(T ) in Eqn. (2.4), Theorems 2.2.8 and 2.2.12 can be directly proved.

Lemma 2.2.13. For BEACON, under time horizon T , the cumulative length of all communication phases

Dc is bounded as

E[Dc] ≤
6

ln 2
M2K log2(K) ln(T ) +

18

ln 2
MK ln(T ) +MK,

and the communication loss Rc(T ) is bounded as

Rc(T ) ≤ E[Dc]∆c ≤
6

ln 2
M2K log2(K)∆c ln(T ) +

18

ln 2
MK∆c ln(T ) +MK∆c.

Proof for Lemma 2.2.13. As illustrated in Section 2.2.5, communication phases consist of three parts of

information sharing: arm statistics µ̃r
k,m, the chosen matching Sr, and the batch size parameter pr. With
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the detailed communication protocol described in Section 2.2.5, we bound the communication lengths of the

aforementioned three parts, respectively.

Part I: Arm statistics. We take arm (k,m),m ̸= 1 as an example. In epoch 1, µ̃0
k,m is initialized

as 0 while µ̄1
k,m is the value of one random utility sample from arm (k,m). With p1k,m = ⌊log2(T 1

k,m)⌋ =

⌊log2(1)⌋ = 0, µ̃1
k,m is quantized from µ̂1

k,m with 1 + p1k,m = 1 bit. The difference δ̃1k,m = µ̃1
k,m − µ̃0

k,m = µ̃1
k,m

is transmitted and it contains only 1 bit.

In epoch r > 1, if prk,m > pr−1
k,m, i.e., prk,m = pr−1

k,m +1, arm statistics of arm (k,m) should be communicated

via the truncated version of the difference δ̃rk,m = µ̃r
k,m − µ̃r−1

k,m. Then, we can bound the duration of

communication through bounding δ̃rk,m. Specifically, it holds that

|δ̃rk,m| = |µ̃r
k,m − µ̃r−1

k,m|

= |µ̃r
k,m − µ̂r

k,m − (µ̃r−1
k,m − µ̂r−1

k,m) + (µ̂r
k,m − µ̂r−1

k,m)|

≤ |µ̃r
k,m − µ̂r

k,m|+ |µ̃r−1
k,m − µ̂r−1

k,m|+ |µ̂
r
k,m − µ̂r−1

k,m|
(a)

≤
√

1

2p
r
k,m

+

√
1

2p
r
k,m−1 + |µ̂r

k,m − µ̂r−1
k,m|,

where inequality (a) is due to the quantization process specified Section 2.2.1, i.e., µ̃r
k,m = ceil(µ̂r

k,m) with

⌈1+prk,m/2⌉ bits. This quantization leads to a quantization error of at most 2−pr
k,m/2. Further, denoting γk,m

τ

as the τ -th random utility sample from arm (k,m) during exploration phases, we can rewrite the difference

µ̂r
k,m − µ̂r−1

k,m as

µ̂r
k,m − µ̂r−1

k,m =

∑2
prk,m

τ=1 γk,m
τ

2p
r
k,m

−
∑2

prk,m−1

τ=1 γk,m
τ

2p
r
k,m−1

=

∑2
prk,m−1

τ=1 γk,m
τ +

∑2
prk,m

τ=1+2
pr
k,m

−1 γk,m
τ

2p
r
k,m

−
∑2

prk,m−1

τ=1 γk,m
τ

2p
r
k,m−1

=

∑2
prk,m

τ=1+2
pr
k,m

−1 γk,m
τ −

∑2
prk,m−1

τ=1 γk,m
τ

2p
r
k,m

=
1

2p
r
k,m

2
prk,m−1∑
τ=1

(
γk,m

τ+2
pr
k,m

−1 − γk,m
τ

)

which is a 1√
2
pr
k,m

+1
-sub-Gaussian random variable since the utility samples are independent across time.

Thus, we can further derive that, with a dummy variable x ≥
√
ln 2,

P

(∣∣∣µ̂r
k,m − µ̂r−1

k,m

∣∣∣ ≥√ x2

2p
r
k,m

)
≤ 2 exp

[
−2p

r
k,m

x2

2p
r
k,m

]
≤ 2 exp[−x2]
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⇒P

(
|δ̃rk,m| ≥

√
1

2p
r
k,m

+

√
1

2p
r
k,m−1 +

√
x2

2p
r
k,m

)
≤ 2 exp[−x2]

(a)⇒P

(
Lr
k,m ≥ 3 +

prk,m
2

+ log2

(
1 +
√
2 + x√

2p
r
k,m

))
≤ 2 exp[−x2]

⇒P
(
Lr
k,m ≥ 3 + log2 (3 + x)

)
≤ 2 exp[−x2]

⇒P
(
Lr
k,m ≤ 3 + log2 (3 + x)

)
≥ 1− 2 exp[−x2]

(b)⇒P
(
Lr
k,m ≤ l

)
≥ 1− 2 exp

[
−(2l−3 − 3)2

]
where Lr

k,m in implication (a) is the length of the truncated version |δ̃rk,m| and is upper bounded by

Lr
k,m ≤ ⌈1 + prk,m/2⌉ − ⌊log2(1/|δ̃rk,m|)⌋

≤ 3 + prk,m/2 + log2(|δ̃rk,m|).

In deriving (b), we substitute the variable 3 + log2(3 + x) with l, which satisfies that l ≥ 3 + log2(3 +
√
ln 2),

and thus equivalently x = 2l−3 − 3. With the above results and viewing Lr
k,m as a random variable, we have

that its cumulative distribution function (CDF) FLr
k,m

(l) satisfies the following property:

∀l ≥ 5 > 3 + log2(3 +
√
ln 2), FLr

k,m
(l) = P

(
Lr
k,m ≤ l

)
≥ 1− 2 exp

[
−(2l−3 − 3)2

]
.

Using the property of CDF, we can bound the expectation of Lr
k,m as

E
[
Lr
k,m

]
=

∞∑
l=0

(1− FLr
k,m

(l))

≤ 6 +

∞∑
l=6

2 exp
[
−(2l−3 − 3)2

]
≤ 6 +

ˆ ∞

l=5

2 exp
[
−(2l−3 − 3)2

]
dl

≤ 7.

Thus, we have that in expectation, the truncated version of |δ̃rk,m| has a length that is less than 7 bits.

In addition, 1-bit information should also be transmitted to indicate the sign of δ̃rk,m. As a summary, in

expectation, 8 bits is sufficient to represent the truncated version of δ̃rk,m,
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With overall time horizon of T , there are at most log2(T ) statistics updates of arm (k,m) in addition to

the first epoch. The expected communication duration for arm statistics Ds is bounded as

E [Ds]
(a)
= MK︸︷︷︸

epoch r = 1

+E

∑
r

∑
(k,m):pr

k,m>pr−1
k,m

(2 + 2(Lr
k,m + 1))


︸ ︷︷ ︸

epoches r > 1

≤MK + (2 + 2× 8)MK log2(T )

≤ 18MK log2(T ) +MK

=
18

ln 2
MK ln(T ) +MK, (2.5)

where equation (a) takes the signal-then-communicate protocol described in Section 2.2.5 into consideration,

where transmitting δ̃rk,m consists of 1 step of the leader notifying the follower to start, (Lr
k,m + 1) steps of the

truncated version of δ̃rk,m and correspondingly (Lr
k,m + 2) steps of synchronization between the leader and

follower.

Part II & III: Matching choice and batch size. These two parts of communications are relatively

easy to bound. In each epoch r, the leader initiates and then transmits two arm indices (sr1 and srm) to each

follower m, thus, the communication duration Dm for matching assignments is bounded as

Dm =
∑
r

(M − 1)(1 + 2⌈log2(K)⌉)

≤ (M − 1)(2 log2(K) + 3)MK log2(T )

<
1

ln 2
M2K(2 log2(K) + 3) ln(T ). (2.6)

For the communication duration Db for the batch size, as illustrated in Section 2.2.5, the leader notifies

followers to stop exploring by sending stopping signals. Thus, it holds that

Db =
∑
r

(M − 1) ≤ (M − 1)MK log2(T ) <
1

ln 2
M2K ln(T ). (2.7)

By combining Eqns. (2.5), (2.6) and (2.7), Lemma 2.2.13 can be obtained as

E[Dc] = E[Ds] + E[Dm] + E[Db]

≤ 18

ln 2
MK ln(T ) +MK +

1

ln 2
M2(2 log2(K) + 3)K ln(T ) +

1

ln 2
M2K ln(T )

≤ 6

ln 2
M2K log2(K) ln(T ) +

18

ln 2
MK ln(T ) +MK.
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Lemma 2.2.14. For BEACON, under time horizon T , the exploration regret is upper bounded as

Re(T ) ≤
∑

(k,m)∈[K]×[M ]

[
28∆k,m

min ln(T )

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

]
.

Proof for Lemma 2.2.14. The following proof is inspired by the proof for CUCB in Chen et al. (2013).

However, Chen et al. (2013) does not consider the batched structure, which introduces additional challenges

for the proof here. To better characterize the exploration regret, we introduce the following notations:

Sk,mb = {S|S ∈ Sb, sm = k} = {Sk,m
1 , ..., Sk,m

N(k,m)};

∆k,m
n = Vµ,∗ − Vµ,Sk,m

n
,∀n ∈ {1, ..., N(k,m)},

where Sk,mb is the set of collision-free sub-optimal matchings that contain arm (k,m) and we denote its size

as N(k,m). ∆k,m
n denotes the sub-optimality gap of the matching Sk,m

n . In the following proof, we re-arrange

the set Sk,mb = {Sk,m
1 , ..., Sk,m

N(k,m)} in a decreasing order w.r.t. the gap ∆k,m
n , i.e., if n1 ≥ n2, ∆

k,m
n1
≤ ∆k,m

n2
.

Also, for convenience, we denote ∆k,m
N(k,m)+1 = 0. Furthermore, it naturally holds that ∆k,m

min = ∆k,m
N(k,m) and

∆k,m
max = ∆k,m

1 .

We denote qk,mn ,∀n ∈ {1, ..., N(k,m)} as the integer such that

2q
k,m
n −1 ≤ 14 ln(T )

(f−1(∆k,m
n ))2

< 2q
k,m
n <

28 ln(T )

(f−1(∆k,m
n ))2

.

In addition, we define qk,m0 = 0 and qk,mN(k,m)+1 = ⌈log2(T )⌉. Note that with the above definition of qk,mn , it

holds that

∀p ≥ qk,mn , f

(
2

√
3 ln tr
2p+1

+

√
1

2p

)
≤ f

(
3

√
3 ln tr
2p+1

)
≤ f

(
3

√
3 lnT

2p+1

)
< ∆k,m

n , (2.8)

which is a key property that is utilized in the subsequent proofs.

For epoch r, we define the “representative arm” ρr = (srm,m) as one of the arms in Sr such that prsrm,m = pr.

If there are more than one arm in Sr with arm counter pr, ρr is randomly chosen from them. Thus, it is

guaranteed that there is one and only one representative arm for each exploration phase. With the arm

counter updating rule specified in Section 2.2.1, the counter of arm ρr will certainly increase by 1 after epoch

r.
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Step I: Regret decomposition. With respect to the representative arm, we decompose the exploration

regret as

Re(T ) = E

[∑
r

2pr (Vµ,∗ − Vµ,Sr
)

]

= E

∑
r

∑
(k,m)∈[K]×[M ]

2pr (Vµ,∗ − Vµ,Sr
)1 {ρr = (k,m)}


(a)
= E

∑
r

∑
(k,m)∈[K]×[M ]

2p
r
k,m(Vµ,∗ − Vµ,Sr

)1 {ρr = (k,m)}


(b)
= E

∑
r

∑
(k,m)∈[K]×[M ]

N(k,m)∑
n=1

2p
r
k,m∆k,m

n 1
{
ρr = (k,m), Sr = Sk,m

n

}
(c)
= E

 ∑
(k,m)∈[K]×[M ]

∑
pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n 1

{
Sk,m,pk,m

= Sk,m
n

}
(d)
=

∑
(k,m)∈[K]×[M ]

Rk,m
e (T ), (2.9)

where equality (a) is from the definition of the representative arm that if ρr = (k,m), it holds that pr = prk,m.

Equality (b) further associates the regret of each exploration phase with specific sub-optimal matchings.

Sk,m,pk,m
denotes the exploration matching with representative arm (k,m) and the corresponding arm counter

pk,m. Equality (c) holds because once ρr = (k,m), its arm counter will increase. Equality (d) denotes

Rk,m
e (T ) := E

[∑
pk,m>0

∑N(k,m)
n=1 2pk,m∆k,m

n 1
{
Sk,m,pk,m

= Sk,m
n

}]
, which represents the regret associated

with arm (k,m).

For term Rk,m
e (T ), we further have

Rk,m
e (T ) =E

 ∑
pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n 1

{
Sk,m,pk,m

= Sk,m
n

}
=
∑

pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n

)
(a)

≤
∑

pk,m>0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)
P
(
Ek,m,pk,m

)
+

∑
pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n |Ēk,m,pk,m

)
P
(
Ēk,m,pk,m

)

≤
∑

pk,m≥0

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)
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+
∑

pk,m≥0

2pk,m∆k,m
maxP

(
Ēk,m,pk,m

)

≤
N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<qk,m

h+1

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)
︸ ︷︷ ︸

term (A)

+
∑

pk,m≥0

2pk,m∆k,m
maxP

(
Ēk,m,pk,m

)
︸ ︷︷ ︸

term (B)

,

where equality (a) introduces the notion of the “nice event” Ek,m,pk,m
, which is described in the following.

At epoch r, the nice event Er is defined as

Er =

{
∀(k,m) ∈ [K]× [M ],−

√
3 ln tr

2p
r
k,m+1 < µ̃r

k,m − µk,m <

√
3 ln tr

2p
r
k,m+1 +

√
1

2p
r
k,m

}
.

Furthermore, when the representative arm in epoch r is arm (k,m) with counter pk,m, Er is denoted as

Ek,m,pk,m
.

Step II: Bounding term (B). We start with term (B) by bounding the probability that event Ēr

happens. Specifically, it holds that

P
(
Ēr
)
≤

∑
(k,m)∈[K]×[M ]

P

(
µ̃r
k,m − µk,m ≤ −

√
3 ln tr

2p
r
k,m+1

)

+
∑

(k,m)∈[K]×[M ]

P

(
µ̃r
k,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1 +

√
1

2p
r
k,m

)

=
∑

(k,m)∈[K]×[M ]

P

(
µ̃r
k,m − µ̂r

k,m + µ̂r
k,m − µk,m ≤ −

√
3 ln tr

2p
r
k,m+1

)

+
∑

(k,m)∈[K]×[M ]

P

(
µ̃r
k,m − µ̂r

k,m + µ̂r
k,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1 +

√
1

2p
r
k,m

)
(a)

≤
∑

(k,m)∈[K]×[M ]

P

(
µ̂r
k,m − µk,m ≤ −

√
3 ln tr

2p
r
k,m+1

)

+
∑

(k,m)∈[K]×[M ]

P

(
µ̂r
k,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1

)

≤
∑

(k,m)∈[K]×[M ]

⌊log2(tr)⌋∑
pk,m=0

2P

(
µ̂r
k,m − µk,m ≥

√
3 ln tr

2p
r
k,m+1 , p

r
k,m = pk,m

)

≤
∑

(k,m)∈[K]×[M ]

⌊log2(tr)⌋∑
pk,m=0

2P

(∑2pk,m

τ=1 γk,m
τ

2pk,m
− µk,m ≥

√
3 ln tr
2pk,m+1

)
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(b)

≤
∑

(k,m)∈[K]×[M ]

⌊log2(tr)⌋∑
pk,m=0

2 exp

[
−2 · 2pk,m

3 ln tr
2pk,m+1

]

≤ 2KM
⌊log2(tr)⌋+ 1

(tr)3

≤ 2KM
1

(tr)2

(c)

≤ 2KM
1

(2pr )2
, (2.10)

where inequality (a) holds because µ̃r
k,m = ceil(µ̂r

k,m) with ⌈1+ prk,m/2⌉ bits and µ̃r
k,m− µ̂r

k,m > 0 Inequality

(b) is from the Hoeffding’s inequality. Inequality (c) utilizes the observation that tr ≥ 2pr .

With Eqn. (2.10), we can further bound term (B) as

term (B) =
∑

pk,m≥0

2pk,m∆k,m
maxP

(
Ēk,m,pk,m

)
(a)

≤2
∑

pk,m≥0

2pk,m∆k,m
max ·KM

1

(2pk,m)2

=2
∑

pk,m≥0

∆k,m
max ·KM

1

2pk,m

≤4KM∆k,m
max,

where inequality (a) is with Eqn. (2.10) and pr = pk,m.

Step III: Bounding term (A). Before bounding term (A), we first establish the following implications.

For epoch r, if ρr = (k,m) and pr = prk,m = pk,m, denoting µ̄r and Sr as µ̄k,m,pk,m and Sk,m,pk,m
respectively,

if event Ek,m,pk,m
happens, we have

pk,m ≥ qk,mh , the oracle outputs Sk,m,pk,m
= Sk,m

n

⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, v(µ̄
k,m,pk,m

Sk,m
n

⊙ ηSk,m
n

) ≥ v(µ̄
k,m,pk,m

S ⊙ ηS)

⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, v(µ̄
k,m,pk,m

Sk,m
n

) ≥ v(µ̄
k,m,pk,m

S )

(a)⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, v(µSk,m
n

) + f
(∥∥∥µ̄k,m,pk,m

Sk,m
n

− µSk,m
n

∥∥∥
∞

)
≥ v(µ̄

k,m,pk,m

S )

(b)⇒pk,m ≥ qk,mh ,∀S ∈ S∗\Sc, Vµ,Sk,m
n

+ f

(
2

√
3 ln tr
2pk,m+1

+

√
1

2pk,m

)
≥ Vµ,∗

(c)⇒pk,m ≥ qk,mh , VSk,m
n

+∆k,m
h > V∗, (2.11)

where implication (a) is from Assumption 2.2.7 and implication (b) utilizes the definition of Ek,m,pk,m
,

Assumption 2.2.6 and that arms in Sk,m,pk,m
have counters at least pk,m. Implication (c) is from the definition
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of qk,mh and Eqn. (2.8).

With Eqn. (2.11), we can get that if pk,m ≥ qk,mh , the matchings Sk,m
n with n ≤ h cannot be Sr; otherwise

it contradicts with the definition of ∆k,m
h . Thus, we can further bound term (A) as

term (A) =

N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<qk,m

h+1

N(k,m)∑
n=1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)

=

N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<qk,m

h+1

N(k,m)∑
n=h+1

2pk,m∆k,m
n P

(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)
(a)

≤
N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<qk,m

h+1

N(k,m)∑
n=h+1

2pk,m∆k,m
h+1P

(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)
(b)

≤
N(k,m)∑
h=0

∑
qk,m
h ≤pk,m<qk,m

h+1

2pk,m∆k,m
h+1

=

N(k,m)∑
h=0

(2q
k,m
h+1 − 2q

k,m
h )∆k,m

h+1

=

N(k,m)−1∑
h=0

(2q
k,m
h+1 − 2q

k,m
h )∆k,m

h+1

≤2q
k,m
N(k,m)∆k,m

N(k,m) +

N(k,m)−1∑
h=1

2q
k,m
h

(
∆k,m

h −∆k,m
h+1

)
(c)

≤
28∆k,m

N(k,m) ln(T )

(f−1(∆k,m
N(k,m)))

2
+

N(k,m)−1∑
h=1

28 ln(T )

(f−1(∆k,m
h ))2

(
∆k,m

h −∆k,m
h+1

)
(d)

≤
28∆k,m

N(k,m) ln(T )

(f−1(∆k,m
N(k,m)))

2
+

ˆ ∆k,m
1

∆k,m
N(k,m)

28 ln(T )

(f−1(x))2
dx

=
28∆k,m

min ln(T )

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx,

where inequality (a) holds because ∀n ≥ h+ 1, ∆k,m
n ≤ ∆k,m

h+1, and inequality (b) is from

N(k,m)∑
n=h+1

P
(
Sk,m,pk,m

= Sk,m
n |Ek,m,pk,m

)
≤ 1.

Inequality (c) is from the definition of qk,mn and inequality (d) is because 28 ln(T )
(f−1(x))2 is strictly decreasing in

[∆k,m
N(k,m),∆

k,m
1 ].

By combining terms (A) and (B), we have

Rk,m
e (T ) ≤ 28∆k,m

min ln(T )

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max
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≤ 28∆k,m
max ln(T )

(f−1(∆k,m
min))

2
+ 4KM∆k,m

max.

Overall, we conclude that

Re(T ) =
∑

(k,m)∈[K]×[M ]

Rk,m
e (T )

≤
∑

(k,m)∈[K]×[M ]

[
28∆k,m

min ln(T )

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

28 ln(T )

(f−1(x))2
dx+ 4KM∆k,m

max

]

≤
∑

(k,m)∈[K]×[M ]

28∆k,m
max ln(T )

(f−1(∆k,m
min))

2
+ 4K2M2∆max.

Theorems 2.2.8 and 2.2.12 can be proved by combining Lemmas 2.2.13, 2.2.14, and Eqn. (2.4).

Proof for Theorem 2.2.2

A complete version of Theorem 2.2.2 is first presented in the following.

Theorem 2.2.15 (Complete version of Theorem 2.2.2). With a linear reward function, the regret of

BEACON is upper bounded as

Rlinear(T ) ≤
∑

(k,m)∈[K]×[M ]

3727M

∆k,m
min

ln(T ) + 8K2M3 +M2K

+ (22M + 2M log2(K))

[
2MK

ln 2
ln(T ) +MK

(
3M
√
3 ln(T )√
2− 1

+
8KM2

3

)]

= Õ

 ∑
(k,m)∈[K]×[M ]

M log(T )

∆k,m
min

+M2K log(T )


= Õ

(
M2K log(T )

∆min
+M2K log(T )

)
.

Proof for Theorems 2.2.2 and 2.2.15. Similar to the previous proof, the overall regret Rlinear(T ) can be

decomposed into three parts: the exploration regret Re,linear(T ), the communication regret Rc,linear(T ), and

the other regret Ro,linear(T ), i.e.,

Rlinear(T ) = Re,linear(T ) +Rc,linear(T ) +Ro,linear(T ).
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The last component can be similarly bounded as

Ro,linear(T ) ≤
(

K2M

K −M
+ 2K

)
∆c +K∆max,

The communication regret and exploration regret are bounded Lemmas 2.2.16 and 2.2.17 that are presented

in the subsequent subsections. Putting them all together completes the proof.

Lemma 2.2.16. For BEACON, under time horizon T , the communication loss Rc,linear(T ) is upper bounded

as

Rc,linear(T ) ≤M2K + (22M + 2M log2(K))

[
2MK

ln 2
ln(T ) +MK

(
3M
√

3 ln(T )√
2− 1

+
8KM2

3

)]
.

Proof for Lemma 2.2.16. From the proof for Lemma 2.2.13, we can draw the following facts:

(i) For epoch 1, communicating δ̃1k,m takes 1 time step;

(ii) For epoch r > 1, if prk,m > pr−1
k,m, δ̃rk,m is communicated and the communication in expectation takes

2 + 2× (1 + E[Lr
k,m]) ≤ 18 time steps;

(iii) For epoch r > 1, the communication of the chosen matching and the batch size parameter takes less

than M(3 + 2 log2(K)) +M time steps.

These facts hold for the general reward functions, thus naturally hold for the linear reward function.

However, with the linear reward function, the loss caused by communication can be characterized more

carefully as

Rc,linear(T )
(a)

≤ MK ×M

+ E

∑
r

(2 + Vµ,∗ − Vµ,Sr
)1 {Er}

∑
(k,m)

181
{
prk,m ≥ pr−1

k,m

}
+M(3 + 2 log2(K)) +M


+ E

∑
r

M1
{
Ēr
}∑

(k,m)

181
{
prk,m ≥ pr−1

k,m

}
+M(3 + 2 log2(K)) +M


(b)

≤ M2K +
∑
r

E
[
(2 + Vµ,∗ − Vµ,Sr

)1 {Er}+M1
{
Ēr
}]

(22M + 2M log2(K))

(c)

≤ M2K +
∑
r

(
2 + 3M

√
3 ln(T )

2pr+1
+ 2M

KM

(2pr )2

)
(22M + 2M log2(K))

≤M2K + (22M + 2M log2(K))

2MK log2(T ) +MK

⌈log2 T⌉∑
pr=0

(
3M

√
3 ln(T )

2pr+1
+ 2

KM2

(2pr )2

)
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≤M2K + (22M + 2M log2(K))

[
2MK log2(T ) +MK

(
3M
√

3 ln(T )
1√
2− 1

+
8KM2

3

)]

where inequality (a) is from that there are at most 2 players colliding with each other (leader and one follower)

under the nice event Er. Specifically, with arms in Sr used for communications in epoch r, one communication

step leads to a loss at most 2 + Vµ,∗ − Vµ,Sr
. Inequality (b) is from that in each epoch r > 1, at most M

arms statistics need to be communicated. Inequality (c) holds because if the nice event Er happens

∀S ∈ S∗\Sc, v(µ̄r
Sr
) ≥ v(µ̄r

S)

⇒∀S ∈ S∗\Sc, Vµ,Sr +M

(
2

√
3 ln tr
2pr+1

+

√
1

2pr

)
≥ v(µ̄r

Sr
) ≥ v(µ̄r

S) > v(µS) = Vµ,∗

⇒Vµ,∗ − Vµ,Sr ≤M

(
2

√
3 ln tr
2pr+1

+

√
1

2pr

)
≤ 3M

√
3 ln(T )

2pr+1
;

otherwise, the nice event does not happen with P(Ēr) ≤ 2KM
(2pr )2 proved in the Eqn. (2.10), E[M1

{
Ēr
}
] ≤

2M KM
(2pr )2 .

Lemma 2.2.17. For BEACON, under time horizon T , the exploration loss Re,linear(T ) is upper bounded as

Re,linear(T ) ≤
∑
(k,m)

3727M

∆k,m
min

ln(T ) + 4K2M2∆max.

Proof for Lemma 2.2.17. The following proof is based on the proof for CUCB with a linear reward function

in Kveton et al. (2015), but is carefully designed for the complicated batched exploration. In the following

proof, we introduce the following notations:

S∗ = [s∗1, ..., s
∗
M ] ∈ S∗\Sc: one particular collision-free optimal matching;

∆Sr
:= Vµ,∗ − Vµ,Sr

;

[M̃r] := {m|m ∈ [M ], srm ̸= s∗m}.

Step I: Regret decomposition. First, we can decompose the exploration regret Re,linear(T ) as

Re,linear(T ) = E

[∑
r

2pr (Vµ,∗ − Vµ,Sr
)

]

= E

[∑
r

2pr∆Sr1 {Er,∆Sr > 0}

]
+ E

[∑
r

2pr∆Sr1
{
Ēr,∆Sr > 0

}]
(2.12)
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(a)

≤ E

∑
r

2pr∆Sr1

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr ,∆Sr > 0




︸ ︷︷ ︸
term (C)

+ E

[∑
r

2pr∆Sr
1
{
Ēr
}]

︸ ︷︷ ︸
term (D)

,

where inequality (a) is because when the nice event Er happens, choosing a sub-optimal matching Sr, i.e.,

∆Sr
> 0, implies

∀S ∈ S∗, v(µ̄r
Sr
) ≥ v(µ̄r

S)

⇒v(µ̄r
Sr
) ≥ v(µ̄r

S∗)

⇒
∑

m∈[M̃r]

µ̄r
srm,m ≥

∑
m∈[M̃r]

µ̄r
s∗m,m

⇒
∑

m∈[M̃r]

µsrm,m +
∑

m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥

∑
m∈[M̃r]

µs∗m,m

⇒
∑

m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ Vµ,∗ − Vµ,Sr

= ∆Sr
.

Step II: Bounding term (D). With essentially the same approach of bounding term (B) in the proof

of Lemma 2.2.14, especially Eqn. (2.10), we can directly bound term (D) as

term (D) = E

[∑
r

2pr∆Sr
1
{
Ēr
}]
≤ 4K2M2∆max.

Step III: Bounding term (C). First, we denote event

Fr =

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr

,∆Sr
> 0

 ,

thus

term (C) = E

∑
r

2pr∆Sr
1

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr

,∆Sr > 0




= E

[∑
r

2pr∆Sr
1 {Fr}

]
.
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Following the ideas in Kveton et al. (2015), we introduce two decreasing sequences of constants:

1 = b0 >b1 > b2 > · · · > bi > · · ·

a1 > a2 > · · · > ai > · · ·

such that limi→∞ ai = limi→∞ bi = 0. Furthermore, we specify qi,Sr
as the integer satisfying

2qi,Sr−1 ≤ ai
M2

(∆Sr
)2

ln(T ) < 2qi,Sr ≤ 2ai
M2

(∆Sr
)2

ln(T ).

For convenience, we denote q0,Sr
= 0 and q∞,Sr

=∞. Also, set Hr
i is defined as

∀i ≥ 1, Hr
i =

{
m|m ∈ [M̃r], p

r
srm,m < qi,Sr

}
,

which represents the arms that are not sufficiently sampled compared with qi,Sr , and Hr
0 := [M̃r].

With the above introduce notations, we define the following infinitely-many events at epoch r as

Gr
1 = {|Hr

1 | ≥ b1M} ;

Gr
2 = {|Hr

1 | < b1M} ∩ {|Hr
2 | ≥ b2M} ;

· · ·

Gr
i = {|Hr

1 | < b1M} ∩ {|Hr
2 | < b2M} ∩ · · · ∩

{∣∣Hr
i−1

∣∣ < bi−1M
}
∩ {|Hr

i | ≥ biM} ;

· · ·

Clearly, these events are mutually exclusive. We have the following proposition.

Proposition 2.2.18. Let

√
14

∞∑
i=1

bi−1 − bi√
ai

≤ 1. (2.13)

If event Fr happens at epoch r, then there exists i such that Gr
i happens.

This proposition can be proved by assuming that Fr happens while none of Gr
i happens. Denoting

Ḡr = ∪iGr
i , we can get

Ḡr = ∪∞i=1G
r
i

= ∩∞i=1Ḡ
r
i
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= ∩∞i=1

[(
∩i−1
j=1

{∣∣Hr
j

∣∣ < bjM
})
∪ {|Hr

i | ≥ biM}
]

= ∩∞i=1

[(
∪i−1
j=1

{∣∣Hr
j

∣∣ < bjM
})
∪ {|Hr

i | ≥ biM}
]

= ∩∞i=1

[(
∪i−1
j=1

{∣∣Hr
j

∣∣ ≥ bjM
})
∪ {|Hr

i | < biM}
]

= ∩∞i=1 {|Hr
i | < biM} .

