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Abstract 

        Flapping-wing mechanism offers unique aerodynamic advantages over conventional 

flight methods for design of micro air vehicles (MAVs). The inherently unsteady nature 

of the flapping motion is responsible for the primary force production, and also 

differentiates flapping wing fliers from conventional fixed and rotary wing configurations. 

The unsteady aerodynamic phenomena are not only sensitive to variations in the wing 

motion but also for the dynamic deformed wing surface. Yet, it is not well understood 

how the unsteady aerodynamic phenomena and dynamic wing morphing interact to 

modulate flow and to determine overall aerodynamic performance. 

        In current work, the deformable wing is simplified as a rigid plate hinged with a 

controllable trailing-edge flap. The leading-edge portion of the plate is driven by a 

prescribed hovering motion moving in a horizontal stroke plane. The deflection of 

trailing-edge flap follows a sinusoidal function with respect to the leading-edge for 

mimicking time-varying camber deformation. Key parameters for determining deformed 

plate kinematics, such as stroke-to-chord ratio, trailing-edge flap deflection amplitude, 

and phase shift of trailing-edge deflection, are studied to explore their effects on 

aerodynamic performance and flow modulation. An in-house immersed boundary method 

based Direct Numerical Simulation (DNS) solver is used to simulate the unsteady flow. 

Results from current parametric studies will be used to analyze unsteady force 

productions due to dynamic trailing-edge flap in flapping flight. 
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Chapter 1: Introduction 

        There is a serious effort to design aircraft that are as small as possible for advance 

surveillance and detection missions. These aircraft, called micro air vehicles (MAVs), are 

normally compact with a 20 cm maximum dimension and entire payload mass of 200 g or 

less, and which can flight at speeds between 10 and 15 m/s. At this relatively low Reynolds 

numbers (10,000-100,000) regime, the aerodynamic efficiency (lift-to-drag ratio) of 

conventional fixed airfoils rapidly deteriorates at Re<100,000 as shown in Figure 1 from 

McMasters and Henderson [1]. The chief reason for the deterioration in the performance is 

that at low Reynolds numbers, the boundary layer remains laminar downstream of the 

location of minimum pressure on the airfoil making it very susceptible to flow separation as 

the angle of attack increases resulting in an early onset of stall [2]. In addition, because of the 

low aspect ratio wings used in MAVs, the tip vortex covers a major part of the wing and the 

aerodynamic performance is affected greatly by the shedding of the tip vortices [3].  

        Small birds and insects whose flight regime coincides with that of MAVs use flapping 

wings to provide both lift and thrust to overcome the deteriorating performance of fixed 

wings. They do this by taking advantage of unsteady flow mechanisms using wing 

kinematics evolved over millions of years. The kinematics of wing motion is often a complex 

combination of translation and rotation in the stroke plane with significant morphological 

changes for optimal flow control. Hence understanding the unsteady aerodynamics of 

flapping wings is critical to the design of efficient MAVs. Whereas it may not be possible to 

mimic the exact nature of bird and insect flight in its full natural complexity, understanding 

the major unsteady flow mechanisms employed for efficient flight and translating those to 

simple kinematics is required. 
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1.1 Unsteady Aerodynamics of Flapping Flight 

        The unsteady aerodynamic phenomena that allow insects to operate efficiently at 

small scales are produced by dynamic rotations of the insect wing. These wing rotations 

are oscillatory in nature and encompass a large variety of motion profiles and associated 

tip paths for different species of insects. The tip path associated with a particular insect 

species depends on the insect morphology, the configuration of the wing and body 

structures and joints, and the insect physiology which determines how the wing is 

actuated.  

        At wing lengths on the order of 50 millimeters, the dominant unsteady aerodynamic 

phenomenon assumed to be responsible for aerodynamic lift is a leading edge vortex 

(LEV) produced by a laminar flow separation near the leading edge of the wing. This 

vortical structure produces a region of low pressure near the wing surface and influences 

the strength of the bound circulation about the wing. This LEV is similar to the vortical 

structure produced during dynamic stall observed for conventional configurations 

undergoing rapid pitch or plunge maneuvers. Unlike the vortex produced during a 

dynamic stall, the leading edge vortex observed for applying wing fliers is stable for the 

duration of the half-stroke.  

        In addition to circulatory aerodynamic phenomena, there are aerodynamic forces 

associated with the acceleration of the volume of air in the immediate vicinity of the wing 

as the wing changes direction of motion at the end of each half-stroke. This non-

circulatory phenomenon influences the pressure distribution along the wing surface as 

well as the pressure and velocity field about the wing. The circulatory and non-

circulatory aerodynamic phenomena each produce localized wake structures. These local 
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wake structures interact to form the complex wake structures observed for natural fliers. 

Sustained flight is achieved when the vortical wake structures align in space and time to 

form a coherent momentum jet.  

1.2 Dynamic Deformed Wing in Flapping Flight 

        Despite the unsteady aerodynamic phenomenon, another key feature of natural 

flapping fliers is wing flexibility. Natural flyers typically have flexible wings to adapt to 

the flow environment (as shown in Figure 2). Birds have different layers of feathers and 

often connected to each other. Hence, they can adjust the wing plan-form for a particular 

flight mode. Bats have more than two dozen independently controlled joints in the wing 

and highly deforming bones that enable them to fly at either a positive or a negative angle 

of attack, to dynamically change wing camber. Insect wings differ from those of 

vertebrates in that they lack internal musculature extending into the aerodynamic surface 

of the wing. Thus, insects have little active control over wing properties, and most 

deformations are a product of the passive mechanical properties of the wing interacting 

with the inertial and aerodynamic forces it generates while flapping. It is widely thought 

wing deformation, either active or passive, would potentially provide new aerodynamic 

mechanisms of aerodynamic force productions over completely rigid wings in flying.  

        By applying either a two-dimensional foil or a highly idealized three-dimensional 

wing model [4,5,6], recent studies on the dynamic deformations during flapping flight 

mainly focused on the negative camber resulting from the aerodynamic and inertial forces. 

The development of high-speed photogrammetry made it is possible for detailed 

measurements of wing deformation during high frequency flapping motion. The study of 
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deformable wing kinematics of locust [7] used a large number of marker points 

approximately 100 per wing shows that both fore- and hind- wings were positively 

cambered on the down-stroke through an ‘umbrella effect’ whereby the trailing edge 

tension compressed the wing fan corrugated, reducing the projected area by 30 per cent, 

and releasing the tension in the trailing edge. The high-fidelity 3-D dragonfly wing 

surface reconstruction made by Koehler et. al [8]  show that wing presents up to 15% 

positive chord-wise camber. Birds and bats can also actively change the span by flexing 

their wings to form camber. However, bats and birds flex their wings in different manners. 

The wing-surface area of a bird’s wing consists mostly of feathers, which can slide over 

each other as the wing is flexed and still maintain a smooth surface. Bat wings, in 

contrast, are mostly thin membrane supported by the arm bones and the enormously 

elongated finger bones. Given the stretchiness of the wing membrane, bats can flex their 

wings a little, reducing the span by about 20%, but they cannot flex their wings too much 

or the wing membrane will go slack. Slack membranes are inefficient, because drag goes 

up, and the trailing edges are prone to flutter, making them more difficult for fast 

flight[9]. 

1.3 Project Overview 

        To study the deformable flapping wing aerodynamics, a simplified two-link plate 

model is used in the current work. The leading-edge portion of the plate is driven by a 

prescribed hovering motion moving in a horizontal stroke plane. The deflection of 

trailing-edge flap follows a sinusoidal function with respect to the leading-edge for 

mimicking time-varying camber deformation. Key parameters for determining deformed 

plate kinematics are studied. The overall goal of this thesis is to investigate the 
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aerodynamic performance and unsteady flow formation of a hovering flapping plate by 

adding an articulated trailing-edge flap, in both two-dimensional and three-dimensional. 

