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Abstract 

Determining value of intelligence can be a difficult problem.  One way to value intelligence is to 

judge a document’s worth by its location within a structure of a given corpus of documents.  

Network applications are a natural extension of this logic.  I introduce a methodology for value 

of information (VOI) for networks, comparable to VOI for influence diagrams.  Additionally, 

citation networks and Google’s PageRank algorithm are examples of valuing information based 

on its location within a structure.  Dynamic network analysis (DNA) has been used to allow 

social network analysis (SNA) involving multi-nodal networks by creating inferences across 

networks with common nodes.  I introduce the application of the DNA layered approach to 

information networks in an attempt to determine value of intelligence.  These applications 

demonstrate supplemental, and objective ways of measuring intelligence.  
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1 Introduction 

1.1 Motivation 

Since the events of 9-11, the United States has waged a war against terrorists.  This war is 

unlike most previous wars, in that there are few battle lines, the enemy does not necessarily wear 

a uniform, and leadership and location of the enemy has shifted through different countries and 

continents throughout the course of the war.  In order for civilian and military leadership to make 

effective plans to win this war, they need effective strategic intelligence.  Intelligence, defined by 

Lowenthal, “refers to information that meets the stated or understood needs of policy makers and 

has been collected, processed, and narrowed to meet those needs.”1  This intelligence helps the 

leadership understand the enemy they’re facing, promotes development of counter measures to 

help defeat the enemy’s strategy, lending support towards a winning U.S. strategy.  Intelligence 

is a key aspect of this war, and for that matter, any war.   

The U.S. Intelligence Community (IC) produces over a billion pieces of information a day.2   

Current efforts to improve intelligence focus on collecting more information rather than analysis 

of existing information/intelligence.  Collection management, within the IC, is a practice that 

focuses on knowing the needs of the intelligence users and determining how best to allocate 

limited collection resources.3  Collection managers also review existing allocation strategies by 

determining if intelligence collected is valuable and relevant. Providing an objective, 

supplemental measure to collection managers, that is calculated while intelligence is still in the 

intelligence cycle would be useful to collection managers to appropriately allocate the national 

intelligence resources. 
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1.2 Purpose and Scope 

The idea of a quantitative measure for intelligence is a huge topic.  Ideally, a true measure 

of the value of intelligence might incorporate a number of different factors both subjective and 

objective.  The focus of this dissertation will be on a supplemental and objective quantitative 

measure of intelligence.  Specifically, a network based approach to demonstrating value of 

intelligence within a given corpus of documents.  The overall intent of this research effort is to 

examine whether or not a layered network methodology indeed offers a quantitative approach 

towards measuring the various aspects of intrinsic value of intelligence dealing with the 

connectivity within existing knowledge 

1.3 Organization of Document 

The introduction is contained within chapter 1.  In chapter two, I explore the literature 

behind valuing intelligence and how it might apply to this methodology.  I recommend applying 

a supplemental valuing methodologies within the intelligence cycle, or before decisions or 

actions are made using the intelligence.  In the third chapter I offer a compliment to value of 

information (VOI) in influence diagrams, but for networks.  Additionally, I explore possible 

applications for VOI based valuations of intelligence.  In chapter four, I outline my methodology 

for applying layered networks to an intelligence network in order to demonstrate value within the 

corpus.  The fifth chapter outlines some results from applying the layered network approach.  

Finally, the sixth chapter is the conclusion and suggestions for future work over the entirety of 

my research. 
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2 Background  

2.1 Introduction 

The U.S. Intelligence Community (IC) harvests over a billion pieces of data a day, but 

often lacks the ability to analyze that data and produce valuable intelligence.4 Efforts to improve 

intelligence often focus on collection rather than analysis. According to the 9-11 Commission’s 

report, the intelligence community had information that may have either helped decision makers 

mitigate or even stop the 9-11 attack.  Even though the IC had enough information to determine 

that “the system was blinking red,” according to a Central Intelligence Agency (CIA) supervisor, 

“no one looked at the bigger picture; no analytic work foresaw the lightning that could connect 

the thundercloud to the ground.”5   

Collection management within the IC is a practice that focuses on knowing the needs of 

the intelligence users and determining how best to allocate limited collection resources.6  

Collection managers also review existing allocation strategies by determining if intelligence 

collected is valuable and relevant. Existing methods for evaluating intelligence, however, have 

focused on their value to the decision maker.  Since decisions, especially at the national level, are 

subject to conflicting priorities and politics, it is difficult to determine what role intelligence 

plays in decisions. Current value of information methods, however, rely crucially on whether or 
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not information is used in a decision and since collection managers can never truly determine 

how intelligence is used, existing methods are often inapplicable (see Figure 1). 

The IC, and collection managers specifically, will benefit from an assessment methodology 

that allows a quantitative measure of the impact certain intelligence has on an analysis. A robust 

method of this type will allow managers to objectively measure “good” or effective intelligence 

vs. “bad” or ineffective intelligence. A quantitative measure applied across the different classes 

of analyses would provide a relative scoring of the intelligence that different sources produce 

thereby allowing collection managers to more cost effectively manage expensive collection 

resources.  

The structure of the paper is as follows.  The first section introduces the concept of valuing 

intelligence within the intelligence cycle. The second section defines national security 

intelligence for the purposes of this paper. The third section describes the variety of methods or 

theories currently used to “value” information both in the government and in private sector and 

also outlines why these methods fall short when applied to national security intelligence.  The 

fourth section discusses research on how the valuation of intelligence has been attempted to date 

 

Figure 1 Intelligence collection management within the intelligence cycle 
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and their limitations.  The fifth section makes the suggestion of two possibilities for measuring 

the supplemental value of intelligence within the intelligence cycle. Finally, in the sixth section 

we offer a conclusion and suggestions for future work. 

2.2 Definition of Intelligence 

A useful definition for intelligence given by Jennifer Sims is “the collection, analysis, and 

dissemination of information for decision-makers engaged in a competitive enterprise.”7  

Specifically for the purposes of this paper, we will be discussing strategic level intelligence, but 

we feel that this work will be effective at all levels of decision making using intelligence.  

Understanding the definition of intelligence is the first step in measuring of it.  Although various 

authors have put forth a number of definitions of intelligence, one of the main distinctions of the 

various definitions, and most important to the measurement of intelligence, is that some authors 

suggest that covert actions taken by the government should be included in the definition of 

intelligence.8,9,10  This would turn the term intelligence into something that not only described 

information, but also described actions taken by the government.  The definition of intelligence 

for this paper will not include covert action. 

A useful distinction, when defining intelligence, is the difference between secrets and 

mysteries.  According to John C. Gannon, then Deputy Director for Intelligence in the CIA, in a 

speech to the World Affairs Council in 1996, the intelligence business distinguishes between 

secrets and mysteries.  Specifically, “secrets, at least theoretically, can be obtained one way or 

another… mysteries on the other hand, are unknown or unexplained phenomena.”  An example 

he gives for a secret is “the specifications for a new weapon system being developed by a foreign 

government.”11   In a talk delivered to a Military Operations Research Symposium (MORS) 

working group at the Office of the director of National Intelligence (ODNI) in December of 
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2011, Director of National Intelligence (DNI) James Clapper, referring to the unrest in Egypt at 

the beginning of 2011, suggested an example of a mystery might be exactly when President 

Mubarak would choose to step down.12  Clearly the decision on when President Mubarak would 

step down was not a secret. It is likely that President Mubarak did not know when he would step 

down until the very morning that he did.   

At a very general level, data is harvested and systematically turned into intelligence using a 

process called the Intelligence Cycle, seen below in Figure 2.  The first stage is planning and 

direction where the decision makers or intelligence managers direct that some target should be 

collected on and what different methods should be used to collect the information.  The second 

stage is collection, where the various methods assigned to collect the information actually collect 

the specified information.  The third step is processing, where the vast amount of information is 

translated, if needed and reduced down to the needed information to give to the analysts.  

Analysis and production is the fourth step where analysts actually convert the information into 

intelligence by “integrating, evaluating and analyzing all available data.”13  The final step is 

dissemination where the intelligence is distributed to the decision makers who may have initiated 

the process in the planning and direction step.  Though it is usually displayed as a cycle where 

information goes from one step to the other, in reality the progression tends towards the 

dissemination stage, but frequently information/intelligence is moved back steps based on what 

the information contains.14  For example, if while processing (stage 3) a satellite photo, an 

analyst notices that a location of interest is only partially captured by the photo, due to new 

construction, they might send the photo back to the planning and direction stage (stage 1) with 

direction to include more land mass in the photo.  For a more detailed discussion on the 
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intelligence cycle with a specific focus towards operations research in the intelligence cycle, see 

Kaplan.15 

Some have stated that intelligence should be defined by information that supports decision-

making by reducing uncertainty.16  While this may be true in some cases, it does not sufficiently 

describe the entirety of the process.  This definition fails to capture the useful work by 

intelligence analysts in their efforts to gain a general understanding of competitors.  Prior to 

actions by the Japanese on Pearl Harbor, US intelligence analysts collected a vast amount of 

information on the Japanese.  Much of this information was instrumental in understanding the 

way the Japanese would prosecute the war.17  This information was not a prelude to a stated 

decision, but yet was still considered useful intelligence.  

2.3 Approaches to Valuing Information 

The first approach that applied a quantitative value to information was Shannon’s 

Information Theory model.18  In it, Shannon introduces the five components to communication: 

the source, the transmitter, the channel, the receiver and the destination.  A message, primarily 

 

Figure 2 Intelligence Cycle (Adapted from The Work of the Nation) 
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binary in nature, is introduced into this system and measured on how accurately the message is 

transmitted through the system.  Although he discusses ways to measure the communication of 

non-binary messages, his model largely focuses on the syntactic level of communication.  When 

looking at many of the developments of information theory since Shannon’s work, the work 

revolves around innovations in data compression efficiency and efficiencies in the rate 

information can travel through a noisy channel.19  Although this is the first research modeling of 

information through a system, the research focuses on describing the syntax of information 

moving from the source to the receiver, not necessarily the value of the information flowing 

between the two nodes. 

Another application of valuing information is on the open market.  There is a market for 

information to be bought and sold on the economy.  In 1961, Stigler wrote about determining the 

market price of information.20  He develops a mathematical representation for the price one 

might pay to know more information about a market or product, specifically through advertising.  

In addition, information economics also describes certain specific properties of information that 

make information different from other goods sold in markets.  According to Varian, these 

properties include: experience good, returns to scale, and public goods.21  “Experience good” is 

the property of information that you can only tell whether the information is valuable to you once 

know it, but once you know it, you will most likely have already paid for it.  Returns–to-scale 

refers to the fact that information can be costly to create or produce, but relatively cheap to 

reproduce.   Pure public goods means that information is both nonrival and non-excludable.  

Nonrival means that one person consuming information does not diminish the amount of 

information available to others.  Non-excludable means that one cannot keep another from 

consuming the information. Though the many of the properties of information are still applicable 
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to intelligence, much of the information economics is currently not applicable because by 

definition, the practices within information economics reside in a commoditized environment.  In 

the intelligence world, a government might pay money for information, or for the option to view 

information, but will certainly not sell the information on the other side.   

2.4 Decision Focused Methods 

Some methods for valuing information are decision focused.  In other words, the quality or 

value of the information is based upon the decisions made or recommended using that 

information.  One such approach within decision analysis is the value of information (VOI).  

According to Clemen et al. we gather information in order to reduce uncertainty so that we can 

make decisions that give us a better chance of having a good outcome.20  We will review the 

basic principles of VOI in this paper as in might be used in the intelligence cycle (for details see 

Clemen et al.22 ). 

When there is a decision to be made that determines an irrevocable allocation of resources, 

a decision analysis framework is an applicable approach.23  There are numerous classes of 

models one can use to model a decision process: decision trees with probabilities, network 

models, and multiple objective decision analysis to name a few.  A decision problem is 

represented with more structure and detail by using state variables and modeled using 

probabilities, often elicited from experts and stakeholders.     

An illustrative example of how we might use a decision tree to help decision makers solve 

a problem is where decision makers are faced with the problem of whether to spend money to 

harden, or better defend, a site that terrorists may attack.  In an actual application there may be 

other, more important variables than the cost in dollars, but for this purpose we will use the cost 

in dollars.  Suppose the following given conditions in Table 1.   



 
 

10 

 

 

 

Table 1 Initial conditions on illustrative example (all amounts in $ thousands) 

 

An attack on the site would cost the defenders $200 million, yet it would take $25 million 

to harden the site.  If the site is hardened, the site would only experience 70% of the damage in 

cost of an attack.  Also, we assume the probability of an attack is 90%.  In this very simplistic 

illustrative example, shown on a decision tree in Figure 3, the optimal decision would be to 

harden the site because the expected value of loss would be $151 million, rather than the $180 

million loss if decision makers did not harden the site.  Again, this is an illustrative example, so 

we shall assume that analysts have done due diligence in determining the true probability of an 

attack (against the possibility of a deception by foreign intelligence) and the magnitude of an 

attack which would affect the cost of an attack as well as the cost to harden a site. 
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In the above example, information is not modeled, but the approach can be adapted to 

include information.  VOI explores the impact of specific pieces of information on the decision 

recommended.  Ideally, we would want the information given from an expert to be perfect, in 

other words, no errors.  In reality, we understand that this rarely happens, but in theory if we find 

the expected value of perfect information (EVPI), then we can find the upper value of the worth 

of that information.  In order to mathematically describe perfect information, we will assume that 

our expert is making predictions on a terrorist attack.  Our expert always gives perfect 

information; mathematically this is a conditional probability expressed as: 

P(Expert says “attack” | There is an attack) = 1 (1) 

In other words, the probability given there was an attack, that our expert said there would be an 

attack is equal to 1.  In addition perfect information assumes: 

P(Expert says “no attack” | there is an attack) = 0 (2) 

The probability that our expert predicts no attack and there actually is an attack is equal to zero. 

And finally, 

 

Figure 3 Decision tree of illustrative example 
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P(Expert says “attack” | there is no attack) = 0 (3) 

The probability that our expert predicts an attack and there is no attack is equal to zero. 

The information that our perfect expert gives us must follow all of these rules.24  Once our expert 

makes a determination about a terrorist attack, there is no more uncertainty about the occurrence 

of that attack, though other probabilities may remain, such as the amount of loss of life, or the 

damage in dollars.  Knowing the equations 1-3, will allow us to get to the information that we 

really want to know,  

P(There is an attack | Expert says “attack”) (4) 

Or given the expert says there will be an attack, there actually will be an attack.   

We use Bayes’ Theorem to “flip” the probabilities of the equations 1-3, in order to derive 

the probability of equation 4 (for details, see Devore25 ). Admittedly, this problem is relatively 

simple and allows us to quickly understand that the probability of equation 4 is equal to 1, or in 

other words, there is 100% probability that given our expert says there will be an attack, an 

attack will occur.  Bayes’ Theorem is a useful tool for intelligence analysis in its own right.  

There have been a number of declassified intelligence analyses using Bayes’ theorem to update 

probability of a hypothesis.26,27,28 
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Going back to our notional expert with perfect information, we can use a decision tree to 

show us the decision on whether to use the perfect information, or take our chances with the laid 

out in the decision tree without information.  In Figure 4, we see that if we choose to take the 

perfect information, our expected loss would be $126 million, instead of $151 million.  In this 

notional scenario, the decision maker can expect to save $25 million by using the perfect 

information.  This means that this decision maker should be willing to pay up to $25 million in 

order to get access to this perfect information. EVPI, therefore, can be interpreted as the upper 

bound on how much one might be willing to pay for information that helps with a decision.   

 

 

Figure 4 Decision tree of illustrative example with perfect information 
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In reality, we can see that in most situations we will never have perfect information, but 

sometimes we have enough proof on the accuracy of the information to be able to arrive at the 

expected value of imperfect information (EVII).  Continuing this scenario, consider that we 

know the information in Table 2 about the accuracy of a source of information.  In the source’s 

history, 95% of the time when they’ve predicted an attack in the past, an attack has occurred.  

Additionally, when the source has predicted there will be no attack, 70% of the time no attack 

occurs. 

 

Table 2 Given information on accuracy of imperfect information source 

Using this information, we can modify the decision tree to display how valuable having 

this source’s information might be to the decision makers in Figure 5.  Using imperfect 

information we see that that although the decision maker should still use the source’s 

information, the amount they might pay for that information would be significantly less.  In this 

situation, the imperfect information allows us to expect to lose $150,825,000, while not using the 

information we would expect to lose $151 million.  In this case, the EVII is only $175,000, or 

using the source’s information, we expect to save $175,000, so decision makers should not pay 

more than this amount for the information that the EVII. In this simple example, the information 

reduces the expected loss by less than .2% and would likely not be worth considering, especially 

if there was uncertainty on the probability estimates. 
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In this illustrative and very simplistic example we demonstrate the application of VOI to a 

decision problem. Keisler studies more in depth analysis of EVPI within two act linear loss 

decision problems,29,30 reengineering of automobile manufacturers decisions31 and portfolio 

decision analysis32.  Each of these applications illustrate in detail the application of EVPI in 

different applications. 

Sometimes the assumption that a decision maker will always choose the least costing or 

in the case of a multi objective decision problem, most value option is a false assumption.  There 

is an interesting paradox within cognitive psychology that people sometimes make choices 

opposite of those choices they would agree were common sense.33  Risk analysts explore these 

paradoxes using risk attitudes.  An example of which is that some people are risk averse, or 

would pay money to avoid a situation involving possible loss, even if there was a corresponding 

possibility of gain.  On the other hand, some people are risk seeking, or would pay money to be 

involved in a situation described above.  Risk analysis uses utility functions to quantitatively 

demonstrate a decision maker’s risk attitude.34  The use of risk analysis in conjunction with 

decision analysis can be a powerful tool.  Delquié shows that the value of information can be 

highly dependent upon the decision maker’s predilections prior to the analysis being 

conducted.35   

One of the prime applications for risk analysis is risk management.  While risk is defined as 

the probability of a negative outcome, in risk analysis, analysts try to answer the following 

questions:  

1. What can happen? (i.e., What can go wrong?) – the scenario or vulnerability 

2. How likely is it that that will happen? – likelihood / probability 
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3. If it does happen, what are the consequences? – the damage36 

Applications of risk management attempt to determine variables with high variability in a 

situation or scenario, attempt to reduce the variability and reduce the probability or impact of a 

negative outcome as defined by the decision maker.  This usually involves trade-offs between 

risky options or activities.37  Risk analysis and risk management are used in a variety of different 

applications within the government.38,39,40,41,42 Information is usually a key component to 

 

Figure 5 Decision tree of illustrative example with imperfect information 
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determining risk.43   Risk management modelers use sensitivity analysis to explore the model or 

risk they’ve developed to identify which variables offer the most variability to their objective 

function.  Clemen et al. describes sensitivity analysis as answering the question, “What makes a 

difference in this decision?”44  These variables with a high degree of variability are then explored 

and effort is taken to reduce the variability.  In the view of risk management, high variability is 

not preferred because an outcome with a high probability of prediction is the eventual goal.   

