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Abstract

The development of nano-devices relies on a combination of internal solid-solid interfaces

between materials with different elemental and crystallographic structures to provide the

functional operation of the device. Traditionally, these devices have been designed with

the operational performance and efficiency in mind, with consideration of thermal energy

management and heat dissipation only as a design afterthought. Therefore, the current

methodology in dealing with thermal management issues begins with external device struc-

tures and scales upwards. However, as the feature size of most nano-devices continues to

diminish, the impact of thermal transport across solid-solid interfaces on device perfor-

mance, reliability, and lifetime becomes increasingly important.

Developed starting in the 1980’s, the transient thermoreflectance/time-domain ther-

moreflectance technique has been a primary tool in the measurement of nanoscale thermo-

physical properties and in particular thermal boundary conductance. Over the past several

decades there have been a number of improvements made to refine and extend the appli-

cability of the technique to nanoscale systems. In this work, the theory for modeling the

measured results is extended from a sinusoidal to a pulsed waveform analysis which includes

the effects of higher harmonics in the measured signal and allows for variations in the duty

cycle of the modulation waveform. The inputs to the thermal model were critiqued and

convergence criteria for the numerical analysis were established for high and low repetition

rate laser systems to ensure accurate modeling. In addition, methods to quantify the sen-

sitivity of input parameters in the thermal model were defined and the characterization of

noise in the raw data and statistical outliers in the deduced parameter presented. To assist

in the statistical interpretation of experimental results, a series of simulated data sets were

analyzed to develop a set of empirical relations for the anticipated standard deviation in

the collected results, based on the sensitivity of the model to the parameter being deduced

and the amount of noise in the data.

Finally, an experimental study to test the theory of vibrational bridging through the

use of an intermediate layer between two solids as a means to enhance thermal boundary



conductance is presented and discussed. The thermal boundary conductance between Pt/Si

and Pt/Ge is measured using the transient thermoreflectance technique and the results

compared to measurements made with a Ni intermediate layer of varying thickness between

the Pt and Si (or Ge). The measured results are compared to theoretical calculations of the

contributions of interface bonding and electron transport across the metal-semiconductor

interface. It is found that the contributions of electron transport are minimal, and that

while it is assumed that bonding plays some role in the increased boundary conductance

observed with the addition of the intermediate layer, it alone cannot explain the trend in

the data. Overall, the results in the measured data support the hypothesis of vibrational

bridging via a metallic intermediate layer and support the concept as a possible means to

phononically engineer thermal conductance across solid-solid boundaries in nanodevices.
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Forward

There is a saying that you should never go back and reread your dissertation after it is com-

pleted because there will always be mistakes to be found or things you would have presented

differently. While this may be the case, this body of work is part of an evolving process

that will continue with the aim of refining the methods in measuring and understanding

nanoscale heat transfer. Therefore, any comments and/or suggestions from interested read-

ers are always welcome.
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1.1 Microprocessor Heating Trends

The story of thermal management in electronic, micro-electronic, and nano-electronic

devices1 is as old as the story of the electronic computer itself. One of the first electronic

computer systems was the Electronic Numerical Integrator and Computer, ENIAC, devel-

oped in the early 1940’s at the University of Pennsylvania. The ENIAC weighed in at 30

tons, with a footprint of 1,500 ft2, contained approximately 17,500 vacuum tubes, 70,000

resistors, 10,000 capacitors, about 5,000,000 solder joints, and consumed around 150 kW

1Micro will generally be used to describe systems with characteristic lengths on the order of 0.1-100 µm,
and nano will generally describe systems with characteristic lengths on the order of 1-100 nm [33].
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of electricity [34–36]. The nearly 18,000 vacuum tubes were cooled by a forced air/air

conditioning system. While one of only a handful of computer systems at the time, the

ENIAC was a major milestone in computer development and increased the speed at which

calculations could be completed by over a factor of 1,000 compared to calculations using

traditional hand held-devices [37].

However, while the vacuum tube based electronic computer was a major step forward in

computational power, vacuum tubes were plagued with a number of issues. Vacuum tubes

in the ENIAC were constantly failing, at a rate from several a day to around one tube

every other day, leading to a maximum period of continuous operation of only 116 hours

[38]. Most of the tube failures occurred during the time of warm-up or shutdown when the

thermal stresses on the tubes were greatest.

In the 1960’s, computer technology was shifted from vacuum tube based components to

the recently developed bipolar transistor technology [36, 39]. The bipolar transistor had the

advantages of being smaller, consumed less power, and therefore produced less heat as com-

pared to the vacuum tube. At the time, this lead to the thought that thermal management

would no longer be an issue in device development, since “no heat [was] developed as in

a vacuum tube” [35]. In order to increase computational power however, device engineers

worked to improve packing density by adding more and more transistors to the circuits.

This continual increase in the transistor density, while increasing system performance, had

the added cost of increasing the thermal density as well. In Figure 1.1 the red data points

show the heat flux produced by high performance computers during the mid 1960’s through

the late 1980’s using bipolar transistor technologies. After 1980, of the data points shown

in red in Figure 1.1, only the Fujitsu M380 and the IBM 4381 were air-cooled, while the

rest, in order to manage the high thermal loads, were water-cooled systems [40]. Computer

engineers were quickly reaching a point where their ability to increase the speed of high

performance computers was limited by the ability to keep the systems cool2.

Thermal management received a brief respite in the early 1990’s when circuit technol-

ogy was shifted once again, from the bipolar transistor to the complimentary metal-oxide-

2“Cool” here refers to operating temperatures generally in the range of 60 to 100 ◦C. As temperature
is increased, switching speeds within the device are reduced due to increased resistance of the interconnect
materials. More on this later.
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Figure 1.1: Heat flux trends of high performance computers since the 1950s for bipolar transistor and
complimentary metal-oxide-semiconductor (CMOS) technologies. Plot taken from [1].

semiconductor (CMOS) transistor. CMOS transistors were cheaper to produce and required

less power to operate, and therefore produced far less heat than their bipolar counterparts.

However, just as in the past, although even more rapidly since the introduction of the

CMOS transistor, the demand for increased performance drove increased packing densities,

and pushed higher the heat flux once again, see the blue data points in Figure 1.1.

Similar trends have been observed in the consumer sector. For more than 4 decades the

development of microprocessors and microprocessor technology has surpassed the trends set

forth by Moore’s Law [41]. “Moore’s Law” states that the density of transistors in a circuit

will double every 18 months3. Figure 1.2 provides the trend in the number of transistors

per die for processors released over the past 4 decades, showing that developments in the

past approximately 5 years have pushed the number of transistors per die past the 1 billion

mark.

3Moore’s Law is in quotes, because while this statement is commonly held as the definition of Moore’s
Law, the statement was not made by Gordon Moore. In 1965 Moore stated that ”we had about doubled
every year the amount of components we could put on a chip”[41]. In 1975 he refined he prediction stating
“we’d only be doubling every couple of years”[42]. The quoted “Law” is a combination of Moore’s predictions
and that of David House who predicted that computer performance was going to double every 18 months.
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Figure 1.2: Number of transistors per die for various commercial processors developed over the past 4
decades. Plot taken from [2].

While the number of transistors on a chip has continued to increase at the rate given

by “Moore’s law”, the size of the die itself has remained relatively unchanged. This has

led to equally significant increases in the transistor density, and therefore the power and

thermal densities as well. As shown in Figure 1.3, the power densities of microprocessors

have continued to increase steadily since the mid-1980’s. To put these power densities into

perspective, the power density of the thermal energy impinging on earth, from the sun, is

on the order of 0.1 W/cm2, a hot plate is on the order of 10 W/cm2, and a nuclear reactor

has a power density on the order of 100 W/cm2 [43]. It appears that device designers are

reaching a limit, in commercial components, around the 100 W/cm2 power density level,

and are rapidly again reaching a point where one of the major roadblocks to increased device

performance will be the ability to keep the devices sufficiently cool [44, 45].

High power densities repeatedly arising over the decades as a roadblock to device design,

begs the questions as to where all this heat originates? While the events that cause the

generation of heat can be complex, the underlying principle is relatively straight forward.

The heat is generated as current carrying electrons (set in motion by an established poten-

tial) encounter resistance, and a portion of their energy is coupled to their surroundings
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Figure 1.3: Power densities for various commercial processors developed over the past 4 decades. Plot
taken from [2].

in a process known as Joule heating [44]. In CMOS structures, current is consumed from

three primary sources: 1) during the dynamic switching between “on” and “off” states, 2)

subthreshold leakage current, i.e. current flow from the source to drain, even in the “off”

state, and 3) short-circuit current, i.e. current generated due to finite rise/fall times leaving

two sections “on” simultaneously for a brief period with a direct path from the source to

ground [45, 46]. Typically, device engineers tackle the thermal management problem at the

scale of the chip-level or larger [36, 47–49]. However, as history once again repeats itself,

and we are rapidly approaching the power density limit in the current generation of tech-

nology, engineers are beginning to consider the thermal management problem at the scale

of the individual transistors [50, 51], shifting the focus into the nanoscale length regime.

Regardless of the size of the application, even thermal energy generated on the nanoscale is

eventually passed “upward” until it is expelled to the surrounding macroscale environment.

The remainder of this Chapter, will focus on describing and illustrating the size and

scope of the “thermal management problem” and how the impact is felt across various

sectors of the electronic and computer industries as motivation for the fundamental science

presented in this dissertation. Special care will be taken to help establish the dichotomy

5



Chapter 1. Introduction 1.2

between more macro-scopically driven and nano-scopically driven affects, and establish the

various levels of thermal management consideration. Finally, the remainder of the chapters

presented in this dissertation will be outlined.

1.2 So What if It’s a Little Hot?

With the increased performance and packing density in microprocessors comes another

important consequence beyond just the high power density. Along with increased packing

density comes an increase in the non-uniformity of the power distribution, and thereby

the thermal distribution as well. Figure 1.4 shows the thermal mapping of a dual-core

AMD Athlon II processor ran under various CPU load scenarios from a SPEC CPU2006

benchmark program [3]. From the figure, there are obvious regions of increased tempera-

ture under operating conditions. These regions of high heat flux, typically refereed to as

Figure 1.4: Thermal mapping of a dual-core AMD Athlon II processor under various CPU workloads. The
color scale represents the temperature in degrees Celsius. Image taken from [3].

“hotspots”, can have heat fluxes several times higher than those presented in Figure 1.1, on

the order of 0.3-1 kW/cm2 [48, 52, 53]. These hotspots can create temperature variations

across the microprocessor surface on the order of 5-30 ◦C [52, 53]. These high temperature

hot spots, and large thermal gradients, are a major factor in determining the reliability of

semiconductor devices [3, 46, 54, 55]. If the heat generated in a microprocessor cannot be

effectively removed at a rate greater than the rate of generation, the temperature of the

device will rise, reducing the mean time to failure (MTTF) [3, 46].
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The temperature of a device has a direct impact on nearly every metric used to rate the

devices performance including: speed, power dissipation, device lifetime, and cost [3, 46].

The increased cost required for more robust thermal management techniques is an intuitive

relationship. As an example, the limit of air cooling techniques is around 150 W/cm2 on

average, with an anticipated cost of approximately $3.5 per Watt above 60 W [56]. The

impact of temperature on the other metrics of device performance are not as intuitive, and

are rooted in the design and operation of the device itself.

The reliability of a microprocessor is directly related to its temperature, particularly

through the reliability of the interconnects between transistors. With increasing tempera-

ture, the integrity of the metal interconnects is degraded due to a process known as electron

migration [46, 54]. As the temperature is increased, due to increased current density, the

dense flow of electrons between the power and ground tracks causes metal ions within the

interconnects to migrate. This migration causes metal ions to build up in one location

to form hillocks, and disappear in another to form voids, ultimately leading to open- and

short-circuit failures [46, 54]. The MTTF due to electron migration trends exponentially

with temperature and can be estimated by Black’s equation [46, 57]:

MTTF = AJ−neQ/kBT (1.1)

where A is a process- and geometry-dependent constant, J is the average DC current,

n = 2 under normal operating conditions, Q is the activation energy for diffusion, kB is the

Boltzmann constant, and T is the metal temperature. A typical goal is to achieve a 10 year

lifetime, i.e without electron migration failure, at a device temperature of 100 ◦C [58].

The performance of a processor is determined in part, by the ability of electrical signals

to travel between transistors and other parts of the chip, via the metal interconnects. This is

yet another motivation for increasing the packing density of transistors, to increase speeds.

Increased temperature can affect the performance of a processor in two ways, 1) reducing

the carrier mobility, and 2) increasing the resistance of the interconnects. For a 130 nm

generation processor4, the logic gate delay changes by 4% for a 40 ◦C change in temperature,

4The feature size is generally used to define the size of the different elements on a microprocessor chip.
Because of the many different components making up the chip, it is not necessarily the smallest, therefore
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and the resistance of a metal interconnect changes by about 5% for the same temperature

change [46]. Additionally, the non-uniformity of the temperature distribution can cause the

clock frequency to become skewed across different portions of the processor. For example,

the clock timing can be skewed as much as 10% for a temperature gradient of 40 ◦C [46].

Finally, the temperature has a direct impact on the power consumed by the device. As

discussed previously, one of the major sources of current consumption in a CMOS device

is subthreshold leakage. As the geometries of microprocessor design continue to decrease,

the path between the source and drain in the transistor continues to shrink leading to

increased leakage current. For the 90 nm generation of processor technology, leakage current

accounted for 25-45% of the overall power consumed [46]. With the introduction of the 65

nm generation of processors, that number jumped to 50-70% of the total power consumed

[46]. The subthreshold leakage current, i.e. the source-to-drain current, IDS, is a function

of a number of parameters of the transistor, including the threshold voltage, VTH. As the

temperature of the processor increases VTH decreases, leading to a “weaker” off state, and

causing an increase in leakage current [46, 59]. It has been shown that the leakage current

increases 2% for each ◦C increase in temperature, across multiple processor generations [55].

These are just a few ways in which increased temperature reduce the functionality and

reliability of microprocessor devices. What is evident from these examples is that increased

temperature does not have an isolated affect on processors. The cost of thermal management

cannot simply be weighted in terms of sacrificing processor speed, or processor lifetime, but

will impact all aspects of the final product. Making matters worse, the microprocessor is

usually only one component, in a much larger structure.

1.3 How Big Can Such a Little Problem Be?

It is estimated that in 2008 there were 108 million PCs in offices across the US, costing

$4.2 billion in energy consumption [45], and that is only a fraction of the story. One of

the major challenges of thermal management in the micro- and nano-electronics industry

currently being faced is that the problem is not isolated to just individual processors. The

45 nm “generation” chips will have features smaller than 45 nm. The generation classification is generally
the half-pitch, or half the distance between metallic connections.
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invention and proliferation of the internet and its subsidiary services such as online banking,

online shopping, cloud computing, etc. have created a huge demand for data centers. The

video sharing website YouTube alone reports 72 hours of video content is uploaded every

minute [60].

In 2005 the worldwide electricity demand for power in data centers reached 152 billion

kWh per year, representing 0.97% of the total worldwide electricity consumption [61]. This

consumption is expected to increase dramatically in the near future as developing nations

increase technology consumption. Currently 58% of the world’s computers are found in

the US, Japan, and Eastern Europe, while these countries only contain 15% of the world’s

population [45]. The United States alone consumed 45 billion kWh in 2005 to power its

data centers, costing around $2.7 billion and representing around 1.2% of the total electricity

consumption. This value is expected to increase in the coming years, with one-third of the

total US power consumption expected to be due to electronic systems by 2025 [45].

Of the electricity consumed in data centers, only ∼50% is used by the IT systems [61].

That is the systems that actually are responsible for the storage, retrieval, manipulation and

transmission of data. The remaining electricity is used by the thermal management struc-

ture, 33%, and for the distribution of the electrical power, 17% [61]. The energy efficiency of

a data center is typically represented by the power utilization effectiveness, the PUE, which

represents the ratio of the total energy consumed by the center to that used by only the

IT equipment. For data centers, depending on the type of cooling systems employed, the

PUE ranges from 1.1-2.7 [61]. Based on the current electricity budget allocated to thermal

management and the high cost per kWh, thermal management represents a significant cost

to keeping the worlds “technological infrastructure” running efficiently.

In thermal management one of the major challenges is simply the size and scope of the

problem. Considering that the generation of the parasitic heat originates in the intercon-

nects of the transistor device itself, with lengths on the order of nanometers, and that this

heat scales be a major issue for data centers with length scales on the order of 10s of meters,

it is obvious that a one size fits all approach will not be sufficient to tackle the problem. The

design of microprocessors up-to data centers, combines disciplines and integrates electronic,

thermal, electrical, materials, electromagnetic, chemical, mechanical, fluid, etc. fields.
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1.4 Levels of Thermal Management

In the field of thermal management we can typically define 4 packaging levels: 1) the

chip/module-level, 2) the board-level, 3) the system-level, and 4) the more recently es-

tablished transistor-level, as discussed previously due to the continued size reduction and

the increased packing density of transistors in a processor, see Figure 1.5. The transistor-

(a) (b)

(c) (d)

Figure 1.5: The 4 primary packaging levels, that are of interest in thermal management (a) the transistor-
level, (b) the chip/module-level, (c) the board-level (image from [4]), and (d) the-system level (image from
[5]).

level focuses on the solid-solid interfaces of the semiconductor components, and the metal

connections and interconnects between transistors, see Figure 1.5a. The chip/module-level

focuses on the processor as a whole and its packaging up to the first level of the heat sink,

see Figure 1.5b. The board-level considers the placement of active thermal components on

a larger board structure, e.g. a motherboard, to reduce the concentration of the thermal

load, see Figure 1.5c. The definition of the system-level can be more ambiguous and can
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depend on the particular device. The system-level can represent for example; the case of a

smartphone, the case of a desktop computer, or a room full of racks in a data center, see

Figure 1.5d. Regardless of the size, the system-level typically represents the largest amount

of gathered heat being exchanged with the surrounding environment.

While all of these levels share a common issue of excess heat, the particular challenges

facing device designers at these levels vary. At the system-level the challenge is to remove

the most heat, using the least volume and/or mass. Management at the board-level requires

the removal of a large amount of heat with minimal thermal gradients, and the chip-level

challenges arise from localized hot-spots and size effects [6]. The transistor-level is dom-

inated by size effects, where vibrational mismatch between materials, and energy carrier

bottlenecks increase thermal resistance [44, 45].

For the purposes of this dissertation, the primary focus and motivation will be based on

the transistor- and chip/module-level of a system. For typical computer systems, this will

encompass a scale from the heat sink on a processor on down to the individual transistors.

While the fundamental science developed in this dissertation will be focused on solid-solid

interfaces such as those found in the transistors, the principles will in general scale to the

interface between the processor and the heat sink.

1.5 Chip/Module Level Thermal Management

While engineers have done well with keeping up with Moore’s Law, an interesting pic-

ture arises when observing the power density trends shown in Figure 1.3. Over the past

decade, even though the number of transistors per die has nearly exponentially increased,

microprocessor power densities have begun to cluster around the 100 W/cm2 level. Device

designers appear to be running into a “power density wall” at this level [45, 56]. In part,

the reason for this limit can be seen in Figure 1.6. The figure shows that at the 100 W/cm2

power density level and below, the thermal energy can be managed by relatively simple heat

spreaders and heat sinks. Above that level, more complex and therefore more expensive,

methods would be required, which are not practical at the consumer level.

To better understand the mechanisms behind this roadblock, and in order to develop new
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Figure 1.6: Methods of thermal management solutions, for various power dissipation levels and system
complexities. Image reproduced with permission from [6].

strategies to move beyond these limitations, the source of the issue must be investigated.

Consider the most classical view of thermal conduction, assuming diffusive processes, in a

microprocessor through a steady state Fourier’s law analysis [56]

∇ (−k (x, y, z)∇T (x, y, z))− P (x, y, z) = 0 (1.2)

where P (x, y, z) is the volumetric power distribution, T (x, y, z) is the temperature distribu-

tion, and k (x, y, z) is the thermal parameters of the package. Equation 1.2 shows that the

average temperature of the microprocessor chip is a function of the total dissipated power

within the device. In order to better quantify this relationship in terms of needs for thermal

management, thermal designers use a metric designated as the thermal design power, or

TDP. The TDP is the maximum amount of power dissipated by the microprocessor during

“realistic operations”5.

The primary task for thermal engineers, and the major thermal management problem

5This is not the maximum power that the chip will ever draw. Brief periods of increased activity are
acceptable, provided that they fall within the thermal time constant of the system [62].
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at this scale, is to remove the TDP from the chip surface and expel it to the surroundings.

The temperature at the chip is typically referred to as the junction temperature, Tj , and the

temperature of the ambient surroundings, typically the air inside the case, is given by Ta.

For the device to perform efficiently Tj has to be maintained below certain specifications,

such that the TDP can be effectively removed. Removal of the TDP from the microprocessor

surface is traditionally where thermal management solutions have begun. Figure 1.7 shows

a cross-section of a typical consumer level module. The module can typically be broken

into two regions of interest, the internal (passive) and external (active) sections, where

conduction and convection are the primary thermal transport mechanism in each section

respectively [53].

Figure 1.7: Cross-section view of a typical module found in most consumer grade desktop machines,
denoting the primary components and the internal and external structures.

To be removed effectively, the TDP must conduct through various solid layers and in-

terfaces from the microprocessor unit, into the heat sink, and then finally into the ambient

surroundings. Heat flow is impeded through these various materials, structures, and in-

terfaces. Therefore, there is an absolute thermal resistance, Rth, dictated by the module’s

physical structure and the thermophysical properties of its components. In the most general
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sense, the required absolute thermal resistance for a device is dictated by [48]:

Rth =
(Tj − Ta)

TDP
. (1.3)

More specifically Rth can be broken into two primary regions, 1) resistance in the solid

structure of the microprocessor and through the interface to the system packaging, and

2) across the interface from the packaging to the heat sink and into the surrounding at-

mosphere, see Figure 1.8. A large body of research in the field of thermal management

Figure 1.8: Temperature regions and primary thermal resistances in typical microprocessor cooling.

has been dedicated to increasing the efficiency of cooling solutions primarily by increasing

thermal conduction across the module junctions via thermal interface materials, TIMs, and

by increasing the efficiency of heat sinks via air- and liquid-cooled systems.

The resistance to the flow of thermal energy from a hot spot on a processor chip to

the heat sink, see Figure 1.7, is dominated by what is defined as thermal contact resis-

tance (TCR), its inverse quantity being the thermal contact conductance (TCC). As heat

flows across the mechanical joints in the system, a temperature drop across the interface is

realized. Therefore the TCR across an interface can be defined as:

RC =
∆T

q̇
=

1

hC
(1.4)

where ∆T is the temperature drop, q̇ is the heat flux, and hC is the thermal contact

conductance. The TCR is a function of several geometric and thermophysical properties,

14



Chapter 1. Introduction 1.5

(a) (b)

Figure 1.9: (a) Schematic of mechanical contact between two materials, showing the surface asperities
and reduced contact between the surfaces, as well as an example of an ideal TIM. (b) Schematic of the
temperature distribution of two materials in contact with the addition of a TIM.

including the surface roughness, surface flatness, the thermal conductivity of the materials

and the surface microhardness [63]. One of the largest contributors to TCR between two

materials is microscopic asperities on each surface. When two surfaces are brought into

contact, these asperities limit the actual area of contact, which can be as little as 1-2%

depending on loading [28], see Figure 1.9a. Therefore the total resistance is a combination

of the resistance across the actual contact area, and the resistance across the fluid occupying

the area between contact points. In order to reduce the overall resistance across the joint,

the gaps between the asperities that are normally filled with air, are replaced by a higher

thermal conductivity material, typically refereed to as a thermal interface material.

The overall effectiveness of the TIM, is based on 3 different factors: 1) the thermal

conductivity of the TIM material, 2) the bond line thickness (BLT), i.e. the RMS thickness

of the TIM material, and 3) the contact resistance between the individual components [28].

Therefore the total resistance of the mechanical joint is given by [28]:

RTIM =
BLT

kTIM
+Rc1 +Rc2 (1.5)

where BLT is the bond line thickness, kTIM is the thermal conductivity of the TIM material,

and Rc1,c2 is the contract resistance between the materials on either side of the interface

and the TIM material. From Equation 1.5, we can see that there are 3 primary methods
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Table 1.1: Properties of various types of TIMs [28–31].

Material
Type

Typical Composition
BLT
[mm]

kTIM

[W/mK]

Grease AlN1, Ag, ZnO, Silicon Oil 2.2 0.5-7.5

Gel Al, Ag, Silicone Oil, Olefin 1-1.5 3-4

Phase Change
Material

Polyolefins, epoxies, polyesters, acrylics, BN, Alu-
mina, Al, Carbon Nanotubes

1.5-2 0.5-5

Phase Change
Metallic Alloy

Pure In, In/Ag, Sn/Ag/Cu, In/Sn/Bi 2-5 30-50

Solder Pure In, In/Ag, Sn/Ag/Cu, In/Sn/Bi 2-5 30-50

Adhesives Ag particles in epoxy matrix **** ****

which can be used to reduce the thermal resistance across the joint: 1) decrease the BLT, 2)

increase the thermal conductivity of the TIM, and 3) reduce the contact resistance between

the TIM and the two mating surfaces.

The thermal conductivity of the TIM can be increased by using a high thermal con-

ductivity material, or using a lower thermal conductivity base material that is loaded with

a percentage of high thermal conductivity materials such as metals or carbon nanotubes

[64–67]. Properties of some of the common types of TIM materials are provided in Table

1.1. The thermal resistance across the joint can also be reduced by reducing the bond line

thickness. This can be achieved by using materials with a low elastic modulus. Typically

these two properties run in opposition of each other. Materials such as solders and highly

laden polymers have high thermal conductivities, but are generally less mechanically com-

pliant leading to increased bond line thicknesses. On the other hand, polymers and low

density polymer composites generally have good mechanical compliance, but low thermal

conductivity. The ideal properties of a TIM would have both high thermal conductivity

and high mechanical compliance.

Finally, the last property to change the resistance in Equation 1.5 is the contact resis-

tance between the base materials and the TIM, Rc1 and Rc2. These contact resistances

arise from two sources; 1) analogous to the original problem, but at a smaller scale, air gaps

between the TIM and the base material due to imperfect wetting of the surface, see Figure
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1.10, and 2) differences in the thermophysical properties between the base material and the

TIM. This implies that even for an ideal TIM, i.e. one that perfectly wets the material’s

surface, there will still be a resistance to the flow of thermal energy due to the presence

of the boundary between the dissimilar materials. It is this boundary resistance, between

two ideally wet interfaces, that will be the focus of the work in this dissertation, as it is the

macroscopic analog of the type of interface resistance observed in transistor-level thermal

management.

Figure 1.10: Schematic of a microscope contact area of a TIM between two materials, showing areas of
wetting and non-wetting contact.

1.6 Transistor-Level Thermal Management

While much work has gone into dealing with chip level hotspots [28, 29, 36, 40, 48, 52,

65, 66, 68, 69], as the size of device features continues to shrink into the nanometer length

scale thermal management becomes more complex. Consider that the Intelr 386 processor

released in 1985 contained 275,000 transistor on a die about the size of a postage stamp,

with feature sizes on the order of 1 µm [70]. Since 2007 the most widely implemented chip-

sets operate with 45 nm feature sizes (although 32 nm and 22 nm architectures are already

in place) with the Intelr Penryn quad-core processor containing 820 million transistors in

roughly the same size die as the 386 processor [70]. Due to this continued reduction in

the size of device components, feature sizes are shrinking below the mean free path6 of the

6The mean free path of an energy carrier is the average distance the carrier will travel between collisions
with another “object”, i.e. another energy carrier, impurity, vacancy, etc. Typically at room temperature
the mean free path of electrons and phonons is on the order of 10s and 100s of nm respectively.

17



Chapter 1. Introduction 1.6

primary carriers of thermal energy, electrons and phonons7. The question arises as to if the

“classical” view of heat and thermal transport can be applied to systems on such a small

length scale?

The development of nano-devices relies on a combination of internal solid-solid interfaces

between materials with different elemental and crystallographic structures to provide the

functional operation of the device. Traditionally these devices have been designed with the

operational performance and efficiency in mind, with consideration of thermal energy man-

agement and heat dissipation as a design afterthought. Therefore the current methodology

in dealing with thermal management issues is relocated to the external device structures

and beyond [28, 36, 48, 71]. However, as the feature size of most nano-devices contin-

ues to diminish, the impact of thermal transport across solid-solid interfaces becomes ever

increasingly important.

The solid-solid interfaces created within these nano-devices provide additional scattering

sites and impede the propagation of thermal energy carriers [72]. The hindrance to thermal

transport is quantified in terms of the thermal boundary conductance (hBD), the inverse of

thermal boundary resistance (RBD). Thermal boundary conductance is defined as [33]:

hBD =
q̇

∆T
=

1

RBD
(1.6)

where q̇ is the applied thermal flux, and ∆T is the temperature drop across the interface 8.

Thermal boundary conductance has been demonstrated to be the limiting thermal conduc-

tance (dominant thermal resistance) in a wide range of nano-devices and nano-structures

[73].

We notice that the formulation of Equation 1.6 is the same as Equation 1.4 where we

discussed thermal contact resistance. While mathematically these formulations are similar,

the subtleties of their meaning are very important. We defined the contact resistance, RC ,

previously, as the resistance to thermal flow across a mechanical joint, primarily due to

geometric properties such as surface roughness. On the other hand, the thermal boundary

7Phonons are quantized vibrations of elastic waves within a solid lattice. Phonons are the analog of
photons which are quantized energies or perturbations of the electromagnetic field.

8The temperature drop at the interface is generally assumed to be discrete, however as will be discussed
in Chapter 2, there is a spatial extent to the temperature gradient.
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resistance, RBD, is an inherent property of the interface between two materials with dis-

similar thermophysical properties. This implies that RBD is a fundamental property that is

present even for ideal interfaces, see Figure 1.11. In terms of chip-level thermal management,

(a) (b)

Figure 1.11: Schematic illustrating the physical differences between (a) thermal contact resistance, and
(b) thermal boundary resistance.

this would be analogous to a perfect TIM, i.e. completely wetting. On the transistor-level

however, this represents a thermal resistance at every junction between dissimilar solid

materials.

At the transistor-level, devices are complex systems of interconnected atomic substruc-

tures with various layers of metals and non-metals, i.e. semiconductors and dielectrics,

forming numerous solid-solid interfacial structures. Figure 1.12 shows the typical structure

of a silicon on insulator metal-oxide-semiconductor field-effect transistor (SOI-MOSFET),

overlaid with a resistor network illustrating the primary thermal resistances in the structure.

While a MOSFET is an example of a small subset of nano-devices, it illustrates the wide vari-

ety of interfaces, i.e. metal-metal, metal-semiconductor, and semiconductor-semiconductor

that thermal energy carriers can encounter. It is commonly held that electrons are the

dominant thermal energy carriers in metals, while phonons are the dominate carriers in

semiconductors and dielectrics [74–77]. This dictates that the dynamics of the dominate

thermal energy carriers will depend, in part, on the types of interfaces encountered, and

the overall thermal performance of the device will be governed by the interplay of these

dynamics.
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Figure 1.12: Typical physical structure of a SOI-MOSFET with an overlaid thermal resistor network
showing the primary interfacial thermal resistances. Where RC−S is the contact-to-source resistance, RS−O
is the source-to-oxide resistance, RC−D is the contact-to-drain resistance, etc. [7].

Despite the numerous applications affected by hBD, and the advances made in under-

standing phonon transport at the nanoscale, the ability to manipulate structures and prop-

erties to control hBD has remained limited [78]. While the ability to control the electrical

conductivity of a material spans over 20 orders of magnitude, the ability to control the

thermal conductivity and thermal boundary conductance of a structure spans only around

5 orders of magnitude [78]. Since the birth of the micro- and nanoscale thermal transport

field, in conjunction with advances in the design and fabrication of nanoscale structures, the

breath of knowledge in thermal transport has grown rapidly, while the inherent understand-

ing of how material properties are affecting the foundations of phonon thermal transport

has developed more slowly. In order to move forward, to continue to develop faster and

more efficient nanoscale devices, and to move towards phononically engineered devices, our

understanding of the very fundamentals of phononic thermal transport across solid-solid

interfaces must continue to expand.

While the microprocessor is a cogent example of a device with nanometer feature sizes

for which development and performance is greatly affected by thermal management issues,

it is certainly not the only relevant nano-device of interest. Thermal boundary conductance

has been shown to affect the performance and properties of optoelectronic devices, [79,

80] supperlattice structures and devices, [81–85] and is a major design criteria for the
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development of thermal interface materials (TIMs), [28, 86, 87] nanoelectronic coolers, [45]

phase change memory, [88, 89] and high-electron-mobility transistors (HMETs) [90].

As device components become more complex, and their size continues to decrease, there

is a paradigm shift required in the science and methodology of managing high thermal

loads. Solutions can no longer be post-design considerations, as it is no longer sufficient

to simply add a bigger fan after the fact to deal with thermal issues. The miniaturization

of device components has shifted the focus of thermal management, reducing the role of

convective heat transfer and focusing more on the role of conduction within the system

components. Motivated by the shift towards conductive heat transfer, this dissertation will

focus on the methods of measurements and analysis of thermal boundary conductance at

solid-solid interfaces.

1.7 Outline and Objectives

The work in this dissertation is essentially broken up into four primary parts. The first

part focuses on the basics of phonon transport and a historical perspective of the theoretical

and experimental bodies of work in phonon transport at solid-solid interfaces. The second

part introduces the experimental technique, pump-probe thermoreflectance spectroscopy.

The underlying principles and historical development are presented along with the details

of the current system in the UVa Nanoscale Energy Transport Lab. The theoretical model

used to analyze the spectroscopy results is presented, and while built off previous contribu-

tions the formulation is extended to be applicable for square modulation waveforms of an

arbitrary duty cycle. The third part focuses on the often omitted details of the application

of the pump-probe thermal analysis and establishes robust methods for handling data and

predicting the standard deviation of the fitted results prior to collecting the data. In the

final part, the robust methods developed are applied to an investigation of tuning ther-

mal transport between two solids via the addition of an intermediate layer of mediating

vibrational properties.
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Specifically the remaining chapters present:

In Chapter 2 we present some of the current theories of phonon transport at solid-

solid interfaces, with a specific focus on how the properties of the interface affect thermal

boundary conductance.

In Chapter 3 we describe, in detail, the experimental thermoreflectance system in the

Nanoscale Energy Transport Lab at UVa. The primary beam paths, starting from the

lasers, are followed with descriptions of the purpose and operation of the major system

components provided. When appropriate, any special techniques to increase functionality

are highlighted.

In Chapter 4 the theoretical framework of modeling the results of the temperature

decay in the pump-probe experiment are presented. The theoretical lock-in response in the

frequency domain is provided. The formulation of the lock-in model is re-derived for clarity

from previous work, but is extended from the simple sinusoidal modulation waveform to that

of a square wave of arbitrary duty cycle. A diffusive heat transfer model for multilayered

systems in the frequency domain is presented as an extension of the previous single-layer

lumped capacitance model. Finally the conditions for 1D and 3D transport are discussed.

In Chapter 5 some practical issues in the application of the model discussed in the

previous chapter are presented. The effects of the modulation waveform and duty cycle

are presented and convergence criteria for the infinite summations within the lock-in model

established. Issues are discussed in the current implementation of the sensitivity coefficient

utilized by the field, and corrections are suggested. A method for characterizing noise in the

raw thermoreflectance data is established, and finally a procedure for removing statistical

outliers from the fitted results is presented.

In Chapter 6 we look at establishing robust methods for the collection and management

of the thermoreflectance data. After a brief introduction to statistical methods and termi-

nology, large scale simulations of thermoreflectance data are presented, and an empirical

formulation relating the signal-to-noise in the data and the sensitivity to fitting a parameter

of interest to the expected standard deviation in the results is given. The concept of statis-

tical bootstrapping is presented as a method to verify the statistical assumptions made in

the analysis of the thermoreflectance data. Finally the accuracy of the model, based on the
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uncertainty in the input parameters, is compared to the precision results presented based

on the simulated data.

In Chapter 7 the concept of tuning the total effective thermal boundary conductance

of a system of thin films on a bulk substrate is presented. The theoretical framework and

fundamental phononic principles of the tuning effect are presented based on previously

completed molecular dynamics simulations. Based on the theoretical work, the selection

of a metallic (Ni) intermediate layer is motivated. The structure of the prepared samples

is presented based on characterization via Auger photoelectron spectroscopy. Thermore-

flectance measurements on Pt-Ni-Si and Pt-Ni-Ge systems are presented, and the effective

film-to-substrate thermal boundary conductance presented as a function of Ni thickness.

The results provide preliminary evidence of enhanced conductance due to the presence of

the Ni layer and raises several interesting questions based on the observed trends in the

data. Finally, we review some of the potential challenges in interpreting the Pt-Ni system

results, looking at the effects of solid-solid bonding and electron transport on the the overall

conductance.

Finally, Chapter 8 summarizes the information provided in this dissertation and draws

general conclusions based on the original work presented. Suggestions for expansion on

existing work and/or potential future projects are also presented.
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Chapter 2. Thermal Transport at Nanoscale Solid-Solid Interfaces 2.2

2.1 Introduction

The transport of thermal energy in solid materials by phonons is a fundamental branch

of solid-state physics. At this point it is assumed that the reader has a background in the

fundamentals of crystallography and phonon physics. If this is not the case, Appendix A

has been provided as a brief introduction to these topics. The interaction and scattering

of phonons within a constituent material, i.e. phonon-phonon scattering, are the primary

mechanisms leading to finite thermal conductivity. Variations from a perfect crystal system

such as impurities and defects are additional mechanisms which reduce the inherent thermal

conductivity of a material. Along similar lines, in Chapter 1 the concept of thermal bound-

ary conductance, hBD, the inverse of thermal boundary resistance, RBD, was introduced as

a quantification of the interaction and transmission of phonon energy across a boundary

between two materials with dissimilar thermophysical properties. In this chapter, we will

begin by first discussing what energy carriers are dominate in several material systems, i.e.

metals, semiconductors, and insulators, and then discuss several semi-classical models that

have been developed in an attempt to predict hBD. In a similar manner as the thermal

conductivity of a material is impacted by scattering caused by impurities and defects in

the surrounding material, so too is hBD impacted by the localized properties of the inter-

face. Therefore, we will take time to discuss some of the pertinent literature and theories

dealing with the impacts of vibrational mismatch, inelastic scattering, bonding, disloca-

tions, defects, roughness, and compositional inter-diffusion at the solid-solid interface on

the propagation of phonon energy across a boundary.

2.2 Mechanisms of Thermal Boundary Conductance - Elec-

trons and Phonons

Before presenting some of the methods used to model hBD and discussing some specific

examples of how different interface structures can impact hBD, it is important to understand

when discussing heat flux across an interface, q̇, the contribution of the primary energy

carriers. In general, the primary thermal energy carriers in solid materials are electrons

and phonons [33]. However, as discussed in Chapter 1, the constituent materials that
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make up solid-solid interfaces in most modern micro- and nano-devices are various pairings

of metals, semiconductors, and dielectrics (electrical insulators). The selection of like or

dissimilar pairs of materials to comprise the interface will determine whether transport

across the interface is dominated by either phonons or electrons.

In metals, the atoms are bonded together in a lattice and the electrons in the outer

orbitals of each atom are free from the bonding of the nucleus and can move throughout

the metal. Phonons and free electrons are therefore both available in metals to carry ther-

mal energy. The velocity of the free electrons however, is nearly three orders of magnitude

greater than the average phonon velocity and therefore the electrons in a metal carry signif-

icantly more thermal energy than the phonons [33]. Therefore, in metals it is assumed that

electrons are the primary energy carriers, and that electrons are the dominant energy carri-

ers across the interface between two metals, see Figure 2.1e. At the metal-metal interface it

is estimated that phonons contribute less than 10% to the overall thermal conductance [75].

From experimental literature, hBD in metal-metal systems has been shown to be on the

order of 100’s-1,000’s of MW/m2K [75, 91–93], which is several orders of magnitude higher

than the average phonon dominated conductance. Metals also typically have high thermal

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.1: Schematic of the various thermal boundary conductance channels for electron and phonon trans-
port at (a)-(c) metal-semiconductor (e) metal-metal and (f) semiconductor-semiconductor interfaces. Elec-
trons and phonons are the dominate energy carries at (e) metal-metal and (f) semiconductor-semiconductor
interfaces respectively. At metal-semiconductor interfaces the total conductance is the sum of (a) phonon-
phonon (b) electron-electron and (c) mixed electron-phonon and phonon-electron transport.
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conductivities, due to the high velocity of free electrons present. Despite the high ther-

mal conductivity in metals, the effective conductance of a thin metal layer can be greater

than the conductance across the metal-metal interface, making the interface the dominate

resistive pathway.

In dielectric (insulating) materials, there are very few available free electrons and there-

fore thermal transport is dominated by phonons. Semiconductors, while having a large free

electron population (∼ 1018 cm−3) in comparison to insulators (∼ 106 cm−3), still have sig-

nificantly less free electrons compared to metals (∼ 1023 cm−3) [33]. Therefore, for normally

doped semiconductors thermal transport is still dominated by phonons1. Only for heavily

doped semiconductors does electron transport become appreciable. At the interface between

two semiconducting materials, phonon transport across the interface is assumed to be the

dominant transport mechanism, see Figure 2.1f. The majority of theoretical modeling and

simulation over the past two decades has focused on phonon dominated thermal transport

across metal-semiconductor and semiconductor-semiconductor interfaces [10, 72, 73, 94].

At the interface between a metal and a semiconductor or dielectric, the picture of thermal

transport is more complicated. In this type of system there are populations of electrons and

phonons available for thermal transport in both the film and the substrate. In addition to

the potential of electron-electron and phonon-phonon transport across the interface, there

is also the potential for electrons in the film to couple with phonons in the substrate,

and phonons in the film to couple with electrons in the substrate, see Figure 2.1a-2.1c.

Typically, for the sake of simplicity it is assumed that there is no direct energy exchange

between electrons and phonons across the interface. That is not to say that the phenomena

has not been studied however.

Huberman and Overhauser studied the contribution of direct energy transfer between

electrons and phonons in Pb and diamond respectively, as a means to describe the failure

of the acoustic mismatch model to predict hBD across the Pb-diamond interface [95]. They

concluded in the case of Pb on diamond, that there was direct energy transfer between

Pb and diamond but caution that their results were specific to the material system being

1Since phonons are the dominate energy carriers in both semiconductors and insulators, when metal-
semiconductor and semiconductor-semiconductor interfaces are discussed, it is implied that from the per-
spective of phonons equivalent relations will hold for metal-dielectric and dielectric-dielectric interfaces.
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studied. Hopkins et al. investigated the impacts of electron-substrate energy transfer in

Au/Si and Au/glass systems as a function of gold thickness via a modified version of the

two-temperature model (TTM) which was designated the three-temperature model (3TM)

[96, 97]. Their results showed that the influence of energy transfer with the substrate

became more significant for film thicknesses on the order of the thermal penetration depth.

When assuming no direct energy transfer between electrons and phonons on either side

of a metal-semiconductor interface, the electrons in the metal must first couple their energy

to phonons in the metal prior to energy being transferred across the interface. There has

been some debate as to whether this added electron-phonon interaction impacts the overall

thermal resistance in the metal-semiconductor system. Majumdar and Reddy proposed

that the total resistance between a metal and substrate is the sum of two series resistors:

1) the interfacial phonon-phonon resistance and 2) the volumetric electron-phonon coupling

resistance in the metal [74]. Singh et al. considered the same resistor network, but calculated

the contribution of electron-phonon resistance independent of the assumed phononic thermal

properties of the metal, and concluded that the electron-phonon coupling thermal resistance

is not significant in metal-semiconductor systems for temperature above 200 K [76].

In this chapter, the primary focus will be on phonon-mediated transport in semiconductor-

semiconductor systems, and electron-mediated transport in metal-metal systems. In Chap-

ter 7, we will return to the issue of mixed transport in metal-semiconductor systems and take

a closer look at the possibility of electron-electron transport across the metal-semiconductor

interface and thermal resistance due to electron-phonon coupling in a metal film, as they

apply more specifically to the material systems under study.

2.3 “Predicting” Thermal Boundary Conductance at Solid-

Solid Interfaces

As can occur in scientific research, experimental observation of hBD predated theory of

its existence or prediction of its values. Since it was first observed, much work has gone

into predicting hBD for solid-liquid and solid-solid interfaces, based on the thermophysical

properties of the materials.
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2.3.1 Phonon Transport - Semi-classical Approach

In terms of modeling hBD, there are a variety of methods to choose from all with a

varying level of computational expense. Rigorous methods such as molecular dynamics

(MD) simulations, have been used to model trends in thermal transport for a number of

systems [14, 98–116]. MD is a classical mechanical technique in which the time-evolved

position and velocity of a group of atoms within a computational domain are tracked and

recorded. One of the biggest advantages to MD simulations, is they do not require a

priori knowledge of the properties of the system. Instead only the equilibrium positions of

the atoms and the interatomic potentials between them2 need be specified. The classical

nature of the calculations results in the restriction that simulations are only strictly valid

at temperatures at or above the Debye temperature, ΘD, of the constituent materials. The

computational expense for MD simulations can be high, with simulations taking on the

order of hours to days to complete depending on the level of complexity.

In contrast to MD simulations, Atomistic Green’s Function (AGF) methods are based

on a quantum mechanical description of the phonon energy distribution [117]. AGF simu-

lations, similar to MD simulations, have the advantage that no a priori information on the

phonon density of states is required, only the atomic positions and interatomic potential(s)

[117]. Unlike MD simulations, the results from the AGF simulations are only strictly valid

at low temperatures [118]. The computational expense of AGF methods can vary from

on the order of several minutes to several hours, depending on the resolution of the mesh

required for the solutions to converge [117].

In addition to these more complex models, there have been semi-classical methods de-

veloped in order to predict hBD across an interface, namely the Acoustic Mismatch Model

(AMM) and the Diffuse Mismatch Model (DMM). While not overly rigorous, these mod-

els are often turned to as relatively simple formulations that provide insight into the key

fundamental processes that are driving or restricting thermal transport across an interface.

Because the focus of this dissertation is centered more on experimental methodology and

results, we will not belabor the details of the more rigorous modeling techniques. However,

2Note however, that the results of MD simulations depend heavily on the choice of interatomic potential,
which in itself is generally as much a function of the property to be “measured” as it is the material system
itself.
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because of their usefulness in gaining insight into the processes driving or restricting ther-

mal transport, and in as much provided the motivation for the experimental studies in this

work, we will take the time to discuss some of the merits and shortcomings of the DMM.