An in-house sharp-interface immersed-boundary method has been used to simulate the 

unsteady flow. Results from current parametric studies will be used to analyze unsteady 

force productions due to dynamic trailing-edge flap in hovering motion. 

1.4 Organization of Thesis 

        Chapter 2 provides a description of numerical methods applied in current 

simulations. The solver validations are also conducted by comparing experimental 

measurement in both translational and rotational motion. Chapter 3 examines the 

influence of key kinematics parameters, such as trailing-edge deflection amplitude and 

phase shift, on the unsteady aerodynamic phenomena in two-dimensional. Chapter 4 

further explores the aerodynamic performances and flow modulations in three-

dimensional. The effects such as aspect-ratio and geometry of trailing-edge flap will be 

studied.  Chapter 4 examines the influence of key kinematics parameters on the unsteady 

aerodynamic phenomena in three-dimensional. Chapter 5 summarizes the influence of the 

kinematic parameters on the unsteady aerodynamic mechanisms and presents 

recommendations for future research efforts. 
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Figure 1: Variation of aerodynamic efficiency with Reynolds number. The aerodynamic 

efficiency of the smooth airfoil drops rapidly when Reynolds number is less than 100,000 

(From Mcmasters, J. H. and Henderson, 1980[1]) 
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Figure 2: (A) Hummingbird hovering flight, picture courtesy of J. M. Hughes; (B) Flying 

bat, picture courtesy of Duncan PJ; (C) Dragonfly in free flight showing large scale wing 

deformation, picture courtesy of H. Alberts; (D) Veinous wing structure of dragonfly, 

picture courtesy of F. L. Mitchell. 
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Chapter 2: Computational Tool 

        A second-order finite-difference based solver [10] for simulating flows with 

immersed boundaries on fixed Cartesian grids has been developed which allows us to 

explore the wake structures with complex immersed three-dimensional moving bodies. 

The biggest advantage of this method is that a Cartesian grid method wherein flow past 

immersed complex geometrics can be simulated on non-body conformal Cartesian grids 

and this eliminates the need for complicated re-meshing algorithms. The Eulerian form of 

the Navier-Stokes equations is discretized on a Cartesian mesh and boundary conditions 

on the immersed boundary are imposed through a “ghost-cell” procedure. The method 

also employs a second-order center-difference scheme in space and a second-order 

accurate fractional-step method for time advancement. The pressure Poisson equation is 

solved using the semi-coarsening multi-grid method with immersed-boundary 

methodology. The details of this method and validation of the code can be found in [11]. 

2.1 Numerical Method 

        The equations governing the flow in the numerical solver are the time-dependent, 

viscous incompressible Navier-Stokes equations, written in indicial form as: 

0i

i

u

x





 (1) 

( ) 1
( )

i ji i

j i j j

u uu uP

t x x x x




  
   

    
 (2) 

where the indices, i=1, 2, 3, represent the x, y, and z directions, respectively; and the 

velocity components   ,   , and    corresponding to u, v, w respectively;   is density 
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and   represents kinematic viscosity. The equations are non-dimensionalized with the 

appropriate chord length of forewings and free stream velocity. Hence, the tensor 

expression in equation (2) is written as: 

2( ) 1i ji i

j i j j

u uu uP

t x x Re x x

 
   

    
 (3) 

Where, Re corresponds to Reynolds number. 

        The non-dimensional form of the Navier-Strokes equations is discretized using a 

cell-centered, collocated (non-staggered) arrangement where all variables (i.e., velocity 

components and pressure) are located at the same physical location. The equations are 

integrated in time using the fractional step method [12], with the first step consisting of 

advancing the solution from time level “n” to “n+1” through an intermediate advection 

diffusion step, where the momentum equations without the pressure gradient term are 

calculated to obtain an intermediate velocity field. After the intermediate velocity is 

obtained, a second-order Adams-Bashforth scheme is implemented to discretize the 

convective terms while the diffusion terms are discretized with an implicit Crank-

Nicolson technique which eliminated the viscous stability constraint. The second step of 

the fractional step method is the solution of a pressure correction equation by solving a 

Poisson equation. A Neumann boundary condition is implemented on this pressure 

correction step at all boundaries. The Poisson equation being the most time consuming 

part of the solution algorithm, is solved with a flexible and efficient nonstandard 

geometric multi-grid algorithm with a flexible semi-coarsening strategy [13] which 

employs a Gauss-Siedel liner-SOR smoother. Performance tests of the multi-grid method 

have been carried out by [14,15]. 
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        The immersed boundary method is an innovative approach in simulating fluid flow 

over bodies which are imbedded within a Cartesian grid. The key concept of the 

immersed boundary method is to compute the flow variables for the ghost-cells (GC), 

such that boundary conditions on the immersed boundary in the vicinity of the ghost-cells 

are satisfied while preserving second-order accuracy. Ghost-cells are those cells whose 

centers lie inside the immersed body and have at least one neighboring cell which lies 

outside the immersed body. The process begins by developing the immersed boundary 

comprised of a number of densely spaced marker points connected by linear segments. A 

non-conformal Cartesian grid is then generated followed by a procedure that identifies 

the fluid-cells and solid-cells. Fluid-cells are cells whose cell centers line outside of the 

body, and solid-cells are made up of the remaining cells with cell centers inside the body 

that are not adjacent to the immersed boundary. 

2.2 Validations 

        In order to demonstrate the validity of the numerical code, simulations of 

rectangular plat with aspect ratio (AR) two was performed in different types of kinematics 

profile and compared to the published results and experimental measurements. Overall, 

our simulation results showed a pretty well agreement with all the experimental works, 

and more detailed described as following subsections. 

2.2.1 Flow Pass Stationary Plate 

        In the first case, simulations of rectangular plate (AR=2, AOA=   , Re=300) was 

performed and compared to the published results of Taira and Colonius [16]. The wake 
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structure of rectangular plate and time trace of lift and drag coefficients at large time are 

selected to compare.  

        Our simulations were performed on a 200 88 128 (grid size of dense domain) non-

uniform Cartesian grid with a domain size 10.1 10 10 with the smallest resolution 

of        . Grid stretching is applied in all directions with finer resolution near the 

plate to capture the wake structure. The computational domain used in the validation case 

is matched with the original setup.  

        In Figure 3, the comparison of lift and drag coefficients are represented. The results 

of interest in this particular validation case were the time trace of lift and drag 

coefficients. The blue lines represent our simulation results and red delta shows the 

digitized data from publication results. In our simulation we also observe the same 

phenomenon [16] that lift and drag reach to a stable steady state after the initial transient 

generated by the impulsive start settles down.  

        From Figure 4, it can be seen that the formation and evolution of leading-edge and 

tip vortices are in good agreement between the publication and our simulation results 

despite the difference of far field vortices structure and the velocity profile. Our 

simulation is able to capture even the thin layer of far field vortex sheet emanating from 

the leading edge, which would correspond to the more dense stretching grids we used 

behind the dense domain. 
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Figure 3: Time history of lift and drag coefficients for rectangular plan-form at Re=300, 

and      . (A) Comparison of Lift coefficient; (B) Comparison of Drag coefficient. 

                 

        The domain dimension and the number of grid points (especially for grid stretching 

part) were determined without performing detailed domain independence and grid 

refinement studies. This may cause our lift and drag coefficient exist a few difference 

when the flow achieved to a steady state. This maybe also the reason that our far flow 

wake structure exist a litter bit difference compared with the publication results. 

Regardless of this fact, the results obtained are in good agreement with those of Taira and 

Colonius [16]. 
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                                                       (A)                                    (B)         

Figure 4:  Wake vortices behind a rectangular wing of AR=2 at       and Re=300. 