If Ḡr happens, denoting H̃r
i = [M̃r]\Hr

i , which implies H̃r
i−1 ⊆ H̃r

i and [M̃r] = ∪i(H̃r
i \H̃r

i−1), then it holds

that

∑
m∈[M̃r]

(
2

√
3 lnT

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)

≤3
√
3 lnT

∑
m∈[M̃r]

1√
2
pr
srm,m

+1

=3
√
3 lnT

∞∑
i=1

∑
m∈H̃r

i \H̃r
i−1

1√
2
pr
srm,m

+1

=3
√
3 lnT

∞∑
i=1

|H̃r
i \H̃r

i−1|√
2qi−1,Sr+1

≤3
√
3 lnT

∞∑
i=1

|H̃r
i \H̃r

i−1|√
2ai

M2

(∆Sr )
2 ln(T )

≤3
√
3/2

∆Sr

M

∞∑
i=1

(
|Hr

i−1| − |Hr
i |
) 1
√
ai

=3
√

3/2
∆Sr

M
|Hr

0 |
1
√
a1

+ 3
√

3/2
∆Sr

M

∞∑
i=1

|Hr
i |
(

1
√
ai+1

− 1
√
ai

)
(a)

≤3
√
3/2

∆Sr

M
b0M

1
√
a1

+ 3
√

3/2
∆Sr

M

∞∑
i=1

biM

(
1

√
ai+1

− 1
√
ai

)

<
√
14

∞∑
i=1

bi−1 − bi√
ai

∆Sr

≤∆Sr
,

where inequality is because |Hr
i < biM with Ḡr happening. This result contradicts with the definition of Fr

as

Fr =

 ∑
m∈[M̃r]

(
2

√
3 ln tr

2
pr
srm,m

+1 +

√
1

2
pr
srm,m

)
≥ ∆Sr

,∆Sr
> 0

 .
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With Proposition 2.2.18, when Eqn. (2.13) holds, we can further decompose term (C) as

term (C) = E

[∑
r

2pr∆Sr1 {Fr}

]
= E

[∑
r

∞∑
i=1

2pr∆Sr
1 {Gr

i ,∆Sr
> 0}

]
.

Then, the following events are defined

Gr
i,k,m = Gr

i ∩
{
m ∈ [M̃r], s

r
m = k, prk,m < qi,Sr

}
,

which imply that

1 {Gr
i ,∆Sr > 0} ≤ 1

biM

∑
(k,m)

1
{
Gr

i,srm,m,∆Sr
> 0
}

since at least biM arms with event Gr
i,k,m happening are required to make Gr

i happen.

Thus, recall Sk,mb = {S|S ∈ Sb, sm = k} = {Sk,m
1 , ..., Sk,m

N(k,m)}, we can get

term (C) = E

[∑
r

∞∑
i=1

2pr∆Sr
1 {Gr

i ,∆Sr
> 0}

]

≤ E

∑
r

∞∑
i=1

2pr∆Sr

1

biM

∑
(k,m)

1
{
Gr

i,k,m,∆Sr
> 0
}

≤ E

∑
r

∞∑
i=1

2pr∆Sr

1

biM

∑
(k,m)

1
{
m ∈ [M̃r], s

r
m = k, prk,m < qi,Sr ,∆Sr > 0

}
= E

∑
(k,m)

N(k,m)∑
n=1

∑
r

∞∑
i=1

2pr
1

biM
1
{
srm = k, prk,m < qi,Sk,m

n
, Sr = Sk,m

n

}
∆k,m

n



= E


∑
(k,m)

∞∑
i=1

∑
r

N(k,m)∑
n=1

2pr
1

biM
1
{
srm = k, prk,m < qi,Sk,m

n
, Sr = Sk,m

n

}
∆k,m

n︸ ︷︷ ︸
term (E)


(a)

≤ E

∑
(k,m)

[ ∞∑
i=1

6ai
bi

]
M

∆k,m
N(k,m)

ln(T )


where inequality (a) holds because term (E) can be bounded as

term (E) =
∑
r

N(k,m)∑
n=1

2pr
1

biM
1
{
srm = k, prk,m < qi,Sk,m

n
, Sr = Sk,m

n

}
∆k,m

n

≤ 3× 2
q
i,S

k,m
1

−1∆k,m
1

biM
+

1

biM

N(k,m)∑
n=2

(
3× 2

q
i,S

k,m
n

−1 − 3× 2
q
i,S

k,m
n−1

−1
)
∆k,m

n
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≤ 3aiM

bi∆
k,m
1

ln(T ) +
3aiM

bi

N(k,m)∑
n=2

(
1

(∆k,m
n )2

− 1

(∆k,m
n−1)

2

)
∆k,m

n ln(T )

=
3aiM

bi
ln(T )

N(k,m)−1∑
n=1

∆k,m
n −∆k,m

n+1

(∆k,m
n )2

+
1

∆k,m
N(k,m)


≤ 3aiM

bi
ln(T )

N(k,m)−1∑
n=1

∆k,m
n −∆k,m

n+1

∆k,m
n ∆k,m

n+1

+
1

∆k,m
N(k,m)


≤ 3aiM

bi
ln(T )

2

∆k,m
N(k,m)

.

At last, we specify the choices of ai and bi, which resolve to the following optimization problem:

minimize

∞∑
i=1

6ai
bi

subject to lim
i→∞

ai = lim
i→∞

bi = 0

Monotonicity: 1 = b0 > b1 > b2 > · · · > bi > · · · ; a1 > a2 > · · · > ai > · · ·

Eqn. (2.13):
√
14

∞∑
i=1

bi−1 − bi√
ai

≤ 1.

We choose ai and bi to be geometric sequences as in Kveton et al. (2015), specifically ai = d(a)i and bi = (b)i

with 0 < a, b < 1 and d > 0. Moreover, if b ≤
√
a, to meed Eqn. (2.13), it needs

√
14

∞∑
i=1

bi−1 − bi√
ai

=
√
14

∞∑
i=1

(b)i−1 − (b)i√
d(a)i

=

√
14

d

1− b√
a− b

≤ 1⇒ d ≥ 14

(
1− b√
a− b

)2

.

Thus, the best choice for d is d = 14
(

1−b√
a−b

)2
and the problem is reformulated as

minimize

∞∑
i=1

6ai
bi

= 84

(
1− b√
a− b

)2
α

b− a

conditioned on 0 < a < b <
√
a < 1.

With numerically calculated a = 0.1459 and b = 0.2360 in Kveton et al. (2015), we get
∑∞

i=1
6ai

bi
≤ 3727.

Thus, we conclude that

term (C) ≤ E

∑
(k,m)

[ ∞∑
i=1

6ai
bi

]
M

∆k,m
N(k,m)

ln(T )


≤
∑
(k,m)

3727M

∆k,m
N(k,m)

ln(T )



2.2 Heterogeneous Collision-sensing Model: Adaptive Differential Communication 37

≤
∑
(k,m)

3727M

∆k,m
min

ln(T ).

Lemma 2.2.17 can be proved by combining term (C) and term (D).

Proof for Theorem 2.2.3

Proof. This proof follows naturally from Theorem 2.2.15 by categorizing sub-optimal gaps with a threshold ϵ.

Specifically, we can modify Eqn. (2.12) as

Re,linear(T ) = E

[∑
r

2pr (Vµ,∗ − Vµ,Sr )

]

= E

[∑
r

2pr∆Sr
1 {Er,∆Sr

> 0}

]
+ E

[∑
r

2pr∆Sr
1
{
Ēr,∆Sr

> 0
}]

≤ Tϵ+ E

[∑
r

2pr∆Sr
1 {Er,∆Sr

> ϵ}

]
+ E

[∑
r

2pr∆Sr
1
{
Ēr,∆Sr

> ϵ
}]

(a)

≤ Tϵ+
∑
(k,m)

3727M

ϵ
ln(T ) + 4K2M2∆max,

where inequality (a) follows the same proof for Lemma 2.2.17. For the overall regret, we can further get

Rlinear(T ) ≤Tϵ+
3727M2K

ϵ
ln(T ) + terms of order O(ln(T )) and independent with ϵ

(a)

≤124M
√
KT ln(T ) + terms of order O(ln(T )) and independent with ϵ

=O
(
M
√
KT log(T )

)
,

where ϵ is taken as 62M
√

K ln(T )
T in inequality (a). Theorem 2.2.3 is then proved.

(α, β)-Approximation Oracle and Regret

In this section, we discuss how to extend from exact oracles to (α, β)-approximation oracles, and the

corresponding performance guarantees. With the definition given in Section 2.2.3, it is straightforward to use

(α, β)-approximation oracles to replace the original exact oracles in BEACON. To facilitate the discussion,

we further assume that this approximation oracle always outputs collision-free matchings, which naturally

holds for most of approximate optimization solvers (Vazirani, 2013).

With an (α, β)-approximation oracle, as stated in Section 2.2.3, a regret bound similar to Theorem 2.2.8

can be obtained regarding the (α, β)-approximation regret. First, the following notations are redefined

and slightly abused to accommodate the (α, β)-approximation regret: S∗ = {S|S ∈ S, Vµ,S ≥ αVµ,∗}: the
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set of matchings with rewards larger than αVµ,∗; ∆
k,m
min = αVµ,∗ − max{Vµ,S |S ∈ Sb, sm = k}; ∆k,m

max =

αVµ,∗ −min{Vµ,S |S ∈ Sb, sm = k}. With these notations, BEACON’s performance with an approximate

oracle is established in the following.

Theorem 2.2.19 ((α, β)-approximation regret). Under Assumptions 2.2.5, 2.2.6, and 2.2.7, with an (α, β)-

approximation oracle, the (α, β)-approximation regret of BEACON is upper bounded as

R(T ) = Õ

 ∑
(k,m)∈[K]×[M ]

[
∆k,m

min

(f−1(∆k,m
min))

2
+

ˆ ∆k,m
max

∆k,m
min

1

(f−1(x))2
dx

]
log(T ) +M2K∆c log(T )

 .

Proof. The proof for Theorem 2.2.19 closely follows the proof for Theorem 2.2.8. To avoid unnecessarily

redundant exposition, we here only highlight the key steps and major differences.

The communication regret and the other regret can be obtained with the same approach in the proof for

Theorem 2.2.8. The main difference lies in the exploration regret. In the following proof, unless specified

explicitly before, the adopted notations share the same definition as in the proof for Theorem 2.2.8. Similar

to Eqn. (2.9), we can decompose the exploration regret w.r.t. the definition of the (α, β)-approximation

regret as

Re(T ) = E

[∑
r

2pr (αβVµ,∗ − Vµ,Sr )

]

= E

[∑
r

2pr (αVµ,∗ − Vµ,Sr
)

]
+ α(β − 1)Vµ,∗E[Te]

= E

[∑
r

2pr (αVµ,∗ − Vµ,Sr
)(1{Gr}+ 1{Ḡr})

]
+ α(β − 1)Vµ,∗Te

≤ E

[∑
r

2pr (αVµ,∗ − Vµ,Sr )(1{Gr}+ 1− β)

]
+ α(β − 1)Vµ,∗Te

≤ E

[∑
r

2pr (αVµ,∗ − Vµ,Sr
)1{Gr}

]

where Te is the length of overall exploration phases. Notation Gr := {Vµ,Sr ≥ αVµ,∗} denotes the event that

the oracle successfully outputs a good matching at epoch r, which happens with a probability at least β.

Then, conditioned on event Gr, the remaining analysis follows the same process in the proof for Lemma 2.2.14,

and Theorem 2.2.19 can be obtained.
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2.3 Homogeneous No-sensing Model: Error-correction Coding

In this section, we turn to study the no-sensing model, where the players only perceive received rewards but

not collision indicators, and for simplicity, we here only consider the homogeneous setting, which are both

summarized in the following:

• Homogeneous setting: µk,m = µk,∀m ∈ [M ],∀k ∈ [M ];

• No-sensing model: player m can access her own outcome Osm(t),m(t) but not the corresponding

no-collision indicator ηsm(t)(S(t)).

For this setting, we propose the EC-SIC – Error Correction Synchronization Involving Communication

algorithm in our paper Shi et al. (2020), whose design, analysis and evaluation are provided in the following

subsections.

To ease the notations, we assume that µ(1) ≥ µ(2) ≥ · · · ≥ µ(K). Two technical assumptions are made to

faciliate the design, which are also widely used in the literature. The first is a strictly positive lower bound of

µK as adopted in Lugosi and Mehrabian (2018); Boursier and Perchet (2019). The second assumption is a

finite gap between the optimal and suboptimal (group of) arms; see Avner and Mannor (2014); Kalathil et al.

(2014); Rosenski et al. (2016); Nayyar et al. (2016) for this assumption.

Assumption 2.3.1. A positive lower bound µmin is known to all players such that 0 < µmin ≤ µ(K).

Assumption 2.3.2. There exists a positive gap ∆
.
= µ(M) − µ(M+1) > 0, and it is known to all players.

Assumption 2.3.1 implies that ∀k ∈ [K], P(Xk > 0) ≥ µmin, which thus bounds P(Xk = 0). Note that

although µmin provides a lower bound for µ(K), Assumption 2.3.1 does not require the exact value of µ(K).

The gap in Assumption 2.3.2 measures the difficulty of the bandit game and ensures the existence of only one

optimal choice.

2.3.1 The EC-SIC Algorithm

Algorithm Structure and Key Ideas

As in the BEACON algorithm illustrated in Section 2.2, the EC-SIC algorithm also starts with an initialization

phase, during which each player individually estimates the number of players M and assigns herself of a

unique index m ∈ [M ]. Then, until a player fixates on a specific arm and enters the exploitation phase, the

algorithm keeps iterating between the exploration and communication phases. Players that have (not) entered

the exploitation phase are called inactive (active). We denote the set of active players during the p-th phase
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by [Mp] and its cardinality by Mp. Similarly, arms that have not been decided to be optimal or sub-optimal

are called active. The set of active arms during the p-th phase is denoted by [Kp] with cardinality Kp.

Batched Exploration

During the p-th exploration phase, active players sequentially hop among the active arms for Kp2
p⌈log(T )⌉

steps, and any active arm is pulled 2p⌈log(T )⌉ times by each active player. Since the hopping is based on

each player’s internal rank, the exploration phase is collision-free.

We note that the length of an exploration phase is different from Boursier and Perchet (2019), which is

a key component of the performance improvement. The difference of a ⌈log(T )⌉ factor, in fact, results in

an overall O(log log(T )) rounds of exploration and communication phases in the ADAPTED SIC-MMAB

algorithm of Boursier and Perchet (2019). This directly leads to a dominating communication loss that

breaks the order-optimality. With an expansion of length by ⌈log(T )⌉ in EC-SIC, the overall rounds become

a constant, and the communication regret can be better controlled as shown in later analyses.

Robust Implicit Communication

In the communication phase, as in Section 2.2.1, all players attempt to exchange their sampled reward

information via a a lead-follower communication scheme (i.e., player 1 as the leader and other players as

followers). Also, similarly, the communication takes place via a careful collision design. All players enter this

phase synchronously and, by default, keep pulling different arms based on their internal ranks. Then, when

it is player i’s turn to communicate with player j, she would purposely pull (not pull) player j’s arm as a

way to communicate bit 1 (0). If player j can fully access the collision information, i.e., knowing whether

collision happens or not at each time step, she will be able to receive the bit sequence successfully, which

conveys player i’s sample reward statistics. However, for the no-sensing model, such error-free communication

becomes impossible.

The main new ideas in the communication phase of EC-SIC compared with Boursier and Perchet (2019)

is the introduction of Z-channel coding. In the no-sensing scenario, players cannot directly identify collision.

If the same communication protocol in Boursier and Perchet (2019) (representing 1 or 0 by collision or no

collision) is used, the confusion may mislead the player to believe that collision has occurred (bit 1) while it

is actually a null statistic of reward sampling (bit 0). This error has a catastrophic consequence in that it

breaks the essential synchronization between players. We are thus facing the challenge of communicating

the reward statistics to other users while controlling the error rate for the overall communication loss to not

dominate the regret.
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Figure 2.3: The Z-channel model for robust communication in the no-sensing setting.

Luckily, this is the well-known reliable communication over a noisy channel problem, one of the foundations

in information theory. In particular, our communication channel is asymmetric: 1 (collision) is always received

correctly and 0 (no collision) may be received incorrectly with a certain probability P (Xk = 0). This

corresponds to the Z-channel model (see Fig. 2.3) in information theory (Tallini et al., 2002), which

represents a broad class of asymmetric channels. The Z-channel has a crossover probability q of 0→ 1 that

corresponds to P (Xk = 0). Since the crossover probability P (Xk = 0) is unknown and varies for different

arm k, 1− µmin is used to capture the worst case.

The Z-channel capacity is derived in Tallini et al. (2002) as follows.

Theorem 2.3.3. The capacity CZ(q) of a Z-channel with crossover 0→ 1 probability q is:

CZ(q) = log2(1 + (1− q)qq/(1−q)). (2.14)

Shannon theory guarantees that as long as the coding rate R is below the above capacity CZ(q), there exists

at least one code that allows for an arbitrarily low error rate asymptotically. This means that theoretically, for

this Z-channel, it is possible to transmit information nearly error-free when the rate is close to CZ(q) bits per

channel use. In reality, however, different finite block-length channel codes may have different performances;

we thus evaluate several practical codes both theoretically (in Section 2.3.2) and experimentally (in Section

2.3.3). For simplicity, Functions Send(), Receive(), Encoder() and Decoder() are used in the algorithm as

the sending and receiving protocol and the encoder and corresponding decoder, respectively.

2.3.2 Regret Analysis

The overall regret of EC-SIC can be decomposed as R(T ) = Rinit+Rexpl+Rcomm. The first, second and third

term refers to the regret caused by the initialization, exploration, and communication phase, respectively, and

the overall main result is presented in Theorem 2.3.4, and each component regret is subsequently analyzed.
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Algorithm 2 The EC-SIC Algorithm

Require: T, K, ∆, ϵ, µmin;

1: Initialize p← 1; F ← −1; T0, T
j
0 ← 0; [Kp]← [K]; Q← max{⌈log2 1

∆
4 −ϵ
⌉, ⌈log2(K + 1)⌉}; Tc ← ⌈ log(T )

µmin
⌉

2: Select an error-correction code (N ′, Q) with code length N ′ defined in Theorem 2.3.4
Initialization Phase

3: k ← Musical Chair([K], KTc)
4: (M, j)← Estimate M NoSensing(k, Tc)
5: while F = −1 do

Exploration Phase
6: π ← j-th active arm
7: for Kp2

p⌈log(T )⌉ time steps do
8: π ← π + 1 (mod Kp) and play arm π
9: s[π]← s[π] + rj(t)

10: end for
11: T j

p = T j
p−1 + 2p⌈log(T )⌉

12: µ̂j = s/T j
p

Communication Phase
13: if j = 1 then
14: (F , Mp+1, [Kp+1]) ← Communication Leader(µ̂1, p, [Kp], Mp, Q, N ′)
15: else
16: (F , Mp+1, [Kp+1]) ← Communication Follower(µ̂j , j, p, [Kp], Mp, Q, N ′)
17: end if
18: p← p+ 1
19: end while
20: Exploitation phase

21: Pull F until T

Theorem 2.3.4. With an optimal coding technique that achieves Gallager’s error exponent E(µmin) for the

corresponding Z-channel with crossover probability 1− µmin, for any ϵ ∈ (0, ∆
4 ), we have

R(T ) ≤MK
log(T )

µmin
+

∆

ϵ

∑
k>M

log(T )

µ(M+1) − µ(k) + 4ϵ
+N ′

(
M2(K + 2) log

(
1

4ϵ

)
+M2K

)
(2.15)

where

N ′ = max

{
Q

CZ(1− µmin)
,

1

E(µmin)
log(T )

}
.

Theorem 2.3.4 involves an information-theoretic concept called error exponent, which is explained in

Theorem 2.3.7 but more details can be found in (Gallager, 1968).

An asymptotic upper bound can be obtained from (2.15) with ϵ = ∆
8 :

R(T ) = O

(∑
k>M

log(T )

µ(M) − µ(k)
+ (

M2K log( 1
∆ )

E(µmin)
+

MK

µmin
) log(T )

)
. (2.16)

Compared to SIC-MMAB2, we have successfully removed the multiplicative factor of M in the first log(T )
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Algorithm 3 Communication Leader

Require: µ̂1, p, [Kp], Mp, Q, N ′

Ensure: F , Mp+1, [Kp+1]

1: Initialize Tp = Tp−1 +Mp2
p⌈log(T )⌉; T i

p = T 1
p , i = 1, ...,Mp; µ̄

p
i = µ̄p−1

i , T i
p = T i

p−1, i = Mp + 1, ...,M
Gather information from followers

2: for i = 2, ...,Mp do ▷ Receive arm statistics

3: for k ∈ [Kp] do
4: µ̄p

i [k]← Decoder(Receive(1, i, N ′))
5: end for
6: end for

7: µ̄p =
∑M

i=1 µ̄
p
i ·T i

p/Tp; BTp =
√

2 log(T )
Tp

+ (∆4 − ϵ)

Update statistics
8: Rej ← set of active arms k satisfying |{i ∈ [Kp]|µ̄p[i]−BTp ≥ µ̄p[k] +BTp}| ≥Mp

9: Acc← set of active arms k satisfying |{i ∈ [Kp]|µ̄p[k]−BTp
≥ µ̄p[i]+BTp

}| ≥ Kp−Mp, ordered according
to their indices
Transmit acc\rej arms to followers

10: for i = 2, ...,Mp do ▷ Send acc\rej set size

11: Send(1, i, N ′, Encoder(|Rej|, Q))
12: Send(1, i, N ′, Encoder(|Acc|, Q))
13: end for
14: for i = 2, ...,Mp do ▷ Send acc\rej set content

15: Send(1, i, N ′, Encoder(k, Q)) for k ∈ Rej
16: Send(1, i, N ′, Encoder(k, Q)) for k ∈ Acc
17: end for
18: if Mp ≤ |Acc| then
19: F ← Acc[Mp]
20: else Mp ←Mp − |Acc|
21: [Kp+1]← [Kp]\(Acc ∪ Rej)
22: end if

term. This is due to the efficient communication phase that transmits the reward statistics. In addition,

we have a M2K factor in the second log(T ) term, as opposed to MK2 in SIC-MMAB2. This is also an

improvement since M < K.

To prove Theorem 2.3.4, we first define the “typical event” as the success of initialization, communication

and exploration throughout the entire horizon T . More specifically, we define three events: A1 = {each player

has a correct estimation of M and an orthogonal internal rank after initialization}; A2 = {messages are

decoded correctly in all communication phases}; A3 = {|µ̄p[k]−µ[k]| ≤ BTp
holds for phase p,∀k ∈ [Kp],∀p}.

We use Ps to denote the probability that the typical event happens, which is A1 ∩A2 ∩A3. The regret caused

by the “atypical event” can be simply bounded by a linear regret O(MT ). Then the result of (2.15) can be

proved by controlling Ps to balance both events.

Initialization phase

Similar to Lemma 11 in Boursier and Perchet (2019), we can bound the regret of initialization as follows.
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Algorithm 4 Communication Follower

Require: µ̂j , j, p, [Kp], Mp, Q, N ′

Ensure: F , Mp+1, [Kp+1]
Transmit information to the leader

1: for i = 2, ...,Mp do ▷ Send arm statisitcs

2: if j = i then
3: Send(j, 1, N ′, Encoder(µ̂j [k], Q)) for k ∈ [Kp]
4: else pull the j-th active arm for KpN

′ steps
5: end if
6: end for

Receive acc\rej arms from the leader:
7: for i = 2, ...,Mp do ▷ Receive acc\rej set size

8: if j = i then
9: Nrej ← Decoder(Receive(j, 1, N ′))

10: Nacc ← Decoder(Receive(j, 1, N ′))
11: else pull j-th active arm for 2N ′ steps
12: end if
13: end for
14: for i = 2, ...,Mp do ▷ Receive acc\rej set content

15: if j = i then
16: w[k]←Receive(j, 1, N ′)) and
17: Rej[k] ← Decoder(w[k]) for k = 1, ..., Nrej

18: w[k]←Receive(j, 1, N ′)) and
19: Acc[k] ← Decoder(w[k]) for k = 1, ..., Nacc

20: else pull j-th active arm for (Nrej +Nacc)N
′ steps

21: end if
22: end for
23: if Mp − j + 1 ≤ |Acc| then
24: F ← Acc[Mp − j + 1]
25: else Mp ←Mp − |Acc|
26: [Kp+1]← [Kp]\(Acc ∪ Rej)
27: end if

Lemma 2.3.5. With probability Pi = 1 − O(MK
T ), event A1 happens. Furthermore, the regret of the

initialization phase satisfies:

Rinit < 3MK

⌈
log(T )

µmin

⌉
.

Exploration phase

The regret due to exploration is bounded in the following lemma.

Lemma 2.3.6. With probability Ps = 1−O(MK log(T )
T ), the typical event happens and the exploration regret

conditioned on the typical event satisfies:

Rexpl = O

(
∆

4ϵ

∑
k>M

min

{
log(T )

µ(M+1) − µ(k) + 4ϵ
,
√
T log(T )

})
.
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We first present a fundamental result of channel coding for communication in a noisy channel, known as

the error exponent (Gallager, 1968).

Theorem 2.3.7. For a discrete memory-less channel, if R < C, there exists a code of block length N without

feedback such that the error probability is bounded by

Pe ≤ exp[−NEr(R)],

where Er(R) is the random coding error exponent with rate R.

We note that the error exponent used in Theorem 2.3.4 corresponds to E(µmin) = Er(CZ(1− µmin)).

Theorem 2.3.7 suggests that, to transmit a Q-bit message over a Z-channel, there exists an optimal coding

scheme with length N ′ = max{ Q
CZ(1−µmin)

, N} to achieve an error rate less than 1
T , where N = 1

E(µmin)
log(T ).

Several of the existing coding techniques, although not optimal, can achieve this error rate with N =

Θ(log(T )), which only leads to a multiplicative factor larger than 1
E(µmin)

but does not change the regret

order. For example, with repetition code, flip code and modified Hamming code, we have Nrep = Q⌈ log(QT )
µmin

⌉,

Nflip = Q⌈ log(QT/2)
µmin

⌉, Nham = 7Q
8 ⌈

log(7QT/8)
µmin

⌉ respectively. The remaining analysis will be based on the

optimal channel coding with the caveat that a “good” Z-channel code should be applied in practice.

With at most log(T ) exploration and communication phases and K arms to be accepted or rejected, there

are at most MK log(T ) communication instances on arm statistics, 2M log(T ) communication instances on

the number of acc/rej arms, and KM communication instances on the index of acc/rej arms. A simple union

bound analysis leads to the following result.

Lemma 2.3.8. Denoting the probability that event A2 holds by Pr, with an optimal Z-channel code of

N ′ = max{ Q
CZ(1−µmin)

, log(T )
E(µmin)

}, we have

Pr = 1−O

(
MK log(T )

T

)
.

Lemma 2.3.8 guarantees all communications are correct. To bound the probability that all arms are

correctly estimated, we have the following result.

Lemma 2.3.9. In phase p, for any active arm k ∈ [Kp],

P
{
|µ̄p[k]− µ[k]| ≥ BTp

}
≤ 2

T
.
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With at most log(T ) exploration-communication phases, event A3 happens with probability:

Pc = 1−O

(
K log(T )

T

)
. (2.17)

A union bound argument leveraging Pi, Pr and Pc leads to probability Ps for the typical event to happen, as

defined in Lemma 2.3.6. Finally, for the exploration phases, the number of times that an arm is pulled before

being accepted or rejected are well controlled.

Lemma 2.3.10. In the typical event, every optimal arm is accepted after at most O
(

log(T )
(µ(k)−µ(M)+4ϵ)2

)
pulls,

and every sub-optimal arm is rejected after at most O
(

log(T )
(µ(M+1)−µ(k)+4ϵ)2

)
pulls.

Denote T expl as the overall time of exploration and exploitation phase and T expl
(k) (T ) as the number of

time steps where the k-th best arm is pulled during these two phases. With no collision in exploration and

exploitation, the exploration regret can be decomposed as (Anantharam et al., 1987)

Rexpl =
∑
k>M

(µ(M) − µ(k))T
expl
(k) (T )

+
∑
k≤M

(µ(k) − µ(M))(T
expl − T expl

(k) (T )),

(2.18)

Both components in Eqn. (2.18) can be upper bounded further bounded, which proves Lemma 2.3.6.

Communication phase

Thanks to the expanded length of each exploration phase and the fixed-length quantization of arm statistics,

the regret Rcomm does not dominate the overall regret, as stated in the following lemma.

Lemma 2.3.11. In the typical event,

Rcomm = O

(
N ′
(
M2 (K + 2) log

(
min

{
1

4ϵ
, T

})
+M2K

))
.

We note that log(min{ 1
4ϵ , T}) becomes a constant when T is sufficiently large. Noting that N ′ =

max{ Q
CZ(1−µmin)

, log(T )
E(µmin)

}, the communication loss has the same order as other phases.

Overall regret

When the typical event happens, the overall regret is bounded by the sum of Rinit, Rcomm and Rexpl; otherwise,

for the atypical event, the regret can be upper bounded as MT . Thus, the overall regret satisfies

R(T ) ≤ Rinit +Rexpl +Rcomm +O(M2K log(T )).
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With Lemmas 2.3.5, 2.3.6 and 2.3.11, Theorem 2.3.4 can be proven.
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Figure 2.4: Regret comparisons between EC-SIC and other MP-MAB algorithms. (a) is evaluated with
one easy game instance, (b) is evaluated with one hard game instance, (c), (d), and (e) reflects the regret
changes with different game difficulties, coding techniques, and codeword length, and (f) is evaluated with
the MovieLens dataset.

2.3.3 Experimental Results

Numerical experiments have been carried out to verify the analysis of EC-SIC and compare its empirical

performance to other methods. All rewards follow the Bernoulli distributions with µmin = 0.3, and we set

ϵ = ∆/8. Results are obtained by averaging over 500 experiments.
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We compare state-of-the-art algorithms under both easy and difficult bandit game settings. EC-SIC

(with repetition code), ADAPTED SIC-MMAB, SIC-MMAB2, and the algorithm proposed by Lugosi and

Mehrabian (2018) (labeled as “no-sensing-MC”) are first compared in a relatively easy game (∆ = 0.06).

Fig. 2.4 shows that even in an easy game, no-sensing-MC could not finish exploration within 106 time

steps, and ADAPTED SIC-MMAB has poor performance compared to the other two. Both EC-SIC and

SIC-MMAB2 converge to the optimal arm set quickly, but the overall regret of EC-SIC is smaller. For a hard

game with ∆ = 0.01, Fig. 2.4 shows that EC-SIC is superior to SIC-MMAB2.

A detailed comparison of EC-SIC with SIC-MMAB2 is done by comparing their regrets as a function of

the gap ∆ in Fig. 2.4. We see that when the game is not extremely difficult (∆ > 10−4), EC-SIC has better

performance since players benefit from sharing statistics. When ∆ becomes extremely small, the required

communication length increases significantly, leading to a dominating communication regret in EC-SIC that

cannot be offset by the benefits of sharing statistics.

Fig. 2.4 reports the performance while using different Z-channel codes in communication. We observe that

modified Hamming Code has the best performance, which is due to its superior error correction capability.