2.4 General Phonon Flux Across an Interface

Regardless of the semi-classical model used to predict hBD, the general ambition is to

predict the amount of heat transported across an interface. Therefore, assuming phonons

as the primary energy carries, a discussion of thermal transport should most logically begin

with a general expression for the transmitted phonon flux. Defining the two materials on

either size of the interface as material 1 and material 2, the phonon flux from 1→ 2 in the

z-direction, q1→2
z , is given by: [33]:

q1→2
z =

1

(2π)3

∑
j

∫ π
2

0

∫ 2π

0

∫
kx,1

∫
ky,1

∫
kz,1>0

~ωj,1(kj,1)ζ1→2

|vj,1(kj,1)|f0 sin(θ1) cos(θ1)dkz,1dky,1dkx,1dθ1dφ1 (2.1)

where z is the direction of transport, j is the phonon polarization, θ1 and φ1 are the

azimuthal and elevation angles of the phonon flux in material 1 approaching material 2

relative to the direction of transport, ζ1→2 is the transmission coefficient, v1 is the phonon

group velocity in material 1, f0 is the equilibrium distribution of phonons in material 1,

and k is the wavevector. Since we are dealing with phonons as the primary energy car-

ries, the equilibrium distribution function, f0, is given by the Bose-Einstein distribution,

f0 = 1/(exp(~ω(k)/kBT )− 1). Typically, only phonon flux approaching the interface from

material 1 is considered, and therefore the direction dependence can be simplified by inte-

grating over half the Brillouin zone and taking the absolute value of the group velocity, v1,

which gives:

q1→2
z =

1

8π2

∑
j

∫
kx,j,1

∫
ky,j,1

∫
kz,j,1>0

~ωj,1(kj,1) ζ1→2 |vj,1(kj,1)| f0 dkz,j,1 dky,j,1 dkx,j,1 (2.2)

30



Chapter 2. Thermal Transport at Nanoscale Solid-Solid Interfaces 2.4

Furthermore, under the assumption that the materials have isotropic properties, and there-

fore an isotropic phonon dispersion, this relation can be further simplified to:

q1→2
z =

1

8π2

∑
j

∫
kj,1>0

~ωj,1(kj,1) k2
j,1 ζ

1→2 |vj,1(kj,1)| f0 dkj,1. (2.3)

Recall from Chapter 1 that we defined hBD as a proportionality constant relating the heat

flux across an interface to the temperature drop within the interfacial region. Therefore,

we can define hBD in a modified version of the Fourier law, given by:

q1→2
z = h1→2

BD T 1→2 ⇒ h1→2
BD =

∂q1→2
z

∂T 1→2
(2.4)

Combining Equations 2.3 and 2.4 provides a formulation for hBD given by:

h1→2
BD =

1

8π2

∑
j

∫
kj,1

~ωj,1(kj,1) k2
j,1 ζ

1→2 |vj,1(kj,1)| ∂f0

∂T
dkj,1. (2.5)

It is important to note, so it will be reiterated, the formulation of hBD was derived assuming

small temperature perturbations at the interface, an isotropic phonon dispersion, and a

spherical Brillouin zone.

Outside of these assumptions, the primary element that delineates the different methods

of modeling hBD is the formulation of the transmission coefficient ζ1→2. One of the primary

metrics used to determine the appropriate choice of methodology used to model ζ1→2 is the

assumption of the dominate phonon scattering mechanism at the interface. The two most

common assumptions are that either the scattering at the interface is completely diffuse3

or completely specular4, which in turn is used in the formulation of the DMM and AMM

respectively.

3Diffuse scattering typically occurs at rough surfaces/interfaces, and the angle at which an incident wave
reflects or transmits is independent of the incident angle. It is therefore said that in diffuse scattering, an
incoming wave “loses all memory” of it’s incident properties.

4Specular scattering, typically occurs at a smooth surface/interface, and the angle at which the incident
wave reflects or transmits, is dependent on incident angle the properties of the material(s).
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2.4.1 Acoustic Mismatch Model

The phenomenon of thermal resistance at an interface was first discovered by Kapitza

in 1941 at the interface of Cu and He II during an experimental investigation into the

superfluidity of He II [119]. It was originally hypothesized that the thermal resistance at

the Cu/He II interface was a unique property of the superfluid helium, and it was not until

later experiments were conducted that it was found that the resistance exists between any

pairs of materials with dissimilar properties [73]. Kapitza’s experiments were conducted at

temperatures in the range of approximately 1-3 K. At these temperatures, the wavelengths

of phonons are much larger than the atomic spacing between the atoms and therefore the

assumption can be proposed that phonons can be treated as plane waves and that the

interface can be treated as a smooth plane between the two materials. This assumption

implies that the materials on either side of the interface can be treated as continua, rather

than lattices of individual atoms. These assumptions are the basis of the acoustic mismatch

model which was proposed in general form by Little in 1959 [120].

Under the assumptions of the AMM, i.e. a smooth interface, plane wave phonons, and

continuous media, phonons incident on the interface can only react in a finite number of

ways: 1) reflect back to material 1, 2) reflect back to material 1 and change polarization

modes, 3) refract in material 2, and 4) refract in material 2 and change polarization modes

[72]. The angle at which a transmitted phonon leaves the interface, assuming it transmits,

can be calculated from an analog of Snell’s law used for electromagnetic waves, given by

[72]:

sin θ2 =
v2 (ω, j)

v1 (ω, j)
sin θ1 (2.6)

where θ2 is the angle of transmission in material 2, vi (ω, j) is the phonon velocity as a

function of phonon frequency ω, of the polarization j on the ith side of the interface, and

θ1 is the incident angle. Similarly to Snell’s law, there is a critical angle above which the

probability of phonon transmission across the interface reaches zero. The collection of all

these critical angles defines a cone of transmittance, from within which there is a finite

probability of phonons transmitting across the interface.

In order to calculate the probability of phonon transmission across the interface, Little
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turned to an acoustic analog of the Fresnel equations for the transmission and reflection of

light [120]. Under this formulation, each material is prescribed an acoustic impedance, Zi,

which is the product of the materials mass density, ρ, and phonon velocity, v, i.e. Zi = ρivi.

The transmission coefficient as a function of incident angle is then given by [120]:

α1→2 (θ1) = α2→1 (θ2) =
4Z1Z2 cos θ2 cos θ1

(Z1 cos θ1 + Z2 cos θ2)2 (2.7)

2.4.2 Breakdown of the AMM

Outside of the continuum assumption, the major assumption of the AMM that affects

its applicability is the assumption of completely specular scattering at the interface. This

assumption will hold, in general, for very low temperatures and very low interface rough-

nesses, but will break down as either of these conditions increases. In order to provide

a rough estimate of the effectiveness of these assumptions, i.e. the percentage of specu-

larly scattered phonons, Ziman derived an approximated relation known as the specularity

parameter, SP , given by [121]:

SP = exp

[
−16π3δ2

L2

]
(2.8)

where δ is the RMS roughness of the interface, also known as the asperity parameter, and

L is the phonon coherence length given by [33]:

L =
hvg
kBT

(2.9)

where h is Planck’s constant, vg is the phonon group velocity, kB is the Boltzmann constant,

and T is the temperature. To illustrate the functional dependence of SP , Figure 2.2 provides

Sp as a function of temperature for a selected variety of phonon velocities assuming an

asperity parameter of δ = 1 nm. As a particular example, for the highest velocity phonons

in Si, vg = 8, 192 m/s, impingent on an interface with an RMS roughness of 1 nm there

is a less than 1% chance of specular scattering at temperatures above 40 K. Additionally,

we can look at SP as a function of interface roughness, i.e. the asperity parameter, for
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Figure 2.2: Specularity parameter, calculated from Equation 2.8, as a function of temperature for a variety
of phonon group velocities, vg, assuming a asperity parameter of δ = 1 nm.

various temperatures assuming a phonon group velocity of vg = 10, 000 m/s, see Figure

2.3. These results indicate that the AMM will only be applicable in situations of very low

temperature and very low interface roughness. For temperatures above approximately 40

K and for phonon frequencies above 100 GHz the assumptions of the AMM break down,

and the interaction at the interface is dominated by diffusive scattering [74, 122].

Figure 2.3: Specularity parameter, calculated from Equation 2.8, as a function of asperity parameter, δ,
for a phonon velocity of vg = 10, 000 m/s, at several temperatures.

2.4.3 Diffuse Mismatch Model

Due to the low temperature restrictions of the AMM, the most commonly referenced

model for the prediction of thermal boundary conductance across a solid-solid interface,

under the assumption of diffusive scattering, is the diffuse mismatch model developed by

Swartz and Pohl in the late 1980’s [72, 123]. By definition of its diffusive nature, the
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DMM implies that phonons5 lose memory of their incident polarization and direction after

scattering at the interface. This has the implication that the probability of the energy

carried by the phonons being transmitted from material 1 to material 2, is the same as the

probability of the phonon energy reflecting from material 2 to material 1. Mathematically

this can be represented by [33]:

ζ1→2 = R2→1 = 1− ζ2→1 (2.10)

where ζi→j and Ri→j are the probability of phonon transmission and reflection from material

i to material j respectively. As with the AMM, the major assumption that goes into the

development of the DMM is the formulation of the transmission coefficient, ζ1→2.

Somewhat counter-intuitively, the transmission coefficient of phonon flux across an in-

terface is calculated using the concept of local thermal equilibrium. Again, invoking the

assumption of small temperature perturbations, the DMM assumes a local thermal equi-

librium at the interface, i.e. T1 = T2, and therefore there is no net heat flux across the

interface. Through the application of the principle of detailed balance, it is possible to

equate heat fluxes from both sides of the interface, i.e. q1→2
z = q2→1

z , and therefore solve

for the transmission coefficient ζ1→2 explicitly which is given by:

ζ1→2 =

∑
j

∣∣∣ν−2
1,j (k2,j)

∣∣∣∑
j

∣∣∣ν−2
1,j (k2,j)

∣∣∣+
∑

j

∣∣∣ν−2
1,j (k1,j)

∣∣∣ (2.11)

The formulation of the transmission coefficient depends heavily on the assumptions invoked

in the application of detailed balance. A more thorough review of the different assumptions

and their impact on calculating hBD can be found elsewhere [124]. In the case of Equation

2.11, the primary assumptions are that phonons scatter elastically6 at the interface, and that

phonons can scatter into any available phonon polarization, i.e. longitudinal or transverse.

It is important to note, that the assumptions made in the application of detailed balance,

5In reality, the formulation for hBD across an interface proposed by the DMM is applicable for phonons,
electrons, and even photons [91]. However, the majority of the time it is only applied to phonons, as it will
be the focus of our discussion.

6In an elastic phonon scattering process, a phonon from the film of frequency ω can only transfer energy
across the solid-solid interface by scattering with a phonon in the substrate, also of frequency ω.
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i.e. small temperature perturbations, isotropic phonon dispersion, etc., were the same

assumptions made in the formulation of the expression for hBD, see Equation 2.5. When

applying the DMM it is important to keep assumptions consistent for both the formulation

of hBD and ζ1→2.

With the established formulation of the DMM, there is a key issue that should be

pointed out. In the purely diffusive regime, the phonon transmission probability predicted

by the DMM in the limit of the same material on either side of the interface is 50%.

This may be viewed as an incorrect result of the model, but is in fact a correct description

assuming the most rigorous definition of diffusive scattering. Given an interface between two

identical materials and assuming that phonons scatter diffusely, thereby loosing all memory

of incident direction, phonons will have an equal probably of scattering in all directions, i.e.

forward and backward, and therefore the transmission probability of the incident phonon

flux will be 50%. In Chapter 2, a closer look is taken into some of the issues facing the

DMM and how the predicted values compared to experimental data.

2.4.4 Electron Transport - eDMM

When the two materials comprising an interface are both metals, it is expected that

electrons will be the dominate energy carries facilitating thermal transport across the inter-

face [75, 93]. Recall that it has been estimated that phonons contribute less than 10% to the

overall thermal transport between typical metals [75]. Therefore, formulations such as the

DMM would not be appropriate for modeling thermal transport at metal-metal interfaces.

However, there have been several series of experimental and theoretical studies that have

shown that electrons do scatter diffusely at an interface7 between two metals [75, 125–129].

The assumption of diffuse scattering at the interface is one of the major assumptions of

the phonon-mediated DMM discussed previously. This correlation lead Gundrum et al. to

develop an electron-mediated diffuse mismatch model (eDMM) to model thermal transport

across an Al-Cu interface [75].

Recalling the formulation of hBD for phonon-mediated thermal transport, see Equation

7Note: The diffuse scattering in these studies is upheld in part to do to the presence of a disorder region
at the interface, with a spatial extent on the order of a few atomic-layers.
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2.5, the development of a model for electron-mediated thermal transport, under the diffusive

assumption, is a matter of the appropriate choice of electronic over phononic properties.

Therefore, the electron dominated thermal boundary conductance, hBD,e, is given by8 [92]:

hBD,e =
1

4

∫ ∞
0

(ε− εF,1)D (ε)
∂F1

∂T
vF,1ζ

1→2
e dε (2.12)

where ε is the electron energy, εF,1 is the Fermi energy of metal 1, D (ε) is the electron density

of states (eDOS), f is the electron distribution function, T is the electron temperature, vF

is the Fermi velocity, and ζ1→2
e is the transmission coefficient from metal 1 to metal 2. As

with the development of the AMM and DMM, the challenge in implementing the eDMM is

the formulation of the transmission coefficient, ζ1→2
e . Recall that in the development of the

DMM, care was taken care to ensure the same assumptions were made in the derivation of

hBD and the transmission coefficient. The same restrictions are valid for the development

of the eDMM, and therefore in the formulation of the electron transmission coefficient it is

assumed that scattering is diffuse and elastic, and there is a local thermal equilibrium at

the interface. Under these assumptions, the principle of detailed balance can then be used

to formulate the transmission coefficient [92]:

∫ ∞
0

(ε− εF,1)D1 (ε) f1vF,1ζ
1→2
e dε =

∫ ∞
0

(ε− εF,2)D2 (ε) (1− f2) vF,2ζ
2→1
e dε (2.13)

Under the assumption of detailed balance, i.e. no temperature gradient at the interface,

the Fermi levels between the two metals will be equivalent on an absolute scale [92], i.e.

εF,1 = εF,2. Therefore the transmission coefficient can be written as [92]::

ζ1→2
e =

D2 (ε) (1− f2) vF,2

D1 (ε) f1vF,1 +D2 (ε) (1− f2) vF,2
(2.14)

Under the low temperature assumption, i.e. typically below a few thousand K (< 3, 000 K

8Note: This is a modified version of the original eDMM proposed by Gundrum et al. to take into account
sub-conduction electrons at elevated temperatures. However, it will be shown that this formulation reduces
to the original derivation by Gundrum in the low temperature limit.
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for Cu), Equation 2.14 can be reduced and the expression for hBD,e simplified to [92]:

hBD,e =
1

4

γ1vF,1γ2vF,2

γ1vF,1 + γ2vF,2
T (2.15)

where γi is the electron heat capacity constant, also known as the Sommerfeld constant.

2.5 Failures of the DMM in Predicting Thermal Boundary

Conductance

While the DMM is a very computationally efficient tool for understanding the funda-

mental processes of phonon transport across an interface and predicting hBD, the question

arises as to how accurate of a predictor the DMM really is? Taking a subset of experimen-

tal data from available literature and comparing the measured values of hBD along with

those predicted by the DMM, we find that the results are generally not well correlated, see

Figure 2.4. Despite a few cases where the experimental data and DMM predictions match,

in general, half of the data is over-predicted by the DMM and half is under-predicted.

Typically, the values of hBD for systems with phonon dominated thermal transport, e.g.

metal-semiconductor systems, only range from 10’s to 100’s of MW/m2K. Recalling again

Figure 2.4, we see that for the data presented the predictions are only within plus-or-minus

one order of magnitude in accuracy. With the data and the model varying by roughly the

same orders of magnitude, there is little chance of any accurate predictive calculations or

correlations between the DMM and experimental data.

Since the development of the DMM by Swartz and Pohl, there have been many attempts

at modifying the DMM in order to more accurately match experimental data. Investigations

and modifications to the development of the models [105, 122, 124, 130, 131], the role of

optical phonons [132], the accuracy of the phonon dispersion used [132–134], methods to deal

with crystal anisotropy [15, 135, 136], and the role of inelastic phonon scattering processes

[11, 12, 137–141], all have been considered as potential ways to improve the accuracy of

the DMM. While these modifications highlight important considerations that are not found

in the original development of the DMM, they are focused on modeling a specific case
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Figure 2.4: Ratio of experimentally measured hBD to that predicted by the DMM versus the ratio of Debye
temperatures of the film and substrate. The data plotted is taken from Stoner & Marris, [8] Lyeo & Cahill,
[9] Stevens et al., [10] and Hopkins et al. [11, 12].

targeted at a specific subset of data. Therefore, while the modifications appear to enable

the model to match well with experimental data for which it was developed, they are not

applicable globally, or in conjunction with each other, and the DMM has remained largely

a post-dictive tool with little accuracy as a predictive model.

To investigate potential mechanisms of failure that led to the under or over prediction

of hBD via the DMM, we turn back to its formulation. Recalling Equations 2.5 and 2.11

we notice that the majority of the variables, the phonon frequency, ω1,j (k1,j), the phonon

wavevector, k1,j , the phonon group velocity, ν1,j (k1,j), and the transmission coefficient,

ζ1→2, are a function of the phonon wavevector k. The relationship between all these prop-

erties can be ascertained from the phonon dispersion relation, see Figure 2.5. The phonon

dispersion in itself is a mapping relationship between the phonon wavevector k and the

phonon frequency ω, where the phonon group velocity is taken as the slope of the disper-

sion at a given wavevector, i.e. vg = dω/dk. Therefore with knowledge of the phonon

dispersion relation for the two materials adjacent to an interface the DMM should enable

the prediction of hBD.

What we find is lacking in Equations 2.5 and 2.11 are properties defined to quantify the
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Figure 2.5: The phonon dispersion relation for solid Argon in the directions of high symmetry at 0 K,
modeled with the lattice dynamics program, General Utility Lattice Program (GULP) [13].

“interface”9. While the transmission coefficient, ζ1→2, gives the probability of a phonon

from material 1 transmitting to material 2, it is formulated based on the inherent, isolated,

properties of the materials on either side of the interface. As the name implies, the DMM

assumes that all phonons approaching the interface scatter diffusely, and while ζ1→2 gives

the probability of forward transmission to material 2, it assumes that all phonons scatter at

a single spatial location. Recalling the definition of hBD from Equation 2.4, this scattering

of phonons at the interface creates a finite temperature drop between the two sides of the

interface, see Figure 2.6a. Throughout these formulations, there is no definition of what

the “interface” actually consists of.

In the mathematical formulation of hBD in the DMM, the interface is assumed to be

an infinitesimally thin boundary between two solid materials. No spatial extent is given

to the interface, and therefore there are no inherent properties attributed to this region.

The two solids are assumed to have inherent thermophysical properties based on their

9Interface is written in quotes, because there is no coherent definition as to the extent of the interface
or its properties, as will be discussed shortly.
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bulk dispersions, to be in close proximity to each other, to be non-interacting, and to be

unperturbed by the presence of the adjoining solid. This means that the thermophysical

properties of the solid-solid system i.e., atomic mass, force constants, the phonon group

velocity, etc., follow a step function with the point of inflection at the interface, see Figure

2.6b.

(a) (b)

Figure 2.6: A solid-solid system with (a) a finite temperature drop at the interface as described by
the DMM and (b) a step function dependence on material properties, e.g. atomic mass, etc. due to the
infinitesimal physical extent attributed to the interface.

As may be expected, this is an idealized case and realistic solid-solid systems do not

behave in this manner. The closest representation of this type of system would be the

epitaxial growth of a well matched system such as TiN/MgO [142]. In reality, solid-solid

systems fabricated with more common sputtering and evaporation processes used in the

microfabrication of nanoscale devices will not form perfect interfaces. Due to the energetics

of the fabrication process, the lattice mismatch between the two solids, thermodynamically

driven interactions, etc., solid-solid interfaces can deviate greatly from the “ideal” picture.

In realistic nanofabricated devices, species interdiffusion and reaction can occur on the

order of the devices’ characteristic length scale, even at room temperature [143]. In most

cases, the realistic interface between two solids will have varying extents of interdiffusion,

amorphization, and reaction based on the nature of the materials and fabrication processes.

To better understand how the properties of the interface affect phonon transmission, we will

look at several subsets of studies and experimental data focused on particular properties

of the interface. A basic understanding of how these various properties affect hBD will be

important when analyzing the results in Chapter 7.
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2.6 Interface Effects on Thermal Boundary Conductance at

Solid-Solid Interfaces

Formulations such as the AMM and DMM assume that the interface between two ma-

terials is an infinitely thin plane with no unique properties. In contrast to this, the devel-

opment of the transient thermoreflectance technique by Paddock and Eesley [144], which

will be discussed in detail in Chapters 3-4, was done in part to allow the measurement of

the thermal properties of a thin film, supported by a substrate, without the influence of the

film-substrate interface. Paddock and Eesley cite that while the thermal modeling considers

an ideal interface, in reality there are many factors that alter the properties of the interface

relative to the bulk. Over the past two decades much scientific effort has gone into better

understanding the impacts of properties in the vicinity of the solid-solid interface on hBD.

Recently, there has been several excellent reviews that have summarized these efforts, and

have highlighted some of the major issues currently facing the field of nanoscale energy

transport [91, 94, 145, 146]. Here we will briefly introduce several topics related to phonon

transport across a solid-solid interface, which will be pertinent when considering the ex-

perimental results in Chapter 7. While not an exhaustive review, a selection of theoretical

work, simulations, and experimental results are presented to provide insights on how several

key interface properties affect hBD.

2.6.1 Mismatch of Vibrational Properties

The formulation and dependence of both the AMM and the DMM relies in large part on

the transmission coefficient, given by Equations 2.7 and 2.11 for the AMM and the DMM

respectively. In either case, the transmission coefficient, in part, describes a numerical

comparison between the thermophysical (vibrational) properties of material 1 and material

2. When the vibrational properties between the materials are similar, the transmission

coefficient approaches a maximum. Conversely, when there is a large mismatch between

the vibrational properties the transmission coefficient approaches a minimum. Beyond the

considerations in the AMM and DMM, Pettersson and Mahan [147] used lattice dynamics

theory to investigate the impact of dissimilar lattice properties, i.e. atomic masses, force
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constants, and lattice constants, on hBD. Their results showed decreased conductance with

deviation from the ideal case of matching properties for both materials comprising the

interface.

Much more work has been undertaken studying the impacts of mismatched vibrational

properties on hBD via molecular dynamics. MD is ideally suited for this task due to the

ability to individually control the properties of the crystal systems. Twu and Ho [111] stud-

ied hBD between two FCC crystals defined by a Lennard-Jones (LJ) and Morse potential

respectively. They tuned the mismatch between the crystals by varying the width of the

interatomic potential well of each crystal, and found a nearly exponential decrease in inter-

face conductance with an increase in the ratio of the widths of the potential wells. Stevens

et al. [110] used the mass ratio between two Lennard-Jones FCC solids to tune the vi-

brational mismatch between the two crystals, finding that interface conductance decreased

with increasing mass mismatch as expected from the DMM theory. Similar results were

found by Wang and Liang [148] who showed a nearly linear dependence on hBD with mass

ratio. Landry and McGaughey [105] used a more complex Stillinger-Weber (SW) potential

to study hBD between Si and “heavy-Si” and also found a monotonic increase in hBD with

decreasing mass ratio. Hu et al. [149] varied the vibrational mismatch between Si and an

amorphous polyethylene polymer through the atomic spring constant in Si. This in turn

quantified the elastic modulus of the Si which varied from the baseline Si to that similar

to diamond. They found hBD decreased with increasing elastic modulus, as it increased

the vibrational mismatch between the Si and the polymer. Lyver and Blaisten-Barojas

[112] directly compared the vibrational mismatch between two LJ crystals by comparing

the calculated phonon density of states (PDOS) in each material as a function of the ratio

of LJ parameters in each material. They found that as the ratio of ε increased, phonon

modes were shifted from lower to higher frequencies. Increasing the mass difference ratio

on the other hand shifted mid range frequency phonons down to the lower frequency range.

However, ultimately in both cases hBD decreased as the ratio of LJ parameters increased.

As molecular dynamics techniques have been expanded, it has become possible to find

the phonon density of states near the region of the interface. Shin et al. [150] compared the

bulk PDOS in Si and In to the PDOS in a region confined to the Si/In interface. They found
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that the PDOS in In shifted to higher frequencies locally at the interface, while the PDOS

of Si shifted towards lower frequencies. Similar redistribution of the PDOS at an interface

was found by English et al. [14], see Figure 2.7, and Liang et al. [20, 151]. The locally

modified PDOS at the interface region was later used to attempt to tune hBD through the

use of an intermediate layer, which will be the focus of Chapter 7.

(a) (b)

Figure 2.7: (a) Bulk occupied phonon density of states for material A (40 amu) and material B (120 amu),
with the shaded region representing the overlap in the bulk density of states. (b) Occupied phonon density
of states in the z-direction calculated from the monolayers on either side of the interface between material
A and B. Data and figures reproduced with permission from English et al. [14].

Experimentally, the variation in vibrational properties between two materials is difficult

to quantify, as there is no simple method to vary system parameters or determine the

PDOS. As a proxy for the overlap of the PDOS in two materials, Stoner and Maris [8]

used the ratio of the Debye temperatures. Using picosecond thermoreflectance to measure

hBD, they found that hBD decreased as the Debye temperature mismatch between the

film and substrate increased. Similar results were found by Stevens et al. [10] for metal-

semiconductor systems of interest to microelectronic device designers. Lyeo and Cahill [9]

found very low hBD for the highly vibrationally mismatched system of Bi on diamond,

but found that their measurements exceeded the conductance predicted by the phonon

radiation limit, i.e. the theoretical upper limit for thermal conductance. They attributed

this discrepancy to the possibility of inelastic phonon scattering processes, which we will

focus on next.
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2.6.2 Inelastic Scattering Contributions

Most semi-classical treatments of hBD, such as those formulated in the AMM and DMM

only consider elastic phonon interactions. Under this assumption the phonon transmission

coefficient, see Equation 2.11, is independent of temperature. Therefore, hBD is expected to

remain constant above the Debye temperature of one or both materials, depending on the

underlying assumptions of phonon interaction. To test this assumption Stevens et al. [110],

using nonequilibrium molecular dynamics (NEMD), found hBD between two mismatched

Lennard-Jones crystals as a function of temperature. Their results showed a strong linear

dependence of hBD with temperature which was attributed to inelastic10 phonon scatter-

ing. This work was further corroborated by molecular dynamics work from Landry and

McGaughey [105], Luo and Lloyd [152], Ju et al. [114], and Duda et al. [131]. The linear

dependence of hBD was supported experimentally for a wide range of material systems by

measurements of hBD at elevated temperature by Lyeo and Cahill [9] and by Hopkins et al.

[11, 12].

There have been numerous theoretical models developed and existing models modified

in an attempt to describe the contributions of inelastic scattering to the total thermal

conductance across an interface. In 2004 Dames and Chen introduced the maximum trans-

mission model (MTM) as an extreme upper bound to hBD, which included interaction of

all possible phonon frequencies on either side of the interface and therefore all inelastic

processes. Hopkins and Norris [138] proposed a joint frequency diffuse mismatch model

(JFDMM) which considered a weighted portion of the phonon spectra in the substrate to

interact with the incident phonons from the film, as a means to estimate the contributions

of inelastic scattering without specifying inelastic transmission probabilities. In an attempt

to specifically quantify the contributions of inelastic scattering on the transmission coef-

ficient of phonons at an interface, Hopkins [140] developed the higher harmonic inelastic

model (HHIM). The HHIM considers higher order phonon interactions, i.e. three-phonon,

four-phonon processes, etc., with reduced probability of each higher order event. Because

the HHIM considers only integer combination phonon process, it represents a lower bound

10Inelastic, sometimes called anharmonic, phonon scattering involves two or more phonon which combine
(or separate) to form a phonon with a frequency that is the sum (or difference) or the incident phonons.
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to the contribution of inelastic processes. To more rigorously consider inelastic phonon pro-

cesses, of any combination, Hopkins et al. [15] further modified the HHIM to integrate the

available phonon flux over all possible combinations of n-phonon processes when calculating

the transmission coefficient. The new model, denoted as the anharmonic inelastic model

(AIM), showed that for samples with a high degree of vibrational mismatch at elevated

temperatures, higher order processes (up to 10-phonon processes) contributed significantly

to hBD, see Figure 2.8.

(a) (b)

Figure 2.8: (a) Anharmonic inelastic model predictions of hBD for Pb on diamond as a function of temper-
ature and n-phonon processes for n=2-17. (b) Comparison of hBD predicted from the DMM and the AIM
along with experimental data for Pb/H/diamond, Pb/diamond, and Au/diamond. Figures and data from
Hopkins et al. [15].

2.6.3 Bonding at the Interface

As discussed more thoroughly in Appendix A, the bonding between atoms contributes

in part to the behavior of phonons in a crystal. It is therefore reasonable to surmise that the

bonding between two crystal types will create a modified local dispersion with properties

inherently different than the surrounding bulk, and in turn impact hBD.

To study the impact of interface bonding on hBD, Prasher [153] developed a modified

version of the AMM, which assumes perfect contact, to take into account weaker van der

Waals forces at the interface. His results showed large deviations from the AMM for interface

adhesion energies below 200 mJ/m2, with weaker adhesion reducing hBD. Persson et al.

[154] used linear elasticity theory to study hBD across the solid-solid interface as a function
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(a) (b)

Figure 2.9: (a) Crystal structure of the SiO2/Si system, with the Si denoted in grey and the O atoms in
red. (b) hBD at the SiO2/Si interface as a function of the length of the interface junction for both weak and
strong interfacial coupling. Figures and data reproduced with permission from Chen et al. [16].

of temperature. They found for very low temperatures, T < 3 K, that a weakly and

strongly bonded interface transmitted phonons equally well. However, they found that at

room temperature and above, phonon transport across the interface may be reduced by a

factor of 100 or more for the weakly bonded interface as compared to the strong interface

interaction.

Using molecular dynamics simulations, Chen et al. [16] studied the impact of the

strength and physical organization of bonds on hBD at the interface between amorphous

and crystalline Si. It was found that hBD increased monotonically with increasing bonding

strength at the interface. In the limit of weak interfacial coupling, it was found that the

physical organization of the bond, i.e. bond angle and the distance between bonds, signif-

icantly impacted hBD. In contrast, in the limit of strong coupling, hBD was shown to be

nearly independent of the details of the bond structure, see Figure 2.9. A monotonic rela-

tionship between hBD and interface bond strength was also observed by Hu et al. [149] at

the interface between single-crystal Si and amorphous polyethylene using molecular dynam-

ics simulations. Shen et al. [155] investigated using MD simulations the roles of interface

boding and pressure on hBD between two Lennard-Jones FCC crystals. They found that

increasing the pressure at the interface was essentially the same as increasing the interface

bond strength, with the increased pressure stiffening the interface bonds. Therefore, in the

case of weak bonds hBD increased with increasing pressure while for the case of strong bonds
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hBD was pressure independent. Similar trends of increasing hBD with increasing pressure

were also showed by Liu et al. [156] for simulations of hBD between a single open-ended

carbon nanotube and crystalline Si.

Collins et al. [157] and Monachon and Weber [158] both experimentally studied hBD

between Al and diamond with various surface chemistry configurations on the diamond

surface to introduce different bonding conditions. Both investigated various surface pre-

treatments to the diamond substrate, including oxygen and hydrogen treatments. The

results showed that the samples that were oxygen treated had significantly higher (by a

factor of 4-5) hBD than those with the hydrogen treatment. Both groups attributed the

increased hBD to more open bonds at the interface and therefore better wetting of the

deposited Al. In a similar manner, Hopkins et al. [159] measured hBD between Al(Au)

and a functionalized single layer of graphene using time domain thermoreflectance. The

single graphene layers were functionalized with either an oxygen or hydrogen plasma prior

to deposition of the metal, to control the number of covalent bonds at the metal-graphene

interface. Their results showed increased conductance across the oxygen functionalized

interface, attributed in an increased density of covalent bonds. To more directly control

the number of covalent bonds, Losego et al. [160] investigated hBD between Au and quartz

with an intermediate layer of a self-assembled monolayer (SAM) with varying termination

chemistries. For a methyl:thiol SAM layer with varying thiol termination, hBD was shown to

increase 80% as the fraction of thiol termination (which corresponds to increasing covalent

bond density) increased from 0 to 100%.

2.6.4 Strain, Defects and Dislocations at the Interface

In the next few subsections we will discuss physical nonidealities at the solid-solid inter-

face. The major factor in determining the separation of the various phenomena into cate-

gories will be the scale of the phenomenon. In reality, the challenge is all these categories are

interdependent. Compositional inter-diffusion can be viewed as a form of roughness, and

any roughness is likely to introduce crystallographic dislocations, vary lattice strain, and

can be viewed as a form of defects. However, in an attempt to categorize the phenomena,

we will consider dislocations/defects, roughness, and inter-diffusion to be increasing scales
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of interface nonidealities, not to be confused with their importance in determining hBD.

For the smallest deviations from the ideal interface, we will consider the impacts of lattice

strain, defects, and dislocations on hBD. These are considered physically small phenomena

that are a natural product of the interaction between the two species at the interface. While

the selection of material pairs and fabrication conditions can be use to mitigate these effects,

in general these factors will almost always be present to some degree.

Kozorezov et al. [161] theoretically derived the probability of phonon transmission

between two solids with an intermediate region of material with properties differing from

either solid to act as an analog for interface defects, mixing, etc. They found that scattering-

mediated transmission is possible at high phonon frequencies, but is less frequency depen-

dent for low frequencies. Prasher and Phelan [162] created a scattering-mediated acoustic

mismatch model to account for scattering at the interface between two materials. Their

formulation was generalized to account for any non-bulk like properties at the interface

through an effective index of refraction at the interface. Meng et al. [163] studied the effect

of a strain field at the interface on phonon conductance. For low frequency phonons below

a certain cutoff frequency they found no scattering at the interface, with the magnitude of

the cutoff frequency increasing with increasing interface strain.

Using molecular dynamics simulations Stevens et al. [110] studied the impact of inter-

face defects on hBD using a Lennard-Jones solid-solid lattice structure with large lattice

mismatch, which was relaxed to form a disordered interface structure a few atomic layers

thick. Their results showed that the presence of defects at the interface reduced hBD, with

the impact of the reduction being greatest for systems with well matched Debye tempera-

tures. For highly mismatched systems, the results of added defects were not significant. Li

and Yang [17] used a combination of molecular dynamics simulations and atomistic Green’s

function calculations to determine the impact of lattice strain and the presence of vacancy

defects at the interface between Si and Ge-like crystals on hBD. For the impact of lattice

strain, Li and Yang investigated strain induced by a lattice mismatch of up to 16% and found

that hBD decreased with increasing lattice mismatch, see Figure 2.10. While the presence of

lattice strain has been shown to increase the allowed mode conversion at the interface, and

therefore hBD [147], the disorder introduced at the relaxed interface negated these effects

49



Chapter 2. Thermal Transport at Nanoscale Solid-Solid Interfaces 2.6

(a) (b)

Figure 2.10: (a) Relaxed Si/Ge interface formed from an 8% lattice mismatch. (b) Phonon transmission
as a function of frequency for different lattice mismatches. Figures and data reproduced with permission
from Li and Yang [17].

and reduced the overall phonon transmission, agreeing with the results of Stevens et al.

[110]. Additionally Li and Yang studied the affects of two atomic layers at the Si/Ge-like

interface with randomly distributed spherical vacancy defects of varying size and distri-

bution. The simulations showed that the defect size had a larger impact than the defect

density, with the transmission of low frequency phonons being the most impacted. When

the defect size was large enough, the changes to phonon transmission due to the defects

were greater than the effects of the lattice mismatch. Duda et al. [164] investigated how

the size and distribution of impurity atoms near the solid-solid interface of Lennard-Jones

materials impacted hBD. In general, their findings in both cases showed a trend to reduce

hBD with increasing impurity distribution and mass. Their results did show increased hBD

for impurities with a mass that was the mean between the constituent masses, however un-

certainty in their results make that claim inconclusive. Ju and Liang [165] used molecular

dynamics and wave packet simulations to study the effects of grain boundary twists between

Stillinger-Weber Si on hBD, for twist angles between ∼ 12− 37◦. The hBD across the grain

boundary interface was found to decrease with increasing twist angle and was attributed to

increased grain boundary energy with increasing twist.

Hopkins et al. [166] experimentally studied the effects of ion implantation on hBD be-

tween Al/Si and Al/Al2O3 systems. They found an order of magnitude reduction in hBD

for the highest ion dose (5.79×1017 protons/cm2) in both systems, which was attributed
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to increased surface roughness, near surface damage, and bond breaking. Compared to the

baseline samples, they found a large drop in hBD for even the smallest ion dose (5.79×1014

protons/cm2). Additionally Hopkins et al. [167] measured hBD across the Al/GaSb and

GaSb/GaAs interfaces for GaSb grown to promote varying densities of threading dislo-

cations (5 × 106 − 5 × 108 dislocations/cm2). It was found that hBD decreased across

both interfaces with increasing dislocation density. In contrast to Hopkins et al., Hanisch-

Blicharski et al. [168] found no difference in the hBD for a Bi/Si system with and without

misfit dislocations at the interface. One possible explanation for the independence of hBD is

the Bi/Si system had nearly 5 times fewer dislocations as compared to the work of Hopkins

et al. Additionally the Bi/Si system has a high degree of vibrational mismatch (Debye ratio

= 0.19) compared to the Al/GaSb/GaAs system from Hopkins et al. (Debye ratio of 1.48

and 0.74 respectively), which may mask the effects of the misfit dislocations.

2.6.5 Roughness at the Interface

We will generally define a rough interface as one in which the interface is not planar,

but where there is still a sharp11 compositional gradient from material 1 to material 2.

Quantifying the degree of roughness is generally accomplished via two quantities: 1) the

root mean square (rms) roughness of the interface and 2) the correlation length. Either

parameter on its own provides an incomplete picture of the surface roughness. Because

the rms roughness is an average deviation from the mean plane, the same rms roughness

can be accomplished by either very large deviations sparsely populated in the horizontal

direction, or many smaller deviations in the same surface area. To add clarification, it is

also usually helpful to consider the correlation length, which in the direction parallel to the

interface is a measure of the average distance between similar features. Prior to depositing

the film the surface roughness can be measured via microscopy techniques such as atomic

force microscopy (AFM) [169]. After the film is deposited, the interface roughness can be

characterized by X-ray techniques such as X-ray reflectivity (XRR) for rms roughness and

X-ray diffuse scattering (XDS) for surface roughness and correlation length [170].

11We can see how categories are difficult to define as the difference between a rough interface and one that
is compositionally inter-diffuse is a matter of semantics in the definition of sharp. Much more research will
have to be conducted to determine if there are distinct trends delineating rough from inter-diffuse interfaces.
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There have been a number of studies that have focused on the theoretically determined

contributions of atomic level interface roughness to variations in the transmission of phonons

across an interface, and therefore hBD. In the early 1990’s Kechrakos [171, 172] studied

the transmission of elastic phonons, specularly and diffusely scattered, across the interface

between two crystals with an atomic level roughness on the order of one monolayer using

a simplified lattice dynamics approach. They showed an increase in interface conductance

across all temperatures, as high as a factor of 3 above the perfect interface for vibrationally

mismatched materials above the Debye temperature. Kazan [122] created a modified version

of the phonon transmission coefficient based on the morphology of the solid-solid interface

to weight the probability of specular and diffuse scattering and bridge the gap between the

AMM and DMM. He found in general that the conductance between two solids with similar

vibrational properties increased with increasing rms roughness. Conversely when the two

solids have highly dissimilar vibrational properties, thermal conductance is increased only

for low rms roughness.

Using Green’s function methods, Fagas et al. [173] studied the transmission of elastic

phonons across a disordered atomic monolayer between two perfect crystals, which was

tuned by varying the mass of the atoms in the disordered layer. They found that the

phonon transmission was a function of phonon frequency and the correlation length of the

disordered region. Zhao and Freud [174] used a Green’s function method to determine the

scattering and transmission of phonons at the atomically rough interface between two FCC

crystals, with phonon dispersions approximately equal to that of Si and Ge. They found

that the proportion of specular scattering, as compared to diffuse scattering, was strongly

dependent on the interface roughness and only weakly dependent on the correlation length.

In contrast, they found that the overall phonon transmission across the interface was gen-

erally independent of both the interface roughness and the correlation length. Additionally,

Tian et al. [18] combined Green’s function methods with density functional theory (DFT)

to calculate phonon transmission and phonon conductance across an ideal and roughened

Si/Ge interface, see Figure 2.11. They found that the conductance across the interface can

be increased when the thickness and profile of the interface roughness is properly controlled.

Molecular dynamics simulations have also been utilized to study interface roughness
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(a) (b)

Figure 2.11: Phonon transmission from Si-to-Ge (a) and thermal conductance from Si-to-Ge (b) based on
Green’s function calculations using DFT force constants from Tian et al. as a function of the thickness of
the roughened interface layer. Figures reproduced with permission from [18].

effects on hBD. Sun and Murthy [104] used the molecular dynamics wave-packet method to

study the transmission of phonons across the Si/Ge interface for an ideal interface, an inter-

face with random roughness, and an interface with roughness organized in a regular pattern.

The phonon transmission was shown to be a strong function of frequency compared to the

interface roughness. For the ideal interface, the transmission predicted by the simulations

agreed well with the expected values from the AMM. For the roughened interfaces, trans-

mission decreased with increasing phonon frequency with the transmission for the regularly

roughened interface showing complex mode conversion. Zhou et al. [175] used MD to study

hBD between Al and GaN for regularly arranged interface patterns including rectangular,

sinusoidal, and triangular morphologies. Their results showed that when bonding at the

interface between the two species was weak, and the correlation length between features

long, that hBD was proportional to the surface area of the interface which increases with

increasing surface roughness.

Experimental studies of hBD dependence on surface roughness have also been under-

taken. Hopkins et al. found hBD decreased as a function of interface roughness in an

Al/Si system for roughness caused by both chemical etching of the substrate prior to Al

deposition [176] and the growth of quantum dots on the Si surface [177]. For quantum dot

roughening on the order of 4 nm, they found a decrease in hBD on the order of 1.6 times

compared to the case of no quantum dots. Chen and Hui [178] found decreased thermal
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conductivity in thin Au layers on Si(100) substrates with high Si surface roughness. The

reduced thermal conductivity was attributed to increased electron scattering near the in-

terface and increased grain-boundary scattering due to small grain sizes, caused by limited

adatom mobility during Au deposition.

2.6.6 Compositional Inter-diffusion at the Interface

Similar to interface roughness, the degree of compositional inter-diffusion at the solid-

solid interface can also impact hBD. While it is difficult to provide a clear definition of

the delineation between roughness and inter-diffusion, generally the spatial extent of inter-

diffusion is larger than the surface roughness. In addition, inter-diffused species will intermix

as opposed to conformal mapping of a film on a rough surface and can form compounds.

Therefore, while the interface roughness was quantified by the rms roughness and the co-

herence length, the inter-diffused region will be quantified by the width of the mixed region

and the compositional profile of the species throughout the region.

Theoretically, the treatment of disorder between two solids was treated as an extension

of the DMM by Beechem et al. for crystalline [179] and non-crystalline [180] interphase

layers. The former treated the inter-diffused region as a virtual crystal layer with properties

based on the weighted average of the constituent material properties. The latter used a

similar formulation, but considered the inter-diffused region as a non-crystalline (disordered)

layer. The results of the modified version of the DMM agreed reasonably well with the

experimental data with which it was compared.

Li and Yang [17] used a combination of MD simulations to create the relaxed crystal

structure, and atomistic Green’s function calculations to determine the phonon transmission

across the interface between Si and Ge-like materials with a Si/Ge alloy layer of varying

thickness at the interface. Their results showed a reduction in the phonon transmission

across the alloyed layer with increasing layer thickness, and the disappearance of peaks

in the transmission for certain phonon frequencies which they attributed to phonon mode

conversion, see Figure 2.12. The hBD was also reduced with increasing layer thickness with

a 50% drop for an alloy layer thickness of 1 nm.

Using nonequilibrium molecular dynamics simulations Twu and Ho [111] investigated

54



Chapter 2. Thermal Transport at Nanoscale Solid-Solid Interfaces 2.6

(a) (b)

Figure 2.12: (a) Alloyed Si/Ge layer created via melting and quenching of the interface region with an 8%
lattice mismatch. (b) Phonon transmission as a function of frequency for different thicknesses of the alloyed
region. Figures and data reproduced with permission from Li and Yang [17].

hBD across the interface of two FCC crystals with the crystal systems being described by

a Lennard-Jones and Morse potential on either side of the interface respectively. An inter-

diffused region of varying thickness and compositional disorder was added between the two

crystals, and it was found that in all cases hBD was reduced as compared to the perfect

interface. In contrast, Stevens et al. [110] found an increase in hBD between dissimilar LJ

solids by a factor of 1.4-1.8 for alloy layers between 2 and 20 atomic planes in thickness. It

should be noted in the work of Twu and Ho the alloy layer had random mixing, while in the

work from Stevens et al. the atoms in the alloy layer were systematically arranged. Choi et

al. [181] used more realistic potentials and parameters to calculate the thermal conductance

across atomically clean and disordered Al/Si interfaces via NEMD. Their results showed

decreasing hBD with increasing disorder, and attributed the reduction to increased phonon-

phonon scattering. In contrast once again, Zhou et al. [175] found that a disordered layer of

2.9 nm between Al and GaN increased hBD by a factor of 1.6. They attributed the increase

in hBD to a phonon bridging effect, which was proposed by English et al. [14] and later

by Liang and Tsai [20]. More details of this phonon bridging effect will be discussed in

Chapter 7.

Hopkins et al. [182, 183] experimentally measured hBD for a Cr/Si system as a function

of inter-diffusion layer thickness, which was created via backsputtering etching and heat
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treatment of the Si substrate prior to the deposition of Cr. Their results showed a reduction

in hBD as large as 40% for a diffusion layer thickness of ∼ 15 nm. The results showed a

dependence on both the width of the inter-diffused region and the slope of the compositional

change between Cr and Si.

2.7 Chapter Summary

In this chapter the primary energy carriers of thermal energy in different material sys-

tems were discussed as well as some of the modeling techniques used in an attempt to

model hBD. To highlight some of the current work in the field a brief review of literature

was presented focused on various properties of the interface that can potentially alter hBD.

It would appear from the review of the subsets of literature focused on hBD, that hBD is in

fact impacted by many different variables. In part this is true, with in essence hBD being a

complex function of the physical structure of the solid-solid interface. The important take

away from this review is that while hBD is impacted by many interface features, all these

properties are interconnected and it is important not to necessarily consider each property,

but rather decide which has the most dominate impact on hBD. For example, for highly

dissimilar materials the vibrational mismatch has the greatest impact on hBD overshadow-

ing the contributions of crystal defects. Therefore, when analyzing and interpreting data it

is important to consider which features will most directly impact the results.
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3.1 Introduction

In this chapter we will detail the components and configurations of the pump-probe

thermoreflectance system used in the University of Virginia Nanoscale Energy Transport lab

and in support of this dissertation. While the major components of the thermoreflectance

system itself were in place and operational when I began my study at UVa it has been one

of my primary goals during my time as a graduate student to improve the performance

of the system, provide standards for consistent operation, and introduce methodologies to

reduce the time needed to realign the system after laser maintenance or other changes to

the system optics.

In an effort to achieve these goals, a series of improvements were implemented to both

the physical design of the experimental system and the formulation and methods of deducing
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thermophysical parameters of interest from the experimental data. Chapters 4-6 will cover

the details of the improvements to the analytic side of the experiment including improved

computational models, methods for increasing the accuracy and efficiency of the modeling

process, and methods to ensure robust statistical treatment of the data. In this chapter, the

focus will be on the physical improvements and configuration of the experimental system.

After learning to operate and maintain the thermoreflectance system for a few years I

was fortunate to have the opportunity to make a major upgrade to the experimental system.

Physically this included breaking the system down and moving to a new location, adding

optical table space, improving the infrastructure for the ancillary equipment, building a

partitioning wall for increased laser safety, improving the electrical service, and improving

the HVAC management of environmental conditions. For the laser system itself, the layout

and design of the system was reconfigured to include improved thermal management of

the primary laser systems, doubling of the temporal capacity of the pump-to-probe delay,

implementation of a colinear pump-probe geometry, adding CCD imaging capability of

the sample surface, installing xyz motion control of the sample stage for alignment and

raster scanning, and implementation of a continuous flow cryostat system for temperature

dependent measurements. One of the primary goals of the redesign and re-implementation of

the thermoreflectance system was to make the system versatile, allowing the experiment to

be switched from a low-rep to a high-rep configuration with minimal optical realignment, the

ability to switch between a down-probe and side-probe configuration for room temperature

and temperature dependent measurements via the cryostat respectively, and to minimize

the system down time after laser realignment or other system maintenance and repair.