Shown are the iso-surface of Q=3. (A) from [16]; (B) our simulation results. 
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2.2.2 Translational Plate 

        In the second case, results from the three-dimensional simulations was compared 

with measurements from an oil tank experiment [17,18] of flows over a rectangular plate 

of dimension 80mm  160mm  3mm (AR=2). The temperature in the laboratory is 

regulated at 20 1  such that there is less than 3% variation in the kinematic viscosity 

(12 2cSt). The rectangular flat plate of angle of attack at 35  , 45 , and 55  was 

accelerated and reached to its maximum velocity after 0.5 seconds. The plate translation 

configuration and velocity profile are shown in Figure 5. For all cases, the Reynolds 

number is fixed at 800.  

 

Figure 5: Rectangular plate (AR=2) translation configuration (A) and velocity profile in 

time (B). 

        Simulations are performed on a 279 171 279 non-uniform Cartesian grid with a 

domain size 18 12 18 with the smallest resolution of   =0.015. Grid stretching is 

applied in all directions with finer resolution near the plate to capture the wake structure. 

The comparison of force history presented in Fig shows a good agreement. The time of 
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maximum lift appeared at t    , which results from the inertial force during impulsive 

start process.  

 

Figure 6: Time history of lift and drag coefficients for rectangular plan-form (AR=2) in 

translational motion at Re=800, and           and     . (A) Comparison of Lift 

coefficient; (B) Comparison of Drag coefficient. 

 

2.2.3 Rotational Plate 

        For the third validation case, rotational experiment [19] was performed in an 

18in 18in 18in glass tank filled with mixing water/glycerin. The geometry considered 

in this study is an aspect-ratio-two rectangular wing. The root of the wing is extended out 

a distance of r=0.5c from the rotation axis at a fixed angle of attack 45 . The wing is 

initially at rest in quiescent flow before accelerating to a constant rotational rate as it 

revolves around its axis, and the total rotational angle is 720 . The velocity profile used 

for the experiments consists of a piecewise linear function in three phases: an 

acceleration phase, a constant speed phase, and a deceleration phase. The acceleration 
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and deceleration were chosen so that the speed increases linearly over 0.25c of travel at 

75% of tip radius. The angular velocity profile is given by Eq. (4) as following: 
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        (4) 

 

where 
*

max is the steady state angular velocity; a  is the smoothing parameter, 1  is the 

start time, 2  marks the end of the acceleration, 3  marks the beginning of the 

deceleration, and 4  marks the end of deceleration. 

 

Figure 7: Rectangular plate (AR=2) rotational configuration (A) and angular velocity 

profile in time (B). 

         

        This expression is modified form of a function described by Eldredge et al., [20], 

which allows for a continuous motion that is sufficiently differentiable, thereby avoiding 

discontinuities in the angular acceleration. In current validation case, the value of 
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smoothing parameter, a , is set to 50. Figure 7 shows the smoothed angular velocity 

profile. The dashed vertical line marks the acceleration duration ( 2 - 1 ) and deceleration 

duration ( 4 - 3 ).  

        The Reynolds number is defined as
*

75maxRe R c  , where *

max  is the steady 

state angular velocity, 75R  is the representative radius, chosen as 75% of the tip radius, 

c  is the chord of the wing, and   is the kinematic viscosity of the fluid. The force 

coefficient is defined as
* 2

, 75( , ) 0.5 ( )L D L D maxC F F R S  , in which LF  and DF are 

lift and drag force, respectively,  is the density of the fluid, and S is the area of the 

wing. 

        The Reynolds number for this case equals to 500. Lift coefficient time-histories are 

shown in Figure 8 corresponding to the wing kinematics in Figure 7. For the case with 

0.25c acceleration duration, the lift coefficients experienced a sharp peak associated with 

the inertial forces, followed shortly by a second peak. The simulation results for this case 

also have a good agreement with the experimental measurement. 



18 

 

 
Figure 8: Time history of lift and drag coefficients for rectangular plan-form (AR=2) in 

rotational motion at Re=500, and        . (A) Comparison of Lift coefficient; (B) 

Comparison of Drag coefficient. 
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Chapter 3: Parametric Study of Two-Dimensional Hovering 

Plate with Trailing Edge Flap 

3.1 Plate Kinematics  

        In this study, the deformable wing is simplified as a rigid plate hinged with a 

controllable trailing-edge flap. It follows a sinusoidal flapping and pitching motion in the 

Cartesian coordinates system. Specifically, the leading-edge portion of the plate is 

constrained moving in a horizontal stroke plane according to a prescribed function given 

by Eq. (5) and (6):   

0( ) (1 cos 2 )
2

A
x t ft  ,    y( ) 0t   (5) 

( ) sin(2 )L Lt ft    (6) 

Where, ( )x t and ( )y t denote the position of the leading-edge of the chord, respectively, 

( )L t is the leading-edge orientation relative to vertical direction, f  is the flapping 

frequency, 0A  and L  are the amplitudes of translation and rotation, respectively. 

        A 25% chord length trailing-edge flap hinged with the leading-edge portion. The 

deflection angle (
T ) of trailing-edge flap is prescribed by Eq. (7) with respect to the 

leading-edge for mimicking time-varying camber deformation. The plate kinematics can 

be visualized in Figure 9. The gray chord lines indicate the plate without trailing-edge 

deflection motion, and the red color chord lines present the deformable plate kinematics. 

( ) sin(2 )T Tt ft      (7) 

Where, T  is the amplitude of deflection, and   is the phase shift between the leading-

edge rotation and trailing-edge deflection.  
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Figure 9: (A) Rigid plate hinged with a 25% chord length trailing-edge flap, H is the 

lending-edge, 
LH denotes the length of leading-edge ( 'HH ) which is 75% of total chord 

length; (B) Flapping plate configuration with
0 3.0A  , 60T  and 60   . 

3.2 Normalization and Choice of Parameters  

        The translational motion of the plate is completely specified by two dimensionless 

parameters, the Reynolds number ( Re ), and Reduced frequency ( k ), given by Eq. (8) 

and (9): 

0refU c fA c
Re



 
   (8) 

0ref

fc c
k

U A


   (9) 

Where, refU is the reference velocity and c is the chord length. In current study, the 

maximum plate velocity of leading-edge is used as the reference velocity, written as

0refU fA . 
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        The Reduced frequency ( k ) provides a measure of unsteadiness associated with a 

flapping wing via spatial wavelength of the flow disturbance with the chord length. Note 

that the reduced frequency is inversely proportional to the flapping amplitude of the wing, 

and not related to flapping frequency.  

 

Figure 10: Plate flapping configuration without trailing-edge flap (TEF) (A), with 

symmetrical ( 0   ) TEF rotation (B), with delayed ( 0 180    ) TEF rotation (C) 

and with advanced ( 180 0    ) TEF rotation. The red and blue color chords indicate 

the down-stroke and up-stroke, respectively.  

         

        The main variables of interest in this study are the trailing-edge deflection amplitude 

( T ) and phase shift ( ) between leading-edge rotation and trailing-edge deflection. The 

larger deflection amplitude means the more disturbances generated from trailing-edge 
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flap. On the other hand, the phase shift corresponds to the phase delay or phase advance 

of the disturbances. The phase shifts were further characterized as three types, 

symmetrical deflection ( 0   ), advance deflection ( 180 0     ), and delayed 

deflection ( 0 180    ), as shown in Figure 10. In all cases, the Reynolds number ( Re ) 

is fixed at 100, but Reduced frequency ( k ) varies from 0.16 to 0.5 with resulting 0 /A c

from 2 to 6, appropriate for real some insect range, such as fruitflies and bees.  