This observation also implies that with a near-optimal code that is specifically designed for Z-channel,

performance of EC-SIC can be further improved.

We also evaluate the impact of codeword length on the regret. For our simulation setting, the theoretical

analysis requires a repetition code length N = 53 to transmit one bit, in order to achieve an error rate of 1
T .

We are interested in evaluating whether the theoretically required code length can be shortened in practice.

Under the easy game setting of Fig. 2.4 with 2000 rounds averaging, Fig. 2.4 shows that with N decreasing

from 53 to 35, the regret decreases 20%. More importantly, it shows that the convergence of EC-SIC does not

change. When further reducing N to 25, we see the regret curve trends upward at large t, which represents a

non-negligible loss due to unsuccessful communications. With N = 15, the regret increases rapidly, indicating

that players suffer from an increased error rate. It is thus essential to strike a balance between error rate and

communication loss.

Lastly, we evaluate EC-SIC on a real world dataset: the movie watching dataset (ml-20m) from MovieLens

(Harper and Konstan, 2015). It consists of watching data of more than 2× 104 movies from over 105 users

between January 09, 1995 and March 31, 2015. In the pre-processing, we group these movies into K = 40

categories by their total number of views from high to low. The binary reward at time t (hour) is defined

as whether there are users watching films in this group, and we replicate it to a final reward sequence of

length T = 2× 107. M = 20 players are assumed to engage in the game. This final sequence has ∆ ≈ 0.007

and µmin ≈ 0.6. Compared to synthetic datasets, this setting poses a larger and more difficult game. For

each experiment, the reward sequence is randomly shuffled. We report the cumulative regret of EC-SIC and
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SIC-MMAB2, averaged over 100 experiments, in Figure 2.4. One can see that the advantage of EC-SIC

over SIC-MMAB2 is significant for this real-world dataset. Intuitively, this is because the game is hard

(∆ ≈ 0.007), and M and K are also large.

2.3.4 Full Proofs

Initialization phase

The initialization phase starts with a “Muscial Chair” phase, which assigns a unique external rank in 1, ...,K

for each of the player. Then the following sequential hopping protocol converts the external rank into a unique

internal rank in 1, ...,M for each player and estimates the number of players M . The proof for Lemma 2.3.5

is the same as Lemma 11 in Boursier and Perchet (2019).

Exploration phase

This section aims at proving Lemma 2.3.6, which bounds the exploration regret. We start with the required

lemmas and then go back to proving Lemma 2.3.6.

First, Lemma 2.3.8 ensures that event A2 happens with a high probability. As mentioned before, there are

at most log2(T ) communication phases, which lead to at most (MK +2M) log2(T ) instances of transmissions

to send arm statistics to the leader and send the acc/rej arm sets to the followers. Since there are at most K

arms to be accepted or rejected, no more than MK instances of transmissions are required for sending the

acc/rej arm sets.

Proof of Lemma 2.3.8. Denote P (ξp) as the probability that the decoding of a Q-bit message produces a

wrong result at round p. With the choice of N ′ = max{ Q
CZ(1−µmin)

, log(T )
E(R) }, and Xp, Yp denoting the message

before encoding and after decoding at round p, we have

P (ξp) = P (Xp ̸= Yp) ≤
1

T
.

A simple union bound leads to

Pr = 1− P (∪p, ξp) ≥ 1−
∑
p

P (ξp) ≥ 1− (MK + 2M) log(T ) +MK

T
= 1−O

(
MK log(T )

T

)
.
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Then, Lemma 2.3.9 ensures the acceptance and rejection of arms are successful with a high probability,

which requires a good estimation of the statistics of arms. The estimation error consists of two parts: the

quantization error and the sampling error. We analyze them separately.

Proof of Lemma 2.3.9. With the choice of Q ≥ log2(
1

∆
4 −ϵ

), the quantization error in phase p can be bounded

as:

∀i ∈ [M ], |µ̄p
i [k]− µ̂p

i [k]| ≤
∆

4
− ϵ,

|µ̄p[k]− µ̂p[k]| =

∣∣∣∑M
i=1(µ̄

p
i [k]− µ̂p

i [k])T
i
p

∣∣∣
Tp

≤ ∆

4
− ϵ.

For any active arm k ∈ [Kp], the gap between the sample mean µ̂p[k] (using all players’ samples) and the

true mean can be bounded with Hoeffding’s inequality:

P

(
|µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp

)
≤ 2

T
.

Then, the overall gap between the quantized mean and the true mean for any active arm k ∈ [Kp] can be

bounded as:

P
(
|µ̄p[k]− µ[k]| > BTp

)
=P

(
|µ̄p[k]− µ̂p[k] + µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp
+

∆

4
− ϵ

)

≤P

(
|µ̄p[k]− µ̂p[k]|+ |µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp
+

∆

4
− ϵ

)

≤P

(
|µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp
) ∪ P (|µ̄p[k]− µ̂p[k]| ≥ ∆

4
− ϵ

)

=P

(
|µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp

)

≤ 2

T
.

There are at most log2(T ) iterations of exploration and communication. By using a union bound of all these

iterations and K arms, Eqn. (2.17) is obtained.

Lemma 2.3.10 bounds the number of time steps an arm is pulled before being accepted or rejected and

is essential to control the rounds of exploration and communication. The proof is similar to the proof of

Proposition 1 in Boursier and Perchet (2019).



2.3 Homogeneous No-sensing Model: Error-correction Coding 51

Proof of Lemma 2.3.10. The proof is conditioned on the typical event. We first consider an optimal arm k.

Let ∆k = µ[k] − µ(M+1) be the gap between the arm k and the first sub-optimal arm. Let sk be the first

integer such that 4Bsk ≤ ∆k. It satisfies:

sk ≥
32 log(T )

(∆k −∆+ 4ϵ)
2 =

32 log(T )(
µ[k]− µ(M) + 4ϵ

)2 .
Recall that the number of time steps an active arm is pulled before the p-th exploration is Tp =∑p

l=1 Ml2
l⌈log(T )⌉. With a non-increasing Mp, it holds that

Tp+1 ≤ 3Tp. (2.19)

For some p such that Tp−1 ≤ sk < Tp, the following inequalities are in order: ∆k ≥ 4BTp
; |µ̄p[k]− µ[k]| ≤

BTp ; and |µ̄p[i]− µ[i]| ≤ BTp for all sub-optimal arm i.

We then have

µ̄p[k]−BTp
≥ µ̄p[i] +BTp

+ µ[k]− µ[i]− 4BTp
≥ µ̄p[i] +BTp

.

This suggests arm k will be accepted at time Tp. Eqn. (2.19) also leads to Tp = O(sk) = O
(

log(T )
(µ[k]−µ(M)+4ϵ)2

)
.

Thus, arm k will be accepted after at most O
(

log(T )
(µ[k]−µ(M)+4ϵ)2

)
pulls. The part of rejecting sub-optimal arms

can be similarly proved with ∆k = µ(M) − µ[k].

Lemma 2.3.12. In the typical event, the following results hold.

1) for any sub-optimal arm k, (µ(M) − µ[k])T expl
k (T ) = O

(
∆

4ϵ
min

{
log(T )

µ(M+1) − µ[k] + 4ϵ
,
√
T log(T )

})
;

2)
∑
k≤M

(µ(k) − µ(M))(T
expl − T expl

(k) ) = O

(∑
k>M

min

{
log(T )

µ(M+1) − µ(k) + 4ϵ
,
√
T log(T )

})
.

The proof of the first part in Lemma 2.3.12 is as follows.

Proof. For a sub-optimal arm k, Lemma 2.3.12 leads to T expl
k (T ) ≤ O

(
min

{
log(T )

(µ(M+1)−µ[k]+4ϵ)2 , T
})

, and thus

(µ(M) − µ[k])T expl
k (T ) =

µ(M) − µ[k]

µ(M+1) − µ[k] + 4ϵ
O

(
min

{
log(T )

(µ(M+1) − µ[k] + 4ϵ)
, (µ(M+1) − µ[k] + 4ϵ)T

})
(i)

≤ O

(
∆

4ϵ
min

{
log(T )

δ
, δT

})
(ii)

≤ O

(
∆

4ϵ
min

{
log(T )

(µ(M+1) − µ[k] + 4ϵ)
,
√
T log(T )

})
,
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in which inequality (i) comes from

µ(M) − µ[k]

µ(M+1) − µ[k] + 4ϵ
=

µ(M) − µ[k]

µ(M) − µ[k] + 4ϵ−∆
≤ ∆

4ϵ

and δ = µ(M+1)−µ[k]+4ϵ. Inequality (ii) can be obtained with the observation that the term ∆
4ϵO(min{ log(T )

δ , δT})

is maximized by δ =
√

log(T )
T .

The second part of Lemma 2.3.12 is based on Lemmas 2.3.13 and 2.3.14.

Lemma 2.3.13. Define t̂k as the number of exploratory pulls before accepting/rejecting the arm k and H is

the total number of exploration phases. Conditioned on the typical event, we have:

∑
k≤M

(
µ(k) − µ(M)

) (
T expl − T expl

(k)

)
≤
∑
j>M

∑
k≤M

H∑
p=1

2p⌈log(T )⌉
(
µ(k) − µ(M)

)
1min{t̂(j),t̂(k)}≥Tp−1

.

Proof. For an optimal arm k, during phase p, if k has already been accepted, it will be pulled Kp2
p⌈log(T )⌉

times. If it is still active (i.e., t̂k > Tp−1), it will be pulled Mp2
p⌈log(T )⌉ times, meaning that this arm is not

pulled for (Kp−Mp)2
p⌈log(T )⌉ times. Thus, it holds that T expl

k ≥ T expl−
∑H

p=1 2
p(Kp−Mp)⌈log(T )⌉1t̂k>Tp−1

.

Notice thatKp−Mp =
∑

j>M 1t̂(j)>Tp−1
. We have T expl

k ≥ T expl−
∑H

p=1

∑
j>M 2p⌈log(T )⌉1min{t̂(j),t̂(k)}>Tp−1

,

which proves the lemma.

Lemma 2.3.14. Conditioned on the typical event, we have:

∑
k≤M

H∑
p=1

2p⌈log(T )⌉
(
µ(k) − µ(M)

)
1min{t̂(j),t̂(k)}≥Tp−1

≤ O

(
min

{
log(T )

µ(M) − µ(j) + 4ϵ
,
√
T log(T )

})
.

Proof. Define Aj =
∑

k≤M

∑H
p=1 2

p⌈log(T )⌉(µ(k) − µ(M))1min{t̂(j),t̂(k)}≥Tp−1
. Notice that

t̂(k) ≤ min

{
c log(T )

(µ(k) − µ(M) + 4ϵ)2
, T

}
,

and denote ∆(p) =
√

c log(T )
Tp−1

. The inequity t̂(k) > Tp−1 implies µ(k) − µ(M) < ∆(p)− 4ϵ. We also denote N j

as the smallest integer satisfying t̂(j) ≤ TNj . Then we have the following:

Aj ≤
∑
k≤M

Nj∑
p=1

2p⌈log(T )⌉(∆(p)− 4ϵ)1t̂(k)≥Tp−1

≤
Nj∑
p=1

∆(p)2p⌈log(T )⌉
∑
k≤M

1t̂(k)≥Tp−1
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=

Nj∑
p=1

∆(p)2p⌈log(T )⌉Mp

≤
Nj∑
p=1

∆(p)(Tp − Tp−1)

= c log(T )

Nj∑
p=1

∆(p)

(
1

∆(p+ 1)
+

1

∆(p)

)(
1

∆(p+ 1)
− 1

∆(p)

)
.

Since Tp+1 ≤ 3Tp, ∆(p)
(

1
∆(p+1) +

1
∆(p)

)
= 1 +

√
Tp

Tp−1
≤ 1 +

√
3. Thus,

Aj ≤ c log(T )

Nj∑
p=1

(
1

∆(p+ 1)
− 1

∆(p)

)
≤ (1 +

√
3)c log(T )

1

∆(N j + 1)
.

With the definition of N j , we have t̂(j) ≥ TNj−1. With inequality TNj+1 ≤ 3TNj we have ∆(N j) ≥
√

c log(T )

3t̂(j)
.

Aj ≤ (3 +
√
3)
√
ct̂(j) log(T ) then holds. With t̂(j) ≤O

(
min{ c log(T )

(µ(M+1)−µ(j)+4ϵ)2 , T}
)
, we have

Aj ≤ (3 +
√
3)min

{
c log(T )

µ(M+1) − µ(j) + 4ϵ
,
√
cT log(T )

}
.

Communication phase

This section presents the proof related to the bound of the communication regret.

Proof for Lemma 2.3.11. Conditioned on the typical event, we denote H as the number of exploration phases.

The communication length for sending arm statistics and acc/rej arm sets for p ∈ [H] is at most N ′(KM+2M).

Lemma 2.3.10 states that H satisfies TH =
∑H

l=1 Ml2
l⌈log(T )⌉ = O(maxk∈[K]{sk}) = O

(
min{ log(T )

4ϵ , T}
)
.

Thus,

H = O

(
log(min{ 1

4ϵ
, T})

)
,

which leads to a regret of O(N ′(KM2 + 2M2) log(min{ 1
4ϵ , T}). Next, transmitting acc/rej arm sets at most

incurs a regret of M2KN ′. Putting them together, the total communication regret is:

O

(
N ′(KM2 + 2M2) log

(
min

{
1

4ϵ
, T

})
+N ′M2K

)
.



Chapter 3

Collaboration Designs for Multi-agent

Decision Making

Federated learning (FL) (McMahan et al., 2017) is a new distributed machine learning (ML) paradigm

that addresses new challenges in modern machine learning (ML). In particular, FL handles distributed ML

with the following characteristics: non-IID local datasets, communication efficiency, and privacy. While the

state-of-the-art FL largely focuses on the supervised learning setting, we propose to extend the core principles

of FL to the multi-armed bandits (MAB) problem.

3.1 Federated Multi-armed Bandits: Different Relationships be-

tween Global and Local Models

3.1.1 The Approximate Model

In this section, we present a framework of federated multi-armed bandits (FMAB) as illustrated in Fig. 3.1,

which is based on our work of Shi and Shen (2021a).

Clients and The Server

Multiple clients interact with the same set of K arms (referred to as “local arms”) in the FMAB framework.

We denote Mt as the number of participating clients at time t, who are labeled from 1 to Mt to facilitate

discussions (they are not used in the algorithms). A client can only interact with her own local MAB model,

and there is no direct communication between clients. Arm k generates independent observations Xk,m for

54
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client m following a σ-subgaussian distribution with mean µk,m. Note that Xk,m is only an observation but

not a reward. For different clients n ̸= m, their models are non-IID; hence µk,n ̸= µk,m in general.

Figure 3.1: The FMAB framework.

There exists a central server with a global stochastic MAB model, which has the same set of K arms

(referred to as “global arms”) of σ-subgaussian reward distributions with mean reward µk for arm k. The true

rewards for this system are generated on this global model, thus the learning objective is on the global arms.

However, the server cannot directly observe rewards on the global model; she can only interact with clients

who feed back information of their local observations. We consider the general non-IID situation where the

local models are not necessarily the same as the global model and also make the common assumption that

clients and the server are fully synchronized.

Although clients cannot communicate with each other, after a certain time, they can transmit local “model

updates” based on their local observations to the server, which aggregates these updates to have a more

accurate estimation of the global model. The new estimation is then sent back to the clients to replace the

previous estimation for future actions. However, just like in FL, the communication resource is a major

bottleneck and the algorithm has to be conscious about its usage. We incorporate this constraint in FMAB

by imposing a loss C every time a client communicates to the server, which will be accounted for in the

performance measure defined below.

The Approximated Model

Although the non-IID property of local models is an important feature of FMAB, there must exist some

relationship between local and global models so that observations on local bandit models help the server

learn the global model. Here, we propose the approximate FMAB model, where the global model is a fixed

(but hidden) ground truth (i.e., exogenously generated regardless of the participating clients), and the local

models are IID random realizations of it.

Specifically, the global arm k has a fixed mean reward of µk. For client m, the mean reward µk,m of her

local arm k is a sample from an unknown distribution ϕk, which is a σc-subgaussian distribution with mean µk.

For a different client n ̸= m, µk,n is sampled IID from ϕk. Since local models are stochastic realizations of the
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global model, a finite collection of the former may not necessarily represent the latter. In other words, if there

are M involving clients, although ∀m ∈ [M ],E[µk,m] = µk, the averaged local model µ̂M
k

.
= 1

M

∑M
m=1 µk,m

may not be consistent with the global model. Specifically, µ̂M
k is not necessarily equal (or even close) to µk,

which introduces significant difficulties. Intuitively, the server needs to sample sufficiently many clients to

have a statistically accurate estimation of the global model, but as we show later, the required number of

clients cannot be obtained a priori without the suboptimality gap knowledge. The need of client sampling

also coincides with the property of massively distributed clients in FL.

Motivation Example

The approximate model captures the key characteristics of a practical cognitive radio system, as illustrated

in Fig. 3.2. Assume a total of K candidate channels, indexed by {1, ...,K}. Each channel’s availability is

location-dependent, with pk(x) denoting the probability that channel k is available at location x. The goal of

the base station is to choose one channel out of K candidates to serve all potential cellular users (e.g., control

channel) in the given coverage area D with area D. Assuming users are uniformly randomly distributed over

D, the global channel availability is measured throughout the entire coverage area as

pk = Ex∼u(D) [pk(x)] =

‹
D

1

D
pk(x)dx. (3.1)

It is well known in wireless research that a base station cannot directly sample pk by itself, because it is fixed

at one location. In addition, Eqn. (3.1) requires a continuous sampling throughout the coverage area, which

is not possible in practice. Realistically, the base station can only direct cellular user m at discrete location

xm to estimate pk(xm), and then aggregate observations from finite number of users as p̂k = 1
M

∑M
m=1 pk(xm)

to approximate pk. Clearly, even if pk(xm) are perfect, p̂k may not necessarily represent pk well.

Figure 3.2: The Motivation Example of Cognitive Radio for FMAB.
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Regret Definition

Without loss of generality, we assume there is only one optimal global arm k∗ with µ∗
.
= µk∗ = maxk∈[K] µk,

and ∆ = µ∗ − maxk ̸=k∗{µk} denotes the suboptimality gap of the global model (both unknown to the

algorithm). We further denote γ1, · · · , γTc
as the time slots when the clients communicate with the central

server for both upload and download. The notion of regret in for the single-player model can be generalized

to all the clients with additional communication loss, as follows:

R(T ) = E

[
T∑

t∈[T ]

MtXk∗(t)−
∑
t∈[T ]

∑
m∈[Mt]

Xπm(t)(t)︸ ︷︷ ︸
exploration and exploitation

+
∑

τ∈[Tc]

CMγτ︸ ︷︷ ︸
communication

]
, (3.2)

where πm(t) is the arm chosen by client m at time t. In this work, we aim to design algorithms with O(log(T ))

regret as in the single-player setting.

Several comments are in place for Eqn. (3.2). First, the cumulative reward of the system is defined on the

global model, because clients only receive observations from playing the local bandit game, and the reward is

generated at the system-level global model. Taking the cognitive radio system as an example, the choice

by each client only produces her observation of the channel availability, but the reward is generated by the

base station when this channel is used for the entire coverage area. Also, the regret definition discourages

the algorithm from involving too many clients. Ideally, only sufficiently many clients should be admitted

to accurately reconstruct the global model, and any more clients would result in more communication loss

without improving the model learning.

3.1.2 The Fed2-UCB Algorithm

Challenges and Main Ideas

The first and foremost challenge in the approximate model comes from that the local models are only

stochastic realizations of the global model. Even with the perfect information on all local arms, the optimal

global arm may not be produced faithfully. We refer to this new problem as the uncertainty from client

sampling. How to simultaneously handle the two types of uncertainty (client sampling and arm sampling) is

at the center of solving the approximate model.

A second issue comes from the conflict between non-IID local models and the global model. In particular,

the globally optimal arm may be sub-optimal for a client’s local model, and hence it cannot be correctly

inferred by the client individually. Communication between clients and the server is key to addressing this

conflict, but the challenge is how to control the communication loss and balance the overall regret.
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In this section, we first characterize the uncertainty from client sampling by analyzing the probability

that the averaged local model does not faithfully represent the global model, and illustrating that without

knowledge of the suboptimality gap ∆, the algorithm cannot determine a priori the number of required

clients. Then, Federated Double UCB (Fed2-UCB) is proposed, in which a novel “double UCB” principle

carefully balances and trades off the two sources of uncertainty while controlling the communication cost.

Client Sampling

In the approximate model, the key to determining whether the local knowledge is sufficient lies in whether

the optimal global arm can be inferred correctly. When there are M involving clients, the best approximate

of the global model is the averaged local model, i.e., µ̂M
k . Although the utilities of local arms may be different

from the global model, if the true optimal global arm is still optimal in this averaged local model, i.e.,

µ̂M
k∗

> maxk ̸=k∗ µ̂
M
k , a sub-linear regret can be achieved with local knowledge. Otherwise, arm k∗ is not

optimal with respect to µ̂M
k , and no matter how many explorations are performed locally (even with perfect

local knowledge), the global optimal arm cannot be found using the sampled M local models and thus a

linear regret occurs.

The following theorem characterizes the accuracy of representing the global model by the averaged local

model from a fixed number of clients.

Theorem 3.1.1. With M involved clients, denote Pz = P
(
µ̂M
k∗
≤ maxk∈[K] µ̂

M
k

)
, the following result holds:

Pz = O

∑
k ̸=k∗

exp
{
−σ−2

c M(µ∗ − µk)
2
} = O

(
K exp

{
−σ−2

c M∆2
})

.

Theorem 3.1.1 indicates that the probability that the averaged local model does not represent the global

model, i.e., µ̂M
k∗
≤ maxk∈[K] µ̂

M
k , decreases exponentially with respect to the number of involved clients M .

Thus, it is fundamental to involve a sufficiently large number of clients in order to reconstruct the global

model correctly. More specifically, to guarantee that Pz = O(1/T ), by which the overall regret can scale

sub-linearly, it is sufficient to sample M clients with

M = Ω
(
σ2
c∆

−2 log(KT )
)
. (3.3)

If Eqn. (3.3) is satisfied throughout the bandit game, the optimal arm can be successfully found. However,

clients do not have access to the knowledge of ∆. Thus, the requirement in Eqn. (3.3) cannot be guaranteed

in advance.
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On the other hand, involving too many clients may be detrimental to the regret. Specifically, in order to

have an O(log(T )) regret, M should satisfy:

M = O (log(T )) . (3.4)

Comparing Eqns. (3.3) and (3.4) suggests that M has to be Θ(log(T )) to achieve a correct representation of

the global model while maintaining an O(log(T )) regret.

Algorithm Design

With the unknown requirement in Eqn. (3.3), it is unwise to only admit a small number of clients in the

whole game. On the other hand, Eqn. (3.4) prohibits involving too many clients to achieve an O(log(T ))

regret. There are also practical system considerations that prevent having too many clients, which has been

discussed in the context of FL (Bonawitz et al., 2019). We propose the Fed2-UCB algorithm where the

central server gradually admits new clients into the game after each communication round while keeping

local clients gathering observations. The method of gradually increasing the clients ensures that the server

samples a set of small but sufficiently representative clients based on the underlying statistical structure of

the bandit game. The proposed “double UCB” principle simultaneously addresses the uncertainty from both

client sampling and arm sampling.

Algorithm 5 Fed2-UCB: client m

1: Initialize p← 1; [K1]← [K]
2: while Kp > 1 do
3: Pull each active arm k ∈ [Kp] for f(p) times
4: Calculate the local sample means µ̄k,m(p),∀k ∈ [Kp]
5: Send local updates µ̄k,m(p),∀k ∈ [Kp] to the server
6: Receive global update set Ep from the server
7: [Kp+1]← [Kp]\Ep; p← p+ 1
8: end while
9: F ←the only element in [Kp]; Stay on arm F until T

Algorithm 6 Fed2-UCB: central server

1: Initialize p← 1; [K1]← [K]
2: while Kp > 1 do
3: Admit g(p) new clients ▷ Client sampling
4: Receive local updates µ̄k,m(p),∀k ∈ [Kp],∀m ∈ [M(p)]

5: Calculate ∀k ∈ [Kp], µ̄k(p)←
∑M(p)

m=1 µ̄k,m(p)/M(p)
6: Ep ←

{
k ∈ [Kp]|µ̄k(p) +Bp,2 ≤ maxl∈[Kp] µ̄l(p)−Bp,2

}
7: Send global update set Ep to all involved clients
8: [Kp+1]← [Kp]\Ep; p← p+ 1
9: end while
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The Fed2-UCB algorithm is performed in phases simultaneously and synchronously at clients and the

central server. Clients collect observations and update local estimations for the arms that have not been

declared as sub-optimal, i.e., the active arms, while the server admits new clients and aggregates the local

estimations as global estimations to eliminate sub-optimal active arms. We denote the set of active arms in

the p-th phase by [Kp] with cardinality Kp. The detailed algorithms for the clients and the central server are

given in Algorithms 5 and 6, respectively.

At phase p, g(p) new clients are first added into the game by the server. These clients can be viewed as

interacting with newly sampled local MAB models. Each client, regardless of newly added or not, performs

a sequential arm sampling among the currently active arms for Kpf(p) times on their own local models,

which means each active arm is pulled f(p) times by each client. Thus, arm k ∈ [Kp] is played a total of

M(p)f(p) times in phase p, where M(p) =
∑p

q=1 g(q) is the overall number of clients at phase p. Parameters

g(p) and f(p) are flexible and we discuss the impact of these choices on the regret in the next section. It is

worth noting that the rate of admitting new clients is determined not only by g(p) but also by f(p), which

characterizes the frequency of client sampling. With new observations from arm sampling, each client m

updates her local estimations, i.e., sample mean µ̄k,m(p), k ∈ [Kp], then sends them to the central server as a

local parameter update. Note that uploading sample means instead of raw samples benefits the preservation

of privacy, and additional methods for better privacy protection are presented in the supplementary material.

After receiving local parameter updates from the clients, the central server first updates the global

estimation as the average of them for each active arm, i.e., µ̄k(p) =
1

M(p)

∑M(p)
m=1 µ̄k,m(p), k ∈ [Kp]. While

recognizing two coexisting uncertainties, a “double” confidence bound Bp,2 is adopted to characterize them

simultaneously as:

Bp,2 =
√
6σ2ηp log (T )︸ ︷︷ ︸
arm sampling

+
√
6σ2

c log (T ) /M(p)︸ ︷︷ ︸
client sampling

,

where ηp = 1
M(p)2

∑p
q=1

g(q)
F (p)−F (q−1) and F (p) =

∑p
q=1 f(q) with F (0) = 0. The first terms in Bp,2

characterizes the uncertainty from arm sampling, which illustrates the gap between the averaged sampled

local model and the exact averaged local model. The second term represents the uncertainty from client

sampling, which captures the gap between the exact averaged local model and the (hidden) global model.

Note that these two types of uncertainty are not independent of each other, since more admitted clients can

perform more pulls on arms, thus reducing both simultaneously.
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With the global estimations and the confidence bound, the elimination set Ep is determined by the server,

which contains arms that are sub-optimal with a high probability:

Ep =

{
k ∈ [Kp]

∣∣µ̄k(p) +Bp,2 ≤ max
l∈[Kp]

µ̄l(p)−Bp,2

}
.

The set [Ep] is then sent back to the clients, who then remove these arms from their sets of active arms. This

iteration keeps going until there is only one active arm left.

Regret Analysis

The regret of the Fed2-UCB algorithm is the combination of the exploration loss and communication loss and

relies on the design of g(p) and f(p).

Theorem 3.1.2. For k ̸= k∗, we denote ∆k = µ∗ − µk and pk as the smallest integer p such that

96
(
σ
√
ηp + σc/

√
M(p)

)2
log(T ) ≤ ∆2

k, (3.5)

and pmax = maxk ̸=k∗{pk}. If maxt≤T {Mt} ≤ βT , where β is a constant, the regret for the Fed2-UCB

algorithm satisfies

R2(T ) ≤
∑
k ̸=k∗

pk∑
q=1

∆kM(q)f(q) + C

pmax∑
q=1

M(q) + 4β(1 + C)K.

Eqn. (3.5) describes the requirement for phase pk under two types of uncertainty, by which the sub-optimal

arm k is guaranteed to be eliminated with a high probability. For it to hold, eventually we need at least

O(log(T )) clients in the game, which coincides with Eqn. (3.3).

Theorem 3.1.2 provides a general description, using unspecified g(p) and f(p). A better characterization

can be had with more specific choices.

Corollary 3.1.3. With f(p) = κ where κ is a constant, and g(p) = 2p, the asymptotic regret of Fed2-UCB is

R2(T ) = O

∑
k ̸=k∗

κ(σ/
√
κ+ σc)

2 log(T )

∆k
+ C

(σ/
√
κ+ σc)

2 log(T )

∆2

 .

Corollary 3.1.3 shows that with carefully designed f(p) = κ and g(p) = 2p, Fed2-UCB can achieve a regret

of O(log(T )). The exploration loss approaches the single-player MAB lower bound (Lai and Robbins, 1985),

which shows the effectiveness of exploration in Fed2-UCB. Since at least O(log(T )) clients need to be involved

as indicated by Eqn. (3.3), an O(log(T )) communication loss achieved in Corollary 3.1.3 is inevitable, which
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demonstrates the communication efficiency. The overall regret in Corollary 3.1.3 proves that Fed2-UCB can

effectively deal with two types of uncertainty while balancing the communication loss.

The choice of g(p) = 2p and f(p) = κ leads to an exponentially decreasing Bp,2, which can be viewed as

maintaining an exponentially decreasing estimation ∆̂ of ∆ and eliminating arms with a larger gap (Auer and

Ortner, 2010); thus, it naturally solves the difficulty associated with the unknown ∆. The regret behavior of

several other choices of f(p) and g(p) are given in the supplementary material.

3.1.3 The Exact Model and The Fed1-UCB Algorithm

While the approximate model introduces two types of uncertainty simultaneously, here we study a special

case of the exact model, where the uncertainty from client sampling does not exist. Correspondingly, the

Fed1-UCB algorithm, which degenerates from Fed2-UCB, is designed and analyzed.

The Exact Model

In the exact model, the number of clients is fixed, i.e., Mt = M , ∀t, and the global model is the exact average

of all the local models, which means the global arm k has a mean reward of µk = 1
M

∑M
m=1 µk,m. Thus,

the global model can be perfectly reconstructed with information of local models and there only exists the

uncertainty from arm sampling. The regret expression can be simplified to

R(T ) = E

∑
t∈[T ]

MXk∗(t)−
∑
t∈[T ]

∑
m∈[M ]

Xπm(t)(t) + CMTc

 .

This model focuses on optimizing the performance for a fixed group of clients that do not change throughout

the T time steps. In other words, the global model is not exogenously generated but adapts to the involved

clients. Taken the recommender system as an example, the overall popularity of one item is the average of its

popularity over the potential clients.