 

One method of sensitivity analysis is a visualization tool called a tornado diagram.  A 

tornado diagram shows the magnitude of the effect a variable has on the objective when all other 

uncertainties are held constant, sometimes called a single factor sensitivity analysis.  If one 

creates a model, such as a decision tree, or an influence diagram, they can use a one way 

 

Figure 6 Example of an influence diagram of a financial alternative for a company (Adapted from Bodily et al.) 
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sensitivity analysis tool called a tornado diagram to show the impact of the variable on the 

overall decision recommended by the model.  The tornado diagram allows the modeler to vary 

one part of the influence diagram while holding all other variables constant.  Bodily et al. 

describe a six step process of value creating within a company. 45  One of the steps involves 

evaluating the risk and  

 

potential return of the alternatives, where Bodily et al. demonstrate using an influence diagram 

and a corresponding tornado diagram showing the sensitivity of the net present value (NPV) to 

the variables within that influence diagram in Figure 6 and Figure 7.  The purpose is to not only 

communicate to decision makers the variability within their model, but also to identify the 

variables with the greatest impact, both positive and negative on the NPV of the alterative.     

 

Figure 7 Tornado diagram showing sensitivity analysis of variables within financial alternative (Adapted from Bodily 

et al.) 
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2.5 Review of current valuation of intelligence 

Current methods for “valuing” intelligence tend to be subjective at best, but focused 

primarily on the decisions made based on the intelligence.  People who collect the intelligence 

also provide a numerical “value” of the intelligence with respect to credibility and likelihood; the 

issue with this is that the people who collect the intelligence have no incentive to downgrade the 

intelligence, but some incentive to upgrade the “value.”46  These admiralty rankings are seen in 

Table 3 and Table 4.  In other words, the people who collect the information, also grade the 

information.  

 

Table 3 Information accuracy codes47 

 

Table 4 Information reliability codes48 

Information might have a B-2 rating, which would mean the source is usually reliable, 

and that the information offered by the source is probably true.  In this way, intelligence analysts 

use a somewhat crude tool to apply probability to the information as a way of assessing its 
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quality.  The intent for this method is to capture the subjectivity in some form of a ranking, 

where the analyst derives the reliability and accuracy.  The implication is clear that even 

assuming the trustworthiness and integrity needed for most intelligence analysts, if an 

intelligence analyst wants his report read at the higher levels, the data on which his intelligence 

rests should be judged as reliable or at least potentially higher than the information’s actual 

reliability.  This need not be a case of low integrity, but rather an impassioned analyst who 

believes in an estimate and is willing to give more credibility or to overlook inconsistencies in 

sources who give information that supports his view.   

“I’ll know it when I see it,” is a quote from Justice Stewart remarking about being able to 

identify videos that were sexually explicit and of questionable moral value, but wouldn’t be able 

to describe it. 49  Some decision makers and senior intelligence analysts have the false belief that 

“good” intelligence can be recognized in a similar manner.  There are many examples throughout 

history of senior decision makers or even analysts receiving intelligence predicting an outcome, 

and simply ignoring the information, this paper will provide one such example. 

Author Robert Young outlines the capabilities of the French Intelligence during the time 

just prior to the start of World War II.  They had almost unprecedented access and intelligence 

into future attacks as well as knowledge about new doctrine the Nazis would use.50  Though the 

senior military and political leaders undoubtedly had the information, as well as the historically 

proven, good estimates, they either ignored the information or chose to do nothing about it.  In 

fact just after the successful German invasion into Poland, the senior French military attaché to 

Germany Colonel Rivet remarked that the attack had “come as no surprise to anyone but the 

Poles “and our General Staff.”51 
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There can be a number of reasons why decision makers and senior intelligence analysts 

might ignore or not recognize “good” intelligence.  Tversky and Kahneman produced a number 

of works studying cognitive biases that affect all humans, most notably winning a Nobel Prize 

for work contained in Judgment Under Uncertainty: Heuristics and Biases.52  Additionally, 

Kahneman has continued their research and reviews the state of the art in a recent book, 

Thinking, Fast and Slow.53  Some of the types of biases that all humans can suffer from are 

representativeness, availability, and adjustment and anchoring.  In representativeness bias, we 

sometimes incorrectly assume that one person or thing who might have some attributes similar to 

a stereotype actually represents and contains all the attributes that stereotype.  One example of 

this is when seeing a meek looking individual with glasses, and considering what job the person 

might hold, librarian might spring to mind since that individual might fit some common 

stereotypes of a librarian.  When a person suffers from availability bias, they mistake the actual 

frequency or probability of an event with the ease on might bring it to mind.  For example, after 

just having seen a plane crash on the news, one might mistakenly believe that they happen more 

frequently than they actually do.  Finally adjustment and anchoring is a bias where “people make 

estimates starting from an initial view that is adjusted to yield the final answer.”54  The final 

estimate tends to be highly impacted by where they started from.  These are only reflective of a 

broad range of heuristics and biases and while it has been shown that humans can train 

themselves to avoid these biases, they typically do not.  In fact, many people are unaware when 

they are suffering from these biases.  Additionally, Vertzberger outlines cognitive biases at work 

specifically in political decision makers.55  One of the cognitive issues he addresses is what he 

calls the cognitive style.  Vertzberger remarks that people, especially political decision makers, 

create a cognitive system of the world.  This system could be very complex in nature or not, and 



 
 

22 

 

also the individual might believe their system covers the entirety of reality or not.  Based on the 

cognitive style of the individual decision maker(s), they could easily discount otherwise “good” 

intelligence because the information did not fit or ran contrary to their cognitive style. 

Classification can tend to provide some defacto “value”; more highly classified 

intelligence tends to be more highly “valued.”  According to Lowenthal, “some intelligence 

processionals have mistakenly equated the degree of difficulty involved in obtaining information 

with its ultimate value to analysts and policy makers.”56  Although by definition, classification is 

a supposed to be a measure of the amount of damage the information could do to national 

security; this is not always the practice with classification.57  It seems easy to equate the level of 

effort and amount that we are willing to spend to protect data as a representation of how valuable 

it may be.  Anyone using classification, even in an unofficial or unconscious way of 

demonstrating the value of intelligence, would be using a flawed system.  The problem with this 

is that the classification system within the IC is inconsistent at best, with different agencies 

sometimes valuing the same information at different classification levels.58  Additionally, any e-

mail or content published on classified sites, no matter how mundane or personal it might be, is 

automatically classified at the level of the system which transmits it.  Not only would valuing 

intelligence based on classification be inconsistent, but in many cases the value would be less 

based on the actual value of the content or how much it helps to complete a picture, but more on 

the method it was transmitted. 

In a recently published article, Stephen Marrin discusses the difficulty of measuring 

intelligence.59  He states that there is an inability to decide what metrics intelligence should be 

judged by.  According to him, some feel that intelligence is supposed to be accurate; others feel 

it should be serve as a warning to decision makers, and finally others feel intelligence must be 
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“influential or useful.”60  Without being able to define what “good” intelligence is, it is hard to 

measure it.   

A number of different methodologies have been applied to valuing intelligence.  In 1960, 

Caldwell et al attempted to model the value of intelligence largely by surveying field grade 

officers with World War II experience.  Researchers would offer a military scenario and offer 

100 sets of two “stimuli” consisting of examples of enemy disposition and told to choose their 

preference of importance between the two “stimuli.”  Additional information was given to the 

officer such as the source of the intelligence.  Using this information, Caldwell et al developed a 

linear model that one could use to determine the “value” of a piece of intelligence based on its 

origin and subject matter.61   

Over the course of the War on Terror, from 2001 to present, Whitlock et al. led a series of 

assessments in both the military sector and the national intelligence arena to more empirically 

establish the value of various intelligence capabilities.  On the military intelligence side, they 

sought to explicitly associate intelligence to operational outcomes—providing a strong indication 

to leadership on which capabilities were contributing to the counter-terrorism and counter-

insurgency operations.  In this approach, intelligence reporting was associated to actual military 

operations through three lenses: temporal, locational, and relational.  The purpose was to gain 

greater insight on the relative contributions to impact programmatic decisions in the Department 

of Defense.62   On the national intelligence side, they applied natural language processing 

capabilities to establish a connection between reporting across the intelligence community 

against the national intelligence priority structure for that mission area.  The priority scheme was 

broken down into 5-8 major objectives, each with seven dimensions of intelligence targets.  The 

emphasis on both reports were less on establishing the value of an individual report, but rather, to 
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bring clarity to where intelligence collectors and analysts are focusing their effort relative to the 

priority scheme—thus serving as a resource management tool.63   

The RAND Institute has studied a way of measuring the operational value of intelligence 

for military operations.  Their approach follows a similar methodology to these earlier 

approaches; they depend upon the decisions or results based on the intelligence.  Their 

Operational Value of Intelligence, Electronic Warfare, and Target Acquisition (OPTVIEW) 

related the collection of intelligence to commanders information requirement, assessed the 

performance capability of different technical collection systems and also could be used to assess 

performance over a given operation scenario.64,65   This model and simulation combined was 

developed primarily to assess the operation of technical Intelligence, Electronic Warfare and 

Target Acquisition (IEW/TA) alternatives to support the Army Planning, Programming, 

Budgeting and Execution system (PPBES) rather than evaluate across a variety of intelligence 

collection methods.  The OPTVIEW would consist of a simulation environment using a possible 

future engagement, and a model that described the predicted amount and quality of intelligence 

prospective IEW/TA assets might provide to battlefield commanders, allowed simulated 

commanders to action on the information given, and then measured the ramifications.  The tools 

within OPTVIEW “depended fundamentally on subjective-judgment data” rather than objective 

analysis.66  While OPTVIEW might be considered useful in what it was designed to do, the 

authors have no information as to the validation of this tool, it measures the effects of having 

battlefield information based on the decisions made within the simulation, rather than the 

estimating the overall help each system brings to helping the commanders create a picture of 

what is happening on the battlefield. 
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The basic themes that these studies have in common are that they attempted to address the 

difficulty of measuring intelligence.  These methods were primarily results based methods which 

depended heavily or entirely on feedback from users of the intelligence and the results of 

decisions based on these decisions.  Each of these methodologies have their benefits and 

limitations but arguably, none provide an objective measure of the value of intelligence across a 

variety of disciplines while avoiding the problematic view of assessing value based on decisions 

made with the intelligence or results of those decisions. 

2.6 Problems applying existing methodologies to Intelligence 

The Defense Science Board Advisory committee addresses why Operations Research (OR) 

tools, like decision analysis have not been adopted within the IC.67  The study states that OR is 

applied inconsistently throughout the defense and Intelligence, Surveillance and Reconnaissance 

(ISR) communities, and they recommend that OR use should be improved.  As Marrin noted, the 

board notes that one of the main difficulties is the inability of decision makers at the various 

levels of government to agree on priorities or valuation, which makes creating an objective 

function difficult.68  Decisions at the higher levels are often made for reasons besides supporting 

intelligence.  Specifically, resources, control, turf, constituent issues, intuition, policies priorities 

and politics often play into the decision maker process at higher levels.  Additionally, Lowenthal 

states that measuring the value added “is difficult because intelligence officers and their policy 

clients do not agree on what adds value.”69  When stakeholders cannot arrive at an agreement on 

valuing something, determining an objective value to use in decision analysis methods 

mentioned above can be extremely difficult.  Most attempts, as seen above attempt to apply 

decision analysis methods using objectives focused on actions after the intelligence has been (or 

sometimes hasn’t been) used.   
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There are a number of reasons some decision makers may not use the intelligence from the 

IC.  According to Lowenthal, decision makers are free to ignore intelligence and estimates from 

the IC and often do so.70  Some decision makers believe that the analysis the IC produces leaves 

too much that is “uncertain and ambiguous” and that with their multibillion dollar budget, the IC 

should be able to know more than what they do in current practice.  Also, policy makers have 

been known to be suspicious of intelligence that supports their political rivals instead of their 

own position.  Finally, as the Defense Science Board addressed, decision makers sometimes 

make decisions based on politics rather than intelligence.71  In applications of decision theory, if 

a decision is not made based on the information or rather is made regardless of the information, 

the information is valueless.   

For these two reasons, we argue that intelligence is a specific subset of information that 

current valuation methods are inherently problematic.  Not only can different levels within the IC 

not agree on what makes intelligence valuable, if the decisions made by policy makers are not 

made based on information (and arguably it is difficult to ever determine which decisions were 

made using intelligence and which were not) then the information is valueless. Since we agree 

that the collection, analysis and production of intelligence is a valuable process and should not 

stop, we argue that instead of attempting to apply these methods to valuing intelligence, a new 

method should be applied. 

2.7 Value within the Intelligence Cycle 

Decision analysis is a powerful tool, but must be used appropriately.  We suggest a 

supplemental method of valuing intelligence by choosing objectives of valuation while the 

intelligence is still in the intelligence cycle.  We suggest two possible methods for providing a 
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supplemental and quantitative value of intelligence within the intelligence cycle.  The first 

method is based on measuring a piece of intelligence’s impact on analysis with respect to the 

entire picture.  How might the analyst’s recommendation change based on not having that 

information?  The second method would be to apply existing dynamic social network 

methodologies to a corpus of intelligence documents to demonstrate a measure of importance 

within the structure of that corpus of documents. 

We argue that valuing intelligence based on its impact on analysis addresses the difficulties 

above.  In many of the proposed measures of information within the IC, the information tends to 

be valued based on decisions made, either with a battlefield commander or by a political entity.  

While this view can be valuable, it can also have some theoretical and practical drawbacks.  In 

decision theory, if it can be shown or perhaps even posited that decisions made were made 

irrespective of the information given, as sometimes happens in strategic decision makers, then by 

definition, the information has no value to the decision.  Additionally, while information or 

intelligence can be extremely accurate, there are many human reasons why decision makers 

make decisions seemly inconsistent with the information given.  For this reason, we suggest a 

supplemental measure of the value of intelligence.  Something that can be measured while the 

intelligence is still in the intelligence cycle, before or even after it is disseminated, but based on 

the picture that it helps to create of what might be going on with respect to the subject of the 

analysis.  One demonstrated way of determining the effect information can have on analysis is 

sensitivity analysis.  Sensitivity analysis identifies those variables that cause the end result of 

analysis to vary, and determine an amount of variability.  Methods such as tornado diagrams can 

quantify the impact of a variable on the analysis.  In conventional analysis, once risk managers or 

the IC equivalent have attempted to mitigate the variability by vetting sources and content, not 
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much attention is paid to sensitivity analysis.  We argue, when the variable is 

information/intelligence, that this sensitivity analysis identifies what intelligence would impact 

the analysis most if it did not exist.  Looking at this in a different way, this intelligence has a 

strong impact on the analysis, and, therefore, has value to its end result. 

Some in the IC hold the belief that no piece of intelligence has value, but rather its value 

comes in the overall picture that they help the analysts determine of what is going on in the 

picture.  If one looks at analyzing intelligence as assembling a jigsaw puzzle where analysts 

attempt to fill in pieces of multiple puzzles with unknown number of pieces, sometimes with 

deceiving pieces, not all the pieces and the pieces change in time.    Another way that one might 

demonstrate the objective value of information, within the intelligence cycle is to measure the 

impact it has on the overall picture that is created using this intelligence.  We propose another 

way of looking at the valuation of intelligence and using this analogy, i.e., we should value the 

pieces of the puzzle that contribute greatly to our understanding of the overall picture.  This 

means valuing either the largest pieces or the key pieces that contribute to overall understanding.  

Networks are a common analysis tool and can be a pictorial representation of the overall 

structure of the subject of analysis.  Networks are already being used to explore the structure of 

information and show quantitative value of pieces of information, most notably the PageRank 

algorithm which is the driving algorithm behind the Google search engine.72  For more examples 

reference Radicchi et al.73  Dynamic network analysis (DNA), introduced by Kathleen Carley, 

takes social networks to a new level of understanding the structure and impact of individuals 

within organizations.74  We propose that DNA could be adapted to analyze the structure of a 

corpus of documents as well.  In this way, we could identify, not only key structural components 

of a network of information, but also identify structurally critical documents within that corpus 
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of documents.  In this way, the authors propose that depending upon the question interesting to 

the analysts, they could quickly find documents which are important or relevant to that question.  

Since often times the value of information depends upon the context of the situation or question, 

this would help researchers quickly determine value of information or intelligence within a 

number of different contexts. 

2.8 Future work and Conclusion 

The authors believe that methods of valuation that involve objectively measuring the value 

of information or intelligence to analysis, within the intelligence cycle is an important 

supplemental technique.  The authors will conduct further research in applying sensitivity 

analysis and network structure of the information based methods of valuation.  There are already 

sensitivity analysis methods for many decision analysis techniques.  These should be explored to 

determine adaptability to this valuation method.  Additionally, the authors have argued there is 

inherent value within the structure of the intelligence, and that using a network approach, we can 

demonstrate value with respect to context.  Using the analogy from above, if there is a picture 

that might explain a situation, in analytical terms a picture is often referred to as a graph.  We 

shall develop a method of determining the impact of analysis on a network using graph theoretic 

approaches.  Preliminary results show significant promise, in each of these approaches, to 

valuing information within the intelligence cycle and the associated sensitivity analysis.  Once 

appropriate methods have been found and applied to individual pieces of intelligence within 

separate analyses, the big picture of intelligence valuation can be investigated.  If an intelligence 

source is consistently found to produce objectively high “valuing” intelligence, we can determine 

the relative “value” of intelligence that sources offer.  These can be used to assist collection 
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managers with their cost benefit analysis in determining appropriate asset allocation and provide 

objective, quantitative support to varied decision makers as evidence of the benefit of sources.  