        The performance of the flapping plates is to be measured in terms of force (vertical 

and horizontal) generation and power expenditure. The classical way of assessing and 

comparing these quantities is through non-dimensionalized coefficients. This non-

dimensionalization also requires one to choose an appropriate velocity scales as the 

aforementioned refU . Then, the force coefficients can be defined as: 

2

2 L
L

ref

F
C

U c
  (10) 

2

2 D
D

ref

F
C

U c
  (11) 

Where, LF  and DF  are the vertical (lift) and horizontal (drag) force, respectively, and LC  

DC  are the corresponding coefficients. 

        The instantaneous aerodynamic power was calculated as 
1

n

i i

i

P F v


  , where n is 

total number of triangular element on the wing, 
iF is the aerodynamic force on each 

element and 
iv is the corresponding velocity of the element. Following a similar approach, 

the power coefficient can be expressed as: 
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3 2

2
P

ref

P
C

U c
  (12) 

Where, PC  is the power coefficient and P is the aerodynamic power expended by the 

plates. 

        The cycle-averaged aerodynamic efficiency (lift-to-power ratio) is used as a metric 

of aerodynamic performance in accordance with the ratio of lift-to-drag ratio, which is 

defined as: 

/aero L PC C   (13) 

 

        As suggested by Wang [21], the cycle-averaged specific power ( SPC ) based on 

actuator disk theory  [22] was also investigate, which gives a non-dimensional measure: 

03/2

( ) ( )
2 ( / )

( )

D

SP

L

F t v t
C A c

F t
  (14) 

Where, ( )DF t  and ( )DF t  are drag and lift force and ( )v t is plate velocity. 

        From these methods and metrics, the deformed plate is simulated, using the details 

outlined in the following subsections.  

3.3 Computational Setup  

        Figure 11(A) shows the flapping plate configuration immersed in the two-

dimensional non-uniform Cartesian grid. The coordinate directions, which are also shown 

in Figure 11(B), are as follows: x is the horizontal direction with +x pointing towards 

right side boundary; and y is the vertical direction with +y pointing upward. The flapping 
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plates are modelled as zero thickness deformable membrane and the chord length ( c ) is 

normalized as one unit. 

        Figure 11(B) shows the boundary conditions applied on the computational domain 

boundaries. On all of the boundaries, a far-field boundary condition which amounts to 

specifying the stream-wise (vertical) velocity component to zero and setting the normal 

gradients of the other velocity components to zero is applied. The domain size 

normalized by the chord length ( c ) is 30 30  and this large domain ensures that the 

boundaries do not have any significant effect on the computed results. As shown in 

Figure 11(A), the grid is designed to provide high resolution in the region around body as 

well as the wake which is expected to develop below the plates. The final grid adopted 

here has 289 289  non-uniform mesh with the smallest resolution of 0.02x y  . This 

corresponds to 50 grids across the chord –wise direction on plate surface. 

        The additional simulations on different grids were also carried out to assess the 

convergence of the computed flow via both spatial and temporal sensitivity studies 

discussed in the following subsection. 
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Figure 11: (A) Flapping plate configuration immersed in the two-dimensional non-

uniform Cartesian grid; (B) Boundary conditions for the simulation. 

 

3.4 Spatial and Temporal Sensitivity Study  

        In order to identify a suitable number of grid points and time step, grid and time-step 

sensitivity analyses are performed for the rigid plate with / 2.0XA c  . Simulation within 

fine grid was carried out on a grid which had 52% more grid points than the medium grid, 

and simulation within coarse grid was carried out on a mesh with 48% less grid points 

than the medium grid. Both of these simulations produced a maximum 1% difference 

from the medium grid in mean lift and root-mean-square (r.m.s.) values of lift and drag. 

The temporal sensitivity study also conducted within the medium grid to guarantee the 

convergence of current simulation. Each simulation was integrated over 10 flapping 

cycles. Estimates of cycle mean and r.m.s. lift as well as r.m.s. drag indicate that there is 

a less than a 3% difference in these quantities from the ninth to the tenth cycle. Thus, the 

flow quantities reach a near-stationary state by the ninth and tenth cycles and all of the 
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flow statistics in the following discussion are estimated based on averaging over the ninth 

and tenth cycles. 

        

 

Figure 12: Spatial and Temporal sensitivity analyses for a rigid flapping plate at

0 / 2.0A c  . Grid sizes are: Coarse, 
60.15 10 cells; Medium, 

60.29 10 cells; and Fine, 

60.61 10 cells. Lift coefficient (A, C) and drag coefficient (B, D) time history for the 10
th

 

flapping stroke.   
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        From the results shown in Figure 12, the medium grid (
60.29 10 ) and / 960T dt   

are chosen. The time-step chosen for the current study corresponds to a Courant-

Friedrichs-Lewy (CFL) number of 0.56. 

3.5 General Performance Comparison  

       To provide a more comprehensive picture of how the trailing-edge flap affects the 

overall unsteady phenomena, I first contrast two special cases with the same flapping 

stroke amplitude ( 0 / 3A c  ). The first case corresponds to a flat plate. The second case 

corresponds to a rigid plate hinged with a trailing-edge flap, where 60T  and 60   .  

        Figure 13 shows a side-by-side comparison of the plate motion, forces, subsequent 

z-component vorticity snapshots and mean flow in the two cases. The instantaneous 

forces reach a nearly periodic state after a few strokes. It is not a priori that an arbitrary 

periodic wing motion coupled to fluid will immediately generate a periodic force because 

of the complicated interaction with fluids. In our case, the forces can reach an almost 

periodic state because of negligible interference from vortices generated in previous 

cycles as seen in Figure 13, which happens only when rotation and translation are phased 

correctly.  

        In the case of flap flapping plate, the averaged vertical and horizontal force 

coefficients are 0.85 and 0.99, respectively, resulting in a ratio of 0.86. By contrast, the 

force generation of the flapping plate with trailing-edge flap enhanced during both down-

stroke and up-stroke, in which the lift and drag coefficients are 0.99 and 1.38, 

respectively, resulting in a ratio of 0.71, which is 17% less than the flat plate. This 
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indicates that the enhancement by adding a trailing-edge flap comes at a cost of lower 

efficiency.  

        Comparing the vorticity field in the two cases shows a faster down-ward jet 

produced by the flapping plate with trailing-edge flap. Figure 13(Biv) shows the time- 

averaged velocity below the wing. The velocity is plotted in physical space. The flat plate 

generates a jet whose width is comparable to the flapping amplitude and it generates 

down for 4 to 5 chords. By contract, the plate with trailing-edge flap generates a jet 

whose width is comparable to the chord, and it penetrates downward for more than 7 

chords. This difference may be significant when the wing is hovering above a surface, 

where the ground effect is non-negligible. 
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Figure 13: Comparison of idealized normal hovering for rigid plate (A) and hinged plate 

(B). (i) Wing motion; (ii) instantaneous vertical (   ) and horizontal (   ) force 

coefficients; (iii) snapshots of vorticity (red, counterclockwise rotation; blue, clockwise 

rotation) during the tenth period, and (iv) time-averaged velocity field. 
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3.6 Stroke Amplitude Effects 

        Stroke amplitude is one of the most important kinematics parameters in insect flight. 

In current two-dimensional work, the stroke amplitude is defined as 0 /A c , which equals 

the inverse of the Reduce frequency (
0ref

fc c
k

U A


  ). The study range of 0 /A c  varies 

from 2 to 6 according to the reality of insect flapping motion in relatively low Reynolds 

number (
2~10O ) flow [23]. This results reduced frequency ( k ) changing from 0.17 to 

0.5. Normally, 0 0.03k  is considered as “quasi-steady” (wake effects are not very 

significant), 0.03 0.1k  can be considered “quasi-unsteady” (wake effects are 

significant but apparent-mass acceleration effects are negligible), and beyond that, flow is 

considered “fully unsteady” (all unsteady effects are important) [24]. Hence, we can see 

that the unsteady aerodynamics play an important in present study. 