In this chapter a brief introduction into the history and fundamental properties of the

pump-probe thermoreflectance technique are provided to assist in the understanding of the

modeling methods used to deduce nanoscale thermophysical parameters, see Chapters 4-

6, and the experimental studies conducted, see Chapter 7. The more specific design and

implementation of the pump-probe thermoreflectance system used in this work and housed

in the Nanoscale Energy Transport Lab at UVa is also provided. Traditionally, there is very

little information on the details of the setup and operation of thermoreflectance experiments

that makes its way into literature making for a steep learning curve in the operation and/or
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setup of such a system. It is the goal of this chapter to provide a useful guide on the

background, setup, and operation of the thermoreflectance experiment so that this work

can be duplicated and/or extended without each new generation having to start from the

beginning and learn from experience and mistakes alone1.

3.2 Optical Methods for Thermal Measurement

As highlighted in Chapter 1, as the nanotechnology revolution continues structures in

technologies ranging from the most basic home computer to advanced computational sys-

tems are continually decreasing in size and operating at ever-increasing frequencies. Ther-

moelectrics [184], thermal interface materials [28, 185], optical storage media [186], and

solid-state transistors [187] all have device dimensions equal to, or smaller than, carrier

mean free paths (MFPs) at room temperature. Some such devices, like high electron mo-

bility transistors [188] and quantum dot cascade lasers [189] not only employ structures

at these length scales, but also operate within or above the terahertz frequency regime.

Measurement of thermophysical properties in such systems requires a measurement system

with both fine temporal and spatial resolution.

For solid materials, the opto- and electro-mechanical properties that are observed, e.g.

refractive index, resistance, dielectric constant, etc., arise from the interaction of the lattice

and electronic structure that comprise the solid. The measurement and characterization

of these phenomena have been completed using a variety of techniques [190]. Properties

such as electrical resistance and dielectric constant [191] can be determined using electrical

characterization techniques. Electrical techniques can be used because the signals generated

during the characterization fall within the bandwidth of electronic measurement devices.

The resolution or band-width of electronic measurements, determined by the RC time con-

stant of the system, is such that when the measured (material) response is much slower

than the time constant, the measurement can be accurately determined by the experiment.

If signals received by the electronic components are much faster than the RC time constant,

1I have made plenty mistakes along the way in my understanding of thermoreflectance and would be
only happy, if others can avoid them and/or learn from them to be able to take the system further than I
ever could.
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the signals will be quickly damped out by the electronics and the signal will be lost. This

limitation sets a lower bound to the timescale that electronic devices can measure of about

0.1 ns (10 GHz) [192]. In order to measure signals generated by processes on sub nanosecond

time scales, non-electrical methods must be utilized.

Advances in laser technology have made optical pump-probe spectroscopy an attractive

choice for the measurement of thermophysical properties in systems with micro- and nano-

scale feature sizes. Modern pump-probe spectroscopy systems typically operate utilizing

an ultrafast2 laser system which provides sub-picosecond temporal resolution. The lateral

spatial resolution is given by the diffraction limited spot size of the focused laser beam

(on the order of microns) and the depth resolution is typically on the order of nanometers

determined by the thermal penetration depth. Optical techniques are ideally suited for

investigation of nanoscale thermal properties as they require no physical heaters and/or

temperature sensors and can work through optically transparent system environments.

3.2.1 Photothermal Techniques

The primary purpose of pump-probe spectroscopy is the detection of thermal waves

within a medium. Any time there is periodic excitation of a solid medium, thermal waves

are created [193, 194]. While for pump-probe spectroscopy the source of excitation is laser

energy, thermal waves in non-contact systems can be created by many periodic sources

ranging from electron beams to chopped sunlight. The thermal waves generated by the

periodic source leave the heated region as diffusive critically damped waves traveling only

a few wavelengths before losing most of their intensity [195]. As these waves propagate,

they interact with thermal features3 in the material causing the thermal waves to scatter

and reflect. Thermal features arise from variations in the local lattice structure caused by

impurities, vacancies and other defects. These lattice disruptions can greatly affect thermal

transport properties, such as thermal conductivity, but have a negligible effect on local

optical and elastic parameters due to statistical averaging over a large number of lattice

2Ultrafast laser systems typically refer to systems with pulse widths on the order of attoseconds to
nanoseconds (10−18 − 10−9s).

3Thermal features are defined are regions in an otherwise homogeneous surrounding which exhibit vari-
ations in thermal parameters such as density, specific heat, and thermal conductivity [195].
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bonds.

Several methods have been developed for the detection of thermal waves [194], these

methods include: 1) gas-microphone photoacoustic detection, 2) photothermal measure-

ment of emitted infrared radiation, 3) optical laser beam deflection, 4) interferometric and

optical detection of thermoelastic surface deformations, and 5) piezoelectric detection of

thermoacoustic signals. One of the earliest methods developed for the detection of thermal

waves was photoacoustic spectroscopy [196]. The premise of this technique is based in part

on the work by Alexander Graham Bell in 1880, who detected an audible signal from a solid

in a closed gas cell when a periodically interrupted beam of sunlight was impingement on

the surface [197]. Modern techniques use a gas microphone to inspect local surface tem-

peratures by monitoring variations of gas pressure in a closed photoacoustic cell as a result

of periodic conduction from the sample surface to the gas. While the photoacoustic tech-

nique works well for samples with thicknesses in the micron range, the limit of modulation

frequencies in the range of 10s of kHz limits the applicability for thinner samples.

3.2.2 Femtosecond Thermoreflectance Techniques

With new advances in the development of picosecond and femtosecond laser systems in

the early 1980’s, a combination of high repetition rates and small pulse durations allowed

for the investigation of thinner samples and faster thermal phenomena. Paddock and Eesley

[144] are credited with implementing the first modern transient thermoreflectance system

for measuring diffusive thermal properties. Their implementation utilized two pumped ring

die lasers with a pulse width on the order of 8 ps and a 246 MHz repetition rate to measure

the thermal diffusivity of metal films on the order of 100 nm in thickness, independent of the

properties of the supporting substrate. Over the past several decades many improvements

have been made to the original system configuration to improve the accuracy, resolution, and

ease of implementation of the thermoreflectance experiment. The basic principles behind

the thermoreflectance technique however, have remained relatively unchanged.
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Basics of Pump-probe Thermoreflectance Spectroscopy

In general, the pump-probe thermoreflectance technique uses an ultra-fast pulsed laser

source split into a high intensity pump beam which imparts a time varying heat flux on a

sample surface, and a lower intensity probe beam that interrogates the surface temperature

as a function of time through the temperature dependent changes to the optical reflectance4

of the sample surface. Because of the dependence in the thermoreflectance experiment on

the relationship between the temperature and optical properties of the material, metals

are always used as the top layer in a thermoreflectance sample. The metal film can be

a primary component of the sample system or a thin layer to act as a thermal transducer

only. The change in optical reflectance of the metal surface with temperature is given by the

thermoreflectance coefficient, dR/dT . For a given metal, the thermoreflectance coefficient

will be dependent on the electron band structure of the metal and the incident photon

wavelength. Typical thermoreflectance coefficients are on the order of 10−4 − 10−5 for

most metals. More details on specific thermoreflectance coefficients for metals and photon

wavelengths of interest in pump-probe thermoreflectance experiments can be found in [198].

A schematic of the major components in a pump-probe thermoreflectance system is

shown in Figure 3.1. After the output from the initial laser source is split, the impulse-train

of pump pulses is further modulated by an optical modulator to impart a “heat frequency”

to the system and allow for a lock-in detection scheme for increased signal-to-noise. The

frequency at which the pump beam is modulated is a function of the original repetition

frequency of the laser system and will determine several properties of the thermoreflectance

analysis as will be discussed in further detail in Chapter 5. Typically, thermoreflectance

experiments are separated into two categories based on the repetition frequency of the

laser system. Laser repetition frequencies in the kHz regime are typically denoted as low-

rep systems, while systems with repetition frequencies in the MHz regime are denoted as

high-rep systems. The major difference between the two types of systems will be whether

it can be assumed that after thermal excitation due to a single laser pulse, the system

returns to thermal equilibrium before the arrival of the next laser pulse. While there is

no agreed upon nomenclature established in the nanoscale thermal community, for the

4See Appendix B for brief discussion on the difference between reflectance and reflectivity.
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Figure 3.1: Basic schematic of the primary components of the pump-probe thermoreflectance experimental
system.

purposes of this dissertation the low-rep configuration of the experiment will be denoted as

the transient thermoreflectance (TTR) experiment, while the high-rep configuration will be

denoted as the time-domain thermoreflectance experiment (TDTR). When the discussion

of a particular topic is independent of the laser repetition rate, the system will be described

as the TTR/TDTR experiment.

The length of the probe path is varied using a mechanical delay stage to provide temporal

resolution of the surface temperature decay from the time of the arrival of the pump pulse,

to typically on the order of a few ns after the initial heating event. The resolution of

typical commercially available delay stages is on the order of microns. This translates into

a temporal resolution of on the order of a few femtoseconds, which is typically much less

than the duration of the lases pulses. Therefore, the laser pulse width is the limiting factor

determining the temporal resolution of the thermoreflectance technique. The laser pulse

width will then determine the different types of thermal phenomena that can be deduced

from the thermoreflectance experiment.

3.2.3 Energy Transport/Conversion Following Pulsed Laser Heating

As discussed in more detail in Chapter 2, the primary energy carriers in solids are

electrons and phonons. From the theory of wave/particle duality we know that these carriers
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can be treated as either particles or waves. The choice of how we analyze these energy

carriers depends on both the length and time scale of interest. In the regime of thermal

transport, the shortest time scale that is generally of interest is the time between energy

carrier collisions, τc, also known as the mean scattering time. The shortest length scale of

interest is typically the collision length, lc, also known as the mean free path5. Traditionally,

the dominant phonons that contribute to thermal transport have been considered to have

MFPs on the order of 10-100 nm at room temperature [78]. However, recent advances in

simulation and experimental methods have shown that phonons cover a much longer MFP

spectrum, with the majority of thermal energy being carried by phonons with MFPs greater

than 1 µm [199, 200]. Classically, the mean free path and the time between carrier collisions

is related through the carrier velocity [33]:

lc = vτc (3.1)

Carrier velocities are typically on the order of ∼ 106, ∼ 103, and ∼ 108 m/s for free electrons,

phonons, and photons respectively [33]. Excited carriers typically require on the order of

5-20 collisions to reach a local thermal equilibrium [201]. This is characterized by the

relaxation time, τr, and the volume in which the local thermal equilibrium can be defined

is related to the relaxation length, lr [201], see Figure 3.2. The relation between relaxation

time and length, and the physical and temporal constraints of the system of interest will

determine the type of carrier modeling required to describe the system.

When the length and time scales of the system are much shorter than the relaxation

length and time, i.e L � lc and t � τc, the wavelength of the carriers must be taken into

account and the transport described by wave mechanics. When the length of the system is

on the order of the relaxation length, i.e L ≈ lr, and the time scale is much greater than

the relaxation time, i.e. t� τr the carrier transport is ballistic and no thermal equilibrium

can be defined. When the system length is much greater than the relaxation length, and

the system time is on the order of the relaxation time, i.e. L � lr, t ≈ tc, a local thermal

equilibrium can be defined, but time-dependent properties must be used. Under these

5Note: The scattering time and scattering length are both statistical quantities, and represent the
average time or distance an energy carrier will travel between collisions respectively.
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Figure 3.2: Schematic defining and comparing the relaxation and collision length of energy carriers. For
a collection of carriers, e.g. electrons, phonons, photons, the mean free path is the average distance be-
tween scattering events. The relaxation length is the length required to reach thermal equilibrium. Note:
Perspective is for illustration only. In reality mean free paths can be orders of magnitude longer than the
average carrier separation.

conditions, transport is modeled utilizing the Boltzmann transport equation. When both

the length and time are much greater than the relaxation length and time respectively, a

thermal equilibrium can be defined in both space and time, and therefore carrier transport

can be model with classical conduction laws, e.g. Fourier law for phonons and Ohm’s law

for electrons [201].

As mentioned previously, the focus of experiments in this work is on non-contact methods

of measuring thermal properties, specifically using an ultrafast laser system interacting with

a metal film. In the analysis of laser heating of the metal, we can consider 4 primary time-

frames: 1) the deposition of laser radiation energy into the electron sub-system of the metal,

2) the thermalization of the electron sub-system from a non-equilibrium to an equilibrium

state, 3) the exchange of energy between the electron and phonon sub-systems, and finally

4) the diffusive propagation of thermal energy through the system, see Figure 3.3.

For laser wavelengths in the UV to near IR range, the radiation energy interacts with the

metal through the excitation of free/bound electrons and electron-phonon interaction. For

lasers with pulse durations in the sub-picosecond range, the electrons are initially in a highly

non-equilibrium state immediately after laser absorption [202, 203]. The electron sub-system

thermalizes through two potential processes which occur simultaneously, see Figure 3.4. The

most general case is the collision of the excited electrons with other excited electrons and
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Figure 3.3: Schematic depicting the 4 primary time frames of ultrafast laser interaction with metals, 1) the
deposition of laser radiation energy into the electron sub-system of the metal, 2) the thermalization of the
electron sub-system from a non-equilibrium to an equilibrium state, 3) the exchange of energy between the
electron and phonon sub-systems, and 4) the diffusive propagation of thermal energy through the system.

electrons near the Fermi level [204–208]. The second path of electron thermalization is

through ballistic transport of electrons through the metal film. Assuming that the ballistic

electrons travel at the Fermi velocity6, which for typical metals is on the order of vF = 1×106

m/s [206, 209, 210], during the pulse duration (∼100 fs) the ballistic electrons will travel

100 nm into the film.

The electron thermalization time, τee, can be experimentally determined using time-

resolved two-photon photoemission spectroscopy [211]. The experimental results show gen-

eral qualitative agreement with the electron thermalization time derived from Fermi liquid

theory given by [32, 192]:

τee =
128

π2
√

3ωp

(
EF

E − EF

)2

(3.2)

where ωp is the plasma frequency of the metal and EF is the Fermi energy. Equation 3.2

provides an upper bound for the e-e scattering rate in metals, with real scattering rates being

much more complex due to electronic band structure and electronic screening [212]. The

main focus being that the e-e scattering time is proportional to density of electrons in the

conduction band [212]. This has been experimentally demonstrate in Cu(100), Cu(110),

6The Fermi velocity, vF , is related to the Fermi energy, EF , through the classic kinetic energy relation-
ship, EF = 1/2mv2

F [32]
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(a) (b)

(c) (d)

Figure 3.4: Schematic describing the distribution of electrons and the interaction of the laser and mate-
rial system (a)-(b) after pulse deposition but before electron-electron thermalization and (c)-(d) after the
thermalization of the electron sub-system.

and Cu(111), with scattering times ranging between ∼ 5 − 75 fs depending on electron

excitation levels [213]. Once the electron sub-system has relaxed to an equilibrium Fermi-

Dirac distribution a well-defined electron temperature, Te, can be used to describe the

electron system [204–206].

In comparison to the phonon sub-system, the electron sub-system has a relatively small

heat capacity and therefore while the thermal input of the laser may only raise the lattice

temperature of a sample by a few degrees Kelvin over the course of a measurement, during

the initial non-equilibrium period shortly after laser heating the effective electron temper-

ature can be on the order of several thousand Kelvin. Assuming that the pulse duration

is very short and can be assumed to be instantaneous, and in the absence of any thermal
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coupling or diffusion, the peak electron temperature, Te,max, is given by [214]:

Te,max =

√
2 (1−R) J

δγ
− T 2

o (3.3)

where R is the reflectance of the metal, J is the incident laser fluence, δ is the radiation pen-

etration depth, γ is the electron heat capacity or Sommerfeld constant, and To is the initial

temperature of the system. The high temperature electron sub-system, Te, couples its en-

ergy to the low temperature phonon sub-system, Tp, through a series of scattering events at

a rate that is proportional to the electron-phonon coupling factor, G. The electron-phonon

coupling factor is dependent on several system properties including film thickness and grain

size [215], contributions of inter- and intraband excitations [21, 216, 217], contributions of

ballistic electron transport and substrate effects [96, 218], and the excitation of d-band elec-

trons at high temperatures [219]. Examples of experimentally measured electron-phonon

coupling factors are on the order of G ≈ 4 × 1016 W/m3K, G ≈ 12 × 1016 W/m3K, and

G ≈ 22× 1016 W/m3K for Au, Cr, and Al respectively [215].

The interaction of the electron and phonon sub-systems due to the nonequilibrium tem-

perature introduced during the ultrashort laser heating of the metal film, can be described

by the two-temperature model (TTM) first proposed by Anisimov in 1974 [220], and given

by:

Ce (Te)
∂Te
∂t

= −G [Te − Tp] + S(x, t) (3.4a)

Cp (Tp)
∂Tp
∂t

= G [Te − Tp] (3.4b)

where Ce is the temperature dependent electron heat capacity, given by γTe, G is the

electron-phonon coupling factor, Cp is the temperature dependent heat capacity of the

phonon sub-system, i.e. the lattice, and S is the source term which describes the energy

absorbed by the laser. The time constant for the electron and phonon sub-system to reach

thermal equilibrium, τep, is given by [221]:

τep =
CeCp

(Ce + Cp)G
≈ Ce

G
(3.5)
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Typically electron-phonon relaxation times have been found to be on the order of 1’s to

10’s of picoseconds [215, 221–224].

Once the electron and phonon sub-systems have reached thermal equilibrium the thermal

transport can be described by the parabolic one step (POS), given by [221]:

Cp
∂Tp
∂t

=
∂

∂z

(
keq

∂Tp
∂z

)
+ S(t) (3.6)

The POS is a special form of the standard heat diffusion equation and is generally applicable

for lasers with pulse durations in the pico- or nanosecond regime and/or when considering

thermal transport after the electron and phonon sub-systems have reached thermal equi-

librium. Even though the measurements completed in this dissertation were performed

with a femtosecond laser system, the primary interest was in diffusive phononic transport.

Therefore the analysis was completed using thermal models of the form of the POS, with

considerations restricted to times greater than t > 100 ps after laser excitation. Much more

detail on the thermal analysis is provided in Chapter 4.

3.3 The General System and Components

To begin the discussion of the physical experiment, a full schematic of the TTR/TDTR

system in the University of Virginia Nanoscale Energy Transport lab is shown in Figure

3.5. The system is centered around a Coherent Ti:sapphire ultrafast laser oscillator, MIRA,

and an ultrafast regenerative laser amplifier, RegA, both of which are optically pumped

by a solid-state Coherent VERDI. To provide a robust description of the thermoreflectance

system we will walk through the primary beam paths and highlight the major components,

detailing their purpose and functionality as part of the system as a whole.

Pump Laser - VERDI

The primary laser power source to pump the Ti:sapphire lasers is a Coherent VERDI

V18 (18 W) diode-pumped solid-state (DPSS) laser7. The VERDI itself is a pumped laser,

7The VERDI V18 is an upgrade from the original system configuration, replacing two VERDI DPSS
lasers, a V5 (5 W) and V10 (10 W), that pumped the MIRA and RegA respectively.
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utilizing dual diode assemblies (Fiber Array Package - Integrated, FAP-ITM), producing on

the order of 40 W each at a wavelength of 808 nm to pump a ring laser configuration in the

VERDI laser head. The primary gain medium in the laser head is a Nd:YVO4 (neodymium-

doped yttrium orthovanadate, a.k.a vanadate) crystal producing 1064 nm output which is

then frequency doubled by a birefringent lithium triborate (LBO) crystal to produce the

final output of 532 nm at a power of 18 W.

Ultrafast Oscillator - MIRA

The 18 W power output of the VERDI DPSS laser is used to optically pump both the

MIRA and RegA systems. A beam splitter located in the MIRA is used to split the incoming

laser power into 8 W and 10 W to pump the MIRA and RegA respectively. The MIRA is a

modelocked ultrafast Ti:sapphire laser oscillator with a tunable output wavelength between

710-910 nm. The MIRA emits a train of laser pulses with a temporal width on the order

of 200 fs, at a nominal repetition rate, or rep-rate, of 76 MHz (approximately one pulse

every 13.2 ns). For our configuration the wavelength was centered at 785 nm providing

an individual pulse energy on the order of 6-13 nJ per pulse8. The laser output from the

MIRA has two potential paths: 1) using a pair of indexing mirrors the MIRA beam can

be used directly for the high-rep rate configuration of the thermoreflectance experiment or

2) the output is seeded into the regenerative amplifier for amplification to be used in the

low-rep rate configuration. The latter path is the one we will continue to follow as it is the

configuration the system is in the majority of the time and the configuration used primarily

in this work.

Regenerative Amplifier - RegA

The remaining 10 W from the V18 is used to optically pump the Ti:sapphire regenerative

amplifier, RegA. The RegA increases the laser energy from on the order of nJ’s per pulse,

to on the order of µJ’s per pulse. The RegA emits a train of laser pulses with a temporal

pulse width on the order of 200 fs9, at a repetition rate between 10 kHz - 300 kHz. For our

8The power output of the MIRA is in large part a function of the quality of the cavity alignment, which
can vary significantly.

9Prior to the compression stage in the RegA, the pulse width is on the order of 40 ps, and can be
compressed to on the order of 200 fs.
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experiments the repetition rate was set at the maximum of the gain curve, or 250 kHz (one

pulse every 4 µs).

The RegA amplifies the energy of the incoming MIRA pulses seeded into the RegA

cavity by first passing the MIRA pulses through a Faraday isolator. The Faraday isolator

allows the MIRA pulses to be seeded into the cavity without optical feedback back into the

MIRA and allows the amplified RegA pulses to leave on an alternate trajectory without

attenuation. A single MIRA pulse is allowed into, or out of, the cavity using a TeO2

(tellurium dioxide) acousto-optic cavity dumper which uses a high frequency RF driver to

send acoustic waves into the TeO2 crystal via a piezoelectric transducer (lithium niobate,

LiNbO3), changing the index of refraction. Prior to injection of the MIRA pulse, or shortly

after the ejection of the previous pulse, lasing in the RegA cavity is suppressed by a TeO2

acousto-optic Q-switch. Suppressing lasing in the cavity allows energy to build up in the

Ti:Sapphire crystal. After injection, the MIRA pulse is amplified making 20-30 round trips

within the RegA cavity before being ejected by the cavity dumper. After leaving the RegA

cavity via the cavity dumper and through the Faraday isolator, the pulse width of the

amplified pulse is on the order of 40 ps due to temporal stretching during the amplification

process. The laser pulse is recompressed to on the order of 200 fs via a quadruple passed

compression stage utilizing a gold-coated holographic grating.

Beam Conditioning

The main output of either the MIRA or the RegA is passed through a beam compressor

to shrink the beam diameter and reduce optical losses through the optical isolator and

electro-optical modulator. The beam compressor is created using a pair of achromatic

doublet lenses with focal lengths of 200 mm and 100 mm (Thorlabs AC254-200-B-ML and

AC254-100-B-ML) to create a 2X beam compressor. One of the two lenses is mounted on

a linear translation stage (Thorlabs PT1) to ensure accurate lens positioning to maintain

beam collimation.

The compressed laser output is then passed through an optical isolator (Conoptics Model

713A) to prevent any laser energy from returning into the laser cavity via back reflections

which can cause laser instability and/or damage. A schematic of the optical isolator is
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Figure 3.6: Schematic of the optical isolator used to prevent optical feedback into the MIRA or RegA
cavity.

shown in Figure 3.6. Inside the isolator, the laser input first passes through a polarizing

cube, PBC1, oriented to match the incoming laser polarization (p-pol). The Faraday rotator

at the heart of the isolator utilizes an intense magnetic field to rotate the polarization of the

incoming light 45◦ off-axis compared to the incoming polarization. The output is passed

through a second polarizer, PBC2, which is oriented 45◦ compared to the incoming axis. Any

feedback light that makes it through PBC2 on the return trip will be rotated an additional

45◦ to s-polarization, and be rejected by PBC1 preventing feedback along the original beam

path.

Beam Splitting - Pump/Probe

The laser light is then split into the pump and probe beam via a polarizing beam

splitter system, see Figure 3.7. The polarizing beam splitter works by utilizing a variable

λ/2-waveplate and a polarizing beam cube (PBC). To split the beam, the horizontally

polarized, i.e. p-polarized, light from the laser is rotated off-axis by the λ/2-waveplate,

which is mounted on a rotational stage to vary the degree of off-axis rotation. The beam

is then passed through the PBC which separates the laser light by polarization, sending

the s-polarized light in a direction perpendicular to the original beam path10, while the

direction of the p-polarized light is unchanged. The percentage split between the pump

and probe beam can be continuously varied by rotating the waveplate and changing the

percentage of the beam in each of the orthogonal axes. In our system, typically ∼ 12% of

10Assuming the face of the cube is properly aligned perpendicular to the direction of the incoming laser
light.
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Figure 3.7: Schematic of the polarizing beam splitter system. The incoming p-polarized light from the
laser is rotated off access by the λ/2-waveplate, and the vector components are then separated by the PBC
to scatter the s-polarized light and pass the p-polarized light.

the incoming laser power is sent down the probe arm, and the remainder is used for the

pump arm11.

Pump Modulation

Continuing to follow the pump beam first, the beam is next sent through an electro-

optical modulator (EOM) (Conoptics 350-160 EOM and 25D amplifier). The purpose of

the EOM is to impart a modulation waveform onto the pump impulse-train to provide a

reference frequency, besides the laser frequency, to allow for signal detection via a lock-in

amplifier. Much more detail on the affects of the modulation waveform on system response

and data analysis will be provided in Chapter 4.

A schematic of the EOM system is shown in Figure 3.8. The EOM contains a non-linear

crystal that essentially acts as a voltage controlled waveplate that can be used to rotate the

polarization of the incoming laser light as a function of the driving voltage applied (called

the Pockels effect), and in combination with an output polarizer can be used to select the

11For the low-rep system, utilizing both the MIRA and RegA.
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(a) (b)

Figure 3.8: Schematic of the electro-optical modulator (EOM) driven by a square wave for (a) low logic
and (b) high logic.

exit location of the beam. When the EOM is driven at low logic, the beam is unmodified

and passes through the EOM, see Figure 3.8a. In the high logic state, the polarization of

the laser light is rotated to s-polarization and therefore the output of the EOM is via a side

aperture towards a beam block, see Figure 3.8b12. In our system the non-linear crystal in

the EOM is a potassium di-deuterium phosphate (KD*P) crystal, with the 25D amplifier

supplying the crystal with a max ±125 V at the driving waveform. The EOM can modulate

from DC to 30 MHz with a rise and fall time of 8 ns, and in our system imparts a square

waveform onto the laser pulse train.

Temporal Delay - Pump Advance

After leaving the EOM, the pump beam is sent through a 5X beam expander, increasing

the 1/e2 diameter from 1.3 mm to 6.5 mm. The purpose of expanding the beam diameter

is to reduce the beam divergence as the path length of the pump beam is varied. Even

for a perfectly collimated Gaussian beam, the beam radius will diverge as it travels in the

direction of propagation from the smallest point, known as the beam waist wo, see Figure

3.9. The spot radius as a function of position in the direction of propagation is given by

[225]:

w(z) = wo

[
1 +

(
z

zo

)]1/2

(3.7)

12Note: The choice of EOM output based on low/high logic from the driving signal is arbitrary. De-
pending on the polarization of the light and the orientation of the EOM, it is possible to reject the light in
the low logic condition and pass during the high logic condition.
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Figure 3.9: Gaussian beam diameter as a function of the direction of propagation, z.

where zo is known as the Rayleigh distance, i,e, the distance at which the cross sectional

area of the beam has doubled (and the spot radius has increased by a factor of
√

2), and is

given by:

zo =
πw2

λ
(3.8)

where λ is the wavelength of the laser. Due to this phenomena, the un-expanded beam (1.3

mm) over the course of the delay travel would increase in size by ∼ 5%. This in turn would

change the focused pump spot size and therefore the incident fluence and pump-to-probe

ratio causing inputs to the thermal model (discussed in Chapter 4) to vary as a function

of delay time. Expanding the beam size prior to sending it onto the delay stage reduces

the amount of beam divergence over the length of the stage travel, see Figure 3.10. By

expanding the pump size prior to the delay stage the expansion over the length of the delay

stage is reduced to under 0.02%

Delay between the pump and probe beam is achieved using a linear mechanical de-

lay stage (Newport IMS600PP linear stage) which provides 600 mm of linear movement.

Mounted to the delay stage is an optical retroreflector (Newport UBBR2.5-1S) which pro-

vides a return beam that is parallel to the incoming beam trajectory. In this configuration

a total of 1.2 m of optical delay provides a maximum of 4 ns of pump-to-probe delay. In

order to increase the possible temporal pump-probe delay polarization “tricks” are used to

double pass the delay stage.
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Figure 3.10: Percentage change in the pump beam radius as a function of stage delay, based on Equation
3.7, for various expansion powers.

Figure 3.11: Schematic of the optical delay system used to create temporal resolution between the pump
and probe beams.

The p-polarized pump light passes through a PBC before being sent onto the delay

stage towards the retroreflector and is linearly shifted and sent back on a parallel return

path. The beam is then passed through a λ/4 waveplate which rotates the p-polarized light

into a circular polarization and is impinged on a zero degree mirror. The pump beam is

then sent back through the λ/4 waveplate rotating the beam polarization from circular to

s-polarization and sent back along the original beam path. When the pump beam reaches

the PBC for the second time the beam path is shifted perpendicular to the original beam
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path. Using this polarization scheme the effective length of the delay stage is doubled to

2.4 m providing a maximum optical delay of 8 ns.

Sample Heating - Pump

After leaving the delay stage, the pump beam is recompressed using another pair of

lenses to set the final beam size before reaching the objective. The size and collimation of

the beam as it enters the objective and the magnification of the objective will determine the

focused beam size. In order for the lock-in detection scheme to be effective it is important

that no pump light be allowed to reach the photodetector. For the thermoreflectance system

at UVa there are two options for filtering scattered pump light, color and spatial filtering.

For the color filtering scheme, before the pump beam reaches the sample stage it is routed

through a frequency doubler via a set of indexing mirrors. The frequency doubler uses a

non-linear beta barium borate (BBO) crystal to convert the 785 nm (“red”) pump light to

392.5 nm (“blue”) light. The pump and probe beams are then combined through a dichroic

mirror which reflects the pump wavelength and passes the probe through the objective and

onto the sample surface, see Figure 3.12a. Both the pump and probe beams return along

the original beam path and again theoretically filtered by the dichroic mirror allowing the

probe to pass through onto the photodetector and reject the pump light. To filter any pump

light that makes it through the dichroic mirror a second bandpass filter is placed in front

of the photodetector.

While the color filtering scheme is highly effective and particularly useful for samples

(a) (b)

Figure 3.12: Schematic of the filtering methods to block scattered pump light from reaching the photode-
tector (a) using the color filtering scheme and (b) using the spatial filtering scheme.
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with a high degree of surface roughness which cause diffuse scattering of the pump beam, the

trade-off is the laser power consumed during the frequency doubling process. For samples

with a relatively smooth surface the pump beam can also be filtered spatially. By bypassing

the frequency doubler the pump and probe beam are sent towards the objective through

a polarizing beam cube. The pump beam is sent into the PBS off-axis compared to the

probe beam and therefore enters the objective along the edge of the aperture, see Figure

3.12b. After reflecting off the sample surface the pump beam leaves the rear aperture of

the objective equally off-axis but on the opposite side of the objective. An adjustable iris is

then placed in the beam path so as to allow the probe and incoming trajectory of the pump

to pass but blocking the return trajectory of the pump beam from the sample surface.

Signal Detection - Probe

In either filtering scheme the probe beam follows the same trajectory going through the

center axis of the objective and returning on the same beam path after being reflected from

the sample surface. The reflected probe signal which now contains a modulated response at

the pump modulated frequency due to variations in the surface temperature of the sample,

is sent through a long wavelength lens to focus the signal onto the photodetector. The

photodetector is a high speed Si photodiode (ThorLabs DET10A) with a 1 ns response

time and a 0.8 mm2 sensor area. The photodetector is connected to the lock-in amplifier

(Stanford Research Systems SR844).

3.4 Summary

In this chapter the design and setup of the thermoreflectance experiment in the Nanoscale

Energy Transport lab at the University of Virginia was described in detail. Many of the

details that are all too often left out of literature but which are incredibly important to

success in the application of the thermoreflectance technique have been provided with the

hope that they may be of use to anyone who is working to reproduce these results or indi-

viduals who are new to the technique and need an introduction to the fundamental optical

systems.
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4.1 Introduction

In the most general sense, ignoring the details from Chapter 3, the primary process

flow in pump-probe spectroscopy experiments is input from the modulated pump beam and

output from the lock-in amplifier. Between the input of the pump laser and the output of

the lock-in amplifier lies a complex transfer function, Z (ω), see Figure 4.1. The transfer

function contains all the physical characteristics of the system, including the thermophysical

properties of the sample and the properties of the laser system, as well as the thermal

response of the system to the modulated heating. The primary task in the mathematical

modeling of thermoreflectance data is to determine the transfer function.
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Figure 4.1: This figure illustrates the basic process flow in pump-probe spectroscopy. Input from the
modulated pump source is converted to the output response of the lock-in amplifier via a complex transfer
function Z(ω), containing information on the spectroscopy system and the sample response.

In this chapter we will detail the derivation of the transfer function, Z (ω). We will begin

by treating the interaction of the pulsed pump and probe beams using linear time-invariant

theory for a generic frequency domain temperature response, H (ω), and detail how Z (ω)

is translated into the various output forms of a lock-in amplifier. We will deviate from the

typical assumption that the waveform used to modulate the pump is sinusoidal, and provide

an analysis for a pulsed modulation waveform, which more accurately represents the physical

system configuration. In Chapter 5, we will go into more detail on how the properties of

the pulsed waveform affect the system response. Before that however, in Section 4.3, we

will provide the details of the thermal response, H (ω), and discuss the switch from a

time-domain single film-on-substrate analysis, to a general multi-layer frequency domain

analysis.

4.2 Pulsed Laser as a Linear Time-Invariant (LTI) System

In order to develop the transfer function, Z(ω), for the TTR/TDTR system, the theory

of linear time-invariant (LTI) systems was utilized. LTI theory is well established and used

in a wide variety of fields including circuit analysis and signal processing [226, 227] and

has been used previously to describe TTR/TDTR systems1 [79, 228–230]. As the name

suggests, systems studied utilizing the LTI theory have the properties of linearity and time

invariance.

1The derivation presented here will expand primarily on the work of Schmidt, extending the analysis to
pulsed waveforms.
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4.2.1 Assumptions of Linearity and Time Invariance

Linearity suggests that the system obeys the property of superposition. That is, if the

input is a series of several weighted signals, then the output is simply the sum of the weighted

responses to each of those individual signals. Mathematically this can be represented, if y1(t)

is the system response to an input x1(t), and y2(t) is the system response to an input x2(t),

then a1y1(t) + a2y2(t) is the total system response to the summed input a1x1(t) + a2x2(t).

This idea can be extended to any number of inputs such that y(t) =
∑

k akyk(t) is the

response of the input x(t) =
∑

k akxk(t).

Linearity for pump-probe spectroscopy experiments relies on small temperature pertur-

bations. When focusing on the investigation of diffusive thermal processes, i.e. when the

electron and phonon sub-systems have reached a thermal equilibrium, for small temperature

perturbations (∼ 10 K) the systems response, i.e. the change in the reflectance coefficient,

can be assumed to be linear [144].

Time invariance suggests that a time shift in the input signal will cause a subsequent

time shift in the output signal by the same amount. Mathematically that is, if y(t) is

the output for an input signal x(t), then y(t − to) is the output of the input signal x(t −

to). The physical pump-probe system, as well as the mathematical analysis relies on the

property of time invariance. One of the basic premises of using the pump-probe spectroscopy

technique is that electronic devices do not have the bandwidth necessary to capture the

entire thermoreflectance scan (on the order of nanoseconds) after the arrival of the pump

pulse. We therefore rely on time invariance to allow us to sample the system response from

many different, i.e. widely spaced temporally, pump pulses to build the time dependent

change in surface temperature.

4.2.2 Frequency Domain Response - TTR/TDTR

As we apply the LTI theory to the pump-probe thermoreflectance system, we will focus

our application on the frequency domain response of the system. Schmidt showed that the

derivation can be carried out in either the time or frequency domain, and in fact the results

are transforms of each other [228]. However, the thermal model that we will use, presented

in Section 4.3, is a frequency domain model and we were therefore not consider the time
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domain derivation.

To begin, we will consider the output of the laser to be a periodic train of pulses.

In our system, the laser pulses either originate from a laser oscillator (the MIRA) or the

regenerative amplifier seeded by the oscillator (the RegA). In the former case, the pulses

arrive at a frequency of 76 MHz, i.e. roughly one pulse every 13 ns. In the latter case,

the pulses arrive at a frequency of 250 kHz, or one pulse every 4 µs. In both cases, the

individual pulse widths are on the order of 200 fs. Since typical delay times for pump-

probe spectroscopy experiments are on the order of pico- to nanoseconds, each pulse will

be treated as an impulse with absorbed energy Q. The generic impulse-train, scaled by the

impulse energy Q, is given by:

qgen (t) = Q
∞∑

n=−∞
δ (t− nT ) (4.1)

where T is the time period between pulses, t is time in the usual sense, and δ() is a delta

function. A plot of an impulse-train representation of the MIRA and RegA is shown in

Figure 4.2.

(a)

(b)

Figure 4.2: Impulse-train modeled from Equation 4.1 for (a) the MIRA and (b) RegA, for Q = 1 J,
T = 13.2 ns and 4 µs for the MIRA and RegA respectively.
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Sampling Theory

To analyze the interaction of laser pulses in the TTR/TDTR experiment sampling theory

is used. Sampling theory is commonly used in image and signal processing, turning the

analog world into digital information that can be stored and manipulated. Mathematically,

sampling theory in the time domain is represented by [226]:

xp(t) = p(t)x(t) (4.2)

where x(t) is the function to be sampled, p(t) is the sampling function, and xp(t) is the

sampled function. In pump-probe spectroscopy, first the pump impulse-train will be sampled

by the modulation waveform, and then the temperature response of the system, due to the

modulated pump, will be sampled by the probe impulse-train2. It can be shown that while

sampling theory in the time domain is represented by a product, in the frequency domain

it is given by the convolution of the impulse and sampling functions such that:

xp(t) = p(t)x(t)
F←→ Xp(ω) =

1

2π
[P (ω) ∗X (ω)] (4.3)

where X, P , and Xp are the function to be sampled, the sampling function, and the sampled

function in the frequency domain respectively and the convolution of P (ω) and X(ω) is given

by:

[P (ω) ∗X (ω)] =

∫ ∞
−∞

X(Ω)P (ω − Ω) dΩ (4.4a)

=

∫ ∞
−∞

X(ω − Ω)P (Ω) dΩ (4.4b)

where Ω is a small shift in frequency, and by definition the convolution of P (ω) and X(ω)

is the sum of shifted impulses in the frequency domain P (ω − Ω) weighted by the function

at that frequency, i.e. X(Ω) dΩ (also shown is the commutative equivalent). Combining

Equations 4.3 and 4.4a-4.4b we arrive at a generic expression for a sampled function in the

2Note: Since the sampling function p(t) will first be the continuous modulation waveform and then the
discrete probe impulses, the notation of the impulse-train will alternate. However, there will be no loss of
generality since the functions used obey the commutative property.
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frequency domain (and its commutative equivalent):

Xp(ω) =
1

2π

∫ ∞
−∞

X(Ω)P (ω − Ω) dΩ (4.5a)

=
1

2π

∫ ∞
−∞

X(ω − Ω)P (Ω) dΩ (4.5b)

As stated previously, in the analysis of pump-probe spectroscopy experiments we will utilize

the sampling theory twice. Beginning with the pump pulses sampled by the modulation

waveform, we need expressions for the waveform and the impulse-train of the pump in the

frequency domain. For generality, at this time we shall consider P (ω) to be a modulation

waveform to be defined later. The modulation waveform and the pump impulse-train in

the frequency domain, P (ω) and X (ω), are given by the Fourier transforms of the time

domain representations of the modulation waveform and the pump impulse-train (given by

Equation 4.1 in the specific form of the pump):

P (ω) = F {p(t)} (4.6a)

X(ω) =
2πQpm

Ts

∞∑
M=−∞

δ

(
ω −M 2π

Ts

)
(4.6b)

where Qpm is the pump energy and Ts is the time between pump impulses. Inserting

Equations 4.6a and 4.6b into Equation 4.5b we have:

Xp(ω) =
Qpm

Ts

∫ ∞
−∞

∞∑
M=−∞

P (Ω)δ

(
ω − Ω−M 2π

Ts

)
dΩ (4.7)

Using the property below, the integration can be eliminated:

∫ ∞
−∞

f(x)δ(x− xo) dx = f(xo) (4.8)
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and we are left with a generic expression for the sampled function, i.e. the train of pump

impulses modulated by a generic waveform P (ω):

Xp(ω) =
Qpm

Ts

∞∑
M=−∞

P

(
ω −M 2π

Ts

)
(4.9)

Pump Modulation Function

At this point we will define the functional form of the modulation waveform that we

left generic in the previous steps. In most of the prominent TTR/TDTR literature, the

functional form of the waveform used to modulate the pump is sinusoidal [230, 231], i.e:

psn(t) = eiωot = cos(ωot) + i sin(ωot) (4.10)

where ωo is the angular modulation frequency. While a sinusoidal waveform is used in the

analysis of these works, the true waveform analyzed by the lock-in amplifier is typically, in

reality, a square wave. In the sinusoidal analysis it is assumed that the contributions of

the higher harmonics comprising the square wave are either negligible or sufficiently filtered

using inductive resonance filters [230–232]. A detailed derivation of the transfer function

Z(ω) using a sinusoidal waveform as in Equation 4.10 is provided in Appendix C.3 for clarity

and comparison.

In this work the modulation function of interest is a square wave with an arbitrary duty

cycle3, i.e. a pulsed waveform, see Figure 4.3. There are several requirements of such a

modulation waveform:

• As with the sinusoidal waveform, we seek a modulation period of To.

• The function should act like a logic gate, with a 0 and 1 condition in the off and on

state respectively.

• The time period that the waveform is in the “on” state is variable and given by d,

which will adjust the duty cycle of the waveform given by D = d/To.

3The choice of duty cycle will not be completely arbitrary. While not a fixed 50% as considered in most
analyses, there will be discrete choices of duty cycle based on the laser and modulation frequencies. More
on this to come.
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Figure 4.3: Generalization of the pulsed waveform used in the LTI modeling of the pump-probe spec-
troscopy experiment, with the functional form in the time domain given by Equations 4.11a-4.11c.

• The waveform must include a time delay τd to account for the temporal shift of the

waveform relative to the pump pulses as the pump distance is varied via the delay

stage in the TTR/TDTR experiment.

While adding some complexity to the analysis, using the pulsed waveform will have two

benefits: 1) more accurate representation of the modulation waveform will eliminate the

need for resonant filtering as the modulation frequency is changed, and 2) define the dis-

crepancies between high and low rep rate systems where the duty cycle is not necessarily

50%. The functional form of the pulsed waveform used in this analysis is given below, and

the detailed formulation from Fourier Series analysis is provided in Appendix C.1:

psq(t) =
∞∑

k=−∞
k 6=0

ake
ikωot (4.11a)

where k is the index of the harmonic components, and the ak’s are the DC4 and AC Fourier

coefficients given by:

a0 =
d

To
(4.11b)

ak =
1

−2πik

[
e−ikπd/To − eikπd/To

]
eikωoτd (4.11c)

where d/To is the duty cycle, D, and τd is the pump-probe delay. In the frequency domain

4Note: In the practical application of the signal detection, the lock-in amplifier will filter out the DC
portion of the signal, therefore the majority of our analysis will focus on the AC components of the signal.
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Equation 4.11a is given by:

P (ω) =
∞∑

k=−∞
k 6=0

akδ (ω − kωo) (4.12)

where the Fourier coefficients, the ak’s, are ω-independent and still given by Equations

4.11b-4.11c. Inserting Equation 4.12, the frequency domain representation of the pulsed

waveform, into the generic expression for the sampled pump, Equation 4.9, we obtain the

frequency domain solution for a periodic pump impulse-train modulated by a pulsed wave-

form:

Q(ω) = Xp(ω) =
2πQpm

Ts

∞∑
M=−∞

∞∑
k=−∞
k 6=0

akδ (ω −Mωs − kωo) eikωoτd (4.13)

As a check at this point we can take the inverse Fourier transform of Equation 4.13 and

observe the pump impulse-train modulated by the pulsed waveform in the time domain.

The inverse Fourier transform is given by:

q(t) = F−1 {Q (ω)} (4.14a)

q(t) = Qpm

∞∑
n=−∞

∞∑
k=−∞
k 6=0

akδ (t− nTs) eikωoteikωoτd (4.14b)

Figure 4.4 shows the MIRA impulse-train, see Figure 4.2a, modulated by a square wave,

i.e. a pulsed waveform with D = 0.5, at a frequency of ωo = 4.22 MHz. Analysis of the plot

shows that the functional form of the pump impulses, modulated by the pulsed waveform,

meets the requirements of the desired pulsed waveform previously listed.

Temperature Response

While Q(ω) represents the heat input to the system by the modulated pump impulse-

train, what we are interested in for pump-probe spectroscopy is the system’s temperature

response to the periodic heat input. In the time domain the temperature response of the

system to the heat input from the periodic pump train is given by the convolution of the heat

input q(t) and the system’s thermal response h(t). In the frequency domain the convolution
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Figure 4.4: Modulated pump impulse-train, from the MIRA, given by Equation 4.14b for Qpm = 1 J,
D = 0.05, Ts = 13.2 ns, ωo = 4.22 MHz, and τd = 0.

is simply a product of the two, i.e.:

θ(t) = q(t) ∗ h(t)
F←→ Θ(ω) = Q(ω)H(ω) (4.15)

where Q(ω) and H(ω) are the heat input and temperature response in the frequency domain

respectively. Operating on Equation 4.13 we get the frequency domain temperature response

of the system, Θ (ω), due to periodic pump heating:

Θ(ω) =
2πQpm

Ts

∞∑
M=−∞

∞∑
k=−∞
k 6=0

H(ω)akδ (ω −Mωs − kωo) eikωoτd (4.16)

At this point we will only describe H (ω) as a generic frequency domain temperature re-

sponse, and in Section 4.3 will provide a formal definition of the model used in this work,

based on a frequency domain solution for the heat diffusion equation in stratified mediums.