3 Value of Information Applied to Networks 

3.1 Introduction 

Intelligence collection and analysis have been compared to solving jigsaw puzzles.  The 

complexity lies in that the puzzle set may have 1000 pieces, but the Intelligence Community (IC) 

is only able to get a small subset of the pieces and must try to determine the overall picture.  This 

example demonstrates the problem facing many intelligence professionals.   

In this analogy, each puzzle piece represents a piece of intelligence, and inherent on each puzzle 

piece is a pattern that might help the analyst determine where the piece goes in the overall 

picture.  Occasionally, there is a puzzle piece, analogous to actionable intelligence, something 

like the location of Ayman al-Zawahiri for the next two days, but except for these rare bits of 

intelligence, each piece has value in the picture that it helps to create.  Intelligence professionals 

and academicians have long been searching for a way to identify “good” or “valuable” 

intelligence.  Using this representation of intelligence, we shall demonstrate a methodology to 

show “value” to the overall picture each piece of intelligence has by quantifying each piece’s 

impact on the picture. 

Intelligence analysts use network graphs to show pictures of everything from transnational 

criminal organizations, flow of illicit money through banks, to social networks of terrorist 

organizations.  Each of these networks are pictures created using pieces of intelligence in a 

manner similar to the puzzle described above.  Each piece of intelligence can add unique nodes 

or links to the graph.  The methodology we use shall demonstrate the impact of each piece of 
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intelligence by quantifying the impact of those unique links and nodes that it adds to the overall 

network. 

3.2 Background 

Networks have been used to model a number of different phenomena in the real world 

from modeling business relations between companies, neural networks to networks of citations 

between papers.75  A network is comprised of a set of items called nodes, or sometimes vertices, 

and connections between these nodes called links or edges.  A collection of these nodes and links 

is called a component, sometimes networks contain a number of components that are not 

connected to each other.  A network is used to understand the structure and relationship of nodes 

by viewing them in relation to each other and their links.  An example of a network that one 

might use every day is the World Wide Web (WWW).  Each of the separate pages on the WWW 

can be thought of as nodes, while buttons or hyperlinks embedded on the page that allow the user 

to go from one page to another can be thought of as links.  An example of a network is shown in 

Figure 8.  Viewing nodes and relationships together allows researchers to explore their 

relationship to one another and identify patters and groups.  Occasionally, networks have two 

different classes of nodes, called bipartite networks.  Typically networks are limited to 

displaying only two types of nodes, especially since networks are also commonly represented by 

 

Figure 8 Example of nodes and links 
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a matrix, where nodes are the titles of the columns and rows.76  Borgatti et al. provides a good 

discussion on the principle theories behind network science.77  In recent years, the availability of 

relatively inexpensive computing power has allowed researchers to view and analyze networks 

on a much larger scale than in the past.78,79,80  

Networks are used for a variety of different reasons within the IC.  One of the applications 

is social network analysis (SNA), though there are a number of other examples where networks 

can be useful.  Network charting, a process of identifying people, groups, things and drawing 

connecting lines between them showing various types of association, and network analysis, the 

process of taking a network chart and trying to make sense of the data represented  by looking 

for patterns among the data are two examples of other uses of networks.81 SNA tends to be the 

most mathematical and analytical of the network methods, though many of the techniques and 

methods can be applied to different types of networks.  A good example of an SNA intelligence 

application might be from Kennedy et al using a social network to determine the most effective 

forms modeling the disruption or destruction of the network.82  The authors explore the use of a 

network to interrupt maximum flow of information through a network by using interdiction.  

Additionally, Overbey et al looked at a network of twitter users specifically to determine 

influence of users during the 2011 Egyptian revolution.83  Some have had concerns with using 

intelligence driven networks to apply network theory, useable results can still be drawn.  Most 

notably, Malcolm Sparrow listed three main challenges to using networks in intelligence work: 

 Incompleteness – analysts will not necessarily have access to all information allowing them 

to include all nodes and links that exist in reality 

 Fuzzy boundaries – difficulty in determining agents or nodes to include or exclude in the 

network 
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 Dynamism – these networks, like many in real life, change over time and are dynamic, not 

static 

Even though these complications exist, Sparrow argues that analysis of networks using network 

theory is still useful to the intelligence community.84 

The methodology in this research uses a technique of deleting links and sometimes nodes 

to gauge impact on the overall network.  Others have used deletion within a network for a 

number of purposes.  Borgatti et al. use deletion (and addition) of random nodes within a number 

of random networks to simulate random error within a network.  They then gained a confidence 

interval around some centrality scores to measure robustness of the scores.85  Glacet et al. used 

deletion of edges to measure the effect of topology on the number of liars one might expect to 

encounter in a network of advice givers on directions.86  These deletion techniques tend to be 

focused on the purposes of the graph or testing the resiliency of different measures.  To our 

knowledge deletion techniques have not been used to evaluate information. 

Though the intelligence profession is arguably the second oldest profession, there has been little 

work on the field of measuring the importance of intelligence.87  Most recently, the work from 

Gill et al. has attempted to define intelligence and begin to construct an intelligence theory. 88  

An important aspect of the theory of intelligence is how one measures intelligence, or “values” 

intelligence.  Though this methodology is clearly not general enough to be used in this fashion, it 

might serve as an example for quantitatively assessing the “value” of intelligence rather than 

assessing it qualitatively. 

One method of sensitivity analysis is a one way sensitivity analysis method called value of 

information (VOI).  It is applied to an influence diagram, such as the one in Figure 6.89  A 

method of visualizing the VOI is called a tornado diagram, such as the one seen in Figure 7.  A 
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tornado diagram shows the magnitude of the effect a variable has on the objective when all other 

uncertainties are held constant, sometimes called a single factor sensitivity analysis.  If one 

creates a model, such as a decision tree, or an influence diagram, they can use a one way 

sensitivity analysis tool called a tornado diagram to show the impact of the variable on the 

overall decision recommended by the model.  The tornado diagram allows the modeler to vary 

one part of the influence diagram while holding all other variables constant.  Bodily et al. 

describe a six step process of value creating within a company. 90  One of the steps involves 

evaluating the risk and potential return of the alternatives, where Bodily et al. demonstrate using 

an influence diagram and a corresponding tornado diagram showing the sensitivity of the net 

present value (NPV) to the variables within that influence diagram in Figure 6 and Figure 7.  The 

purpose is to not only communicate to decision makers the variability within their model, but 

also to identify the variables with the greatest impact, both positive and negative on the NPV of 

the alterative. 

3.3 Value of Information (VOI) Applied to Networks 

3.3.1 Deterministic Sensitivity Analysis Approach 

We propose to apply the one-way sensitivity analysis, value of information (VOI) concept to 

networks.  Once a network has been analyzed using a network theory metric, like degree centrality, or 

betweenness centrality, etc. Our methodology, put simply, is a deterministic sensitivity analysis of 

each link, where we run the relevant measure(s) for the original network, delete one link, run the 

relevant network measure(s) again, develop an “average” value for that network, then replace the 

deleted link, choose another link and start the process again.  This would yield a collection of 

“average” values one could compare to the original “average” value. 

The term average is in quotes because we do not believe that the actual average is 

applicable in this sense.  Many of the naturally occurring networks, especially citation networks, 
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in recent years been found to have a scale-free property which means that the number of links k, 

originating from a given node exhibits a power law distribution 𝑃(𝑘)~𝑘−𝛾 where γ is a 

parameter generally in the range 2< γ <3.91,92,93   In other words the distribution of highly 

connected nodes follows a power distribution, rather than a normal distribution where the 

average might be appropriate.  In order to have an “average” value to compare for these 

networks, we propose the use of the 95th percentile as an average measure.  

When we compare the “average” values, the direction of the change is often times 

irrelevant, in other words only the absolute difference from the original “average” value is 

important to the amount of impact the link has on the original network.  Additionally, since 

normalized metric values are numbers between 1 and zero, the percent difference can be more 

informative than the actual difference. 

Therefore, we find the percent of absolute difference in the 95th percentile between the 

original network and the networks created by iteratively deleting a link, then replacing the link 

and deleting a new link.  This will allow analysts to determine how impactful each link is to the 

overall structure of the network with respect to the metric used. 

3.3.1.1 95th Percentile as an “average” measure 

The measure of percentile is defined by Devore as the 99th percentile separates the 

highest 1% from the bottom 99%, or in this case, the 95th percentile separates the highest 5% 

from the bottom 95%.94  We propose that the 95th percentile can capture the “average” value of 

many metrics and can be used to determine overall change across the network. 

3.3.1.2 Network measures’ resiliency to deletion of links 

Reasonably, one might wonder how resilient network measures are to deletion of links.  There has 

been a number of works exploring this question.95,96,97,98  The end results are that for most traditional 
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centrality metrics, networks are largely resilient to minimal node deletion.  Of course we would like to 

explore this effect in other networks with additional metrics. 

3.4 Notional Example 

We decided to explore this methodology on a data set using a notional example.  In the late 

summer of 2011, riots occurred in London, UK.  Throughout the next month, it’s estimated that 5 

people died and over 300 police officers were injured.99  There were over 234 recorded riot 

related incidents centered on London but spread over the UK.100  Understandably, government 

intelligence analysts might want to have current situational awareness of riot related occurrences 

as well as the temper of the populace.  There are only limited resources to be able to monitor 

twitter users, so analysts need to determine a subset of the twitter users tweeting about London 

riots to monitor in order to keep their finger on the pulse of the populace. 
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3.4.1 Data set 

The researchers at Johns Hopkins University’s Applied Physics Lab (JHU/APL) mined 

public twitter reports, geographically located around the London riot locations, and those using 

hashtags that identified the tweet as something related to the riots (e.g. #londonisburning, 

londonriots, etc).  From this, they created a data set of twitter users tweeting other twitter users 

about the London riots.  Using this data set, the authors created a network where the nodes are 

twitter users and the links connecting them exist if one twitter user either sent or received a tweet 

from another twitter user.  Since each tweet either received from or sent to another twitter user is 

evidence of a connection that exists between two users, this network was symmetrized and 

directionality was deleted from this graph.   Additionally, the largest seven components were 

retained in the network, removing all isolates (nodes not connected to any other nodes), pendants 

(two nodes with only a connection between the two nodes) or triads (three nodes connected to 

 

Figure 9 Graph of entire network 
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one another, but to no other node).The network created has 770 nodes, 850 links between the 

nodes and contains seven different components (see Figure 9). 

3.4.2 Problem 

Using this graph, notional analysts can apply the network metric of betweenness to 

identify the nodes with great influence on the information network.  Betweenness is a measure of 

the number of times a node lies on the shortest path between two other nodes.  This value can be 

normalized so that nodes betweenness values on different components can be compared to one 

another.  Betweenness centrality has been used to explore a number of different networks such as 

identifying the key actors in terrorist networks101 as well as other twitter networks.102,103,104  

Calculating the normalized betweenness values for the nodes can help analysts determine which 

twitter users to dedicate limited monitoring resources. 

3.4.3 Notional Solution 

A notional analyst can run the betweenness values on the data set we had created, and 

capture the collection of 5% (39 users) of the twitter users with the highest betweenness values 

(see Appendix A).  Using this list, the analyst can apply monitoring technology to follow the 

twitter traffic flowing across the twitter accounts of these users. 

3.5 Application of methodology 

Since the notional solution determined in 3.4.3 is dependent upon the structure of the 

network created, they might want to determine how sensitive their solution is to the links given 

in the data set.  If we assume that each link represents an intelligence report of the existence of a 

twitter link between two twitter users, we might be able to find which of these intelligence 

reports would cause the notional solution list to change the most if analysts did not have that 

intelligence report.   
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We coded in python a program to iteratively delete each link, run betweenness values for 

all remaining nodes, and then replace the link and repeat the process with another link.  We then 

found the 95th percentile value for all of the resultant networks and compared them to find the 

percent of absolute difference from the original network.  In this way, we mapped out the impact 

of each link on the overall network.   

Additionally, to validate our metrics we found the number of Twitter users that would change in 

the list of the top 5% of betweenness nodes within the network.  The results can be found in 

Table 5 below.  We then tested our 95th percentile of percent absolute difference for statistical 

significance compared to the statistical average of percent absolute difference. 
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3.6 Results 

In the Table 5 below we can see that the link between kenworthy39 and PCStanleyWMP is 

the most impactful on the network as determined by our metric described above.  In other words, 

if the network did not contain the link between these two users, the end list of the top 5% of 

betweenness users would change by 12 people, or by over 30%.  Each of the 850 links were 

measured for 95th percentile of normalized betweenness and compared to the original network 

95th percentile.  From this, the authors selected the top twelve links and intermittently along the 

rest of the list to determine the number of Twitter users that would change in the top 5% 

 

Table 5 Partial listing of Absolute % difference in betweenness from original network and change to original list 

 

 

From To

95th Percentile 

Norm. 

Betweenness

Abs % Diff 

from 

Original

# of Twitter 

users changed 

from to 

original list

kenworthy39 PCStanleyWMP 0.0071 37.8% 12

PCStanleyWMP MasherMiles 0.0071 37.7% 12

rioferdy5 bignarstie 0.0071 37.6% 10

rioferdy5 MasherMiles 0.0071 37.5% 12

youtube bignarstie 0.0072 37.3% 16

youtube MyrtleTakesTea 0.0072 36.9% 16

iamwill 100Monkeys_Fan 0.0072 36.8% 16

iamwill haydenmead 0.0082 27.9% 16

bignarstie EmTalib 0.0090 20.8% 6

FFMonst EmTalib 0.0090 20.7% 6

YoungRv FFMonst 0.0091 20.6% 6

hannahchw PolicingToday 0.0094 17.9% 6

… … … … …

MissBeRavin85 AleshaOfficial 0.0103 9.8% 4

… … … … …

nickkeane kenworthy39 0.0120 5.3% 2

… … … … …

thefadotcom craigcampbell_ 0.0113 1.0% 0

… … … … …

bignarstie KushKwame 0.0114 0.0% 0
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betweenness list.  Although there are four links where a higher number on the list changed than 

those with a higher impact value we propose, we measured the statistical significance of the 

result.  We found that our measure had a .91 correlation with 3.3E-7 significance, compared to a 

comparison of the statistical average percent absolute difference, which had a .61 correlation 

with 0.01 significance.  This demonstrates that our metric overall was more highly correlated 

with picking the number of users changing from the top 5% list. 

The result of this analysis is that the analyst now can review the network they’ve created 

and perhaps verify that the link between the top eight most impactful links are actually 

legitimate.  They can actually view the tweets between these users and verify that the tweets are 

informational and not spam floating between Twitter users.  Upon verifying those links, the 

analyst can be relatively sure that their limited Twitter monitoring assets are being used 

appropriately. 

3.7 Conclusion / Future Work 

For this example, we demonstrated the effect of deleting the information given by links 

and treating them as individual intelligence reports of a twitter connection between two users.  

Upon the completion of the analysis based on the notional example, we applied our methodology 

to determine the impact that each link has on the overall network, based on the metric of 

betweenness.  We believe that this methodology could be applied to a whole host of naturally 

occurring networks to show impact of the intelligence to the network.   

How much value a piece of intelligence has can be a very subjective thing, with people bringing 

different definitions to what makes something valuable.  On the other hand, we can quantify how 

much impact a piece of intelligence has on our overall picture of understanding on a topic of 
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interest using this methodology.  The goal would be to try to measure the value of information 

that each puzzle piece brings to the overall picture. 

We would like to explore the effects of scaling to our methodology by applying our methodology 

to more networks, perhaps even non-Twitter networks.  Ideally we would like to explore actual 

intelligence data sets for applications of our methodology.  In real life intelligence, one document 

might imply the existence of multiple nodes and links.  We would like to explore our 

methodology on the deletion (and resiliency of our methodology) on valuing intelligence reports 

where to determine impact, multiple links or nodes are deleted signifying that the intelligence 

report did not exist. 

Finally, since most real-life networks change over time, we would like to explore our 

methodology’s application in a temporal nature, showing how a document’s impact could change 

over time as the structure of the resultant network changes. 

3.8 Introducing intelligence Potential  

Building upon information theory and applications of VOI in decision analysis and 

network impact, we introduce the application of this paper.  In a similar manner to Shannon’s 

development of the entropy of a message, we propose to name this proposed measure potential. 

Once the intelligence has been used to create a model of our understanding of some situation (a 

decision, a network or other situations), the analyst uses the model to answer some analyst 

question.  As described in VOI and Network impact above, once the question has been answered, 

analysts can look back to determine which pieces of intelligence had the most impact and 

quantitatively assess that impact.  One can determine the quantitative impact or “value” on the 

result of a question, once the intelligence is placed into the perspective of the model. 
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If we look at the numerical impact of that intelligence for that application, we might apply 

something similar to the coefficient of determination or R2.  R2 in linear regression is defined as 

the “proportion of observed y variation that can be explained by the linear regression model.”105  

In this case, we propose that the potential of a piece of intelligence is defined as the average 

proportion of impact over all applicable analysis techniques.  The metric would involve dividing 

the impact for a particular model the total amount of impact for all intelligence within that 

model, or 𝐼𝑖 =
𝑖𝑚𝑝𝑎𝑐𝑡𝑖

∑ 𝑖𝑚𝑝𝑎𝑐𝑡𝑡𝑜𝑡𝑎𝑙
.  That Ii term would be the impact for that specific piece of 

intelligence for that model; the larger the term, the larger the impact.  The dimensionless term 

ranges between 0 and 1, with 1 meaning the intelligence was the only thing that impacted the 

model, and 0 meaning the intelligence had no impact on the model. Taking the average of all 𝐼𝑖 

would give us the average impact, or potential of the intelligence. 

This average would be a measure of the impact for the piece of intelligence over all 

applicable analysis, thus a quantitative measure for intelligence with respect to the 

questions/analysis applied. 

3.8.1 A notional application of finding Potential 

Suppose there are two notional pieces of intelligence, each used in a number of analytical 

studies.  Also assume that each of the methodologies of the studies had a way to measure the 

value of information or in this case, intelligence.  One piece of intelligence, called Intelligence 

A, was used three analytical studies, one decision analysis and two network studies.  Applying 

the potential methodology suggested in this paper, the fraction of value of information in dollars, 

over the sum of all the value of information, in dollars, over the study, for that study, the value of 

that intelligence was .33 ($10,000/$30,000).  In a similar manner, we could find the value of the 

intelligence in the other two network studies (.44 and .16).  If we take the average value of 
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intelligence over all the studies, we find that overall the intelligence is valued at .31.  Using the 

other piece of notional intelligence, Intelligence B, and the same methodology, we find that the 

value of intelligence for that piece of intelligence is .18 (average of .01, .47, .10, and .15).  See 

Table 6. 