        To elucidate the effect of stroke amplitude ( 0 /A c ), instantaneous lift and drag 

coefficients of flat plate without trailing-edge flap are first investigated and shown in 

Figure 14. From this figure, we can observe at least two interesting things. First, as the 

stroke range increases, both peaks and cycle-averaged force decrease. Second, lower 

stroke amplitude case present a more oscillated instantaneous force history in terms of 

root-mean-square value of force coefficient. A more quantitative data is shown in Table 1. 
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Figure 14: Stroke amplitude effects on lift coefficient (A) and drag coefficient (B) for 

rigid flat plates. 

 

        This actually is not a surprised result. By increasing the stroke amplitude, the 

reduced frequency ( k ) was decreased, and thus the unsteadiness was suppressed. 

Observation from previous literature also proves this. A fractional factorial design 

method based study [25] numerically investigated more than ten parameters which will 

affect the trajectory of hovering kinematics.  The authors concluded that the high flapping 

amplitude plays more important roles for the steadiness of aerodynamic response of 

hovering flapping wings.  
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Table 1: Summary of lift and drag coefficient for flat flapping plates with different stroke 

amplitude 

0 /A c  
LC   L max

C   
. .L r m s

C  
DC   D max

C   
. .D r m s

C  

2 0.89 3.19 1.34 1.61 4.59 2.11 

4 0.80 1.90 1.04 1.28 2.43 1.58 

6 0.73 1.67 0.92 1.19 2.19 1.47 

 

        Comparing to flat flapping plates, sounding flow will become more unsteady by 

adding a trailing-edge flap (TEF) dynamic motion. This actually equals providing 

additional energy to the near-wall fluid field and creating more disturbances to affect the 

leading-edge vortex (LEV) separation. It is also very interesting to know whether the 

unsteady aerodynamic performance will or will not benefit from this extra “unsteady 

source”. 

        Figure 15 shows cycle-averaged force (lift and drag) coefficient and aerodynamic 

power coefficient time history against the trailing-edge deflection amplitude ( T ). Each 

curve indicates a different value of stroke amplitude ( 0 /A c ).  The first point of each 

curve presents the performance of a flat plate without TEF. For the rest series points, it 

shows the changing tendency of aerodynamic performance by increasing TEF deflection 

amplitude which is ranging from 10 to 80  respects to a symmetrical TEF rotation 

( 0   ). In general, both dimensionless force and power coefficient increase with 

reduced frequency ( k ). The difference between maximum and minimum values of each 

curve is smaller for larger stroke amplitude one. Furthermore, the drag force and 
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aerodynamic power coefficient present similar trend with the increasing value of TEF 

deflection amplitude ( T ), and gradually reach to peak values at T around 60 . This is 

mainly because the drag force is the major component of power consumption for the 

horizontal stroke plane.  As the deflection amplitude continually increasing, the drag 

force will reach to its limit since the effective projected area of deformed cannot 

unlimited varying. Unlike the monotonous changing tendency for drag and power 

coefficients, the lift coefficient curves show more diverse pattern.  As shown in Figure 

15(B), lower stroke amplitude cases present a bigger arch shape, such as lines ranging

02 / 4A c  . For higher ones, as the TEF deflection angle increasing, the lift coefficient 

decrease almost linearly. This indicates TEF actuation is more effective for smaller stroke 

amplitude comparing to larger ones. In other words, regardless the limited range of 

Reynolds number selected for the current investigation, the unsteady aerodynamic 

mechanism can benefit more from the chord-wise deformation for smaller stork 

amplitude flapping motion. If we use 75% span as the reference chord, the stroke 

amplitude angle for three-dimensional flapping is around 40  to 90 for aspect-ratio 

ranging from 2 to 6. Beyond that, the stiffer wing might provide better aerodynamic 

performance. The results presented by Heathcote and Gursul [26,27] also showed that the 

deformation of flapping wing is not the more the better, but for modulating optimal 

vortex formation to generate more jet in vertical direction.  
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Figure 15: Cycle-averaged drag coefficient (A), lift coefficient (B), and aerodynamic 

power coefficient (C) plotted against the trailing-edge deflection amplitude ( T ) for 

different flapping amplitude value ( 0 /A c ). In which, T ranging from 10 to80 , and 

0T  shows the performance of the rigid flat plate. In all above cases, the phase shaft 

( ) is zero and the Reynolds number was fixed at 100. 
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        Except the force production and power consumption, aerodynamic efficiency is also 

another main concern for hovering. From Figure 16, we can see that in general the lift 

enhancement resulting from TEF comes at a cost of lower lift-to-drag ratio and 

aerodynamic efficiency in terms of lift-to-drag. Another thing we can learn from this plot 

is that although the lowest stroke amplitude ( 0 / 2A c  ) cases present highest lift 

production, the aerodynamic efficiency is 30% lower than others, especially for smaller 

deflection amplitude. With the deflection amplitude increase, the efficiency for all cases 

is comparable.  

 

Figure 16: (A) Cycle-averaged lift-to-drag ratio; (B) Aerodynamic efficiency (lift-to-

power). In which, T ranging from 10 to80 , and 0T  shows the performance of the 

rigid flat plate. In all above case the Reynolds number were fixed at 100. 

 

        Based on above study, we will select stroke amplitude  0 / 3A c   for the continuing 

study. This selection has compromised on the lift production to gain higher aerodynamic 

efficiency. In the next subsection, a detailed parametric study will be presented to show 
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how the trailing-edge flap deflection amplitude and phase shift affect the aerodynamic 

performance.  

3.7 Effects of Trailing-Edge Flap Deflection Amplitude and Phase Shift 

        To explore the influence of trailing-edge flap kinematics on the aerodynamic 

performance, we calculated the mean force and power coefficients averaged throughout 

the stroke.  They were evaluated for all pairs of trailing-edge deflection amplitude angle 

( [10 ,80 ]T    ) and phase shift angle ( [ 80 ,80 ]     ), at stroke amplitude fixed at

0 / 3A c  .  

        Figure 17 shows six sample simulations taken from the full set of 72 trials to 

illustrate how the magnitude and time course of aerodynamic forces vary with trailing-

edge deflection amplitude and phase shift. The force trajectories display prominent peaks 

at the middle of each half stork and minimum values during stoke reversal. Although the 

plate kinematics are symmetrical for all simulations, the force trajectories during the 

down-stroke and up-stroke do not similar at all because of complex unsteady effects. As 

numerous precious studies [28,29,30] have shown that the aerodynamic performance 

result from an interaction of three distinct interactive mechanisms: delayed stall, 

rotational circulation, and wake capture. Since the major enhancement always appears on 

the peaks, it suggests that the translational mechanism effect is amplified by adding 

dynamic motion on trailing-edge flap. Another possibility is that the deformed plate 

might be present more effective angle of attack to catch the vortex shedding during 

previous stoke and benefit more from wake capture mechanism. To get better idea about 
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how the force production was modified, more detailed information about the wake 

structure will be provided in the next section.  

 

Figure 17: Sample instantaneous lift (A, C) and drag (B, D) coefficient for various 

combinations of trailing-edge deflection amplitude ( T ) and phase shift ( ). In each 

case, the flapping stroke amplitude is fixed at 0 / 3A c  , and Reynolds number is 100. 