Probe Sampling

While we have formulated an expression for the temperature response of the system due

to the periodic heating of the pump beam, the physical temperature cannot be measured

without interaction interaction from the probe impulse-train. This is where the probe beam

comes into play, and as discussed earlier, where the sampling theory will be applied for the

second time. To begin, we give an expression for the periodic impulse-train of probe pulses
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in the time domain:

ppr(t) = βQpr

∞∑
l=−∞

δ(t− lTs − τd) (4.17)

where Qpr is the heat input of the probe pulses, β is a constant that contains information

about the thermoreflectance coefficient of the sample and the gain in the measurement

electronics5, and τd is the time delay between the pump and probe pulses. In the frequency

domain, the probe impulse-train is represented by:

P (ω) =

[
2πβQpr

Ts

∞∑
l=−∞

δ

(
ω − l2π

Ts

)]
e−iωτd (4.18)

Recalling the formulation of the sampling theory in the frequency domain, we have the

expression for the sampled function as being the convolution of the function to be sampled

X(Ω) and the sampling function P (ω − Ω), the probe in this instance:

Xp(ω) =
1

2π

∫ ∞
−∞

X(Ω)P (ω − Ω) dΩ (4.19)

Inserting Equation 4.18 into Equation 4.19 we have:

Xp(ω) =
βQpr

Ts

∫ ∞
−∞

∞∑
l=−∞

X(Ω)δ

(
w − Ω− l2π

Ts

)
e−i(ω−Ω)τd (4.20)

and again using the property:

∫ ∞
−∞

f(x)δ(x− xo) dx = f(xo) (4.21)

we arrive at a generic expression for an arbitrary function X sampled by the probe impulse-

train:

Xp(ω) =
βQpr

Ts

∞∑
l=−∞

X(ω − lωs)e−ilωsτd (4.22)

In this case the function that we want to sample, via the probe, is the temperature

response of the system due to the periodic heating from the pump, given by Θ(ω), see

5When fitting the thermal model to the data to deduce a parameter of interest, the model will be
normalized to the data, see Chapter 5.4.2, therefore we will not need specific knowledge of β, although
thermoreflectance coefficients can be found in literature [198, 233, 234].
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Equation 4.16. Inserting Θ(ω) into Equation 4.22 we have:

Z(ω) = Xp(ω) =
2πβQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
l=−∞

∞∑
M=−∞

H(ω −Mωs)δ(ω − lωs − kωo −Mωs)ake
−ilωsτdeikωoτd (4.23)

Simplifying:

Z(ω) =
2πβQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
l=−∞

∞∑
M=−∞

H(ω − lωs)δ(ω − kωo − (l +M)ωs)ake
−ilωsτdeikωoτd (4.24)

The quantity Z(ω) will evaluate to zero, except where the terms in the delta function are

equal to zero, i.e.:

ω − kωo − (l +M)ωs = 0 (4.25)

Assuming ω is within the lock-in bandwidth (including higher harmonics), i.e. ω = kωo, we

find that this condition is only satisfied when l = −M , and therefore we can eliminate l,

and one of the summation terms from Equation 4.24:

Z(ω) =
2πβQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
M=−∞

H(ω +Mωs)δ(ω − kωo)akeiMωsτdeikωoτd (4.26)

Taking the inverse Fourier Transform we arrive at the time domain solution z(t):

z(t) =
∞∑

k=−∞
k 6=0

Z(kωo)ake
ikωot (4.27)

where Z(kωo) is the transfer function relating the frequency domain temperature response

of the system to heat input from the pump, to the time domain response observed by the
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detector:

Z(kωo) =
βQpmQpr

T 2
s

∞∑
M=−∞

H(kωo +Mωs)e
iMωsτdeikωoτd (4.28)

4.2.3 Lock-in Amplifier Signal

Equation 4.27 provides the time domain representation of the complex temperature

response of the system of interest to periodic pump heating as monitored by the train of

probe pulses. However, in terms of TTR/TDTR analysis, what we are interested in is the

lock-in amplifier’s interpretation of this signal and the outputs provided. In most cases the

lock-in will provide the X and Y , real and imaginary, components of the mixture of the

input and reference signal6.

In Equation 4.27, all the terms, Z(kωo), ak, and eikωot are complex terms and therefore

z(t) is of the form:

z(t) =
∑
k

(a+ ib)(c+ id)(e+ if) (4.29)

where

a = Re {Z(kωo)} (4.30a)

b = Im {Z(kωo)} (4.30b)

c = Re {ak} (4.30c)

d = Im {ak} (4.30d)

e = Re
{
eikωot

}
= cos(kωot) (4.30e)

f = Im
{
eikωot

}
= sin(kωot) (4.30f)

6The lock-in will also typically provide the magnitude and phase of the signal, which can also be found
from X and Y using the standard coordinate transforms.
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Expanding z(t) we seek a solution of the form:

z(t) =
∑
k

(a+ib)(c+id)(e+if) =
∑
k

ace+iacf+iade−adf+ibce−bcf−bde−ibdf (4.31)

Therefore:

z(t) =
∑
k

Re {Z(kωo)}Re {ak} cos(kωot) + iRe {Z(kωo)}Re {ak} sin(kωot)

+iRe {Z(kωo)} Im {ak} cos(kωot)−Re {Z(kωo)} Im {ak} sin(kωot)

+i Im {Z(kωo)}Re {ak} cos(kωot)− Im {Z(kωo)}Re {ak} sin(kωot)

− Im {Z(kωo)} Im {ak} cos(kωot)− i Im {Z(kωo)} Im {ak} sin(kωot)

(4.32)

In terms of the lock-in analysis for the pump-probe spectroscopy experiment, we are in-

terested in the physical signal to be measured, i.e. the real component of z(t), therefore

Equation 4.32 reduces to:

Re {z(t)} =
∑
k

Re {Z(kωo)}Re {ak} cos(kωot)−Re {Z(kωo)} Im {ak} sin(kωot)

− Im {Z(kωo)}Re {ak} sin(kωot)− Im {Z(kωo)} Im {ak} cos(kωot)

(4.33)

Grouping terms:

Re {z(t)} =
∑
k

[Re {Z(kωo)}Re {ak} − Im {Z(kωo)} Im {ak}] cos(kωot)

− [Re {Z(kωo)} Im {ak}+ Im {Z(kωo)}Re {ak}] sin(kωot)

(4.34)

In our analysis of a symmetric pulsed waveform, it was found that the Fourier coefficients,

ak are real for all harmonics, i.e. Im {ak} = 0, therefore Equation 4.34 can be simplified to:

Re {z(t)} =
∑
k

Re {Z(kωo)ak} cos(kωot)− Im {Z(kωo)}Re {ak} sin(kωot) (4.35)

Where in terms of the lock-in analysis, the real and imaginary components of the signal
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(also called the in-phase and out-of-phase components), X and Y are given by:

X =
∑
k

akZ(kωo) (4.36a)

Y =
∑
k

−iakZ(kωo) (4.36b)

Inserting Equation 4.28 into Equations 4.36a and 4.36b we arrive at the final form of the

lock-in amplifier’s response, in channels X and Y , to the sample’s temperature response,

monitored by the probe impulse-train, to the modulated heat input of the pump:

X =
βQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
M=−∞

akH(kωo +Mωs)e
iMωsτdeikωoτd

Y = −iβQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
M=−∞

akH(kωo +Mωs)e
iMωsτdeikωoτd

(4.37a)

(4.37b)

4.2.4 Comparison of Sine and Square Waveforms

As a check for the solutions provided in Equations 4.37a and 4.37b, we expect that in

the limit that only the first harmonic is considered, i.e. k = {−1, 1}, and for a duty cycle

of 50%, i.e. D = 0.5, that the solution should reduce to the sinusoidal solution reported in

literature [230, 235]. Under the assumption of the first harmonic, the Fourier coefficients

are given by:

ak =
1

−2πik

[
e−ikπ/2 − eikπ/2

]
(4.38a)

a1 = a−1 =
1

π
(4.38b)
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Therefore for the sinusoidal modulation, the X and Y signal components from Equations

4.37a and 4.37b are given by:

X =
1

π

βQpmQpr

T 2
s

[ ∞∑
M=−∞

H(ωo +Mωs)e
iMωsτ

+
∞∑

M=−∞
H(−ωo +Mωs)e

iMωsτd

]
eiωoτd (4.39a)

Y =
−i
π

βQpmQpr

T 2
s

[ ∞∑
M=−∞

H(ωo +Mωs)e
iMωsτ

−
∞∑

M=−∞
H(−ωo +Mωs)e

iMωsτd

]
eiωoτd (4.39b)

If we compare these solutions to those given in Appendix C.3 for the results of the system

response derived directly from the sinusoidal modulation, Equations C.42a and C.42b, we

see that they only differ in the first term, the Fourier coefficient ak:

a1 = a−1 =
1

2
[sinudiodal] (4.40a)

a1 = a−1 =
1

π
[squarewave− 1st harmonic] (4.40b)

As detailed in Appendix C.3, we find that this discrepancy is expected given the formulation

of the pulsed waveform, and that the Fourier coefficient of the pulsed waveform is larger

than the sinusoidal due to the positive and negative contributions of the coefficients at

higher harmonics and the restriction of the peak pulsed waveform to unity.

Therefore Equations 4.37a and 4.37b provide an extension to the usual sinusoidal for-

mulation of the lock-in response from LTI theory, to include the effects of higher harmonics

and changes to the duty cycle, in a manner that is consistent with, and reduces to, the

known sinusoidal results under the proper assumptions. In Chapter 5 we will provide more

details on how the square vs sinusoidal modulation waveforms and changes to the duty cycle

affect the TTR/TDTR signal. Before getting there though, we will first go back and define

in detail, H (ω), the thermal response of the sample to the periodic heating.
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4.3 Heat Transfer Analysis

Equations 4.37a and 4.37b provide a model of the lock-in amplifier response in the

pump-probe spectroscopy experiment as laid out in the LTI theory, and includes a number

of laser and system properties. Probably one of the most important terms, that to this

point we have left undefined, is the frequency domain thermal response of the system to the

periodic heat input, H (ω). The thermal model is where we will include the thermophysical

properties of the sample of interest. We will begin by first reviewing the previous time-

domain model used when I first arrived in the Nanoscale Energy Transport Lab at UVa,

discuss its strengths and weaknesses, and motivate the adaptation of a frequency domain

model that will be used for the majority of the work in this dissertation.

4.3.1 Previous Modeling - Crank-Nicolson Analysis

In nanoscale thermal analysis there are several time scales of interest in the metal-

substrate systems after the introduction of the ultrafast laser pulse. When I began in the lab,

the primary interests were non-equilibrium electron-phonon coupling and diffusive thermal

transport process. In this dissertation the focus is on diffusive transport, which occurs

typically in the regime of t > 100 ps after laser excitation, during which heat conduction

can be described as diffusion in the film and substrate respectively, given by [10]:

∂Tf (z, t)

∂t
= αf

∂2Tf (z, t)

∂z2
(4.41a)

∂Ts (z, t)

∂t
= αs

∂2Ts (z, t)

∂z2
(4.41b)

where Tf , αf and Ts, αs are the temperature and thermal diffusivity of the film and substrate

respectively. The initial conditions for the film and the substrate are given by [10]:

Tf (z, 0) =
F (1−R)

Cp,fδ
exp [−z/δ] (4.42a)

Ts (z, 0) = 0 (4.42b)
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where F is the incident fluence, R is the reflectance of the film, Cp,f is the volumetric specific

heat capacity of the film, and δ is the energy deposition depth. These conditions assume

that all the laser energy is deposited into the film. This is a reasonable assumption when

the film thickness is greater than the thermal penetration depth. Flux boundary conditions

are applied at the interface between the film and substrate, that is to say the heat flux in

the film and substrate are equal to the heat transport across the interface, i.e. [10]:

−kf
∂Tf

∂z
(z = d, t) = hBD [Tf (z = d, t)− Ts (z = 0, t)] (4.43a)

ks
∂Ts

∂z
(z = d, t) = hBD [Tf (z = d, t)− Ts (z = 0, t)] (4.43b)

Equations 4.41a and 4.41b assume thermal transport in only one direction, which is a

reasonable assumption for a single shot system. A more in-depth discussion on the direc-

tionality assumptions will follow in Section 4.3.4. The other major assumption that was

utilized when I began in the lab was that the metal film could be modeled using the lumped

capacitance method. This assumes that at any point in time (past the beginning of model-

ing) there is no thermal gradient in the film [236]. Under this assumption, the conduction

equations are given by [8]:

Cp,fdf
∂Tf (t)

∂t
= −hBD [Tf (t)− Ts (z = 0, t)] (4.44a)

∂Ts (z, t)

∂t
= αs

∂2Ts (z, t)

∂z2
(4.44b)

where Cp,f , df , and Tf (t) are the volumetric specific heat, thickness, and temperature of

the film7, respectively, hBD is the thermal boundary conductance between the film and the

substrate, and αs is the thermal diffusivity of the substrate. To simplify the coding and

analysis, the temperature in Equations 4.44a and 4.44b can be nondimensionalized by the

factor [237]:

φf =
Tf − To

Tf (t = 0)− To
(4.45a)

7Note that we have dropped the spatial dependence of the properties of the film, given the assumption
of lumped capacitance.
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φs =
Ts − To

Tf (t = 0)− To
(4.45b)

where Tf (t = 0) is the temperature of the film at laser excitation and To is the ambient

temperature. Therefore, the thermal model to be analyzed is given by [237]:

∂φf (t)

∂t
=

hBD

Cp,fdf
[φs (z = 0, t)− φf (t)] (4.46a)

∂φs (z, t)

∂t
= αs

∂2φs (z, t)

∂z2
(4.46b)

Equations 4.46a and 4.46b are subject to the initial conditions that the film is at an elevated

temperature and the substrate is at ambient temperature at t = 0 respectively. In the

nondimensionalized formulation this is given by [237]:

φf = 1 (4.47a)

φs = 0 (4.47b)

Two boundary conditions are set for this system, the first being a flux boundary condition

assuming that the rate of heat gained by the substrate is equal to the thermal flux across

the interface, and the second being that the substrate is considered semi-infinite, i.e. the

temperature gradient is zero at the far boundary. These boundary conditions in their non-

dimensional forms are given by [237]:

−ks
∂φs

∂z
= hBD [φf − φs] at z = d (4.48a)

∂φs

∂z
= 0 at x→∞ (4.48b)

The model in Equations 4.46a and 4.46b, subject to the initial and boundary conditions

given in Equations 4.47a-4.47b and 4.48a-4.48b, respectively, are solved using a Crank-

Nicolson methodology. The model is scaled to the data at a point where it is assumed that

the electron and phonon sub-systems are in thermal equilibrium and there is no thermal

gradient in the film, typically t > 100 ps. The hBD is treated as a free parameter, and

iteratively adjusted to minimize the error between the data and the model.
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The Crank-Nicolson model provided has the advantages of being relatively computa-

tionally efficient, requires no assumptions about the film thermal conductivity, and makes

no assumptions about the properties of the pump laser. However, a disadvantage is that

the formulation does not account for pulse accumulation effects and is therefore only suited

for single shot measurements, e.g. low-rep lasers. The other disadvantage comes in the

consideration of the lumped capacitance assumption.

Assumptions of Lumped Capacitance

In order for the assumptions of lumped capacitance to be appropriate, the resistance to

conduction within the film, i.e. 1/kf , must be much less than the resistance to conduction

across the solid-solid interface [236]. To give a quantitative value for this condition, the

Biot number is provided [236]:

Bi =
hBDdf

kf
< 0.1 (4.49)

where it is assumed that the conditions of lumped capacitance are met when Bi < 0.1, which

can also be rearranged to show the maximum film thickness under which these conditions

will be met:

df <
0.1kf

hBD
(4.50)

Figure 4.5 shows the maximum film thickness to maintain the lumped capacitance assump-

tion as a function of kf and hBD. The results in the figure show that assuming the bulk

thermal conductivity of aluminum, and hBD values on the order of 1 MW/m2K, the lumped

capacitance assumption is appropriate for film thicknesses up to 100-200 nm. However, if

we consider lower thermal conductivity metals (or take into account thermal conductivity

reduction due to nanoscale size effects [22]) we can very rapidly reach situations where film

thicknesses must be below 50 nm for the assumption of lump capacitance to hold. As the

acceptable film thickness continues to decrease, care must be taken so that we can still as-

sume that all the laser energy is deposited into the film, and therefore the initial conditions

in Equations 4.42a-4.42b are still valid. The restrictions set forth by the Biot number in

Equation 4.49 limit the choice of metals films and film thicknesses in which the standard

diffusion model is applicable. While the diffusion model solved under the Crank-Nicolson
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Figure 4.5: Maximum film thickness as a function of film thermal conductivity and hBD for the assumptions
of lumped capacitance to be valid.

formulation can be extended to account for diffusion in the film, it comes at the expense

of increased computational cost (with a fine spatial and temporal spacing necessary in the

nm scale film)8.

In order to expand the ability to model different systems, a new model was implemented.

The analysis by Feldman is an adaptation of Carslaw and Jaeger’s solution to the heat dif-

fusion equation for a stratified medium [238, 239]. The Feldman model has the advantages

of: taking into account diffusion in both the film and substrate, being expandable to any

number of layers, and being appropriate for any location of the heating source. In con-

junction with the LTI analysis, the new formulation is applicable for both single shot and

accumulated systems, and can account for cross-plane and in-plane thermal transport.

8More details regarding this will be presented in a future dissertation by Mr. MacKenzie Redding from
our lab.
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4.3.2 Multilayer Analysis via Feldman - Temperature Profile

For the Feldman analysis we begin with the simplest case of one-dimensional heat dif-

fusion in a semi-infinite region with the governing equation given by:

∂T (z, t)

∂t
+ uz

∂T (z, t)

∂z
= α

∂2T (z, t)

∂z2
+

Q

ρCp
(4.51)

where T (z, t) is the temperature in the z-direction as a function of time, uz is the ve-

locity in the z-direction, α is the thermal diffusivity, i.e. α = kz/ρCp (where kz is the

thermal conductivity in the z-direction), Q is the source term, ρ is the density, and Cp is

the specific heat capacity. In the analysis used, it is assumed there is no convection, i.e.

uz (∂T (z, t) /∂z) = 0, and no traditional source term9, i.e. Q = 0. Therefore the heat

diffusion equation simplifies to:

∂T (z, t)

∂t
= α

∂2T (z, t)

∂z2
(4.52)

While work can be done in the time domain, for many heat conduction problems analytical

solutions are readily available in the frequency domain, and therefore Equation 4.52 can be

rewritten in the frequency domain using the temporal Fourier transform. In the frequency

domain the heat equation is given by:

d2T (z)

dz2
= q2T (z) (4.53a)

where q2 is given by:

q2 =
iω

α
=
iωρCp
kz

(4.53b)

where ω is the angular frequency of the modulated heating source, and T in this case is

the complex temperature at frequency ω. In the frequency domain, a generalized solution

for multilayered slabs heated by a modulated source has been given by Feldman in 1999

[238]. The Feldman analysis is an adaptation of Carslaw and Jaeger’s solution to the

heat diffusion equation [239] whose matrix formulation described temperature and heat

9The Feldman analysis treats Q as a boundary condition similar to the methods used in the solution via
the Crank-Nicolson method.
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flux vectors, whereas Feldman considered the vectors to be counter-propagating thermal

waves. The Feldman analysis technique has been used in a variety of TDTR configurations

[230, 240], frequency domain methods [241], 3ω methods [242, 243], and for the measurement

of the coefficient of thermal expansion [244]. A schematic representation of the layered

structure and the indexing scheme is illustrated in Figure 4.6.

Equation 4.53a is a linear second order differential equation with a general solution given

by:

T (z) = T+
n e

(qnz) + T−n e
(−qnz) (4.54)

where T+
n and T−n are complex temperature constants, q2

n is the thermal wavevector, i.e.

q2
n = iω/α, and n denotes the nth layer in the solid. Utilizing this formulation, the complex

temperature, T̃, can be written as a vector given by:

T̃ =

 Tn+ (z)

Tn− (z)

 (4.55)

Considering a boundary between two layers n and n+ 1, the boundary conditions required

are constant temperature and constant heat flux at the interface, given by:

Tn

(
β−j

)
= Tn+1

(
β+
j

)
(4.56a)

Figure 4.6: Geometry and indexing of the multilayered structure utilized in Feldman analysis.
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kn
dTn
dz

∣∣∣∣
z=β−j

= kn+1
dTn+1

dz

∣∣∣∣
z=β+

j

+Q (4.56b)

where β−j is the limit as z approaches the jth boundary from the left, β+
j is the limit as z

approaches the jth boundary from the right, kn is the thermal conductivity of the nth layer,

and Q is the heat source term.

Based on the general form of the solution to Equation 4.52 and the prescribed boundary

conditions, Equations 4.56a and 4.56b, several important relationships for diffusion through

each layer and across the boundaries are formulated by Feldman [238].

Layer Diffusion

The temperature at zn = 0 in the nth layer in terms of the temperature at zn = dn in

the nth layer is given by:

T̃n (zn = 0) = Ũn (dn) T̃n (zn = dn) (4.57)

where

Ũn (dn) =

 exp [−qndn] 0

0 exp [qndn]

 (4.58)

therefore  Tn+ (0)

Tn− (0)

 =

 exp [−qndn] 0

0 exp [qndn]

 Tn+ (dn)

Tn− (dn)

 (4.59)

Boundary Diffusion

The temperature of the nth layer adjacent to the boundary of the nth and n+ 1 layer is

related to the temperature of the n+ 1 layer adjacent to the same boundary by:

T̃n (zn = dn) = Γ̃n→n+1T̃n+1 (zn+1 = 0) (4.60)

where

Γ̃n→n+1 =
1

2

 1 + γn+1

γn
− γn+1

hBD,n→n+1
1− γn+1

γn
+ γn+1

hBD,n→n+1

1− γn+1

γn
− γn+1

hBD,n→n+1
1 + γn+1

γn
+ γn+1

hBD,n→n+1

 (4.61)
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and γn = qnkn. Therefore

 Tn+ (dn)

Tn− (dn)


=

1

2

 1 + γn+1

γn
− γn+1

hBD,n→n+1
1− γn+1

γn
+ γn+1

hBD,n→n+1

1− γn+1

γn
− γn+1

hBD,n→n+1
1 + γn+1

γn
+ γn+1

hBD,n→n+1

 Tn+1+ (0)

Tn+1− (0)

 (4.62)

Boundary Conditions

The boundary conditions in the physical limits are given by:

T̃0 = T0

 1

0

 (4.63a)

T̃N+1 = TN+1

 0

1

 (4.63b)

These boundary conditions insure that the temperature decays in the infinite limits, i.e.

T (z = ±∞) = 0.

Heat Source Temperature

For a heat source located in layer n at z = ξ, the temperature on either side of the

source is given by:

T̃n

(
ξ+
)
− T̃n

(
ξ−
)

= − Q

2γn,Q

 1

−1

 (4.64)

where γn,Q denotes the γ term of the layer where the source is located. Using these relations,

solutions for the temperature at any location within the structure can be determined. The

temperature just to the left of the heat source is given by applying Equations 4.57 and 4.60

to Equation 4.63a:

T̃n

(
zj−1 + ξ−

)
= T0

 A+

A−

 (4.65a)
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and the temperature just to the right of the heat source is given by applying Equations 4.57

and 4.60 to Equation 4.63b:

T̃n

(
zj−1 + ξ+

)
= Tn+1

 B+

B−

 (4.65b)

where A+, A−, B+, B− are complex components of vectors Ã and B̃ that contain the ther-

mophysical parameters of each layer, i.e. Ũ′s and Γ̃′s. The formulation of Ã and B̃ will be

discussed in further detail shortly.

To obtain the temperature at either free surface in the z-direction Equations 4.65a and

4.65b are combined with Equation 4.64 to give:

T0 =
Q

2γn,Q

B+ +B−

A+B− −A−B+
(4.66a)

TN+1 =
Q

2γn,Q

A+ +A−

A+B− −A−B+
(4.66b)

see Appendix C.4 for the derivation. Because we treated the heat input, Q, as part of the

LTI analysis we will define Θ as the temperature profile that contains all the necessary

information about the system’s temperature response, independent of the heat input, i.e.:

Θ0 =
1

2γn,Q

B+ +B−

A+B− −A−B+

ΘN+1 =
1

2γn,Q

A+ +A−

A+B− −A−B+

(4.67a)

(4.67b)

Ã and B̃ Matrices

The A and B matrices contain the thermophysical properties of each layer and are

formulated by successively applying Equations 4.57 and 4.60 along with the end boundary

conditions, Equations 4.63a and 4.63b. As defined by Equations 4.65a and 4.65b, the matrix

Ã accounts for layers to the left of the heat source (as denoted in Figure 4.6) going in the

−z-direction, and the B̃ matrix accounts for layers to the right of the heat source moving
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in the +z-direction. In general form, the matrices Ã and B̃ are given by [238]:

Ã = Ũn,q (ξ)× Γ̃n,q→n−1 × · · · × Γ̃2→1 × Ũ1 (−d1)× Γ̃1→0 ×
(

1

0

)
(4.68a)

B̃ = Ũn,q (dn,q − ξ)× Γ̃n,q→n+1 × · · · × Γ̃N−1→N × ŨN (dN )× Γ̃N→N+1 ×
(

0

1

)
(4.68b)

Example - Film on a Finite Substrate

As an example, we will consider a basic case of a thin film on a finite substrate (see

Figure 4.7), and construct the Ã and B̃ matrices. The thicknesses of the film and substrate

are assumed to be finite, and given by L1 and L2 respectively. The heat source is assumed

to be deposited at z1 = 0, as would be the case for a typical TTR/TDTR experiment.

Considering first the Ã matrix, for the configuration shown in Figure 4.7 we have:

Figure 4.7: Example of a film on finite substrate system with indexing for Feldman analysis.

Ã = Ũ1 (0)× Γ̃1→0 ×
(

1

0

)
(4.69a)

Expanding the terms we have:

Ã =
1

2
×

 1 0

0 1

×
 1 + γ0

γ1
− γ0

hBD,1→0
1− γ0

γ1
+ γ0

hBD,1→0

1− γ0

γ1
− γ0

hBD,1→0
1 + γ0

γ1
+ γ0

hBD,1→0

×
 1

0

 (4.69b)
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Simplifying we have:

Ã =
1

2
×

 1 + γ0

γ1
− γ0

hBD,1→0

1− γ0

γ1
− γ0

hBD,1→0

 (4.69c)

If we assume that the sample is held in vacuum (or in air assuming no heat loss from the

surface, which was part of our original assumptions) k0 = 0 and therefore γ0 = 0. Under

these assumptions the Ã matrix reduces to:

Ã =

 1/2

1/2

 (4.69d)

Following a similar methodology for the B̃ matrix we have:

B̃ = Ũ1 (d1)× Γ̃1→2Ũ2 (d2)× Γ̃2→3 ×
(

0

1

)
(4.70a)

B̃ =
1

2
×

 exp [−q1d1] 0

0 exp [q1d1]


×

 1 + γ2

γ1
− γ2

hBD,1→2
1− γ2

γ1
+ γ2

hBD,1→2

1− γ2

γ1
− γ2

hBD,1→2
1 + γ2

γ1
+ γ2

hBD,1→2

×
 exp [−q2d2] 0

0 exp [q2d2]


×

 1 + γ3

γ2
− γ3

hBD,2→3
1− γ3

γ2
+ γ3

hBD,2→3

1− γ3

γ2
− γ3

hBD,2→3
1 + γ3

γ2
+ γ3

hBD,2→3

×
 0

1

 (4.70b)

Again assuming k3 = 0 and therefore γ3 = 0 it can be shown that:

B+ =
1

2
×
[(

1 +
γ2

γ1
− γ2

hBD,1→2

)
exp [−q1d1] exp [−q2d2] +(

1− γ2

γ1
+

γ2

hBD,1→2

)
exp [−q1d1] exp [q2d2]

]
(4.70c)

B− =
1

2
×
[(

1− γ2

γ1
− γ2

hBD,1→2

)
exp [q1d1] exp [−q2d2] +(

1 +
γ2

γ1
+

γ2

hBD,1→2

)
exp [q1d1] exp [q2d2]

]
(4.70d)
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Figure 4.8: Example of a film on a semi-infinite substrate system with indexing for Feldman analysis.

We can take note already that the B̃ matrix is quite complex for even a two-layer system,

and can expect it to grow computationally complex rapidly with added layers. It is expected

that the Feldman matrices will be solved as a series of numerical matrices rather than a

closed form solution.

Example - Film on Semi-infinite Substrate

Next we will consider a film on a semi-infinite substrate, typically the simplest and

most common TTR/TDTR sample configuration, see Figure 4.8, to illustrate the changes

in formulation when making the assumption of a semi-infinite substrate. Referring back to

Equations 4.68a and 4.68b, we see that the last term in each equation, prior to the boundary

condition, represents heat flow across a boundary from the outermost layers (either top of

bottom) to the surrounding “atmosphere” which is assumed to be infinite. When making the

semi-infinite substrate assumption, we replace the “atmosphere” term with the properties

of the substrate in the B̃ matrix, i.e. the substrate properties are indexed as N + 1. We

can further illustrate this concept by constructing the Ã and B̃ matrices for a film on a

semi-infinite substrate.

In this case, the formulation of the Ã matrix does not change, and is given by:

Ã =

 1/2

1/2

 (4.71)

108



Chapter 4. Measurement Theory and Data Analysis 4.3

In fact, the Ã matrix will have the form given in Equation 4.69d anytime it is assumed that

the heat is deposited in the topmost film and the adjacent boundary in the −z-direction is

with the environment. The formulation of the B̃ matrix is modified though under the new

assumptions:

B̃ = Ũ1 (d1)× Γ̃1→2 ×
(

0

1

)
(4.72)

Expanding we have:

B̃ =
1

2
×

 exp [−q1d1] 0

0 exp [q1d1]


×

 1 + γ2

γ1
− γ2

hBD,1→2
1− γ2

γ1
+ γ2

hBD,1→2

1− γ2

γ1
− γ2

hBD,1→2
1 + γ2

γ1
+ γ2

hBD,1→2

×
 0

1

 (4.73)

Simplifying

B+ =
1

2
×
[(

1− γ2

γ1
+

γ2

hBD,1→2

)
exp [−q1d1]

]
(4.74a)

B− =
1

2
×
[(

1 +
γ2

γ1
+

γ2

hBD,1→2

)
exp [q1d1]

]
(4.74b)

A final example, showing a formulation where the heat is not deposited in the topmost film,

e.g. probing through glass, is provided for clarity and convenience in Appendix C.5.

By combining Equations 4.68a and 4.68b with Equation 4.67a the Feldman analysis

provides a straight forward and adaptable algorithm for solving the heat diffusion equation

for stratified mediums. Its adaptation in our lab, has allowed us to expand the complexity

and variety of samples that can be measured, modeled, and analyzed. As a final step in

determining the frequency domain thermal response of the system, we will apply a top sur-

face boundary condition, based on the laser properties, to convert the surface temperature

profile, Θ0, given by the Feldman analysis to the frequency domain temperature response,

H (ω).

4.3.3 Surface Temperature Response in the Frequency Domain - H (ω)

To develop the final temperature profile, we will consider the shape and intensity of the

pump and probe beams. We will begin by considering the case of one-dimensional transport,
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and then specify how the Feldman analysis can be extended to include 3D and anisotropic

effects.

Assuming no radial heating effects, i.e. a uniform intensity per unit area, the intensity

distribution of the pump can be given by [245]:

Ipm =
Apm

πw2
pm

(4.75)

where Apm is the power absorbed by the pump laser and wpm is the 1/e2 radius. Note that,

we already include the energy of the pump and probe pulses in the LTI analysis. Therefore,

to prevent double counting of the laser energy, we will replace Apm with the product of the

time between pulses, To, and the duty cycle, D, with the understanding that when H (ω)

is included in Equations 4.37a-4.37b the input power of the laser energy will be properly

accounted for. Combining Equations 4.75 and 4.66a we find the surface temperature due

to the pump heating, given by:

T0,pm =
ToD

πw2
pm

Θ0 (z = 0) (4.76)

The temperature response in the frequency domain is given by the fraction of the temper-

ature change measured by the probe beam, assumed to be of uniform intensity and 1/e2

radius wpr, and therefore H (ω) is given by [245]:

H (ω) =
TsToDw

2
pr

πw4
pm

Θ0(z = 0) (4.77)

Extension to 3D

If the geometry of the laser spots are such that the 1D assumption is no longer valid,

or we are interested in more advanced quantities such as in-plane thermal conductivity,

and/or are considering samples with anisotropic properties, the analysis developed to this

point must be extended to 3D. The lock-in transfer function Z (ω) (see Equation 4.28) is

dimensionaly independent, however to extend the thermal analysis to 3D the analysis of the
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surface temperature profile, Θo (see Equation 4.67a), and the frequency domain temperature

response, H (ω), must be modified.

Starting again from the heat diffusion equation, this time in cylindrical coordinates, we

have:

kr
r

∂

∂r

(
r
∂T

∂r

)
− kz

∂2T

∂z2
= ρCp

∂T

∂t
(4.78)

where kr and kz are the thermal conductivities in the radial and cross-plane directions

respectively, ρ is the material density, and Cp is the specific heat capacity. Under the

assumption that the pump and probe laser beams are co-linearly aligned, we can take ad-

vantage of the axial symmetry to simply the analysis through the use of Hankel transforms,

as outline by Cahill [230]. Taking the Hankel transform of Equation 4.78 we have:

−krκ2T (κ, t, z)− kz
∂2T (κ, t, z)

∂z2
= ρCp

∂T (κ, t, z)

∂t
(4.79)

where κ is the transform variable. We can additionally transform into the frequency domain,

through the application of the Fourier transform:

−krκ2T (κ, ω, z)− kz
∂2T (κ, ω, z)

∂z2
= ρCpiωT (κ, ω, z) (4.80)

Rearranging we have:

∂2T (z)

∂z2
= q2T (z) (4.81a)

where

q2 =
krκ

2 + iωρCp
kz

(4.81b)

Note that Equation 4.81a is identical to Equation 4.53a that was derived from the one-

dimensional heat equation in Section 4.3.2. The only difference between the 1D and 3D

solutions, is the formulation of the thermal wavevector:

q2 =
iωρCp
kz

[1D] (4.82a)

q2 =
krκ

2 + iωρCp
kz

[3D] (4.82b)
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Therefore, the Feldman analysis described in Section 4.3.2, can be used in the three-

dimensional analysis with the same formulation other than the replacement of the thermal

wavevector in Equation 4.82a with Equation 4.82b and the re-treatment of the heat input

Q which we will reconsider now following the work of Cahill and Schmidt [230, 233].

We begin by considering the pump laser beam to have a Gaussian intensity distribution

given by:

I(r) =
2Apm

πw2
pm

exp

(
−2r2

w2
pm

)
(4.83)

where Apm is the power absorbed by the pump laser and wpm is the 1/e2 radius of the

beam. Again, we will substitute T0D for Apm to keep the units of power consistent. Taking

advantage of the cylindrical symmetry, the Hankel transform of the pump distribution is

given by:

I (κ) =
T0D

2π
exp

(
−κ2w2

pm

8

)
(4.84)

Combining with Equation 4.66a we find the surface temperature in the Hankel domain:

T0,H (κ) = Θ0 (z = 0)
T0D

2π
exp

(
−κ2w2

pm

8

)
(4.85)

The temperature response of the system, as measured by the probe beam, is found by

taking surface temperatureT0,H (κ) and weighting it by the distribution of the Gaussian

probe beam with a 1/e2 waist of wpr:

H (κ) =
Ts
2π

exp

(
−κ2w2

pr

8

)
T0,H (κ)

H (κ) =
Ts
2π

exp

(
−κ2w2

pr

8

)
Θ0 (z = 0)

ToD

2π
exp

(
−κ2w2

pm

8

)

H (κ) =
TsToD

4π2
Θ0 (z = 0) exp

(
−κ2

(
w2

pm + w2
pr

)
8

)
(4.86a)

Taking the inverse Hankel transform brings us back to the real space domain and gives the
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frequency domain response of the surface temperature:

H (ω) =
TsToD

2π

∫ ∞
0

Θ0 (z = 0) exp

(
−κ2

(
w2

pm + w2
pr

)
8

)
κ dκ (4.87)

As was discussed previously, the temperature profile developed using the Feldman analysis,

Θ, is solved numerically. Therefore, the integral in Equation 4.87 will also be solved nu-

merically with a finite upper bound. Cahill provides that an upper bound of the integral

of 2/
√
w2

pm + w2
pr should provide a sufficient solution to Equation 4.87 [230]. However, it is

probably prudent to check for system convergence before accepting the final results.

4.3.4 Criteria for 1D vs 3D Modeling

While the 3D model is inherently more robust than assuming a 1D model, there is of

course an additional computational cost for the stronger assumption, mainly the numeric

integration of Equation 4.87, for every term in the summation, see Equation 4.28. To save

computational time, ideally we would prefer to test whether or not we need to consider

radial effects in our thermal analysis. For high-rep systems, there have been several studies

to indicate how radial spreading affects the TDTR model, and the criteria for 1D modeling

[231, 245]. These results don’t clearly hold for the low-rep, single shot systems, so we will

present a simplified single pulse analysis of radial heat spreading. To do so, we will con-

sider the limit of a confined homogeneous and isotropic film, with temperature independent

properties. The boundaries of the film will either be insulating or held at the initial tem-

perature. At t = 0, assuming a Gaussian distribution of the pump beam, the temperature

distribution in the film is given by [79, 246]:

∆T (r, t = 0) = To exp

(
−r2

w2
o

)
(4.88)

where To is the initial temperature, and wo is the pump waist. As a function of time after

the initial heating event, the temperature distribution is a function of the thermal diffusivity
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of the film, D, and is given by [79, 246]:

∆T (r, t) = To
w2
o

w2
o + 4Dt

exp

(
− r2

w2
o + 4Dt

)
(4.89)

Figure 4.9a shows the heat distribution due to a Gaussian pump pulse with an initial

waist of 10 µm, in an insulated film with a thermal diffusivity of D = 1 × 10−3 m2/s,

immediately after energy deposition and after 8 ns (the maximum about of time considered

in our experiment). After the initial energy deposition, the heat spreads, reducing the

(a) (b)

Figure 4.9: Radial spreading of laser energy in a confined film given by Equations 4.88 and 4.89 for
D = 1×10−3 and an initial pump waist of 10 µm. Pane (a) shows the Gaussian distribution of heat at t = 0
and t = 8 ns, with the dashed lines representing the 1/e radius and (b) the distribution of temperature as
a function of time and radial distance with the color scale representing the normalized temperature. The
black marks providing the 1/e location as a function of time.

peak temperature at the center of the heating event, and moving the radial 1/e location

outward. In this example, the 1/e distance shifts to 11.5 µm over the 8 ns, representing a

∼ 15% change. Figure 4.9b provides the radial distance as a function of time, with the 1/e

location of the thermal energy noted in black. To give a general idea of how the pump waist

and the thermal diffusivity of the film affect the amount of thermal spreading, Figure 4.10

shows the percent change in the 1/e location of the thermal energy compared to the initial

distribution, due to thermal spreading, as a function of the initial pump waist for several

thermal diffusivity values.

The data in Figure 4.10 shows that for low diffusivity films, there is negligible radial
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Figure 4.10: Percentage of 1/e heat spreading as a function of the initial pump waist for several thermal
diffusivities, covering a range from on the order of quartz to diamond.

heat spreading regardless of the initial pump size. As the thermal diffusivity of the film

increases, a larger initial pump waist is required to ensure the effects of radial spreading are

negligible. One of the primary advantages of the low-rep system is that the high pulse energy

allows for larger pump waists, while still maintaining enough fluence to create a sufficient

temperature perturbation. For layered structures, these assumptions hold provided that

the substrate diffusivity is less than that of the film [79]. Care must be taken for systems

with high substrate thermal diffusivity such as metals on HOPG. While for the film the 1D

assumption may be made, as the thermal energy reaches the HOPG, the heat will spread

rapidly in the radial direction due to the high thermal diffusivity.

4.4 Chapter Summary

In this chapter we took an in-depth look at the computational formulation of the analysis

of TTR/TDTR data. A mathematical formulation of the complex signal returned by the

lock-in amplifier was developed:

z(t) =

∞∑
k=−∞
k 6=0

Z(kωo)ake
ikωot (4.90)
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extending on the work of Schmidt [228, 231] to model the modulation function as a pulsed

waveform, i.e. a square wave of arbitrary duty cycle, with Z (kωo) being a complex transfer

function describing the properties of the laser and sample and the response of their interac-

tion. The real and imaginary components of the lock-in transfer function, Z (kωo), which

will be the quantities compared to the experimental data, are given by:

X =
βQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
M=−∞

akH(kωo +Mωs)e
iMωsτdeikωoτd

Y = −iβQpmQpr

T 2
s

∞∑
k=−∞
k 6=0

∞∑
M=−∞

akH(kωo +Mωs)e
iMωsτdeikωoτd

(4.91a)

(4.91b)

where H (ω) is the frequency domain solution to the systems thermal response to the peri-

odic heating, given by the work of Cahill and Schmidt in 1D and 3D by [228, 230, 231]

H1D (ω) =
TsToDw

2
pr

πw4
pm

Θ0(z = 0) (4.92a)

H3D (ω) =
TsToD

2π

∫ ∞
0

Θ0 (z = 0) exp

(
−κ2

(
w2

pm + w2
pr

)
8

)
κ dκ (4.92b)

For either solution of H (ω), Θ0 is the temperature distribution at the surface given by the

frequency domain analysis of the heat diffusion equation for stratified media as presented

by Feldman [238]. This was introduce over the previous Crank-Nicolson solution, to add

the ability to function with both high- and low-rep laser systems, increase the number of

layers that can be considered in a sample, and allow for the modeling of both 1D and 3D

transport. The temperature profile, Θ0, from the Feldman analysis is given by:

Θ0 =
1

2γn,Q

B+ +B−

A+B− −A−B+
(4.93)

where A+, A−, B+, B− are complex values containing the thermophysical properties of the

materials and interfaces in the system.

The information provided in this chapter, along with the set of equations summarized

here, should provide the necessary mathematical tools to model the data collected during
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a TTR/TDTR scan. In the next chapter we will look into some practical issues in the

implementation of this model. We will discuss the convergence criteria of the infinite sum-

mations, how the higher harmonics and duty cycle of the modulation waveform affect the

thermal response, and introduce methods to increase fitting efficiency.
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5.1 Introduction

Chapters 3 and 4 provided details on the physical setup of the thermoreflectance tech-

nique and the details of the mathematical modeling used to analyze the data and deduce

a parameter of interest. All too often many of the details that are required for accurate

application of the thermoreflectance technique, either in the completion of the physical mea-

surement or the application of the thermal analysis, are omitted from literature. The lack

of these details prevents a consensus on the methods used among different scientific groups,

and/or requires each group to take the time to create their own guidelines. To help eliminate

these issues, this chapter focuses on describing the details and considerations in applying

the thermal analysis described in Chapter 4. We will begin by discussing the appropriate

selection of modulation frequencies to optimize the signal-to-noise ratio in the data. That

will be followed up with the development of convergence criteria to ensure accurate thermal

modeling. Methods to speed up the model convergence and quantify the sensitivity in the

thermal model are discussed. Finally, the quantification of noise in the measured data will

be discussed and a method to identify statistical outliers in the fitted results presented.

5.2 Proper Modulation to Eliminate Phase Drift

In Chapter 3 we discussed the primary TTR/TDTR system as being modular between a

high-rep (MIRA) or low-rep (RegA) based system. The choice between either configuration

did not impact the development of the thermal model, see Chapter 4. However, the choice

of the laser repetition rate will impact the application, both physically and analytically, of

the TTR/TDTR analysis. One of the most immediate impacts of the choice of the laser

repetition frequency, fs, is the choice of the modulation frequency, fo.

Typically for the low-rep (RegA) configuration, the modulation frequency is fixed at

fo = 125 kHz assuming a nominal laser repetition frequency of fs = 250 kHz. This one-
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shot-on/one-shot-off configuration leaves 8 µs between incident laser pulses, sufficient time

for the system to return to thermal equilibrium before the arrival of the next pulse, see

Figure 5.1. Because the system returns to thermal equilibrium between each pulse, there is

little advantage to having multiple pulses per envelope, i.e. reducing fo.

Figure 5.1: Simulated laser impulse-train, fs = 250 kHz, modulated by a square waveform at fo = 125
kHz.

For the high-rep (MIRA) configuration however, the choice of modulation frequency will

impact the modeled results and the physical measurements made. In Figure 5.2, simulated

TDTR (fs = 76 MHz) data of 100 nm of Al on Si (hBD = 215 MW/m2K) for modulation

rates of fo = 38 MHz and fo = 3.45 MHz highlight the impact of the laser modulation

frequency on the measured signal. Even though the simulated thermophysical properties

are exactly the same between both data sets, the change in the laser modulation frequency

impacts the decay of the surface temperature. This divergence between the two plots in

Figure 5.2, occurs due to residual heating of the sample. Typical high-rep systems operate

Figure 5.2: Simulated TDTR data of 100 nm of Al on Si (hBD = 215 MW/m2K), normalized at 50 ps,
for modulation rates of fo1 = 38 MHz (red) and fo2 = 3.45 MHz (blue), with fs = 76 MHz, D = 0.5,
M = 3, 500, and k = 10, 000.
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with laser repetition frequencies on the order of fs = 80 MHz (fs = 76 MHz for the MIRA),

leaving only on the order of Ts = 12.5 ns between each laser pulse. At this timescale, there

is insufficient time between laser pulses for the system to return to thermal equilibrium

before the arrival on the next pulse, leading to a residual heating effect [229, 231, 247].

Additionally, the modulation frequency also impacts the thermal penetration depth of the

established thermal wave [248–251]. Current theories suggest that manipulation of the

thermal penetration depth is directly related to the spectrum of phonon mean free paths

sampled during the thermoreflectance measurement [199, 241, 252, 253]. Therefore, for high-

rep (MIRA) based systems it is desirable to be able to select from a range of modulation

frequencies, fo, depending on the application and/or the measurement of interest. The

choice of fo however is not arbitrary.

Physically, variations in the modulation frequency change the width of the “on” portion

of the modulation envelope, given by d in Figure 5.3. Note, the temporal width of the

modulation envelope, d, can also be affected by changes to the duty cycle which is something

that will be covered in more depth shortly. However, for now we will constrain our analysis to

the square modulation waveform, i.e. D = 50%. As an example, assuming a laser repetition

frequency of fs = 76 MHz, for a modulation frequency of fo = 38 MHz the temporal width

of the modulation envelope is d = 13.6 ns, allowing one laser pulse within the modulation

envelope, see Figure 5.4a. If the modulation frequency is reduced to fo = 3.45 MHz, the

modulation envelop width is d = 144.74 ns, allowing 11 pulses per envelope, see Figure 5.4b.

Figure 5.3: Generalization of the pulsed waveform, where To is the modulation period, D is the duty cycle,
and d is the width of the “on” portion of the modulation envelope.
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(a)

(b)

Figure 5.4: Simulated laser impulse-train, fs = 76 MHz, modulated by a square waveform at (a) fo = 38
MHz, 1 pulse per envelope, and (b) fo = 3.45 MHz, 11 pulses per envelope.

Because the modulation waveform is a continuous function, it is tempting to arbitrarily

select modulation frequencies considering there to be an infinite spectrum to choose from.

However, it is important to remember that we are modulating a discrete train of laser pulses.

When setting the modulation frequency in the experiment via the frequency generator, it

is easy enough for example to set either 37 or 38 MHz1. However, there is no advantage to

the choice of fo = 37 MHz over fo = 38 MHz because it will not change the number of laser

pulses within the modulation envelope, and thereby does not influence the thermal signal,

see Figure 5.5. In fact, there is a significant disadvantage to the choice of fo = 37 MHz as

the modulation frequency.

At fo = 38 MHz, the modulation frequency is an exact multiple of the laser repetition

frequency, fs = 76 MHz. Therefore at a 50% duty cycle, there is one laser pulse within

the modulation envelope and one pulse removed from each modulation period. This con-

1Note: Typically, in a TDTR setup one would not choose such a high modulation frequency at all due
to signal-to-noise issues, however the simulated data works well for the purposes of discussion
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Figure 5.5: Simulated TDTR data of 100 nm of Al on Si (hBD = 215 MW/m2K), normalized at 50 ps, for
modulation rates of fo1 = 38 MHz (red) and fo2 = 37 MHz (blue), with fs = 76 MHz, D = 0.5, M = 3, 500,
and k = 10, 000.

figuration places the laser pulses directly in the center of the modulation window for each

period, and this pattern is repeated infinitely in time, see Figure 5.4a. When the modula-

tion frequency is not an integer multiple of the laser repetition frequency, the modulation

envelope will outpace (or lag behind) the laser pulses in time, see Figure 5.6. While this

does not appear to impact the modeled signals in Figure 5.5, it does have a direct impact

on the physically measured signals.

Figure 5.6: Simulated laser impulse-train, fs = 76 MHz, modulated by a square waveform at fo = 37
MHz.