In this notional example, the potential of quantitative analysis of Intelligence A is greater 

than the potential of Intelligence B.  Even though Intelligence B has been used in more studies, 

Intelligence A has been more impactful in the studies in which it’s been used.  In this way, 

analysts can use a quantitative and objective measure of potential to supplement a subjective 

assessment of the value of a piece of intelligence.   

3.9 Future Research 

The next step for this research is validation.  We shall apply our methodology, to a number 

of analyses that use the same pieces of intelligence and demonstrate our valuing methodology on 

the intelligence.  We might then compare our results to analyst feelings on the importance of 

different pieces of intelligence. 

In future work we shall want to develop additional ways of finding the impact within 

methodologies, similar to VOI in decision analysis and within impact in networks described in 

this paper.  This methodology would become more robust if there were additional ways of 

calculating the impact. 

 

Table 6 Notional example of comparing potential of intelligence applications 
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The measure of impact proposed in this paper is meant to act in a way to supplement, not 

replace current and more subjective means of “valuing” intelligence.  Potential would provide an 

objective measure of the impact of a piece of intelligence on quantitative analysis, and measure 

the value within the intelligence cycle.  Additionally, this measure does not represent the 

“truthfulness” or accuracy of the intelligence.  If in the future, the intelligence is found to be 

incorrect, analysts can remove the intelligence from the analysis, and reassess other pieces of 

intelligence’s impact. 

4 Layered Network Approach 

4.1 Introduction 

  During wartime operations or in successful intelligence gathering operations frequently 

the result is a large collection of documents.  Often time sifting through these documents to 

determine valuable information is a long laborious process made even more difficult by the fact 

that often times the documents are in a different language than the gaining community.  

Translation resources are scarce and already overworked, being able to prioritize documents to 

focus translation effort, or simply being able to determine which documents to read first might be 

helpful.  The value of a document within a collection or corpus of documents might change 

based on what question the analyst wants to answer.  If the corpus consisted of academic 

journals, the question of “what are the foundational authors working on?” vs. “what are the 

foundational works within this corpus?” might have completely different answers, which would 

change the value of each document.  In order to assist with this problem, assume that translation 

efforts can be made to determine the author(s), title of the paper, the journal it was published in, 
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the year of publication, and key words associated with that paper.  We introduce DNA applied to 

a network of information documents consisting of this information. 

4.2 Background 

Networks have been used to model a number of different phenomena in the real world 

from modeling business relations between companies, neural networks to networks of citations 

between papers.106  A network is comprised of a set of items called nodes, or sometimes vertices, 

and connections between these nodes called links or edges.  A network is used to understand the 

structure and relationship of nodes by viewing them in relation to each other and their links.  An 

example of a network that one might use every day is the World Wide Web (WWW).  Each of 

the separate pages on the WWW can be thought of as nodes, while buttons or hyperlinks 

embedded on the page that allow the user to go from one page to another can be thought of as 

links.  An example of a network is shown in Figure 8.  Viewing nodes and relationships together 

allows researchers to explore their relationship to one another and identify patters and groups.  

Occasionally, networks have two different classes of nodes, called bipartite networks.  Typically 

networks are limited to displaying only two types of nodes, especially since networks are also 

commonly represented by a matrix, where nodes are the titles of the columns and rows.107  

Borgatti et al. provides a good discussion on the principle theories behind network science.108  In 

recent years, the availability of relatively inexpensive computing power has allowed researchers 

to view and analyze networks on a much larger scale than in the past.109,110,111  

Two of the larger areas where networks have been applied are in citation networks and in 

social network analysis (SNA).112,113  Citation networks are structures where bibliometric 

datasets are used to create structure from academic journals.  There are a variety of different 

citation networks that have been created, for example a citation network between academic 
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papers can be created by treating the papers as nodes and references of the papers as links to 

other papers.  This basic graph would be directed (one paper refers to an earlier published paper, 

so the link only goes in one direction) and unweighted, since one can assume that each 

referenced paper carries the same weight.  In this same way, networks can and are created to 

explore the structure between papers, authors and other meta-data developed from a journal 

article. 114  Although these networks can be used for a variety of things, one purpose they are 

used for is to rank journal articles using a variety of metrics.  Since 1927, citation networks have 

been used to rank journal articles using different metrics.115  Many of the more modern rankings 

take advantage of metrics from network science, the most popular being the number of other 

authors or papers that cite a paper or author, but new metrics have been developed as well.  The 

h index is a popular metric to measure “the cumulative impact and relevance of an individual’s 

scientific research output.”116  Another example of a network metric used for ranking academic 

journals is PageRank, originally designed for helping to display the “importance” of a website in 

Google’s algorithm.117   

Another area where networks have been applied in recent years is SNA.  A social network 

is comprised of “a set of people or groups of people with some pattern of contacts or interactions 

between them.”118  Networks are used to study the structure of these relationships for a number 

of different reasons such as exploring patterns of friendships,119 intermarriages between 

families120 and terrorist organizations121,122 to name a few.  Social network applications have also 

been applied to information.123,124  In SNA, analysts study the links between people and 

sometimes events or locations independently.  They use network metrics to determine critical 

individuals or to understand how the network operates.   
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A relatively recent method has been applied to SNA to take better advantage of the wealth 

of information surrounding social interactions, called dynamic network analysis (DNA).125  In 

DNA, meta-matrices are created to explore different interactions.  For example, an agent x agent 

(AxA) meta matrix would have interactions between agents, where a non-zero element in an i,j 

location means that agent i is connected to agent j, while a zero denotes no interaction.  The 

strength of the interaction could be captured in the magnitude of the non-zero element, or there 

could be just a value of 1 in a non-weighted meta-matrix.  In this same way, meta-matrices are 

developed amongst different permutations of agents, knowledge, resources, tasks/events, 

organizations and locations.126  These meta-matrices are like lenses.  In DNA, the analyst can 

choose different meta-matrices depending upon the information they are interested in, and view 

them together on one network.  The network then becomes a multi-nodal network that includes 

interactions between multiple nodes, not just interactions between one or two classes of nodes.  

Additionally, probability is applied to the links because often times there are some questions as 

to either the existence of the link or its strength.  Many of the current applications are to terrorist 

networks.127,128,129,130   

4.3 DNA concepts applied to information networks in the intelligence field 

We argue that DNA can be applied to information networks to gain greater flexibility and 

understanding out of the structures of the information.  We introduce applying the meta-matrix 

concept to information networks.  In this example, we introduce an application of meta-matrices 

using the meta-data from academic journals, though this could easily be applied to other 

information networks.  The meta-data we chose to model in our information meta-matrices are 

the title of the paper, the author(s), key word(s), publication date, the journal in which the paper 

appeared, and the author(s) institution.  Given this collection of meta-data, in a similar way of 
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displaying meta-matrices as Diesner et al, we offer Table 7 as a suggestion of meta-matrices 

developed from academic journal meta-data.131 

 

These interaction matrices listed here are mathematically defined in Appendix B.  They 

show interactions between the two node classes of the matrix.  For example, the A matrix, is an 

interaction matrix with authors on both the columns and rows of the matrix.  Additionally, if 

there are R number of authors, then the matrix is of the order of RxR.  We have defined the A 

matrix as Aij is equal to n if and only if author i is a co-author with author j in n particular 

published works; otherwise Aij = 0.  This matrix is a symmetric matrix with weights.  This is an 

 

Table 7 Meta-matrices for academic journals 
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example of a co-author citation network that answers the question: which authors wrote papers 

with which other authors?   

The benefit to the structure is that given the variety of different meta-matrices, depending 

upon what an analyst chooses to explore, they have a number of matrices or lenses to put 

together in a network.  Additionally, these matrix constructs allow the generation of other 

information like reachability, and inference based on existing information.  Reachability matrices 

(some are mathematically defined in Appendix C) allow analysts to determine how closely two 

nodes (of the same time or different) are aligned.  For example, in an A1 matrix, one could 

determine which authors were connected by a paper that they wrote together by looking at the 

column and row where they intersect and there would be a “1.”  An A2 matrix would show 

people connected by two steps or less, or if an author i wrote an article with author j, and author j 

wrote an article with author k, then the row and column for author i and author k would have a 

“1” showing that they are two or less steps connected to one another.  Used with authors, 

analysts can determine closely aligned authors vs. ones not closely aligned. 

An inference matrix is a matrix based on a mathematical multiplication of a meta-matrix in 

order to infer information based on existing information (some mathematical definitions for 

inference matrices are in Appendix D).   While the A matrix would show if two authors have 

published papers together, and how many, one might ask if authors can be similar enough to 

infer that two authors know one another, but creating an inference matrix.  If we took the 

author/knowledge matrix (AK that answers the question: who is writing about what topics?), and 

folded it or multiplied the matrix by its own transpose (AK • AKT), we would get an AK matrix, 

which is the author interaction matrix inferred on knowledge, or in this case, key words.  In other 

words, if authors are writing using the same key words, even if they have not published together, 
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the matrix would display a number n, based on our definition, which represents the number of 

times each has published using the same key words.  The inferred information within this 

interaction matrix is that if the two are writing about the same concept, using the same key 

words, that they are connected.  These two concepts have already applied with success DNA to 

organizations like terrorist cells.132 

4.4 Intelligence questions applied to information networks 

One might wonder why we demonstrate applying these DNA concepts to information 

networks like academic journals in order to demonstrate value within intelligence fields.  Value 

can be a subjective term, what is valuable to one may not be valuable to another.  Especially in 

the intelligence world, determining the value of intelligence can be difficult.133  Smith et al. 

argue that defining “value” of intelligence can be difficult for a number of reasons.134  They 

argue that other existing methods have focused evaluating value after intelligence has left the 

intelligence cycle and become “tainted” by the effects of politics, preference and sometimes just 

probability.  They argue that a supplemental measure of the “value” of intelligence can be found 

within the intelligence cycle, before the intelligence is disseminated.   

The intelligence cycle is the cycle within the Intelligence Community which turns 

harvested information into intelligence ready for dissemination seen in Figure 2.  The first stage 

is planning and direction where the decision makers or intelligence managers direct that some 

target should be collected on and what different methods should be used to collect the 

information.  The second stage is collection, where the various methods assigned to collect the 

information actually collect the specified information.  The third step is processing, where the 

vast amount of information is translated, if needed and reduced down to the needed information 

to give to the analysts.  Analysis and production is the fourth step where analysts actually 
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convert the information into intelligence by “integrating, evaluating and analyzing all available 

data.”135  The final step is dissemination where the intelligence is distributed to the decision 

makers who may have initiated the process in the planning and direction step.  Though it is 

usually displayed as a cycle where information goes from one step to the other, in reality the 

progression tends towards the dissemination stage, but frequently information/intelligence is 

moved back steps based on what the information contains.136  For example, if while processing 

(stage 3) a satellite photo, an analyst notices that a location of interest is only partially captured 

by the photo, due to new construction, they might send the photo back to the planning and 

direction stage (stage 1) with direction to include more land mass in the photo.  For a more 

detailed discussion on the intelligence cycle with a specific focus towards operations research in 

the intelligence cycle, see Kaplan.137 

Determining value within the intelligence cycle, without some measureable results after 

using the intelligence can seem somewhat daunting.  One example of an application of value of 

intelligence within the intelligence cycle is offered by Smith et al. in their work Intelligence 

Impact on Network Analysis and Quantitative Intelligence Analysis.138,139  In these works, the 

introduce the idea of measuring a piece of intelligence’s impact on a network developed from 

intelligence. Additionally, taking the method further, they showed the possibility of applying that 

type of method across all analysis using particular pieces of intelligence and introduced the 

measure of potential, where the potential of a piece of intelligence is the fraction between 0 and 1 

of its average impact on quantitative analyses done using that intelligence.  In this way, Smith et 

al. have demonstrated an application for demonstrating quantitative “value” to analysis. 
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The method proposed in this paper would allow analysts to develop their own metrics for 

determining importance.  Sometimes there are different questions that might determine worth or 

value depending upon the use of the information.  Table 8 suggests some questions researchers 

may ask about a corpus of documents, like a collection of academic journals or a collection of 

intelligence.  Within the matrix of questions are appropriate network measures that can answer 

those questions.  One can note that there may be more than just one metric that can provide a 

measure for the question.  Some of the metrics are measures from network theory, but some of 

the measures are metrics developed by DNA analysts.  This list is not exhaustive, but illustrative 

and a good start. 

Using these questions, one can explore a corpus of documents using a network framework 

to start answering the question of value.  Definitions for the metrics found in Table 8 are laid out 

in Appendix E.   

 

Table 8 Notional questions about a corpus with corresponding network metrics to measure them 
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4.5 Applied to data set 

The data we applied our methodology to is from CiteSeerx (http://citeseerx.ist.psu.edu), a 

digital library primarily focused on the computer and information science.  We downloaded the 

July 26, 2011 database in MySQL format.  The data base consists of a number of linked 

databases with meta-data from over one million articles from the mid-1940s to 2011.140  This 

consisted of information on over a million different papers.  We reduced this data set to be more 

manageable by only including those papers which were cited over 100 times.  This reduced our 

range of dates to papers from 1945 to 2007.  From this collection of metadata, we queried the 

database to create edge lists, or spreadsheets containing a columns of “From,” “To,” and 

“Weight” which defines each edge connection.  These edge lists followed the mathematical 

definitions found in Appendix B.  We used ORA v.2.3.6, a dynamic meta-network assessment 

and analysis tool created and maintained by CASOS at Carnegie Mellon University to create our 

meta-matrices from the edge lists.  This tool has been used extensively to explore meta-matrices 

in the social network environment.  Our meta-matrices now contained the numbers of nodes 

shown below in Table 9.   

The data within the CiteSeerX database was not very clean or organized well.  The data 

had clearly been text mined from the various articles, which caused some parity errors.  For 

example, some of the key words had the word “and” attached to the front of them.  For this 

reason, the edge lists needed to be cleaned to ensure that the key words: “andclustering” and 

 

Table 9 Numbers of nodes within network 

 

 

http://citeseerx.ist.psu.edu/
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“clustering” counted as one node.  We had to do this for each separate node within each of the 

different edge lists we created.  For this reason, we did not create edge lists with author 

institution information, after some attempt at cleaning this data, we determined that it was just 

too unrefined to be cleaned within any reasonable time.  In addition, we theorized that we might 

create meta-matrices including the publication date, but finally determined that we could add the 

date as a property of the paper and still accomplish our analysis.  Future work may involve 

creating these matrices to see if there are ways to use them to explore further questions within 

the network. 

Using a notional situation with the following parameters: if there were a collection of 

journal articles (4793 in this case) from a country of interest in their native language, we have 

certain translated meta-data from those articles but not the full translations of those journal 

articles, can we determine a priority of translation or at least a list of those articles that would be 

worth translating?  In other words, which articles are valuable enough to dedicate sparse 

resources to translate and have government researchers read? 

As discussed earlier, value questions can largely be subjective.  Some questions come to 

mind when trying to determine the value of each of these journal articles.  What would determine 

value?  For this, we may look towards the chart in Table 8 for different questions that might help 

determine value.  Current methods might involve using an author or paper citation network to 

determine, perhaps which papers are most central, or which authors are most central, and perhaps 

translate those papers. 

5 Analysis/Results 

 We used our data set to explore four hypotheses.  



 
 

56 

 

Hypothesis 1. There is a difference in statistical significance between Turing Award winners 

and non-winners from 2007 until 2011 relevant metrics among an author citation 

network, and our A, AJ, AK, and AJ,K. 

Hypothesis 2. We can use our meta-matrices to determine the top recurring ranked authors 

within the corpus. 

Hypothesis 3. There is a visible difference in some nodes when comparing author citation 

network, and our A, AJ, AK, and AJ,K. 

Hypothesis 4. Using our meta-matrices we can demonstrate the migration in importance of 

key words over a period of years. 

Hypothesis 5. We can determine a number of papers from our original list, for translation and 

attention efforts to be focused on 

5.1 Turing award winners vs. non-winners 

We used an author citation network to explore Hypothesis 1.  The A.M. Turing award is 

the Association for Computing Machinery’s (ACM) most prestigious technical award, similar in 

the computer science world to the Nobel Prize.  It is given for “major contributions of lasting 

importance to computing.”141  We identified the winners from year 2007 through 2011 within the 

data set, and used a pivot table to determine averages and standard deviations of the metrics 

given in Table 8.  We then performed an f-test 2 sample for variance to determine if there was a 

statistical difference in variance of the metrics between winners and non-winners.  We then 

performed a two sample t test assuming equal or unequal variance based on the results of the f 

test (p value ≤ 0.05).  This let us know if there was a statistical difference between the average 

metric value for award winners and non-award winners.  Since there are so few award winners 
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(7) to non-winners (5310) greater statistical analysis would be problematic, but this analysis 

could let us know if this network might be helpful in predicting award winners. 

We also performed similar analysis and tests on an A, AJ, AK and AJ,K matrices to 

determine if there is a difference in statistical significance or perhaps an improvement in 

significance by selecting one of the meta-matrices.  The results are in Appendix F.  Highlighting 

some of the results, the author citation network, or AxA(Directed) does a reasonably good job in 

predicting award winners across most of the metrics chosen, though some of the meta-matrices 

improve on the statistical significance in some of the metrics.  For example, the AJ matrix is 

significant to the 0.1 level in the betweenness centrality metric and is significant to the 0.003 

level in Simmelian ties.  A possibly reason for this might be that rather than looking at the 

selection of authors that cite other authors, looking at authors that write for similar journals 

might demonstrate a better structure in understanding the communication paths between authors 

and what different cliques they might have ties within.  Additionally, the A network improves 

the significance in Eigenvector Centrality dramatically (0.017 to 7.0E-7).  This might be because 

the co-author network might capture those foundational authors who publish together.  

Depending upon the question asked, one might have a better result in predicting award winners 

by using a different matrix. 

It is important to note the metrics in the statistically significant measures for all matrices 

are higher for Turing award winners.  The only exception is in the A network in Eigenvector 

Centrality.  This is because all the award winners had a value of zero for the metric, as opposed 

to a non-zero result for non-winners in the same metrics.  From this we can reasonably say that 

winners tend to be higher in these metrics for all the matrices. 
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This similar method applied to intelligence data sets can help analysts identify key agents 

or people within the subject of the data set.  Key people within organizations can be found even 

if they are not the current head of an organization, or if there is no official head of the 

organization.  Additionally, this method could be used to determine sources or authors of 

intelligence who are influential within the corpus. 