 

        To provide a more comprehensive picture of aerodynamic performances changing 

with different kinematics of trailing-edge flap (TEF), the maps for cycle-averaged lift 
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coefficient, drag coefficient and aerodynamic coefficient are shown in Figure 18. The 

maps of lift-to-drag ratio and aerodynamic efficiency in terms of lift-to-power ratio are 

shown in Figure 19. In general, delayed TEF rotation ( (0 ,80 ]    ) exhibits a broad 

maximum range compared to advanced TEF rotation ( [ 80 ,0 )     ). For the map of 

mean lift coefficient
LC , as shown in Figure 18(A), it is sensitive for the changing of both 

TEF deflection amplitude and phase shift. Moreover, there are optional configurations for 

T  and  . The maximum 
LC  happens when 50T   and 60   . As expected, map 

of mean drag coefficient (
DC ) rise monotonically with increasing trailing-edge deflection 

amplitude ( T ) for any given value of phase shift, and is not very sensitive to phase shift 

for advance TEF rotation range. Furthermore, the map of aerodynamic power coefficient 

(as shown in Figure 18C) is similar comparing to the drag coefficient.  

        It is interesting to perform the comparative study between flapping plates with and 

without trailing edge control, as shown in Figure 20. Flapping plate with such control 

could be aerodynamic force productive or energetic efficient over completely rigid plate. 

Table 2 shows the aerodynamic coefficients of cases with optimal configuration of 

trailing edge parameters and cases of completely rigid flapping plate. It is obvious that by 

selecting different combination of deflection amplitude and phase shift the cycle-

averaged lift and efficiency enhancement can reach up to 27% and 14%, respectively.   
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Figure 18: Parameter maps of cycle-averaged lift coefficient (A), drag coefficient (B), 

and aerodynamic power coefficient (C) as function s of trailing-edge deflection amplitude 

and phase shift. 
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Figure 19: Parameter maps of cycle-averaged lift-to-drag ratio (A), and lift-to-power 

ratio (B) as function s of trailing-edge deflection amplitude and phase shift. 
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Figure 20: Instantaneous lift (A) and drag (B) coefficient for flapping plate without 

trailing-edge flap (Rigid), owning optimal cycle-averaged lift ( 50 , 60T      ), and 

owning optimal cycle-averaged aerodynamic efficiency ( 10 , 80T      ).each case, 

the flapping stroke amplitude is fixed at 0 / 3A c  , and Reynolds number is 100. 

 

 

Table 2: Comparative study of cases with and without TEF 

Cases 
T    

LC  
DC  

PC  /L DC C  /L PC C  

1.Rigid /N A
 

/N A  0.82 1.30 0.99 0.63 0.83 

2. Optimal 

LC  

50  60  1.04 1.75 1.46 0.59 0.71 

3. Optimal     

/L PC C  

10  80   0.85 1.33 0.89 0.64 0.95 
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3.8 Vortex Modulation Resulting from Trailing-Edge Flap 

        In order to understand the lift enhancing mechanism through adding a dynamic 

trailing-edge flap (TEF), we further evaluate the vortex formation by comparing the 

optimal lift production case ( 50 , 60T     ) to the rigid plate (without TEF). The 

instantaneous vorticity field in an entire flapping cycle and the corresponding plate 

configuration are shown in Figure 21. There are several similarities in the vortex behavior 

between the two cases. For instance, a leading edge vortex (LEV) is generated during 

each half-stroke and is then recaptured by the plate during its return trip after the stroke 

reversal (e.g. the positive vortex blob at / 9.125t T   and the negative blob at 

/ 9.625t T  ) The LEV moves downward along the plate and may merge with the 

trailing edge vortex (TEV) of the same sign that is being formed (e.g. the positive blob at 

/ 9.25t T   and the negative blob at / 9.75t T  ). The merged vortex is strengthened and 

meanwhile stretched by the trailing edges as shown by the positive vortex band at 

/ 9.375t T  and also by the negative band at / 9.875t T  . The wake below the hovering 

plate is marked by a pair of TEVs with opposite signs that are generated by the two half-

strokes in a complete cycle. 

        The differences in the flow field between rigid plate and plate with trailing-edge flap 

( 50 , 60T     ) are also evident. First, the size of both LEV and TEV for flapping 

plate with trailing-edge flap is generally larger than the rigid one. Second, the TEVs pair 

below the hovering plate moves downward faster for plate with trailing-edge flap 

compering to the rigid one. This indicates that by adding a trailing-edge flap the induced 

velocity in vertical direction might be enhanced, and thus create a stronger jet like 

downwash in vertical direction.       



43 

 

 

Figure 21: A series of instantaneous vortex field in a flapping cycle for rigid plate (first 

and third columns) and plate with trialing-edge flap (second and fourth columns). The red 

and blue color indicates clockwise and anticlockwise, respectively. 

 

        The distinct vortices have been indicated in Figure 21. To quantify the strength of 

these vortices, I first visualized the vorticity field using contour lines. After each vortex is 

manually identified, a closed contour line is generated around this vortex with the 
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specified level, and then the circulation   is computation along this line. Thought the 

magnitude of the circulation depends on the chosen contour level, the characteristic 

behavior of the vortex is not affected by this choice. The computed circulation s of the 

LEV is shown in Figure 22 for the vortices indicated in Figure 21.  

        Generally speaking, the LEV circulation for optimal lift case ( 50 , 60T      ) is 

much stronger than the corresponding vortex for rigid one over a significantly long 

period in up-stroke. Comparing to up-stroke, down-stroke do not present much difference 

except during the plate start to reversal. The strength and timing of the LEV circulation 

have important consequences on the force production (Figure 20).  

        In order to understand this lift-enhancement mechanism of trailing-edge flap, the 

normalized pressure contours (shown in Figure 23) for both cases were compared during 

translational stage of down-stroke and up-stroke, respectively. During the translational 

stage, the LEV causes the flow to circulate around the leading-edge. The dynamic motion 

of trailing-edge flap feeds extra circulation to the TEV which induces a stronger 

downwash near the trailing edge. As a result, the vortex structure on the suction side is 

pulled down closer to the plate and backflow near the trailing edge is reduced. This leads 

to a larger range of low pressure field. Thus, the lift production is enhanced resulting 

from the increasing pressure difference between the upper and lower plate surface.    

        Figure 24 shows contours of the mean velocity in vertical direction where the mean 

is computed over the last two flapping cycles. Both plots show a high-intensity jet in the 

wake which is consistent with the fact that this is a lift-producing case. Also apparent is 

the asymmetry of this jet about the centerline. This asymmetry is consistent with the 

finding of [31,32] where asymmetric wakes have been observed for a thrust-producing 
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flapping foil. The direction of the wake deflection is determined by the starting motion of 

flapping plate. If the plate is started at the leftmost point and moved to right, a left 

deflection is obtained. However, once deflected towards one side of the centerline, the 

wake does not switch sides in a given simulation. The asymmetry produced a mean fore 

in horizontal direction that is significantly lower in magnitude than the mean lift force 

and therefore has little dynamical significance. 

 

Figure 22: Comparison of leading-edge vortex (LEV) circulation between rigid plate 

without trailing-edge flap (TEF) and with TEF dynamic motion ( 50 , 60T     ). The 

LEV circulation is nondimensionalized using reference velocity (U ) and chord length 

( c ). The gray shades indicate the down-stroke periods. The positive and negative values 

correspond to the strength of LEV during down-stroke and up-stroke, respectively.  
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Figure 23: Pressure contour comparison between rigid plate (A) and plate hinged with 

trailing-edge flap (B).  The pressure is normalized by using reference velocity. 

 

        The differences in the mean velocity contours (Figure 24) between rigid plate and 

plate with trailing-edge flap ( 50 , 60T     ) are also evident. The high-intensity jet 

is much stronger for the plate with trailing-edge flap. This provides another evidence to 

show the lift production is enhanced by creating stronger downwash. Also the deflection 

of the asymmetry jet also increased. 
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Figure 24: Contour of mean velocity (in vertical direction) corresponding to plate 

flapping configurations. (A) Rigid plate without trailing-edge flap; (B) Plate with trailing-

edge flap dynamic motion at 50 , 60T     . 
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Chapter 4: Three-Dimensional Hovering Motion with Trailing-

Edge Flap  

        Unsteady aerodynamic performance of deformed flapping plated has been 

considered for two-dimensional flows in last chapter. In this chapter, the performance 

exerted upon the plate with the three-dimensional wake vortices will be considered. 