Because the lock-in amplifier in the TTR/TDTR experiment, in addition to the signal

magnitude, measures the phase difference between the reference signal (modulation fre-

quency) and the input signal (thermoreflectance voltage at the modulated laser frequency)

a dynamic time variation between the two signals is manifested as a time varying phase

shift. This varying phase shift appears as noise in the X and Y channels, and impacts the

signal magnitude as well due to the non-constant signal frequency. The magnitude of the

added noise will be dependent on the relation between the laser and modulation frequencies.
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Figure 5.7 shows the results of the measurement of the signal magnitude and phase as

a function of the modulation frequency, which is supplied by either a function generator

(SRS DS345) or a phase-locked circuit2, see Norris et al. [254], for a sample of 100 nm of

Al on a Si substrate. For the low-rep (RegA) TTR system, the laser repetition frequency

is nominally set at fs = 250 kHz. However, the measured laser frequency was found

to be approximately fs = 247.400 kHz, which implies an ideal modulation frequency of

fo = 123.700 kHz. As seen in Figure 5.7, the thermoreflectance signal is strongly detected

by the lock-in amplifier at frequencies very close to the anticipated modulation frequency

when driven by the function generator. However, there is a large increase in the noise in

both channels of the lock-in amplifier signal (magnitude and phase) as f approaches fo. The

design of the phase-locked circuit provides an exact fo = fs/2 modulation that is clocked off

the laser repetition frequency and is therefore directly dependent on fs, and independent

of laser frequency drift or jitter. The lock-in amplifier signal when modulated with the

phase-locked circuit, see the red data points in Figure 5.7, shows a large noise (standard

deviation) reduction in the data. This corresponds to a nearly four times increase in the

signal-to-noise ratio in the TTR response compared to the best case scenario using the

function generator.

(a) (b)

Figure 5.7: Comparison of the lock-in amplifier output for a TTR signal, with the pump laser modulated
via a traditional function generator (blue) and a phase-locked circuit (red), showing (a) the signal magnitude
and (b) the signal phase. The error bars shown are ± one standard deviation from 300 measurements. The
signal to noise ratio of the magnitude with the phase-locked circuit is nearly four times greater than when
using the traditional function generator.

2More details regarding this will be presented in a future dissertation by Mr. MacKenzie Redding from
our lab.
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The impact of the phase-locked circuit is most dramatic when considering one laser pulse

per modulation envelope. For the high-rep (MIRA) system, as the number of laser pulses

within the modulation envelope increases, the effects of non-ideal modulation frequencies

are diminished due to the averaging across multiple pulses3. The challenge in implementing

a phase-locked circuit as in Norris et al. [254] for the high-rep (MIRA) system is having

appropriate circuit component bandwidth to handle the MHz switching speed necessary.

Therefore, it may still be necessary to determine appropriate modulation frequencies based

on the laser repetition frequency for function generator operation.

To prevent the noise and errors associated with arbitrary modulation of the laser

impulse-train, we seek to only modulate at frequencies which are integer multiples of the

fundamental laser frequency, thereby controlling the number of laser pulses within the mod-

ulation envelope. The number of pulses per “on” portion of the modulation envelope, NP

is given by:

Np = D × fs
fo

(5.1)

where D is the duty cycle of the modulation waveform, fs is the laser repetition frequency,

and fo is the modulation frequency. The allowed pulses per envelope as a function of modu-

lation frequency at a 50% duty cycle from fs/2 to 0.1 MHz for the high-rep (MIRA) system

is provided in Figure 5.8. As we move forward in discussing the criteria and methods for ac-

curate application of the TTR/TDTR thermal analysis, we will use modulation frequencies

based on Equation 5.1, particularly for the high-rep (MIRA) system.

Figure 5.8: The number of laser pulses per “on” portion of the modulation envelope as a function of
modulation frequency, fo, assuming a 50% duty cycle and a laser repetition frequency of fs = 76 MHz.

3Typically modulations frequencies in high-rep (MIRA) systems, range on the order of 19 MHz to 0.1
MHz, which for a 50% duty cycles, places in the range of 4-760 pules per envelope.
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5.3 Convergence Criteria in Modeling the Lock-in Amplifier

Response During TTR/TDTR Experiments

In Chapter 4 we derived the lock-in amplifier’s output in the X and Y channels to the

sample’s temperature response, monitored by the probe impulse-train, to the modulated

heat input of the pump, see Equations 4.37a and 4.37b. When implementing these equa-

tions during a thermal analysis, we are left to handle two double bounded sets of infinite

summations in M and k as a result of using the LTI theory to describe the laser system,

and assuming a pulsed waveform for the modulation of the pump. In this particular case,

the summation over k is due to the higher harmonic components in the infinite Fourier

series necessary to describe a pulsed waveform, see Equation 4.11a and/or Appendix C.1,

and M arises in the frequency domain representation of the infinite impulse-train of pump

pulses, see Equation 4.6b. For the thermal analysis, Equations 4.37a and 4.37b will be

solved numerically and therefore the calculations will use non-infinite bounds on M and

k. To produce accurate modeling of the TTR/TDTR signal we must establish convergence

criteria to ensure that either summation is sufficiently large as to not influence the final

result. The cost of increasing M and/or k will be increased computational time necessary to

model the system. Therefore, the establishment of convergence criteria will not only ensure

accurate, but also efficient modeling. To begin, we will consider the simplified, although the

most commonly implemented case of a sinusoidal waveform for the modulation of the pump

beam to focus on the convergence criteria in M , independent of k. We will then consider

the square modulation waveform, i.e. the pulsed waveform with at 50% duty cycle and the

convergence criteria in k, and finally consider how the duty cycle impacts the convergence

criteria in k.

5.3.1 Impacts of Non-convergence in M

The inherent manifestation of an insufficient summation over M is shown in Figure

5.9. For low values of M there are significant oscillations in the signal response, with the

frequency of these oscillations increasing with increasing M . This oscillation in the data as

a function of the summation M , is a Gibbs phenomena.
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Figure 5.9: Simulated data for a 100 nm Al/Si system (hBD = 200 MW/m2K) for k = {−1, 1}, fs = 250
kHz, fo = 125 kHz, a 50% duty cycle of the modulation waveform, and M = 50,000, 200,000, and 2,000,000.

By the nature of how the laser system was modeled, there is a jump discontinuity located

at to, the time the pump and probe impulses arrive a the same instant in time4. This is

due to the assumption that the laser pulses are perfect impulses, i.e. there is no temporal

width to the pump pulses. Assuming this, and neglecting any electron thermalization time

during pulse deposition, there is an instantaneous rise in temperature when the pump pulse

arrives leading to an instantaneous jump in the modeled signal.

There are several important implications of the presence of the Gibbs phenomena at to.

If we begin by considering arbitrary peaks in the oscillating solution, we find that as M

increases each peak moves closer to the discontinuity at to. As an example, if we consider

the second peak (after to) of the data shown in Figure 5.9, as M increases from M = 50, 000

to M = 200, 000, the temporal location of the peak is shifted from approximately 108 ps to

26.4 ps. As M is increased, the frequency of the ringing in the data is increased, and we can

define the time between peaks in the oscillations as Tpeak, see Figure 5.10. It is important to

note however, that the amplitude of the peaks is independent of the size ofM . The overshoot

of the primary peak is 9% of the actual height, with each subsequent oscillation reducing

in amplitude [226]. Increasing M does not decrease the amplitude of these oscillations, but

rather compresses the high amplitude oscillations towards the discontinuity.

Because the primary thermal analysis will be focused on diffusive processes, we con-

centrate on the region of data where it is assumed that both the electron and phonon

4The arrival of the pump and probe laser pulses at the same instant in time is typically referred to as to
and corresponds to t = 0. Physically during the experiment this is taken as the peak in the signal which is
assumed to be greatest when the two pulses overlap temporally.
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Figure 5.10: Schematic of modeled data highlighting the oscillations in the modeled data for a low sum-
mation in M , and defining the time period between peaks, Tpeak.

sub-systems have thermalized with each other after ultrashort laser heating, which is typ-

ically taken to be after approximately t = 100 ps. Therefore, we can envision a realistic

convergence criteria to be a sufficient M such that the primary oscillations in the data are

“pushed” prior to 100 ps, with the remaining solution after 100 ps having sufficiently low

oscillations as to not impact the deduction of the parameter of interest.

Ideally, we will establish a convergence criteria that is dependent on M alone, inde-

pendent of the thermophysical properties of the system. To test this theory, first the time

between peaks in the oscillations of a modeled system of 100 nm of Al on Si (hBD = 215

MW/m2K) was determined to be approximately Tpeak = 79.85 ± 0.53 ps for M = 50, 000.

Then to check for independence, each thermophysical property of the system was varied

using a one-at-a-time method and Tpeak was calculated for each permutation, see Figure

Figure 5.11: Tpeak of the Gibbs oscillations in modeled TTR/TDTR data as a function of thermo-
physical property perturbation for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K) with
M = 50, 000. Each assumed thermophysical value was perturbed one-at-a-time, with the error bars repre-
senting plus/minus one standard deviation of the data collected over the first 30 peaks.
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5.11. The average Tpeak was collected over the first 30 peaks in the data after to, with

the error bars representing plus/minus one standard deviation in the data. While there

are some fluctuations in the data, overall the error bars in the results are overlapping, and

therefore the results are statistically equivalent, supporting the independence of Tpeak on

thermophysical properties. Therefore, moving forward we can consider the convergence

criteria of the TTR/TDTR model to be a function of M only, independent of the system

being modeled. While the data in this dissertation was collected using a low-rep (RegA)

system, we will consider the convergence criteria for both the low-rep (RegA) and high-rep

(MIRA) systems in this analysis.

5.3.2 Impact of Series Convergence - Sinusoidal Modulation Waveform

As mentioned, we will begin by assuming a sinusoidal waveform for the pump modula-

tion, implying that k = {−1, 1}, i.e. the first harmonic components of the square (pulsed)

waveform. Applying this assumption, Equations 4.37a and 4.37b, reduce to the form com-

monly reported in literature [230, 231, 245, 251], see Appendix C.3. This will allow the

focus for the time being to be on the convergence criteria in M , independent on the sum-

mation in k. We will begin with convergence in the low-rep (RegA) system, to be followed

up with the high-rep (MIRA) system. In both cases we will begin with a qualitative de-

scription of convergence by tracking a point in the model as a function of M , and then

establish more quantitative criteria by fitting a converged model of known parameters with

increasing bounds on M .

Convergence in M - Low-Rep (RegA)

In order to estimate the convergence criteria in M for the low-rep (RegA) system, the

X component of a modeled system, see Equation 4.39a, is tracked as a function of the size

of the summation bounds, M , at a given time index5. In this analysis, 100 ps was chosen

as the time point of interest as it typically represents the lower bound in the fitting time

where it is assumed that the electron and phonon sub-systems are in thermal equilibrium

5Note: M in Equations 4.37a and 4.37b is given from −∞ to ∞, therefore when M is specified it is
understand that in the analysis the summation will range from −M : M .
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Figure 5.12: Real signal X at 100 ps as a function of M summation for a modeled system of 100 nm
Al/Glass (hBD = 30 MW/m2K), with k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of
the modulation waveform.

and diffusion processes dominate thermal transport. The X component of the model system

at 100 ps as a function of M is shown in Figure 5.12. From a visual inspection of the graph,

it appears that the solution at 100 ps does not converge until on the order of M ≈ 30×106.

With the time to run a single simulation at this summation level taking over an hour, and

a typical complete fit requiring 6-20 iterations6, fitting data for the low-rep (RegA) system

becomes very computationally expensive.

In order to speed up convergence, Cahill proposed multiplying the terms in Equation

4.37a by a Gaussian factor, given by [230]:

exp

(
−πf
fmax

)2

= exp

(
−πω
ωmax

)2

(5.2)

where f is the frequency and fmax is a maximum frequency that will be considered in the

thermal analysis. Cahill reports that they find accurate modeling with fmax = 10/tmin,

where tmin is the minimum delay time that will be considered for a fit. For the analyses

in this dissertation tmin is taken as 50 ps, which corresponds to a maximum frequency of

fmax = 200 GHz. The purpose of the Gaussian factor is to focus the analysis on the lower

frequency terms and eliminate or greatly reduce the dependence on the higher frequency

terms. The form of the Gaussian term is shown in Figure 5.13, for the maximum cutoff

6It is important to note that the number of iterations required for fitting is based on a number of factors,
including the fitting routine used, quality of the initial guesses, sensitivity to the parameter of interest, and
the tolerance of the stopping criteria. The specified range of iterations is based on observational evidence of
the methods used in this dissertation, and does not represent a general rule.
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frequency of fmax = 200 GHz. The impact of the Gaussian factor is evident by comparing

Figure 5.12 with the same analysis using the Gaussian factor, shown in Figure 5.14.

Figure 5.13: Form of the Gaussian factor, from Equation 5.2, as a function of frequency, f , for fmax = 200
GHz.

Figure 5.14: Real signal X at 100 ps as a function of M summation for a modeled system of 100 nm
Al/Glass (hBD = 30 MW/m2K), with k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle
of the modulation waveform. With the inclusion of the Gaussian factor, see Equation 5.2, to the lock-in
analysis, see Equations 4.37a and 4.37b.

To ensure the use of the Gaussian factor does not alter the modeled results, a comparison

of data generated with and without the factor for various M summation levels is shown in

Figure 5.15. The results in Figure 5.15 show no appreciable difference between the models

at various M summation levels, with and without the Gaussian factor. Comparing Figure

5.12 to 5.14 we see that the addition of the Gaussian factor decreased the M summation

required for visual convergence from over M = 30× 106 to on the order of M ≈ 8.5× 105.

This in turn decreases the computational time required to generate the modeled data from
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Figure 5.15: Real signal X of modeled data for a system of 100 nm Al/Glass (hBD = 30 MW/m2K), with
k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of the modulation waveform for various
levels of M summation, with and without the Gaussian factor.

over an hour to under 3 minutes7. The value of X at 100 ps for the M = 30 × 106 and

M = 8.5 × 105 cases differs by less than 0.07%. While this methodology provided a good

method for visually determining the criteria for convergence as a function of the summation

M , a more quantitative convergence criteria is desirable.

Using the general sense of the visual convergence criteria in M from the analysis of

the time index as a basis, see Figure 5.14, a more quantitative criteria can be established.

This was accomplished by first modeling a TTR data set, 100 nm of Al/Si (hBD = 215

MW/m2K), with a level of summation M in which we could assume we would have ap-

propriate convergence, from Figure 5.14, which in this case was taken as M = 1, 000, 000.

That data was then fit to deduce hBD using the standard TTR/TDTR fitting routine, as

the value of M was iterated. This provided a known value of hBD, hBD = 215 MW/m2K,

with which a numerical convergence criteria in M can be established. The results of this

process are shown in Figure 5.16 with the blue circles representing the fitted results and the

horizontal red line indicating the known value. Again from visual inspection, we see that

convergence occurs when M is on the order of 300,000.

To extend this to a quantitative analysis, the percent difference between the known hBD

value, hBD = 215 MW/m2K, and the fitted value at a given M was calculated, the results

of which are shown in Figure 5.17. In Figure 5.17, the red line represents a log fit of the

data points of the form y = a−b ln (x+ c), and the black lines represent the 95% confidence

7Any discussion of computational time will be dependent on a number of factors, including the computer
used and the number of data points in the model. For the majority of calculations made the programs will
be run in LabVIEWTM2012 on an Intelr CoreTM2 quad core CPU running at 2.40 GHz with 4 GB of RAM.
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Figure 5.16: Fit of hBD for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with k =
{−1, 1}, fs = 250 kHz, fo = 125 kHz, a 50% duty cycle of the modulation waveform, and generated with
M = 1, 000, 000, with increasing values of M during fitting. Note: the red line indicated the true hBD value.

interval of the fit. From this formulation, the basic convergence levels are summarized in

Table 5.1, along with the time required to model the data at the given summation level. It is

important to note, that the estimated time to generate the thermoreflectance model in Table

5.1, is for a single iteration of the thermal model, while fitting to deduce a thermophysical

parameter from measured data takes on the order of 6-20 iterations.

Figure 5.17: Number of summations in M required for fit convergence to the known value of hBD, for a
modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with k = {−1, 1}, fs = 250 kHz, fo = 125 kHz,
a 50% duty cycle of the modulation waveform, and generated with M = 1, 000, 000. The red line represents
a logarithmic fit of the data.

Convergence in M - High-Rep (MIRA)

We can use a similar formulation as was done for the low-rep (RegA) system to find

the convergence criteria in M for the high-rep (MIRA) system. The major difference in

the analysis will be that we will need to consider if, and to what degree, the modulation

frequency will impact the conditions of the convergence criteria in M . To begin, we will
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Table 5.1: Estimation of the summation in M required to reach a specified convergence level for the low-rep
(RegA) system, based on the log fit of the data in Figure 5.17. Additionally the time required to generate a
320 point data set, at the summation level is provided for the TTR/TDTR program run in LabVIEWTM2012
on an Intelr CoreTM2 quad core CPU running at 2.40 GHz with 4 GB of RAM.

Convergence M Summation Time to
Level Required Generate [min]

10% 47,800 0.139
1% 316,000 0.919

0.10% 585,000 1.701
0.01% 856,000 2.489

consider the X component of a TDTR signal sinusoidally modulated at 1 MHz for a pump

to probe delay time of 100 ps, as a function of the summation bound M with and without

the Gaussian factor, shown in Figures 5.18 and 5.19. We can see that without the Gaussian

factor the X signal at 100 ps oscillates in M and appears to converge visually for M ≈

100, 000. The introduction of the Gaussian factor, see Equation 5.13, reduces the number

of M necessary for visual convergence to around M ≈ 3, 000. The value of X at 100 ps for

the M = 1 × 106 and M = 3 × 103 cases differs by less than 0.006%, using the Gaussian

factor.

Figure 5.18: Real signal X at 100 ps as a function of M summation for a modeled system of 100 nm
Al/Glass (hBD = 30 MW/m2K), with k = {−1, 1}, fs = 76 MHz, fo = 1 MHz, and a 50% duty cycle of the
modulation waveform.

In the same manner as was done with the low-rep (RegA) system, we can also compare

the convergence criteria based on fitting a modeled system under varying summations in

M to establish quantitative guidelines. However, as mentioned for the high-rep (MIRA)

system we have a greater choice of pump modulation frequencies, and therefore must include

fo in our sample space, chosen appropriately based on the discussion in Section 5.2. The
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Figure 5.19: Real signal X at 100 ps as a function of M summation for a modeled system of 100 nm
Al/Glass (hBD = 30 MW/m2K), with k = {−1, 1}, fs = 76 MHz, fo = 1 MHz, and a 50% duty cycle of the
modulation waveform. With the inclusion of the Gaussian factor, see Equation 5.13, to the lock-in analysis,
see Equations 4.37a and 4.37b.

fitted hBD results of a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with

k = {−1, 1}, fs = 76 MHz, a 50% duty cycle of the modulation waveform, and generated

with M = 10, 000 as a function of M summation is shown in Figures 5.20 and 5.21 for

modulation frequencies of fo = 0.1 MHz and fo = 38 MHz respectively.

Figure 5.20: Fit of hBD for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with k = {−1, 1},
fs = 76 MHz, fo = 0.1 MHz, a 50% duty cycle of the modulation waveform, and generated with M = 10, 000,
with increasing values of M during fitting. Note: the red line indicated the true hBD value.

From visual inspection of Figures 5.20 and 5.21 there does not appear to be a strong

dependence in the convergence criteria in M on the modulation frequency, fo. To create

quantitative convergence criteria in M , data from the fitted results is compared to the

known hBD value to find the percent difference as a function of modulation frequency. The

results from this analysis are shown in Figure 5.22, and show only a weak dependence on

fo as was anticipated. Because the M summation required for convergence in the high-rep
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Figure 5.21: Fit of hBD for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with k = {−1, 1},
fs = 76 MHz, fo = 38 MHz, a 50% duty cycle of the modulation waveform, and generated with M = 10, 000,
with increasing values of M during fitting. Note: the red line indicated the true hBD value.

Figure 5.22: Number of summations in M required for fit convergence to the known value of hBD, within
a tolerance of 1, 0.1, and 0.01%, for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with
k = {−1, 1}, fs = 76 MHz, a 50% duty cycle of the modulation waveform, and generated with M = 10, 000,
as a function of laser modulation frequency, fo. Note: the lines are a guide to the eye only.

(MIRA) system is relatively small compared to the levels that are required for the low-rep

(RegA) system, rather than defining the convergence criteria as a function of fo, we will

simply define a minimum value to cover all modulation frequencies at a given convergence

level, independent of fo. The results of this interpretation are summarized in Table 5.2. We

will notice, as compared to the low-rep (RegA) convergence results in Table 5.1, the high-

rep (MIRA) system required significantly lower values of M for convergence, and therefore

takes significantly less time to generate the model.

Summary of Convergence Criteria in M

So far, we have established convergence criteria in M assuming a sinusoidal modulation

waveform for both the low-rep (RegA) and high-rep (MIRA) based systems. The primary
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Table 5.2: Estimation of the summation in M required to reach a specified convergence level for the high-
rep (MIRA) system, based on the data in Figure 5.22. Additionally the time required to generate a 320
point data set, at the summation level, is provided for the TTR/TDTR program run in LabVIEWTM2012
on an Intelr CoreTM2 quad core CPU running at 2.40 GHz with 4 GB of RAM.

Convergence M Summation Time to
Level Required Generate [s]

1% 1,500 0.259
0.10% 2,500 0.436
0.01% 3,500 0.609

purpose of this analysis was to establish quantitative guidelines to the required modeling

parameters in M , and eliminating the guess work of deciding when M is “sufficiently large”.

This will help in establishing both accurate and efficient guidelines for TTR/TDTR mod-

eling. With these guidelines established, we can now turn our attention to a more complex

modulation waveform, i.e. the square waveform, which includes the summation in k as well.

5.3.3 Impact of Series Convergence - Square Modulation Waveform

To establish convergence guidelines in k, we will use a similar methodology as we did in

determining the convergence criteria in M . We will begin by monitoring a data point in time

as a function of the size of k, and use the results as a visual guideline to establish quantitative

convergence criteria through fitting hBD in a modeled system. During the course of these

analyses we will use the established convergence criteria in M as was developed in Section

5.3.2 to model the data.

Convergence in k - Low-Rep (RegA)

Beginning again with the low-rep (RegA) system, the X signal of a modeled system of

100 nm Al/Si (hBD = 215 MW/m2K), with M = 850, 500, fs = 250 kHz, fo = 125 kHz,

and a 50% duty cycle of the modulation waveform at a time index of t = 100 ps was tracked

as a function of the summation8 in k, see Figure 5.23. Interpretation of Figure 5.23 places

visual convergence in k on the order of k ≈ 500.

8The summation in k in Equations 4.37a and 4.37b arises from the use of the square modulation wave-
form, which is constructed via a Fourier series of an infinite summation of sine and cosine waves, where k
is the index of the harmonics. For the square modulation waveform only odd harmonics contribute in the
Fourier series, and therefore the summation of k is across odd numbers. (Note: this is only the case for the
square modulation waveform, and not for a pulsed waveform.)
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Figure 5.23: Real signal X at 100 ps as a function of k summation for a modeled system of 100 nm Al/Si
(hBD = 215 MW/m2K), with M = 850, 500, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of the
modulation waveform.

Using the visual convergence as a guideline, the Al/Si system was modeled with k =

5, 000 and the data set fitted using the standard TTR fitting routine to deduce hBD with

increasing bounds on k. The results of this analysis are shown in Figure 5.24. It is immedi-

ately apparent from these results that there is no dependence on the level of summation in k

necessary to deduce the hBD value from the model. While this would seem counterintuitive

compared to the results in Figure 5.23, if we consider how the modulation waveform inter-

acts with the pump impulse-train, and how the TTR analysis is conducted, these results

make sense.

Figure 5.24: Fit of hBD for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with M =
850, 500, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of the modulation waveform, with increasing
values of k during fitting. Note: the red line indicated the true hBD value.

Figure 5.25 shows a pump laser impulse-train, fs = 250 kHz, modulated by a square
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waveform of insufficient9 k, at fo = 125 kHz. The first 3 harmonics of the square waveform

illustrate the interaction of the waveform and the laser pulses. As k is increased, the shape

of the waveform oscillates as it begins to converge towards the square shape that would be

expected when k is sufficiently large. It is important to note however, that for each value

of k the laser impulse is center in the envelope of the waveform. Due to this property, the

only impact of insufficient summation in k on the laser impulse is the modulation of the

peak intensity. In essence, what Figure 5.23 is demonstrating is the oscillating magnitude

of the signal as the intensity of the center portion of the square wave envelope oscillates

while converging to the square wave solution.

Figure 5.25: Impulse-train of laser pules for fs = 250 kHz, and a square modulation waveform at fo = 125
kHz, for a summation in k of 1,3, and 5.

When modeling the TTR/TDTR analysis that was developed in Chapter 4, the intensity

of the thermoreflectance signal is a function of the thermoreflectance coefficient of the metal

being modeled, and the absorbed power of the pump laser. In practice, both of these factors

are difficult to accurately measure during the experiment to use as inputs to the model.

To eliminate this complexity when analyzing the TTR/TDTR data, after the model is

generated using arbitrary values for the thermoreflectance coefficient and absorbed power,

the model is scaled relative to the data for each fitting iteration. More details of this process

will be presented in Section 5.4.2. Because of this normalization routine, the fitted results

are insensitive to changes in the pump intensity. Therefore for the low-rep (RegA) system

modulated via a square wave at fo = 125 kHz, see Figure 5.23, the results are independent

9A true square wave is constructed from an infinite summation of harmonics in k. Therefore, an insuffi-
cient summation in k will fail to reproduce a true square wave with the severity of the failure increasing as
k decreases.
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of the summation in k. Note that this is a special case of the low-rep system due in part

to the normalization routine and the absence of residual heating effects, and cannot be

assumed for high-rep systems.

Convergence in k - High-Rep (MIRA)

To establish convergence criteria in k for the high-rep (MIRA) system, we again need

to be concerned with the impact of the modulation frequency on the model convergence.

Beginning with a modeled system of 100 nm Al/Si (hBD = 215 MW/m2K), with M = 3, 500,

fs = 76 MHz, and a 50% duty cycle of the modulation waveform, the X signal at 100 ps

as a function of the summation in k is shown in Figures 5.26 and 5.27, for modulation

frequencies of fo = 0.1 MHz and fo = 38 MHz respectively. These results again based on

Figure 5.26: Real signal X at 100 ps as a function of k summation for a modeled system of 100 nm Al/Si
(hBD = 215 MW/m2K), with M = 3, 500, fs = 76 MHz, fo = 0.1 MHz, and a 50% duty cycle of the
modulation waveform.

Figure 5.27: Real signal X at 100 ps as a function of k summation for a modeled system of 100 nm
Al/Si (hBD = 215 MW/m2K), with M = 3, 500, fs = 76 MHz, fo = 38 MHz, and a 50% duty cycle of the
modulation waveform.
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visual convergence criteria, show no strong dependence on the modulation frequency when

determining the k required for convergence.

To establish the quantitative convergence criteria based on the results from Figures 5.26

and 5.27, a model of 100 nm Al/Si (hBD = 215 MW/m2K), with M = 3, 500, fs = 76 MHz,

MHz, and a 50% duty cycle of the modulation waveform was generated with k = 10, 000,

and fit using the standard TDTR routine to deduce hBD. The results of the fitting analysis

were then compared to the known hBD value of hBD = 215 MW/m2K to calculate the per-

cent difference between the fitted and known results and establish quantitative convergence

criteria in k, see Figure 5.28.

Figure 5.28: Number of summations in k required for fit convergence to the known value of hBD, within
a tolerance of 5, 1, and 0.5%, for a modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with
M = 3, 500, fs = 76 MHz, a 50% duty cycle of the modulation waveform, and generated with k = 10, 000,
as a function of laser modulation frequency, fo. Note: the lines are a guide to the eye only.

We notice in Figure 5.28 that for high modulation frequencies, i.e. fo = 38 and 19

MHz, the results are again independent of the summation in k. This is due to a similar

phenomena as was discussed for the low-rep system, see Figure 5.25. As the modulation

frequency is decreased, the dependence on k becomes more complex as the number of pulses

interacting with the waveform increases and residual heating effects become more dominate.

Assuming convergence criteria of M = 3, 500 and k = 250, the time to generate the model

is on the order of 2.5 minutes. When accepting the 1% convergence tolerance in k, i.e.

k = 125, the modeling time drops to on the order of 1.25 minutes. In either case, assuming

approximately 10 iterations required for a complete fit leads to a total time of 15-30 minutes

as a worst case scenario for a single one-parameter fit. This time scale is very manageable

considering current computational speeds.
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5.3.4 Impact of Series Convergence - Pulsed Modulation Waveform

In Section 5.3.3 we dealt with the simplest and most common case of a square modulation

waveform, which by definition implies a 50% duty cycle. In Chapter 4 however, we developed

the equations of the lock-in amplifier response, see Equations 4.37a and 4.37b, to be general

and applicable to a modulation waveform with an arbitrary duty cycle. Therefore, it is

important that we consider how the duty cycle will affect the convergence criteria in k.

The square waveform contains jump discontinuities at the leading and trailing edges of the

modulation envelop. Therefore, finite summation in k produces ringing at either edge of the

modulation envelope via the Gibbs phenomenon, in a similar manner as was discussed in

Section 5.3.1. As k is increased, the high amplitude oscillations are “pushed” towards the

edges of the modulation envelope. It is conceivable then that as the width of the modulation

envelope, d, is modified through variations in the duty cycle, D, that the convergence criteria

in k for the pulsed waveform will be modified due to the high amplitude Gibbs regions

interacting with a larger percentage of the modulation envelope.

What Duty Cycles are Allowed

Before getting too deep into a discussion of how the duty cycle impacts the convergence

criteria in k, we will briefly take the time to discuss what duty cycles are “allowed.” Similar

to the discussion that was presented in Section 5.2 for the modulation frequency, fo, for

a given system there are only certain duty cycles that are appropriate. Even though the

modulation waveform is continuous, and therefore has an infinite number of potential duty

cycles, we are modulating a discrete laser impulse-train and therefore will only consider duty

cycles which add or remove an impulse from the “on” (or “off”) portion of the modulation

envelope. Under this constraint the allowable duty cycles, D, are given by:

D =
NP fo
fs

and 1 ≤ NP ≤
fs
2fo

(5.3)

where NP is the number of pulses within the “on” portion of the modulation envelope, fs

is the laser repetition frequency, and fo is the modulation frequency.
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Examples

As an example, consider the high-rep MIRA laser system with fs = 76 MHz, modulated

by a pulsed waveform at a frequency of fo = 3.8 MHz and a 50% duty cycle, see Figure

5.29. From inspection of the data in the figure it is apparent that there are 10 pulses per

envelope for the given laser repetition and modulation frequency, supported by Equation

5.1, and therefore by Equation 5.3 10 possible duty cycles, see Table 5.3.

Figure 5.29: Modulated impulse-train from the MIRA, fs = 76 MHz, modulated by a square waveform,
D = 50%, at a modulation frequency of fo = 3.8 MHz.

Table 5.3: Practical duty cycles available for a high-rep system, fs = 76 MHz, modulated at fo = 3.8 MHz
and the width of the “on” portion of the modulation envelope.

D Pulses On Pulses Off d [µs] D Pulses On Pulses Off d [µs]

0.05 1 19 0.013 0.30 6 14 0.079
0.10 2 18 0.026 0.35 7 13 0.092
0.15 3 17 0.039 0.40 8 12 0.105
0.20 4 16 0.053 0.45 9 11 0.118
0.25 5 15 0.066 0.50 10 10 0.132

Convergence in k - Low-Rep (RegA)

For the low-rep (RegA) system, from Equation 5.3 the only duty cycle that is practical

is D = 0.5. There is no advantage to changing the duty cycle beyond this level as it does not

alter the number of laser pulses within the modulation envelope. This is evident considering

the modeled data shown in Figure 5.30 for a selection of duty cycles. For the range of duty

cycles presented, the modeled TTR data overlaps perfectly with no change in the signal

as a function of duty cycle. This if further confirmed by viewing the form of the laser
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Figure 5.30: Modeled system of 100 nm of Al/Si (hBD = 215 MW/m2K), with k = 100, fs = 250 kHz,
fo = 125 kHz,M = 1, 000, 000, and for duty cycles of D = 0.5000, 0.2500, 0.1250 and 0.0625.

impulse-train and pulsed modulation waveform in Figure 5.31. By definition of how the

pulsed waveform was derived, see Appendix C.1, based on a synchronous phase between

the modulation waveform and thermoreflectance signal, regardless of the duty cycle the

single laser pulse in the low-rep system remains in the center of the modulation waveform.

Therefore, in terms of the thermal analysis for the low-rep system, there is no advantageous

impact to changing the duty cycle of the modulation waveform and doing so only adds

unneeded complexity to the modeling.

Figure 5.31: Laser impulse-train at fs = 250 kHz modulated by a pulsed waveform at fo = 125 kHz for
duty cycles of D = 0.5000, 0.2500, 0.1250 and 0.0625.

Convergence in k - High-Rep (MIRA)

The convergence criteria in k for the pulsed waveform in the high-rep (MIRA) system

has been more difficult to ascertain in a global form. Tracking the X signal at 100 ps for a

modeled system of 100 nm Al/Si (hBD = 215 MW/m2K), with M = 3, 500, fs = 76 MHz,

and fo = 7.6 MHz as a function of the summation in k for several duty cycles, we find as

expected that as the duty cycle is lowered, i.e. the width of the modulation window is
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(a)

(b)

(c)

(d)

(e)

Figure 5.32: Real signal X at 100 ps as a function of k summation for a modeled system of 100 nm Al/Si
(hBD = 215 MW/m2K), with M = 3, 500, fs = 76 MHz, fo = 7.6 MHz, and duty cycles of (a) D = 0.5000,
(b) D = 0.2500, (c) D = 0.1250, (d) D = 0.1667, and (e) D = 0.1000
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decreased, it appears that a greater summation in k is required for convergence, see Figure

5.32. As the duty cycle is lowered not only does the magnitude of the fluctuations in the

data increase, but the oscillations are stretched out over a larger range of k values. These

results become more complicated however when turning toward the fitted results.

In Figure 5.33 the quantitative convergence criteria at a 0.5% level is shown as a function

of duty cycle for several modulation frequencies. Similar to the convergence criteria results

of the high-rep MIRA system for the square modulation waveform, see Section 5.3.3, the

interaction of the modulation waveform and laser impulse-train creates complex dependence

on k. Initially as the duty cycle drops the required convergence increases, most likely

due to the reduction of the temporal width of the modulation envelope and the increased

dependence on the Gibbs oscillations. As the duty cycle reaches a minimum however, the

results in Figure 5.33 suggest that the required k for convergence decreases. This trend is

most likely due to the reduction in the number of pulses within the modulation envelope

and similar conditions as was found for the low-rep system and the high-rep system for high

modulation frequencies.

Figure 5.33: Required summation in k for 0.5% convergence as a function of duty cycle from fit hBD results
from a modeled system of 100 nm Al/Si (hBD = 215 MW/m2K), with M = 3, 500, fs = 76 MHz and fo as
shown.

For the worst case scenario the required convergence in k does not appear to exceed what

was established for the square modulation waveform, see Section 5.3.3, which placed fitting

times on the order of 30 minutes. It should be noted that while the time to fit an individual

data set is manageable, the time to complete the quantitative analysis of the convergence

criteria in k for the pulsed waveform, see Figure 5.33, is very computationally expensive.

Therefore at this time on a small portion of modulations frequencies have been analyzed

146



Chapter 5. Practical Considerations in Data Deduction 5.4

and these results are based on that subset of data. At a later date more simulations will

have to be run to ensure that these guidelines can be applied globally.

5.3.5 Summary of Convergence Criteria

In this section an in-depth analysis of the convergence criteria in M and k required to

accurately model the TTR/TDTR signal developed in Chapter 4 was presented. Quanti-

tative guidelines were established for the summation in M for both low- and high-rep laser

systems, see Tables 5.1 and 5.2 respectively. The transition from the sinusoidal to square

modulation waveform required additional convergence standards in k. The low-rep system

was found to be independent of k and the convergence criteria for the high-rep system as

a function of modulation frequency was found, see Figure 5.28. Finally, for the pulsed

modulation waveform it was established that the results of the low-rep system were still

independent of k and preliminary trends for the high-rep system were presented, see Figure

5.33. These results should provide quantitative guidelines to ensure accurate modeling of

the TTR/TDTR signal and eliminate the “guess work” as to when the infinite summations

in the thermal model are sufficiently large.

5.4 Fitting to Deduce Thermophysical Parameters

There are several important, practical considerations in the deduction of thermophysical

parameters from TTR/TDTR data that can impact the accuracy and the efficiency of the

fitted results. Here we will introduce two formulations; one focused on increasing computa-

tional efficiency and the other tailored to ensure accurate deduction of the thermophysical

parameter of interest. We will begin by investing the concept of a “node spacing” formu-

lation, to decrease the computational time required to generate the TTR/TDTR model,

beyond the limits set forth by the convergence criteria in M from Section 5.3. That will

be followed up with an improved method of normalizing the model relative to the data

for parameter deduction, to eliminate the dependence of the final result on the choice of

normalization time.
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5.4.1 Gibbs Oscillations at to - M-Fourier Components

It was established in Section 5.3, that for a finite number of M in the summation term of

the lock-in analysis, see Equations 4.37a-4.37b, there will be ringing in the modeled signal

due to the jump discontinuity at to. I have developed quantitative convergence criteria

where M will be sufficiently large in order to shift the high amplitude oscillations before

the earliest time of interest, typically 50-100 ps. While the development of the convergence

criteria in M made the analysis more robust, the trade off for increasing the size of M is

the computational time required to run the model calculations.

Figure 5.34 shows the time required to generate the TTR/TDTR model as a function

of the summation10 in M . It is important to note that this plot is a guideline, as the

actual computational time required is a function of a number of factors including how

many data (time) points are in the model, and the computer system used to complete the

calculations. For the data in Figure 5.34, 320 data points where contained in the model

and the calculations were run in LabVIEWTM2012 on an Intelr CoreTM2 quad core CPU

running at 2.40 GHz with 4 GB of RAM.

Figure 5.34: Time required to generate a TTR/TDTR model (320 data points), as a function of M
summation. Program run in LabVIEWTM2012 on an Intelr CoreTM2 quad core CPU running at 2.40 GHz
with 4 GB of RAM. The red line indicates a 2nd order polynomial fit of the data, with the fitted results
shown.

10Because the summation in M and k are linearly couples, the time required to simulate the TTR/TDTR
model with the pulsed waveform is the product of the time required for the sinusoidal waveform, i.e. k =
{−1, 1}, of given M , see Figure 5.34, and the number of summation in k.
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For the convergence criteria established in Section 5.3, depending on the choice of the

high- or low-rep system and the convergence criteria, the time to generate the model ranges

from on the order of 0.5 s to 2.5 minutes. If we assume on average 10 iterations to deduce

a thermophysical parameter of interest, approximately 1-25 minutes of computational time

are required to fit a collected TTR/TDTR scan. Considering that typically only small data

sets are collected, and the proliferation of multi-core processors in today’s market, these

computational times are not unreasonable. If however, we are interested in doing large

scale modeling of the thermoreflectance data11 where hundreds or thousands of fits may be

required, particularly for the low-rep (RegA) system, these computational times suddenly

become prohibitive.

Modeling with Node Spacing

In order to further reduce the computational time required to model the TTR/TDTR

system, the concept of fitting with “node spacing” was developed. We have already estab-

lished that for a finite summation in M , there will be oscillations or ringing in the modeled

data. If M is such that the convergence criteria formulated in Section 5.3 is satisfied, any

inaccuracies due to this ringing will be within error tolerances. However, to speed up com-

putational efficiency and allow for large scale modeling, it is desirable to be able to reduce

the size of M without introducing modeling error. Accepting the fact that reducing M will

increase the oscillations in the data, we have already defined Tpeak as the time between

Gibbs oscillations, see Figure 5.10. However, because the data oscillates around the ideal

solution, we can also define nodes in the oscillations that correspond to the correct solution,

see Figure 5.35. With data points spaced properly we can take advantage of these nodes

to produce the correct solution for a lower value of M , without impacting the error in the

modeling.

To do this, rather than data with an arbitrary time configuration, the idea is to use

a start time, tstart, and time step, Tnode, such that the modeled data of interest will start

at a node of the oscillating solution, and each subsequent data point will be at an integer

multiple of the node spacing. We have already established that the frequency of the Gibbs

11Which will be done extensively in Chapter 6.
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Figure 5.35: Schematic of modeled data highlighting the oscillations in the modeled data for a low sum-
mation in M , and defining the time period between peaks, Tpeak, and the node spacing.

oscillations is dependent on the size of M , and therefore expect the node properties to be

dependent on M as well. To calculate this dependence, the temporal spacing between Gibbs

peaks, Tpeak, was determined as a function of the summation in M for several laser repetition

frequencies, fs, see Figure 5.36. To find the peaks TTR/TDTR data was simulated with

a small timestep, 0.1 ps, to capture the oscillations in the data, and then a peak finding

routine was run in MATLAB to determine the temporal spacing between the peaks.

Figure 5.36: The time between the peaks in the Gibbs oscillations, Tpeak, as a function of the summation
bounds M for several laser repetition frequencies, fs.

Each of the data sets in Figure 5.36 were fit using a power law formulation of the form

Tpeak = a×M b with the value of b fixed at b = −1. The results of the fitting analysis are

shown in Table 5.4. The data shows that the fitting coefficient corresponds almost directly

to the laser repetition period Ts. There are slight errors associated with the ability to resolve

Tpeak, due to the finite time steps of the modeled data and the resolution of the peak picking

routine that most likely accounts for the small discrepancies between Ts and a. However,
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Table 5.4: Results of fitting of the data in Figure 5.36 using a power law of the form, Tpeak = a/M .

fs [MHz] Ts [s] a [s] b R2

0.250 4.00× 10−6 4.09× 106 ± 1.00× 103 -1 1
0.500 2.00× 10−6 1.99× 106 ± 1.00× 103 -1 1

1 1.00× 10−6 9.96× 105 ± 7.00× 102 -1 1
5 2.00× 10−7 1.99× 105 ± 1.00× 102 -1 1
10 1.00× 10−7 9.97× 104 ± 9.00× 101 -1 1
20 5.00× 10−8 4.98× 104 ± 4.00× 101 -1 1
40 2.50× 10−8 2.49× 104 ± 2.00× 101 -1 1
80 1.25× 10−8 1.24× 104 ± 1.00× 101 -1 1

the discrepancies are small enough that we can define a relation for the time between Gibbs

oscillations, Tpeak, as a function of the laser repetition period and summation in M , given

by:

Tpeak =
Ts
M

(5.4)

With a formulation for the peak spacing established, it is possible to determine the node

spacing of the oscillating solution, Tnode, with is given by:

Tnode =
3Ts
8M

(5.5)

The time of the first node, Tstart, is then given by:

Tstart = Tpeak − TNode =
Ts
M
−

[(
Ts
M −

Ts
4M

)
2

]
(5.6)

Testing the Node Spacing Formulation

In order to test the validity of the node spacing concept, a model of TTR data was

generated for 100 nm of Al on Si (hBD = 215 MW/m2K), with M = 1, 000, 000, fs = 250

kHz, fs = 125 kHz, and a 50% duty cycle of the modulation waveform. Based on the

work of Section 5.3, the summation in M is more than sufficient to ensure that the model

represents a converged solution. The data points in the model were set with a time spacing
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similar to the steps utilized in normal12 experimental data collection. The data in the

region of interest was then interpolated using a cubic hermite spline interpolation routine

in LabVIEWTM to set a new data spacing based on Equations 5.4 and 5.6, see Figure 5.37.

The interpolation routine is setup to match the original data set as closely as possible, i.e.

not changing the number of data points.

Figure 5.37: Generated TTR model of 100 nm of Al on Si (hBD = 215 MW/m2K), with M = 1, 000, 000,
fs = 250 kHz, fs = 125 kHz, and a 50% duty cycle of the modulation waveform (blue), and the interpolated
data using Equations 5.4 and 5.6 for M = 50, 000.

The original generated data set, see Figure 5.37, was interpolated via Equations 5.4

and 5.6 for M summations ranging from M = 10, 000 to M = 1, 000, 000 creating a new

interpolated data set for each M . These data sets were then fit using the standard TTR

analysis and the appropriate summation in M for the appropriate interpolated file, the

results of which are shown in Figure 5.38. The solid red line in Figure 5.38 denotes the

known hBD value, while the horizontal dashed lines represent 1% deviation from the nominal

value. For low values of M the correct hBD value is not captured. However, as M increases

the fitted results converge to the nominal value, reaching within 1% by M ≈ 35, 000 and

by M = 50, 000 is within 0.05% of the nominal value. The continued deviation of the fitted

results at low values of M is most likely due to the low number of data points available. For

M = 10, 000 Tpeak = 400 ps, which when the original data set is interpolated, represents

a reduction in the total number of data points by a factor of 4. The reduction in the

required M from M = 666, 200 for normal convergence to 0.05% (see Figure 5.17) based

12The time spacing of the data collected during the experiment is a user defined quantity and is different
from group to group. In our lab, typically three times regions were defined: steps on the order of 100s of
femtoseconds during the initial temperature rise, several picoseconds steps during the initial temperature
decay, and 10s of picoseconds steps during the long diffusion processes.
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Figure 5.38: TTR fit of a modeled system of 100 nm of Al on Si (hBD = 215 MW/m2K), with M =
1, 000, 000, fs = 250 kHz, fs = 125 kHz, and a 50% duty cycle of the modulation waveform, as a function
of increasing summation in M , with the data spacing for each M adjusted based on Equations 5.4 and 5.6.
The horizontal dashed lines represent plus/minus 1% deviation from the known hBD value.

on the traditional convergence criteria, to M = 50, 000 using the node spacing formulation,

represents a reduction in the required computational time from 1.94 minutes to 8.73 seconds

respectively. This represents an over 13 times increase in computational efficiency, making

large scale simulations of low-rep (RegA) data tractable.

While not as necessary due to the already low summation in M required, the node

spacing formulation can also be applied when fitting data from high-rep (MIRA) systems.

Using the same methodology as was done for testing the node spacing theory for the low-

rep (RegA) system, the results of testing in the high-rep (MIRA) system are shown in

Figure 5.39. For almost all the data shown, the fitted hBD is within 1% of the nominal

values and drops to below 0.05% convergence for M = 1, 800. While the impact of the

Figure 5.39: TTR fit of a modeled system of 100 nm of Al on Si (hBD = 215 MW/m2K), with M = 3, 500,
fs = 76 MHz, fs = 1 MHz, and a 50% duty cycle of the modulation waveform, as a function of increasing
summation in M , with the data spacing for each M adjusted based on Equations 5.5 and 5.6. The horizontal
dashed lines represent plus/minus 1% deviation from the known hBD value.

153



Chapter 5. Practical Considerations in Data Deduction 5.4

node spacing formulation is not as dramatic for the case of the high-rep (MIRA) system,

its implementation still represents a 50% reduction in the required computational time

compared to the traditional convergence criteria.

Experimental Application - Sensitivity to Laser Frequencies

While the node spacing concept was developed mostly to improve the computational

efficiency of TTR/TDTR fitting to allow for large scale simulations, the natural extension

is the desire to apply this methodology to the fitting of experimentally collected data. All

the steps in the node spacing formulation hold for both experimental and simulated data.

The challenge in applying the node spacing formulation to experimental data arises in the

determination of the laser repetition frequency, fs. Figure 5.40 shows the results of fitting

simulated TTR data with a range of laser repetition frequencies, using the “mistaken” node

spacing for fs = 250 kHz in each case.

Figure 5.40: Fit hBD as a function of repetition frequency, fs, for modulation of fo = fs/2, with the time
spacing interpolated using Equations 5.5 and 5.6, for fs = 250 kHz in each case.

These results indicate that the implementation of the node spacing formulation is highly

dependent on the knowledge of the laser repetition frequency. If the laser frequency is known

to within approximately 1% the fitted results will be within 1% of the true value. However,

for a miscalculation of the laser repetition frequency of 2.5% the deviation in fitted hBD

jumps to 8.5%. Because the node spacing is dependent only on the laser period, Ts, the

validity of the formulation for a particular system can be checked by comparing the fitted

results using the node spacing to that completed using the convergence criteria established

in Section 5.3 which is independent of time spacing.
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5.4.2 Normalization of Data

As alluded to previously, in the application of Equations 4.37a and 4.37b it is not

common practice to specify the constant β, which contains information about the ther-

moreflectance coefficient of the sample and the gain in the electronics, or the adsorbed laser

power. Measuring the actual absorbed laser power, finding the thermoreflectance coeffi-

cient for each specific sample, and specifying the gain in the electronic components, can

be challenging. Additionally if not determined accurately, these parameters will add more

uncertainty than they would provide useful information. To eliminate this complexity, it

is common practice when fitting the TTR/TDTR model to the experimental data, to nor-

malize the model to the data set at some point in time, for each iteration13. The challenge

in implementing this procedure is choosing an appropriate normalization time.