The Fed1-UCB Algorithm

Without the uncertainty from client sampling, there is no need of admitting new clients. The same exploration

and communication procedure of Fed2-UCB is performed in Fed1-UCB without client admitting. The

confidence bound used in arm eliminations is also degenerated from Bp,2 to Bp,1 =
√

6σ2 log(T )/(MF (p)),

which only characterizes the uncertainty from arm sampling. A complete description of Fed1-UCB is given in

the supplementary material.
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Regret Analysis

The regret for the Fed1-UCB algorithm only relies on f(p) and is characterized by the following theorem.

Theorem 3.1.4. For k ̸= k∗, we denote ∆k = µ∗ − µk, F (p) =
∑p

q=1 f(q), pk as the smallest integer p such

that

MF (p) ≥ 96σ2 log(T )/∆2
k, (3.6)

and pmax = maxk ̸=k∗{pk}. The regret of Fed1-UCB satisfies

R1(T ) ≤M
∑
k ̸=k∗

∆kF (pk) + CMpmax + 2(1 + C)MK.

Somewhat surprisingly, Eqn. (3.6) shows that although involving more clients leads to a faster convergence

(i.e., smaller pk), in general, the overall necessary arm pulls performed by the clients, i.e., MF (pk), are

independent of M . In other words, we can trade off the convergence time with the number of clients without

additional exploration loss.

Corollary 3.1.5. With f(p) = ⌈κ log(T )⌉ where κ is a constant, the asymptotic regret of the Fed1-UCB

algorithm is

R1(T ) = O

∑
k ̸=k∗

σ2 log(T )

∆k

 .

Corollary 3.1.5 states that the exploration loss of Fed1-UCB approaches the single-player MAB lower

bound (Lai and Robbins, 1985). It is also worth noting that with f(p) = ⌈κ log(T )⌉, the communication loss

of Fed-1UCB is a non-dominating constant, which demonstrates its communication efficiency. Furthermore,

the regret is independent of M asymptotically. The regret behavior with other choices of f(p) is discussed in

the supplementary material.

3.1.4 Experimental Results

Numerical experiments have been carried out under both applications of cognitive radio and recommender

systems. Their results are reported in this section to demonstrate the effectiveness and efficiency of Fed2-UCB

and Fed1-UCB. For the cognitive radio example, due to the lack of suitable real-world datasets, synthetic

datasets are used for simulations (Avner and Mannor, 2014; Bande and Veeravalli, 2019). For the recommender

system, real-world evaluations are performed. The performance of a (hypothetical) single-player improved

UCB algorithm (Auer and Ortner, 2010) directly performed at the server is used as the baseline (labeled as

“baseline”). The communication cost is set to be C = 1.
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(a) Fed1-UCB performance. (b) Fed2-UCB performance.

(c) Fed2-UCB with different f(p). (d) Performance with MovieLens dataset.

Figure 3.3: Regret comparisons between FMAB algorithms. The continuous curves represent the empirical
average values, and the shadowed areas represent the standard deviations. (a), (b) and (c) are evaluated with
synthetic datasets, and (d) is from the MovieLens dataset.

Synthetic Dataset for Cognitive Radio

A bandit game with K = 10 arms is used to mimic 10 candidate channels, and Gaussian distributions with

σ = 0.5 are used to generate local observations of the channel availability. The means of global arms are

in the interval [0.7, 0.8] with ∆ = 0.02. We first start with the relatively simple exact model, where M = 5

clients are involved while arm 1 is not the optimal arm of any of their local models. As shown in Fig. 3.3,

with f(p) = ⌈10 log(T )⌉, if there is no communication loss, Fed1-UCB (labeled as “expl”) achieves almost the

same performance as the baseline, which proves its effectiveness. When considering the communication loss,

the centralized version of Fed1-UCB (labeled as “cent”), where clients send their raw data in every time slot,

has a very large regret due to significant yet unnecessary communications. However, with f(p) = ⌈10 log(T )⌉,

Fed1-UCB only incurs a small communication loss, which proves its efficiency. It is also worth noting that

Fed1-UCB converges faster than the baseline, which is the result of higher arm sampling rate due to multiple

clients simultaneously pulling arms. In other words, the fast convergence over time is due to the increased

client dimension. When increasing the number of clients to M = 10, the overall regret remains approximately

the same as M = 5, but with even faster convergence, which corroborates Theorem 3.1.4 and Corollary 3.1.5.
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For the approximate model, the same set of global arms is used while the local models are generated by

Gaussian distributions with σc = 0.02. Fig. 3.3(b) shows that Fed2-UCB with f(p) = 100 and g(p) = 2p

successfully finds the optimal global arm and, without communication loss, has a performance (labeled as

“expl”) slightly worse than the baseline. Furthermore, the additional communication loss is very limited.

Compared with the performance of Fed1-UCB in Fig. 3.3(a), we see that Fed2-UCB achieves almost the same

performance for the more challenging approximate model, and the convergence of Fed2-UCB is even faster

since the impact of increasing the number of clients is already significant at the very beginning. Under a

reduced time horizon T = 104, Fig. 3.3(c) provides a finer look at the shape of regret curves of Fed2-UCB

and illustrates the need to balance two types of uncertainty. With a short update period f(p) = 10, new

clients are admitted rapidly, which sharply decreases the uncertainty from client sampling, but insufficient

local exploration leads to a large uncertainty from arm sampling, which causes a large regret despite the fast

convergence. On the other extreme, although local exploration is guaranteed to be sufficient with f(p) = 100,

it admits new clients slowly, which delays the convergence and causes unnecessary local explorations. f(p) = 50

strikes a better balance between two types of uncertainty and thus a better performance.

Real-world Dataset for Recommender System

The MovieLens dataset (Cantador et al., 2011) is used for real-world evaluation as an implementation of a

recommender system, which has been widely adopted in MAB studies. It links the movies of the MovieLens

dataset with IMDb and Rotten Tomatoes movie review systems and contains 2113 clients and 10197 movies.

All the users are assumed to be available while the movies are randomly divided into 100 groups and the

observations for clients are defined as their ratings of each group of movies. The suboptimality gap of the

pre-processed data is ∆ ≈ 0.0053. The number of arms and potential clients is much larger than the synthetic

dataset. First, as shown in Fig. 3.3(d), if a small fraction of clients (M = 200) are used for Fed1-UCB, which

can be viewed as only involving a small number of clients at the beginning of Fed2-UCB, the regret curve

trends upward, meaning the global optimal arm is not found due to insufficient client sampling. Oppositely,

when all clients are involved, Fed1-UCB converges to the optimal arm but with a large regret, which shows

the harm of oversampling. Using Fed2-UCB and f(p) = 200 with g(p) = 2p, much better performance is

achieved since only the necessary amount of clients are sampled to capture the global model faithfully without

unnecessary loss. With f(p) = 500, new clients are admitted more slowly but it still outperforms Fed1-UCB.
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3.1.5 Additional Theoretical Discussions

The regrets in Theorem 3.1.2 and Theorem 3.1.4 are related to the choices at the server, i.e., f(p) and g(p).

In this section, we provide a more detailed discussion of the impact of these choices on regret.

Discussion for Theorem 3.1.2

From Eqns. (3.3), (3.4) and (3.5), there are Θ(log(T )) clients involved in the game eventually, which means

that the choice of any f(p) with an order higher than O(1) cannot have an O(log(T )) regret. Also, with

O(log(T )) involved clients, a constant communication loss is no longer achievable as shown in Corollary

3.1.5. Thus, we focus on choices of g(p) while fixing f(p) = κ, and the results are given in Table 3.1. With

a linear growth rate g(p) = λ, we can see that the overall regret is of order O(log2(T )). While increasing

the rate to g(p) = ⌈λ log(T )⌉, an O(log(T )) regret is achieved but the multiplicative factors are far from

optimal. By exponentially increasing involving players with g(p) = 2p or g(p) = ⌈2p log(T )⌉, an exploration

loss approaching the lower bound can be achieved, while the communication loss remains sublinear of order

O(log(T )).

Table 3.1: Regret of Fed2-UCB algorithm with f(p) = κ and different choices of g(p).

g(p) pk, k ̸= k∗ R2(T )

λ
⌈
96(σ/

√
κ+σc)

2 log(T )
λ(µ∗−µk)2

⌉
O
(∑

k ̸=k∗

κ(σ/
√
κ+σc)

4 log2(T )
λ(µ∗−µk)3

+ C (σ/
√
κ+σc)

4 log2(T )
λ∆4

)
⌈λ log(T )⌉

⌈
96(σ/

√
κ+σc)

2

λ(µ∗−µk)2

⌉
O
(∑

k ̸=k∗

κ(σ/
√
κ+σc)

4 log(T )
λ(µ∗−µk)3

+ C (σ/
√
κ+σc)

4 log(T )
∆4

)
2p

⌈
log
(

96(σ/
√
κ+σc)

2 log(T )
(µ∗−µk)2

)⌉
O
(∑

k ̸=k∗

κ(σ/
√
κ+σc)

2 log(T )
(µ∗−µk)

+ C (σ/
√
κ+σc)

2 log(T )
∆2

)
⌈2p log(T )⌉

⌈
log
(

96(σ/
√
κ+σc)

2

(µ∗−µk)2

)⌉
O
(∑

k ̸=k∗

κ(σ/
√
κ+σc)

2 log(T )
(µ∗−µk)

+ C (σ/
√
κ+σc)

2 log(T )
∆2

)
λ and κ are constants and ∆ = mink ̸=k∗{µ∗ − µk} is the suboptimality gap; the pk column represents its

upper bound.

Discussion for Theorem 3.1.4

For Theorem 3.1.4, a few possible choices for f(p) with the corresponding pk and asymptotic regrets are given

in Table 3.2. While f(p) = κ, the overall asymptotic regret is independent of M ; however, the communication

loss is of order O(log(T )). The choice of f(p) = ⌈κ log(T )⌉ results in a constant communication loss which

scales as 1/∆2. When the update period grows exponentially, the communication loss is of order O(log(log(T )))

for f(p) = 2p and O(1) for f(p) = ⌈2p log(T )⌉, and with these two choices, the communication loss now scales

as log (1/∆).
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Table 3.2: Regret of Fed1-UCB algorithm with different choices of f(p).

f(p) pk, k ̸= k∗ R1(T )

κ
⌈

96σ2 log(T )
κM(µ∗−µk)2

⌉
O
(∑

k ̸=k∗

σ2 log(T )
(µ∗−µk)

+ C σ2 log(T )
κ∆2

)
⌈κ log(T )⌉

⌈
96σ2

κM(µ∗−µk)2

⌉
O
(∑

k ̸=k∗

σ2 log(T )
(µ∗−µk)

+ C σ2

κ∆2

)
2p

⌈
log
(

96σ2 log(T )
M(µ∗−µk)2

)⌉
O
(∑

k ̸=k∗

σ2 log(T )
(µ∗−µk)

+ CM log
(

σ2 log(T )
M∆2

))
⌈2p log(T )⌉

⌈
log
(

96σ2

M(µ∗−µk)2

)⌉
O
(∑

k ̸=k∗

σ2 log(T )
(µ∗−µk)

+ CM log
(

σ2

M∆2

))
κ is a constant and ∆ = mink ̸=k∗{µ∗ − µk} is the suboptimality gap;

the pk column represents its upper bound.

3.1.6 Full Proofs

Proof of Theorem 3.1.1

Proof. With a union bound, we have

Pz = P

(
µ̂M
k∗
≤ max

k ̸=k∗
µ̂M
k

)
= P

 ⋃
k ̸=k∗

(
µ̂M
k∗
≤ µ̂M

k

) ≤ ∑
k ̸=k∗

P
(
µ̂M
k∗
≤ µ̂M

k

)
. (3.7)

For a given arm k ̸= k∗, we further have

P
(
µ̂M
k∗

> µ̂M
k

)
≥ P

(
µ̂M
k∗
≥ 1

2
(µk + µ∗) ≥ µ̂M

k

)
= P

(
µ̂M
k∗
≥ 1

2
(µk + µ∗)

)
P

(
1

2
(µk + µ∗) ≥ µ̂M

k

)
(i)

≥
(
1− exp

{
−M(µ∗ − µk)

2

8σ2
c

})(
1− exp

{
−M(µ∗ − µk)

2

8σ2
c

})
= 1−O

(
exp

{
−M(µ∗ − µk)

2

σ2
c

})
.

Inequality (i) is because µ̂M
k∗

and µ̂M
k are σc√

M
-subgaussian random variables. Thus, each term in the summation

of Eqn. (3.7) can be bounded as

P
(
µ̂M
k∗
≤ µ̂M

k

)
≤ O

(
exp

{
−M(µ∗ − µk)

2

σ2
c

})
.

Finally Theorem 3.1.1 can be derived as

Pz ≤
∑
k ̸=k∗

P
(
µ̂M
k∗
≤ µ̂M

k

)
≤ O

∑
k ̸=k∗

exp

{
−M(µ∗ − µk)

2

σ2
c

} ≤ O

(
K exp

{
−M∆2

σ2
c

})
.
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Proof of Theorem 3.1.2

Step 1: Confidence Bound for the Estimations

We first analyze the probability guarantee of the interval for the averaged local mean estimation. In the

Fed2-UCB algorithm, with two types of uncertainty, the following lemma provides an upper bound for the

gap between averaged local means and the exact global means for each arm.

Lemma 3.1.6. At phase p, for any active arm k ∈ [Kp], it holds that

P (|µ̄k(p)− µk| ≥ Bp,2) ≤
4

T 3
.

Proof. The gap between µ̄k(p) and µk can be bounded as follows:

P (|µ̄k(p)− µk| ≥ Bp,2)

= P
(∣∣∣µ̄k(p)− µ̂

M(p)
k (p) + µ̂

M(p)
k (p)− µk

∣∣∣ ≥ Bp,2

)
≤ P

(∣∣∣µ̄k(p)− µ̂
M(p)
k (p)

∣∣∣+ ∣∣∣µ̂M(p)
k (p)− µk

∣∣∣ ≥ Bp,2

)
= P

(∣∣∣µ̄k(p)− µ̂
M(p)
k (p)

∣∣∣+ ∣∣∣µ̂M(p)
k (p)− µk

∣∣∣ ≥√6σ2ηp log(T ) +

√
6σ2

c log(T )

M(p)

)

≤ P

(∣∣∣µ̄k(p)− µ̂
M(p)
k (p)

∣∣∣ ≥√6σ2ηp log(T )

)
+ P

(∣∣∣µ̂M(p)
k (p)− µk

∣∣∣ ≥√6σ2
c log(T )

M(p)

)
.

For the first part, at phase p, the averaged local mean is µ̄k(p) =
1

M(p)

∑M(p)
m=1 µ̄k,m(p), while µ̄k,m(p) is

the sample mean collected by client m. It can be observed that arm k is pulled for
∑p

q=1 f(q) = F (p) times

by g(1) clients (referred as “group 1”),
∑p

q=2 = F (p)−F (1) times by g(2) clients (“group 2”), and so on until

f(p) = F (p)− F (p− 1) times by g(p) clients (“group p”). We also have that for clients in groups 1, µ̄k,m is

a σ√
F (p)

-subgaussian random variable, while it is a σ√
F (p)−F (1)

-subgaussian random variable for clients in

group 2, and so on. We further have that the overall average µ̄k(p) is a
σ

M(p)

√∑p
q=1

g(q)
F (p)−F (q−1) -subgaussian

random variable. With the sub-gaussian property and ηp = 1
M(p)2

∑p
q=1

g(q)
F (p)−F (q−1) , it holds that

P

(∣∣∣µ̄k(p)− µ̂
M(p)
k (p)

∣∣∣ ≥√6σ2ηp log(T )

)
≤ 2 exp

− 6σ2ηp log(T )

2 σ2

M(p)2

∑p
q=1

g(q)
F (p)−F (q−1)

 =
2

T 3
.
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For the second part, µ̂
M(p)
k (p) = 1

M(p)

∑M(p)
m=1 µk,m, which is a σc√

M(p)
-subgaussian random variable. Thus,

with the subgaussian property, we have

P

(∣∣∣µ̂M(p)
k (p)− µk

∣∣∣ ≥√6σ2
c log(T )

M(p)

)
≤ 2 exp

−
6σ2

c log(T )
M(p)

2
σ2
c

M(p)

 =
2

T 3
.

By combining the two parts together, the lemma is proved.

Denote event B = {∀p,∀k ∈ [Kp], |µ̄k(p)− µk| ≤ Bp,2} and Pb = P(B). Since there are at most T rounds

and K arms, with a simple union bound, we have

Pb ≥ 1− 4K

T 2
.

Step 2: Required Number of Pulls

Based on that event B happens, the following lemma provides an upper bound for the required number of

pulls to eliminate any sub-optimal arm.

Lemma 3.1.7. Assuming that event B happens, for any sub-optimal arm k ̸= k∗, there are at most pk rounds

before arm k is eliminated or the overall time runs out, where pk is the smallest integer satisfying

96

(
σ
√
ηp + σc

1√
M(p)

)2

log(T ) ≤ (µ∗ − µk)
2.

Proof. Let ∆k = µ∗ − µk be the gap between the sub-optimal arm k and the optimal arm and pk be the

smallest integer such that 4Bpk,2 ≤ ∆k. Thus pk is the smallest integer satisfying

96

(
σ
√
ηp + σc

1√
M(p)

)2

log(T ) ≤ (µ∗ − µk)
2.

For any p ≥ pk, we have

∆k ≥ 4Bp,2;

|µ̄k(p)− µk| ≤ Bp,2;

|µ̄k∗(p)− µ∗| ≤ Bp,2.

With the above inequalities, we have

µ̄k(p) +Bp,2 ≤ µk + 2Bp,2 ≤ µk + 2Bp,2 + µ̄k∗(p)− µ∗ +Bp,2

= −(∆k − 4Bp,2) + µ̄k∗(p)−Bp,2 ≤ µ̄k∗(p)−Bp,2,
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which means arm k is eliminated. Thus, arm k is pulled at most pk rounds before elimination or the overall

time runs out.

Step 3: Overall Regret

When event B holds, the overall regret, denoted as Rs,2(T ), can be decomposed as

Rs,2(T ) =

K∑
k=1

(µ∗ − µk)E[N(k)] + CE

[
Tc∑
τ=1

Mγτ

]
,

where N(k) is the overall number of pulls on arm k. For the first term, i.e. the exploration loss, for any

sub-optimal arm k, with pk defined in Lemma 3.1.7, we have

(µ∗ − µk)E[N(k)] ≤ (µ∗ − µk)

pk∑
p=1

M(p)f(p).

The communication loss is similarly determined by pmax = maxk ̸=k∗{pk}, which satisfies

C

Tc∑
τ=1

Mγτ ≤ C

pmax∑
q=1

M(q).

Then Rs,2(T ) can be bounded as

Rs,2(T ) ≤
∑
k ̸=k∗

(µ∗ − µk)

pk∑
p=1

M(p)f(p) + C

pmax∑
q=1

M(q).

If event B does not hold, with βT as an upper bound for the number of clients, the exploration regret

and communication regret are upper bounded by a linear loss βT 2 and βCT 2 respectively. Thus, the regret

of this case, denoted as Rf,2(T ), can be bounded as

Rf,2(T ) ≤ β(1 + C)T 2.

With Rs,2(T ) and Rf,2(T ), the overall regret R2(T ) can be finally bounded as

R2(T ) = PbRs,2(T ) + (1− Pb)Rf,2(T )

≤ Rs,2(T ) + (1− Pb)Rf,2(T )

≤
∑
k ̸=k∗

(µ∗ − µk)

pk∑
p=1

M(p)f(p) + C

pmax∑
q=1

M(q) + 4β(1 + C).
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Proof of Theorem 3.1.4

Step 1: Confidence Bound for the Estimations

Lemma 3.1.8. At phase p, for any active arm k ∈ [Kp], it holds that

P (|µ̄k(p)− µk| ≥ Bp,1) ≤
2

T 2
.

Proof. Since µ̄k(p) =
1
M

∑M
m=1 µ̄k,m(p) while µ̄k,m(p) is the sample mean collected by client m through F (p)

pulls, which thus is a σ√
F (p)

-subgaussian random variable, µ̄k(p) is a
σ√

MF (p)
-subgaussian random variable.

Thus, with the subgaussian property, we have

P (|µ̄k(p)− µk| ≥ Bp,1) ≤ 2 exp

{
−
MF (p)B2

p,1

2σ2

}
= 2 exp

−MF (p) 6σ
2 log(T )
MF (p)

2σ2

 =
2

T 3
.

Denoting event A = {∀p,∀k ∈ [Kp], |µ̄k(p)− µk| ≤ Bp,1} and Pa = P(A), since there are at most T rounds

and K arms, with a simple union bound, we have

Pa ≥ 1− 2K

T 2
.

Step 2: Required Number of Pulls

Lemma 3.1.9. Assuming that event A happens, for any sub-optimal arm k ̸= k∗, there are at most pk rounds

before it is eliminated or the overall time runs out, where pk is the smallest integer satisfying

MF (pk) ≥
96σ2 log(T )

(µ∗ − µk)2
.

Proof. Let ∆k = µ∗ − µk be the gap between the sub-optimal arm k and the optimal arm, and pk be the

smallest integer such that 4Bpk,1 ≤ ∆k. We have

MF (pk) ≥
96σ2 log(T )

(µ∗ − µk)2
.
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If pk ≤ F−1(T ), for such p ≥ pk, it leads to

∆k ≥ 4Bp,1;

|µ̄k(p)− µk| ≤ Bp,1;

|µ̄k∗(p)− µ∗| ≤ Bp,1.

With the above inequalities, we can further derive

µ̄k(p) +Bp,1 ≤ µk + 2Bp,1 ≤ µk + 2Bp,1 + µ̄k∗(p)− µ∗ +Bp,1

= −(∆k − 4Bp,1) + µ̄k∗(p)−Bp,1 ≤ µ̄k∗(p)−Bp,1,

which means arm k is eliminated. Thus, arm k is pulled for at most pk phases by each client before elimination

or the overall time runs out.

Step 3: Overall Regret

When event A holds, the overall regret, denoted as Rs,1(T ), can be decomposed as

Rs,1(T ) =

K∑
k=1

(µ∗ − µk)E[N(k)] + E [CMTc] ,

where N(k) is the overall number of pulls on arm k by all the clients. For the first term, i.e. the exploration

loss, with Lemma 3.1.9, for any sub-optimal arm k, if it holds that

96σ2 log(T )

(µ∗ − µk)2
≤MF (pk)

at round pk, we can conclude arm k is eliminated in this round. Thus,

(µ∗ − µk)E[N(k)] ≤M(µ∗ − µk)F (pk).

Since there are no more communications after the optimal arm is found or the overall time runs out, the

communication loss is determined by pmax = maxk ̸=k∗{pk} and can be bounded as

CMTc ≤ CM min

{
max
k ̸=k∗
{pk}, F−1(T )

}
≤ CMpmax.
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Then Rs,1(T ) can be bounded as

Rs,1(T ) ≤M
∑
k ̸=k∗

(µ∗ − µk)F (pk) + CMpmax.

If event A does not hold, the exploration regret can be simply upper bounded by a linear loss MT while

the communication loss is also simply upper bounded linearly by CMT . The regret of this case, denoted as

Rf,1(T ), can be bounded as

Rf,1(T ) ≤ (1 + C)MT.

With Rs,1(T ) and Rf,1(T ), the overall regret R1(T ) can finally be bounded as

R1(T ) = PaRs,1(T ) + (1− Pa)Rf,1(T )

≤ Rs,1(T ) + (1− Pa)Rf,1(T )

≤M
∑
k ̸=k∗

(µ∗ − µk)F (pk) + CMpmax + 2(1 + C)MK/T.
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3.2 Federated Multi-armed Bandits: Flexible Tradeoffs between

Generalization and Personalization

Earlier FL approaches focus on training a single global model that can perform well on the aggregated global

dataset. However, the performance of the FL-trained global model on an individual client dataset degrades

dramatically when significant heterogeneity among the local datasets exists, which raises the concern of using

one global model for all individual clients in edge inference. To address this issue, FL with personalization

(Smith et al., 2017) has been proposed. Instead of learning a single global model, each device aims at learning

a mixture of the global model and its own local model (Hanzely and Richtárik, 2020; Deng et al., 2020), which

provides an explicit trade-off between the two potentially competing learning goals. Following these attempts,

the following discussions extend the concept of “personalization” to the study of federated multi-armed

bandits, especially as a framework of personalized federated multi-armed bandits (PF-MAB).

3.2.1 Problem Fomulation

Clients and local models.

In the PF-MAB framework, there are M clients interacting with the same set of K arms (referred as “local

arms”). The clients are labeled from 1 to M to facilitate the discussion (labelling is not used in the algorithm).

For client m, arm k generates local rewards Xk,m(t) independently from a σ-subgaussian distribution with

mean µk,m. Without loss of generality, we assume σ = 1. For different clients, their local models are non-IID,

i.e., in general µk,n ̸= µk,m when n ̸= m. A client can only interact with her own local MAB model by

choosing arm πm(t) and receiving reward Xπm(t),m(t) at time t. Also, there is no direct communication

between clients.

A global stochastic MAB model with the same set of K arms (referred to as “global arms”) coexists

with the local models, where the global reward Xk(t) for the global arm k is the average of local rewards,

i.e., Xk(t) =
1
M

∑M
m=1 Xk,m(t). The global reward can be thought of as the virtual averaged reward had

all M clients pulled the same arm k at time t. Correspondingly, the mean reward of global arm k is

µk = 1
M

∑M
m=1 µk,m. We note that although the global model is the average of local models, the global

rewards are not directly observable by any client.

In decentralized multi-player multi-armed bandits (MP-MAB), clients are prohibited from having explicit

communication with each other (Liu and Zhao, 2010; Boursier and Perchet, 2019). We modify this constraint

to enable client-server periodic communication that is similar to FL. Specifically, the clients can send “local

model updates” to a central server, which then aggregates and broadcasts the updated “global model” to the
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clients. (We will specify these components later.) Note that just as in FL, communication is one of the major

bottlenecks and the algorithm has to be conscious of its usage. This constraint is incorporated by imposing a

loss C each time a communication round happens, which will be accounted for in the regret. We also make

the assumption that clients and the server are fully synchronized.

Personalization vs Generalization

With the coexistence of local and global models, two extreme scenarios exist for bandit learning: local-only

and global-only. In the first case, clients only care about their own local performance, which is characterized

by the local cumulative reward rl(T ) as

rl(T ) := E
[∑T

t=1

∑M

m=1
Xπm(t),m(t)

]
.

rl(T ) is equivalent to the sum rewards of M clients who play M decoupled and non-interacting MAB games.

Obviously, the optimal choice for client m is arm k∗,m with µ∗,m:= µk∗,m,m = maxk∈[K] µk,m. However, only

pursuing the locally optimal arm severely limits the ability to generalization across clients, especially when

the degree of heterogeneity is significant.

On the other extreme, clients only focus on learning the global model, which means maximizing the global

cumulative reward:

rg(T ) := E

∑
t∈[T ]

∑
m∈[M ]

Xπm(t)(t)

 .

In this case, although the client’s action and observation are both on her local arms, the reward is defined

with respect to the global arm (Shi and Shen, 2021a). Ideally, the optimal choice to maximize rg(T ) is to

let all the clients play the optimal global arm k∗ with µ∗:= µk∗ = maxk∈[K] µk. We note that this problem

has recently been proposed and studied in Zhu et al. (2020); Shi and Shen (2021a), which calls for efficient

coordination among clients since no client can solve the global model individually. However, any efficient

solution for this extreme case may lead to poor individual performance due to the non-IID local models.

To balance the need for both personalization and generalization, we hereby introduce a new learning

objective that mixes rg(T ) and rl(T ) by a parameter α ∈ [0, 1]. This learning objective is referred to as the

mixed cumulative reward, which is defined as:

r(T ) := αrl(T ) + (1− α)rg(T ). (3.8)

The parameter α provides a flexible choice of personalization: with α = 1, r(T ) becomes the sum rewards of
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M individual single-player MAB games (full personalization); with α = 0, r(T ) only considers the global

model (no personalization); with 0 < α < 1, both the global and local models are simultaneously taken into

consideration by r(T ).

The Equivalent Mixed Model

An equivalent view of the mixed cumulative reward r(T ) in Eqn. (3.8) is provided here, which facilitates our

subsequent discussion. By unfolding rl(T ) and rg(T ), r(T ) can be rewritten as

r(T ) = E

∑
t∈[T ]

∑
m∈[M ]

X ′
πm(t),m(t)

 ,

where X ′
πm(t),m(t) is a hypothetical reward that combines the local and global rewards, defined as:

X ′
πm(t),m(t) := αXπm(t),m(t) + (1− α)Xπm(t)(t). (3.9)

Thus, maximizing the mixed cumulative reward can be equivalently viewed as playing a new MAB game with

X ′
k,m(t) as rewards for the clients. However, since clients cannot directly observe the global reward, X ′

k,m(t)

is only partially observable at each individual client. We refer to this hypothetical game as the mixed model.

A similar reward definition using the weighted sum of clients’ rewards has been adopted in Brânzei and Peres

(2019), albeit from a game theory perspective.

In client m’s mixed model, the mean reward µ′
k,m := E

[
X ′

k,m(t)
]
for arm k can be calculated as:

µ′
k,m =

(
α+

1− α

M

)
µk,m︸ ︷︷ ︸

local info

+
1− α

M

∑
n ̸=m

µk,n︸ ︷︷ ︸
global info

. (3.10)

Since the global information in µ′
k,m is determined by other clients and cannot be accessed directly at client

m, communication between clients and the server is of critical importance.

With the mixed models, the notion of regret in single-agent MAB can be generalized to r(T ) as

R(T ) = T

M∑
m=1

µ′
∗,m − E

[
T∑

t=1

M∑
m=1

X ′
πm(t),m(t)

]
+ CMTc, (3.11)

where µ′
∗,m is the mean reward from the optimal arm k′∗,m of client m’s mixed model, i.e., µ′

∗,m := µ′
k′
∗,m,m =

maxk∈[K] µ
′
k,m. The additional loss term CMTc in Eqn. (3.11) represents the communication loss, where Tc

is the total amount of communication slots. Without loss of generality, we assume that the optimal arm of

each client on her mixed model is unique. We further note that the optimal arms of different clients are likely
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to be different because in general non-IID local models lead to k′∗,m ̸= k′∗,n when m ≠ n. We further denote

∆′
k,m = µ′

∗,m − µ′
k,m.

3.2.2 Lower Bound Analysis

A regret lower bound of PF-MAB is characterized by the following theorem.

Theorem 3.2.1. For any consistent1 algorithm Π, the regret R(T ) in Eqn. (3.11) can be lower bounded as

lim inf
T→∞

RΠ(T )

log(T )
≥

M∑
m=1

∑
k ̸=k′

∗,m

max

{
∆′

k,m

kl(Yk,m, Yk′
∗,m,m)

,
∆′

k,m

minn:n ̸=m,k′
∗,n ̸=k kl(Zm

k,n, Z
m
k′
∗,n,n

)

}
, (3.12)

where Yk,m =
(
α+ 1−α

M

)
Xk,m + µ′

k,m −
(
α+ 1−α

M

)
µk,m and Zm

k,n = 1−α
M Xk,m + µ′

k,n − 1−α
M µk,m.