Three-dimensional effect such as aspect-ratio and geometry of trailing-edge flap will be 

studied.   

4.1 Plate Geometry and Kinematics  

        The geometry considered in this study is a rectangular plate of varying aspect ratio 

with zero thickness membrane. The root of the plate is extended out a distance of 

0.5rootr c  from the axis of rotation. The plate follows a sinusoidal sweeping and 

pitching motion in an idealized horizontal stroke plane. Since there is no deflection on the 

stroke plane, the trajectory of a rigid plate can be described by two degrees of freedom. 

One is the leading-edge position angle ( ) in spherical coordinates, and another is the 

pitching angle ( ) about the leading-edge. The plate motion is thus specified by two 

periodic functions: ( )t  and ( )t . It is impractical to enumerate this family of 

kinematics by brute-force approach. The model chosen for this chapter is one of the 

simplest possible families of a hovering motion but it allows studying the dependence of 

force and flow by applying trailing-edge dynamic motion. 

        In particular, a three-dimensional plate flapping plate follow the motion governing 

by Eq. (15) and (16). The kinematics configuration shows in Figure 25. 
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( ) cos(2 )mt ft     (15) 

0( ) sin(2 )mt ft      (16) 

Where, ( )t  and ( )t  denote the rotational motion in azimuthal coordinate and pitching 

coordinate, respectively, f  is the flapping frequency, m  and m  are the amplitudes of 

sweeping and pitching, respectively,   and   are the phase offset of sweeping and 

pitching, respectively, 0  is the initial pitching angle. 

 

Figure 25: Three-dimensional flapping plate kinematics. (A): Plate geometry and 

definition of kinematics parameters; (B): Flapping plate configuration during down-

stroke (red) and up-stroke (blue). 

 

        For study the effect of aerodynamic function of trailing-edge flap. A trailing-edge 

flap, accounting for 25% of the total area of plate, is hinged on the plate with three 

different shapes, as shown in Figure 26. The same as previous two-dimensional study, the 
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deflection angle (
T ) of trailing-edge flap is prescribed by Eq. (7) with respect to the 

hinge axis for mimicking time-varying camber deformation in three-dimensional space.  

 

Figure 26: Three types of trailing-edge shape. (A) Rectangular shape (TS); (B) Left 

triangle shape (LTS); (C) Right triangle shape (RTS). 

4.2 Normalization and Choice of Parameters 

        Similar as previous two-dimensional study, the three-dimensional flapping motion 

of the plate is completely specified by two dimensionless parameters, the Reynolds 

number ( Re ), and Reduced frequency ( k ), given by Eq. (17) and (18): 

75ref m
U c f R c

Re


 


   (17) 

75ref m

fc c
k

U R


 


 (18) 

Where, refU is the reference velocity, 75R is the representative radius which chosen as 75% 

of the tip radius, and c is the chord length. In current study, the maximum plate velocity 

of leading-edge is used as the reference velocity, written as 75ref mU f R  . 

        The Reduced frequency ( k ) provides a measure of unsteadiness associated with a 

flapping wing via spatial wavelength of the flow disturbance with the chord length. Note 
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that the reduced frequency is inversely proportional to the product of plate azimuthal 

angle amplitude and reference rotational radius, but not related to flapping frequency.  

        Similar as two-dimensional definition, in current three-dimensional study, the 

performance of the flapping plates is to be measured in terms of force (vertical and 

horizontal) generation and power expenditure. The classical way of assessing and 

comparing these quantities is through non-dimensionalized coefficients. This non-

dimensionalization also requires one to choose an appropriate velocity scales as the 

aforementioned refU . Then, the force coefficients can be defined as: 

2

2 L
L

ref

F
C

U S
  (19) 

2

2 D
D

ref

F
C

U S
  (20) 

Where, LF  and DF  are the vertical (lift) and horizontal (drag) force, respectively, S  is 

the plate surface area, and LC  DC  are the corresponding coefficients. 

        The instantaneous aerodynamic power was calculated as 
1

n

i i

i

P F v


  , where n is 

total number of triangular element on the wing, iF is the aerodynamic force on each 

element and iv is the corresponding velocity of the element. Following a similar approach, 

the power coefficient can be expressed as: 

3

2
P

ref

P
C

U S
  (21) 

Where, PC  is the power coefficient and P is the aerodynamic power expended by the 

plates. 
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        The cycle-averaged aerodynamic efficiency (lift-to-power ratio) is used as a metric 

of aerodynamic performance in accordance with the ratio of lift-to-drag ratio, which is 

defined as: 

/aero L PC C   (22) 

 

4.3 Case Setup and Grid Independent Study 

        Figure 27(A) shows the flapping plate configuration immersed in the three-

dimensional non-uniform Cartesian grid. The coordinate directions, which are also shown 

in Figure 27(B), are as follows: X is in the horizontal direction with +X pointing towards 

the up-stork direction; Z is the span-wise direction with +Z pointing to the tip of the plate; 

and Y is the vertical direction with +Y pointing upward.  

 

Figure 27: (A) Three-dimensional flapping plate configuration immersed in the two-

dimensional non-uniform Cartesian grid; (B) Boundary conditions for the simulation. 
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        Figure 27(B) shows the boundary conditions applied on the computational domain 

boundaries. On all of the boundaries, a far-field boundary condition which amounts to 

specifying the stream-wise (vertical) component to zero and setting the normal gradients 

of the other velocity components to zero is applied. The final domain size normalized by 

the chord length ( c ) is 30 30 30   and this large domain ensures that the boundaries do 

not have any significant effect on the computed results. As shown in Figure 27(A) the 

grid is designed to provide high resolution in the region around body as well as the wake 

which is expected to develop below the plate configuration. The final grid adopted here 

has 137 161 77   to 233 161 161  non-uniform mesh for different aspect-ratio case 

with the smallest resolution of 0.02x y  . This corresponds to 50 grids across the 

chord –wise direction on plate surface.  

        Three additional simulations on different grids were carried out to assess the 

convergence of the computed flow. Simulation 1 was carried out on a grid which had 70% 

more grid points than the baseline grid and simulation 2 was carried out on a mesh with 

50% less grid points than the baseline grid. Both of these simulation s produced a 

maximum 2% difference from the baseline in mean lift and root-mean-squres (r.m.s) 

values of lit and drag. Finally simulation was carried out on a grid where the number of 

grid points in each direction around the plate was twice those in simulation 2. This 

simulation also produce mean lift and r.m.s lift and drag that are with 2% of simulation 2 

and take together with other simulations, provide clear proof of the grid convergence of 

the current results. 

        The time-step chose for the current simulation is ~ 32.08 10  which corresponds to 

a Courant-Friedrichs-Lewy (CFL) number of ~ 0.61. With this time step, each flapping 



54 

 

cycle takes 480 time-steps. In the current work, each simulation was integrated over four 

flapping cycles. Estimates of cycle mean and r.m.s lift as well as r.m.s drag that there is a 

less than a 1% difference in these quantities from the third to the fourth cycle. Thus, the 

flow quantities reach a near-stationary state by the third cycle and all of the flow statistics 

in the following discussion are estimated based on averaging over the third and fourth 

cycles. 

4.4 Effects of Aspect-Ratio 

        Figure 28 gives the time courses comparison of lift coefficient (
LC ) and drag 

coefficient (
DC ) of plates with AR =1, 2 and 4 in a completed third and fourth flapping 

cycles for a fixed Reynolds number 100. The instantaneous aerodynamic performance 

generated on the plate for different aspect ratio cases share the similar tendency for both 

lift and drag coefficient. Overall, in the current flow condition, 1AR  case owns relative 

better performance in terms of lift production. Moreover, 4AR  case owns relative 

better efficiency in terms of lift-to-power ratio. The cycle-averaged force production and 

power consumption shows in Table 3. 