5.2 Top recurring ranked authors 

From exploring Hypothesis 1, we know that when looking at the metrics and Turing 

award winners as an indication of importance of the author, Turing award winners tend to be 

higher in each of the metrics explored.  Using this logic we can explore the authors across many 

metrics and choose the top 10 ranking authors across all of the metrics in each matrix.  This 

would allow us to get a good understanding of important authors within the corpus of data.  The 

results for this analysis are in Appendix H.  It is interesting to note that 9 authors showed up as 

the top ranking authors in multiple networks, see Table 10.   

These authors have ranked within the top ten for a variety of network metrics including 

the ones used earlier in this paper.  It is worth noting that the average H-Index (according to the 

ISI Web of Science calculation done at the time of writing of this article), a standard measure of 

 

Table 10 Authors in Top 10 of standard metrics 

 

Author Networks in Top 10

MichaelBurrows A-Dir, A, AK

MichaelIJordan A-Dir, A

MartnAbadi A-Dir, AJ, AK

AadCJDuinmaijer A, AJ

AndantonPGWelbers A, AJ

MarcelJMPelgrom A, AJ

BarbaraHLiskov AK, AJ,K

MurdochJGabbay AK, AJ,K

AapoHyvrinen AK, AJ,K
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evaluation of a scientific author’s work, for this group is 34.2.  The H-Index is a measure that 

calculates the h number of journal articles cited h number of times.  The measure of an H-index 

of 12 is a calculation that might earn a prospective candidate tenure at a major research 

university, while at the time of the writing of the reference for this article, 2005, the highest H-

index was 110 by Edward Witten.142 The average H Index scores reflected in this sample reflect 

that the authors are well cited, but not extremely well cited.  The authors believe that this 

relatively low H-index score is reflective of the inference made through the various levels.  

Although the authors might not have a large H-Index, they are very well connected within the 

various networks explored. 

5.3 The visible effect of using different matrices 

If you look at the standard author citation network, and were looking at metrics for 

possible interesting authors, you would probably overlook the authors of these two groups.  In 

 

Figure 10 Diagram of Author Citation Network with two groups identified 
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order to prove the hypothesis in Hypothesis 3, we chose some authors in the fringe of an author 

citation network and followed their migration towards the main component when looking at 

other meta-matrices.  The picture in Figure 10 is the author citation network with all isolates and 

pendants removed (nodes with no connections or two nodes whose only connection is between 

themselves).  The picture was made with UCINet v6.374.143 

Each group is in the periphery of the standard author citation network, and are 

components to themselves.  Although the papers they wrote (Group 1: Krüger et al. 144 and Boltz 

et al.145, Group 2: VanGlabbeek et al. (1990)146, VanGlabbeek et al. (1996)147, Bergstra at al.148) 

were pretty highly cited according to Google Scholar (see Table 11.) 

Group 1 authors wrote about an innovation connected with Graphical Processing Units (GPUs) 

which were developed in 1999, but have only recently entered the mainstream market due to 

innovations similar what the authors wrote about, which made GPUs as versatile as Central 

Processing Units (CPUs).  This allowed for robust 3D visualization within computers around 

2003.  Group 2 wrote about specific applications of process algebra, a topic which was one of the 

reasons why Robin Milner won the Turing Award in 1991.  Process algebra helps to 

algebraically model behavior of any system, something very useful to computer scientists 

seeking to develop realistic models through programming.  These authors wrote on very specific 

innovations, relevant to those interested in GPUs or process algebra, but not as well cited by 

 

Table 11 Number of citation for papers 

 

Paper Cited

Krüger et al. 688

Boltz et al. 697

VanGlabbeek et al. (1990) 490

VanGlabbeek et al. (1996) 749

Bergstra at al. 1007
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those in the mainstream computer science world.  For this reason, they reside on the periphery of 

the author citation network, and therefore would be marginalized in network metrics. 

As noted earlier, Turing award winners ranked higher in the metrics, so higher metric 

scores equate to stronger authors.  If we just looked at the metrics for these authors in the 

standard author citation network analysts might not recognize the importance of these 

authors.  On the other hand, if you look at a number of the different inference matrices developed 

using this methodology, you see that they are, in fact, more connected than the average in a 

number of metrics.  Because of inference connections based on the key words they used, and the 

journal they published in, we see that they are in fact more important than one might have 

previously thought.  See Appendix G for the actual values of the various metrics explored.  

Specifically if we look at the metrics for the AJ,K network, we can see that if we use the fact that 

these authors are writing for popular journals as well as writing about popular key words, we see 

 

Figure 11 Diagram of AJ,K Network with two groups identified 
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that their metric values rise.  The reason for this is that they are now captured in the main 

component within the network as seen in Figure 11. 

In typical intelligence focused social analysis networks, sometimes people exist on the 

fringe of the network, because they may only have been seen contacting a few people, and none 

in the main component.  This methodology could use things like key words or intelligence 

sources in common to view people or locations in a different structure where they may become 

more important than at first thought in classic social network analysis. 

5.4 Analysis of key word popularity 

In order to prove Hypothesis 4, that we can use this layered network structure, which is 

currently not available under existing methods, in order to analyze key word popularity.  An 

example of this is demonstrated when we take the KP network which contains the property of 

year published of the paper.  We can create different KP network containing only those papers 

published in a specific year.  In this case, we chose to explore the key words between the years 

2000 and 2004.  If we fold these matrices (multiply them by their transpose) we get KP or a K 

matrix where key words are connected if they occur on the same paper.  We used this matrix to 

link the key word with the paper, and more specifically the date the paper was published, which 

is an attribute of the paper.  This matrix tells us which key words connected by a paper within 

that year.   
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Using these matrices, we can explore the popularity of the key words by year, using the 

metric Total Degree Centrality, which counts the total number of links going into the node.  In 

order to compare apples to apples, this number has been unitized since there are a number of 

components within the total network, some components larger than others.  Using this metric, we 

looked at the 300 most popular key words for papers published in the year 2000, as well as those 

published in 2004 in order to see change in popularity amongst the key words in the 5 years.   In 

Table 12, we see all key words that were in the top 300 key words in both 2000 and 2004.   

We see some interesting results in the green highlighted sections.  We notice that the key word 

“clustering” stayed pretty constant as a key word throughout the years.  On the other hand, 

“collaborativefiltering,” “evaluation,” and “textclassification” all rose in popularity over the five 

years.  It also looks like “collaborativefiltering” and “textclassification” were actually more 

popular in the years between 2000 and 2004.  This analysis can help researchers identify and 

 

Table 12 Key word by year analysis 

 

Rank Key Word Ranking Year

41 clustering 2000

41 clustering 2004

189 collaborativefiltering 2000

34 collaborativefiltering 2004

51 evaluation 2000

2 evaluation 2004

43 experimentation 2000

35 experimentation 2004

58 featureselection 2000

7 featureselection 2004

147 keywords 2000

129 keywords 2004

183 measurement 2000

33 measurement 2004

57 textclassification 2000

21 textclassification 2004
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map research trends over time.  Applied to intelligence, this can help analysts determine trends 

among a variety of topics such as terrorist activities, tribal names and specific types of attacks. 

This type of analysis will help researchers realize the emergence (or decline) of key 

words related to specific terrorist attacks (i.e. Specific type of IED, etc), locations, resources or 

leaders.  This will help researchers identify changes in trends and allow warning for possible 

dangerous directions of trends. 

5.5 Papers to translate 

In the end, this notional example was developed to determine the answer to Hypothesis 5, 

whether we can use our meta-matrices to determine a priority of which papers to translate.  

Depending upon what analysts think is important, or which questions they ask, they’ll use 

different metrics and therefore find different answers.  Additionally, if we explore papers based 

on different structures, we find that we’d translate different papers.  

In this scenario, we will assume that analysts are interested in what the foundational 

authors within this corpus are working on currently.  Essentially, we are asking question 6 in 

Table 8, which authors are most likely to be writers of foundational work and then we find their 

works within the corpus.  The metric that we will use to explore this question is eigenvector 

centrality.  There are a number of works using eigenvector centrality (or Google’s PageRank, 

which is a derivation of eigenvector centrality) as a measure of importance of an author.149,150,151  

In fact, it’s been shown that eigenvector centrality correlates well with H index scores.152  For 

more detailed information on eigenvector centrality, see Appendix E.  We rank ordered the 

authors in an author citation network (AxA-Dir), as well as the A, AJ, AK, AJ,K matrices by 

eigenvector centrality.   
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  Based on these results, and our results from viewing Turing winner results, we would 

recommend translating the lists from the author citation network (AxA-Dir), the A matrix and 

the AJ,K matrix. Then we identified the top 0.5% authors (or 26 authors) in each of the above 

meta-matrices with respect to eigenvector centrality, creating a total list of 65 foundational 

authors (removing repeats).  For a list of these authors see Appendix I.  We then identified what 

papers these authors wrote within our corpus.  See Appendix I.  From these 65 foundational 

authors we found that there are 137 papers that they wrote, which we would recommend 

translation.  Our use of meta-matrices allowed us to quickly identify the 2.9% of the papers that 

have value to the analyst question.  These papers should give analysts a reasonable idea of what 

the foundational authors have worked on within the corpus.  This might allow researchers to 

know what the foremost thinkers, within this corpus of papers, are thinking and researching. 

This analysis can allow researchers to quickly assess or prioritize a large corpus of 

information in a short amount of time.  By choosing different questions, and different metrics 

and meta-matrices, analysts can quickly identify intelligence reports with high valuing according 

to the question asked. 

5.6 Discussion and Analysis of Results 

Validation for this kind of applied analysis can be difficult but must be attempted.  In 

Nanda et al studied almost a million dissertations and journal articles covering 13 subject fields 

from the mid-1950s to 2000, and found that many fields of discipline demonstrated “delayed or 

poor emphasis on validated knowledge.”153  When talking about national security intelligence, 

although one might never know the actual truth of a situation, as sparrow suggests we must do 

the best we can with the information we have.154  In general, results are valid to the extent that 

they actually measure what is intended to be measured.155  In our research, we have attempted to 
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ensure that we have measured what we’ve attempted to measure.  We are attempting to apply the 

meta-matrix methodology from Carley et al. to a corpus of documents in order to arrive at a 

multi-dimensional view of the information contained therein.156  We use a combination of (1) 

statistical analysis, (2) comparison to other measures of importance from previous work (i.e. H 

Index, number of citations, etc.), (3) expert elicitation, and (3) qualitative analysis of the results.  

In the future, if we had more resources like availability of computer science experts, time and 

probably research money we would attempt a deeper exploration of validation of our results.  

Ideally, we might have unlimited resources to validate our analysis and results.  If we did, 

we would perhaps follow the work of Sargent who discusses the process for validating 

simulation models.157  He outlines four different ways that a simulation could be validated, 1) the 

developing team, if large enough could internally validate the model; 2) the model users could 

attempt to validate the model based on their use and understanding of what they need in a model; 

3) an independent team could validate the model or 4) (and he does not recommend this 

approach for a number of reasons) is to develop a scoring model to measure the validation of the 

model.  Although we are not attempting to validate a model, rather a process, these methods 

could still be useful.  In this respect, we are currently choosing the first way to validate the 

model.  The developing team has applied statistical, quantitative and qualitative approaches to 

validating this work.  We could give this approach to a team of intelligence analysts and 

collection managers to see if they thought there was value in this approach.  This might be a 

good way, but at this time, the authors cannot mandate the adoption of our methodology for 

intelligence professionals.  An independent team of validators might be preferred as well.  

Finally, we could apply some scoring methodology comparing our results to existing measures of 

author quality (H Index) or paper quality (citation count). 
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For an independent validation effort we might collect a number of recognized experts in 

the field of computer science and computer science literature, and first give them the actual 

corpus of documents represented within our data set.  We could ask them to familiarize 

themselves with the corpus and return with their recommendations of the foundational authors 

within this corpus.  We could then ask them to view the list our method created and compare and 

contrast their list to ours.  After this, we might again ask them for a revised list of authors.  At the 

end of this exercise, we could compare the two lists from the experts to our list and see how 

many of the authors from our list made it into either of the two expert lists.  We might also see if 

there was a difference in inclusions between the two lists by the experts.  

Another way we might independently validate our findings might be if we had compare 

results in each of our hypotheses to previously peer reviewed results using other methodologies.  

We might demonstrate that we could come up with similar results faster than previous methods.  

In this case, though there are a number of applications of networks and network measures in 

demonstrating “value” of documents, or journals in this case, our research, using meta-matrices, 

brings a more 3 dimensional approach to viewing a corpus of documents.  To the knowledge of 

the authors this has not been done before quantitatively.  Current methods of evaluating authors 

(H-Index) or journals (citations), although currently regarded as the standard for academic 

evaluation, tend to be a one-dimensional metric that might not capture a more holistic view of 

the author or journal.  Though we use H-Index and citation counts in demonstrating the high 

quality of node selection, we also recognize that node selection does not always demonstrate the 

highest values of either of these measures. Additionally, H Index score distributions tend to vary 

widely between different disciplines.  The underlying cause is that different disciplines have 
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different average citations counts.158  What might be a high H score for a paper in the 

Mathematics field, would be very low in the Biology & Biochemistry field.  

Finally, we could attempt to apply some scoring methodology to validate our 

methodology.  Given the above note about H index values and citation counts, if we had a 

reliable means of calculating either (although the ISI Web of Science tends to be the gold 

standard in calculating H Index scores and citation counts, there is work noting it’s 

deficiencies,159 additionally each author must be measured individually, which can take a lot of 

time for our 5317 authors and 4793 papers), we might compare our results in a bootstrapped 

distribution.  We could show the average H index scores or citation counts of the collection of 

authors or papers we’ve selected, and run a bootstrap collecting a similar sample a large number 

of times, and calculate the average H index for those randomly selected samples.  We might then 

compare our results to the distribution and calculate the probability of selecting our average 

value of metrics randomly or calculate the p-value.  This could give us some measure of the 

statistical significance of our results.  Again, though, this would be a comparison to a one 

dimensional statistic.  We would be comparing apples to oranges.  While H Index scores relate n 

number of papers with n citation, the implied connotation is that those authors with high H Index 

scores are high quality researchers.  This may be the case, but there are certainly other aspects of 

good researchers that are not addressed in this H Index score.  These are the things we are 

attempting to quantify using our meta-matrix approach to viewing a corpus of data.  Perhaps 

there are important nodes or links when you view authors or papers in terms of the connections 

to key words or to journals.  Surely an argument can be made that a good quality of a researcher 

is that they research and advance the state of the art on popular topics.  Another possible quality 

might be the connections gained through consistently publishing one’s work in high quality, and 
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the possible connections to other authors or other research one can make through knowing the 

same people who habitually write for high quality journals or present at the high quality 

conferences. 

5.7 Discussion of results 

 Given the above discussion on possible methods of validation if we had unlimited 

resources, we did explore methods of validation.  The validation methods for our analysis are 

given in the details below.  

5.7.1 Hypothesis 1 Discussion 

In Hypothesis 1, we demonstrate the models ability to use the four network measures to 

see if there is a statistical difference between Turning Award winners and non-winners.  We use 

a p-values found in Table 13 below to demonstrate statistical significance between averages of 

winners and non-winners.  This hypothesis uses statistical analysis to validate the differences 

between Turing winners and non-winners.  These p values determine that some of the meta-

matrices besides the standard author citation network do a statistically significant job of 

separating the averages of the metrics shown. 

 

Table 13 P values of average differences between network metrics of Turing Award winners and non-winners 

 

Centrality Betweenness Centrality Eigenvector Simmelian Ties Centrality Total Degree

AxA(Dir) 0.125 0.017 0.722 0.0004

AxA 0.392 0.0000007 0.276 0.066

AxA(K) 0.39 0.192 0.109 0.177

AxA(J) 0.1 0.96 0.003 0.002

AxA(J,K) 0.177 0.043 0.197 0.048

Stat Sig p value <= 0.05

Stat Sig p value <= 0.1
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5.7.2 Hypothesis 2 Discussion 

In Hypothesis 2, we explored the top ranked authors within our corpus.  This is different 

from foundational authors.  When we mention top ranked, this is because they rose to the top 10 

in terms of a number of different metrics which take into account more than just importance.  For 

a total list of the metrics involved see Appendix H.  In an effort to prove that our methodology 

was better than randomly selecting authors, we used the hypergeometric distribution to estimate 

the probability we could take a random sample and capture at least one of the Turing award 

winners.  We used this distribution because it met each of the three assumptions from Devore, 1) 

set to be sampled consists of N individuals (finite population), 2) each individual can be 

characterized as a success or a failure and there are M successes in the population, and 3) a 

sample of n individuals is selected without replacement I such a way that each subset of size n is 

equally likely to be chosen. 160  In this distribution there N=5317 total authors, there are M=20 

successes or Turning Award winners and the sample of n=10 selections from each matrix 

completes the parameters for this distribution.  This distribution models the selection of one 

sample of 10 authors.  The probability of randomly picking 1 or more Turing award winners 

from one matrix is 0.037 or 3.7%.  Since we draw from these n samples from 5 matrices, there is 

more to the overall probability.  In this case, Liskov was found by sampling from 2 matrices (Ak 

and AJ,K).  The probability of randomly picking 1 or more Turing award winners from exactly 

two matrices is .00137 or 0.13%.  Being more conservative, the probability of randomly picking 

a Turing award winner from 2 or more matrices is .0014 or 0.14%.  Bottom line, the probability 

that a similar to the one above randomly picks at least one turning award winner by chance is 

close to zero.  Our method is much better than a random selection of authors from a list a picking 

at least Turing award winners.  Given that Turing award winners are a good indicator of quality 

of authors.   
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Additionally, we found the average H Index of the selected authors are 34.2. When you 

peel back the onion on the H Index scores, the story is a little more interesting.  Below in Table 

14, the H Index scores for each of the 9 authors is shown.  While the average score of 34.2 as an 

H index score is impressive, an average professor successfully gaining tenure is around 12, you 

see that there is a disparity in H Index scoring.  Some of the authors, predictably, have a high H 

Index, but some have pretty low scores.  As we’ve mentioned before, the H Index is, by 

definition, a very one dimensional metric.  We might hope that our methodology would not just 

return only those with a high H Index score.  In this case, we see that authors Duinmaijer, 

Welbers and Pelgrom are all listed and have all been chosen by being in the top of the metrics in 

the A and AJ matrices.  While none of the three by themselves are uniquely distinguishing, 

together they co-authored a paper, Matching Properties of MOS Transistors in the IEEE Journal 

of Solid State Circuits back in 1989.  This paper has been cited over 2170 times according to 

Google Scholar.  These authors were likely chosen in the A network because they co-wrote a 

very well cited paper together, and were likely chosen in the AJ network because this highly 

cited paper was published in a very respected journal.  This paper is among the highest cited 

papers within our network, but was not chosen in the author citation network because there were 

other authors, whose work over multiple papers set them farther apart than these authors.   
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The other outlier in terms of H Index score seems to be Murdoch Gabbay.  He was 

among the top ten in metrics over the AK and the AJ,K matrices.  Although, he has published over 

61 journal articles since 1999 and had over 20 co-authors, it seems that he stands out for a 

different reason.  He co-authored a paper, “A new approach to abstract syntax involving binders 

variable binding” and “A new approach to abstract syntax with variable binding,” published in 

the IEEE Computer Society Press in 1999, and in the Formal Aspects of Computing journal in 

2002, respectively.  These papers combined were cited 683 times according to Google Scholar.  