The communication cost is ignored in the analysis (i.e., C = 0), but naturally, this lower bound still

holds for C > 0. The lower bound in Eqn. (3.12) sums over the maximum of two terms for all clients and

suboptimal arms. First, random variable Yk,m with mean µ′
k,m represents an idealized degenerated game

of client m’s mixed model where information from other clients, i.e., {µk,l}l ̸=m, is perfectly known. With

Yk,m, a lower bound for the regret of client m learning arm k for her mixed model can be obtained. Second,

random variable Zm
k,n with mean µ′

k,n represents another idealized degenerated game of client n’s mixed

model, where we assume full information of arm k from all other clients except client m, i.e., {µk,l}l ̸=m.

With Zm
k,n, the regret of client m providing information of arm k to client n is characterized. Then, building

on this characterization, the regret of client m providing information of arm k to all other clients can be

lower bounded by taking the worst case among them, i.e., the minimization term. This worst-case argument

corresponds to the client who requires the most global information of arm k. To summarize, the first and

second terms in the maximization characterize the necessary loss for learning local (for the client herself) and

global (for all other clients) information of client m’s arm k, respectively. We also note that in the case of

α = 1, i.e., local-only, Eqn. (3.12) recovers the lower bound in Lai and Robbins (1985), summed over M local

models.

More light can be shed on the lower bound by limiting the attention to Gaussian distributed rewards.

Corollary 3.2.2. For any consistent algorithm Π, if the rewards follow Gaussian distributions with unit

variance, the regret is lower bounded as

lim inf
T→∞

RΠ(T )

log(T )
≥

M∑
m=1

∑
k ̸=k′

∗,m

max

{
2β2

∆′
k,m

,
2γ2∆′

k,m

(∆′
k)

2

}
,

1The consistent algorithm is defined the same way as in Lai and Robbins (1985) but with the regret of Eqn. (3.11).
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where β = α+ 1−α
M , γ = 1−α

M and ∆′
k = minn:k′

∗,n ̸=k ∆
′
k,n.

Corollary 3.2.2 shows that the second term in the maximum is determined by ∆′
k, which corroborates

that the loss of learning global information for arm k is determined by the hardest mixed model.

We note that, as will be evident in the PF-UCB algorithm, the lower bound analysis reveals important

guidelines for balancing global and local explorations. Nevertheless, neither Theorem 3.2.1 nor Corollary 3.2.2

establishes a universally tight lower bound (for all α). Characterizing the precise lower bound dependency on

α is an interesting open problem, and we have the following conjecture.

Conjecture 3.2.3. For any consistent algorithm Π, as T →∞, ∀m ∈ [M ] and ∀k : k ̸= k′∗,m, it holds that

β2

Tk,m
+

∑
n:n̸=m,k′

∗,n ̸=k

γ2

Tk,n
≤

η2kl(X ′
k,m, X ′

k′
∗,m,m)

log(T )
,

where Tk,m is the expected number of pulls on arm k by client m in the T time slots, β = α+ 1−α
M , γ = 1−α

M

and η = (β2 + (M − 1)γ2)
1
2 .

Conjecture 3.2.3 also recovers single-agent lower bound in Lai and Robbins (1985)with α = 1. Furthermore,

with α = 0 (global-only), it implies that lim infT→∞
R(T )
log(T ) ≥

∑
k ̸=k∗

M∆k

kl(Xk,Xk∗ )
, where ∆k = µ∗ − µk. This

result is reasonable as it is equivalent to the lower bound of a centralized client who directly maximizes the

cumulative global reward.

3.2.3 The PF-UCB Algorithm

Challenges

Solving the PF-MAB model faces several new challenges. The first challenge is that in order to maximize

the mixed reward, both local and global information are essential. On one hand, the overall decision can be

compromised (depending on the choice of α) as long as one type of information is insufficiently learned. On

the other hand, providing global information for other clients may degrade individual performance since the

additional exploration does not directly benefit the client. The key challenge is how to gain sufficient but not

excessive local and global information simultaneously based on the required degree of personalization.

A second challenge is that the game difficulties vary across clients. It is highly likely that different clients

would need different amounts of global information. In other words, some clients may find their optimal

arms much slower than others, which is similar to the client heterogeneity problem in FL (Li et al., 2020a).

How to handle the resulting synchronization problem caused by client heterogeneity in PF-MAB becomes an

important issue.
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Lastly, although communication is fundamental to providing global information, it incurs additional losses

in regret. This benefit-cost balance needs to be addressed in the algorithm design.

Algorithm Design

The Personalized Federated Upper Confidence Bound (PF-UCB) algorithm operates in phases (analogous

to communication rounds in FL), and each phase consists of three sub-phases: global exploration, local

exploration, and exploitation. The set of arms for global (resp. local) exploration is referred to as the

set of global (resp. local) active arms. Specifically, at phase p, Am(p) (with cardinality Km(p)) and

A(p) = ∪m∈[M ]Am(p) (with cardinality K(p)) denote the set of local and global active arms respectively,

which are both initialized as [K]. PF-UCB for clients and the central server are presented in Algorithms 7

and 8, respectively.

Algorithm 7 PF-UCB: client m

Require: T , M , K, α
1: Initialize p← 1; Am(1), A(1)← [K]; ∀k ∈ [K], sk,m ← 0, Tk,m ← 0; g, h← 1; Om ← 0
2: while A(p) ̸= ∅ do ▷ Global exploration

3: for g ≤ K(p) ⌈(1− α)f(p)⌉ do
4: π ← (g mod K(p))-th arm in A(p)
5: Pull arm π and receive reward rπ
6: sπ,m ← sπ,m + rπ; Tπ,m ← Tπ,m + 1; g ← g + 1
7: end for
8: for h ≤ Km(p)⌈Mαf(p)⌉ do ▷ Local exploration

9: π ← (h mod Km(p))-th arm in Am(p)
10: Pull arm π and receive reward rπ
11: sπ,m ← sπ,m + rπ; Tπ,m ← Tπ,m + 1; h← h+ 1
12: end for
13: Update µ̄k,m(p)← sk,m/Tk,m,∀k ∈ A(p)
14: Send µ̄k,m(p),∀k ∈ A(p) to the server
15: if Om = 0 then ▷ Exploitation

16: k̄′∗,m(p)← argmaxk∈Am(p){µ̄′
k,m(p− 1)}

17: else k̄′∗,m(p)← Om

18: end if
19: Pull arm k̄′∗,m(p) until receiving µ̄k(p), k ∈ A(p)
20: ∀k ∈ Am(p), µ̄′

k,m(p)← αµ̄k,m(p) + (1− α)µ̄k(p)
21: Update Em(p) ▷ Arm elimination
22: Am(p+ 1)← Am(p)\Em(p)
23: if |Am(p+ 1)| = 1 then
24: Om ← the only arm in Am(p+ 1); Am(p+ 1)← ∅
25: end if
26: Send Am(p+ 1) to the server
27: Receive A(p+ 1) from the server; p← p+ 1; g, h← 1
28: K(p+ 1)← |A(p+ 1)|, Km(p+ 1)← |Am(p+ 1)|
29: end while
30: Stay on arm Om until T ▷ Exploitation



3.2 Federated Multi-armed Bandits: Flexible Tradeoffs between Generalization and Personalization 80

Algorithm 8 PF-UCB: central server

Require: T , M , K
1: Initialize p← 1; A(1)← [K]
2: while A(p) ̸= ∅ do
3: Receive µ̄k,m(p),∀k ∈ A(p) from all clients m ∈ [M ]

4: Update µ̄k(p)← 1
M

∑M
m=1 µ̄k,m(p), ∀k ∈ A(p)

5: Send µ̄k(p),∀k ∈ A(p) to all clients
6: Receive Am(p+ 1) from all clients
7: Send A(p+ 1)← ∪m∈[M ]Am(p+ 1) to all clients
8: p← p+ 1
9: end while

In phase p, global exploration is first performed in order to collect statistics to update the global information.

Client m explores each arm k ∈ A(p), i.e., global active arms, for ng
k,m(p) = ⌈(1− α)f(p)⌉ times, and thus

the entire global exploration sub-phase lasts for K(p)⌈(1− α)f(p)⌉ time slots. Note that f(p) is a flexible

exploration length determined by the phase index p, and its impact on the regret is analyzed later. Since all

clients share the same global active arm set A(p), the global exploration length is also the same for them.

After the global exploration, the clients perform local exploration to update the local information. Each

arm k ∈ Am(p) is played by client m for nl
k,m(p) = ⌈Mαf(p)⌉ times, which means the local exploration lasts

for Km(p)⌈Mαf(p)⌉ time slots at client m. It is important to note that since different clients may have local

exploration sets of different sizes, i.e., Km(p) can be different across m, the local exploration length may also

vary across clients.

Note that the lengths of global and local explorations are carefully designed. For each arm k ∈ Am(p), it

is explored for ⌈(1−α)f(p)⌉ times during global exploration (recall that Am(p) ⊆ A(p) = ∪m∈[M ]Am(p)) and

⌈Mαf(p)⌉ times during local exploration, leading to a total of nk,m(p) = ⌈(1− α)f(p)⌉+ ⌈Mαf(p)⌉ pulls by

client m. At the same time, client m is also assured that arm k is pulled by every other client n for at least

ng
k,n(p) = ⌈(1−α)f(p)⌉ times since they share the same A(p). Thus, the proportion between local and global

information is (1−α)+Mα
(1−α) , which coincides with the desired allocation in Eqn. (3.10).

After completing both global and local explorations, client m first sends the updated local sample means

of all global active arms k ∈ A(p), denoted as µ̄k,m(p) for arm k at phase p, as the “local model updates” to

the server. Since the local exploration length may vary, the server may not receive the updates from all clients

at the same time. Thus, it has to wait until the updated sample means from all the clients are received and

then sends the aggregated “global model” µ̄k(p) =
1
M

∑M
m=1 µ̄k,m(p) back to the clients. While this waiting

time is necessary to synchronize the clients, it also leads to an increased regret, i.e., all clients have to wait

for the slowest client before the next iteration.

In PF-MAB, The celebrated exploration-exploitation tradeoff in MAB is embraced to keep the regret

caused by this waiting time low. The idea is that clients who have already sent local updates can begin
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exploitation while the server still waits to collect information from other clients. Specifically, before µ̄k(p)

are sent back, client m keeps playing her empirically best arm k̄′∗,m = argmaxk∈Am(p){µ̄′
k,m(p− 1)}, where

µ̄′
k,m(p− 1) is the estimation of µ′

k,m in the preceding phase. Regret analysis shows that this is essential in

keeping clients update periodically synchronized while achieving a low regret.

After the global sample means µ̄k(p) are broadcast to the clients, the estimation for µ′
k,m is updated as

µ̄′
k,m(p) = αµ̄k,m(p) + (1 − α)µ̄k(p). Then, a local arm elimination procedure is performed such that the

arms that are sub-optimal with a high probability are eliminated. With the newly calculated µ̄′
k,m(p), the

elimination set Em(p) can be constructed as:

{
k : k ∈ Am(p), max

l∈Am(p)
µ̄′
l,m(p)− µ̄′

k,m(p) ≥ 2Bp

}
,

where Bp =
√
4 log(T )/(MF (p)) is the confidence bound and F (p) =

∑p
q=1 f(q). Note that the simple and

clean form of Bp comes from the carefully designed lengths of global and local explorations. The local active

set Am(p + 1) for the next phase is updated as Am(p + 1) = Am(p)\Em(p). Finally, all the clients send

Am(p+ 1) to the server and subsequently receive the global active set A(p+ 1) = ∪m∈[M ]Am(p+ 1) from the

server. As long as an arm is in the local active set of at least one client, it is contained in the global active

set because more global information regarding this arm is still needed to help (at least) that client make

decisions.

When the local active set contains only one arm, i.e., |Am(q)| = 1, client m marks the only left arm in

Am(q) as the fixed arm Om and sets Am(q) = ∅. Then, she only sends an empty set to the server for the

local active set update since her optimal arm is found. Also, with Am(q) = ∅, client m does not perform local

explorations any more. Nevertheless, global exploration is still necessary for client m as long as A(q) is not

empty, because other clients still need information from her. In the exploitation phase, she also directly plays

the fixed arm Om. When all clients have found their optimal arms, i.e., A(q) = ∅, they all fixate on their

identified arms until the end of T without any further communication.

Remarks. It can be observed that the choice of local exploration length scales linearly with the number

of clients, i.e., nl
k,m(p) = ⌈Mαf(p)⌉ ∝ M , which may not be desirable when M is large. It is possible to

simultaneously scale down the local and global exploration lengths as M increases, e.g., nl
k,m(p) = ⌈αf(p)⌉

and ng
k,m(p) = ⌈(1− α)f(p)/M⌉, to further trade off exploration and communication, but this does not

fundamentally change the regret behavior that is to be discussed. A final note is that only sample means and

active sets are communicated in the entire procedure – no raw samples and number of pulls are shared. This

is similar to sharing model updates instead of raw data samples in FL, which helps preserve privacy.
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3.2.4 Regret Analysis

The theoretical analysis for PF-UCB is presented in this section. In particular, Theorem 3.2.4 characterizes a

regret upper bound of PF-UCB.

Theorem 3.2.4. ∀m ∈ [M ] and ∀k ̸= k′∗,m, suppose p′k,m is the smallest integer that satisfies

MF (p′k,m) ≥ 64 log(T )

(∆′
k,m)2

. (3.13)

The regret of PF-UCB can be bounded as

R(T ) ≤
∑M

m=1

∑
k ̸=k′

∗,m
∆′

k,m

∑p′
k,m

p=1
⌈αMf(p)⌉

+
∑M

m=1

∑
k ̸=k′

∗,m
∆′

k,m

∑p′
k

p=1
⌈(1− α)f(p)⌉

+
∑M

m=1

∑
k ̸=k′

∗,m
∆′

k,m

∑p′
k,m

p=1
K ⌈αMf(p)⌉P ′

k,m(p)

+ 2CMp′max + 2(1 + 2C)M2K, (3.14)

where p′k = maxm∈[M ]{p′k,m}, p′max = maxk∈[K]{p′k} and P ′
k,m(p) = exp{−∆′2

k,mMF (p− 1)/4}.

Detailed proof of Theorem 3.2.4 can be found in the supplementary material, which shows that total

regret can be decomposed into local and global exploration losses, exploitation loss, and communication

loss. Note that the local exploration loss (the first term) is determined individually by each client’s local

model, i.e., p′k,m, while the global exploration loss (the second term) is determined globally, i.e., p′k. This

coincides with Theorem 3.2.1 and Corollary 3.2.2. In addition, there is no global (resp. local) exploration loss

in the local-only (resp. global-only) scenario, i.e., α = 1 (resp. 0). Furthermore, although the constant term

2(1 + 2C)M2K in Eqn. (3.14) has a dependence on M2, one may trade off this term with other regret terms

by adjusting the confidence bound, e.g., specifying Bp =
√
4 log(MT )/(MF (p)).

While Theorem 3.2.4 provides a general characterization with unspecified f(p), the following corollary

gives an explicit form of regret with f(p) = 2p log(T ).

Corollary 3.2.5. With f(p) = 2p log(T ), it holds that

R(T ) = O

 M∑
m=1

∑
k ̸=k′

∗,m

[
α

∆′
k,m

+
1−α
M ∆′

k,m

(∆′
k)

2

]
log(T )

 ,

where ∆′
k = minn:k′

∗,n ̸=k{∆′
k,n}.
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With this choice, PF-UCB achieves an O(log(T )) regret regardless of α. It also has a similar instance

dependency on ∆′
k,m and ∆′

k as shown in Corollary 3.2.2. Although the α-dependency does not match

Corollary 3.2.2, which is not necessarily a tight lower bound, Corollary 3.2.5 does match the sum of single-

player lower bound when α = 1. Interestingly, when α = 0, the achievable upper bound in Corollary 3.2.5

approaches the conjectured lower bound in Conjecture 3.2.3. It is also worth noting that the communication

and exploitation losses when f(p) = 2p log(T ) are both of order O(1), which demonstrates its efficiency.

Regrets with other choices of f(p) can be found in the supplementary material.

We highlight the key components in the proof of Theorem 3.2.4 and Corollary 3.2.5 in the remainder of

this section. A typical event

G = {|µ̄′
k,m(p)− µ′

k,m| ≤ Bp,∀p, ∀m ∈ [M ],∀k ∈ Am(p)}

is first established, and we can show that event G happens with high probability.

Lemma 3.2.6. It holds that P(G) := PG ≥ 1− 2MK
T .

We then analyze the different loss components of the total regret in the following.

Exploration Loss

First, Lemma 3.2.7 bounds the number of pulls at clients on their sub-optimal arms.

Lemma 3.2.7. Suppose event G happens. For client m, sub-optimal arm k ̸= k′∗,m is guaranteed to be

eliminated by phase p′k,m as defined in Theorem 3.2.4.

Then, the local and global exploration losses, denoted as Rexpr
l (T ) and Rexpr

g (T ), respectively, can be

bounded by the following lemma.

Lemma 3.2.8. Suppose event G happens. With p′k,m and p′k defined in Theorem 3.2.4, Rexpr
l (T ) and

Rexpr
g (T ) can be bounded, respectively, as

Rexpr
l (T ) ≤

M∑
m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k,m∑
p=1

⌈αMf(p)⌉,

Rexpr
g (T ) ≤

M∑
m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k∑

p=1

⌈(1− α)f(p)⌉.

Note that Rexpr
g (T ) for arm k is determined by p′k, which is from the hardest local model for arm k. It

also matches Theorem 3.2.1 and Corollary 3.2.2.
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Exploitation Loss

The exploitation loss Rexpt(T ) is caused by the exploitations when a client has to wait for other clients.

Noting that this loss stops once the optimal arm is declared. Rexpt(T ) can be bounded as follows.

Lemma 3.2.9. Suppose event G happens. With p′k,m and P ′
k,m(p) defined in Theorem 3.2.4, Rexpt(T ) can

be bounded as

Rexpt(T ) ≤
M∑

m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k,m∑
p=1

K ⌈Mαf(p)⌉P ′
k,m(p).

Communication Loss

Since communication stops once all the optimal arms are declared, the communication loss is bounded as:

Lemma 3.2.10. Suppose event G happens. With p′max defined in Theorem 3.2.4, the communication loss

Rcomm(T ) can be bounded as

Rcomm(T ) ≤ 2CMp′max.

With Lemmas 3.2.6 to 3.2.10, Theorem 3.2.4 can be proved.

3.2.5 Algorithm Enhancement

While the exploration length in Section 3.2.3 can be viewed as evenly splitting the workload among clients

(especially for the global exploration), it ignores the fact that the same action results in different losses at

different clients. We propose an enhancement to adaptively adjust the exploration lengths for client m, as

follows:

nl
k,m(p) ∝

αMf(p)

(∆′
k,m)1/2

,∀k ∈ Am(p), k ̸= k′∗,m;

ng
k,m(p) ∝

(1− α)f(p)

(∆′
k,m)1/2

,∀k ∈ A(p), k ̸= k′∗,m.

More details on designing this enhancement can be found in the supplementary material. Note that the

exploration length for arm k is now proportional to 1/(∆′
k,m)1/2, which coincides with the intuition that

the workload should decrease for those clients who suffer large losses, i.e., with large ∆′
k,m’s. However, this

is difficult to implement without the knowledge of ∆′
k,m. One way to resolve this is to assume all of the

sub-optimal gaps are the same, which results in the chosen length in Section 3.2.3. In this enhancement,

however, we propose to replace ∆′
k,m by an estimation ∆̄′

k,m(p) in phase p, which can be specified as

∆̄′
k,m(p) = max

l∈[K]
µ̄′
l,m(p− 1)− µ̄′

k,m(p− 1) + 2Bp−1.
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Rigorously analyzing the regret of this enhancement turns out to be difficult, and we evaluate it only through

experiments.

3.2.6 Experimental Results

Experiment results using both synthetic and real-world datasets are reported in this section to evaluate

PF-UCB and the proposed enhancement. The communication loss is set as C = 1 and f(p) is set to be

2p log(T ). Details of the experiments (including the implementation codes) and additional results can be

found in the supplementary material.

(a) Synthetic Regret. (b) MovieLens Regret.

(c) MovieLens Reward. (d) Enhancement

Figure 3.4: Experimental results for PF-MAB. (a) and (d) is evaluated with synthetic datasets, (b) and (c)
are evaluated with the real-world MovieLens dataset.

First, PF-UCB is evaluated with various choices of α under a synthetic bandit game with 4 clients and

9 arms. The game is carefully designed such that all clients have different local optimal arms and the

global optimal arm is also sub-optimal locally. Fig. 3.4(a) shows that PF-UCB successfully converges to the

optimal choices across different values of α, which proves its effectiveness in handling different combinations

of personalization and generalization. The varying overall regrets and convergence speeds are the result of

different game difficulties associated with different α.
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We then return to one of the motivating examples – the recommender system – and utilize the real-world

MovieLens dataset (Cantador et al., 2011) for an empirical study of PF-MAB. The 2113 clients and 10197

movies in the dataset are randomly divided into 10 and 40 groups, respectively, and the averaged movie

ratings from each group of clients are used to construct their local rewards, which vary across the groups of

clients and naturally lead to non-IID local models. This game is larger and harder than the previous synthetic

game. Especially, some groups have suboptimality gaps on their mixed models at around 10−4. As shown in

Fig. 3.4(b), sub-linear regrets are achieved by PF-UCB with different values of α. Note that in some cases

(e.g., α = 0.1), the algorithm does not completely converge within the given horizon; however, the regret

curve only increases slowly at the end, which suggests that most of the suboptimal arms are eliminated.2

We also evaluate the rewards instead of regrets in the same MovieLens experiments. Fig. 3.4(c) reports

the averaged per-step reward that PF-UCB achieves with varying α. The optimal global and local rewards

(labeled as “best global” and “best local”) represent the theoretically highest global and local mean rewards,

respectively. The mixed, global, and local rewards (labeled as “mixed”, “global”, and “local”) generated by

the actions of clients with PF-UCB are plotted. Fig. 3.4(c) shows that the mixed and global rewards almost

meet the optimal global rewards with α = 0 (global-only), while the local rewards are highly sub-optimal.

With an increase of α, the mixed and local rewards trend up, indicating the focus is gradually shifted towards

the local rewards, and simultaneously the global rewards trend down. At α = 1 (local-only), the mixed and

local rewards almost achieve the optimal local rewards, while the global rewards are poor. This gradual

shifting shows that introducing α provides a smooth tradeoff between local and global rewards.

Lastly, the algorithm enhancement in Section 3.2.5 is evaluated. With a 4-client 9-arm game, the

performance of the original and enhanced PF-UCB is compared in Fig. 3.4(d) with α = 0.5. It can be

observed that both algorithms converge but the enhanced design has a lower regret, demonstrating its

effectiveness.

3.2.7 Omitted Algorithmic Details

As stated in Section 3.2.3, the key challenge to solving PF-MAB is how to gain sufficient but not excessive

local and global information simultaneously based on the required degree of personalization. Sections 3.2.3

and 3.2.5 provide two choices and here the details behind these choices are elaborated.

From client m’s perspective on a locally active arm k ̸= k′∗,m, in order to maintain the convergence rate of

1/(MF (p)) (as specified in Section 3.2.3) while reducing the loss, an optimization problem over Nk,m(p) and

2We note that in practice, the dataset is likely to be structured more carefully, e.g., grouping movies by categories instead of
randomly, which would in general lead to easier games and faster convergence.
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Ng
k,n(p),∀n ̸= m can be formulated as:

minimize Nk,m(p)∆′
k,m +

∑
n ̸=m,k′

∗,n ̸=k
Ng

k,n(p)∆
′
k,n

subject to
[α+ (1− α)/M ]

2

Nk,m(p)
+
∑
n ̸=m

[(1− α)/M ]
2

Ng
k,n(p)

≤ 1

MF (p)

where Nk,m(p) is the number of pulls on arm k at client m up to phase p, and Ng
k,n(p) is the guaranteed

number of global pulls on arm k at a different client n up to phase p. The optimization objective is the

loss associated with client m’s local and global information estimation for arm k, while the constraint is a

sufficient condition for Bp =
√
4 log(T )/(MF (p)) and Lemma 3.2.6 to hold. Note that the convergence rate

constraint can have many forms, and the choice here is to match the discussion in the main paper.

Using the Cauchy-Schwarz inequality, the exploration length described in Section 3.2.5 can be obtained as:

nl
k,m(p) ∝

αMf(p)

(∆′
k,m)1/2

,∀k ∈ Am(p), k ̸= k′∗,m;

ng
k,m(p) ∝

(1− α)f(p)

(∆′
k,m)1/2

,∀k ∈ A(p), k ̸= k′∗,m,

and N l
k,m(p) =

∑p
q=1 n

l
k,m(q), Ng

k,m(p) =
∑p

q=1 n
g
k,m(q) and Nk,m(p) = N l

k,m(p) +Ng
k,m(p). This result is

the key to choosing exploration lengths as it builds up the relationship between local and global explorations.

The issue however is that the knowledge of ∆′
k,m is unavailable. An easy way to tackle this problem is to

assume all the sub-optimal gaps are the same, which results in the chosen length in PF-UCB in Section 3.2.3.

The alternative way proposed in Section 3.2.5 is to use ∆̄′
k,m(p) = maxl∈[K] µ̄

′
l,m(p− 1)− µ̄′

k,m(p− 1)+2Bp−1

in place of ∆′
k,m(p). This approach leverages information collected in the game. However, ∆̄′

k,m(p) needs to

be communicated to the server and then broadcast to maintain synchronization among clients, which may

increase the risk of privacy leak.

3.2.8 Full Proofs

Proofs for the Lower Bound Analysis in Theorem 3.2.1

Proof. First, the following lemma recalls the classic result from the single-player MAB (Lai and Robbins,

1985), which directly leads to the following lower bound.

Lemma 3.2.11. For any consistent policy Π, for any arm k such that µk < µk∗ , it holds that

lim inf
T→∞

Tk

log(T )
≥ 1

kl (Xk, Xk∗)
,
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where Tk is the expected number of pulls performed on arm k during T .

Then, from client m’s perspective of her suboptimal arm k ̸= k∗,m on the mixed model, the mixed reward

in Eqn. (3.9) can be decomposed as

X ′
k,m =

(
α+

1− α

M

)
Xk,m +

1− α

M

∑
n ̸=m

Xk,n.

The difficulty is that X ′
k,m involves the rewards from all M clients, which are M sources of randomness.

Next, we attempt to isolate these sources of randomness.

First, if we assume clientm has perfect knowledge of {µk,n}n ̸=m, a new random variable Yk,m is constructed

as

Yk,m =

(
α+

1− α

M

)
Xk,m +

1− α

M

∑
n ̸=m

µk,n =

(
α+

1− α

M

)
Xk,m + µ′

k,m −
(
α+

1− α

M

)
µk,m.

Under this construction, Yk,m shares the same mean with X ′
k,m while the randomness only comes from Xk,m.

Then, Yk,m forms a new hypothetical bandit game degenerated from client m’s mixed model, where the mean

rewards and the optimal arm remain the same. With Lemma 3.2.11, if client m individually interacts with

this new game, her pulls on arm k can be bounded as

lim inf
T→∞

Tk,m

log(T )
≥ 1

kl
(
Yk,m, Yk′

∗,m,m

) .
On the other hand, from a different client n’s perspective, whose arm k is also sub-optimal, she also needs

information of client m’s arm k. However, client n’s mixed reward is constructed as

X ′
k,n =

(
α+

1− α

M

)
Xk,n +

1− α

M
Xk,m +

1− α

M

∑
l ̸=m,n

Xk,l,

which is different from X ′
k,m. Following a similar idea of isolating randomness, if we assume client n has

perfect knowledge of l ̸= m,µk,l, including µk,n, a new random variable Zm
k,n can be constructed as

Zm
k,n =

(
α+

1− α

M

)
µk,n +

1− α

M
Xk,m +

1− α

M

∑
l ̸=m,n

µk,l =
1− α

M
Xk,m + µ′

k,n −
1− α

M
µk,m.

Under this construction, Zm
k,n shares the same mean as Xk,n while the randomness only comes from Xk,m.

Then Zm
k,n forms another new hypothetical bandit game degenerated from client n’s mixed model, where the

optimal arm remains the same and client m has to provide information to help client n distinguish arm k.
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Similarly, with Lemma 3.2.11, if client m individually interacts with this new game, her pulls on arm k can

be bounded as

lim inf
T→∞

Tk,m

log(T )
≥ 1

kl
(
Zm
k,n, Z

m
k′
∗,n,n

) .
Since Zm

k,n can be constructed for any client, it must hold that

lim inf
T→∞

Tk,m

log(T )
≥ max

n:n ̸=m,k′
∗,n ̸=k

 1

kl
(
Zm
k,n, Z

m
k′
∗,n,n

)
 =

1

minn:n ̸=m,k′
∗,n ̸=k

{
kl
(
Zm
k,n, Z

m
k′
∗,n,n

)} .
Combining the above results, we can have

lim inf
T→∞

Tk,m

log(T )
≥ max

 1

kl
(
Yk,m, Yk′

∗,m,m

) , 1

minn:n ̸=m,k′
∗,n ̸=k

{
kl
(
Zm
k,n, Z

m
k′
∗,n,n

)}
 .

Since the regret can be decomposed as

R(T ) =

M∑
m=1

∑
k:k ̸=k′

∗,m

Tk,m∆′
k,m,

Theorem 3.2.1 can be established.

Note that the randomness isolation utilized in the proof reduces the hardness of the problem, which

results in a relaxed lower bound. Although it can recover the single-player stochastic MAB lower bound with

α = 1, when α moves away from 1, the lower bound becomes less tight.

Discussions for Theorem 3.2.4

Table 3.3: Regret of PF-UCB algorithm with different choices of f(p)
f(p) pk,m, k ̸= k′∗,m R(T )

λ O
(

log(T )
Mλ(∆′

k,m)2

)
O

(∑M
m=1

∑
k ̸=k′

∗,m

[
α

∆′
k,m

+
1−α
M ∆′

k,m

∆
′2
k

]
log(T ) + C log(T )

λ(∆′
min)

2

)
λ log(T ) O

(
1

Mλ(∆′
k,m)2

)
O

(∑M
m=1

∑
k ̸=k′

∗,m

[
α

∆′
k,m

+
1−α
M ∆′

k,m

∆
′2
k

]
log(T ) + C

λ(∆′
min)

2

)
2p O

(
log
(

log(T )
M(∆′

k,m)2

))
O

(∑M
m=1

∑
k ̸=k′

∗,m

[
α

∆′
k,m

+
1−α
M ∆′

k,m

∆
′2
k

]
log(T ) + CM log

(
log(T )

M(∆′
min)

2

))
2p log(T ) O

(
log
(

1
M(∆′

k,m)2

))
O

(∑M
m=1

∑
k ̸=k′

∗,m

[
α

∆′
k,m

+
1−α
M ∆′

k,m

(∆′
k)

2

]
log(T ) + CM log

(
1

M(∆′
min)

2

))
λ is a constant; ∆′

k = minn:k′
∗,n ̸=k{∆′

k,n}; ∆′
min = mink{∆′

k}.
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Table 3.3 summarizes the regrets under several different choices of f(p), including f(p) = 2p log(T ) in

Corollary 3.2.5. All choices listed in Table 3.3 achieve a similar exploration regret and a non-dominating

exploitation loss (which is omitted in the regret expression). However, they lead to varying communication

losses. With f(p) = λ, the communication loss is of order O(log(T )) and scales with 1/(∆′
min)

2, which

actually dominates the exploration loss. This is the result of the unnecessary communications with f(p) = λ.