Table 3: Comparison of mean lift coefficient ( LC ), drag coefficient ( DC ), aerodynamic 

power coefficient ( PC ), lift-to-drag ratio /L DC C , and lift-to-power ratio /L PC C  for 

different aspect-ratio 

AR  
LC  DC  PC  /L DC C  /L PC C  

1.0 0.652 1.222 1.097 0.53 0.59 

2.0 0.644 0.986 0.782 0.65 0.82 
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4.0 0.566 0.815 0.619 0.70 0.91 

 

         

        Figure 29 shows the surface pressure distribution on the plate top surface at the 

middle of down-stroke corresponds to instants of the maximum force difference period. 

During the flapping motion, the significant low pressure area is located close to the 

leading edge near the tip due to the attached leading-edge vortex (LEV). For the case 

with best efficiency case, 4AR  , there exist a relative large low pressure area at the 

corner of tip. On the contrary, a larger lower pressure area present close to the tip area for 

smallest aspect-ratio case 1AR  .  

 

 

 

 

Figure 28: Comparison of instantaneous lift coefficient (A) and drag coefficient (B) for 

different aspect-ratio ( AR =1, 2, 4) during the third and fourth flapping cycle. 
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Figure 29: Evolution of the surface pressure distribution on the suction side of the plate 

with different aspect-ratio. The pressure is normalized by the reference velocity. 

 

4.5 Effects of Trailing Edge Shape  

        Figure 30 gives the time courses comparison of lift coefficient ( LC ) and drag 

coefficient ( DC ) of plates with different trailing-edge flap (TEF) shape in a completed 

third and fourth flapping cycles for a fixed Reynolds number 100. The instantaneous 
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aerodynamic performance generated on the plate for different TEF shape cases share the 

similar tendency for drag coefficient but not for lift coefficient. Overall, in the current 

flow condition, both RS and RTS cases own relative better performance in terms of lift 

production. The cycle-averaged force production and power consumption shows in Table 

4. 

        Figure 31 presents the comparison of surface pressure distribution on the suction 

surface of plate with different trailing-edge flap shape. By adding the trailing-edge flap, 

the whole surface pressure distribution was changed tremendous. This change also results 

in a flow filed modification which can be seen from Figure 31(B). 

 

Figure 30: Comparison of instantaneous lift coefficient (A) and drag coefficient (B) for 

different trailing-edge shape (Rigid: without trailing-edge flap; RS: rectangular trailing-

edge shape; LTS: left triangular trailing-edge shape: RTS: right triangular trailing-edge 

shape) during the third and fourth flapping cycle. 
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Table 4: Comparison of mean lift coefficient ( LC ), drag coefficient ( DC ), aerodynamic 

power coefficient ( PC ), lift-to-drag ratio /L DC C , and lift-to-power ratio /L PC C  for 

different trailing-edge flap (TEF) shape. 

TEF Shape 
LC  DC  PC  /L DC C  /L PC C  

Rigid 0.325 0.418 0.637 0.78 0.51 

RS 0.649 0.798 1.108 0.81 0.58 

LTS 0.568 0.678 0.896 0.84 0.63 

RTS 0.669 0.896 1.276 0.75 0.52 

 

 

Figure 31: Comparison of surface pressure distribution on the suction side of the plate 

(A) and iso-surface vortex structure (B) for different trailing-edge shape at the middle of 

down-stroke 
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Chapter 5: Summary and Conclusions  

5.1 Accomplishments 

        A parametric study has been conducted to investigate the aerodynamic performance 

of deformed plates in hovering motion. A model of 2D flapping plate with dynamic 

trailing edge deviation angle is built. Two adjustable parameters trailing-edge deflection 

amplitude ( T ) and phase shift between leading-edge and trailing-edge rotation ( ) are 

used to control the trailing edge flap.  

        The results show that the effect of trailing-edge flap was amplified as the flow 

becoming more unsteady in terms of higher reduced frequency ( k ). For a selected stroke 

amplitude ( 0 / 3A c  ), flapping plate can increase the cycle-averaged lift productive in a 

relatively efficient way by considering higher lift production and lower power 

consumption. All pairs of trailing-edge deflection amplitude angle ( [10 ,80 ]T    ) and 

phase shift angle ( [ 80 ,80 ]     ), at stroke amplitude fixed at 0 / 3A c  , were evaluated. 

From the aerodynamic performance contours, it is observed that the optimal lift 

production and optimal aerodynamic efficiency can be achieved by tailoring the trailing-

edge deflection angle and phase shift. However, this performance enhancement comes at 

a cost. It is always a compromise between high lift and high efficiency. In general, drag 

force and power consumption are more sensitive for the changing of deflection amplitude 

( T ). On the other hand, lift generation is more sensitive to the change of phase shift ( ).  
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The highest lift production and aerodynamic efficiency can be achieved by using the 

combination of 50 , 60T       and 10 , 80T      , respectively.  

        Further analysis based on the flow fields showed that the dynamic motion of 

trailing-edge flap feeds extra circulation to the trailing-edge vortex which induced a 

stronger pair leading-edge vortex. As a result, the vortex structure on the suction side is 

pulled down closer to the plate and this leads to a larger range of low pressure field. Thus, 

the lift production is enhanced resulting from the increasing pressure difference between 

the upper and lower plate surface. The mean velocity in vertical direction also present a 

much stronger high-intensity jet for the plate with optional trailing-edge flap 

configuration comparing to the rigid flapping plate case.    

        Unsteady aerodynamic performance of deformed flapping plated has also been 

considered for three-dimensional flows. Three-dimensional effects such as aspect-ratio 

and geometry of trailing-edge flap have been studied. The results show that the larger 

aspect-ratio case owns higher aerodynamic efficiency in terms of lift-to-power ratio. 

Through applying different trailing-edge shape, the surface pressure distribution on the 

suction side will be changed and result in a vortex structure modulation.  
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5.2 Future Work 

        The results from our analysis show that trailing-edge flap offers a viable alternate 

way for lift enhancement in hovering. In addition, the results from two-dimensional and 

three-dimensional parametric studies show that the significant improvement can be 

obtained by tailoring the trailing-edge deflection angle and phase shift. The following 

recommendations are mad for future work. 

1. In order to investigate the effect of trailing-edge flap on the aerodynamic 

performance and flow modulation, the kinematics of flap was controlled by a 

prescribed sinusoidal function in present work. The further goal is to develop a 

closed-loop control method which can adjust the kinematics of trailing-edge flap 

instantaneously. 

2. In addition, the current analysis shows that the structure of the leading-edge 

vortex (LEV) is affected significantly by changes in trailing-edge flap kinematics, 

such as amplitude and phase shift. In real birds or insects flapping flight, 

deformed wing present more complex deformation in both chord-wise and span-

wise. So, more in-depth model could be developed to allow the plate to deform 

with the flow rather than the prescribed deflection. 

3. Moreover, the focus of current was to use the idealized hovering motion to study 

the aerodynamic function of trailing-edge flap. This also can be adapted to further 

study other useful maneuver in flapping flight, such as forward flight, take-off, 

and turning maneuvers. 

4. One of the requirements for a viable MAV is the ability to withstand sudden 

perturbations in the wind speed. Atmospheric turbulence dictated by terrain and 
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weather conditions can potentially introduce roll, pitch and yaw disturbances. The 

MAV is expected to fly within 100m from the ground where wakes shed by 

ground objects are also anticipated to play a significant role. Hence, analyzing 

influence of dynamic trailing-edge flap by changing the free-stream condition 

using an impulse function with varying frequency and amplitude is necessary to 

get a comprehensive understanding of the effect of wind gusts on lift and thrust 

production. 
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