This paper describes a “semantic basis of meta-logics for specifying and reasoning about formal 

systems involving name binding, α-conversion, capture avoiding substitution, and so on,” 

specifically applying to Fraenkel-Mostowski (FM) sets within Set Theory.161  It’s basically a 

 

Table 14 Listing of H Index scores for selected authors 

 

Author H Index

MichaelBurrows 29*

MichaelIJordan 99

MartnAbadi 75

AadCJDuinmaijer 1**

AndantonPGWelbers 1**

MarcelJMPelgrom 6**

BarbaraHLiskov 43

MurdochJGabbay 9**

AapoHyvrinen 45

Avg H-Index 34.2

H Index References

Palsberg, Jens , Dept Chair UCLA Computer Science Dept, The H Index for Computer 

Science  website.  Accessed 17 April 2013. http://www.cs.ucla.edu/~palsberg/h-

number.html

*Arnetminer.org, Search and Mining of Academic Social Networks website. Accessed 17 

April 2013. http://arnetminer.org/person-ranklist/hindex/151-0.html

**ISI Web of Knowledge  website- Manual Caluclation by author. Accessed 17 April 

2013. 

http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mo

de=GeneralSearch&SID=1D55CobbdG3eMK45MgH&preferencesSaved=
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popular naming convention used within these FM-sets, which have been adopted and employed 

by future researchers of FM-sets.  In essence, Gabbay is an above average researcher and author, 

but also developed a popular naming structure within the computer science field.  As far as 

getting into the top of the charts of the AK matrix, we’re not entirely sure why this happened.  

We looked at the total importance of the key words used in the 2002 paper (there were no key 

words used in the 1999 paper) and found nothing notable.  Exploring both eigenvector centrality 

and total degree centrality (E.C; D.C) the ranks for each of the given key words are shown: 

abstract syntax (1392/1837; 1308/3092), Alpha-conversion (1837/1837; 2267/3092), permutation 

actions (1837/1837; 2267/3092), Set theory (1837/1837; 2267/3092), and structural induction 

(1837/1837; 2267/3092).  Each of the key words ranks near the end of the list of key words in 

terms of either eigenvector centrality (popular words connected to other popular words) or 

degree centrality (simply popularity of the node). 

A hypothesis on why the methodology selected Gabbay is that he might be a combination 

Connector and Maven from Gladwell’s Tipping Point.162  In Tipping Point, Gladwell points out 

three types of people who help to create tipping points, or “the moment of critical mass, the 

threshold, the boiling point:” the Connector, the Maven and the Salesman.163  The Connector is a 

person who collects acquaintances and habitually connects people based on some shared interest 

or drive.  Mavens are people who collect information about various things and are hyperaware of 

what the information means and are sensitive to any changes in the information.   They are 

problem solvers by digesting information and sharing this information with others.  Salesman 

are, as the name states, charismatic persuaders with powerful negotiation skills.  Together these 

personalities tend to be at the nexus of tipping points.  We suggest that Gadday might be some 

combination of Connector, based on his many journal articles and large number of co-authors, as 
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well as possibly a Maven, as shown in the variety of topics his papers have spanned as well as 

the success his one paper about FM-sets has enjoyed. 

5.7.3 Hypothesis 3 Discussion 

In our analysis of Hypothesis 3, we show the visual effects of using a meta-matrix 

approach as opposed to a standard one dimensional analysis of an author citation network.  We 

demonstrate the visual effects of analyzing authors within each of the matrices and show visually 

why nodes might have different network metric scores based on the difference in structure of the 

overall networks.  Although the two groups we identified had scores of almost zero for network 

measures in the author centrality network, the scores for some of the authors within the groups 

shot up to above average values in the meta-networks. For validation we show that these authors 

which were marginalized in the author citation network, but shown to have more connectivity in 

other meta-networks, were actually writing on things interesting to the overall community, 

perhaps just not with the core community of those with over 100 cites for their papers.  The 

average citation count is 726.2 for the 6 papers written by the authors of group one and group 

two.  

5.7.4 Hypothesis 4 Discussion 

Hypothesis 4 was focused on key word popularity.  In order to validate our findings, we 

looked up our key words in the ISI Web of Knowledge.  We used the search on Topic or Title for 

each of the searches, selected only the Science Citation Index Expanded (SCI-Expanded), and 

limited the date to the time ranges given.  When the key word is two words, we put the key 

words in quotes when running the search.  Below, in Table 16, is a chart of our findings.  Shown 

in this chart, we see that all of the hits of papers increase over the given time frame.  This is an 

independent verification that the key words were written about more during the given time 

frame.  We’ve calculated the slope over the time frame and each is a positive slope.  On the other 
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hand, some of the raw numbers are not what we’d expect from a popular key words according to 

our methodology.  On the other hand, our data set is comprised of computer science papers 

having been cited over 100 times, and the ISI database is much larger, containing more 

disciplines.  What we wanted to see is that the key words had a high quantity of papers aligned 

with them throughout the time period, and also that the slope reflected what our analysis 

reflected.  We wanted to see that the slope of collaborative filtering, evaluation feature selection, 

measurement, and text classification had positive slopes.  .  In every case, the slope is positive, so 

the key word frequency was rising, but many of the total number of papers using the keywords, 

specifically collaborative filtering, and text classification, are relatively low in quantity and not a 

strong slope.    
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In order to do an evaluation of this check, we chose some of the lowest ranked key words 

from our methodology shown in Table 15.  We entered these key words in to the ISI search 

query in a similar manner to compare to see if there are indeed differences in the slope.  The 

results were somewhat disappointing.  What we might have liked to see is that the key words had 

a much less popularity, which is true when compared to some of the key words above.  

Additionally, it seems as though the positive slope exists for these key words as well.  If we 

could check the number of papers written in the SCI-Expanded data base, and do an analysis that 

 

Table 16 Listing of numbers of papers and slope with the given high ranking key words in the given time 

 

 

clustering collaborative filtering evaluation feature selection keywords measurement text classification

2000 17040 10 29900 108 189 55873 12

2001 17244 14 29912 85 176 56743 10

2002 18573 27 32152 135 218 57842 15

2003 20241 42 35089 205 307 60543 39

2004 21908 73 38163 285 417 64552 54

clustering collaborative filtering evaluation feature selection keywords measurement text classification

Slope 1273.3 15.4 2170.3 47.4 58.7 2115.8 11.3

Number of papers with same topic or title in ISI Web of Science

Slope of papers with same topic or title in ISI Web of Science

 

Table 15 Listing of numbers of papers and slope with the given low ranking key words in the given time 

 

imagerepresentation machinelearning tapestry wirelessnetwork sparseness

2000 68 535 82 121 73

2001 68 628 76 149 79

2002 76 843 89 219 94

2003 80 1149 95 355 110

2004 91 1501 108 478 151

imagerepresentation machinelearning tapestry wirelessnetwork sparseness

Slope 5.8 245.3 7.1 92 18.7

Slope of papers with same topic or title in ISI Web of Science

Number of papers with same topic or title in ISI Web of Science
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took into account the total number of papers written per year, we might be able to verify that 

indeed the number of these key words was increasing. 

5.7.5 Hypothesis 5 Discussion 

In Hypothesis 5 we answered an analyst questions: what are the foundation authors in our 

corpus writing?  We developed a list of foundational authors from our corpus of documents 

using eigenvector centrality and in the list of 65 authors, our list contained 5 of the 20 Turing 

award winners in our data, a good indication that we captured foundational authors.  In order to 

evaluate our results, we decided to compare our results to a random draw of authors in a way 

similar to our directed draw.   

We sampled from three networks (author citation network, A, and AJ,K) based on our 

results from our analysis of Hypothesis 1, that these matrices did a statistically significant job 

sorting out the Turing award winners from non-winners.  We chose the top 0.5% authors in terms 

of eigenvector centrality from each of these networks.  In order to evaluate the same random 

selection, we determined the probabilities using combinations based on the hypergeometric 

distribution.  The actual hypergeometric distribution was not applicable in this sense because we 

took authors from all three lists.   The upper bound of the probability of randomly drawing 5 or 

more Turning award winners from the three meta-matrices is shown in the probability statement 

below: 

𝑃(𝑋 ≥ 5) = 1 −∑∑ ∑ 𝑝(𝑘)𝑝(𝑖)𝑝(𝑗)

𝑗=0

4−𝑘−𝑖

𝑖=0

4−𝑘

𝑘=0

4

 

Where the p(k), p(i), p(j) is the probability of picking a winner from matrix k, i, or j, and 

the distribution of picking a winner is:  

𝑝(𝑥) = (
5297

26 − 𝑥
) ∗

(20
𝑥
)

(5317
26
)
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The overall probability of randomly selecting 5 or more Turing award winners from 3 separate 

matrices is 0.0000109 or 0.001%.  We believe this means that our methodology would be better 

than selecting authors at random at least in terms of picking Turing award winners.  We believe 

it is a safe assumption that selecting Turing award winners are a good indicator of picking 

foundational authors. 

In determining validation of our methodology, we also should look at results from 

existing methodologies.  The common practice is to use author citation networks and their 

metrics to analyze a corpus of documents like this.  If the standard method had been used to 

analyze this corpus, we might have taken the top 1.5% of author nodes in eigenvector centrality 

from the author citation network.  Instead we got about 2/3 of the list different which gives us the 

opportunity to view a different perspective of importance.  We did a comparison of the overall 

list to see what the differences may have been.  In Table 17 we see a list of all the author nodes 

we got from each of the different matrices.  These author nodes were further refined to arrive at 

our list of 65, since some of the author nodes are different spelling of the same author.  The 

Turing award winners are listed in bold.  Additionally, there is a column of the rank of 

eigenvector centrality score in the author citation network.  Finally, there is a color coding to 

represent which names came from which lists.  The top of the list with no color coding represents 

the top 26 authors we pulled from the author citation network.  We see that there is an overlap of 

5 authors on the author citation network list and the AJ,K matrix.  One of those overlapped 

authors is the Turing award winner Butler Lampson.  Additionally, many of the authors in the 

AJ,K matrix also have a relatively high eigenvector centrality rank within the author citation 

network.  While the author citation network performs well and gives us four of our five Turing 
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award winners, the AJ,K matrix gives us the fifth award winner (the 39th ranked author node on 

the author citation network is the same author node as the fifth Turing award winner, we only 

 

Table 17 List of 73 author foundational author nodes with corresponding E.C. rank in AxA-Dir matrix 

 

# Node Title AxA-Dir E.C Rank # Node Title AxA-Dir E.C Rank

1 MichaelBurrows 1 37 EdwardDLazowska 96

2 MartnAbadi 2 38 MSatyanarayanan 130

3 EdwardWobber 3 39 MiguelCastro 173

4 RogerNeedham 4 40 DavidAPatterson 176

5 RonaldLRivest 5 41 WillyZwaenepoel 181

6 SallyFloyd 6 42 MauriceHerlihy 248

7 AdiShamir 7 43 MichaelJWest 312

8 LAdleman 8 44 RobertNSidebotham 312

9 DahliaMalkhi 9 45 AndreSchiper 366 AxA-Dir

10 ButlerLampson 10 46 GregNelson 412 AxA(J,K)

11 MichaelReiter 11 47 GeorgGottlob 708 AxA

12 MartinAbadi 12 48 ChrisHanson 1395

13 AndrewDGordon 13 49 CHanson 2114

14 ScottShenker 14 50 ChristopherTHaynes 2114

15 Stephen 15 51 CTHaynes 2114

16 TKent 15 52 DanielPFriedman 2114

17 VictorLVoydock 15 53 DHBartley 2114

18 LorenzoAlvisi 18 54 DOxley 2114

19 JosephYHalpern 19 55 ed 2114

20 CARHoare 20 56 EugeneKohlbecker 2114

21 MichaelDahlin 21 57 Gbrooks 2114

22 JeanPhilippeMartin 22 58 GeraldJSussman 2114

23 VanJacobson 23 59 GJRozas 2114

24 YoramMoses 24 60 GJSussman 2114

25 MikeBurrows 25 61 GuillermoJRozas 2114

26 JoanFeigenbaum 26 62 GuyLSteeleJr 2114

27 FredBSchneider 35 63 HAbelson 2114

28 RajJain 36 64 HalAbelson 2114

29 BoltBeranek 37 65 JonathanRees 2114

30 BarbaraHLiskov 39 66 JonathanReeseditors 2114

31 RobbertVanRenesse 41 67 KentMPitman 2114

32 LeslieLamport 44 68 MitchellWand 2114

33 HectorGarciaMolina 48 69 NIAdamsIV 2114

34 AndrewSTanenbaum 52 70 RHalstead 2114

35 KennethPBirman 73 71 RichardKelsey 2114

36 BrianNBershad 81 72 RKentDybvig 2114

73 WilliamClinger 2114
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pulled the top 0.5% or 26 from each network).  The AJ,K matrix shows those people connected 

with the inference of journal and key words, so we might expect that those popular nodes 

connected to other popular nodes within this composite matrix would also perform well in the 

standard author citation network.   

A demonstration of the worth of our methodology comes from the list of the A matrix, or 

the co-author network.  The author nodes within this list rank towards the end of the list of 

eigenvector centrality in the author citation network.  The final rank in the author citation 

network is 2114, so a majority of our list comes from the very bottom of eigenvector centrality in 

terms of the author citation network.  Each of these authors came from a paper titled Revised5 

Report on the Algorithmic Language.164  It’s a paper, cited according to Google Scholar 304 

times since it was published in 1998.  It’s a paper evaluating the progress of a computer language 

called Scheme, created by Steele and Sussman, two of the co-authors of this paper.  This paper is 

one of the largest collections of co-authors on one paper in our A matrix. Although individually, 

these people may not be topping the list in the author citation network, the fact that there is such 

a large collection of co-authors might be useful to analysis.  Considering how many authors went 

into this comprehensive work, it might be useful to know that there is this huge collaboration 

effort ongoing within the ranks of the authors.  Bringing in a national security intelligence 

scenario, if the subject of this data was terrorists, terrorist knowledge, terrorist locations, etc., 

while a collection of people with these characteristics might not be at the top of a terrorist 

popularity list, the fact that this is one of the largest single groups working together on a single 

event would probably be of interest to intelligence analysts seeking to understand the capabilities 

of a terrorist organization.  These are the types of things that our methodology can bring to the 
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surface if applied to a corpus of documents, which might remain opaque if standard methods are 

used. 

Another possible way of understanding why this methodology selected these authors, 

beyond the list of the author citation network, is that these authors are again, some mixture of 

Connectors, Mavens and Salesman from Gladwell’s Tipping Point.165  The authors selected by 

eigenvector centrality, or popular authors connected to other popular authors, with respect to the 

A matrix, or the co-author matrix are a collection of co-authors who are co-author on a lot of 

papers, but also are well cited (the data set only contains those papers cited over 100 times).  

These people might be thought of as Connectors in Gladwell’s terminology.  Additionally, the 

list of high eigenvector centrality authors from the author citation network might be thought of as 

some combination of Salesmen and Mavens.  Clearly they have a mastery of the information 

enough to have written papers that a lot of others cite, but also there must be some combination 

of Salesmen in the papers to have persuaded so many others to cite the paper in their own work.  

Finally, the list in the middle, coming from the AJ,K matrix, or authors connected by journals and 

key words, might be thought of as the collection of authors who are writing in the popular 

journals and about the popular key words, or perhaps Mavens of the popular topics. 

In the spirit of the discussion above about validation if we had unlimited resources, we 

sent our list of foundational authors to a former professor of computer science at West Point, 

now a government employee still working in computer and network science.  We asked him his 

opinion on the list of authors and whether in his expert opinion thought we had captured the 

foundational authors.  He responded that he thought we had captured some good authors.  

Unfortunately he did not have the time to go into detail about his answer, just that he thought that 

we had done a good job of identifying the foundation authors of computer science literature.   
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In order to test our methodology for robustness, we randomly selected 5% of the authors 

and deleted them and re-ran our results network methodology results.  We did this on three 

different runs and found the results listed in Table 18.  Based on these results, we believe that the 

outcome is robust against the size of the network. In each of the three runs, the list of 

foundational authors retained over 85% of its original content.  Though this methodology is of 

course sensitive to change in the size of the network (network methodology is essentially a 

measure of the structure – reducing or adding to that structure changes the overall structure and 

therefore, the metrics associated with that structure), we found that a reduction in 5% of the 

structure, still resulted in the list of foundational author nodes being over 85% accurate on 

average.  Of course the AJ,K matrix was the most affected, since this matrix is actually a result of 

multiplying the AJ and AK matrices together.  We should expect that any changes to these two 

matrices are heightened when the two matrices are multiplied together. 