With f(p) = λ log(T ), the communication loss is no longer of order O(log(T )); however, it still scales with

1/(∆′
min)

2. The dependency of communication loss on ∆′
min is improved with an exponential f(p), as both

f(p) = 2p and f(p) = 2p log(T ) have communication losses that scale only with log (1/∆′
min), which greatly

reduces the communication burden. Furthermore, with f(p) = 2p log(T ), the communication cost is a

constant that is independent of T . Thus, among all considered choices of f(p), the most preferable one is

f(p) = 2p log(T ).

We further note that all the choices of f(p) listed in Table 3.3 do not depend on the communication

loss parameter C. This is made to simplify the problem, as otherwise, the analysis will have a convoluted

relationship between the exploration loss and the communication loss. Intuitively, with a larger C, it is better

to increase f(p) to reduce the communication frequency and lower the communication loss, e.g., adding a

1/C multiplicative factor to the listed choice of f(p).

Proof of Lemma 3.2.6

Proof. To decouple the randomness of Am(p), we assume a virtual system without elimination, i.e., in this

virtual system ∀m ∈ [M ],∀p,Am(p) = [K]. At phase p, ∀m ∈ [M ],∀k ∈ Am(p), µ̄′
k,m(p) can be decomposed

as

µ̄′
k,m(p) =

(
α+

1− α

M

)
µ̄k,m(p) +

1− α

M

∑
n ̸=m

µ̄k,n(p).

It can be shown that µ̄k,m(p) is a
√

1
Nk,m(p) -subgaussian random variable, since client m has explored arm k

for Nk,m(p) =
∑p

q=1 nk,m(q) times in the global and local exploration sub-phases. However, ∀n ∈ [M ], n ̸= m,

client m can only make sure that µ̄k,n(p) is a
√

1
Ng

k,n(p)
-subgaussian random variable, where Ng

k,n(p) =∑p
q=1 n

g
k,n(q), since she is only assured that each other client has explored arm k in the global exploration

sub-phases. Overall, we can claim that µ̄′
k,m(p) is a σ′

k,m(p)-subgaussian random variable where

σ′
k,m(p) =

√√√√(α+
1− α

M

)2
1

Nk,m(p)
+

(
1− α

M

)2 ∑
n̸=m

1

Ng
k,n(p)

≤

√√√√(α+
1− α

M

)2
1

[(1− α) +Mα]F (p)
+

(
1− α

M

)2 ∑
n ̸=m

1

(1− α)F (p)
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=

√
1

MF (p)
.

With the concentration inequality for subgaussian random variables, we have

P
(
|µ̄′

k,m(p)− µ′
k,m| ≥ Bp

)
≤ 2 exp

{
−

B2
p

2(σ′
k,m(p))2

}
≤ 2 exp

−
4 log(T )
MF (p)

2 1
MF (p)

 =
2

T 2
.

Thus, with the union bound, PG can be bounded as

PG = 1− P
{
∃p,∃m ∈ [M ],∃k ∈ Am(p), |µ̄′

k,m(p)− µ′
k,m| ≥ Bp

}
≥ 1−

T∑
p=1

M∑
m=1

K∑
k=1

P
(
|µ̄′

k,m(p)− µ′
k,m| ≥ Bp

)
≥ 1− 2MK

T
.

Since this argument applies to k ∈ [K], it also applies to all arms in the local active arm set Am(p) of the

real system, which concludes the proof.

Proof of Lemma 3.2.7

Proof. Recall that ∀k ̸= k′∗,m, p′k,m is the smallest integer such that

MF (p′k,m) ≥ 64 log(T )

(∆′
k,m)2

,

which ensures that ∀p ≥ p′k,m, Bp ≤
∆′

k,m

4 . Thus, based on that event G happens, at phase p′k,m, we have

µ̄′
k,m(p′k,m) +Bp′

k,m

(i)

≤ µ′
k,m + 2Bp′

k,m
≤ µ′

k,m +
∆′

k,m

2

= µ′
∗,m −

∆′
k,m

2

(ii)

≤ µ̄′
k′
∗,m,m(p′k′

∗,m,m) +Bp′
k,m
−

∆′
k,m

2
≤ µ̄′

k′
∗,m,m(p′k′

∗,m,m)−Bp′
k,m

,

where inequalities (i) and (ii) are guaranteed by event G. Thus, arm k is guaranteed to be eliminated at

phase p′k,m by client m.

Proof of Lemma 3.2.8

Proof. Lemma 3.2.7 indicates for a sub-optimal arm k, after phase p′k,m, it is guaranteed to be eliminated

from set Am(p). Thus, it is pulled for at most
∑p′

k,m

p=1 ⌈αMf(p)⌉ times in the local exploration sub-phases,
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which leads to the local exploration loss as

Rexpr
l (T ) ≤

M∑
m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k,m∑
p=1

⌈αMf(p)⌉.

However, arm k is still pulled in the global exploration sub-phases until k /∈ A(p), i.e., arm k is eliminated

by all of the clients whose optimal arm is not it. Since arm k is guaranteed to be eliminated globally by phase

p′k = maxm∈[M ]{p′k,m}, it is pulled for at most
∑p′

k
p=1⌈(1−α)f(p)⌉ times in the global exploration sub-phases.

Thus, the global exploration loss can be bounded as:

Rexpr
g (T ) ≤

M∑
m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k∑

p=1

⌈(1− α)f(p)⌉.

Proof of Lemma 3.2.9

Proof. At phase p, the exploitation time for client m is at most maxn{|An(p)| − Am(p)} ⌈Mαf(p)⌉, which

is the difference between the longest local exploration duration and her local exploration duration. The

probability that the exploited arm in the exploitation phase, i.e., arm k̄′∗,m, is arm k instead of k′∗,m can be

bounded as:

P
(
k̄′∗,m = k

)
≤ P

(
µ̄′
k′
∗,m,m(p− 1) ≤ µ̄k,m(p− 1)

)
= P

(
µ̄′
k′
∗,m,m(p− 1)− µ̄k,m(p− 1)−∆′

k,m ≤ −∆′
k,m

)
(i)

≤ 2 exp

{
−

(∆′
k,m)2

2(σ
′2
k,m(p− 1) + σ

′2
k′
∗,m,m(p− 1))

}

≤ 2 exp

{
−
(∆′

k,m)2MF (p− 1)

4

}

= P ′
k,m(p).

Thus, it can be shown that the exploration loss caused by arm k for client m is bounded as

Rexpt
k,m (T ) ≤ ∆′

k,m

p′
k,m∑
p=1

(
max
n
{|An(p)| −Am(p)}

)
⌈Mαf(p)⌉P ′

k,m(p)

≤ ∆′
k,m

p′
k,m∑
p=1

K ⌈Mαf(p)⌉ exp

{
−
(∆′

k,m)2MF (p− 1)

4

}
.
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The overall exploration loss can be obtained by summing over all of the clients and arms:

Rexpt(T ) =

M∑
m=1

K∑
k=1

∆′
k,mRexpt

k,m (T ) ≤
M∑

m=1

∑
k ̸=k′

∗,m

p′
k,m∑
p=1

K ⌈Mαf(p)⌉∆′
k,m exp

{
−
(∆′

k,m)2MF (p− 1)

4

}
.

In addition, we note that in phase p = 1, all the players share the same global and local active arm sets,

i.e., ∀m ∈ [M ], Am(p) = A(p) = [K], which means there would be no exploration loss. Thus, the sum of

index p in the exploitation loss above can start from 2 instead of 1. This fact does not change the scaling of

the overall regret, but would be useful in deriving Corollary 3.2.5 from Theorem 3.2.4.

Proof of Lemma 3.2.10

Proof. As designed in the PF-UCB algorithm, clients do not communicate anymore after they find their optimal

arms. Thus, there is no more communication after phase p′max = maxk∈[K]{p′k,m} = maxm∈[M ] maxk ̸=k′
∗,m
{p′k,m}.

Before phase p′max, there are two communications in each phase for arm statistics and active sets, respectively,

which leads to the communication loss upper bound as:

Rcomm(T ) ≤ 2CMp′max.

Proof of Theorem 3.2.4

Proof. Lemmas 3.2.8, 3.2.9 and 3.2.10 are all based on the condition that event G happens, which has

probability PG as shown in Lemma 3.2.6. When event G does not happen, the regret is directly upper

bounded by MT + 2CMT , which assumes full exploration and communication loss. Thus, Theorem 3.2.4

follows by putting everything together as:

R(T ) = PG

(
Rexpr(T ) +Rexpt(T ) +Rcomm(T )

)
+ (1− PG)(1 + 2C)MT

≤ Rexpr
l (T ) +Rexpr

g (T ) +Rexpt(T ) +Rcomm(T ) + 2M2K(1 + 2C)

≤
M∑

m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k,m∑
p=1

⌈αMf(p)⌉+
M∑

m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k∑

p=1

⌈(1− α)f(p)⌉

+

M∑
m=1

∑
k ̸=k′

∗,m

∆′
k,m

p′
k,m∑
p=1

K ⌈Mαf(p)⌉ exp

{
−
(∆′

k,m)2MF (p− 1)

4

}
+ 2CMp′max + 2M2K(1 + 2C).
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Proof of Corollary 3.2.5

Proof. With f(p) = 2p log(T ), p′k,m can be bounded from Eqn. (3.13) as

p′k,m = O

(
log2

(
64

M(∆′
k,m)2

))
.

Plugging this into Theorem 3.2.4, Corollary 3.2.5 follows.
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3.3 Federated Contextual Bandits: A General Modulized Design

3.3.1 Problem Formulation

This section presents a concise formulation of federated contextual bandits (FCB).

Agents.

In the FCB setting, a total of M agents simultaneously participate in a contextual bandit (CB) system.

For generality, we consider an asynchronous system: each of the M agents has a clock indicating her time

step, which is denoted as tm = 1, 2, · · · for agent m. For convenience, we also introduce a global time step t.

Denote by tm(t) the agent m’s local time step when the global time is t, and t(tm,m) the global time step

when the agent m’s local time is tm.

Agent m at each of her local time step tm = 1, 2, · · · observes a context xm,tm , selects an action am,tm

from an action set Am,tm , and then receives the associated reward rm,tm(am,tm) (possibly depends on both

xm,tm and am,tm) as in the standard CB (Lattimore and Szepesvári, 2020). Each agent’s goal is to collect as

many rewards as possible given a time horizon, which is often formulated as minimizing her regret.

Federation.

While many efficient single-agent (centralized) designs have been proposed for CB (Lattimore and Szepesvári,

2020), FCB targets building a federation among agents to perform collaborative learning such that the

performance can be improved from learning independently. Especially, common interests shared among agents

motivate their collaboration. Thus, FCB studies typically assume that the environment models of the agents

are either fully (Wang et al., 2020b; Huang et al., 2021b; Dubey and Pentland, 2020; Li and Wang, 2022a; He

et al., 2022; Amani et al., 2022; Li et al., 2022, 2023; Li and Wang, 2022b; Dai et al., 2023) or partially (Li

and Wang, 2022a; Agarwal et al., 2020) shared in the global federation.

In federated learning, the following two modes are commonly considered: (1) There exists a central

server in the system, and the agents can share information with the server, which can then broadcast

aggregated information back to the agents. (2) There exists a communication graph between agents, who can

share information with their neighbors in the graph. The to-be-discussed unified principle can effectively

encompass both models, while in the later development of FedIGW, we mainly consider the first scenario, i.e.,

collaborating through server, which is also the main focus in FL.
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Table 3.4: An illustration of the FCB design philosophy of alternating between CB and FL and a compact
summary of investigations on FCB with their adopted FL and CB schemes

Principle: FCB = FL + CB
Ref. Setting FL CB

Globally Shared Full Model
Wang et al. (2020b) Tabular Mean Averaging AE

Wang et al. (2020b); Huang et al. (2021b) Linear Linear Regression AE
Wang et al. (2020b); Dubey and Pentland (2020)

He et al. (2022); Amani et al. (2022)
Linear Ridge Regression UCB

Li and Wang (2022b) Gen. Lin. Distributed AGD UCB
Li et al. (2022, 2023) Kernel Nyström approx. UCB
Dai et al. (2023) Neural NTK approx. UCB

FedIGW Realizable Flexible IGW

Globally Shared Partial Model
Li and Wang (2022a) Linear AM UCB
Agarwal et al. (2020) Realizable FedRes.SGD ε-greedy

FedIGW Realizable Flexible IGW

AE: arm elimination; Gen. Linear: generalized linear model;
AGD: accelerated gradient descent; NTK: neural tangent kernel; AM: Alternating Minimization

3.3.2 A Unified Principle: FCB = FL + CB

The study on FCB dates back to distributed multi-armed bandits (Wang et al., 2020b) on the tabular setting,

and FCB studies have mostly focused on how to obtain better performances in a more general problem setting,

especially different types of reward functions including linear (Wang et al., 2020b; Huang et al., 2021b; Dubey

and Pentland, 2020; Li and Wang, 2022a; He et al., 2022; Amani et al., 2022), kenerlized (Li et al., 2022,

2023), generalized linear (Li and Wang, 2022b) and neural (Dai et al., 2023).

Upon reviewing these works as a whole, it becomes apparent that each of them focuses on a specific

CB method and employs a particular communication protocol to update the parameterization required by

CB. We thus can summarize that these papers all implicitly follow a unified principle that “FCB = FL +

CB”. This principle is important as it first reveals FCB is fundamentally designed to share agents’ local

information via FL such that their CB strategies can be updated. Notably, the CB algorithm benefits from

having more data to update its parameterized policy for improved decision-making, while FL facilitates this

implicit “access” to other agents’ data through the designed communications of aggregating local parameters.

Furthermore, this principle indicates that as long as the two black boxes of CB and FL schemes are
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compatible with each other, their combination would lead to a functional FCB design. The chosen FL scheme

should possess the capability to effectively update the necessary parameterization in the employed CB method.

Conversely, the CB approach should provide appropriate datasets to facilitate the execution of FL. To be more

specific, as current FL studies typically learn from batched datasets, it is more desirable to have a periodically

alternating scheme between CB and FL: CB (collects one epoch of data in parallel) → FL (proceeds with CB

data together and outputs CB’s parameterization) → updated CB (collects another epoch of data in parallel)

→ · · · , which is illustrated at the top of Table 3.4. In fact, this philosophy has been implicitly adopted

by previous FCB designs to varying degrees. For example, in federated linear bandits (Wang et al., 2020b;

Dubey and Pentland, 2020; Li and Wang, 2022a; He et al., 2022; Amani et al., 2022), the CB algorithm is

often selected as a batched version of LinUCB (Abbasi-Yadkori et al., 2011), while the adopted FL typically

solves a ridge regression problem (although there are differences in the adopted communication protocols,

e.g., synchronous or asynchronous). As LinUCB is parameterized by both model estimates and confidence

bounds, FL needs to update both, e.g., via aggregating local covariance matrices. The extensions to different

reward functions (Li et al., 2022, 2023; Li and Wang, 2022b; Dai et al., 2023) and partially shared global

models (Li and Wang, 2022a; Agarwal et al., 2020) also follow similar routines with varying FL modifications

to match the considered scenarios. A compact summary has been given in Table 3.4, where the alignment

with the design philosophy can be observed.

More importantly, the formalization of this principle can serve as a guiding framework for the development

of novel FCB designs. In particular, the FL components in the previous FCB works have some mismatches

from canonical FL designs (McMahan et al., 2017; Konečnỳ et al., 2016): most of them adopt specific

communication protocols with one-shot aggregation of compressed local data per epoch (e.g., combining local

covariance matrices). Such choices are rare (and even undesirable) in canonical FL designs, where agents

typically communicate and aggregate their model parameters (e.g., gradients) for multiple rounds. Guided by

the unified principle and motivated by the deficiency of existing FCB designs, we propose a new method,

FedIGW, in the following sections. It leverages IGW as the CB scheme and enables the integration of any

flexible FL routine as long as it solves the standard FL problem. The intimate connection to FL is important

as it allows us to effectively leverage advances in FL studies, including but not limited to canonical algorithm

designs, convergence analyses, and useful appendages, which are discussed in the following sections.
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3.3.3 A New Design: FedIGW

System Model

Built on the formulation in Sec. 3.3.1, for each agent m ∈ [M ], let Xm denote a context space, and Am a

finite set of Km actions. We consider that at each time step tm of each agent m, the environment samples

a context xm,tm ∈ Xm and a context-dependent reward vector rm,tm ∈ [0, 1]Am according to a fixed but

unknown distribution Dm. Then, as in Sec. 3.3.1, the agent m observes the context xm,tm , picks an action

am,tm ∈ Am, and observes the reward rm,tm(am,tm). The expected reward of playing action am facing context

xm is further denoted as µm(xm, am) := E[rm,tm(am)|xm,tm = xm].

With no prior information about the rewards, the agents gradually learn their optimal policies, denoted as

π∗
m(xm) := argmaxam∈Am

µm(xm, am) for agent m with context xm. Following the standard notation (Wang

et al., 2020b; Huang et al., 2021b; Dubey and Pentland, 2020; Li and Wang, 2022a; He et al., 2022; Amani

et al., 2022; Li and Wang, 2022b; Li et al., 2022, 2023; Dai et al., 2023), the overall regret of all M agents in

this environment is

Reg(T ) := E

 ∑
m∈[M ]

∑
tm∈[Tm]

[µm(xm,tm , π∗
m(xm,tm))− µm(xm,tm , am,tm)]

 ,

where Tm = tm(T ) is the effective time horizon for agent m given a global horizon T and the expectation

is taken over the randomness in contexts and rewards and the agents’ algorithms. This overall regret can

be interpreted as the sum of each agent m’s individual regret with respect to (w.r.t.) her optimal strategy

π∗
m. Hence, it is ideal to be sub-linear w.r.t. the number of agents M , which indicates the agents’ learning

processes are accelerated on average due to federation.

Despite not knowing the true expected reward functions, we consider the scenario that they are globally

shared and are within a function class F , to which the agents have access. This assumption, rigorously stated

in the following, is often referred to as the realizability assumption.

Assumption 3.3.1 (Realizability). There exists f∗ in F such that f∗(xm, am) = µm(xm, am) for all m ∈ [M ],

xm ∈ Xm and am ∈ Am.

This assumption is a natural extension from its commonly adopted single-agent version (Agarwal et al.,

2012; Simchi-Levi and Xu, 2022; Xu and Zeevi, 2020; Sen et al., 2021) to a federated one. Note that it does

not imply that the agents’ environments are the same since they may face different contexts Xm, arms Am,

and distributions DXm
m , where DXm

m is the marginal distribution of the joint distribution Dm on the context

space Xm. We study a general FCB setting only with this assumption, which incorporates many previously

studied FCB scenarios as special cases. For example, the federated linear bandits (Huang et al., 2021b; Dubey
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and Pentland, 2020; Li and Wang, 2022a; He et al., 2022; Amani et al., 2022) are with a linear function class

F .

Algorithm 9 FedIGW (Agent m)

Require: epoch number l = 1, reward function f̂ l
m(·, ·) = 0, local dataset Slm = ∅

1: for time step tm = 1, 2, · · · do
2: observe context xm,tm ▷ CB: IGW

3: compute â∗m = argmaxam∈Am
f̂ l(am, xm,tm) and set action selection distribution as

plm(am|xm,tm)←

{
1/
(
Km + γl

(
f̂ l(â∗m, xm,tm)− f̂ l(am, xm,tm)

))
if am ̸= â∗m

1−
∑

a′
m ̸=â∗

m
plm(a′m|xm,tm) if am = â∗m

4: select action am,tm ∼ plm(·|xm,tm); observe reward rm,tm(am,tm)
5: update the local dataset, Slm ← Slm ∪ {(xm,tm , am,tm , rm,tm(am,tm))}
6: if tm = tm(τ l) then ▷ FL

7: perform FL f̂ l+1 ← FLroutinem(Slm)
8: update dataset Sl+1

m ← ∅; update epoch l← l + 1
9: end if

10: end for

Algorithm Design

Guided by the unified principle of “FCB = FL + CB”, we design a novel algorithm FedIGW proceeding in

epochs. The epochs are separated at time slots τ1, τ2, · · · w.r.t. the global time step t, i.e., the l-th epoch

starts from t = τ l−1 + 1 and ends at t = τ l, and the overall number of epochs is denoted as l(T ). In each

epoch l, we describe the FL and CB designs, respectively, as follows, while emphasizing on how they are

compatible yet decoupled.

CB: Inverse Gap Weighting (IGW). For CB, we use the method of inverse gap weighting (Abe and

Long, 1999), which has received growing interest in the single-agent setting recently (Foster and Rakhlin,

2020; Simchi-Levi and Xu, 2022; Krishnamurthy et al., 2021; Ghosh et al., 2021) but has not been fully

investigated in the federated setting. At any time step in epoch l, when encountering the context xm, agent m

first estimates the optimal arm by â∗m = argmaxam∈Am
f̂ l(xm, am) from an estimated function f̂ l (provided

by the to-be-discussed FL). Then, she randomly selects her action am according to the following distribution,

which is inversely proportional to each action’s estimated reward gap from the estimated optimal action â∗m:

plm(am|xm)←


1/
(
Km + γl

(
f̂ l(â∗m, xm)− f̂ l(am, xm)

))
if am ̸= â∗m

1−
∑

a′
m ̸=â∗

m
plm(a′m|xm) if am = â∗m

,

where γl is the learning rate in epoch l that controls the exploration-exploitation tradeoff.
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FL: Flexible Designs. By IGW, all agents perform stochastic arm sampling, and thus each agent m

collects a set of data samples Slm := {(xm,tm , am,tm , rm,tm : tm ∈ [tm(τ l−1 + 1), tm(τ l)])} in epoch l. In order

to enhance the CB interactions with IGW in the subsequent epoch l+ 1, an improved estimate f̂ l+1 based on

all agents’ data is desired. This objective aligns precisely with the aim of standard FL, which aggregates

local models for better global estimates (McMahan et al., 2017; Konečnỳ et al., 2016).

With this match, the agents can perform a standard FL routine (e.g., FedAvg (McMahan et al., 2017) or

Scaffold (Karimireddy et al., 2020)) with the server. To highlight the flexibility and generality, we denote

the adopted FL scheme as FLroutine(·) with datasets Sl[M ] := {S
l
m : m ∈ [M ]}. FLroutine(Sl[M ]) targets at

solving the following standard FL problem:

min
f∈F
L̂(f ;Sl[M ]) :=

∑
m∈[M ]

(nm/n) · L̂m(f ;Slm), (3.15)

where nm := |Slm| is the number of samples in dataset Slm, n :=
∑

m∈[M ] nm is the total number of samples, and

L̂m(f ;Slm) := (1/nm) ·
∑

i∈[nm] ℓm(f(xi
m, aim); rim) is the empirical local loss of agent m with ℓm(·; ·) : R2 → R

as the loss function and (xi
m, aim, rim) as the i-th sample in Slm. The output function of this FL process is

then used as the estimated reward function f̂ l+1 for IGW sampling in the next epoch l + 1.

The FedIGW algorithm for agent m is summarized in Alg. 9. The key is that the adopted schemes of FL

and CB are largely decoupled: IGW only needs an estimated reward function from FL, which provides many

theoretical and practical conveniences.

3.3.4 Regret Analysis

We theoretically analyze the performance of the FedIGW algorithm. First, for the output function from the

adopted FL routine, we characterize its performance via the following assumption on its excess risk, which

is common in the analysis of IGW-type CB algorithms (Simchi-Levi and Xu, 2022; Sen et al., 2021; Ghosh

et al., 2021).

Assumption 3.3.2. Let p[M ] := {pm : m ∈ [M ]} be a set of M arbitrary independent arm selection

distributions. Given an overall dataset S[M ] := {Sm : m ∈ [M ]} where each dataset Sm consists of nm training

samples of the form (xm, am; rm(am)) independently and identically drawn according to (xm, rm) ∼ Dm,

am ∼ pm(·|xm), the federated routine FLroutine(S[M ]) = {FLroutinem(Sm) : m ∈ [M ]} returns a predictor

f̂(·). There exists a known parameter E(F ;n[M ]) such that

E(F ;n[M ]) ≥ ES[M],ξ

[∑
m∈[M ]

nm

n
· Exm∼DXm

m ,am∼pm(·|xm)

[(
f̂(xm, am)− f∗(xm, am)

)2]]
,
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where n[M ] := {nm : m ∈ [M ]} and ξ denotes the random source in the potentially stochastic FL algorithm.

We often abbreviate E(F ;n[M ]) as E(n[M ]) to simplify notations.

This assumption indicates that in expectation (w.r.t. the random data generation and the stochastic FL

process), the output of the adopted FL scheme is close to the true reward function on the weighted data

distribution from all agents. Note that the excess risk bound E(n[M ]) would typically rely on some other

parameters in the adopted FL routine (e.g., the step size and the number of iterations in gradient-based

methods), which are currently not specified for generality.

Then, for the asynchronous time steps, we denote El
m := tm(τ l)− tm(τ l−1) as the length of epoch l for

agent m and c := minm∈[M ],l∈[2,l(T )] E
l
m/El−1

m , c := maxm∈[M ],l∈[2,l(T )] E
l
m/El−1

m and c := c/c. At last, under

Assumption 3.3.2, we can obtain the following global regret guarantee.

Theorem 3.3.3. Using a learning rate

γl = O

(√∑
m∈[M ]

El−1
m Km/(

∑
m∈[M ]

El−1
m E(El−1

[M ]))

)

in epoch l, denoting K̄l :=
∑

m∈[M ] E
l
mKm/

∑
m∈[M ] E

l
m, the regret of FedIGW can be bound as

Reg(T ) = O

 ∑
m∈[M ]

E1
m +

∑
l∈[2,l(T )]

c
5
2

√
K̄lE(El−1

[M ])
∑

m∈[M ]

El
m

 .

This performance guarantee is general in the sense that as long as an excess risk bound stated in

Assumption 3.3.2 can be established (often via standard convergence and generalization analyses) for a certain

class of reward functions and the chosen FL routine, a corresponding regret can be established. Furthermore,

the regret incurred within each epoch (i.e., the term inside the sum over l) can be interpreted as the epoch

length times the expected per-step suboptimality, which then relates to the estimation quality of f̂ l and thus

E(El−1
[M ]) as f̂

l is learned with the data from epoch l − 1.

While Theorem 3.3.3 provides a general guarantee, FedIGW can be further specified in different forms

when facing different FCB problems. A few instances are discussed in the following two subsections. To

ease the notation, we discuss synchronous systems with a shared number of arms, i.e., tm = t,∀m ∈ [M ],

and Km = K,∀m ∈ [M ], while noting similar results can be easily obtained for general systems. With this

simplification, we can unify all El
m as El and K̄l as K.
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Reward Function Classes with Finite Cardinalities.

We first consider that the function class F is finite, i.e., |F| ≤ ∞. Then, if FLroutine(·) can provide an exact

minimizer f̂ of the optimization problem with quadratic losses, i.e., ℓm(f(xm, am); rm) = (f(xm, am)− rm)2,

we can establish the following excess risk bound and the corresponding regret.

Lemma 3.3.4. If |F| <∞ and the adopted FL routine provides an exact minimizer for Eqn. (3.15) with

quadratic losses, Assumption 3.3.2 holds with E(n[M ]) = O(log(|F|n)/n).

Corollary 3.3.5. If |F| <∞ and the adopted FL routine provides an exact minimizer for Eqn. (3.15) with

quadratic losses, with τ l = 2l, FedIGW incurs a regret of Reg(T ) = O(
√
KMT log(|F|MT )) and a total

O(log(T )) calls of the adopted FL routine.

We note that the obtained regret of order O(
√
KMT log(|F|MT )) approaches the optimal regret

Ω(
√
KMT log(|F|)/ log(K)) of a single agent playing for MT rounds (Agarwal et al., 2012) up to log-

arithmic factors, which demonstrates the statistical efficiency of the proposed FedIGW. Moreover, the total

O(log(T )) times call of the FL routine indicates that only a limited number of agents-server information-sharing

are required, which further illustrates its communication efficiency.

Reward Function Classes with Convex and Smooth Losses.

Furthermore, we consider that each f ∈ F is parameterized by a d-dimensional parameter ω ∈ Rd as fω.

To facilitate discussions, we abbreviate S := S[M ] while denoting ω∗
S := argminω L̂(fω;S) as the empirical

optimal parameter given a fixed dataset S and ω̂S as the output of the adopted FL routine. We further

assume f∗ is parameterized by the true model parameter ω∗, and for a fixed ω, define L(fω) := ES [L̂(fω;S)]

as its expected loss w.r.t. the data distribution. Following standard learning-theoretic analysis, we recognize

that the excess risk in Assumption 3.3.2 can be broken down into a combination of errors stemming from

optimization and generalization.

Lemma 3.3.6. If the loss function lm(·; ·) is µf -strongly convex in its first coordinate for all m ∈ [M ],

Assumption 3.3.2 holds with

E(F ;n[M ]) = 2
(
εopt(F ;n[M ]) + εgen(F ;n[M ])

)
/µf ,

where εgen(F ;n[M ]) := ES,ξ[L(fω̂S )− L̂(fω̂S ;S)] and εopt(F ;n[M ]) := ES,ξ[L̂(fω̂S ;S)− L̂(fω∗
S
;S)].

For the generalization error term, we can use many standard results in learning theory (e.g., uniform

convergence). For the sake of simplicity, we here leverage a distributional-independent upper bound on the
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Rademacher complexity:

R(F ;n[M ]) = sup

ES,σ

sup
ω

 ∑
m∈[M ]

1

n

∑
i∈[nm]

σm,i · ℓm(fω(x
i
m, aim); rim)


 ,

where the outside supremum is over possible distributions of dataset S defined in Assumption 3.3.2 and the

expectation is w.r.t. the generation of dataset S following a fixed distribution and independent Rademacher

random variables σ := {σm,i : m ∈ [M ], i ∈ [nm]}. We do not further particularize this upper bound while

noting it can be specified following standard procedures (Mohri et al., 2018; Bartlett et al., 2005). Then, the

classical uniform convergence result indicates the following lemma.

Lemma 3.3.7. It holds that εgen(F ;n[M ]) ≤ 2R(F ;n[M ]).