The method utilized when I started in the nanoscale energy transport lab at UVa, was

to normalize at a specific time index, typically taken as the lower bound of the fitting time,

which is on the order of 100 ps. A scaling factor would be established at that time point

and multiplied by each simulated data point to normalize the model to the data during each

iteration of the fitting routine. In theory this method is valid, however for realistic data,

signal fluctuations due to inherent noise in the signal made the final results of the fitting

procedure dependent on the choice of normalization time. Consider for example Figure

5.41b which shows the results of fitting simulated data of 100 nm of Al on Si (hBD = 215

MW/m2K), with M = 1, 000, 000, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of

the modulation waveform, with added Gaussian noise for a signal to noise parameter14 of

8.5, see Figure 5.41a, as a function of scaling times. Using a single, user defined, scaling

time the fitted hBD varied upwards of 25% from the nominal value.

To eliminate the restriction of one scaling time, the TTR/TDTR fitting program was

updated to calculate an average scaling parameter. During each iteration of the fitting

routine, a scaling factor is determined for every data point as the ratio of the signal and

the value of the simulated model at that time index. The average scaling factor over the

13Note that when fitting the ratio, i.e. R = (−X/Y ), the normalization process is not needed. However,
it is often advantageous to fit the X signal individually, and in the case of the low-rep (RegA) system, the
ratio is constant, and therefore not particularly useful.

14The formal definition of the signal to noise parameter will be provided in Section 5.6.
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(a)

(b)

Figure 5.41: Fit of hBD as a function of the selected scaling time between the data and the model, for
simulated data of 100 nm of Al on Si (hBD = 215 MW/m2K), with M = 1, 000, 000, fs = 250 kHz, fs = 125
kHz, and a 50% duty cycle of the modulation waveform, with added Gaussian noise for a signal to noise
parameter of 8.5. The red line indicates the fit value using the free normalization routine.

temporal fitting window is then used to scale the model for that fitting iteration. In essence,

this procedure frees the scaling time and allows it to shift during each iteration, see Figure

5.42. Using this methodology eliminates the choice of the scaling time and the dependence

of the final fitting result on a quantity arbitrarily chosen by the user.

Figure 5.42: Scaling time as a function of fitting iteration from the TTR fitting program with the free
normalization routine, for the fitting of hBD for the data shown in Figure 5.41a.
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5.5 Sensitivity Analysis

The TTR/TDTR model developed in Chapter 4 requires a large number of input pa-

rameters to develop the output data, see Figure 5.43. In general it is desirable to have some

understanding of the relationship between the input parameters and the model output. This

knowledge provides a better understanding of the behavior of the model, helps to identify

modeling deficiencies and unreasonable responses, and allows more focus to be placed on

the input parameters that contribute most to output uncertainties. The fabrication of a

sample, measurements taken via the TTR/TDTR experiment, and the characterization of

the sample properties though ancillary methods all represent a significant experimental cost

both in terms of real dollars and time invested. The more foreknowledge we have about the

behavior of the system, the more efficiently we can direct resources and the more confidently

we can propose new projects.

Figure 5.43: Schematic of the inputs required for the TTR/TDTR thermal model.

There are many terms that have been used in order to describe the impact that an

input parameter has on the output of the model. Terms like “important”, “sensitive”, and

“most influential” have been used in literature in order to specify the impact that an input

parameter has [255]. In this work, we will generally consider the importance and sensitivity

of the input parameters. To clarify, an important parameter will be one in which the

variability in the input parameter has a significant impact on the variability in the output.

Later in Chapter 6 we will investigate how the variability in the input parameters impacts

the accuracy of deducing a parameter of interest. The sensitivity of the parameter will be
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a measure of, for a given variation in the input parameter, the variability in the model

output. By these definitions, a parameter that is important is always sensitive because

small changes in the input parameter can lead to large changes in the model output. On

the other hand, a parameter that is sensitive is not necessarily important because the value

of the parameter may be well known from some ancillary measurement.

In conducting a sensitivity analysis there are a large number of methods to choose from,

all with benefits and costs. There are several good sources one can turn to to learn more

about different sensitivity analysis techniques [255–258]. In general, sensitivity analysis

methods can be broken down into two main categories: 1) local methods and 2) global

methods. Using local methods, input variables are varied with a “one-at-a-time” (OAT)

approach by some small amount from the anticipated mean value and the effect on the model

output is found. In global methods all the input variables are varied simultaneously, usually

selected from some form of a parameter space and the effects on the model output assessed.

For this work in the discussion on parameter sensitivity we will use both local approach

and quasi-global methods, and in Chapter 6 when discussing parameter importance we will

also use a quasi-global methodology.

The most common of the local methods is the differential sensitivity analysis. The goal

of the differential sensitivity analysis is to determine the local response of the model output

to a particular input factor at a select point in the input parameter space [258]. Typically

for our analyses we will work locally in the parameter space at the mean, or “best guess,”

of the input values. For a modeled system of 100 nm of Al on Si (hBD = 1 MW/m2K),

with k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of the modulation

waveform, variations in thermal boundary conductance, hBD, and the specific heat capacity

of the film, L1C , are shown in Figures 5.44 and 5.45 respectively.

In Figures 5.44a and 5.45a the baseline models and the models for the parameters

reduced by 10% are shown, with both models normalized at t = 100 ps. In Figures 5.44b

and 5.45b the difference between the two models is shown. We can note that the thermal

boundary conductance and the specific heat capacity of the film have a positive and negative

response to the perturbation of the input variable respectively. In order to quantify this

variation we can define a sensitivity coefficient.
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(a)

(b)

Figure 5.44: Modeled data of 100 nm of Al on Si (hBD = 1 MW/m2K), with k = {−1, 1}, fs = 250
kHz, fo = 125 kHz, and a 50% duty cycle of the modulation waveform, for (a) the baseline case of hBD =
100 MW/m2K and for the perturbed case of 90% of the baseline case, and (b) the difference between the
perturbed case and the baseline case as a function of time.

(a)

(b)

Figure 5.45: Modeled data of 100 nm of Al on Si (hBD = 1 MW/m2K), with k = {−1, 1}, fs = 250 kHz,
fo = 125 kHz, and a 50% duty cycle of the modulation waveform, for (a) the baseline case of L1C = 2.44×106

J/m3K and for the perturbed case of 90% of the baseline case, and (b) the difference between the perturbed
case and the baseline case as a function of time.
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5.5.1 Sensitivity Coefficient

The sensitivity coefficient SΨ
p , is defined as the ratio of the change in the model output

to the change in an input parameter, normalized by the central case and given by [258]:

SΨ
p (t) =

∂ ln Ψ(t)

∂ ln p
=

pB
ΨB(t)

∂Ψ(t)

∂p
(5.7)

where p is the thermophysical parameter of interest and Ψ(t) is the output signal, i.e.

magnitude M , phase θ, real X, imaginary Y , or ratio R = (−X/Y ), and the subscript B

denotes the baseline case. By normalizing the sensitivity coefficient and assuming a constant

perturbation of the input parameters, i.e. pB/∂p is constant, we can compare the output

sensitivity to different magnitudes of input perturbation and of different input magnitudes.

While the differential method is straight forward and computationally efficient, one of the

major draw backs is that while derivatives for simple models can be easily obtained, for

more complex models differentiating the model can be quite difficult. If we assume that the

perturbations to the input parameters are small, the derivatives can be approximated by a

finite difference [255, 258]. Under this assumption, the sensitivity coefficient is given as:

SΨ
p (t) =

pB
Ψ(t)

Ψ∆(t)−ΨB(t)

p∆ − pB
(5.8)

where the subscript ∆ denotes the perturbed case. The sensitivity coefficient given in

Equation 5.8 is the parameter commonly used in the nanoscale energy transport field to

discuss the sensitivity of the TTR/TDTR model [75, 94, 245, 259–262].

One important consideration is that we have defined the sensitivity coefficient under the

assumption of small perturbations. Therefore, we should have some quantification of when

small is small enough as to not impact the results. To accomplish this, Figure 5.46 shows

the sensitivity coefficient of the real portion of the lock-in amplifier signal, X, to hBD, as

a function of the percentage that hBD is perturbed. We will notice that above 0.1%, the

sensitivity begins to show nonlinearities and begins to deviate significantly for perturbations

over 1%. While literature typically takes the perturbation percentage to be on the order of

1-10% the sensitivity coefficient will be more valid for perturbation values under 0.1%.
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Figure 5.46: Average sensitivity parameter, SXhBD
, over 100-8000 ps as a function of the percentage that

hBD is perturbed

Sensitivity Coefficient as a Function of Time

As an example of the sensitivity coefficient presented in Equation 5.8 the sensitivity as

a function of time for a modeled system of 100 nm of Al on Si (hBD = 1 MW/m2K), with

k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of the modulation waveform

is shown in Figure 5.47. In the figure, the most sensitive parameters are the pump/probe

waist and the absorbed laser power. However as discussed in Section 5.4.2, it is typical to

normalize the model and the data when fitting to deduce a thermophysical parameter of

interest. Therefore when developing the sensitivity coefficient, and comparing the baseline

model, ΨB, to the perturbed system, Ψ∆, it is necessary to normalize these models relative

to one another which is typically done at the lower time bound, see Figure 5.47b. With the

normalization procedure, the system is no longer sensitive to the absorbed laser power, or

pump/probe spot size.

While the sensitivity coefficient as formulated in Equation 5.8 and presented in Figure

5.47 provides quantitative insight into how the model changes for changes in the various

input parameters as a function of time, it can be difficult to compare between different

material systems. Because of the temporal dependence of SΨ
p , adding a range of input

values to the sensitivity calculations yields results in three dimensions. Figure 5.48 shows

the sensitivity to hBD of a system of 100 nm of Al on Si as a function of pump-to-probe delay

time and the hBD of the Al/Si interface. While there is plenty of information contained in

Figure 5.48, it can be difficult to visually interpret the impact of hBD on the sensitivity.
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(a)

(b)

Figure 5.47: Sensitivity coefficient, see Equation 5.8, as a function of time from 130-8050 ps, for (a) non-
normalized and (b) normalized data. The modeled system is 100 nm of Al on Si (hBD = 1 MW/m2K), the
details of the modeled system can be found in Appendix S.1.

Figure 5.48: Sensitivity to hBD of a system of 100 nm of Al on Si as a function of time and the assumed
hBD at the Al/Si interface.

162



Chapter 5. Practical Considerations in Data Deduction 5.5

Sensitivity as a Function of p

To simply the analysis of the data in Figure 5.48, it would be helpful to be able to

remove one of the axes and reduce the information to a two-dimensional plot. This is

typically done by attempting to remove the time dependence from the sensitivity. In order

to remove the time dependence of the sensitivity coefficient, most literature chooses an

arbitrary time, typically 100 ps, to track the sensitivity as a function of parameter [94,

245, 259–262]. While this is what is most commonly done in literature, there are two risks

to using this methodology. The first is that with the normalization of the data impacting

the magnitude of the sensitivity coefficient near the normalization time, see Figure 5.47,

the time-independent sensitivity parameter will be dependent on the relative relationship

between the normalization time and the tracking time. The second risk is that the choice

of the tracking time will not sufficiently capture the trend in sensitivity. As shown in

Figure 5.47, the sensitivity of a parameter can increase, decrease, and/or stay the same

as a function of time. In order to make the time-independent sensitivity coefficient more

universal, for the work in this dissertation rather than selecting an arbitrary track time, the

sensitivity is averaged over time.

(a)

(b)

Figure 5.49: Averaged sensitivity as a function of parameter, p, for a modeled system of 100 nm of Al on
Si for (a) SXhBD as a function of hBD and (b) SXkS as a function of the substrate thermal conductivity, kSz
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5.5.2 Statistical Sensitivity Analysis

At this point the development and application of the sensitivity coefficient, either as a

function of time or parameter has relied on a deterministic view of the TTR/TDTR model.

That is to say we have assumed that all the input values are known exactly and only per-

turbed these values to generate the sensitivity coefficient. As discussed in Chapter 2, there

are many factors out of the experimenters control that will impact the final thermophysi-

cal parameters of the fabricated system. Therefore, when proposing a potential system to

fabricate such as when writing a new grant, it is important to take a statistical treatment

of sensitivity.

In order to make the formulation of the sensitivity coefficient more stochastic in nature

rather than treating each input to the thermal model as a fixed quantity, we can define each

value by a probability distribution. To achieve this, the LabVIEWTM modeling program

was adapted to allow the input parameters to be described by either a normal or uniform

distribution centered about the anticipated value, and with the range of values described

by the standard deviation given as a percentage. The program randomly selects an input

parameter from the given distributions at the beginning of each iteration and then calculates

the averaged sensitivity coefficient in the normal manner. With the convergence criteria

and node spacing formulations developed in Sections 5.3 and 5.4.1 respectively, accurate

and efficient large scale modeling of the quasi-stochastic model sensitivity is attainable.

As an example we will consider a model of 100 nm of Al on Si (hBD = 215 MW/m2K),

with k = {−1, 1}, fs = 76 MHz, fo = 1 MHz, and a 50% duty cycle of the modulation

waveform. For the primary thermophysical parameters of the model the standard deviation

of the normal distributions used are shown in Table 5.5. For each iteration of the sensitivity

analysis the input parameters were chosen by random from each of the respective distri-

butions, and the sensitivity to the substrate thermal conductivity and thermal boundary

conductance calculated. To illustrate this, Figure 5.50 shows the distribution of the input

values for the substrate thermal conductivity (Figure 5.50a) and the thermal boundary

conductance (Figure 5.50b) for 5,000 trial iterations. The resulting distributions of the

sensitivity coefficients for the substrate thermal conductivity and interface conductance are

shown in Figure 5.51, with the red vertical lines representing the sensitivity coefficient
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Table 5.5: Uncertainty in TTR/TDTR input parameters for the example of a modeled system of 100 nm of
Al on Si (hBD = 215 MW/m2K) in Section 5.5.2 demonstrating the implementation of stochastic sensitivity
analysis, where L1 and LS denote the film and substrate layer respectively.

Parameters

L1C L1k,z L1d hBD LSC LSk,z

[J/m3K] [W/mK] [nm] [W/m2K] [J/m3K] [W/mK]
Nominal 2.44× 106 237 100 2.15× 108 1.66× 106 148

Standard Deviation 5% 5% 10% 50% 5% 5%

(a) (b)

Figure 5.50: Examples of the distribution of input values for a modeled system of 100 nm of Al on Si
with k = {−1, 1}, fs = 76 MHz, fo = 1 MHz, and a 50% duty cycle of the modulation waveform for (a)
substrate thermal conductivity with a nominal value of kz = 148 W/mK and (b) hBD with a nominal value
of hBD = 215 MW/m2K.

(a) (b)

Figure 5.51: Resulting distributions of the average sensitivity coefficient for substrate thermal conductivity
and thermal boundary conductance based on the stochastic sensitivity analysis example in Section 5.5.2.
The distributions represent the results for N = 5, 000 iterations of the sensitivity model, and the red vertical
lines represent the sensitivity results using the nominal input parameters.

calculated via the nominal thermophysical parameters. We can notice immediately that even

though the uncertainty in the input parameters was assumed to be normally distributed,
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the distributions of the sensitivity coefficients for each parameter are non-normal. In the

case of the substrate thermal conductivity the probability indicates that the sensitivity is

likely to increase for the given input uncertainties. In contrast, the results show that for

the thermal boundary conductance the variations in the input parameters will most likely

decrease the sensitivity to deducing hBD. While in general, for this example the distribution

of sensitivity coefficients fall within the range of values that are acceptable, we will note

than when comparing the range of the distribution of sensitivity coefficients calculated for

hBD, see Figure 5.51b, to those calculated as a function of hBD over all values for the 100

nm Al on Si system, see Figure 5.49a, that this distribution represents a significant portion

of the range of possible sensitivity values. Later in Chapter 6 we will discuss how the

sensitivity coefficient of the parameter of interest impacts the precision of the fitted result

for a given amount of noise in the data, which we will now discuss quantitatively.

5.6 Defining Noise in Data

To this point we have only dealt with ideal modeled data, that is data with no sources

of noise or random variation. In real systems there are several sources of intrinsic (random)

noise present that affect the overall noise level in the measured signal including 1/f noise

(“pink noise”), Shot noise, radio frequency (RF) noise, and Johnson noise. The total random

noise in the system can be defined as the square root of the sum of the squares of each of

the individual noise components [263]. While a large portion of the noise is filtered out by

the lock-in amplifier in TTR/TDTR signals, and several methods can be utilized to help

mitigate the different sources of noise [228], it is not possible to remove all noise from the

data. The remaining noise in the data will in part contribute to the variations in the fitted

results and reduce the precision to which a parameter may be deduced (more details will

follow in Chapter 6). Therefore, in order to estimate anticipated parameter precision and

determine whether the signal is sufficient to merit data collection, it is important to have a

method to quantify the amount of noise in the data.
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5.6.1 Measuring Signal Noise via the Lock-in Amplifier

Using the lock-in amplifier in the TTR/TDTR system (Stanford Research Systems

SR844) it is possible to measure the level of noise in the signal [263]. While the lock-

in amplifier itself is an excellent noise filter, it will measure any signal close to the reference

frequency. Therefore, any sources of noise with frequency components within the detec-

tion bandwidth of the lock-in amplifier near the reference frequency will show up in the

measured signal. The simplest measure of the signal noise is the standard deviation of the

measured signal. This is difficult however for the lock-in amplifier to calculate in real time.

To calculate the noise in a given channel, i.e. X or Y , the lock-in amplifier first takes a

moving average of the signal at a rate of 512 Hz and subtracts that value from the current

signal to obtain the signal deviation. The moving average of the mean of the deviations

over time is then calculated and is called the Mean Average Deviation (MAD). The rate

at which the MAD is collected is a function of the time constant of the lock-in amplifier.

Assuming a Gaussian distribution of the noise, the MAD is scaled by a factor known as the

Equivalent Noise Bandwidth (ENBW). The ENBW is a function of the slope of the low-

pass filter in the lock-in amplifier. The noise measurement given by the lock-in amplifier,

XNoise,LIA, is independent of the magnitude and slope of the time constant, but fluctuations

in the measured noise depend on these settings. Longer time constants and/or higher slopes

provide more stable readings, however a longer time is needed for the results to settle after

a variation in the input signal. The noise measurement from the lock-in amplifier can be

converted to an equivalent standard deviation, given in terms of voltage, by scaling by the

ENBW:

V X
Noise = XNoise,LIA ×

√
ENBW (5.9)

While the lock-in amplifier provides a good real-time measurement of the noise in the

output signal, typically a measurement of noise alone is only partially useful. If the noise

level is low but the signal strength is on a similar order, the ability to deduce parameters

from the data and/or the confidence in said parameters will be limited. Therefore, in

reporting the noise in a particular signal it is common to group the noise measurement and

the signal magnitude together in a signal-to-noise quantification.
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5.6.2 Defining a Signal-to-Noise Parameter

Traditionally, the method of quantifying the comparison between the signal and noise

in data is through the signal-to-noise ratio (SNR). Being defined for the lock-in amplifier

as the ratio of the signal voltage to the noise voltage:

SNR =
V Ψ

Sig

V Ψ
Noise

(5.10)

were Ψ represents the type of signal (magnitude, phase, etc.). Typically the noise in the

system is characterized by measuring the level of signal fluctuations prior to to, and the

signal characterized by the magnitude of the signal taken at the peak around to.

In order to allow for the noise parameter to be calculated for data sets post-collection and

independent of normalization, we define a modified version of the signal-to-noise ratio. We

will define this quantity as the signal-to-noise parameter (SNP) due to its similar meaning,

but modified formulation, as compared to the more traditional SNR. The SNP is an averaged

parameter over all time points within the region of interest. Usually this begins at the

smallest time index considered, typically 100 ps, and includes all subsequent data points.

At each time index the average signal is calculated and used to normalize all the data

points at that index. The standard deviation of that data set is then taken and the average

collected over all data points. The value is finally inverted to increase the scale of the final

value. Mathematically the SNP is represented by:

SNP =

 1

N

N∑
j=1

[
1

n− 1

n∑
i=1

(
xi
x̄ (j)

− x̄ (j)

)2
]
−1

(5.11)

where n is the number of data sets and N is the number of time points considered.

As an example, we will consider a modeled system of 100 nm of Al on Si (hBD =

1 MW/m2K), with k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of

the modulation waveform. Figure 5.52 shows the modeled data with Gaussian noise added

to create three different levels of noise. The noise was added by assuming that each data

point was the mean value of a Gaussian distribution and with the standard deviation used

to control the noise level. A point was randomly selected from each distribution to rebuild
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the modeled data with the added noise. More details on the method of simulating noise

in the modeled data will be presented in Chapter 6 when discussing simulations realistic

TTR/TDTR data. The added noise resulted in SNPs for plots (a)-(c) in Figure 5.52 of

4.18, 8.65 and 12.12 respectively.

(a)

(b)

(c)

Figure 5.52: Modeled data sets of 100 nm of Al on Si with hBD = 2.15 MW/m2K for 3 different signal-to-
noise parameters a) 4.18, b) 8.65, and c) 12.12.

To illustrate the added noise, Figure 5.53 shows the distribution of noise in 10 trials

of the modeled system for the three simulated SNPs. By definition of the formulation

in Equation 5.11, the data at each time index is normalized and therefore overall has an

average value of one. The SNP is then calculated based on the average standard deviation

across all the time indexes. This provides a statistical advantage by averaging over all time

in the model, as opposed to calculating a signal-to-noise ratio based on the peak in the
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signal alone. To estimate the SNP in real time during the TTR/TDTR experiment, rather

than calculating the SNP based on a collection of scans, data can be collected at a fixed

time at the midpoint in the region of interest and averaged in real time using a “staring”

routine until sufficient data has been collected to produce an accurate result. This will allow

a real-time check before data is collected to ensure that there is sufficient signal compared

to the noise to warrant data collection.

(a)

(b)

(c)

Figure 5.53: Distribution of noise in 10 trials of the modeled system of 100 nm of Al on Si (hBD =
1 MW/m2K), with k = {−1, 1}, fs = 250 kHz, fo = 125 kHz, and a 50% duty cycle of the modulation
waveform, with Gaussian noise added to achieve signal-to-noise parameters of 4.18, 8.65, and 12.12 for panes
(a)-(c) respectively.
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5.7 Post-processing of Data to Remove Outliers

One of the challenges in analyzing the results of the TTR/TDTR model is that in almost

all instances the model will output a quantitative result. It is the job of the experimenter

however to determine whether the results are valid. The obvious first check is to decide

whether the result makes sense. If the result is not physical, such as a negative thermal

conductivity, it is easy to attribute the data point to some error and discard it. Additionally,

if a result is highly uncharacteristic in comparison to the rest of the data, it is highly likely

that result can be discarded as well. The difficulty arises as a result becomes less and less

uncharacteristic in comparison to the rest of the data. At that point, arbitrarily removing

a result introduces the possibility of artificially influencing the final conclusions. To remove

this risk we can turn to statistical methodologies in order to test the TTR/TDTR data for

the presence of statistical outliers.

In 1980 D.M. Hawkins provided a definition of a statistical outlier as: “... an observa-

tion, which so much deviates from other observations as to arouse suspicions that is was

generated by a different mechanism” [264]. There are several sources that lead to fluctu-

ations in experimental data: 1) the inherent probabilistic fluctuations in the results that

cannot be removed, 2) fluctuations due to errors in the measurement devices, such as from

background noise, and 3) imperfect collection and analysis of the data, such as biased

sampling.

Figure 5.54: Theoretical hBD values for a data set containing 58 data points.

Fortunately there are several statistical methods that can be used to identity whether a

data point represents a statistical outlier, and these methods have be compared for various
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types of measurements [264, 265]. Because the results of the TTR/TDTR measurement

are relatively simple, we will not spend the time contrasting and discussing the various

types of outlier identifying formulations. The purpose here is not to present anything

novel, but rather to demonstrate how simple methods can be used to remove the arbitrary,

and statistically dangerous method of throwing away data based on visual inspection and

encourage a more statistically robust treatment of data.

5.7.1 Removing Statistical Outliers

To statistically handle the treatment of outliers the generalized extreme Studentized

deviate (ESD) test developed by Rosner in 1983 is presented [266]. The generalized ESD

test allows for the detection of r outliers in univariant data that is assumed to follow an

approximately normal distribution. If the data is not normally distributed, the generalized

ESD test can falsely identify data points as outliers when they are in fact apart of the

non-normal distribution. It is therefore prudent to check for normality of the data set

before applying the generalized ESD routine. There are several numerical and graphical

methods to test for normality, several of which are discussed in Appendix D.1. Figure 5.55

shows normality testing for the data shown in Figure 5.54 using graphical analysis of the

data distribution and distribution parameters, Figure 5.55a, and using more quantitative

analysis through a quantile-quantile plot and the Shaprio-Wilk normality test, Figure 5.55b.

While not strictly meeting the criteria for normality, the generalized ESD test only requires

that the data approximate a normal distribution and therefore the data in Figure 5.54 can

be analyzed. The other major strength of the generalized ESD test is that unlike similar

outlier tests such as the Grubbs test [267], the number of outliers does not need to be

specified exactly but rather an upper bound for the number of potential outliers provided.

To test for statistical outliers the implementation of the generalized ESD test is based

on the following hypothesis:

H0 : There are no outliers in the data set (5.12a)

H1 : There are up to r outliers in the data set (5.12b)
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(a) (b)

Figure 5.55: Normality testing of the data shown in Figure 5.54 by (a) a histogram plot with the distri-
bution skew and kurtosis denoted and (b) a quantile-quantile plot with the results of the Shapiro-Wilk test
for normality displayed.

where H0 and H1 are the null and alternative hypotheses respectively. To test the hypothesis,

assuming a total of r potential outliers, for each iteration of the routine, i.e. i = 1, 2, 3...r,

the test statistic, Ri, is computed where:

Ri =
max |xi − x|

s
(5.13)

and where x is the sample mean and s is the sample standard deviation. The critical value,

λi, is then calculated using the formulation:

λi =
(n− i) tp,n−i−1√(

n− i− 1 + t2p,n−i−1

)
(n− 1 + 1)

(5.14)

where n is the number of data points, i is the current iteration, and tp,n−i−1 is the 100p

percentage point of the Student’s t-distribution with n − i − 1 degrees of freedom with p

given by:

p = 1− α

2 (n− i+ 1)
(5.15)

where α is the significance level. For each iteration the test statistic and critical value can

be tabulated as shown in Table 5.6. After each iteration the data point that maximizes the

quantity |xi − x| is removed as the potential outlier and Equations 5.13-5.15 are recalculated

assuming n− 1 data points. The total number and identity of the outliers is determined by
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Table 5.6: Tabulated parameters of the generalized Studentized extreme deviate test for outlier based on
the data in Figure 5.54 assuming r = 5 potential outliers and a significance level of α = 0.05.

Trial, i hBD MW/m2K Test Statistic, Ri Critical Value, λi H0

1 6.00× 107 4.015 3.187 Reject
2 1.00× 107 3.438 3.173 Reject
3 5.00× 107 3.455 3.159 Reject
4 4.50× 107 2.916 3.144 Accept
5 1.80× 107 2.827 3.128 Accept

the maximum i in which Ri > λi.

In the case of the data shown in Figure 5.54 the results of the generalized ESD test

presented in Table 5.6 indicate that there are 3 outliers present in the data, namely the

points labeled 1,3, and 7. These data points can be “safely” removed15 from this data set,

and the remaining collection of data processed to produce a statistical result, which will be

discussed in more depth in Chapter 6.

5.8 Chapter Summary

In this chapter many details were developed that are often ignored or understated in the

application of the TTR/TDTR analysis. I began by presenting convergence criteria for the

infinite summations present in the TTR/TDTR model that was developed and presented

in Chapter 4. This included summation in M for the sinusoidal, square, and pulsed mod-

ulation waveforms and the summation in k for the latter two waveforms. The goal was to

not only remove the “guess work” from the choice of M and k to ensure accurate modeling,

but also to provide a lower bound to these values to make calculations as computationally

efficient as possible. To further increase the computational efficiency, I demonstrated the

ability to take advantage of the Gibbs oscillations in the data for values of M below the

established convergence criteria to allow accurate modeling with M below the convergence

limit. This process supports further calculations throughout this work making them more

computationally feasible. To ensure accurate deduction of parameters from experimental

data via fitting using the TTR/TDTR model I introduced a modified normalization scheme

15I specified that the data can be removed, rather than discarded, because while the outlier does not
statistically coincide with the rest of the data, that does not mean that there is no potentially knowledge to
be gained from that result.

174



Chapter 5. Practical Considerations in Data Deduction 5.8

that eliminates the user defined scaling time which was shown to influence the final re-

sults. To quantify the behavior of the model output to variations in the input parameters

I discussed methods of sensitivity analysis, demonstrating the small perturbation limit of

the sensitivity coefficient and promoting the use of a stochastic analysis when modeling

an unknown system. This stochastic approach along with the formulations in Chapter 6

should provide quantitative estimates of the precision and accuracy of a measured system.

In support of this, I presented methodologies to quantify the noise in the collected data and

finally introduced a statistical method to test for outliers in the collected data. Together

these results will make the application of the TTR/TDTR analysis more repeatable, com-

putationally efficient, accurate, and provide a better framework for modeling a system prior

to sample fabrication to determine whether the desired measurements will be statistically

feasible.
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6.1 Introduction

In Chapter 1 a brief history of computing focused on thermal management was presented

and the various consequences of heat related device failure were discussed. There is little

doubt that computing devices have become an integral part of our daily lives, some very

apparent such as computers and smart phones, and some less obvious such as those in traffic

control systems and similar infrastructures. Therefore, almost every article or grant in the

thermal physics field begins by discussing the importance of proper thermal management,

some even going as far as to discuss “life-threatening consequences” of thermal failure.

Over the past several decades measurements of hBD have transitioned from more broad

comparisons of very different material systems, to more refined comparisons of the same

material system, i.e. film and substrate combination, with minute variations in the interface

structure and properties, see Chapter 2.

Unfortunately, the statistical treatment and analysis of TTR/TDTR data has remained

relatively crude, remnant of the time when comparisons between measured values from dif-

ferent material systems could vary by an order of magnitude or more. Often times when

data from experiments or simulations is reported in literature or at conferences there is no

quantification of a measure of variability in the results, i.e. “error bars.” If some quantifi-

cation is presented via some type of error bars, there is no specification as to whether they

represent a standard deviation, a standard error, or a confidence level of some significance

level1. More unfortunate still, if provided the error bars are often treated as a “decoration”

1All these terms will be defined and discussed further in the coming sections.
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to the plot, in as much as there is no statistical interpretation of the results and conclusions

are drawn regardless of the information the error bars provide.

Consider for example the data shown in Figure 6.1. The figure was reproduced from

data presented in a major heat transfer journal (impact factor ≈ 2.5) and depicts hBD as a

function of temperature from molecular dynamics simulations2. The results are the average

of 5 independent simulations and while the type of error quantification is not specified, it

is assumed that the error bars represent plus/minus one standard deviation in the results.

From the data in Figure 6.1, the authors discuss an increasing trend in hBD between 50

and 250 K citing various experiments and studies supporting this interpretation, and also

discusses the plateau in hBD above 250 K concluding that it is the result of various physical

phenomena in the system.

Figure 6.1: Results of molecular dynamics simulations of hBD as a function of temperature taken from
a predominate heat transfer journal (impact factor ≈ 2.5). Error bars represent plus/minus one standard
deviation.

While the arguments from the trends in the data presented by the authors appears valid

considering the average data points, if the data in Figure 6.1 is analyzed statistically as well,

a problem arises. In analyzing a trend in the data it is important to consider, for example, if

the data points can be assumed to be statistically different based on the mean and variance

of the data sets. As an example, for the data presented in Figure 6.1, the Welch’s t-test

for the equality of two means [268] was performed on the permutations of the pairings

of data points 1-8 assuming a null hypothesis that the means are equivalent, see Table

2The details of the study and the citation of the work are omitted. The purpose of this demonstration
is not to challenge the work of a particular group, but to advocate higher standards of statistical analysis
and consideration in the thermal community.
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6.1. From the p-values shown in Table 6.1 there is no strong evidence to suggest rejection

of the null hypothesis which indicates that the mean values are statistically equivalent.

Therefore, there is little statistical evidence to support any trends in the data other than a

constant hBD as a function of temperature. In order to draw more robust conclusions based

on experimental data and more accurately represent results, a more in-depth statistical

analysis and interpretation of TTR/TDTR data is required.

Table 6.1: Calculated p-values based on Welch’s t-test between the data points shown in Figure 6.1 where
the null hypothesis is that the two means are equal.

Data # 1 2 3 4 5 6 7 8

1 1.000
2 0.717 1.000
3 0.624 0.889 1.000
4 0.316 0.489 0.579 1.000
5 0.205 0.324 0.391 0.742 1.000
6 0.232 0.372 0.451 0.847 0.884 1.000
7 0.195 0.309 0.374 0.719 0.976 0.859 1.000
8 0.245 0.385 0.462 0.848 0.889 0.997 0.865 1.000

In this chapter we will focus on the statistical analysis and interpretation of the deduced

thermophysical data from the TTR/TDTR experiment via the thermal modeling developed

in Chapters 4 and 5. We will begin by going over some of the basic formulations and

terminology of statistical inference as it applies to our thermal experiment. This is to

develop a robust statistical language moving forward and then highlight some of the nuances

that are often missing from the presentation of TTR/TDTR data. We will suggest the use

of confidence intervals as a quantitative measure of the precision in the fitted results, and

discuss how the number of samples and the standard deviation of the sample set affects

the length of the confidence interval for precision. To allow for a priori estimation of the

standard deviation of a sample set based on fitting sensitivity and noise in the data, see

Chapter 5, we present the results of a series of large scale simulations of fitted TTR/TDTR

data. Using these results, a set of empirical formulations are presented that relate the

sensitivity coefficient and the signal-to-noise parameter to the estimated ideal standard

deviation of a sample set. In order to test the validity of the statistical assumptions made

in the analysis of the TTR/TDTR data, the non-parametric bootstrapping technique is
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introduced. Finally, as a measure of the accuracy in the modeled data, and supported by

the methods to increase computational efficiency proposed in Chapter 5, quasi-stochastic

methods of accuracy analysis are presented which take into account the distribution and

covariance between the input parameters.

6.2 Confidence in Results - Accuracy vs. Precision

In terms of mathematical statistics, the goal in the collection and analysis of TTR/TDTR

data is to use statistical inference to draw conclusions about parameters of a population, i.e.

a material system, through the estimation of thermophysical parameters such as thermal

conductivity, thermal boundary conductance, etc., taken from a random sampling of the

population. We will begin by giving a brief overview of basic statistical methods, not to

introduce new statistical methods, but to define and develop a robust statistical language

that is often missing in TTR/TDTR data analysis.

Taking hBD as an example3, we begin by defining the total population as all potential

hBD values from which there are collections of sub-populations which represent the various

combinations and configurations of material systems4, see Figure 6.2. In our experimental

methods, from these sub-populations we will wish to select a random sample set in order

to attempt to create a point estimate of a statistic of the sub-population5, e.g. the average

hBD.

The methods used to generate and analyze the statistical inferences made from the

sampled data will depend on how the data in the sample and the overall population are

distributed. If the data sample conforms to a known distribution, or is sampled from a

known distribution, there are several parametric methods that can be used in the analy-

sis. However, if the data does not conform to a defined distribution or the distribution is

3Note: We can choose to analyze any thermophysical parameter from the thermal model, see Chapter
4. However, because it is the primary focus of this dissertation, the statistical analysis will mostly discuss
hBD as the parameter of interest.

4This is further complicated due to the fact that not all film/substrate combinations are created equal.
Factors such as surface preparation, material quality, deposition conditions, etc., further provide potential
sub-populations, see Chapter 2.

5From this point on, we will refer to the parameter of interest of a particular TTR/TDTR sample in
terms of a population, with the understanding that it represents a subset of all potential values.
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Figure 6.2: Representation of the population of all potential hBD values and several example sub-
populations of potential material systems, from which a random sample set will be selected.

unknown, more computationally expensive non-parametric methods must be used6.

For the sake of argument, we will begin by assuming that the distribution of a population

of hBD values for a given material system follows a normal distribution, which is given in

its general form by [19]:

f (x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 and −∞ < x <∞ (6.1)

where µ is the population mean, and σ2 is the population variance (from which we can

calculate the population standard deviation, σ). An example of a normal distribution of

hBD values with µ = 100 MW/m2K, and with several values of standard deviation, σ = 1, 5,

and 10 MW/m2K receptively, is shown in Figure 6.3. While common, the assumption of

normality is powerful and provides a large framework of tools to provide estimation and

statistical significance to inferences made about the parameters of a population. Therefore

if violated, and/or the wrong assumption about the distribution of the population made,

inferences may not be valid or reliable. For now, we will stick with the assumption that

the population is normally distributed and later will discuss the validity of this assumption

and how the results would be affected if this assumption broke down.

One of the challenges in the statistical analysis of TTR/TDTR results is that we do

not sample a thermophysical parameter of interest, e.g. hBD, directly. Rather we collect

6Non-parametric statistical methods will be discussed in more detail in Section 6.7
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information on the samples surface temperature as a function of time after short pulsed

laser excitation and compare the results to a thermal model (see Chapter 4) to deduce

the parameter of interest. As detailed in Chapter 4, the thermophysical model has several

inputs based on the parameters of the sample and laser, and the parameter of interest is

typically deduced by treating all other parameters as constants and iterating a guess of the

desired parameter until the data and the model match to within some stopping criteria.

Whenever an experiment is conducted and analysis completed, there is a certain amount

of variability in the results of repeated measurements. In the TTR/TDTR procedure, these

variations can arise from several sources:

1. Variations within the population of hBD values across the TTR/TDTR sample surface

due to variations in the parameters affecting hBD, e.g. species mixing.

2. Uncertainty in the values of the input parameters of the thermal model leading to

potential variations in the deduced parameter for a given data set.

3. Noise fluctuations in the surface temperature of the data set leading to variation in

the deduced parameters for fixed inputs.

Of these three sources, the first is what we wish to capture in conducting our experiment

and analysis, with the confidence we have in our results being limited by the other two. The

amount of uncertainty we have in the input parameters of our model, will directly effect

the accuracy of our results. While systematic errors and noise fluctuations will affect the

Figure 6.3: Examples of normal distributions, see Equation 6.1, for µ = 100 MW/m2K, and σ = 1, 5, and
10 MW/m2K.
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precision of the measurement. The precision of our results can be improved through repeated

measurements, while the accuracy can be improved through better characterization of the

input parameters to the model. Any statistical quantification of uncertainty in our final

result will be subject to the larger of these two bounds, i.e. accuracy driven or precision

driven. Typically, we have the most control over the precision of our results, therefore we

will focus on ensuring that our bounds of precision are within the bounds dictated by the

accuracy of our modeling. We will begin first by detailing the methods for high precision

and then develop the methods for estimating the accuracy of our final result.

6.3 Statistically Reporting Results

If we were able to select an hBD value from a TTR/TDTR sample surface, we would

expect our results to fall somewhere within the bounds of the distribution with a probably

dictated by µ and σ. For a single sampling, the probability of the deduced value falling

within prescribed bounds, represented as integer pairs of σ, can readily be found by con-

sidering the probability distribution of the standard normal curve, see Figure 6.4. The

probability of selecting a single value between ±1σ is 68.2%, ±2σ is 95.4%, ±3σ is 99.6%.

Figure 6.4: Schematic of the standard normal curve with percentages for each standard deviation denoted.

It is typically poor experimental practice to conduct only one sampling and assume

that we have captured all necessary information about the population of a system7. As

experimentalists it is more typical, although far from assured, to take a number of scans

on each sample in hopes of building a “statistical picture” of the behavior of a population.

7And impossible to quantify the uncertainty in that estimation without knowing the variance of the
underlying population.
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Suppose we select a random sample8 of size n which we will denote X = {x1, x2, x3, . . . xn}

from a given normal population with mean µ and variance σ2. From this sample set we

can find the arithmetic sample mean, x, which will be a point estimate of the true mean,

µ, given by [19]:

x =
x1 + x2 + x3 + · · ·+ xn

n
=

1

n

n∑
i=1

xi (6.2)

Additionally, we can also calculate the standard deviation of the sample as a measure of

the dispersion of the collected data, given by [19]:

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (6.3)

It is important to note that the mean and standard deviation, x and s, are properties of

the sample of size n, assumed to be randomly selected from an infinite population.

What is the current state of the field in reporting statistical results?

It is important to pause a moment here and take note that in the field of nanoscale

thermal measurements specifically focused on thermophysical measurements from thermore-

flectance, Equations 6.2 and 6.3 represent the full extent of the statistical analysis typically

employed. For those groups that provide some type of statistical uncertainty quantifica-

tion9, it is typically in the form of a mean of a fixed number of scans (arbitrarily chosen)

and error bars representing plus/minus one standard deviation calculated from the data set.

In terms of what has been presented so far, this provides information about the particular

sample of data that was collected by the group and does not really provide any statistical

estimation about the population. This only provides information on what was done and

makes no attempt to predict the properties of the population, i.e the sample, or provide an

estimate as to the probability of whether the collected data contains a true estimate of the

parameter value.

8By random we will assume that the values selected are independent and identically distributed (i.i.d).
Meaning that the selection of one variable does not affect the probability of selecting the next, and that they
are drawn from the same probability distribution.

9Unfortunately, it is not uncommon to see data plotted with trends and results inferred and no statistical
quantification of the significance of the results which casts doubts on the conclusions.
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Turning to More Robust Statistical Methods of Inference

To conduct a truly robust analysis, we would repeatedly collect random samples of size

n from the same population and calculate the sample mean, x, for each to build a sampling

distribution of the means. The sampling distribution of the means is not to be confused

with the distribution of the population. Where the population distribution provides the

statistical distribution of all hBD values in the population, the sampling distribution of the

means provides the statistical distribution of mean hBD values calculated from repeated

samplings of size n. As an example, consider a random sampling of hBD values of size

n = 10 selected from a normal distribution with mean µ = 100 MW/m2K and standard

deviation σ = 5 MW/m2K. Figure 6.5 shows the sampling distribution of the mean hBD

values for an increasing number of repeated samplings of size n.

If we consider N random samplings of size n from a population, we can define the

expected mean of the sampling distribution of mean hBD values, µx to be:

µx =
x1 + x2 + x3 + · · ·+ xN

N
=

1

N

N∑
j=1

xj (6.4)

where xj is the mean of the jth sampling of n random hBD values and N is the total

number of resamplings. In the limit that N is sufficiently large10, the mean of the sampling

distribution will converge to the population mean, i.e.:

lim
N→∞

1

N

N∑
j=1

µx = µ (6.5)

The standard deviation of the sampling distribution, σx, also called the standard error is

given by [19]:

σx =
σ√
n

(6.6)

where σ is the standard deviation of the underlying population.

In an ideal experimental world, when using statistical inference to estimate the mean

hBD of a given population we would report the mean and standard deviation of the sampling

10The concept of “sufficiently large” will show up often in the statistical treatment and inference of data.
Throughout, every attempt will be made to indicate the rough order of when large is large enough.
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(a) (b)

(c) (d)

Figure 6.5: Sampling distribution of the mean hBD values for a sampling size of n = 10 selected from
a normal population with mean µ = 100 MW/m2K and standard deviation σ = 5 MW/m2K, for a total
number of repeated samplings of (a) 10, (b) 250, (c) 1,000, and (d) 10,000.

distribution of the means. Provided that N was “sufficiently large” we could assume that

the reported mean was an accurate representation of the population mean, see Equation

6.4, within some level of confidence dictated by the choice of sample size n, see Equation

6.6. This raises very important questions as to: 1) when is N “sufficiently large”, 2) if

there are restrictions on the size of n, and 3) what can be assumed about the form of the

distribution of the sampling means? We will begin by considering the size of n and the

distribution of the means as they will be closely related, and in Section 6.7 we will look

further into the size of N .
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6.4 Assumptions of the Sampling Distribution

Ideally when describing the sampling distribution we would like to be able to assume

that the means are distributed normally. There are a large number of relationships that

can be utilized if we can use parametric methods to analyze the results, particularly if we

can assume the distribution is normal. Thus far we have assumed that the distribution

of the population is normal and because of that assumption we can assume directly that

the sampling distribution of means is normal for any11 n ≥ 1. However, if we have no a

priori knowledge of how the population is distributed the appropriate choice of n becomes

somewhat more complicated.

Luckily, before giving up on the assumption of normality we can turn to the assumptions

of the Central Limit Theorem which states [19]:

If a random variable Y is the sum of n independent random variables that

satisfy certain general conditions, then for sufficiently large n, Y is approxi-

mately normally distributed.

Essentially this provides that as long as n is “sufficiently large”, regardless of how the

underlying population is distributed, the sampling distribution of the means can be assumed

to be normal. This gives us hope for the assumption of normality, but still returns us to

the question of when is n “sufficiently large.” The general “rule of thumb” that is often

cited along with the central limit theorem is that n ≥ 30 is sufficient to assume that the

sampling distribution of the means will be normally distributed for an underlying population

of unknown distribution. There are generally worse and better case scenarios to the rule

dependent on how “well behaved12” the underlying population is.

Properties of the Distribution

To describe how “well behaved” a distribution is beyond the properties of mean, µ, and

standard deviation σ, the general shape of a distribution can be defined by two dimensionless

11Assuming we have completed a sufficient number of samplings N .
12Well behaved referring to being close to a normal distribution.
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quantities, the skewness. βskew, and the kurtosis, βkurt, given by [19]:

βskew =
n

(n− 1) (n− 2)

n∑
i=1

(xi − x)3

s3
n > 2 (6.7a)

βkurt =
(n) (n+ 1)

(n− 1) (n− 2)

n∑
i=1

(xi − x)4

s4
n > 3 (6.7b)

where n is the sample size, xi is the value of the ith sample, x is the sample mean, and s is the

sample standard deviation. The skewness is a measure of the distribution’s symmetry and

the kurtosis is a measure of the “peakedness” of the distribution and provides information

on the shape of the tails of the distribution. For comparison, a perfectly normal distribution

will have zero skewness, i.e. βskew = 0, and a kurtosis13 of 3, i.e. βkurt = 3.

We can estimate the required sample size, n, in order to satisfy the conditions of the

central limit theorem for low kurtosis, i.e. |βkurt| < 3.75, based on the population skewness

using the relation [19]:

n > 25 (βskew)2 (6.8)

Investigating Equation 6.8, we see that the “rule of thumb” of n ≥ 30 to satisfy the con-

ditions of the central limit theorem implies a skewness of greater than 1. In Figure 6.6

two examples are shown of 1,000 random samples collected from normal distributions with

similar kurtosis and a skewness of βskew = −0.6 and βskew = −1.1 for (a) and (b) respec-

tively. From the plots we can see that a skewness greater than 1, i.e. βskew > 1, deviates

significantly from the shape of a normal distribution. Therefore, if the shape of a given

distribution reasonably approximates a normal distribution, the required sample size to

satisfy the central limit theorem will be significantly less than 30. In their text, Hines et al.

further expanded the general rule of thumb for the size of n into 3 subgroups [19]:

• Well behaved systems: Distributions which do not deviate greatly from the bell shape

of a normal distribution and are still nearly symmetric may only require a sample size

of n ≥ 4.

13Note: There are two accepted definitions of the kurtosis, one in which the kurtosis of the normal
distribution is 3, and an alternate definition of Equation 6.7b with a factor of 3 subtracted such that the
kurtosis of a normal distribution is zero.
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(a) (b)

Figure 6.6: Distributions of 1,000 samples from a normal distribution with µ = 100 MW/m2K and
σ = 5 MW/m2K and (a) βskew = −0.6 and (b) βskew = −1.1.