5.8 Conclusion of Discussion 

Validation is an important aspect of any research methodology.  Being able to 

definitively show that a proposed methodology is better than existing models or at least is better 

than random selection can be very important.  Following Sargent’s approach to validating a 

simulation model, we attempted to validate our methodology within our research group, though 

we have discussed alternative methods for attempting validation in future research.  In our 

research we’ve, when applicable, demonstrated that our methodology works better than drawing 

random samples.  Since we’re demonstrating a more rounded approach and methodology to 

 

Table 18 Accuracy of list of foundational authors in additional random runs (before repeated names deleted) 

 

Run 1 Run 2 Run 3

# missing from original list of 74 11 9 7

% Selected correctly 85% 88% 91%
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selecting interesting nodes, comparison to existing methods of evaluation like H Index for 

authors and citation counts for papers, although are useful for comparison, we expect our results 

to be different and not replicating the information contained within the H Index or citation 

counts.  After we demonstrated that our methodology beats random selection, we discussed how 

many of our results compared to some traditional analysis and also discussed why results we 

found might deviate from the existing methods and metrics of evaluation.  Additionally we 

discussed how we would like to validate this work if we had unlimited resources.  Future work 

should focus on this validation process. 

5.9 Conclusion/Future Work 

It’s been said that analyzing intelligence is like assembling a jigsaw puzzle where 

analysts attempt to fill in pieces of multiple puzzles each with unknown number of pieces, 

sometimes containing deceiving pieces, also sometimes not containing the pieces, and what’s on 

the face of the piece as well as its shape change in time.  It’s also been said that no single piece 

of intelligence has value, with the exception of the rare immediately actionable piece of 

intelligence, but rather its value comes in the overall picture that they help the analysts create.  

This methodology offers not only a way to value pieces of information within a corpus based on 

different questions, but also allows a way to further understand the picture that the corpus helps 

to create. 

Future work might involve furthering DNA use on information networks.  As in real life, 

some intelligence assets are more reliable than others.  For this reason, DNA allows the use of 

probability in their links.  In a similar manner, it could be argued that some sources of 

documents, in this case journals or conferences, are more reliable than others.  It would be 

interesting to see an application of probability to information networks.  Additionally finding a 
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cleaner data set that might allow us to create author institution networks.  Finally, this 

methodology has applications with all kinds of data sets, not just academic journals.  For obvious 

reasons we applied this methodology to an open source collection of documents, but we would 

like to apply this methodology to a classified data set as well. 

6 Conclusion/Future Work 

Collection managers have a difficult task of assigning the appropriate mix of collection 

assets to answer the needs of our national decision maker’s questions.  A methodology that might 

assist them in real time, or while the intelligence is still in the intelligence cycle might help them 

better allocate these assets.  Additionally, these methodologies might assist by creating objective 

“value” of intelligence metrics for cost/benefit analysis of collection methods in times of 

dwindling budgets.   

Intelligence helps our nation win its wars.  Civilian and military leadership depend upon 

the intelligence collected, processed and narrowed to meet their needs.  In the non-traditional war 

against terrorists, there are no front lines, so knowing more about our enemies than they know 

about us could be one of the key elements to winning the war.  Useful measures that might 

improve our nation’s intelligence capabilities are important and useful to our nation. 
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Appendix A. Results of Notional Analysis 

 

Table 19 List of highest betweenness users 

 

Top 5% of Betweenness

1 100Monkeys_Fan

2 alttiii1

3 bignarstie

4 Blair_Gibbs

5 EmTalib

6 FFMonst

7 hannahchw

8 HantsPolice

9 haydenmead

10 Hmilligan1

11 hugefoodlover

12 Hulkhogan

13 iamwill

14 kenworthy39

15 laurevans311

16 MasherMiles

17 missgucci13

18 MrCliveC

19 multizonecraig

20 MyrtleTakesTea

21 nickkeane

22 OliverPhelps

23 PCStanleyWMP

24 PoliceFedChair

25 PolicingToday

26 ravensrod

27 RBKC_Markets

28 rioferdy5

29 Riotcleanup

30 rob2d2

31 sampepper

32 SmithySmite

33 spookybizzle

34 stevegarfield

35 teanamu

36 thefadotcom

37 VC_UEL

38 WestYorksPolice

39 YoungRv
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This list is a list of the top 5% of users in betweenness value within the tweet network.  This is 

the list that, depending upon the existence of tweets within the network might change from 16 

(41%) to no change.   
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Appendix B. Interaction meta-matrix mathematical definitions 

 

Notations 

A single matrix is notated with capitalized and bold letters.  We use the following abbreviations 

to refer to different node classes: 

Additionally, we use the following matrix notations when describing a measure: 

 

One Node Graphs 

A (RxR): Co-Author Network (which authors wrote papers with which other authors?) where 

Aij = n iff author i is a co-author with author j in n published works; else Aij = 0.  Nondirected, 

symmetric matrix with weights. 

  

P (TxT): Citation Network (which papers cite which papers?) where Pij = 1 iff paper i cites 

paper j; else Pij = 0.  Directed matrix. 

  

K (WxW): Information Network (which key words inform on which key words?) where Kij = 1 

iff key word i is on same paper as key word j; else Kij = 0.  Nondirected, symmetric matrix. 

 

Table 20 Legend of notations 

 

 

 

 

Table 21 Matrix calculation notation 
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J (JOxJO): Citation Network (which journals cite which journals?) where Jij = n iff paper in 

journal i cites paper in journal j, n times; else Jij = 0.  Directed matrix with weights. 

  

I (LxL): Inter-organizational Network (which organizations work with which organizations?) 

where Iij = n iff author at institution i publishes a paper with author at institution j , n times; else 

Iij = 0.  Nondirected, symmetric matrix with weights. 

 

D (YxY): Timeline Network (what publication dates interact with publication dates?) where Dij 

= 1 iff date i cites date j; else Dij = 0.  Nondirected, symmetric matrix. 

  

Two Node Graphs 

PA (TxR): Author Network (Which papers were written by which authors authors cite which 

papers?) where PAij = 1 iff paper i was written by author j; else PAij = 0.  Nondirected matrix. 

 

PK (TxW): Contextual Network (Which papers contain which key word(s)?) where PKij = 1 iff 

paper i contains key word j; else PKij = 0.  Nondirected matrix. 

 

PJ (TxJO): Journal Content Network (Which papers are from which journals?) where PJij = 1 iff 

paper i is published in journal j; else PJij = 0.  Nondirected matrix. 

 

PI (TxL): Institutional Capabilities Network (What titles are where?) where PIij = 1 iff paper i is 

written from an author from institution j; else PIij = 0.  Nondirected matrix. 

 

PD (TxY): Publishing Precedence Network (Which papers have been published when?) where 

PDij = 1 iff paper i was published in year j; else PDij = 0.  Nondirected matrix. 

 

AK (RxW): Knowledge Network (Who is writing about what topics?) where AKij = n iff author i 

publishes using key word j, n times; else AKij = 0.  Nondirected matrix with weights. 

 

AJ (RxJO): Literature Network (What authors write for which journals?) where AJij = 1 iff 

author i publishes with journal j; else AJij = 0.  Nondirected matrix. 

 

AI (RxL): Employment Network (what authors work where?) where AIij = n iff author i 

publishes n paper(s) while at institution j; else AIij = 0.  Nondirected matrix with weights. 

 

AD (RxY): Author Timeline Network (Which authors have published when?) where ADij = n iff 

author i publishes n papers during year j; else ADij = 0.  Nondirected matrix with weights. 

 

KJ (WxJO): Journal Context Network (What key words describe which journals?) where KJij = 

n iff key word i is used on n published papers from journal j; else KJij = 0.  Nondirected matrix 

with weights. 

 

KI (WxL): Competency Capabilities Network (What knowledge is where?) where KIij = n iff key 

word i is used on n published papers from institution j; else KIij = 0.  Nondirected matrix with 

weights. 
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KD (WxY): Key Word Timeline Network (What key words were published about when?) where 

KDij = n iff key word i is used on n published papers during year j; else KDij = 0.  Nondirected 

matrix with weights. 

 

JI (JOxL): Institutional Reference Network (What journals get their papers from where?) where 

JIij = n iff n paper(s) in journal i is written by an author from institution j; else JIij = 0.  

Nondirected matrix with weights. 

 

JD (JOxY): Journal Timeline Network (What publication dates are journals published during?) 

where JDij = n iff n paper(s) i are published during year j; else JDij = 0.  Nondirected matrix with 

weights. 

 

ID (LxY): Institutional Timeline Network (What publication dates are organizations publishing 

during?) where IDij = n iff n author(s) at institution i publishes during year j; else IDij = 0.  

Nondirected matrix with weights. 
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Appendix C. Reachability matrices mathematical definitions 

 

An: (A+I)n , where I is the identity matrix, matrix (order RxR) – Citation Network (which 

authors co-author with which other authors?)  Given a graph of A, using Boolean operators {0 

representing no edge, 1 representing an edge} instead of weights, create matrix An where Aij = 1 

iff author i is n or fewer steps away from author j in a citation network; else Aij = 0.  AR
 is the 

fully connected matrix, also known as the universal matrix, matrix known to be strongly 

connected.  Nondirected matrix. 

  

Pn: (P+I)n , where I is the identity matrix, matrix (order TxT) – Citation Network (which papers 

cite which papers?)  Given a graph of P, using Boolean operators {0 representing no edge, 1 

representing an edge} instead of weights, create matrix Pn where Pij = 1 iff paper i is n or fewer 

steps away from paper j in a citation network; else Pij = 0.  Symmetrize the result.  PT
 (order T, 

not transpose) is the fully connected matrix, also known as the universal matrix, matrix known to 

be strongly connected.  Nondirected matrix. 

  

Kn: (K+I)n , where I is the identity matrix, matrix (order WxW) – Information Network (which 

key words inform on which key words?)   Given a graph of Kn, using Boolean operators {0 

representing no edge, 1 representing an edge} instead of weights, create matrix Kn where Kij = 1 

iff key word i is n or fewer steps away from key word j in a key word network; else Kij = 0.  KW
 

is the fully connected matrix, also known as the universal matrix, matrix known to be strongly 

connected.  Nondirected matrix. 

  

Jn: (J+I)n , where I is the identity matrix, matrix (order JOxJO) – Citation Network (which 

journals cite which journals?)  Given a graph of J, using Boolean operators {0 representing no 

edge, 1 representing an edge} instead of weights, create matrix Jn where Jij = 1 iff journal i is n 

or fewer steps away from journal j in a journal citation network; else Jij = 0.  JJO
 is the fully 

connected matrix, also known as the universal matrix, matrix known to be strongly connected.  

Nondirected matrix. 

  

In: (I+I’)n , where I’ is the identity matrix, matrix (order LxL) – Inter-organizational Network 

(which organizations work with which organizations?)   Given a graph of I, using Boolean 

operators {0 representing no edge, 1 representing an edge} instead of weights, create matrix In 

where Iij = 1 iff institution i is n or fewer steps away from institution j in a institution reference 

network; else Iij = 0.  IL
 is the fully connected matrix, also known as the universal matrix, matrix 

known to be strongly connected.  Nondirected matrix.  

 

Dn: (D+I)n , where I is the identity matrix, matrix (order YxY) – Timeline Network (what 

publication dates interact with publication dates?)  Given a graph of D, using Boolean operators 

{0 representing no edge, 1 representing an edge} instead of weights, create matrix Dn where Dij = 

1 iff date i is n or fewer steps away from date j in a matrix timeline network; else Dij = 0.  DY
 is 

the fully connected matrix, also known as the universal matrix, matrix known to be strongly 

connected.  Nondirected matrix.   
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Appendix D. Inference matrices mathematical definitions 

 

AK (RxR): Citation Network inference with key words (which authors publish using the same 

key words as which other authors?)  (AK) x (AK) T matrix; Where 𝐴𝐾 = ∑ 𝐴𝐾𝑖𝑘
𝑅
𝑘=1 𝐴𝐾𝑘𝑗

𝑇  .  

Nondirected, symmetric matrix with weights. 

  

AJ (RxR): Citation Network inference with journals (which authors publish in the same journals 

as which other authors?) (AJ) x (AJ) T matrix;  Where 𝐴𝐽 = ∑ 𝐴𝐽𝑖𝑘
𝑅
𝑘=1 𝐴𝐽𝑘𝑗

𝑇   Nondirected, 

symmetric matrix with weights. 

 

AP (RxR): Citation Network inference with papers (which authors cite which authors?) (AP) x 

((P) x (PA)); Where 𝐴𝑃 = ∑ 𝐴𝑃𝑖𝑘
𝑅
𝑘=1 𝐴𝑃𝑘𝑗

𝑇 .  Directed matrix with weights. 

 

AJ,K (RxR): Citation Network inference with journals (which authors publish in the same 

journals as which other authors?) ((AJ) x (AJ) T ) x ((AK) x (AK) T); Where 𝐴𝐽,𝐾 =

∑ 𝐴𝐽𝑖𝑘
𝑅
𝑘=1 𝐴𝐾𝑘𝑗 .  Nondirected, symmetric matrix with weights. 

 

KP (WxW): Key Word Network inference with papers (which key words are noted on the same 

paper as which other key words?) (KP) x (KP) T; Where 𝐾𝑃 = ∑ 𝐾𝑃𝑖𝑘
𝑊
𝑘=1 𝐾𝑃𝑘𝑗

𝑇 .  Nondirected, 

symmetric matrix with weights. 
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Appendix E. Definitions for network metrics used 
 

Betweenness Centrality166  
 

Unscaled Betweenness Centrality in symmetric networks  

𝐶𝐵(𝑥) =∑ ∑
𝑔𝑖,𝑗(𝑥)

𝑔𝑖,𝑗

|𝐽|

𝑗=𝑖+1

|𝐽|

𝑖=1
 

Unscaled Betweenness Centrality in asymmetric networks  

𝐶𝐵(𝑥) =∑ ∑
𝑔𝑖,𝑗(𝑥)

𝑔𝑖,𝑗

|𝐽|

𝑗≠𝑖

|𝐽|

𝑖=1
 

 

Scaled Betweenness Centrality 

𝐶𝐵
′ (𝑥) =

𝐶𝐵(𝑥)

𝐶𝐵
𝑚𝑎𝑥  

 

 

Where gi,j is the number of shortest paths between two nodes i and j, while gi,j(x) is the number of 

shortest paths including node x. 

 

𝐶𝐵
𝑚𝑎𝑥 = {

|𝐽|2 − 3|𝐽| + 2

2
symmetric networks

|𝐽|2 − 3|𝐽| + 2 asymmetric networks

 

 

 

Unscaled betweenness is the summation of the number of times a node lies on the shortest path 

between two nodes.  Nodes high in betweenness have the potential to act as a gatekeeper 

between groups or control the flow of information over a network.   

 

Eigenvector Centrality167  

 

The Eigenvector centrality of a node x, 𝐶𝐸(𝑥) is defined as the linear combination of the 

eigenvector centrality of its neighbors i and j: 

 

𝐶𝐸(𝑥) =
1

𝜆
∑ 𝑥𝑖𝑗𝐶𝐸(𝑋)

|𝐽|

𝑗=1
 

 

Where λ is a constant.  We can rewrite this equation as: 

 

𝜆𝐶𝐸 = 𝑊 ∙ 𝐶𝐸 
 

In equation #, CE is an eigenvector and W is the network matrix.  For calculating eigenvector 

centrality lambda is the largest eigenvalue of the adjacency matrix W and CE is the 

corresponding eigenvector.  Note that W is always symmetrized before computing the measure 

which guarantees real (rather than complex) valued eigenvalues. 
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Scaled Eigenvector Centrality, 𝐶𝐸
′ (𝑥) 

 

𝐶𝐸
′ (𝑥) =

𝐶𝐸(𝑥)

𝐶𝐸
𝑚𝑎𝑥  with 𝐶𝐸

𝑚𝑎𝑥 = √0.5 

 

Independently from the network size, the maximum value is always√0.5.  Consequently, we use 

this value to scale the unscaled values of eigenvector centrality. 

 

Nodes high in eigenvector centrality are considered popular nodes connected to other popular 

nodes. 

 

Simmelian Ties168  

Given an adjacency matrix G, within this matrix G the number of cliques of size ≥ 3 are 

recorded and membership assigned.  Si is the number of entities that are in a clique with entity i.  

This measure is then normalized over the network. 

A measure that reflects the number of informal ties within cliques.  The more simmelian ties, the 

more social norms one has to conform to, and theoretically, the more constrained their actions 

are because of being constrained by the large number of norms.  Additionally, this measure is an 

indication of the number of cliques this node has access to which can indicate importance.  This 

measure is then normalized by the group size to make the measure one between zero and one. 

 

Total Degree Centrality169  
 

Unscaled Degree Centrality in symmetric networks 𝐶𝐷(𝑥) 
 

 𝐶𝐷(𝑥) =

{
 
 

 
 ∑ 𝑤𝑗,𝑖

|𝑁|

𝑗=1,𝑗≥𝑖
allow self loops

∑ 𝑤𝑗,i
|𝑁|

𝑗=1,𝑗>𝑖
ignore self loops

 

Unscaled Degree Centrality in asymmetric networks 𝐶𝐷_𝑡𝑜𝑡𝑎𝑙(𝑥) 
 

 𝐶𝐷_𝑡𝑜𝑡𝑎𝑙(𝑥) =

{
 
 

 
 ∑ 𝑤𝑗,𝑖

|𝑁|

𝑗=1,𝑗≠𝑖
+∑ 𝑤𝑖,𝑗

|𝑁|

𝑗=1,𝑗≠𝑖
allow self loops

∑ 𝑤𝑗,𝑖

|𝑁|

𝑗=1,𝑗≠𝑖
+∑ 𝑤𝑖,𝑗

|𝑁|

𝑗=1,𝑗≠𝑖
ignore self loops

 

 

Scaled Degree Centrality 𝐶𝐷
′  

𝐶𝐷
′ (𝑥) =

𝐶𝐷(𝑥)

𝐶𝐷
𝑚𝑎𝑥  

 

 

The unscaled centrality of node x counts the absolute number of neighbors in the unweighted 

case, or sums up the line weights connected to every node, where |𝑁| is the network size and w is 
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the weight of links between nodes i and j.  This is one of the most basic measures of centrality.  

This is a measure of the popularity of the node; the more links or weighted links the node has, 

the more popular they are. 
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Appendix F. Results for statistical analysis of Turing award winners vs. non-

winners 

 

In Table 23, we see the averages of Turing award winners across the 4 selected network metrics.  