On the other hand, the optimization error term is related to the specific FL routine adopted in FedIGW.

Under standard assumptions in FL studies, the following lemma establishes the optimization error for the

considered FL problem with FedAvg (McMahan et al., 2017) as the adopted FL routine. FedAvg is the most

standard and commonly adopted FL design, which is also used in our experiments.

Lemma 3.3.8 (Theorem V Karimireddy et al. (2020)). For any dataset S, if L̂m(fω;S) is µω-strongly

convex and βω-smooth w.r.t. ω for all m ∈ [M ] while the gradients are σ2
b -bounded and have Gb-bounded

dissimilarity, with FedAvg as the adopted FL routine, the output ω̂ satisfies that

εopt(F ;n[M ]) ≤ Õ
(
σ2
b (µωρκM)−1 + βωG

2
b(µωρ)

−2
)
,

when ρ ≥ Ω(βω/µω), where ρ denotes the round of communications (i.e., global aggregations) and κ denotes

the number of local updates (i.e., SGD) between each communication.

Combining the above two lemmas, the following performance guarantee can be established.

Corollary 3.3.9. Under the conditions of Lemmas 3.3.6 and 3.3.8, if FedAvg is used as the FL routine, the

regret of FedIGW can be bounded as

Reg(T ) = O

(
ME1 +

∑
l∈[2,l(T )]

√
K

µf
·
(
Rl−1 +

σ2
b

µωρl−1κl−1M
+

βωG2
b

µ2
ω(ρ

l−1)2

)
MEl

)
,

where Rl := R(F ; {El : m ∈ [M ]}) while ρl and κl the round of agents-server communications and local

updates between in epoch l, respectively.

This corollary not only provides a more concrete description of Theorem 3.3.3 but also guides the adopted

FL design. As the generalization error is an inherent property that cannot be bypassed by providing better
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optimization results, there is no need to further proceed with the FL process as long as the optimization error

does not dominate the generalization error, i.e., we can stop the FL process when εopt = O(εgen). Following

this idea, we provide a more particularized corollary in the following.

Corollary 3.3.10. Under the conditions of Lemmas 3.3.6 and 3.3.8, with FedAvg as the adopted FL routine,

FedIGW incurs a regret of

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
KRl−1/µfMEl


with

Õ

 ∑
l∈[l(T )]

βωµ
−1
ω + σ2

b (µωκ
lMRl)−1 +

√
βωG2

b(µ
2
ωR

l)−1


rounds of communications.

A Linear Reward Function Class. As a more specified instance, we consider linear reward functions

as in federated linear bandits, i.e., fω(·) = ⟨ω, ϕ(·)⟩ and f∗(·) = ⟨ω∗, ϕ(·)⟩, where ϕ(·) ∈ Rd is a known

feature mapping. In this case, the FL problem can be formulated as a standard ridge regression with

ℓm(fω(xm, am); rm) := (⟨ω, ϕ(xm, am)⟩ − rm)
2
+ λ∥ω∥22. With a properly chosen regularization parameter

λ = O(1/n), the generalization error can be bounded as εgen(n[M ]) = Õ(d/n) (Hsu et al., 2012), while a

same-order optimization error can be achieved by many efficient distributed algorithms (Nesterov, 2003)

with roughly O(
√
n log(n/d)) rounds of communications. Then, with an exponentially growing epoch length,

FedIGW can have a regret of Õ(
√
dMKT ) with at most Õ(

√
MT ) rounds of communications, both of which

are efficient with sublinear dependencies on the number of agents M and time horizon T . It is worth noting

that during this process, no raw or compressed data is communicated – only processed model parameters

(e.g., gradients) are exchanged. This aligns with FL studies while is distinctive from previous federated linear

bandits studies (Wang et al., 2020b; Dubey and Pentland, 2020; Li and Wang, 2022a; He et al., 2022; Amani

et al., 2022), which often communicate covariance matrices or aggregated rewards. More discussions can be

found in the appendix.

Remark 3.3.11. = From the above results and derivations, we can see that FedIGW provides a general

framework to leverage theoretical advances in FL. Thus, beyond these two instances, it is possible to

incorporate more advanced results. For example, Huang et al. (2021a) provides a characterization of the

optimization and generalization errors of a variant of FedAvg with overparameterized neural networks via

NTK analyses, which is conceivably compatible with FedIGW.
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3.3.5 Experimental Results

In this section, we report the empirical performances of FedIGW on two distinct real-world multi-label

classification datasets, Bibtex (Katakis et al., 2008) and Delicious (Tsoumakas et al., 2008), which are also

used in other practical CB investigations such as Cortes (2018). The aim of CB in these experiments is

considered to be recommending one of the correct labels at any given time. Especially, in the experiments, at

each time step, a context is randomly sampled from the dataset while the true labels are concealed from the

agents. The agents then determine which label to select (i.e., pull one arm) with their CB algorithms; thus,

the number of arms is the number of possible labels in each dataset. Upon pulling one arm, a reward of 1 is

granted if the pulled arm corresponds to one of the true labels, while a reward of 0 is granted otherwise.

Varying FL choices. The reported Fig. 3.5 first compares the averaged rewards collected by each

agent with FedIGW using different FL choices, including FedAvg (McMahan et al., 2017), SCAFFOLD

(Karimireddy et al., 2020), and FedProx (Li et al., 2020a). This is the first time, to the best of our knowledge,

that FedAvg is practically integrated with FCB experiments, let alone other FL protocols, which largely

demonstrate the generality and flexibility of FedIGW. It can be observed that using the more developed

SCAFFOLD and FedProx provides improved performance (i.e., collects more rewards) compared with the

basic FedAvg, which credits to that FedIGW can flexibly leverage algorithmic advances in FL protocols.

Comparison with baselines. To further evaluate the performance of FedIGW, experiments are

conducted to compare it with several baselines as described in the following.

• FN-UCB (Dai et al., 2023). The federated neural-upper confidence bound (FN-UCB) design

proposed in Dai et al. (2023) is adopted as a strong FCB baseline due to its capability of leveraging

neural networks to approximate rewards and the previously reported good performance. Instead of

being compatible with canonical FL protocols, FN-UCB requires a specifically developed communication

design, where local neural tangent features are transmitted to the server for global aggregation in a

one-shot fashion.

• Greedy and softmax. Besides IGW, two other regression-based CB algorithms, greedy selection

and softmax selection, are also adopted for empirical validations using FedAvg to collaboratively learn

the reward function. In particular, the action is selected as am,tm ← argmaxam∈Am
f̂ l(am, xm,tm) for

greedy and am,tm ∼ softmax(f̂ l(·, xm,tm)/ζ) for softmax, where ζ is a tempurate parameter.

In Fig. 3.5, all methods leverage the same-size MLPs to approximate reward functions for fair comparisons.

It can be observed that after convergence, FedIGW (even with the basic FedAvg) significantly outperforms

FN-UCB with about twice the rewards collected by each agent on average, demonstrating its remarkable
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superiority. Also, under the FL protocol (i.e., FedAvg), FedIGW exhibits much stronger performance than

greedy and softmax, further illustrating the advantage of using IGW as the CB algorithm.

Figure 3.5: Experiments of FCB with Bibtex (left) and Delicious (right).

3.3.6 Flexible Extensions: FedIGW + FL Appendages

Another notable advantage offered by the decoupled FL choices is to bring appropriate appendages from FL

that directly benefit FCB, as illustrated in Fig. 3.6. In the following, we discuss how to leverage techniques of

personalization, robustness, and privacy from FL in FedIGW, while presenting intriguing avenues for future

exploration.

Figure 3.6: Flexible FL appendages in FedIGW.

Personalized Learning

We first consider that each agent m’ true reward function µm(·, ·) is not globally realizable as in Assump-

tion 3.3.1, but instead only locally realizable in her own function class Fm.

Assumption 3.3.12 (Local Realizability). For each m ∈ [M ], there exists f∗
m in Fm such that f∗

m(xm, am) =

µm(xm, am) for all xm ∈ Xm and am ∈ Am.
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Following previous discussions, we consider that each function f in Fm is parameterized by a dm-

dimensional parameter ωm ∈ Rdm , which is denoted as fωm
. Correspondingly, the true reward function f∗

m is

parameterized by ω∗
m and denoted as fω∗

m
.

We further consider a middle case where only partial parameters are globally shared among {fω∗
m
: m ∈

[M ]} while other parameters are heterogeneous among agents. This setting is aligned with the popular

personalized FL studies (Hanzely et al., 2021; Agarwal et al., 2020) and can be formulated via the following

assumption.

Assumption 3.3.13. For all m ∈ [M ], the true parameter ω∗
m can be decomposed as [ωα,∗, ωβ,∗

m ] with

ωα,∗ ∈ Rdα

and ωβ,∗
m ∈ Rdβ

m , where dα ≤ minm∈[M ] dm and dβm := dm − dα. In other words, there are

dα-dimensional globally shared parameters among {ω∗
m : m ∈ [M ]}.

A similar setting is studied in Li and Wang (2022a) for linear reward functions and in Agarwal et al.

(2020) for realizable cases with a naive ε-greedy design for CB. With FedIGW, we can directly adopt a

personalized FL routine, which targets solving a standard personalized FL problem

min
ωα,ωβ

[M]

L̂(fωα,ωβ
[M]

;S[M ]) :=
∑

m∈[M ]

nmL̂m(fωα,ωβ
m
;Sm)/n

with outputs ω̂α and ω̂β
[M ]. Then, the corresponding M output functions {fω̂α,ω̂β

m
: m ∈ [M ]} (instead of the

single one f̂) can be used by the M agents, separately, for their CB interactions following the IGW scheme.

More details are in the appendix.

We can bound the generalization error similarly via a distributional-independent Rademacher upper bound

defined as P(F[M ];n[M ]) = sup{ES,σ[supωα,ωβ
[M]
{
∑

m∈[M ]
1
n

∑
i∈[nm] σm,i · ℓm(fωm

(xi
m, aim); rim)}]}. Also, the

optimization error of LSGD-PFL (Hanzely et al., 2021), a general design for personalized FL, is characterized

in the following lemma.

Lemma 3.3.14 (Theorem 1, Hanzely et al. (2021)). For any dataset S, if L̂m(fωm
;S) is µω-strongly convex

w.r.t. ωm, βωα-smooth w.r.t. ωα, and Mβωβ -smooth w.r.t. ωβ
m for all m ∈ [M ] while the gradients are

σ2
b -bounded and have Gb-bounded dissimilarity, with LSGD-PFL as the adopted FL routine, the output ω̂ has

εopt(F[M ];n[M ]) ≤ ε′ after

Õ
(
max{βωβκ−1, βωα}µ−1

ω + σ2
b (µωκMε′)−1 +

√
βωα(G2 + σ2)(µ2

ωε
′)−1

)

rounds of communications, where κ is the number of local updates.
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Then, following the idea of having the optimization error approximately the same as the generalization

error in Corollary 3.3.10, the following performance guarantee can be established.

Corollary 3.3.15. Under the conditions of Lemmas 3.3.6 and 3.3.14, with LSGD-PFL as the adopted

personalized FL routine, FedIGW incurs a regret of

Reg(T ) = O(ME1 +
∑

l∈[2,l(T )]

√
KPl−1/µfMEl)

with

Õ

 ∑
l∈[l(T )]

max{βωβ (κl)−1, βωα}µ−1
ω + σ2

b (µωκ
lMPl)−1 +

√
βωα(G2 + σ2)(µ2

ωP
l)−1


rounds of communications, where Pl := P(F[M ], {El : m ∈ [M ]}) and κl is the number of local updates in

epoch l.

A Linear Reward Function Class. We also consider linear reward functions; however, in the

personalized setting here, we specify f∗
m(·) := ⟨ω∗

m, ϕ(·)⟩ with {ω∗
m : m ∈ [M ]} satisfying Assumption 3.3.13.

Then, FedIGW can have a regret of Õ(
√
d̃MKT ) with at most Õ(

√
MT ) rounds of communications, where

d̃ := dα +
∑

m∈[M ] d
β
m. More details are discussed in the appendix.

Robustness, Privacy, and Beyond

Another important direction in FCB studies is to improve robustness against malicious attacks and provide

privacy guarantees for local agents. A few progresses have been achieved in attaining these desirable properties.

For example, robust aggregation schemes are studied in Demirel et al. (2022); Jadbabaie et al. (2022); Mitra

et al. (2022), while different ways of inserting noises to FCB are investigated in Dubey and Pentland (2020);

Zhou and Chowdhury (2023); Li and Song (2022) for privacy guarantees.

With the FL and CB largely decoupled in the design of FedIGW, it is more convenient to achieve these

properties as suitable techniques from FL studies can be directly applied with only minor modifications.

Especially, robustness and privacy protection have been extensively studied for FL in Yin et al. (2018); Pillutla

et al. (2022); Fu et al. (2019); Li et al. (2021); Zhu et al. (2023) and Wei et al. (2020); Yin et al. (2021);

Liu et al. (2022), respectively, among other works. As long as such FL designs can provide an estimated

function (which is a common goal of FL), they can be adopted in FedIGW to achieve additional robustness

and privacy guarantees in FCB; see more details in the appendix.
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Other Possibilities. There have been many studies on fairness guarantees (Mohri et al., 2019; Du et al.,

2021), client selections (Balakrishnan et al., 2022; Fraboni et al., 2021), and practical communication designs

(Chen et al., 2021; Wei and Shen, 2022; Zheng et al., 2020) in FL among many other directions, which are

all conceivably applicable in FedIGW. In addition, a recent work (Marfoq et al., 2023) studies the FL with

data streams, i.e., data comes sequentially instead of being static, which is a suitable design for FCB as CB

essentially provides data streams. If similar ideas can be leveraged in FCB, the two components of CB and

FL can truly be parallel, instead of being performed alternately.

3.3.7 Full Proofs of the General Analysis

Notations

We first introduce notations that are repeatedly used in the proofs. First, let Υl denote the sigma-algebra

generated by the history up to epoch l, i.e., {(xm,tm , am,tm , rm,tm) : m ∈ [M ], tm ∈ [tm(τ l)]}, and the

randomness in the adopted FL routine up to epoch l, i.e., {ξi : i ∈ [l]}, where ξi denotes the random

source in epoch i. Then, we denote lm(tm) := min{l ∈ N : tm ≤ tm(τ l)} as the epoch that agent m’s tm

belongs to. Also, let Ψm := AXm
m denote the set of deterministic functions from Xm to Am for agent m and

Ψ[M ] := ×m∈[M ]Ψm the Cartesian product of {Ψm : m ∈ [M ]}. Furthermore, for any action selection kernel

p[M ] = {pm : m ∈ [M ]}, where pm(am|xm) is the probability of selecting action am ∈ A given convext xm,

and any policy π[M ] = {πm : m ∈ [M ]} ∈ Ψ, we define

Vm(pm, πm) := Exm∼DXm
m

[
1

pm(πm(xm)|xm)

]
,

Rm(πm) := Exm∼DXm
m

[f∗(xm, πm(xm))] ,

R̂l
m(πm | Υl−1) := Exm∼DXm

m

[
f̂ l(xm, πm(xm)) | Υl−1

]
,

Regm(πm) := Rm(π∗
m)−Rm(πm),

R̂eg
l

m(πm | Υl−1) := R̂l
m,tm(π̂l

m | Υl−1)− R̂l
m,tm(πm | Υl−1).

where π̂l
m(xm) := argmaxam∈Am

f̂ l(xm, am) for a given f̂ l (determined by Υl−1).

The following proofs are largely inspired by the single-agent contextual bandits work (Simchi-Levi and Xu,

2022), while major changes have been made to accommodate the more complex federated system considered

in this work.

Proofs of Theorem 3.3.3

First, the following lemma characterizes the relation between the excess errors and the selected learning rates.
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Lemma 3.3.16. For all l > 1, it holds that

EΥl−1

 ∑
m∈[M ]

El−1
m∑

m′∈[M ] E
l−1
m′

· Exm∼DXm
m ,am∼pl−1

m (·|xm)

[(
f̂ l(xm, am)− f∗(xm, am)

)2
| Υl−1

]
≤ E(F ;El−1

[M ]) =

∑
m∈[M ] E

l−1
m Km∑

m∈[M ] E
l−1
m (γl)2

.

Proof. The first inequality is from the Assumption 3.3.2, while the second is based on the choice of γl in

Theorem 3.3.3, i.e.,

γl =

√√√√ ∑
m∈[M ] E

l−1
m Km∑

m∈[M ] E
l−1
m E(F ;El−1

[M ])
,

which leads to the lemma.

Then, the following lemma bounds the estimated rewards R̂l
m and true rewards Rm.

Lemma 3.3.17. For any epoch l > 1, for any πm ∈ Ψm, conditioned on Υl−1, it holds that

∣∣∣R̂l
m(πm | Υl−1)−Rm(πm)

∣∣∣ ≤√Vm(pl−1
m , πm | Υl−1)

√
E l−1
m (Υl−1),

where E l−1
m (Υl−1) := Exm∼DXm

m ,al−1
m ∼pl−1

m (·|xm)

[(
f̂ l(xm, al−1

m )− f∗(xm, al−1
m )

)2
| Υl−1

]
.

Proof. For simplicity, we abbreviate Exm∼DXm
m ,al−1

m ∼pl−1
m (·|xm)[·] as Exm,al−1

m
[·], and for any policy πm ∈ Ψm,

and any epoch l > 1, we define

∆l
m(πm(xm)) := f̂ l(xm, πm(xm))− f∗(xm, πm(xm))

which indicates that

R̂l
m(πm | Υl−1)−Rm(πm) = Exm

[
∆l

m(πm(xm) | Υl−1
]
,

and

Exm,al−1
m

[(
∆l

m(al−1
m )

)2 | Υl−1
]
≥ Exm

[
pl−1
m (πm(xm)|xm)

(
∆l

m(πm(xm))
)2 | Υl−1

]
.
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Furthermore, conditioned on Υl−1, we can obtain that

Vm(pl−1
m , πm | Υl−1) · Exm,al−1

m

[(
∆l

m(al−1
m )

)2 | Υl−1
]

= Exm

[
1

pl−1
m (πm(xm)|xm)

| Υl−1

]
Exm,al−1

m

[(
∆l

m(al−1
m )

)2 | Υl−1
]

≥

(
Exm

[√
1

pl−1
m (πm(xm)|xm)

Eal−1
m

[(
∆l

m(al−1
m )

)2] | Υl−1

])2

≥

(
Exm

[√
1

pl−1
m (πm(xm)|xm)

pl−1
m (πm(xm)|xm) (∆l

m(πm(xm)))
2 | Υl−1

])2

=
(
Exm

[∣∣∆l
m(πm(xm))

∣∣ | Υl−1
])2

≥
∣∣∣R̂l

m(πm | Υl−1)−Rm(πm)
∣∣∣2 .

As a result, it holds that

∣∣∣R̂l
m(πm | Υl−1)−Rm(πm)

∣∣∣ ≤√Vm(pl−1
m , πm | Υl−1)

√
E l−1
m (Υl−1),

where the last step we use the definition that

E l−1
m (Υl−1) = Exm,al−1

m

[(
f̂ l(xm, al−1

m )− f∗(xm, al−1
m )

)2
| Υl−1

]
.

This concludes the proof.

Furthermore, the following lemma provides a characterization of the relation between the virtual loss

R̂eg
l

m and the true loss Reglm.

Lemma 3.3.18. For any epochs l ≥ 1, for any policies π[M ] ∈ Ψ[M ], it holds that

∑
m∈[M ]

El
mRegm(πm) ≤ 2

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]
+ ηl,

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]
≤ 2

∑
m∈[M ]

El
mRegm(πm) + ηl,

with

ηl :=
9c2

γl

∑
m∈[M ]

El
mKm.
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Proof. First, we note that for l = 1, it holds that

∑
m∈[M ]

E1
mRegm(πm) ≤

∑
m∈[M ]

E1
m ≤ η1 = 9c2

∑
m∈[M ]

E1
mKm;

∑
m∈[M ]

E1
mR̂eg

l

m(πm) = 0 ≤ η1 = 9c2
∑

m∈[M ]

E1
mKm,

which means the lemma holds for the first epoch.

We then perform an inductive proof and start by assuming that for epoch l− 1 and any policies πm ∈ Ψm,

it holds that

∑
m∈[M ]

El−1
m Regm(πm) ≤ 2

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1

m (πm | Υl−2)
]
+ ηl−1

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1

m (πm | Υl−2)
]
≤ 2

∑
m∈[M ]

El−1
m Regm(πm) + ηl−1.

Then, it can be observed that

Regm(πm)− R̂eg
l

m(πm | Υl−1)

= Rm(π∗
m)−Rm(πm)−

(
R̂l

m(π̂l
m | Υl−1)− R̂l

m(πm | Υl−1)
)

≤ Rm(π∗
m)−Rm(πm)−

(
R̂l

m(π∗
m | Υl−1)− R̂l

m(πm | Υl−1)
)

= Rm(π∗
m)− R̂l

m(π∗
m | Υl−1) + R̂l

m(πm | Υl−1)−Rm(πm)

(a)

≤
√

Vm(pl−1
m , π∗

m | Υl−1)

√
E l−1
m (Υl−1) +

√
Vm(pl−1

m , πm | Υl−1)

√
E l−1
m (Υl−1)

≤ Vm(pl−1
m , π∗

m | Υl−1)

8cγl
+

Vm(pl−1
m , πm | Υl−1)

8cγl
+ 4cγlE l−1

m (Υl−1)

(b)

≤ Km + γl−1R̂eg
l−1

m (π∗
m | Υl−1)

8cγl
+

Km + γl−1R̂eg
l−1

m (πm | Υl−1)

8cγl
+ 4cγlE l−1

m (Υl−1),

where inequality (a) is from Lemma 3.3.17 and inequality (b) is from Lemma 3.3.24.

Then, summing over all M agents, we can obtain that

EΥl−1

 ∑
m∈[M ]

El
m

(
Regm(πm)− R̂eg

l

m(πm | Υl−1)
)

≤
∑

m∈[M ] E
l
mKm

4cγl
+

γl−1

8cγl

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l−1

m (π∗
m | Υl−1)

]
+

γl−1

8cγl

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l−1

m (πm | Υl−1)
]
+ 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1
m (Υl−1)

]
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(d)

≤
∑

m∈[M ] E
l
mKm

4cγl
+

cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1

m (π∗
m | Υl−1)

]
+

cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1

m (πm | Υl−1)
]
+ 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1
m (Υl−1)

]
(e)

≤
∑

m∈[M ] E
l
mKm

4cγl
+

cγl−1

4cγl

∑
m∈[M ]

El−1
m Regm(πm) +

cγl−1

4cγl
· ηl−1

+ 4cγl
∑

m∈[M ]

El
mEΥl−1

[
E l−1
m (Υl−1)

]
(f)

≤
∑

m∈[M ] E
l
mKm

4cγl
+

1

4

∑
m∈[M ]

El
mRegm(πm) +

9c2
∑

m∈[M ] E
l
mKm

4γl
+

4c2
∑

m∈[M ] E
l
mKm

γl
,

where inequality (d) is from the definition c := maxm∈[M ],l∈[2,l(T )] E
l
m/El−1

m . Inequality (e) is from the

induction assumption that

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1

m (π∗
m | Υl−1)

]
=

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1

m (π∗
m | Υl−2)

]
≤ 2

∑
m∈[M ]

El−1
m Regm(π∗

m) + ηl−1 = ηl−1,

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1

m (πm | Υl−1)
]
=

∑
m∈[M ]

El−1
m EΥl−2

[
R̂eg

l−1

m (πm | Υl−2)
]

≤ 2
∑

m∈[M ]

El−1
m Regm(πm) + ηl−1.

Inequality (f) is based on the definition c := minm∈[M ],l∈[2,l(T )] E
l
m/El−1

m , c := c/c and ηl := 9c2
∑

m∈[M ] E
l
mKm/γl,

also the assumption that γl ≥ γl−1 and Lemma 3.3.16, which indicates that

EΥl−1

 ∑
m∈[M ]

El−1
m E l−1

m (Υl−1)

 ≤ ∑m∈[M ] E
l−1
m Km

(γl)2
.

Thus, we can obtain that

3

4

∑
m∈[M ]

El
mRegm(πm) ≤

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]
+

∑
m∈[M ] E

l
mKm

4cγl

+
25c2

∑
m∈[M ] E

l
mKm

4γl

⇒
∑

m∈[M ]

El
mRegm(πm) ≤ 4

3

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]
+

∑
m∈[M ] E

l
mKm

3cγl

+
25c2

∑
m∈[M ] E

l
mKm

4γl
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≤ 2
∑

m∈[M ]

El
mEΥl−1

[
R̂eg

l

m(πm | Υl−1)
]
+ ηl

Also, it similarly holds that

R̂eg
l

m(πm | Υl−1)− Regm(πm)

= R̂l
m(π̂l

m | Υl−1)− R̂l
m(πm | Υl−1)− (Rm(π∗

m)−Rm(πm))

≤ R̂l
m(π̂l

m | Υl−1)− R̂l
m(πm | Υl−1)−

(
Rm(π̂l

m)−Rm(πm)
)

= R̂l
m(π̂l

m | Υl−1)−Rm(π̂l
m) +Rm(πm)− R̂l

m(πm | Υl−1)

≤
√

Vm(pl−1
m , π̂l

m | Υl−1)

√
E l−1
m (Υl−1) +

√
Vm(pl−1

m , πm | Υl−1)

√
E l−1
m (Υl−1)

≤ Km + γl−1R̂eg
l−1

m (π̂l
m | Υl−1)

8cγl
+

Km + γl−1R̂eg
l−1

m (πm | Υl−1)

8cγl
+ 4cγlE l−1

m (Υl−1).

Then, summing over M agents, we can obtain that

EΥl−1

 ∑
m∈[M ]

El
m

(
R̂eg

l

m(πm | Υl−1)− Regm(πm)
)

≤
∑

m∈[M ] E
l
mKm

4cγl
+

cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1

m (π̂l
m | Υl−1)

]
+

cγl−1

8cγl

∑
m∈[M ]

El−1
m EΥl−1

[
R̂eg

l−1

m (πm | Υl−1)
]
+ 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1
m (Υl−1)

]
≤
∑

m∈[M ] E
l
mKm

4cγl
+

cγl−1

4cγl

∑
m∈[M ]

El−1
m EΥl−1

[
Regm(π̂l

m | Υl−1)
]

+
cγl−1

4cγl

∑
m∈[M ]

El−1
m Regm(πm) +

cγl−1

4cγl
· ηl−1 + 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1
m (Υl−1)

]
(g)

≤
∑

m∈[M ] E
l
mKm

4cγl
+

γl−1

4γl
· ηl + γl−1

4γl

∑
m∈[M ]

El
mRegm(πm)

+
cγl−1

4cγl
· ηl−1 + 4cγl

∑
m∈[M ]

El
mEΥl−1

[
E l−1
m (Υl−1)

]
≤
∑

m∈[M ] E
l
mKm

4cγl
+

9c2
∑

m∈[M ] E
l
mKm

4γl
+

1

4

∑
m∈[M ]

El
mRegm(πm)

+
9c2
∑

m∈[M ] E
l
mKm

4γl
+

4c2
∑

m∈[M ] E
l
mKm

γl
,
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where inequality (g) is from the previous derivation that

∑
m∈[M ]

El−1
m Regm(π̂l

m | Υl−1) ≤ 2c
∑

m∈[M ]

El
mR̂eg

l

m(π̂l
m | Υl−1) + cηl = cηl

Thus, it holds that

∑
m∈[M ]

El
mEΥl−1

[
R̂eg

l−1

m (π̂l
m | Υl−1)

]
≤ 5

4

∑
m∈[M ]

El
mRegm(πm)

+

∑
m∈[M ] E

l
mKm

4cγl
+

17c2
∑

m∈[M ] E
l
mKm

2γl

⇒
∑

m∈[M ]

El
mEΥl−1

[
R̂eg

l−1

m (π̂l
m | Υl−1)

]
≤ 2

∑
m∈[M ]

El
mRegm(πm) + ηl.

With these two parts, the lemma can be obtained by induction.

Furthermore, the following lemma provides a characterization of the per-epoch loss of the federation.

Lemma 3.3.19. For every epoch l > 1, conditioned on Υl−1, it holds that

EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm)

 ≤ 11c2

γl

∑
m∈[M ]

El
mKm,

where Ql(·|Υl−1) is a probability measure on Ψm defined in Lemma 3.3.21

Proof. For any probability measures {Q̃l
m(·) : m ∈ [M ]}, where Q̃l

m(·) is on ΨM , it holds that

∑
m∈[M ]

El
m

∑
πm∈Ψm

Q̃l
m(πm)Regm(πm)

(a)

≤ 2EΥl−1

 ∑
π[M]∈Ψ[M]

Q̃l(π[M ])
∑

m∈[M ]

El
mR̂egm(πm | Υl−1)

+ ηl

= 2EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Q̃l
m(πm)R̂egm(πm | Υl−1)

+ ηl,

where inequality (a) is from Lemma 3.3.18 and Q̃l(π[M ]) :=
∏

m∈[M ] Q̃
l
m(πm). Thus, we can obtain that

EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm)


≤ 2EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)R̂egm(πm | Υl−1)

+ ηl
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(b)

≤ 2

γl

∑
m∈[M ]

El
mKm +

9c2

γl

∑
m∈[M ]

El
mKm

≤ 11c2

γl

∑
m∈[M ]

El
mKm,

where inequality (b) is from Lemma 3.3.23.

With the previous lemmas, we can obtain the final Theorem 3.3.3, which is restated in the following.

Theorem 3.3.20 (Restatement of Theorem 3.3.3). Using a learning rate

γl = O


√√√√√ ∑

m∈[M ]

El−1
m Km/

 ∑
m∈[M ]

El−1
m E(El−1

[M ])




in epoch l, denoting K̄l :=
∑

m∈[M ] E
l
mKm/

∑
m∈[M ] E

l
m, the regret of FedIGW can be bounded as

Reg(T ) = O

 ∑
m∈[M ]

E1
m +

∑
l∈[2,l(T )]

c
5
2

√
K̄lE(El−1

[M ])
∑

m∈[M ]

El
m

 .