• Reasonable systems: Distributions that are generally symmetric but may not have a

prominent mode may require a sample size on the order of n ≥ 12.

• Ill behaved systems: The less well behaved a distribution is the more difficult it is

to estimate the required sample size. However for distributions with most of the

information in the tails, such as exponential distributions (βskew = 2), a sample size

of n ≥ 100 may be required.

The discussion of the central limit theorem has highlighted the importance of the shape

of the underlying distribution on the appropriate choice of sample size. In fact, there will

be several areas in the statistical analysis of this work and in the general statistical analysis

of data, where the normality or deviation there from will be important. Therefore, to assist

in the interpretation of the remainder of this work several methods to test and quantify

normality of a distribution are presented in Appendix D.

Very seldom, if at all, are repeated experimental samplings of size n collected in order to

build the sampling distribution of the means from which we could determine confidence in

the measurement via the standard deviation of the sampling distribution. Later in Section

6.7 we will discuss a mathematical method to populate the sampling distribution based on

a single sample set. Without populating the sampling distribution directly, we rely on a

series of analytic expressions for the standard error and the probability of the sampling

distribution under the assumption that it is inherently normal or that the conditions of the

central limit theorem have been satisfied.
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6.5 Quantification of Confidence in Prediction of the Popu-

lation Mean

Assuming that we have chosen appropriate sample size n to satisfy all the requirements

of the central limit theorem, and have taken a “sufficiently large” number, N , of samplings

of size n we have the required information to construct the sampling distribution of the

means and assume that it is distributed normally. From this distribution we will wish to

report the mean of the distribution (which will be the population mean under the condition

of sufficiently large n, and N), and provide some quantification of the confidence in that

prediction. While the standard deviation provides some quantification of the dispersion of

estimator values, a single value is not as effective as providing a potential range of values.

What we are interested in is providing an upper and lower bound within which there is

some probability that the true value of the estimator, θ, is contained [19]:

L ≤ θ ≤ U (6.9a)

P {L ≤ θ ≤ U} = 1− α (6.9b)

where θ is the estimator of a statistical parameter, e.g. the average hBD, the interval between

L and U is known as the 100(1−α)% confidence interval, 1−α is known as the confidence

coefficient, and α is the significance level. For most of the cases in this dissertation we will

be concerned with the 95% confidence level14.

Assuming we select a random sample of size n from a normally distributed population

with unknown mean µ and known variance σ2, the two-sided confidence interval about the

estimator of interest µ, is given by [19]:

x̄− Zα/2
σ√
n
≤ µ ≤ x̄+ Zα/2

σ√
n

(6.10)

where x̄ is the sample mean, Zα/2 is the normal distribution at the α/2 point, and µ is the

14Note: There is a common misconception that a 95% confidence level means that there is a 95% chance
that the value report is correct, however this is not the case. By providing a 95% confidence interval we
specifying that under identical repeated experiments, i.e. the same methods used to collect the data, 95%
of the time, the prescribed interval of the estimator will contain the true value.
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true mean. Therefore the upper and lower bound of the confidence interval is given by [19]:

L = x̄− Zα/2
σ√
n

(6.11a)

U = x̄+ Zα/2
σ√
n

(6.11b)

The distance between the upper and lower bound of the confidence interval is known as the

confidence interval length, LCI, given by:

LCI = U − L = x̄+ Zα/2
σ√
n
−
[
x̄− Zα/2

σ√
n

]

LCI = 2× Zα/2
σ√
n

(6.12)

The confidence interval length is a measure of the precision of the estimation, see Figure

6.7. The longer the length of the confidence interval, the more confident we can be that

the interval contains the true mean. Therefore for a given variance, σ2, and sample size, n,

the 99% confidence interval will be longer than the 95% confidence interval. However, half

of the interval length provides a measure of the accuracy, U −Θ (or Θ−L). Therefore, for

a long interval length the estimate is less accurate even though we are more confident the

interval contains the true value. The ideal situation is one in which the confidence interval

length is short, but the 100(1− α)% confidence interval is high.

Figure 6.7: Error, precision, and accuracy of estimating the true mean of a distribution µ using the sample
mean X̄ [19].
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6.5.1 Choice of Sample Size for Normally Distributed Data with Known

Variance

As seen in Equation 6.12, for a given confidence level the length of the interval is

dependent on the variance σ2 and the number of samples n. As discussed previously, an

important experimental consideration is choosing a sample size that is sufficient to provide

precise results but also be reasonable to collect. If we assume the population is normally

distributed and that we know the variance, σ2, it is straightforward to estimate the sample

size required given bounds on the desired confidence interval and error tolerance. The

number of samples required to satisfy these conditions is given by [19]:

n =

(
Zα/2σ

E

)2

(6.13)

where Zα/2 is the normal distribution at the α/2 point, σ is the standard deviation of the

population and E is the specified error tolerance. As an example, suppose the standard

deviation in hBD is σ = 3 × 106 W/m2K and we want the error in our estimation to be

less than E = 1 × 106 W/m2K with a confidence interval of 95%, the number of samples

required to reach this condition is then given by:

n =

(
Zα/2σ

E

)2

=

[
1.96 ∗ 3× 106

1× 106

]2

= 34.57 = 35 (6.14)

If we want the same error in estimation for a 99% confidence interval the number of required

samples would increase to 60.

While this methodology appears straightforward and the required number of samples

easy to calculate, the formulation in Equation 6.13 relies on a major assumption, a known

variance (and therefore standard deviation). Typically in experimental TTR/TDTR mea-

surements (and in most experimental measurements), the standard deviation is not known

until the data is collected and analyzed. Without having a prior knowledge of the variance

in the population, the formulation in Equation 6.13 is no longer valid, and the definition of

the confidence interval must be reconsidered. The most straightforward manner to correct

for the unknown variance is to replace σ in Equation 6.10 with the standard deviation of
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the sample set, s, and therefore the confidence interval is given by:

x̄− Zα/2
s√
n
≤ µ ≤ x̄+ Zα/2

s√
n

(6.15)

This change is valid provided that the sample size is large enough to assume a normal

distribution based on the central limit theorem, typically n > 30, and that the sample

standard deviation is a good estimate of the standard deviation of the population. However,

at this point we do not want to already set a minimum of 30 samples15, but have the ability

to consider a broader range of sample sizes in a consistent manner. Assuming that the

data is still normally distributed, a stronger assumption for small samples sets is to use the

t-distribution. Replacing the distribution function in Equation 6.15 we get the two-sided

confidence interval for normally distributed data of unknown variance [19]:

x̄− tα/2,n−1
s√
n
≤ µ ≤ x̄+ tα/2,n−1

s√
n

(6.16)

In Equation 6.16 the sample size n shows up as 1/
√
n and in the distribution tα/2,n−1.

Therefore it is not straightforward, as in Equation 6.13, to calculate the sample size required

to satisfy given confidence and error tolerances.

Typically the only way to determine the required n to fall within prescribed error tol-

erances for a distribution of unknown variance is through trial and error. We are forced

to take an estimated guess as to the required sample size and hope that when we calcu-

late s and the confidence interval we reach acceptable precision tolerances. This is further

complicated because TTR/TDTR measurements do not produce thermophysical quantities

directly, but require deduction by comparison between the thermal model and the data

adding computational expense. Ideally we would hope for some a priori estimate of the

standard deviation of a sampling prior to data collection so that we could use formulations

such as Equation 6.13 to determine the appropriate number of scans to collect to ensure

that the precision of the results would be within prescribed accuracy bounds.

15A sample size of 30 is already well above what is typically reported in hBD thermoreflectance measure-
ments.
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6.6 Predicting Population Statistics of Thermoreflectance Data

Through Large Scale Simulations

In an effort to gain some a priori intuition as to the standard deviation of a population

a series of simulated experiments were conducted in order to take advantage of the law

of large numbers as a means for predicting the standard deviation of a population from

estimated thermophysical and laser parameters. The law of large numbers predicts, as is

intuitively expected, that as the number of samples n gets large a sample estimator will

approach the estimator of the population [269]. As a visual example, consider the data

shown in Figure 6.8 which represents the average hBD of a sample set of size n, as the

sample size is increased. The data for each sample set was randomly selected from a normal

distribution with µ = 100.00 MW/m2K and σ = 20 MW/m2K. From the data in Figure 6.8

we notice that as the sample size gets large the mean and standard deviation of the sample

(a)

(b)

Figure 6.8: Mean (a) and standard deviation (b) of a random sampling of hBD values from a normally
distributed population of µ = 100.00 MW/m2K and σ = 20 MW/m2K as a function of the sample size n.
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approximates the mean and standard deviation of the underlying population denoted by

the red line as expected by the law of large numbers. Also denoted in the figure by the

vertical blue line is n = 30, the typically quoted sample size that is “sufficiently large” such

that the standard deviation of a sample is a good representation of the standard deviation

of the underlying population. We note that at n = 30 the sample standard deviation is

significantly lower than the nominal standard deviation of the population. It has been

suggested that “the rule of 30” should be replaced in favor of computational methods16 to

test statistical assumptions [270].

By the law of large numbers, if we could collect a large enough data set and deduce a

parameter of interest from each individual scan, we should be reasonably confident that our

results would describe the population of these values for a particular sample independent

of assumption as to how the population is distributed or analytic methods to infer the

population parameters based on a smaller sample set. With TTR/TDTR data collection

taking on the order of 5 minutes per scan, physically it would not be very feasible to collect

on the order of 1,000 scans to take advantage of the law of large numbers and reproduce

results such as in Figure 6.8. However, if we can simulate realistic data using a modeled

system the primary limitation in the application of the law of large numbers analysis would

be the computational time required. Using the tools developed in Chapter 5.4 to increase

computational efficiency in conjunction with available computer power, this process becomes

manageable.

Under the assumption that the thermophysical parameters of a TTR/TDTR sample

are consistent, the dispersion in the deduced results are a function of the noise in the data

and the sensitivity of the model to the parameter of interest. In order to simulate realistic

TTR/TDTR data and attempt to provide a global intuition into the standard deviation in

the data, a range of sensitivities and levels of noise typically found experimentally must be

simulated.

16An introduction to one of these methods, the bootstrap will be presented in the next section.

195



Chapter 6. Robust Data Collection and Management 6.6

6.6.1 Modeling a Range of Fitting Sensitivities

The sensitivity to deducing a thermophysical parameter of interest from the TTR/TDTR

model (see Chapter 4) is dependent on the magnitude of the parameter of interest in con-

junction with the magnitude of the other model parameters. The primary parameters that

we will be interested in deducing will be the hBD of the film/substrate interface and the

thermal conductivity of the substrate17. To that end, and for the sake of consistency, we

will consider all modeled systems to have a 100 nm Al layer as the film. The thermal

boundary conductance of the modeled systems were simulated from hBD = 1 MW/m2K to

hBD = 1, 000 MW/m2K, representing an extreme range of possible values. These bounds

on hBD provided a range of sensitivity coefficients for both hBD and the substrate thermal

conductivity as shown for the Al/Si system in Figure 6.9. To add further variation to the

sensitivity coefficient and the modeled systems tested, a total of three substrates that are

typically found in nanodevices and which represent a range of thermal conductivity values

were modeled, namely Si, Ge, and AlN. A list of the thermophysical parameters used in

modeling these systems along with the trends in the sensitivity coefficient as a function of

time and hBD can be found in Supplement S.

Figure 6.9: Sensitivity parameter as a function of boundary conductance for the modeled 100 nm Al on
Si system, where L1 denotes the Al film and LS the substrate.

Using these modeling parameters the ideal data sets were generated usingM = 1, 00, 000.

The range of hBD values provided a variety of temperature profiles, see Figure 6.10. Each

of these data sets were then interpolated using the methodology described in Chapter 5.4

17This could also be the thermal conductivity of a layer of interest if the Al film is only present as a
transducer layer.
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Figure 6.10: Examples of ideal data created for the Al/Si system with various hBD values.

to establish the proper time spacing for M = 50, 000. Each of the interpolated files then

served as a basis from which statistical noise was added to create the realistic modeled data.

6.6.2 Simulating Noise in the Data

In order to create realistic thermoreflectance data and to ascertain the affects of noise in

the raw data on the standard deviation of the deduced results, for each of the “perfect” data

series of simulated scans random noise was added. To simulate experimental noise in the

data we will first consider the distribution of noise found in real experimental data. Figure

6.11a provides examples of experimental data collected on a sample of 100 nm of Pt on Si

using the low-rep TTR system configuration. In order to analyze the noise in the data, for

a total of 152 scans collected at the same location on the surface of a Pt/Si sample, each

time index in the collected data was normalized by the mean and standard deviation of the

data at that time index using the relation:

z =
x− x
s

(6.17)

All the data points across the time of the scan were then collected (n = 14, 288) to build

the distribution of the noise, see Figure 6.11b. From the shape of the distribution and the

analysis provided, the data appears to be distributed normally. To further confirm this

assumption a Q-Q plot of the data and the results of the Shapiro-Wilk test are shown in

Figure 6.11c. Based on the normality testing of the experimentally collected data, when

simulating the TTR/TDTR data for testing we will assume that it is normally distributed.
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(a)

(b) (c)

Figure 6.11: (a) Five examples of experimental data taken with the low-rep TTR system on 100 nm of Pt
on Si, (b) distribution of normalized noise in 152 trials of Pt/Si data and (c) Q-Q plot and Shapiro-Wilk
analysis of noise in the experimental data.

Under the assumption that the noise in the data should be normally distributed we

began by taking the ideal data set, i.e. the generated model using the appropriate time

configuration or properly interpolated to take advantage of the node spacing routine pre-

sented in Chapter 5.4, and for each data point in the region of interest a normal distribution

with a mean value equal to the signal at that time index was defined, see Figure 6.12. An

initial standard deviation of the Gaussian distributions was set and a value randomly se-

lected from the distribution for each time index to generate a new data set with added

noise. A total of 1,000 simulated TTR/TDTR scans were produced and the signal-to-noise

parameter for the series calculated as described in Chapter 5.4. If the stopping criteria was

met, i.e. the desired SNP within a prescribed error tolerance, the individual data sets were

saved. If the SNP was too high, the standard deviation of the Gaussian distributions were

reduced and the process reiterated until the stopping criteria was reached.
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Figure 6.12: Process flow for adding normally distributed noise to modeled data.

(a)

(b) (c)

Figure 6.13: (a) Five examples of simulated data of 100 nm of Al on Si (hBD = 215 MW/m2K), fs = 250
kHz, and fo = 125 kHz with added noise (b) distribution of normalized noise in 152 trials of Al/Si data and
(c) Q-Q plot and Shapiro-Wilk analysis of noise in the simulated data.

To test the validity of this process as a means to simulate noise in modeled data, the

distribution of noise in 152 simulated scans was tested for normality using the same pro-
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cedure that was used for the experimental data, see Figure 6.11. The results for simulated

data of 100 nm of Al on Si (hBD = 215 MW/m2K), fs = 250 kHz, and fo = 125 kHz with

added noise to produce a SNP of SNP = 12.70± 0.04 are shown in Figure 6.13. The results

of the histogram, Figure 6.13b, and the Q-Q plot, Figure 6.13c, show that the noise in the

data is indeed normally distributed as expected since it was generated using a Gaussian

distribution, and follows the same trends as shown in the experimental data, see Figure

6.11. Therefore in terms of the noise we can assume that the simulated data is a valid

representation of experimental TTR/TDTR data.

For the data generated in this work the SNP ranged from 1.21 to 113.53. While there is

no quantitative criteria for the selection of this range, qualitative experience has suggested

that this represents a wide range of potential SNPs that have been encountered experimen-

tally. Examples of the two extremes of the SNP are shown in Figure 6.14. For each of the

modeled systems, i.e. film, substrate, and hBD combinations, 21 different noise levels were

generated with 1,000 random data sets created for each level. The generated data was run

through the same LabVIEWTMprogram as the experimentally collected data to determine

the signal-to-noise parameter for each system.

(a)

(b)

Figure 6.14: Simulated data of (a) 100 nm of Al on AlAlN (hBD = 1,000 MW/m2K), fs = 250 kHz, and
fo = 125 kHz with added noise SNP = 1.21 and (b) 100 nm of Al on Si (hBD = 1 MW/m2K), fs = 250 kHz,
and fo = 125 kHz with added noise SNP = 113.53
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6.6.3 Fitting Simulated Data and Results

In total 61 film, substrate, and hBD combinations were generated with 21 SNPs and 1,000

data sets in each group for a total of over 1.28 million simulated data sets. For each of these

data sets the standard TTR/TDTR analysis was completed as it would be for experiential

data to deduce hBD and other permutations of the substrate thermal conductivity and film

thickness. In total, these results represent over 2.2 million simulated data fits consuming

approximately 6 years of computational time18. For each system that was tested a results

file was generated listing the data file name, best fit of the parameter of interest, the sum

of the squared errors of the fit, and any program warnings,19 see Figure 6.15. This file was

then used and edited as the data was post-processed.

Figure 6.15: Example of the fit summary file generated by the TTR/TDTR fitting program recording the
file name, best fit value, sum of squared errors, and any program warnings.

Each of the summary files from the fitted data sets were run through a post-processing

program to remove any errors and/or statistical outliers. As discussed above, any fits that

resulted in a program error were automatically discarded by the post-processing program.

The remaining data was tested for the presence of statistical outliers using the generalized

extreme studentized deviate as described in Chapter 5.7. An example of a data set before

and after the removal of errors and outliers is shown in Figure 6.16.

With the errors and outliers removed we can analyze the results of the fitted hBD data

to determine how the data is distributed and if the data appears to converge following

the law of large numbers. Figure 6.17 shows an example of the statistical analysis of the

modeled system of 100 nm of Al on Si (hBD = 215 MW/m2K), fs = 250 kHz, fo = 125

18Note that without the node spacing formulation developed in Chapter 5.4 the required computational
time based on brute force convergence in M would be on the order of 100 years.

19The fitting routine is terminated when the supplied tolerance is met or the maximum number of
iterations is reached. If the program stops due to the maximum number of iterations being reached without
convergence the program produces an error flag.
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(a) (b)

Figure 6.16: Results of fitting simulated TTR data to deduce hBD for a system of 100 nm of Al on Si (hBD

= 215 MW/m2K), fs = 250 kHz, fo = 125 kHz, and SNP = 6.37 (a) showing the raw data including errors
and outliers and (b) with the errors and statistical outliers removed.

kHz, for a signal-to-noise parameter of SNP = 6.37. From assessment of the normality of

the data collected, see Figures 6.17a and 6.17b, it appears that in general the population of

the hBD values is approximately normally distributed. While only one example of this type

of analysis is shown for brevity the analysis of the data as a whole supports this conclusion.

The interpretation of the data via the law of large numbers, see Figures 6.17c and 6.17d,

indicates that the mean and standard deviation of the data has converged within the number

of samples tested.

To plot the results as in Figure 6.17 for each material combination and noise level would

require over 1,500 figures. Therefore to summarize the results for each material system and

parameter fit the data is tabulated as in Table 6.2. The table shows the resulting mean values

and standard deviations of the deduced results as a function of the SNP for each series of

1,000 simulated data sets. The error quantification in the table represents a 95% confidence

interval in the mean and the standard deviation respectively20. We do not expect the mean

values to deviate greatly regardless of noise as all the models in this series were generated

with the same hBD value. We find that this holds in general to within the error tolerances,

with only slight deviations from the ideal hBD for very low SNPs. To visually inspect the

trend in the standard deviation, the data in Table 6.2 is plotted as a function of the SNP,

see Figure 6.18. Because we are interested in developing a general trend in the standard

20The confidence interval of the mean was calculated using Equation 6.16 and the confidence interval of
the standard deviation is based on the Chi-square distribution, see Appendix D.
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(a) (b)

(c)

(d)

Figure 6.17: Analysis of the results of fitting simulated TTR data to deduce hBD for a system of 100 nm
of Al on Si (hBD = 215 MW/m2K), fs = 250 kHz, fo = 125 kHz, and SNP = 6.37 for normality (a)-(b) and
the mean and standard deviation of the results as a function of the number or trials considered (c)-(d). The
red horizontal line in (c)-(d) represents the average mean and average standard deviation across all trials.

deviation of a parameter of interest, we will plot the relative standard deviation, i.e. the

sample standard deviation normalized by the sample mean and reported as a percentage,

as opposed to the absolute values shown in Table 6.2. This will allow a comparison across

any deduced thermophysical parameter of interest regardless of magnitude.

The relative standard deviation of hBD as a function of the signal-to-noise parameter
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Table 6.2: Summary of simulation data - 100 nm Al on Si hBD = 215 MW Series. Error bounds represent
a 95% confidence level.

100 nm Al on Si, hBD = 215 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.13 222.50± 3.255 50.05± 0.1531 13.80 215.04± 0.456 7.30± 0.0206
3.21 218.14± 2.152 34.05± 0.0984 14.77 214.76± 0.421 6.74± 0.0190
4.26 217.52± 1.588 25.29± 0.0721 16.01 215.28± 0.406 6.49± 0.0183
5.34 215.72± 1.188 19.00± 0.0537 16.94 215.12± 0.383 6.12± 0.0173
6.37 215.19± 0.968 15.48± 0.0438 18.12 215.03± 0.337 5.38± 0.0152
7.45 215.19± 0.851 13.61± 0.0385 19.07 215.11± 0.339 5.42± 0.0153
8.52 215.05± 0.744 11.91± 0.0336 20.25 215.03± 0.305 4.87± 0.0138
9.56 215.06± 0.645 10.32± 0.0292 21.18 215.02± 0.291 4.66± 0.0132
10.60 215.59± 0.596 9.54± 0.0269 22.25 214.91± 0.281 4.50± 0.0127
11.71 215.07± 0.544 8.71± 0.0246 23.34 214.80± 0.273 4.37± 0.0124
12.73 214.99± 0.512 8.20± 0.0232

Figure 6.18: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 215.00MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

follows a power law trend. Therefore for each data set, i.e. film, substrate, and hBD

combination, the data collected as in Figure 6.18 was fit using a power law of the form

SDR = a× SNPb where b was fixed at -1 and the fitting coefficient a and the confidence in

a determined by the fitting routine. Again Figure 6.18 represents a single example of the
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94 systems analyzed. A summary of the tables of fitted values and the plots of the relative

standard deviations as a function of SNP for each of the simulated systems and parameters

deduced are provided in Supplement S.

6.6.4 Standard Deviation Simulation Results

From analysis of the statistical data of the deduced thermophysical parameters from

the simulated TTR data several interesting trends have been discovered. We will begin

by considering the fitting coefficient of the standard deviation analysis, a, as a function

of hBD as it is the primary thermophysical parameter of interest in this study, see Figure

6.19. Often times conceptually the transport of thermal energy in a film-substrate system

is considered via a theoretical set of series thermal resistors for the film, interface, and

substrate or sample. It is assumed that the thermal model will have the greatest sensitivity

to the highest thermal resistance as it will introduce the highest temperature drop in the

system. That is if hBD is very low, i.e. thermal resistance at the interface high, compared

to the substrate thermal conductivity the model will be most sensitive to hBD. In contrast,

if the substrate or sample thermal conductivity is very low we would intuitively expect from

the resistor analogy that it would be the most sensitive parameter. However, the results of

Figure 6.19 show that for approximately hBD < 50 MW/m2K the fitting coefficient increases

with decreasing hBD, which for a given SNP translates to decreased precision in the deduced

hBD.

While this conclusion seems counter intuitive compared to the resistor analysis concept,

Figure 6.19: Fitting coefficient of the relative standard deviation analysis as a function of hBD for the
modeled systems of Al/Si, Al/AlN, and Al/Ge.

205



Chapter 6. Robust Data Collection and Management 6.6

it does follow the trends in the model sensitivity to hBD as shown in Figure 6.9. The data in

the figure indicates that for low values of hBD the TTR/TDTR model has little sensitivity

for any of the input parameters. In essence, the interface is “too resistive” and there is very

little heat transported away from the surface film. Stoner and Maris provided an estimate

of the interface time constant, τint, for the decay of the film temperature in the pretense of

an interface, given by [8, 10]:

τint =
dCf
hBD

(6.18)

where d is the film thickness and Cf is the specific heat capacity of the film. Figure

6.20 shows the interface time constant as a function of hBD for the interface conductances

considered in this study. The maximum pump-to-probe delay time in the experimental

system used is 8 ns, which from Figure 6.20 corresponds to an interface conductance on

the order of 30 MW/m2K. Comparing this value to Figure 6.19 we see that this roughly

corresponds to the minimum in the fitting coefficient, a, and therefore a maximum in the

precision of the ability to deduce hBD. The also explains why we find from Figure 6.19

that for hBD values below on the order of hBD = 30 MW/m2K that the fitting coefficient

is independent of the properties of the substrate. To increase the precision in the ability

to deduce hBD the film can be made thinner, however the time constant for heat diffusion

across the film is on the order of less than 1 ns which is small compared to the interface

time constant for low hBD values. Therefore, the only way to increase the precision in the

ability to deduce hBD for low interface conductance systems, is by increasing the maximum

pump-to-probe delay time as is evident by the extended sensitivity plot shown in Figure

Figure 6.20: Interface time constant, τint, as a function of hBD, see Equation 6.18.
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6.21. As indicated by Figure 6.20, the sensitivity to hBD should not increase significantly

until the delay time is on the order of 100s of nanoseconds, which is shown in the sensitivity

plot given in Figure 6.21.

Figure 6.21: Sensitivity of the real signal, X, as a function of extended time for the thermal parameters
in the 100 nm Al on Si system for hBD = 1.00 MW/m2K.

While hBD is the primary thermophysical parameter of interest in this work, to make the

discussion more global we can consider the fitting coefficient as a function of the sensitivity

coefficient, see Figure 6.22, for the Al on Si series. We notice that the data in Figure 6.22

appears to follow two different trends. If we recall the form of the sensitivity coefficient to

hBD as a function of hBD, see Figure 6.9, we notice that it too appears to follow two different

trends. The magnitude of the sensitivity coefficient to hBD begins small and increases with

increasing hBD reaching a maximum around hBD = 75 MW/m2K. As hBD increases further

the sensitivity coefficient to hBD begins to decrease again. These two different regions will

produce different trends in the fitting coefficient as a function of the sensitivity coefficient.

Figure 6.22: Standard deviation coefficient as a function of sensitivity coefficient for the 100 nm of Al on
Si simulated data series.
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The first region we will define will be the diffusive regime. This will include sensitivity

coefficients for the thermophysical properties of the film and substrate, i.e. specific heat

capacity, thermal conductivity, and thickness. In addition, this regime will include the

sensitivity to hBD below the inflection point in the curve of the sensitivity coefficient for

hBD as a function of hBD, see Figure 6.9. For the systems in this study that will be typically

for hBD < 80 MW/m2K, corresponding to where the fitting coefficient is independent of

the substrate properties. The second region will be defined as the effusive regime where the

fitting coefficient as a function of the sensitivity coefficient for hBD will be dependent on the

substrate thermal conductivity. The data indicates that the hBD dependence on substrate

thermal conductivity in the effusive regime is a special case for the sensitivity to hBD, and

it will therefore be the only parameter in this regime21.

In the analysis of the data we will begin by considering the diffusive regime for the

precision in the deduction of thermophysical parameters. Figure 6.23 shows the fitting

Figure 6.23: Fitting coefficient as a function of the absolute value of the sensitivity coefficient for various
parameter fits in the diffusive regime. The data was fit using a double exponential of the form f (x) =
a ∗ exp (bx) + c ∗ exp (dx) with the fitting coefficients listed. The bounds on the coefficients and the grey
shaded area represent a 95% confidence interval in the fitted values and the model respectively.

21It is important to note that the bounds of these regimes were defined in part based on the inflection
in the sensitivity coefficient as a function of parameter for hBD. These results indicate that this type of
inflection in the trend of the sensitivity as a function of parameter may be indicative of different system
behaviors. Therefore, care must be taken in analyzing sensitivity results if such points are manifested for
other systems and/or parameters.
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coefficient as a function of the absolute value of the sensitivity coefficient22 for several

different material systems and parameters of interest. As expected, as the magnitude of

the sensitivity coefficient decreases the fitting coefficient increases and thereby for a given

SNP the standard deviation in the deduced parameter increases. The collective data was fit

using a double exponential formulation of the form f (x) = a ∗ exp (bx) + c ∗ exp (dx). The

trend in the model and the 95% confidence region of the prediction is shown by the black

line and the gray shaded region in Figure 6.23 respectively. Using the relation for the fitting

coefficient, a, which was developed for the relative standard deviation as a function of the

SNP, i.e. SDR = a×SNPb, in conjunction with the double exponential formulation, we can

develop an empirical relation for the expected relative standard deviation in an deduced

parameter, SDR,D, in the diffusive regime as a function of the sensitivity coefficient for that

parameter and the SNP. This relation is given by:

SDR,D =
CD1 × exp

[
CD2 × Savg,X

p

]
+ CD3 × exp

[
CD4 × Savg,X

p

]
SNP

(6.19)

where the CDi’s are the fitting coefficients for the model in the diffusive regime given by,

CD1 = 1443± 64, CD2 = −41.76± 3.98, CD3 = 182.7± 51.9, and CD4 = −3.236± 1.375,

with the bounds on the constants representing 95% confidence intervals on the modeling

parameters.

As an example we will consider the system of 100 nm of Al on Si with hBD = 30 MW/m2K

which has a sensitivity coefficient to hBD of
∣∣∣Savg,X
hBD

∣∣∣ = 0.3786. Using Equation 6.19 the

standard deviation as a function of the SNP for the Al/Si system is shown in Figure 6.24.

Provided with an estimate for the SNP from experiential intuition or a real-time measure-

ment from the experimental system, the standard deviation in the hBD population can be

estimated.

One important consideration of the sensitivity coefficient developed in Chapter 5 which

has not been discussed explicitly, is the lower bound of the sensitivity coefficient for which

a parameter can be deduced. From the development of the sensitivity coefficient, there is

22For analyzing the trends in the sensitivity the sign of the sensitivity coefficient is important for indicating
the shift in the model relative to the shift in the input parameter. However, for calculating the uncertainty
in the deduced result, the analysis depends only on the magnitude of the sensitivity coefficient.
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Figure 6.24: Estimated standard deviation of the population of hBD values for a modeled system of 100
nm of Al on Si (hBD = 30 MW/m2K) as a function of the SNP in the data as calculated from Equation 6.19.
The blue data points represent the analysis based on the best fit coefficients and the gray shaded region the
95% confidence region in the model.

no obvious mathematical formulation which can be employed to produce a lower bound to

when a parameter can be reasonably deduced. The results of this empirical study however,

see Figure 6.23, provide evidence for a usable rule of thumb. During the simulation process

it was found that the results became highly dependent on the amount of noise in the data

for
∣∣∣Savg,X
hBD

∣∣∣ < 0.01. At or below this level of sensitivity and for low SNPs, the data became

erratic and the results did not converge after 1,000 iterations. The trend in Figure 6.23

shows that below
∣∣∣Savg,X
hBD

∣∣∣ ≈ 0.05 the fitting coefficient increases significantly, which for

SNPs below 10 can result in an over 50% uncertainty in the measured values and require

a very large sample size to produce precise results. Therefore I recommend care be taken

when considering a sensitivity coefficient below
∣∣∣Savg,X
hBD

∣∣∣ ≈ 0.05 as the experimental cost in

the number of scans required and the uncertainty in the final precision may be high.

Turning to the results of the simulation data collected for the systems in the effusive

regime, the fitting coefficient as a function of the absolute value of the sensitivity coefficient

for these systems is shown in Figure 6.25. As mentioned previously, these results are

dependent on the thermal conductivity of the substrate and therefore for each material

system, i.e. film and substrate combination, a different trend is observed. The trend for each

system was fit using a exponential decay model23 of the form f (x) = a ∗ exp (bx). Similar

23It should be noted that several different mathematical formulations could be used to fit the data in
Figure 6.25 including linear and polynomial models. The exponential model was chosen as we would expect
that as the absolute value of the sensitivity coefficient becomes exceedingly large, the fitting coefficient, and
in turn for a given SNP the standard deviation in the deduced parameter, would tend towards zero. A more
in-depth investigation of hBD in the effusive regime will be part of the future work.
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Figure 6.25: Fitting coefficient as a function of the absolute value of the sensitivity coefficient for hBD

in the AlSi, AlAlN, and AlGe sample series in the effusive regime. The data was fit using a exponential
of the form f (x) = a ∗ exp (bx) with the coefficients AlSi (a = 97.76 ± 5.14, b = −1.93 ± 0.25), AlAlN
(a = 51.65 ± 4.40, b = −1.13 ± 0.26), and AlGe (a = 186.40 ± 13.20, b = −1.55 ± 0.30). The bounds
on the coefficients and the grey shaded area represent a 95% confidence interval in the values and model
respectively.

to the diffusive regime, using the relation for the fitting coefficient, a, which was developed

for the relative standard deviation as a function of the SNP, i.e. SDR = a × SNPb, in

conjunction with the exponential fit, we can develop an empirical relation for the expected

relative standard deviation in the deduced hBD, SDR,E, as a function of the sensitivity

coefficient and the SNP in the effusive regime. This relation is given by:

SDR,E =
CE1,i × exp

[
CE2,i × Savg,X

p

]
SNP

(6.20)

where CE1,i and CE2,i are the fitting constants for the model in the effusive regime of the

ith substrate. For the material systems investigated in this study the fitting coefficients are

given in Table 6.3.

From the developed empirical relations, see Equations 6.19 and 6.20, using the esti-

mated sensitivity coefficient of the desired parameter and an estimation of the SNP, we can

Table 6.3: Fitting coefficients for estimating the relative standard deviation in the deduced parameters
calculated for the effusive regime, see Equation 6.20, for the three system substrates used in this study along
with the R2 values of the model fits.

CE1,i CE2,1 R2

Silicon 97.76± 5.14 −1.93± 0.25 0.9836
Germanium 186.40± 13.20 −1.55± 0.30 0.9801

Aluminum nitride 54.65± 4.40 −1.13± 0.26 0.9464
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calculate an estimate for the standard deviation in the deduced result. We will consider a

more in-depth example and compare the calculated results to experiment in Section 6.9.

6.7 Statistical Analysis via Bootstrapping

To this point we have spent a lot of effort in determining an appropriate sample size, n,

such that the conditions of the central limit theorem are satisfied. We can therefore assume

a normal distribution of sample means and that the standard deviation of that distribution,

i.e. the standard error, is such that we can define a confidence interval that falls within our

accuracy tolerances. While much effort has been made to keep n as small as possible to

reduce experimental costs while maintaining statistical significance, there is an important

consideration that has not yet been addressed. In theory, when building the sampling

distribution of an estimator we assume that we choose an appropriate sample size n, and

then conduct a sufficient number, N , of repeated samplings, i.e experiments, to

populate the distribution. Even if we can keep the sample size n small the experimental

costs of repeated samplings would be prohibitive.

Therefore, in statistical practice very seldom do we actually construct the sampling

distribution of an estimator. Instead we rely heavily on the assumption that the sampling

distribution of the estimator is normal. Using the power of this assumption we utilize nice

analytic forms for the mean of the distribution and the confidence interval of the mean

based on the standard error, see Equations 6.5, 6.6, and 6.10. While this makes for simple

calculations, it places all the weight of our statistical analysis and the statistical significance

of our results on the assumption of normality of the sampling distribution without ever

testing this assumption.

Luckily with the dramatic increase in available computational power over the last few

decades methods are available in order to attempt to put these assumptions to the test.

In order to provide a computational means to complete what we would ideally accomplish,

repeated experiments, the concept of bootstrapping is presented24. Using the bootstrapping

24I make no claims to any new creations in terms of the bootstrapping methodology, but rather introduce
the bootstrap as technique which has merits in the analysis of TTR/TDTR data and should be used in
conjunction with traditional statistics to analyze results.
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methodology will provide a computational method to populate a statistical analog to the

sampling distribution of an estimator and provide a robust manner in which to calculate

accurate population estimators and their confidence levels.

6.7.1 Notation and Principles of Bootstrapping

The concept of bootstrapping was first proposed by Bradley Efron in 1979 [271, 272].

Efron’s primary purpose in developing the bootstrap was the estimation of confidence inter-

vals, particularly for situations of small samples sizes such that asymptotic assumptions were

inaccurate [273]. We will not belabor the history of bootstrapping but will point interested

readers to several literature sources with information and background on its development

[273–275].

The bootstrapping process begins in the same manner as did our previous statistical

analysis, by assuming we have a random sample25 of size n with values given by X =

{x1, x2, x3, . . . xn} taken from an unknown distribution F . Again we will denote θ as an

unknown property of F , e.g. mean, median, etc. of which we would like to find an estimator

θ̂ derived from information in the sample X. It is at this point in the previous analysis

where we would assume that the distribution of repeated estimations was normal and that

the properties of the distribution could be obtained, along with confidence bounds, through

the information in the single sample set and a series of analytic expressions. To avoid the

experimental expense of repeated trials the bootstrapping methodology suggests resampling

data from a distribution, F̂ , which is similar to F . How we choose to define F̂ is important

and characterizes two of the main sub-categories of bootstrapping, parametric and non-

parametric.

In the parametric bootstrapping technique we assume that we have some knowledge as

to how F is distributed. For example, we could assume that F is normally distributed with

an unknown mean, µ, and unknown variance, σ2. We would then draw our random sample

from a normal distribution, F̂θ̂ whose properties are estimated from the properties of the

sample x and s2. The parametric formulation of the bootstrap resampling has been shown

to work well, provided that the assumptions about the form of the underlying distribution

25Again by random we assume that the values selected are independent and identically distributed (i.i.d).
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are correct [273]. The appeal of the non-parametric bootstrap is that no assumptions are

made about the underlying distribution. Rather, the original data set, X, is treated as

an empirical distribution, F̂E , that is a close statistical representation of F . In fact, no

calculations are performed on X, e.g estimation of the mean, variance, etc., but the values

in the data set are themselves resampled.

Regardless of the type of bootstrapping conducted, the data is resampled with re-

placement26 from either the original data (non-parametric) or the assumed distribution

(parametric) to create a new sample set of size27 n, known as the bootstrap sample set,

X∗ = {x∗1, x∗2, x∗3, . . . x∗n}. The concept of randomly resampling with replacement has several

important impacts on the bootstrap sample set, X∗. It provides that the probability of an

element of the bootstrap sample set, x∗i , being equal to an element of the original sample

set, xj , is uniform and given by [273]:

Prob [x∗i = xj |X] = n−1 (6.21)

This provides that just like the original data the bootstrap data points, the x∗j ’s, are in-

dependent and identically distributed. This implies that when looking at an individual

bootstrap sample, X∗, some of the individual values from the original sample, xj , may

appear more than once, or not at all.

From the bootstrap data set we calculate a new estimator θ̂∗. The process of resampling

and calculating a new estimator is repeated B times28 to create a distribution of estimators

Θ̂∗ =
{
θ̂∗1, θ̂

∗
2, θ̂
∗
3 . . . θ̂

∗
B

}
. This distribution of bootstrap estimators, Θ̂∗, is the bootstrap

analog of the sampling distribution of estimators, Θ̂, which we can use for diagnostics, and

for estimating standard error and confidence intervals. A schematic of the non-parametric

bootstrapping procedure is shown in Figure 6.26. The only difference in the process for the

parameter bootstrap procedure in comparison to the non-parametric bootstrap procedure

is the resampling of data from a distribution with properties estimated from the original

sample properties rather than directly from the original sample set itself.

26Sampling with replacement means that after sampling a value, it is not removed from the pool but is
still available to be chosen again.

27It is important that we keep the size of the bootstrap sample the same as the original sample.
28We will discuss later how the choice of B may impact the final results.

214



Chapter 6. Robust Data Collection and Management 6.7

Figure 6.26: Schematic in the non-parametric bootstrapping of experimental data to deduce hBD.

6.7.2 Bootstrapping Diagnostics of the Sampling Distribution

One of the major strengths of the bootstrapping process is that it allows us to create

with actual numbers, an analog for the sampling distribution of an estimator. As a result

of this, it gives an opportunity to test the assumptions made in using the central limit

theorem. That is, we assume that n is large enough such that we can assume that the

sampling distribution of an estimator is normal. Using the bootstrapping methods we can

test the normality, see Appendix D, of the bootstrap distribution of estimators, Θ̂∗, and

therefore if our choice of n was sufficiently large to satisfy the assumptions of the central

limit theorem.

As an example of our ability to diagnosis the validity of the sample size n, we will con-

sider two pseudo-normal populations with similar kurtosis values but two different levels of

skewness, see Figure 6.27. From each of these populations we select a random sample of

size n = 10 and complete the bootstrapping routine using B = 10, 000 resamplings to build

the sampling distribution of the bootstrapped means, see Figure 6.28. In Figure 6.28a, as

expected since the underlying population was normally distributed, the sampling distribu-
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(a) (b)

Figure 6.27: Distribution of 50,000 and 5,000 random samples respectively selected from (a) a normal
distribution with βkurt = 3 and a skewness coefficient of βskew = 0 and (b) a skewed distribution with
βkurt = 2.9 and βskew = −0.8. The skew and kurtosis listed in the plots are the calculated values from the
data sets.

tion of the bootstrapped means is also normal29. In Figure 6.28b, we notice however that

the sample size n = 10 is not sufficiently large to produce a completely normal distribution

of bootstrapped means. Therefore, any analytic assumptions made about the distribution

of the means, e.g. the standard error, confidence interval, etc., that were made based on

the assumption of normality would be suspect. The bootstrap method therefore provides a

relatively simplistic method to test whether a sample size is “sufficiently large” to produce

(a) (b)

Figure 6.28: Distribution of bootstrap means from 10 random samples selected from a normal and skewed
population with βkurt = 3, βskew = 0 and βkurt = 2.9, βskew = −0.8 respectively, see Figure 6.27, for
B = 10, 000 resamplings. The skew and kurtosis listed in the plots are the calculated values from the data
sets.

29Analytically we have discussed that the sampling distribution of means would be normal regardless of
sample size for an underlying population that is also normal. However, as we will discuss shortly for very
small n there are too few combinations that can be created during the resampling.
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a normally distributed sampling distribution without making assumptions about the distri-

bution of the underlying population. Once the form of the sampling distribution has been

verified we can either more confidently rely on analytic descriptions of the dispersion in the

data via the standard error or confidence interval and/or continue to analyze the bootstrap

sampling distribution to determine these values.

6.7.3 Bootstrapping Standard Error and Confidence Intervals

Using the bootstrapping procedure we have been able to create a mathematical analog

to the sampling distribution of an estimator, Θ̂, which we have denoted the bootstrap

distribution of estimators, Θ̂∗. Because we have an analog of the sampling distribution

we can perform calculations on the distribution directly rather than relying on analytic

expressions based on the assumed distribution. As an example, we will consider a population

with a normal distribution, Fµ,σ with mean µ = 215 MW/m2K and standard deviation

σ = 2 MW/m2K. From this distribution we will select a sample of size n = 50, see Figure

6.29a. Analytically using Equation 6.6, the standard error of the sampling distribution

of the means will be given by σx = 0.283 MW/m2K. Using the bootstrapping procedure

the original data set, see Figure 6.29a, is resampled for B = 50, 000 and the mean of each

resampling used to build the bootstrap distribution of the means, see Figure 6.29b.

We know that by definition the standard error of an estimator is the standard deviation

(a) (b)

Figure 6.29: Example of the standard error of the bootstrap distribution of the means, where (a) is
the distribution of the random sample of n = 50 selected from a normal distribution, Fµ,σ with mean
µ = 215 MW/m2K and standard deviation σ = 2 MW/m2K, and (b) is the bootstrap distribution of the
means for B = 50, 000.
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of the sampling distribution. Therefore, for the bootstrap estimate the standard error is

given by [273, 276, 277]:

SEboot,x =

√√√√√ 1

B − 1

B∑
i=1

x∗i − 1

B

B∑
j=1

x∗j

 (6.22)

where B is the number of bootstrap resamplings and x∗i is the average of the ith bootstrap

sample. Using this formulation and the data in Figure 6.29b the bootstrap standard error

for the distribution of the means is SEboot,x = 0.268 MW/m2K. This is a slight under

predication of the true standard error. However, very seldom do we know the actual variance

of an underlying population and instead use the sample standard deviation, s, as a point

estimate of the population standard deviation. Using the standard deviation of the sample

set in Figure 6.29a to analytically calculate the standard error we find sx = 0.272 MW/m2K

which in general agrees with the bootstrapped standard error.

With an estimate of the standard error of the bootstrap sampling distribution it is

possible to develop a confidence interval for the mean. If we can assume that the bootstrap

distribution of the means is approximately normal and has little bias, we can calculate the

confidence interval of the mean using the bootstrap standard error in a similar manner

as was done analytically, see Equation 6.16. The bootstrap equivalent of the t-confidence

interval is given by [276, 277]:

µ∗ ± tα/2,n−1 × SEboot,x (6.23)

where tα/2,n−1 is the t-student distribution at the α/2 point for n − 1 degrees of freedom.

Using the bootstrap standard error calculated above, the estimated confidence in the boot-

strap mean is µ∗ ± 0.538 MW/m2K.

Additionally, we can again get the confidence interval directly from the data in the

bootstrap sampling distribution, see Figure 6.29b. For an 100 (1− α) % confidence level

of the bootstrapped sampling distribution we are interested in the means at the upper

and lower α/2 point of the distribution, i.e. x∗i,LO, x
∗
i,HI, where the lower index is given

by i,LO = (Bα/2) and the upper index given by i,HI = (B − i,LO + 1). For the above
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example, B = 50, 000 and therefore for a 95% confidence interval the upper and lower indices

are 49,376 and 625 respectively. Ranking the values of the bootstrap sampling distribution

of the means and finding the value at these indices gives a 95% confidence interval of

µ∗ ± 0.605 MW/m2K which again shows reasonable agreement with the theoretical value.

6.7.4 Two-sample Bootstrap Comparison

Similar to the Welch’s t-test used in the comparison of sample means in the introduction

to this chapter, the method of bootstrapping can be applied to compare whether the means

of two sampling distributions are statistically different30. Consider for example the two

data sets shown in Table 6.4 which were randomly selected from normal distributions of

µ = 215 MW/m2K and µ = 220 MW/m2K for sample 1 and sample 2 respectively with both

distributions having a dispersion of σ = 4 MW/m2K. The mean and standard deviation of

the sample sets is also provided. The difference between the two sample means, x1 − x2, is

x1 − x2 = 6.07 MW/m2K. Similar to the example in the introduction of this chapter, the

question arises as to whether this represents a statistically significant difference.

One way to test whether there is a significant difference between the sample sets is to

assume that there is not. Assuming all 20 samples were selected from the same distribution,

the only factor that delineates the data in the two sets is the label of either being from sample

1 or sample 2. Assuming they are from the same distribution, we can randomly select 10

Table 6.4: Example of two sample sets of n = 10 randomly selected from normal distributions of µ =
215 MW/m2K and µ = 220 MW/m2K for sample 1 and sample 2 respectively with both distributions
having a dispersion of σ = 4 MW/m2K.

hBD [MW/m2K]

Sample 1 Sample 2
2.11× 108 2.14× 108 2.20× 108 2.18× 108

2.07× 108 2.19× 108 2.16× 108 2.18× 108

2.13× 108 2.14× 108 2.22× 108 2.14× 108

2.12× 108 2.12× 108 2.17× 108 2.18× 108

2.11× 108 2.17× 108 2.23× 108 2.26× 108

Mean 2.13× 108 2.19× 108

SD 3.49× 106 3.63× 106

30Again one of the major strengths of the bootstrapping methodology, is that we do not need to make any
assumptions about how the data is distributed or the similarity of the variances between the two samples,
which is a major factor in determining the form of the comparison test used.
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Figure 6.30: Distribution of the difference in the means between sample 1 and sample 2, x1−x2, with the
means calculated from random samplings with replacement of n = 10 from all 20 values shown in Table 6.4.
The arrow denotes the location of the difference in the means calculated for the original data samples.

values from the given 20 (with replacement) and denote them as sample 1. Similarly,

we can select an additional 10 values and denote them as sample 2, and then find the

difference between the sample means, x1 − x2. If we repeat this process a large number of

times we can build a bootstrap distribution of the difference of the means for the randomly

selected samples, see Figure 6.30. The probability of the difference of the means for the two

samples being equal to x1 − x2 = 6.07 MW/m2K due to random chance is shown by the

arrow in Figure 6.30 which corresponds to a P -value of P = 0.00135. The interpretation

of this result is that there is strong evidence to suggest that the two sample sets, and the

respective means for each set, are not selected from the same population and are statistically

different. It should be noted that we could have completed a similar analysis by individually

resampling the data samples and calculating the system estimator, x1 − x2, to build a

bootstrapped sampling distribution around the calculated value, x1−x2 = 6.07 MW/m2K.