Interesting to note, that in each of these metrics, award winners have a higher average score than 

non-award winners, with the exception, AxA –Eigenvector Centrality, being when the average 

for award winners is zero.  This suggests that larger values in these metrics indicate a tendency 

 

Table 23 Turing award winner averages and standard deviations 

 

 

Centrality 

Betweenness Centrality Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

AxA(Dir) Award 

Winners

Average 0.00058 0.06886 0.00008 0.00015

Std Dev 0.00133 0.11665 0.00020 0.00013

Non-

winners

Average 0.00018 0.00253 0.00006 0.00003

Std Dev 0.00119 0.01735 0.00024 0.00007

AxA Award 

Winners

Average 0.00010 0.00000 0.00110 0.00014

Std Dev 0.00026 0.00000 0.00101 0.00015

Non-

winners

Average 0.00001 0.00132 0.00073 0.00007

Std Dev 0.00007 0.01936 0.00090 0.00011

AxA(K) Award 

Winners

Average 0.00023 0.04404 0.02747 0.00079

Std Dev 0.00056 0.07056 0.03158 0.00116

Non-

winners

Average 0.00003 0.00481 0.00503 0.00012

Std Dev 0.00015 0.01859 0.01370 0.00034

AxA(J) Award 

Winners

Average 0.00213 0.00559 0.03331 0.00381

Std Dev 0.00245 0.01245 0.01338 0.00151

Non-

winners

Average 0.00033 0.00594 0.01589 0.00180

Std Dev 0.00164 0.01847 0.01555 0.00176

AxA(J,K) Award 

Winners

Average 0.00064 0.05334 0.10740 0.02646

Std Dev 0.00080 0.04592 0.12011 0.02271

Non-

winners

Average 0.00018 0.00898 0.04154 0.00525

Std Dev 0.00052 0.01702 0.07825 0.00915

 

Table 22 P values of differences in means between Turning award winners and non-winners 

 

Centrality 

Betweenness Centrality Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

AxA(Dir) 0.125 0.017 0.722 0.0004

AxA 0.392 0.0000007 0.276 0.066

AxA(K) 0.39 0.192 0.109 0.177

AxA(J) 0.1 0.96 0.003 0.002

AxA(J,K) 0.177 0.043 0.197 0.048

Stat Sig p value <= 0.05

Stat Sig p value <= 0.1
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towards Turing award winners, and while this may not necessarily help us predict award 

winners, it is certainly suggestive of a direction that indicates more respected authors. 

Table 22 displays the p-value significance in the differences between the means of award 

winners and non-winners within the various metrics.  Of note, analysts interested in the 

Betweenness and Simmelian Ties metrics, we might suggest using the AJ matrix to determine 

worth for authors because of significant p values between award winners and non-award winners 

in those two matrices.  Additionally in Eigenvector Centrality, we would recommend using AxA 

matrix due to the reduction in p value of significance. 
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Appendix G. Comparison of group 1 and group 2 network metrics 
 

 

Table 24 Comparison of network metrics for Group 1 among different networks 

 

AxA(Dir) Node Title Centrality Betweenness

Centrality 

Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

JensKrger 0 0 0 0

RdigerWestermann 0 0 0 0

EitanGrinspun 0 0 0 0

IanFarmer 0 0 0 0

JeffBolz 0 0 0 0

PeterSchrder 0 0 0 0

Network
Average 0.00017 0.0028 0.00006 0.000029

Std Dev 0.001 0.0192 0.0002 0.000066

AxA Node Title Centrality Betweenness

Centrality 

Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

JensKrger 0 0 0 0

RdigerWestermann 0 0 0 0

EitanGrinspun 0 0 0.0006 0.0001

IanFarmer 0 0 0.0006 0.0001

JeffBolz 0 0 0.0006 0.0001

PeterSchrder 0 0 0.0006 0.0001

Network
Average 0.000008 0.0013 0.0007 0.000066

Std Dev 0.00007 0.019 0.0009 0.00011

AxA(K) Node Title Centrality Betweenness

Centrality 

Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

JensKrger 0 0 0.0009 0

RdigerWestermann 0 0 0.0009 0

EitanGrinspun 0.0002 0.0043 0.0278 0.0006

IanFarmer 0.0002 0.0043 0.0278 0.0006

JeffBolz 0.0002 0.0043 0.0278 0.0006

PeterSchrder 0.0002 0.0043 0.0278 0.0006

Network
Average 0.0000321 0.0049 0.005 0.0001

Std Dev 0.00015 0.019 0.014 0.00034

AxA(J) Node Title Centrality Betweenness

Centrality 

Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

JensKrger 0 0.0012 0.0124 0.0014

RdigerWestermann 0 0.0012 0.0124 0.0014

EitanGrinspun 0 0.0012 0.0124 0.0014

IanFarmer 0 0.0012 0.0124 0.0014

JeffBolz 0 0.0012 0.0124 0.0014

PeterSchrder 0 0.0012 0.0124 0.0014

Network
Average 0.003 0.006 0.016 0.0018

Std Dev 0.0016 0.019 0.02 0.0017

AxA(J,K) Node Title Centrality Betweenness

Centrality 

Eigenvector

Simmelian 

Ties

Centrality Total 

Degree

JensKrger 0 0.016 0 0.0071

RdigerWestermann 0 0.0156 0 0.0069

EitanGrinspun 0.0007 0.0193 0.2682 0.0175

IanFarmer 0.0007 0.0155 0.2682 0.0164

JeffBolz 0.0007 0.0194 0.2682 0.0175

PeterSchrder 0.0007 0.0162 0.2682 0.0165

Network
Average 0.00018 0.009 0.042 0.0053

Std Dev 0.0005 0.017 0.078 0.0092

Denotes metric scores above the average
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Table 25 Comparison of network metrics for Group 2 among different networks 

 

AxA(Dir) Node Title Centrality Betweenness Centrality Eigenvector Simmelian Ties Centrality Total Degree

BernhardSteffen 0 0 0.0004 0

JABergstra 0 0 0 0

JWKlop 0 0 0 0

RobJVanGlabbeek 0 0 0.0004 0

ScottASmolka 0 0 0.0004 0

WPeterWeijland 0 0 0 0

Network
Average 0.00017 0.0028 0.00006 0.000029

Std Dev 0.001 0.0192 0.0002 0.000066

AxA Node Title Centrality Betweenness Centrality Eigenvector Simmelian Ties Centrality Total Degree

BernhardSteffen 0 0 0.0004 0

JABergstra 0 0 0 0

JWKlop 0 0 0 0

RobJVanGlabbeek 0 0 0.0004 0

ScottASmolka 0 0 0.0004 0

WPeterWeijland 0 0 0 0

Network
Average 0.000008 0.0013 0.0007 0.000066

Std Dev 0.00007 0.019 0.0009 0.00011

AxA(K) Node Title Centrality Betweenness Centrality Eigenvector Simmelian Ties Centrality Total Degree

BernhardSteffen 0 0 0 0

JABergstra 0 0 0 0

JWKlop 0 0 0 0

RobJVanGlabbeek 0 0.0028 0.0036 0.0001

ScottASmolka 0 0 0 0

WPeterWeijland 0 0.0028 0.0036 0.0001

Network
Average 0.0000321 0.0049 0.005 0.0001

Std Dev 0.00015 0.019 0.014 0.00034

AxA(J) Node Title Centrality Betweenness Centrality Eigenvector Simmelian Ties Centrality Total Degree

BernhardSteffen 0 0.0003 0.0094 0.0011

JABergstra 0 0 0 0

JWKlop 0 0 0 0

RobJVanGlabbeek 0.0007 0.0022 0.0273 0.0032

ScottASmolka 0 0.0003 0.0094 0.0011

WPeterWeijland 0 0.0019 0.0186 0.0021

Network
Average 0.003 0.006 0.016 0.0018

Std Dev 0.0016 0.019 0.02 0.0017

AxA(J,K) Node Title Centrality Betweenness Centrality Eigenvector Simmelian Ties Centrality Total Degree

BernhardSteffen 0 0.0031 0 0.0017

JABergstra 0 0 0 0

JWKlop 0 0 0 0

RobJVanGlabbeek 0.001 0.0269 0 0.0129

ScottASmolka 0 0.0031 0 0.0017

WPeterWeijland 0.0011 0.0286 0 0.0129

Network
Average 0.00018 0.009 0.042 0.0053

Std Dev 0.0005 0.017 0.078 0.0092

Denotes metric scores above the average
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Appendix H. Ten important authors across the various matrices 
 

  

  

 

Figure 12 Ranking of top 10 authors in author citation network (AxA-Dir) 

 

 

Figure 13 Ranking of top 10 authors in the A network 
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Figure 14 Ranking of top 10 authors in the AJ network 

 

 

Figure 15 Ranking of top 10 authors in the AK matrix 
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Figure 16 Ranking of top 10 authors in the AJ,K matrix 
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Appendix I. Results for selection of journal articles to translate by network 
 

 

 

 

Table 26 List of 65 Foundational Authors from author citation network (AxA-Dir), A, and AJ,K Networks 

 

# Node Title # Node Title

1 AdiShamir 34 KennethPBirman

2 AndreSchiper 35 KentMPitman

3 AndrewDGordon 36 LAdleman

4 AndrewSTanenbaum 37 LeslieLamport

5 BarbaraHLiskov 38 LorenzoAlvisi

6 BoltBeranek 39 MartinAbadi

7 BrianNBershad 40 MauriceHerlihy

8 ButlerLampson 41 MichaelBurrows

9 CARHoare 42 MichaelDahlin

10 ChrisHanson 43 MichaelJWest

11 ChristopherTHaynes 44 MichaelReiter

12 DahliaMalkhi 45 MiguelCastro

13 DanielPFriedman 46 MitchellWand

14 DavidAPatterson 47 MSatyanarayanan

15 DHBartley 48 NIAdamsIV

16 DOxley 49 RajJain

17 ed 50 RHalstead

18 EdwardDLazowska 51 RichardKelsey

19 EdwardWobber 52 RKentDybvig

20 EugeneKohlbecker 53 RobbertVanRenesse

21 FredBSchneider 54 RobertNSidebotham

22 GBrooks 55 RogerNeedham

23 GeorgGottlob 56 RonaldLRivest

24 GeraldJSussman 57 SallyFloyd

25 GregNelson 58 ScottShenker

26 GuillermoJRozas 59 Stephen

27 GuyLSteeleJr 60 TKent

28 HalAbelson 61 VanJacobson

29 HectorGarciaMolina 62 VictorLVoydock

30 JeanPhilippeMartin 63 WilliamClinger

31 JoanFeigenbaum 64 WillyZwaenepoel

32 JonathanRees 65 YoramMoses

33 JosephYHalpern
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Table 27 Papers by Foundational Authors (1-25) 

 

 

 

# Author Name Date

1 BarbaraHLiskov A Behavioral Notion of Subtyping 1994

2 RajJain A binary feedback scheme for congestion avoidance in computer networks 1990

3 ButlerLampson A Calculus for Access Control in Distributed Systems 1991

3 MartnAbadi A Calculus for Access Control in Distributed Systems 1991

3 MichaelBurrows A Calculus for Access Control in Distributed Systems 1991

4 AndrewDGordon A Calculus for Cryptographic Protocols - The Spi Calculus 1998

4 MartnAbadi A Calculus for Cryptographic Protocols - The Spi Calculus 1998

5 GeorgGottlob A Comparison of Structural CSP Decomposition Methods 1999

6 RajJain A Delay-Based Approach for Congestion Avoidance in Interconnected Heterogeneous Computer Networks 1989

7 RonaldLRivest A digital signature scheme secure against adaptive chosen-message attacks 1988

8 JosephYHalpern A Logic for Reasoning about Probabilities 1990

9 MartAbadi A logic of authentication 1990

9 MichaelBurrows A logic of authentication 1990

9 RogerNeedham A logic of authentication 1990

10 BoltBeranek A majority consensus approach to concurrency control for multiple copy databases 1979

11 AdiShamir A Method for Obtaining Digital Signatures and Public-Key Cryptosystems 1978

11 LAdleman A Method for Obtaining Digital Signatures and Public-Key Cryptosystems 1978

11 RonaldLRivest A Method for Obtaining Digital Signatures and Public-Key Cryptosystems 1978

12 MauriceHerlihy A Methodology for Implementing Highly Concurrent Data Objects 1993

13 MauriceHerlihy A quorum-consensus replication method for abstract data types 1986

14 ScottShenker A Simple Algorithm For Finding Frequent Elements In Streams And Bags 2003

14 LeslieLamport A Temporal Logic of Actions 1990

15 AndrewSTanenbaum Amoeba - A Distributed Operating System for the 1990s 1990

15 RobbertVanRenesse Amoeba - A Distributed Operating System for the 1990s 1990

16 ChrisHanson Amorphous Computing 1995

16 GeraldJaySussman Amorphous Computing 1995

16 HaroldAbelson Amorphous Computing 1995

17 JosephYHalpern An Analysis of First-Order Logics of Probability 1990

18 VanJacobson An Analysis of TCP Processing Overhead 1989

19 VanJacobson An Architecture for Wide-Area Multicast Routing 1996

20 CARHoare An axiomatic basis for computer programming 1969

21 AndrewSTanenbaum An Efficient Reliable Broadcast Protocol 1989

22 BoltBeranek An overview of the KL-ONE knowledge representation system 1985

23 ScottShenker Analysis and Simulation of a Fair Queueing Algorithm 1989

24 KennethPBirman Astrolabe: A Robust and Scalable Technology For Distributed . . . 2003

24 RobbertVanRenesse Astrolabe: A Robust and Scalable Technology For Distributed . . . 2003

25 ButlerLampson Authentication in distributed systems: Theory and practice 1992

25 EdwardWobber Authentication in distributed systems: Theory and practice 1992

25 MartinAbadi Authentication in distributed systems: Theory and practice 1992

25 MichaelBurrows Authentication in distributed systems: Theory and practice 1992
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Table 28 Papers by Foundational Authors (26-52) 

 

# Author Name Date

26 ButlerLampson Authentication in the Taos Operating System 1994

26 EdwardWobber Authentication in the Taos Operating System 1994

26 MartinAbadi Authentication in the Taos Operating System 1994

27 MichaelBurrows Autonet: A high-speed 1991

27 RogerMNeedham Autonet: A high-speed 1991

28 MikeWest Bayesian Density Estimation and Inference Using Mixtures 1994

29 KennethPBirman Bimodal Multicast 1998

30 DahliaMalkhi Byzantine Quorum System 1998

30 MichaelReiter Byzantine Quorum System 1998

30 LorenzoAlvisi Byzantine quorum systems 1998

30 MichaelDahlin Byzantine quorum systems 1998

31 FredBSchneider COCA: A Secure Distributed Online Certification Authority 2000

31 RobbertVanRenesse COCA: A Secure Distributed Online Certification Authority 2000

32 MahadevSatyanarayananCoda: A Highly available File System for a Distributed Workstation Environment 1990

33 CARHoare Communicating Sequential Processes 1985

34 LeslieLamport Composing Specifications 1993

34 MartnAbadi Composing Specifications 1993

35 FredBSchneider Concepts and notations for concurrent programming 1983

36 RajJain Congestion control and traffic management in atm networks: Recent advances and a survey 1995

37 SallyFloyd Connections with Multiple Congested Gateways in Packet-Switched Networks Part 1: One-way Traffic 1991

38 SallyFloyd Controlling High Bandwidth Aggregates in the Network 2001

38 ScottShenker Controlling High Bandwidth Aggregates in the Network 2001

39 MichaelKReiter Crowds: Anonymity for Web Transactions 1997

40 HectorGarciamolina Data Caching Issues in an Information Retrieval System 1990

41 JoanFeigenbaum Delegation Logic: A Logic-based Approach to Distributed Authorization 2000

42 SallyFloyd Difficulties in Simulating the Internet 2001

43 MSatyanarayanan Disconnected operation in the Coda file system 1989

44 GeorgGottlob Disjunctive Datalog 1997

45 WillyZwaenepoel Distributed Process Groups in the V Kernel 1985

46 DahliaMalkhi Dynamic Byzantine Quorum Systems 2000

46 LorenzoAlvisi Dynamic Byzantine Quorum Systems 2000

46 MichaelKReiter Dynamic Byzantine Quorum Systems 2000

47 SallyFloyd Dynamics of TCP Traffic over ATM Networks 1994

48 MSatyanarayanan Energy-aware adaptation for mobile applications 1999

49 FredBSchneider Enforceable Security Policies 1998

50 GregNelson Eraser: a dynamic data race detector for multithreaded programs 1997

50 MichaelBurrows Eraser: a dynamic data race detector for multithreaded programs 1997

51 AndrewSTanenbaum Experiences with the amoeba distributed operating system 1990

51 RobbertVanRenesse Experiences with the amoeba distributed operating system 1990

52 SallyFloyd Explicit Congestion Notification 1994
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Table 29 Papers by Foundational Authors (53-84) 

 

# Author Name Date

53 MAbadi Explicit substitutions 1991

53 GeorgGottlob Extending Object-Oriented Systems with Roles 1994

54 FredBSchneider Fail-Stop Processors: An Approach to Designing Fault-Tolerant Computing Systems 1983

55 GregNelson Fast decision procedures based on congruence closure 1980

56 MauriceHerlihy Fast Randomized Consensus using Shared Memory 1988

57 JosephYHalpern From Statistical Knowledge Bases to Degrees of Belief 1996

58 ScottShenker Fundamental Design Issues for the Future Internet 1995

59 AndrewSTanenbaum Globe: A wide-area distributed system 1999

60 HectorGarciaMolina GlOSS: Text-Source Discovery over the Internet 1999

61 KennethPBirman Horus: A flexible group communication system 1996

61 RobbertVanRenesse Horus: A flexible group communication system 1996

62 HectorGarciamolina How to assign votes in a distributed system 1985

63 AdiShamir How to Leak a Secret 2001

63 RonaldLRivest How to Leak a Secret 2001

64 GeorgGottlob Identifying the minimal transversals of a hypergraph and related problems 1995

65 FredBSchneider Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial 1990

66 BoltBeranek Improving round-trip time estimates in reliable transport protocols 1987

67 JosephYHalpern Knowledge and Common Knowledge in a Distributed Environment 1984

67 YoramMoses Knowledge and Common Knowledge in a Distributed Environment 1984

68 RobertHHalstead Lazy Task Creation: A Technique for Increasing the Granularity of Parallel Programs 1990

69 AndreSchiper Light weight causal and atomic group multicast 1991

69 KennethBirman Lightweight causal and atomic group multicast 1991

70 BrianNBershad Lightweight remote procedure call 1990

70 EdwardDLazowska Lightweight remote procedure call 1990
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