Proof of Theorem 3.3.3. The expected regret can be bounded as

Reg(T ) = E

 ∑
m∈[M ]

∑
tm∈[Tm]

(f∗(xm,tm , π∗
m(xm,tm))− f∗(xm,tm , am,tm))


≤ E

 ∑
l∈[2,l(T )]

∑
m∈[M ]

∑
tm∈[tm(τ l−1)+1,tm(τ l)]

(f∗(xm,tm , π∗
m(xm,tm))− f∗(xm,tm , am,tm))

+
∑

m∈[M ]

E1
m

=
∑

l∈[2,l(T )]

EΥl−1

Exm,al
m

 ∑
m∈[M ]

El
m (f∗(xm, π∗

m(xm))− f∗(xm, am)) | Υl−1

 | Υl−1

+
∑

m∈[M ]

E1
m

(a)
=

∑
l∈[2,l(T )]

EΥl−1

 ∑
m∈[M ]

El
m

∑
πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm) | Υl−1

+
∑

m∈[M ]

E1
m

(b)

≤
∑

l∈[2,l(T )]

11c2

γl

∑
m∈[M ]

El
mKm +

∑
m∈[M ]

E1
m

(c)
=

∑
l∈[2,l(T )]

11c2

√√√√∑m∈[M ] E
l−1
m E(F ;El−1

[M ])∑
m∈[M ] E

l−1
m Km

∑
m∈[M ]

El
mKm +

∑
m∈[M ]

E1
m

≤
∑

l∈[2,l(T )]

11c2
√

KE(F ;El−1
[M ])

∑
m∈[M ]

El−1
m +

∑
m∈[M ]

E1
m,

where equality (a) is from Lemma 3.3.22, inequality (b) is from Lemma 3.3.19, and inequality (c) is from the

choice of γl. The proof is then concluded.
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The following supporting lemmas can be similarly obtained by the corresponding proofs in Simchi-Levi

and Xu (2022).

Lemma 3.3.21 (Lemma 3, Simchi-Levi and Xu (2022)). For any epoch l ∈ N, conditioned on Υl−1, there

exists a probability measure Ql
m(·|Υl−1) on Ψm such that

∀am ∈ Am,∀xm ∈ Xm, plm(am|xm,Υl−1) =
∑

πm∈Ψm

1{πm(xm) = am}Ql
m(πm|Υl−1).

Lemma 3.3.22 (Lemma 4, Simchi-Levi and Xu (2022)). Fix any epoch l ∈ N, we have

Exm∼DXm
m ,al

m∼pl
m(·|xm)

[
f∗(xm, π∗

m(xm))− f∗(xm, alm) | Υl−1
]

=
∑

πm∈Ψm

Ql
m(πm | Υl−1)Regm(πm).

Lemma 3.3.23 (Lemma 5, Simchi-Levi and Xu (2022)). Fix any epoch l ∈ N, conditioned on Υl−1, we have

∑
π∈Ψm

Ql
m(πm | Υl−1)R̂eg

l

m(πm | Υl−1) ≤ Km

γl
.

Lemma 3.3.24 (Lemma 6, Simchi-Levi and Xu (2022)). Fix any epoch l ∈ N, for any policy πm ∈ Ψm, we

have

Vm(plm, πm | Υl−1) ≤ Km + γlR̂eg
l

m(πm | Υl−1).

Reward Function Classes with Finite Cardinalities

First, with realizability, i.e., Assumption 3.3.1, the following characterization can be obtained.

Lemma 3.3.25 (Lemma 4.2, Agarwal et al. (2012)). Fix a function f ∈ F . Suppose we sample xm, rm

from the data distribution Dm, and an action am from an arbitrary distribution such that rm and am are

conditionally independent given xm. Define the random variable

ℓm(f) := (f(xm, am)− rm(am))
2 − (f∗(xm, am)− rm(am))

2
.

Then, we have

Exm,rm,am
[ℓm(f)] = Exm,am

[
(f(xm, am)− f∗(xm, am))

2
]
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and

Vxm,rm,am [ℓm(f)] ≤ 4Exm,rm,am [ℓm(f)] ,

where V[·] denotes the variance of a random variable.

First, we establish the excess risk bound required in Assumption 3.3.2 via the following complete version

of Lemma 3.3.4

Lemma 3.3.26 (Complete Version of Lemma 3.3.4). Under the setup of Assumption 3.3.2, if the adopted FL

routine provides an exact minimizer for the optimization problem in Eqn. (3.15) with quadratic losses, i.e.,

f̂ = argmin
f∈F

1

n

∑
m∈[M ]

∑
i∈[nm]

(
f(xi

m, aim)− yim
)2

,

then, with probability at least 1− δ, it holds that

∑
m∈[M ]

nm

n
· Exm∼DXm

m ,am∼pm(·|xm)

[(
f̂(xm, am)− f∗(xm, am)

)2]
≤ 25 log(|F|/δ)

n
.

As a result, Assumption 3.3.2 holds with

E(δ, n[M ]) = O (log(|F|n)/n) .

Proof. For simplicity, we abbreviate the quadratic loss associated with a fixed function f ∈ F as

ℓim(f) = ℓm(f(xi
m, aim); rim) :=

(
f(xi

m, aim)− rim
)2

, ∀m ∈ [M ].

Then, with a probability at least 1− δ, for a fixed f ∈ F , it holds that

∑
m∈[M ]

∑
im∈[nm]

Exi
m,rim,ai

m

[
ℓim(f)− ℓim(f∗)

]
−
∑

m∈[M ]

∑
i∈[nm]

[
ℓim(f)− ℓim(f∗)

]
(a)

≤ 2

√ ∑
m∈[M ]

∑
im∈[nm]

Vxi
m,rim,ai

m
[ℓim(f)− ℓim(f∗)] log(1/δ) +

4

3
log(1/δ)

(b)

≤ 4

√ ∑
m∈[M ]

∑
im∈[nm]

Exi
m,rim,ai

m
[ℓim(f)− ℓim(f∗)] log(1/δ) +

4

3
log(1/δ),

where inequality (a) leverages Bernstein’s inequality and inequality (b) is based on Lemma 3.3.25.
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With

X(f) =

√ ∑
m∈[M ]

∑
im∈[nm]

Exi
m,rim,ai

m
[ℓim(f)− ℓm,i(f∗)];

Z(f) =
∑

m∈[M ]

∑
i∈[nm]

[
ℓim(f)− ℓm,i(f

∗)
]
; C =

√
log(1/δ).

Applying a union bound to the above inequality indicates that with probability 1− |F|δ, for all f ∈ F , it

holds that

X(f)2 − Z(f) ≤ 4CX(f) +
4

3
C2 ⇒ (X(f)− 2C)2 − Z(f) ≤ 16

3
C2.

Since f̂ satisfies that Z(f̂) ≤ 0, we can obtain that

X(f̂)2 ≤ 25C2,

In other words, with probability 1− δ, it holds that

∑
m∈[M ]

∑
im∈[nm]

Exi
m,rim,ai

m

[(
f̂(xi

m, aim)− rim

)2
−
(
f∗(xi

m, aim)− rim
)2]

=
∑

m∈[M ]

nmExi
m,ai

m

[(
f̂(xi

m, aim)− f∗(xi
m, aim)

)2]
≤ 25 log(|F|/δ),

where the equality is from the realizability in Assumption 3.3.1. The first half of the lemma is then proved.

With δ = 1/n, the second half can be obtained as

ES[M]

 ∑
m∈[M ]

nm

n
· Exm,am

[(
f̂(xm, am)− f∗(xm, am)

)2] ≤ 25 log(|F|n)
n

+
1

n
,

which concludes the proof.

Based on the established excess risk bound, Corollary 3.3.5 can be obtained as follows.

Corollary 3.3.27 (Restatement of Corollary 3.3.5). If |F| < ∞ and the adopted FL routine provides an

exact minimizer for Eqn. (3.15) with quadratic losses, with τ l = 2l, FedIGW incurs a regret of

Reg(T ) = O(
√
KMT log(|F|MT ))

and a total O(log(T )) calls of the adopted FL routine.



3.3 Federated Contextual Bandits: A General Modulized Design 120

Proof of Corollary 3.3.5. With Theorem 3.3.3 and Lemma 3.3.4, under the choice of τ l = 2l, the regret can

be bounded as

Reg(T ) = O

ME1 +
∑

l∈[2,l(T )]

√
KMEl log(|F|MEl)


= O

 ∑
l∈[2,⌈log2(T )⌉]

√
KM2l log(|F|MT )


= O

(√
KMT log(|F|MT )

)
,

and the exponentially growing epoch length naturally leads to O(log(T )) calls of the adopted FL routine,

which concludes the proof.

Reward Function Classes with Convex and Smooth Losses

In the following, we first prove Lemma 3.3.6 while also noting that this result is general and does not rely on

the specific parameterization of F , although we presented it with the d-dimensional parameterization.

Lemma 3.3.28 (Complete Version of Lemma 3.3.6). If the loss function lm(·; ·) is µf -strongly convex in its

first coordinate for all m ∈ [M ], i.e.,

lm(z′1; z2)− lm(z1; z2) ≥
dlm(z1; z2)

dz1
· (z′1 − z1) +

µf

2
(z′1 − z1)

2, for any z1, z
′
1 and z2,

and

inf
y∈R

Erm [lm(y, rm(am))|xm, am] = Erm [l(fω∗(xm, am), rm(am))|xm, am] (3.16)

for all m ∈ [M ], (xm, am) ∈ Xm ×Am, then Assumption 3.3.2 holds with

E(F ;n[M ]) ≥ 2
(
εopt(F ;n[M ]) + εgen(F ;n[M ])

)
/µf ,

where

εgen(F ;n[M ]) := ES,ξ[L(fω̂S )− L̂(fω̂S ;S)];

εopt(F ;n[M ]) := ES,ξ[L̂(fω̂S ;S)− L̂(fω∗
S
;S)].
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Proof. First, for any ω̂S , it holds that

L(fω̂S )− L(fω∗)

=
∑

m∈[M ]

nm

n
Exm,i,am,i,rm,i

[ℓ(fω̂S (xm,i, am,i); rm,i)− ℓ(fω∗(xm,i, am,i); rm,i)]

≥ µf

2

∑
m∈[M ]

nm

n
Exm,i,am,i

[
(fω̂S (xm,i, am,i)− fω∗(xm,i, am,i))

2
]

where the inequality is due to the strong convexity of ℓ(·; ·) w.r.t. its first coordinate and the optimality of

fω∗ assumed in Eqn. (3.16). Thus, we obtain that

∑
m∈[M ]

nm

n
Exm,i,am,i

[
(fω̂S (xm,i, am,i)− fω∗(xm,i, am,i))

2
]
≤ 2

µf
(L(fω̂S )− L(fω∗)) .

Furthermore, it holds that

ES,ξ [L(fω̂S )]− L(fω∗)

= ES,ξ [L(fω̂S )]− ES,ξ

[
L̂(fω̂S ;S)

]
+ ES,ξ

[
L̂(fω̂S ;S)

]
− L(fω∗)

≤ ES,ξ [L(fω̂S )]− ES,ξ

[
L̂(fω̂S ;S)

]
+ ES,ξ

[
L̂(fω̂S ;S)

]
− ES,ξ

[
L̂(fω∗

S
;S)
]
,

where the last inequality is due to

L(fω∗) = ES

[
L̂(fω∗ ;S)

]
≥ ES

[
L̂(fω∗

S
;S)
]
.

The proof is then concluded.

Then, for the generalization error analyses, Lemma 3.3.7, restated below, follows standard proofs (e.g.,

Theorem 6.4 in Zhang (2023); Theorem 3.3 in Mohri et al. (2018)).

Lemma 3.3.29 (Restatement of Lemma 3.3.7). It holds that

εgen(F ;n[M ]) := ES,ξ[L(fω̂S )− L̂(fω̂S ;S)] ≤ 2R(F ;n[M ]),

where

R(F ;n[M ]) = sup

ES,σ

sup
ω

 ∑
m∈[M ]

1

n

∑
i∈[nm]

σm,i · ℓm(fω(xm,i, am,i); rm,i)


 ,



3.3 Federated Contextual Bandits: A General Modulized Design 122

where the outside supremum is over possible distributions of dataset S defined in Assumption 3.3.2.

The optimization error of FedAvg can be found in the Lemma 3.3.8. Combining the generalization error

and optimization error via Lemma 3.3.6 into Theorem 3.3.3, Corollary 3.3.9 can be obtained, which is restated

in the following.

Corollary 3.3.30 (Restatement of Corollary 3.3.9). Under the conditions of Lemmas 3.3.6 and 3.3.8, if

FedAvg is used as the FL routine, the regret of FedIGW can be bounded as

Reg(T ) = O

(
ME1 +

∑
l∈[2,l(T )]

√
K

µf
·
(
Rl−1 +

σ2
b

µωρl−1κl−1M
+

βωG2
b

µ2
ω(ρ

l−1)2

)
MEl

)
,

where Rl := R(F ; {El : m ∈ [M ]}) while ρl and κl the round of agents-server communications and local

updates between in epoch l, respectively.

Proof. We can specify

E(F ; {El : m ∈ [M ]}) = 2

µf

(
2R(F ; {El : m ∈ [M ]}) + Õ

(
σ2
b

µωρlκlM
+

βωG
2
b

µ2
ω(ρ

l)2

))
≥ 2

µf

(
εgen(F ; {El : m ∈ [M ]}) + εopt(F ; {El : m ∈ [M ]})

)
,

where the inequality is from Lemmas 3.3.7 and 3.3.8. This is a valid excess risk bound due to Lemma 3.3.6.

Then, by plugging this excess risk bound into Theorem 3.3.3, the corollary is proved.

Corollary 3.3.10 can be obtained by setting a suitable number of global aggregations for each epoch such

that the optimization error is on the same order as the generalization error.

Corollary 3.3.31 (Restatement of Corollary 3.3.10). Under the conditions of Lemmas 3.3.6 and 3.3.8, with

FedAvg as the adopted FL routine, FedIGW incurs a regret of

Reg(T ) = O

(
ME1 +

∑
l∈[2,l(T )]

√
KRl−1/µfMEl

)

with

Õ

 ∑
l∈[l(T )]

βω

µω
+

σ2
b

µωRlκlM
++

√
βωG2

b

µ2
ωR

l


rounds of communications.
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Proof. From Lemma 3.3.8, the optimization error in epoch l of form

Õ

(
σ2
b

µωρlκlM
+

βωG
2
b

µ2
ω(ρ

l)2

)
,

when ρl = Ω(βω/µω). Thus, if the communication rounds

ρl = Θ̃

(
βω

µω
+

σ2
b

µωRlκlM
+

√
βωG2

b

µ2
ωR

l

)
.

we are guaranteed to have the optimization error on the order of O(Rl).

Then, the regret in Corollary 3.3.9 is of order

Reg(T ) = O

(
ME1 +

∑
l∈[2,l(T )]

√
KRl−1/µfMEl

)

while the overall communication rounds can be bounded as

∑
l∈[l(T )]

ρl = Õ

 ∑
l∈[l(T )]

βω

µω
+

σ2
b

µωRlκlM
+

√
βωG2

b

µ2
ωR

l

 ,

which concludes the proof.

A Linear Reward Function Class

We here provide a detailed discussion on the linear reward function class. Especially, following standard

assumptions in linear bandits (Abbasi-Yadkori et al., 2011) and federated linear bandits (Li and Wang,

2022a; He et al., 2022; Amani et al., 2022), we consider µm(xm, am) = ⟨ϕ(xm, am), ω∗⟩, where ϕ(·) is a known

d-dimensional mapping and ω∗ is an unknown d-dimensional system parameter. Then, it is sufficient to

consider a linear function class F , where fω(·) = ⟨ω, ϕ(·)⟩ and f∗(·) = ⟨ω∗, ϕ(·)⟩. Moreover, for convenience,

we assume that ∥ϕ(xm, am)∥2 ≤ 1 and ∥ω∗∥2 ≤ 1.

The FL problem can be formulated as a standard ridge regression with

ℓm(fω(xm, am); rm) := (⟨ω, ϕ(xm, am)⟩ − rm)
2
+ λ∥ω∥22.

In other words, Eqn. (3.15) can be restated as

min
ω∈Rd

L̂(fω;S) :=
∑

m∈[M ]

1

n

∑
i∈[nm]

(
⟨ω, ϕ(xi

m, aim)⟩ − rim
)2

+ λ∥ω∥22, (3.17)
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which has an exact minimizer as

ω∗
S =

 1

n

∑
m∈[M ]

∑
i∈[nm]

ϕ(xi
m, aim)ϕ(xi

m, aim)⊤ + λI

−1 1

n

∑
m∈[M ]

∑
i∈[nm]

ϕ(xi
m, aim)rim

 .

We provide an excess risk bound required in Assumption 3.3.2 through the following decomposition:

ES,ξ

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω̂S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2


≤ 2ES,ξ

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω̂S , ϕ(xm, am)⟩ − ⟨ω∗
S , ϕ(xm, am)⟩)2


+ 2ES,ξ

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω∗
S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2


= 2ES,ξ

[
∥ω̂S − ω∗

S∥
2
Σ

]
+ 2ES

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω∗
S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2


≤ 2ES,ξ

[
λmax(Σ) ∥ω̂S − ω∗

S∥
2
2

]
=: term (A)

+ 2ES

 ∑
m∈[M ]

nm

n
Exm,am

(⟨ω∗
S , ϕ(xm, am)⟩ − ⟨ω∗, ϕ(xm, am)⟩)2

 =: term (B)

where

Σ :=
∑

m∈[M ]

nm

n
Exm,am

[
ϕ(xm, am)ϕ(xm, am)⊤

]

and λmax(Σ) denotes the maximum eigenvalue of Σ. With ∥ϕ(x, a)∥2 ≤ 1, it can be verified that λmax(Σ) ≤ 1.

In the above decomposition, term (A) can be interpreted as the optimization error, while term (B) is the

generalization error.

We can then plug in the aforementioned explicit formula of ω∗
S into term (B) and demonstrate that

term (B) = Õ(d/n) with λ = 1/n under the assumption that ∥ω∗∥2 ≤ 1 and rm ∈ [0, 1] (e.g., following

Theorem 9.35 in Zhang (2023)). Then, with many efficient optimization algorithms (e.g., a distributed version

of accelerated gradient descent (AGD)) (Nesterov, 2003)), it takes only O(
√
κ log(1/ε′)) rounds of iterations

(i.e., communications) to have an optimization error of ε′, where κ is the condition number (i.e., the ratio

between the smooth and strongly convex parameter in the considered problem). With λ = 1/n, it holds

that κ = O(n) and thus takes O(
√
n log(d/n)) rounds of communications to obtain an optimization error of
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order Õ(d/n). Moreover, the adopted optimization algorithms (e.g., distributed AGD) typically only need to

aggregate processed model parameters (e.g., gradients) with the server, which avoids communicating raw or

compressed data (e.g., local variance matrices) as in previous federated linear bandit designs (Wang et al.,

2020b; Dubey and Pentland, 2020; Li and Wang, 2022a; He et al., 2022; Amani et al., 2022).

With the above illustration, the following corollary is then a straightforward extension from Theorem 3.3.3.

Corollary 3.3.32. In the considered linear reward function class with shared true parameters, using distributed

AGD as the adopted FL routine to solve the FL problem in Eqn. (3.17) and τ l = 2l, FedIGW obtains a regret

of

Reg(T ) = Õ

 ∑
l∈[log2(T )]

√
Kd

M2l−1
M2l

 = Õ
(√

MKdT
)

with

O

 ∑
l∈[log2(T )]

√
M2l log(d/(M2l))

 = Õ(
√
MT )

rounds of communications.

3.3.8 Full Proofs of the Flexible Appendages

In this section, additional details for the personalized learning setting are discussed. The overall algorithm

structure still follows Algorithm 9. The major difference is that a personalized FL problem is considered:

min
ωα,ωβ

[M]

L̂(fωα,ωβ
[M]

;S[M ]) :=
∑

m∈[M ]

nm

n
L̂m(fωα,ωβ

m
;Sm),

where

L̂m(fωα,ωβ
m
;Sm) :=

1

nm

∑
i∈[nm]

ℓm(fωα,ωβ
m
(xi

m, aim); rim).

Proof of Corollary 3.3.15

The proof of Corollary 3.3.15 largely follows those of Corollary 3.3.10: decomposing excess risk to generalization

and optimization errors; using Rademacher complexity to characterize the generalization error; using FL

convergence analyses to characterize the optimization error; and combining them together such that the

optimization error does not dominate the generalization error.



3.3 Federated Contextual Bandits: A General Modulized Design 126

The first major difference is that a slightly different Rademacher complexity is introduced:

P(F[M ];n[M ]) = sup

ES,σ

 sup
ωα,ωβ

[M]

 ∑
m∈[M ]

1

n

∑
i∈[nm]

σm,i · ℓm(fωm
(xi

m, aim); rim)


 ,

which is suitable for the considered personalized setting with parameters [ωα, ωβ
[M ]] involved. A similar

notation is also adopted in Mohri et al. (2019). Moreover, as the LSGD-PFL algorithm (Hanzely et al., 2021)

is adopted to solve the personalized FL task as an illustration, its corresponding convergence analyses should

be incorporated, which is presented in Lemma 3.3.14 and restated as Lemma 3.3.40. With these two parts

ready, Corollary 3.3.15, restated in the following, can be obtained similarly to Corollary 3.3.10.

Corollary 3.3.33 (Restatement of Corollary 3.3.15). Under the conditions of Lemmas 3.3.6 and 3.3.14,

with LSGD-PFL as the adopted personalized FL routine, FedIGW incurs a regret of

Reg(T ) = O

(
ME1 +

∑
l∈[2,l(T )]

√
KPl−1/µfMEl

)

with

Õ

 ∑
l∈[l(T )]

max{βωβ (κl))−1, βωα}
µω

+
σ2
b

µωκlMPl
+

√
βωα(G2 + σ2)

µ2
ωP

l


rounds of communications, where Pl := P(F[M ], {El : m ∈ [M ]}) and κl is the number of local updates in

epoch l.

A Linear Reward Function Class

As an extension of the linear reward function in Appendix 3.3.7, we consider that

µm(xm, am) = ⟨ϕ(xm, am), ω∗
m⟩, ∀m ∈ [M ], (xm, am) ∈ Xm ×Am,

and the true model parameters {ω∗
m : m ∈ [M ]} follow Assumption 3.3.13, i.e., ω∗

m = [ωα,∗, ω∗,β
m ] with ωα,∗

shared among all agents.

It can be further realized that the above problem setting is identical to a d̃-dimensional linear system,

where d̃ := dα +
∑

m∈[M ] d
β
m: the overall true model parameter is

ω̃∗ =
[
ω∗,α, ω∗,β

1 , · · · , ω∗,β
M

]
∈ Rd̃.
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and a correspondingly feature mapping ϕ̃(·) is

ϕ̃(xm, am) =
[
ϕ(xm, am)[1:dα],Odβ

1
, · · · ,Odβ

m−1
, ϕ(xm, am)[dα+1:dm],Odβ

m+1
, · · · ,Odβ

M

]
,

i.e., an expanded version of the original feature, where ϕ(xm, am)[i:j] ∈ Rj−i+1 denotes the sub-vector

containing [i : j]-th elements in ϕ(xm, am) and Oi ∈ Ri an i-dimensional null vector.

With this reformulated problem, discussions from Appendix 3.3.7 can be directly leveraged. Especially,

Corollary 3.3.32 indicates the following result.

Corollary 3.3.34. In the considered linear reward function class with partially true parameters, using

distributed AGD as the adopted FL routine to solve the FL problem in Eqn. (3.17) with reformulated feature

mapping ϕ̃(·) and τ l = 2l, FedIGW incurs a regret of

Reg(T ) = Õ
(√

MKd̃T
)

with Õ(
√
MT ) rounds of communications.

Robustness, Privacy, and Beyond

We here provide some additional discussions on incorporating appendages in FL studies to provide robustness

and privacy guarantees for FedIGW among some other directions (e.g., fairness guarantees (Mohri et al., 2019;

Du et al., 2021), client selections (Balakrishnan et al., 2022; Fraboni et al., 2021), and practical communication

designs (Chen et al., 2021; Wei and Shen, 2022; Zheng et al., 2020)). Following the unified principle that

“FCB = FL + CB”, we can develop the corresponding versions of FedIGW and the associated theoretical

analyses following the comprehensive example involving personalized learning.

The key is that as long as one FL routine can provide an estimated function f̂ (which is used in IGW

interactions), it can be adopted in FedIGW; thus the desirable properties of the selected FL routine are

naturally inherited to FedIGW. For example, Yin et al. (2018); Pillutla et al. (2022); Fu et al. (2019); Li et al.

(2021); Zhu et al. (2023) studied how to handle malicious agents, who can deviate arbitrarily from the FL

protocol and tamper with their own updates, during learning. The commonly adopted scheme is to invoke

certain robust estimators (e.g., median and trimmed mean). Under suitable assumptions, existing approaches

have shown that as long as the proportion of malicious agents does not exceed a threshold (typically, 1/2),

the estimators calculated by federation can still converge within certain amounts of error due to the malicious

agents. A recent work (Zhu et al., 2023) provides a summary of convergence rates with different robust

estimators, which can be leveraged to establish theoretical understandings of FedIGW with robustness.
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On the privacy side, many mechanisms have also been studied in FL (Wei et al., 2020; Yin et al., 2021;

Liu et al., 2022), to guarantee differential privacy (DP), where the most common approach is to insert noises

of suitable scales. Convergence rates have also been established under suitable assumptions, e.g., in Wei et al.

(2020); Girgis et al. (2021); Wei et al. (2021). With those analyses, the theoretical behavior of FedIGW with

DP can also be similarly established as Corollaries 3.3.10 and 3.3.15.

3.3.9 Omitted Details of FL Designs

FedAvg

The FedAvg algorithm (McMahan et al., 2017) is one of the most standard and well-adopted FL designs.

Following it, agents perform local stochastic gradient descents (SGD) with their local objective functions

for certain steps and then communicate the updated local models to the server; the server aggregates local

models to a global one via a weighted average, which is then communicated to the agents to perform further

local SGDs.

Many theoretical analyses have been provided for FedAvg (e.g., Li et al. (2020b)). We adopt the one from

Karimireddy et al. (2020) as Lemma 3.3.8, whose complete version is provided in the following.

Lemma 3.3.35 (Complete Version of Lemma 3.3.8; Theorem V in Karimireddy et al. (2020) without client

sampling). For any dataset S, if

• L̂m(fω;Sm) is µω-strongly convex w.r.t. ω (see Definition 3.3.36) for all m ∈ [M ];

• L̂m(fω;Sm) is βω-smooth w.r.t. ω (see Definition 3.3.37) for all m ∈ [M ];

• the stochastic gradients are unbiased and have a σ2
b -bounded variance (see Definition 3.3.38);

• the gradients have Gb-bounded dissimilarity (see Definition 3.3.39),

with FedAvg as the adopted FL routine, the output ω̂ satisfies that

Eξ[L̂(fω̂S ;S)− L̂(fω∗
S
;S) | S] ≤ Õ

(
σ2
b

µωρκM
+

βωG
2
b

µ2
ωρ

2
+ µω∥ω0 − ω∗

S∥22 exp
(
− µωρ

16βω

))

when ρ ≥ 8βω

µω
, where ρ denotes the round of communications (i.e., number of global aggregations), κ is the

number of local updates (i.e., SGD) between each communication, and ω0 is the initialization. Note that the

last term which decays exponentially w.r.t. ρ is omitted in Lemma 3.3.8 and the following derivations for

simplicity.

A few definitions used above are made precise in the following, which are inherited from Karimireddy

et al. (2020) and presented here for completeness:
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Definition 3.3.36 (Strongly Convex). L̂m(fω;S) is µω-strongly convex w.r.t. ω for µω > 0 if

L̂m(fω′ ;S)− L̂m(fω;S) ≥
〈
∇ωL̂m(fω;S), ω′ − ω

〉
+

µω

2
∥ω′ − ω∥22 , for any ω and ω′.

Definition 3.3.37 (Smooth). L̂m(fω;S) is βω-smooth w.r.t. ω for βω > 0 if

L̂m(fω′ ;S)− L̂m(fω;S) ≤
〈
∇ωL̂m(fω;S), ω′ − ω

〉
+

βω

2
∥ω′ − ω∥22 , for any ω and ω′.

Definition 3.3.38 (Stochastic Gradients with Bounded Variances). The stochastic gradients have a σ2
b -

bounded variance if

1

nm

∑
i∈[nm]

∥∥∥∇ωℓm(fω(x
i
m, aim); rim)−∇ωL̂m(fω;Sm)

∥∥∥2
2
≤ σ2

b , for any ω and m.

Definition 3.3.39 (Gradients with Bounded Dissimilarity). The gradients have a Gb-bounded dissimilarity if

1

M

∑
m∈[M ]

∥∥∥∇ωL̂m(fω;Sm)
∥∥∥2
2
≤ G2

b , for any ω.

LSGD-PFL

The LSGD-PFL algorithm is summarized in Hanzely et al. (2021), which is a general design for personalized

federated learning problems. It largely follows FedAvg (McMahan et al., 2017), while only the globally shared

parameters are communicated and aggregated. The following lemma, a complete version of Lemma 3.3.14, is

provided in Hanzely et al. (2021) to characterize the convergence of LSGD-PFL.

Lemma 3.3.40 (Complete Version of Lemma 3.3.14; Theorem 1 Hanzely et al. (2021)). For any dataset S, if

• L̂m(fωm
;Sm) is µω-strongly convex w.r.t. ωm (see Definition 3.3.36) for all m ∈ [M ];

• L̂m(fωα,ωβ
m
;Sm) is βωα-smooth w.r.t. ωα and Mβωβ -smooth w.r.t. ωβ

m (see Definition 3.3.37) for all

m ∈ [M ];

• the stochastic gradients w.r.t. ωα is unbiased and have a σ2
b -bounded variance (see Definition 3.3.38);

• the stochastic gradients w.r.t. {ωβ
m : m ∈ [M ]} is unbiased and have a σ2

b -bounded variance (see

Definition 3.3.38);

• the gradients w.r.t. ω have Gb bounded dissimilarity (see Definition 3.3.39),
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with LSGD-PFL as the adopted FL routine, the output ω̂ has εopt(F[M ];n[M ]) ≤ ε′ after

Õ

(
max{βωβκ−1, βωα}

µω
+

σ2
b

µωκMε′
+

1

µω

√
βωα(G2 + σ2)

ε′

)

rounds of communications, where κ is the number of local updates.



Chapter 4

Conclusions

In this dissertation, we explored decision-making in multi-agent systems under various scenarios and en-

vironments. This research aimed to provide fundamental insights into how to design communication and

collaboration strategies in different agent settings.

For communication designs in Chapter 2, we focused on two main aspects: effectiveness (Section 2.2), and

robustness (Section 2.3), under the problem of multi-player multi-armed bandits (MPMAB). By studying these

contexts, we gained valuable insights into the challenges and opportunities associated with communication

designs in multi-agent decision-making problems. Our findings highlighted the importance of leveraging tools

established in broader communication communities, in particular, information-theoretic studies.

For collaboration designs in Chapter 3, focusing on the federated multi-armed bandits problem, our inves-

tigation encompassed decision-making studies when handling different global-local relationships (Section 3.1)

and varying generalization-personalization balances (Section 3.2), and also provided a modulized approach to

flexible involve established FL schemes. These scenarios posed unique challenges that required us to explore

novel decision-making algorithms. By delving into these areas, we shed light on the general collaboration

principles in multi-agent decision-making applications.

Overall, this dissertation contributes to the growing field of decision-making designs in multi-agent

systems. By addressing the communication and collaboration problems, we have expanded the understanding

of decision-making dynamics in complex agent interactions, which may further bring fundamental insights for

real-world applications, such as autonomous systems, distributed networks, and economic markets.
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