Using the bootstrapped sampling distribution a confidence interval on the estimator could

be established, and if that confidence bounds did not contain zero the results would indicate

a low probability of the difference in the means occurring randomly.

6.7.5 Effect of Sample Size on Bootstrapping

While the bootstrapping methodology is a powerful tool in helping to establish and

provide confidence in the statistical analysis of data, what it does not do is provide any

additional experimental information. That is to say that it does not replace the actual
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experiment or provide any new experimental evidence beyond what was collected in the

original data set. For the non-parametric bootstrap it is assumed that the original data

set is a good statistical representation of the underlying population. If we attempt to

collect too few data samples we will run into two issues: 1) the sample set will not be a

good statistical representation of the population and 2) there will not be enough possible

resampling combinations to produce an accurate bootstrap.

For n data points in a sample set the total number of possible combinations with repe-

tition is given by [19]:

Nc =
(2n− 1)!

n! (n− 1)!
(6.24)

Figure 6.31 shows the number of potential combinations, with repetition, as a function of

the original sample size n for 2 < n < 30. For very low values of n, there are insufficient

combinations possible to accurately build the bootstrap sampling distribution, with the

limited combinations causing the sampling distribution to mimic the discrete nature of the

distribution of the original sample set.

Figure 6.31: Possible number of combinations of n values with repetition and independent of order, see
Equation 6.24.

Small sample sizes do not have sufficient information to allow the bootstrap procedure

to consistently build the bootstrap sampling distribution of an estimator. As shown in

Figure 6.32, for four random samples of size n = 8 selected from a normal distribution,

Fµ,σ, with mean µ = 215 MW/m2K and standard deviation σ = 2 MW/m2K, there are

large variations in the skew and width of the bootstrapped sampling distribution of the

means. While the mean of the sampling distribution will always follow the sample mean,

the shape of the sampling distribution should be relatively consistent for each sample. We
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.32: Four random samples of size n = 8 selected from a normal distribution Fµ,σ with mean
µ = 215 MW/m2K and standard deviation σ = 2 MW/m2K are shown in the left column. In the right
column, the bootstrap distribution of the sample means for each corresponding sample, B = 50, 000.
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find that this is the case when the sample size is increased to n = 30, see Figure 6.33.

(a) (b)

(c) (d)

Figure 6.33: Four random samples of size n = 30 selected from a normal distribution, Fµ,σ, with mean
µ = 215 MW/m2K and standard deviation σ = 2 MW/m2K bootstrapped to establish the bootstrap
distribution of sample means for each corresponding sample, B = 50, 000.

6.7.6 How Many Bootstrap Resamplings?

The process of resampling the data or the empirical distribution B times during the

non-parametric and parametric bootstrapping procedure respectively, introduces another

question of how large should B be to accurately apply the bootstrap? The answer to that

question is dependent on the statistic one is trying to estimate with the bootstrapping

procedure. For calculation of the standard error, Efron and Tibshirani [277] recommend on

the order of B = 25− 200. Intuitively it makes sense that if we are interested in quantities

such as the confidence interval, particularly for a low significance level where we will be

interested in the information in the tails of the distribution, that the amount of bootstrap

iterations must be much higher. Henderson [274] indicates that for t-confidence intervals B

may need to be as large as B = 25, 000, and Wehrens et al. [275] cite B = 100, 000 as large
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enough to ignore Monte Carlo error for the bootstrapped standard error. The fortunate

answer is that modern computational power has outpaced the restrictions on B and it is

therefore very computationally tractable to reach these criteria for B.

6.7.7 Summary: Why bootstrap?

The presentation of the bootstrap methodology begs the question of why implement the

bootstrap technique in the analysis of TTR/TDTR data? If there is no “new” information

about the sample gained, what is the purpose of the added computations? The simple

answers to these questions are that 1) we do not know the form of the underling distribution

of the population and 2) in most cases we simply do not and/or cannot collect enough

data to be “sufficiently large” to accurately meet all the criteria to use analytic statistical

expressions blindly.

Assuming that the properties of a given TTR/TDTR sample are relatively uniform,

i.e. uniform film thickness, interface roughness, etc., we would like to assume that the

underlying population of hBD values for that sample would be normally distributed. If

we therefore randomly collected data from that sample we have a large number of analytic

assumptions that can be made in defining a mean value of the measured sample and defining

confidence in that estimate based on the standard error. However, in general we find in

literature that only 1-15 scans are ever collected from a sample. This sample size is too

small to evoke principles such as the law of large numbers to estimate the distribution of

the population. It is also too small to visually inspect the distribution of the sampled data

to make any determination of the underlying population. Therefore if we rely solely on

“standard” analytic methods to complete a statistical analysis of our results we are basing

it on an assumption that we have no way to prove or estimate.

While the bootstrap technique is not a substitute for collecting a sufficient amount of

experimental data, it does provide an in depth set of tools that allows for statistical diagnosis

and interpretation of the collected data outside the typically bounds of normality and

“sufficiently large”. These relatively simplistic and computationally tractable methods allow

for the visualization and diagnosis of the sampling distribution, the estimate of standard

error and the development of confidence intervals, and the comparison of different data sets
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without relying heavily on the assumptions of the underlying population.

6.8 Accuracy of Results

To this point we have discussed the statistical analysis of the TTR/TDTR results in

terms of precision. That is the amount of dispersion in the deduced data which is dependent

on the sensitivity to fitting and the noise in the collected data. The analysis of precision

has assumed that the inputs to the TTR/TDTR model were known exactly. In reality,

we cannot know these values exactly and they are in fact either a best guess, estimated

from literature, or taken based on some ancillary measurement which will have its own

uncertainty. Regardless, there is always some amount of uncertainty in the input parameters

and it is these uncertainties that will carry over and affect the accuracy of the final results.

Traditionally, the uncertainty in the accuracy of the final results would be calculated

through a standard propagation of error based on the uncertainly in the input parameters

and the form of the thermophysical model [278]. The challenge in implementing this type of

accuracy analysis is that the complexity of the thermal model makes it difficult to propagate

the input errors to the final result. As a more numerical method to calculate accuracy, Malen

et al. calculated the accuracy in the deduced parameters from the fiber aligned frequency

domain thermoreflectance technique using a relation of the form:

∆Φ =

√∑
j

(∆Φp)
2 (6.25)

where ∆Φ is the total uncertainty in the deduced parameter of interest and ∆Φp is the

change in the deduced result for a given perturbation of the input parameter p. Using

this type of analysis the fitting routine was implemented to determine the nominal values

to produce the best fit and then using a one-at-a-time (OAT) perturbation method, each

parameter, p, was perturbed by its uncertainty, ∆p, and the change in the model, ∆Φp,

determined. The final uncertainty in the parameter of interest, ∆Φ, was then found by the

square root of the sum of the squares of the uncertainty based on each parameter, ∆Φp. As

an example of this procedure, Table 6.5 provides uncertainties calculated based on a sample

of 100 nm of Al on Si (hBD = 215 MW/m2K) fit to deduce hBD with examples of estimated
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Table 6.5: Uncertainty in the input parameters for a modeled system of 100 nm of Al on Si (hBD =
215 MW/m2K) and the corresponding change in the deduced hBD using the uncertainty analysis described
in Equation 6.25.

Baseline L1C L1kz L1d LSC LSkz

Perturbation 5% 5% 10% 5% 5%

Fit hBD [MW/m2K] 215.00 241.41 215.03 264.24 205.98 206.02

∆Φj [MW/m2K] −26.49 −0.1160 −49.33 8.94 8.89

∆Φ [MW/m2K] 57.4

uncertainty in the input parameters shown. From this example the total uncertainty in the

deduced parameter is found to be ∆hBD = 57.4MW/m2K or ±26.7% of the nominal value.

One of the major assumptions of either the traditional propagation of error formulation

or the uncertainty analysis based on the OAT perturbation of the input parameter during

a fit, is that they assume there is no correlation between the input parameters. In the

TTR/TDTR model the interaction of the input parameters is more complex and it is not

difficult to envision from the discussion and interpretation of the sensitivity analysis pro-

vided in Chapter 5.5, that the uncertainty in multiple parameters can have a constructive

or destructive affect on the overall uncertainty depending on the positive and/or negative

correlation between the sensitivity coefficients. In addition, the uncertainty analysis pre-

sented above assumes that the distribution of the uncertainty is uniform. In reality it is

more likely that the nominal values represent the “best guess” of the input parameters with

a decreasing probability in occurrence as the input parameters are perturbed further from

the nominal values. To this end, the analysis presented in Equation 6.25 represents an

upper bound to the uncertainty in the deduced parameter based on the uncertainty in the

input parameters.

In an effort to more accurately model the uncertainty in the deduced parameter, we

will again evoke a quasi-stochastic treatment to describe the uncertainty in the input pa-

rameters. The process begins by generation of a modeled TTR/TDTR data set using the

nominal input parameters31. Using a properly conditioned fitting routine, any parameter

of sufficient sensitivity can be treated as an unknown parameter and the nominal value

deduced by refitting the modeled data. To model the uncertainty in the input parameters,

31A modeled system is used as opposed to the collected data to eliminate the influence of noise in the
data which affects the precision of the collected result and is not relevant for the discussion of the accuracy.
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each input is prescribed a distribution of values with the mean value being the nominal

input parameter. In this case we describe the parameter input by a normal distribution

assuming the nominal value represents the mean with decreasing probability as the input

deviates from that value. The width of the normal distribution, given in terms of the stan-

dard deviation, represents the uncertainty in the input value given as a percentage32. For

each trial iteration in the quasi-stochastic accuracy analysis, random input parameters are

selected from each respective uncertainty distribution and the modeled data generated via

the nominal parameters fit to deduce the parameter of interest using the standard fitting

routine. Using the methods to increase computational efficiency presented in Chapter 5.4 it

is possible to complete a large number of trial iterations in a reasonable amount of time. For

the low-rep system, assuming 10 iterations required for each fit, it is possible to complete

1,000 trials in approximately 24 hours assuming reasonable computational power.

As an example of the quasi-stochastic accuracy analysis we will consider the same system

and uncertainty described in the previous OAT analysis, see Equation 6.25 and Table 6.5.

Using the quasi-stochastic uncertainty analysis for normally distributed uncertainty in the

input parameters, the distribution of the deduced hBD results are shown in Figure 6.34a.

The figure shows that the data is for the most part normally distributed with a slight skew

towards higher hBD. Assuming the distribution is approximately normal we can define

the sample mean and standard deviation in the usual sense, x = 2.15 × 108 W/m2K and

s = 2.81× 107 W/m2K respectively. As expected the mean value is statistically equivalent

to the expected hBD. We will take note however that the standard deviation in the expected

hBD is roughly half of that given by the OAT accuracy analysis described in Equation 6.25.

It is expected that this can be attributed to a more accurate representation of the input

uncertainty and the inclusion of the covariance in the input parameters.

To more closely represent the type of analysis performed in Equation 6.25, the quasi-

stochastic accuracy analysis was also completed using a uniform distribution for the un-

certainty in the input parameters where the maximum and minimum bounds on the dis-

32It is important to recall that for the normal distribution 1σ represents 68.2% of the total distribution,
see Figure 6.4. Therefore for the prescribed input uncertainty, almost 32% of the trial values will be beyond
those bounds. It may be more prudent to assume that the standard uncertainty in the input values represents
a 2σ uncertainty in the input distribution.
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(a) (b)

Figure 6.34: Distribution of hBD values fit using the quasi-stochastic accuracy analysis for input parameters
(a) normally distributed with a 1σ uncertainty given by the percentages in Table 6.5 and (b) uniformly
distributed between a maximum and minimum given by µ± 1σ.

tribution were given by µ ± 1σ. The results for this analysis are shown in Figure 6.34b

with the distribution of data showing a reduced kurtosis as compared to the analysis with

normally distributed input uncertainty. However, we will notice that the overall range of

the deduced hBD values is roughly the same for both examples. The standard deviation in

the hBD results for the uniformly distributed case is s = 3.50 × 107 which is only slightly

larger than the normally distributed case and still significantly less than the OAT analysis

from Equation 6.25. This indicates that the correlation in the input parameters plays a

significant role in determining the accuracy of the deduced parameter based on the input

uncertainties.

6.9 Statistical Example Pt/Si

As an example of the concepts and methodologies developed in this chapter we will

consider the system of 100 nm of Pt on Si through the computational analysis of sensitivity,

precision estimation, and accuracy estimation and compare these calculations to experi-

mental results. The basic thermophysical parameters used to model the initial system are

shown in Table 6.6 with the properties of the film and substrate taken as bulk values and

the hBD at the Pt/Si interface taken from previous literature [10].
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Table 6.6: Thermophysical properties used in modeling a Pt film on Si substrate.

Layer Properties Layer 1 Layer S

Specific Heat - C [J/m3K] 2.88× 106 1.66× 106

Thermal Conductivity - kr [W/mK] 71.6 148
Thermal Conductivity - kz [W/mK] 71.6 148

Thickness - d [nm] 100 Infinite

hBD [MW/m2K] 140

Laser Properties

Absorbed Power [W] 0.03
Pump Waist [µm] 70
Probe Waist [µm] 15
Rep Rate [MHz] 0.250

Modulation Rate [MHz] 0.125
Duty Cycle [%] 50

6.9.1 Preliminary Sensitivity Analysis

Using these parameter values as an initial best guess, the sensitivity coefficient as a

function of time can be calculated as shown in Figure 6.35. With hBD being the primary

thermophysical parameter of interest we see in Figure 6.35 that the sensitivity to hBD in-

creases and reaches a maximum around 5 ns and then begins to decrease. The inflection in

the sensitivity to hBD and the increase in the sensitivity to the substrate thermal conductiv-

ity are indicators that the thermal energy has transported across the Pt/Si boundary and

into the substrate during the 8 ns of the TTR scan. Therefore we expect to have reasonable

sensitivity to hBD. The time averaged sensitivity coefficients of the real signal, Savg,X
p , for

the parameters in the Pt/Si system are shown in Table 6.7. From the magnitude of the

sensitivity coefficients all the parameters should have sufficient sensitivity for deduction.

Figure 6.35: Sensitivity coefficient per parameter as a function of time for the 100 nm of Pt on Si system
where L1 denotes the Pt film and LS the Si substrate.
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Table 6.7: Averaged sensitivity coefficient, Savg,X
p , for the parameters in the simulated Pt/Si system.

Property SXp Property SXp Property SXp

L1-C 0.6457 L1-d 0.4433 LS-kz -0.1860
L1-kz 0.2033 LS-C -0.1860 hBD -0.4770

By estimating the uncertainty in the input parameters we find the distribution of poten-

tial sensitivity coefficients of the final system. Table 6.8 provides the estimated uncertainty

in the input parameters. The specific heat capacity of the film and substrate are taken

from bulk literature values and assumed to be accurate to within 5%. The specific heat

capacity should be relatively insensitive to nanoscale size effects, with the largest potential

for uncertainty coming from the density of the deposited film. The thermal conductivity of

the Pt film could be reduced due to thin film size effects, however for now we will assume the

bulk value and that we could measure the nominal value using ancillary methods to within

10%. For the Si thermal conductivity we will assume the bulk value to within 5%. The

largest uncertainty is the hBD value itself due to the large impact that the final interface

structure can have on the interface conductance, see Chapter 2. Using the uncertainty in

the input parameters listed in Table 6.8, the distribution of the input hBD parameters and

the distribution of the sensitivity coefficient for hBD is shown in Figures 6.36a and 6.36b

respectively. The results of the quasi-stochastic sensitivity analysis indicate that the distri-

bution of hBD sensitivity coefficients skew slightly to the right, with a median value that

is slightly below the sensitivity coefficient calculated from the nominal input parameters.

However, the ranges of sensitivity coefficients in Figure 6.36b all indicate strong sensitivity

to hBD.

Table 6.8: Uncertainty in the TTR/TDTR input parameters for the example of a system of 100 nm of Pt
on Si (hBD = 140 MW/m2K) where L1 and LS denote the Pt film and Si substrate layer respectively.

Parameters

L1C L1k,z L1d hBD LSC LSk,z

[J/m3K] [W/mK] [nm] [W/m2K] [J/m3K] [W/mK]
Nominal 2.88× 106 71.6 100 1.40× 108 1.66× 106 148

Standard Deviation 5% 10% 10% 50% 5% 5%
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(a) (b)

Figure 6.36: For the quasi-stochastic sensitivity analysis of the Pt/Si system (a) the distribution of the
input hBD values and (b) the resulting distribution of the average sensitivity coefficient for thermal boundary
conductance based on N = 1, 000 iterations of the sensitivity model, with the red vertical line representing
the sensitivity results using the nominal input parameters.

6.9.2 Estimated Precision Analysis

To determine the regime of the sensitivity coefficients for hBD, i.e. diffusive or effusive

(see Section 6.6), the sensitivity coefficient for the input parameters of the Pt/Si system as a

function of hBD are shown in Figure 6.37. The modeled hBD value of hBD = 140 MW/m2K

places the sensitivity coefficient in the effusive regime. However, because we have the highest

uncertainty in the hBD value, and the nominal value is close to the boarder between the two

sensitivity regimes, see Figure 6.37, for the sake of argument we will consider the calculated

relative standard deviation from both regimes.

For an assumed range of likely signal-to-noise parameters, the calculated anticipated

Figure 6.37: Sensitivity parameter as a function of hBD for the modeled 100 nm Pt on Si system, where
L1 denotes the Pt film and LS the Si substrate.
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standard deviation in the deduced hBD results assuming
∣∣∣Savg,X
hBD

∣∣∣ = 0.4770 is shown in

Figure 6.38 for calculations based on both the diffusive and effusive regimes. As anticipated,

both models, Equations 6.19 and 6.20, produced almost exactly the same estimate for the

standard deviation because the simulated boundary conductance is very close to the regime

boundary between the diffusive and effusive models, see Figure 6.37. The major difference

between the two models for this example is the amount of uncertainty in the predicted

results which is indicated for each model by the shaded regions in Figure 6.38.

Figure 6.38: Calculated anticipated standard deviation of the population of hBD values for a system of

100 nm of Pt on Si (hBD = 140 MW/m2K),
∣∣∣Savg,X
hBD

∣∣∣ = 0.4770, as a function of SNP for calculations from

both the diffusive and effusive regimes, given by Equations 6.19 and 6.20 respectively. The shaded regions
represent a 95% confidence region in the predicted values. Note: Data points overlap.

6.9.3 Estimated Accuracy Analysis

To compare to the estimates of precision we can also model the anticipated accuracy

of the final result using the estimates for the uncertainty in the input parameters. Using

the nominal estimated parameters from Table 6.6 a model system was generated and refit

using the anticipated uncertainty of the input parameters from Table 6.8 for a total of

1,000 trial fits. The resulting distribution of hBD values is shown in Figure 6.39a. The

standard deviation in the hBD results for the accuracy analysis is s = 1.64 × 107 W/m2K,

which is approximately double the standard deviation found for the precision measurements

depending on the assumed SNP. For comparison, the accuracy analysis was also completed

assuming the uncertainty in the input parameters as listed in Table 6.8 represents a 2σ

variation, i.e. the values used in the accuracy analysis were half of those presented in the

table. The results of the distributed hBD values are shown in Figure 6.39b. The reduction in
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(a) (b)

Figure 6.39: Distributed of deduced hBD values for a modeled system of 100 nm of Pt on Si (hBD =
140 MW/m2K) for the assumed uncertainty in the input parameters provided by Table 6.8. The red vertical
line represents the nominal hBD value, and the green lines plus/minus one standard deviation.

the uncertainty of the input parameters translated to a reduction in the standard deviation

of the hBD values to s = 8.06× 106 W/m2K.

The analysis of the initial system modeling indicates that there is sufficient sensitivity

and accuracy to measure the hBD of a modeled system of 100 nm of Pt on Si (hBD =

140 MW/m2K) to an accuracy limited resolution on the order of 6-12%.

6.9.4 Experimental and Simulated Results

To compare these results both experimental and simulation studies were conducted. The

system of 100 nm of Pt on Si was simulated using the same methodology of noise generation

and data analysis as was shown in Section 6.6 for 21 levels of signal-to-noise parameters

and 1,000 trial data sets at each level. Experimentally 100 nm of Pt was deposited via

electron-beam evaporation onto a Si substrate33. Thermoreflectance data was collected on

the Pt/Si sample using the low-rep configuration of the TTR/TDTR system at a single

location on the sample surface for a total of 152 trials and the results analyzed to deduce

hBD using the standard TTR/TDTR data analysis program.

Considering first the simulated system, the simulation results for the deduction of hBD

for the Pt/Si system are shown in Figure 6.40. As was observed for the Al/Si system, the

relative standard deviation in the deduced hBD as a function of the SNP follows a power

law trend. The deduced fitting coefficient, a, for the relative standard deviation follows the

33The details of the sample fabrication process can be found in Chapter 7.4.2.
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trend developed in the effusive regime, see Equation 6.20, for systems on a Si substrate, see

Figure 6.41.

Figure 6.40: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Pt/Si with hBD = 140.00MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

Figure 6.41: Fitting coefficient as a function of the absolute value of the sensitivity coefficient for hBD in the
Al/Si sample series in the effusive regime. The data is fit using an exponential of the form f (x) = a∗exp (bx)
with the coefficients (a = 97.76±5.14, b = −1.93±0.25). The bounds on the coefficients and the grey shaded
area represent a 95% confidence interval in the values and model respectively. The data point for the Pt/Si
system (hBD = 140 MW/m2K) corresponds to the developed exponential trend.
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For the experimentally collected data, the resulting distribution of hBD values deduced

from the data using the parameters given in Table 6.8 is shown in Figure 6.42. The average

hBD value deduced over the 152 scans is hBD = 118 MW/m2K with the standard deviation

of the results given by s = 7.27 MW/m2K. A comparison of the calculated, simulated, and

experimental results in the standard deviation are summarized in Table 6.9.

Figure 6.42: Distributed of deduced hBD values for an experimental system of 100 nm of Pt on Si using
the input parameters provided by Table 6.8. The red vertical line represents the average hBD value, and the
green lines plus/minus one standard deviation.

Table 6.9: Standard deviation in hBD calculated from Equation 6.20, simulated from 1,000 data sets of a
modeled system of 100 nm of Pt on Si (hBD = 140 MW/m2K) with SNP = 25, and from 152 experimentally
collected scans analyzed to deduce hBD. The upper and lower bounds represent a 95% confidence level in
the respective values.

Calculated Simulated Data

Standard Deviation [W/m2K]
High 2.59× 106 2.37× 106 8.20× 106

Mean 2.18× 106 2.27× 106 7.27× 106

Low 1.83× 106 2.17× 106 6.54× 106

We notice from the data in Table 6.9 that the standard deviation of the simulated results

matches well with the anticipated standard deviation calculated from Equation 6.20. The

standard deviation for the data however is larger than the calculated and simulated standard

deviation by about a factor of 3. There are several potential explanations for this deviation:

1) while 152 scans is a large data set in terms of typical TTR/TDTR analysis, it is much less

than the number of simulated sets used in the analysis via the law of large numbers. In this

case, the standard deviation of the sample may not be a completely accurate representation

of the population standard deviation at this sample size, 2) the improper shape of the
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temperature decay due to inaccurate input parameters may affect the deduced standard

deviation, as compared to the modeled system where the input parameters are known

exactly, and 3) the noise in the data for an individual scan having induced bias compared

to the ideal normal distribution of the simulated data.

Regardless of the mechanisms at work, the developed empirical model based on the

simulated results provides a reasonable best case estimation of the standard deviation in the

expected result. The model allows for the first time, the ability to estimate the uncertainty in

the deduced result as a function of the sensitivity coefficient and the SNP parameter before

any samples are fabricated and/or experiments conducted. This formulation will assist

in the development of new experimental investigations and provide a metric to estimate

whether the desired results can be successfully deduced given the resources at hand.

6.10 Chapter Summary

In this chapter we took a close look at the statistical description and analysis of data

obtained via the thermoreflectance experiment. I presented the results of a large scale set of

simulations directed at establishing an empirical relationship between the thermophysical

parameters of a system and the properties in the measured data, i.e. the signal-to-noise

parameter. The results of the simulation study brought to light two different regimes in

the sensitivity to hBD, with the precision in the deduced hBD following different trends

in each regime. The developed empirical relations were shown to be consistent over a

number of different material systems and match reasonably well compared to experimental

data. The statistical concept of bootstrapping was introduced as a means to statistically

interpret several important quantities in the analysis of TTR/TDTR data independent

of the assumptions on how the data is distributed. Finally, supported by the methods

developed in Chapter 5 a quasi-stochastic interpretation of the accuracy in the final results

due to the input uncertainties was developed in order to more accurately model the input

uncertainties and include covariance between the inputs.
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7.1 Introduction

As discussed in more detail in Chapter 1 and Chapter 2, interface conductance is an

important quantity in the development of many modern micro- and nano-devices includ-

ing optoelectroinc devices [79, 80], thermal interface materials (TIMs), [28, 86, 87], high-

electron-mobility transistors (HMETs) [90], etc. To this end, a large body of work has been

devoted to understanding and predicting the behavior of phonons at the interface between

two solids, and therefore the resulting hBD [73, 94]. However, most of the different mech-

anisms studied that affect hBD as discussed in Chapter 2, are artifacts of the deposition

process or the natural interaction of the different species that comprise the film and sub-

strate. In the majority of these semiconductor based nanodevices, it is common to find a

number of metal-metal, metal-semiconductor, and semiconductor-semiconductor interfaces

[279]. As the effects of these mechanisms become more well understood, focus shifts to-

wards the concept of phononic engineering in order to enhance or reduce thermal transport

to suite a particular application.

In this chapter we will focus on the addition of an intermediate layer confined between

two solids with differing vibrational spectra in order to tune hBD by altering the spectral

overlap between each layer. We will begin by motivating this intermediate layer as a vibra-

tional bridge and turn to previous molecular dynamics works which support this concept

and provide a framework for the setup of experimental trials. This concept is experimentally

tested utilizing a metallic intermediate layer (Ni) of varying thickness between Pt films on

Si and Ge substrates. The samples were prepared by electron beam evaporation and the

elemental profile close to the interface characterized by Auger photoelectron spectroscopy

(AES). The thermal boundary conductance of the Pt/Ni/Si(Ge) systems were characterized

using the TTR technique utilizing the methodologies developed and discussed in the pre-

vious chapters. The results are presented and several issues are discussed before providing

final conclusions as to the effectiveness of the Ni as an intermediate layer and the concept

of vibrational bridging.
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7.2 The Concept of Vibrational Bridging

In the absence of all other affects that can alter interface conductance, i.e. bonding,

inter-atomic mixing, etc., see Chapter 2, the dominate characteristic that is assumed to

dictate hBD across the solid-solid interface is the degree of overlap in the vibrational spectra

of the two solids [78, 110, 120, 280].

To a first approximation, the “stiffness” of a solid material and thereby the vibrational

properties, i.e. phonon density of states (PDOS), phonon group velocities, maximum fre-

quencies, etc., are summarized in a single value, the Debye temperature, ΘD [32]. Therefore,

it is commonly held that for a solid-solid system in order to maximize the phonon trans-

port across the interface, and thus hBD, it is desirable for the solids in the system to have

similar Debye temperatures [78, 110, 120, 280]. To better visualize this concept, a graphical

representation of the fictitious phonon density of states in a solid-solid system is shown in

Figure 7.1a.

(a) (b)

Figure 7.1: Representation of the phonon density of states as a function of frequency ω for (a) a solid-solid
system in which ΘD,film(Red) < ΘD,substrate(Blue) and (b) a solid-solid system with an intermediate layer
between the film and substrate such that ΘD,film(Red) < ΘD,int(Yellow) < ΘD,substrate(Blue).

In this representation, the shaded red area represents a solid film whose Debye temper-

ature is lower then that of the solid substrate, represented in blue. The region of overlap

between these two plots represents the spectra of phonons that can participate in elastic

scattering processes. Any phonon interactions outside this region are attributed to inelastic

phonon processes, which are less probable and contribute less to the overall hBD across the

interface as compared to elastic processes [15, 140]. This thereby reinforces the concept
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that overlapping PDOS between two solids, and therefore similar Debye temperatures, is

desirable for maximum interface conductance. However, non-thermal design considerations

often limit the primary component materials used in the creation of micro- and nano-devices.

As stated previously, the current design paradigm is to consider device performance first

and then consider thermal management issues or relegate them to a post-design process

altogether. In Figure 7.1b a third material is added between the two solids with mediating

phononic properties. In theory, this intermediate layer will act as a “phonon bridge” helping

to mediate the phonon transition between highly dissimilar phonon states by first coupling

to an intermediate state. By choosing a thin metallic or semiconducting intermediate layer

based on device design, the goal is to be able to tune hBD through the device structure

without significantly altering performance.

7.3 Simulating Phonon Transport Across Intermediate Lay-

ers by Molecular Dynamics Simulations

The motivation for the intermediate layer as a vibrational bridge originally came from

the basic concept of the relative ratio of the Debye temperatures between a film and sub-

strates being a crude qualitative estimate of the anticipated thermal boundary conductance,

along with measurements on a small sampling of “leftover” samples found in the back of a

drawer somewhere in the UVa nanoscale energy transport lab1. The major challenge with

all nanoscale experimental work is the inability to have complete control over the system

parameters. However, this is an area where molecular dynamics simulations provide an

invaluable tool to understanding the fundamentals of thermal transport. Therefore, moti-

vated by the original design idea and supported by preliminary experimental work, a MD

study was conducted to determine the feasibility and underlying principles of the phonon

bridging effect.

1These preliminary results were first presented at IMECE in Boston in November of 2008.
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English et al. 2012

English et al. [14] tested and studied the concept of a vibrational bridging effect using

nonequilibrium molecular dynamics simulations. Their baseline computational system con-

sisted of two Lennard-Jones FFC crystals, denoted materials A and B, which had atomic

masses of 40 amu and 120 amu respectively, see Figure 7.2a. The two respective masses

provided mismatched vibrational properties to the two material systems which is a common

technique in MD simulations to vary vibrational properties [101, 110, 112, 114, 281, 282].

The particular choice of mass ratio for this study (R = 3) was chosen to represent a sim-

ilar ratio that is found in many devices systems such as Si/Ge (R = 2.6) and diamond/Si

(R = 2.3).

(a)

(b)

Figure 7.2: Schematic of the computational domains used by English et al. [14] for (a) the baseline case
and (b) the case of an intermediate film of varying mass and thickness. Image reproduced with permission
from [14].

To test the concept of the vibrational bridge, a third material labeled material C was

added between the interface of materials A and B, see Figure 7.2b. As part of the parametric

study the mass of the atoms in material C was varied between 40 and 120 amu, the bounds

of materials A and B, and the width of the intermediate region was varied between 2

conventional unit cells (UCs) to 16 conventional UCs in increments of 2 UCs. The studies

were completed at 0.1 and 0.5 times the crystal melting temperature, Tm, and the hBD

deduced as a total conductance from material A to material B.

The results of the parametric study at 0.1 and 0.5 Tm are shown in Figures 7.3a and 7.3b

respectively. For the high temperature simulations there is only a slight enhancement to
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(a) (b)

Figure 7.3: Measured ratio of hBD with the addition of the intermediate layer to the baseline case without
the intermediate layer as a function of the mass and thickness of material C for (a) 0.1 Tm and (b) 0.5 Tm.
Image reproduced with permission from [14].

hBD for the 2 UC layer with an atomic mass between 60 and 100 amu. As the intermediate

film thickness increases the total hBD of the system continues to drop. At high temperatures

the reduction in hBD is attributed to the reduced thermal conductivity of the intermediate

layer and the increased probability of interface phonon scattering due to the reduced phonon

mean free path. By contrast, at the lower simulation temperature hBD enhancement was

found over the majority of the mass and thickness range. The greatest enhancement being

observed for thin intermediate layers with an atomic mass between that of the two solids.

(a) (b)

Figure 7.4: Isotropic occupies phonon density of states for (a) the baseline interface with the gray shaded
region denoting the vibrational overlap and (b) with the addition of the intermediate layer at the interface
between material A and C and C and B with the hatched region indication the added area of vibrational
overlap. Image reproduced with permission from [14].
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To help explain the mechanism behind the enhancement affect observed in Figure 7.3a,

English et al. [14] found the occupied phonon density of states in the monolayers adjacent

to the interface with and without the addition of the intermediate layer, see Figures 7.4a

and 7.4b respectively. It is observed that the added intermediate material alters the local

phonon density of states of the constitute materials at the interface and provides additional

phonon modes compared to materials A and B, increasing the overall phonon spectra that

can participate in elastic transport.

The initial part of the molecular dynamics work by English et al. focused on ideally

sharp interfaces. To simulate more realistic interfaces they extended the simulation domains

to consider diffusion at the interface, see Figure 7.5. For the high temperature simulation,

see Figure 7.6b, the introduction of compositional disorder at the interface eliminated the

Figure 7.5: Example computation domains from the work of English et al. showing a varying degree of
compositional disorder added to the interface region. Image reproduced with permission from [14].

(a) (b)

Figure 7.6: Measured ratio of hBD with the addition of the intermediate layer to the baseline case without
the intermediate layer as a function of the mass and thickness of material C for (a) 0.1 Tm and (b) 0.5 Tm
for a system with simulated interface disorder. Image reproduced with permission from [14].
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enhancement effect that was observed for the sharp interface. The addition of the interme-

diate layer for all masses and thicknesses reduced hBD. For the lower temperature study

however, see Figure 7.6a, hBD was significantly increased compared to the sharp interface

indicating that a small degree of compositional disorder actually enhanced hBD. The pri-

mary cause of this increased enhancement was again attributed to an increase in the overlap

of the vibrational spectra between the materials comprising the interface by comparing the

overlap in the phonon density of states with and without the added compositional disorder,

see Figure 7.7.

(a) (b)

Figure 7.7: Isotropic occupied phonon density of states for (a) the added intermediate layer with an abrupt
interface with the vibrational overlap denoted and (b) with the added intermediate layer with compositional
disorder added with the hatched region indicating the added area of vibrational overlap. Image reproduced
with permission from [14].

The simulation work of English et al. supports the concept of vibrational bridging by

the addition of an intermediate layer with mediating vibrational properties as a means

to increase the overlap in the phonon density of states and thereby increase hBD. Their

results showed maximum enhancement for thin layers with an atomic mass ideally between

the masses of the two outer layers. It was also found, contrary to previous experimental

work, that a degree of compositional disorder at the interface could further increase the

enhancement effect.
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Liang and Tsai 2012

A similar study was conducted by Liang and Tsai who also used molecular dynamics

simulations to study the affect of an added intermediate layer between two solids on thermal

conductance2 [20]. Liang and Tsai also used a Lennard-Jones system to model the crystal

solids and considered an intermediate layer thickness of 1-4 UCs. The vibrational spectra

of the intermediate layer was again dispersed by varying the mass of the atoms in the layer,

and an effective Debye temperature, TD,A, TD,B, TD,IL, was defined for material A, material

B, and the intermediate layer respectively. The Deybe temperature ratio of material A and

material B was fixed at TD,A/TD,B = 3 throughout the study.

The primary results from the simulations of Liang and Tsai are shown in Figure 7.8a

as the ratio of the thermal interface resistance with and without the intermediate layer

as a function of the Deybe ratio of the intermediate layer and material B. The results

show an increase in hBD across all the parameter combinations tested. The highest hBD

was found for a Debye temperature ratio between the intermediate layer and material B

(a) (b)

Figure 7.8: (a) The ratio of thermal boundary resistance with the intermediate layer to the baseline case as
a function of the ratio of the Debye temperatures between the intermediate layer material and material B for
several intermediate layer thicknesses. (b) The ratio of thermal boundary resistance with the intermediate
layer to the baseline case as a function of the intermediate layer thickness for several Debye temperature
ratios between the intermediate layer and material B. Image reproduced with permission from [20].

2The work of English et al. discussed their results in terms of thermal boundary conductance, while
Liang and Tsai discuss their results in terms of reducing thermal resistance, which we know if the inverse of
conductance.
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of TD,IL/TD,B =
√

3. For the range of intermediate thicknesses found there was little

dependence between hBD and layer thickness3. Using the results from the simulations

Liang and Tsai quantifies the ideal Deybe temperature to maximize hBD:

TD,IL,ideal =
√
TD,A × TD,IL (7.1)

where TD,IL,ideal is the ideal Debye temperature of the intermediate layer and TD,A and

TD,B are the Debye temperature of material A and material B respectively.

Similar to the results of English et al., Liang and Tsai were able to attribute the change

in hBD to the modification and increased overlap in the vibrational spectra of the solid

materials through calculations of the occupied phonon density of states. Their results not

only support the vibrational bridging concept but also provide quantification of the ideal

Debye temperature material to increase hBD.

7.4 Thermal Bridging via Metallic Intermediate Layers

Based on the success of the preliminary experimental work in 2008 and the subsequent

molecular dynamics work which promoted the possibly of a phonon bridging effect, a refined

experimental study was developed and conducted to measure hBD in real systems via the

TTR/TDTR technique. Ideally, the experimental sample set would mimic the molecular

dynamics simulations as closely as possible. This would dictate semiconducting materials

for each layer with atomic control at the interface. Realizing this physically however is

somewhat challenging.

7.4.1 Metallic vs. Semiconductor Intermediate Layers

The first challenge that arises is that as discussed in Chapter 3, the TTR/TDTR exper-

iment requires a metal film on the top surface of the material system for signal detection.

A thin film could be deposited on top of the prepared semiconductor samples to act as a

thermal transducer, however this creates a complex sample system with 3 interface struc-

3Liang and Tsai interpret the results in Figure 7.8b to indicate a dependence of hBD on intermediate
layer thickness. However, the uncertainty in the data makes it difficult to conclude any non-constant trends
from the results.
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tures and 4 material layers that must be modeled. A natural solution to this was to use a

metallic film as the top layer.

As a highly common semiconductor substrate used in the micro- and nano-electronics

industry, Si was an obvious choice for the experimental samples. With a large body of work

describing the system iteration and a nearly 50% lower Debye temperature than Si, Ge

was an obvious choice for the intermediate layer. The challenge with the implementation

of a Ge intermediate layer for this study was the deposition method. Using the deposi-

tion systems readily available to the UVa Nanoscale Energy Transport Lab, the Ge layer

would be deposited via electron-beam evaporation of RF sputtering. Under these deposition

conditions the Ge layer that would be deposited would most likely be amorphous. From

previous experiments the thermal conductivity of thin film a-Ge layers has been shown

to be on the order of k ≈ 0.5 W/mK [283, 284]. Taking the effective conductance of a

thin layer to be hlayer = k/d where k is the thermal conductivity of the layer and d is the

layer thickness, the total conductance of a 10 nm layer of a-Ge would be on the order of

hlayer ≈ 5 × 107 W/m2K. Typically, metal-semiconductor boundary conductance is on the

order of hBD = 1× 108 W/m2 and therefore the a-Ge layer would be the dominant thermal

resistance in the system and overshadow any potential enhancement effects due to phonon

bridging. This in general makes semiconductor intermediate layers viable in crystalline

form only. As an alternative to epitaxial grow, and based on successful preliminary studies,

metallic intermediate layers were chosen due to the inherently high thermal conductivity of

metals even for thin films.

To select the ideal metallic intermediate layer, using Equation 7.1, a table was generated

using the readily available metals for deposition and commercially available substrates of

interest to the micro- and nano-electronics industry, see Figure 7.9. The left hand column

provides the available metals and their respective Debye temperatures in K, and the row

across the top the available substrates and Debye temperatures. In the field are the Debye

temperatures of the ideal intermediate layers, calculated via Equation 7.1 and color coded

to correspond to the available metals in the left column. For the top low Debye temperature

film Pt was chosen due to its stable nature and high optical absorption at the laser wave-

length which leads to a strong thermoreflectance signal [198]. Using the table in Figure 7.9
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Figure 7.9: Table of potential ideal Debye matches, see Equation 7.1, for the vibrational bridging effect.
The left hand column provides the available metals and their respective Debye temperatures in K, and the
row across the top the available substrates and Debye temperatures. In the field are the Debye temperatures
of the ideal intermediate layers.

the ideal intermediate layer for a Pt film on a Si substrate would have a Deybe temperature

of 379 K, which would indicate either Ni (375 k) or Ti (380 K).

Ni was chosen over Ti for the intermediate layer material for several reasons: 1) Pt and

Ni have the same crystal structure, FCC, as opposed to Ti which as a hexagonal structure.

2) Pt and Ni have more similar lattice constants, a = 3.92 Å and a = 3.52 Å respectively,

to each other and Si, a = 5.43 Å, than Ti, a = 2.95 Å. 3) Pt and Ni both form similar

silicides at the interface with Si, both of which have been well characterized [285–289]. To

create a baseline case with the added Ni intermediate layer, samples were also created on

Ge substrates. The Deybe temperature of Ge is similar to Ni and therefore little to no

enhancement is expected due to phonon bridging. The sample sets that were prepared were

Pt/Ni/Si and Pt/Ni/Ge with varying thicknesses for the Ni layer.

7.4.2 Sample Preparation

The samples for this study were fabricated at the US Army Research Laboratory in

conjunction with the US Naval Academy. A summary of the deposition schedule is shown

in Table 7.1. The primary substrates used in this study were Si and Ge with a single

additional substrate of polycrystalline Ni. The Si substrates were P-type (B-doped) single

crystal (100) wafers, polished on one side, 101.6 mm (4 inches) in diameter and 0.525 mm

thick, with resistivities in the range of 10-20 ohm-cm, and an as received surface roughness

of < 5 Å. The Ge substrates were P-type (Ga-doped) single crystal (100) ±0.5◦ wafers,

polished on one side, 50.8 mm (2 inches) in diameter and 0.5 mm thick, with resistivities in
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Table 7.1: Overview of samples fabricated at the US Army Research Laboratory to test the hypothesis of
the phonon bridging effect. The deposition rate was 1 nm/s for all samples.

Run # Dep. 1 Thickness (nm) Dep. 2 Thickness (nm) Substrates

1 Pt 100 – – Si, Ge, Ni
2 Ni 100 – – Si, Ge
3 Ni 100 Pt 100 Si, Ge
4 Ni 50 Pt 100 Si, Ge
5 Ni 30 Pt 100 Si, Ge
6 Ni 20 Pt 100 Si, Ge
7 Ni 10 Pt 100 Si, Ge
8 Ni 5 Pt 100 Si, Ge

the range of 1-10 ohm-cm, and an as received surface roughness of < 8 Å. The Ni substrate

was a 10x10x1 mm polycrystalline substrate with one side polished giving an as received

surface roughness of < 30 Å, and an average grain size of 10-50 µm. All substrates were

purchased from the MTI corporation and all specifications listed are from MTI literature.

The fabrication of the samples consisted of three sequential steps: 1) dicing of the large

substrate wafers (2-4 inches in diameter) into smaller samples, 2) cleaning of the substrates

to remove contaminants, and 3) deposition of the metallic films as per Table 7.1.

Thermoreflectance measurements do not in general require a large sample surface, with

pump spot sizes only being on the order of a few hundred microns at most. Therefore,

to prepare multiple samples the large 2-4 inch Si and Ge wafers were diced into smaller

segments. Dicing after the thin film Pt and/or Ni was deposited would most likely damage

and/or contaminate the film surface interfering with the optical measurement. To eliminate

this issue, prior to film deposition the Si and Ge substrates were “scored” using a Disco

DAD3240 dicing saw. The 500 µm thick substrates were pre-cut 20 µm deep in a 1 cm x

1 cm grid pattern across the substrate surface using a 250 µm blade and water jet coolant.

The 200 µm deep pre-cut into the wafer was found to provide adequate substrate durability

for the ensuing cleaning and deposition steps while allowing easy cleaving post-deposition.

After dicing, the pre-cut samples were cleaned in a three step progression, which is

essentially a RCA clean4 without the intermediate buffered oxide etch (BOE). The first

step in the RCA process, designed to remove organic and particulate contaminants from

4The RCA clean was a basic wafer cleaning process developed by Werner Kern and David A. Puotinen
in 1970 while working at the Radio Corporation of America (RCA) [290].
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the wafer surface, was performed by soaking the samples for 15 minutes in a solution of 5

parts deionized water, 1 part aqueous ammonium hydroxide, NH4O3, and 1 part aqueous

hydrogen peroxide, H2O2. The second step, commonly referred to as piranha solution or

piranha etch, is designed to remove any remaining organic or metallic (ionic) contaminants.

This step was completed by soaking the samples for 15 minutes in a solution of 3 parts

aqueous hydrochloric acid, HCl, and 1 part aqueous hydrogen peroxide, H2O2. In the final

step the samples were rinsed with running deionized water and dried with house nitrogen.

The cleaning process was performed individually before each run of the deposition process

listed in Table 7.1 to reduce the time between cleaning and loading into the deposition

chamber and thereby reducing the risk of contamination.

Immediately after the cleaning and drying processes, the samples were loaded into an

Evatec BAK 641 Electron Beam Physical Vapor Deposition (EBPVD) system. The baseline

pressure of the system was maintained at 2× 10−7 mbar and the deposition rate was fixed

at 1 nm/s for all samples. For runs 3-8 in Table 7.1 the Ni and Pt films were deposited

sequentially in situ. The thickness of the films was monitored and controlled by a quartz

crystal monitor (QCM). After removal from the deposition chamber the samples were stored

in an airtight Teflonr waver carrier until thermal testing.

7.5 Experimental Procedure and Results

The fabricated samples were tested using the low-rep TTR configuration as described

in Chapter 3. For each sample a randomized pattern of 45 locations was generated, see

Figure 7.10, and the pattern used to conduct a random raster of TTR scans on the sample

surface. The properties of the laser system during the collection of the experimental data

and the values for the input parameters used to model the systems are shown in Table 7.2.

The primary value of interest that was deduced from the data is the thermal boundary

conductance between the Ni intermediate layer and the Si (or Ge) substrate. The Ni-

substrate hBD was then used along with the other input parameters to calculate the total

conductance from the Pt film to the semiconductor substrate.
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(a) (b)

Figure 7.10: Two examples of randomized raster patterns of 45 locations used to scan the sample surfaces
in the TTR/TDTR experiment.

Table 7.2: Thermophysical properties used in modeling of a Pt film on Si substrate.

Layer Properties Pt Ni Si Ge

Specific Heat - C [J/m3K] 2.88× 106 3.91× 106 1.66× 106 1.71× 106

Thermal Conductivity - kz [W/mK] 50.12 42.95,43.90,45.82,47.74,51.58,61.17 148 59.90
Thickness - d [nm] 100 5,10,20,30,50,100 Infinite Infinite

Laser Properties

Absorbed Power [mW] ≈ 12
Pump Waist [µm] 73.15±0.59
Probe Waist [µm] 14.59±0.11
Rep Rate [MHz] 0.247

Modulation Rate [MHz] 0.124
Duty Cycle [%] 50

Laser Wavelength [nm] 785

7.5.1 Resistor Network Analysis

The addition of the intermediate layer adds complexity to the deduction of parameters

and analysis of the results as compared to the simple case of a single film on a bulk sub-

strate. One of the most intuitive ways to consider the system with intermediate layers is

as a network of thermal resistors. In this analysis, we consider the 3 primary resistances

(conductances) to the flow of thermal energy from the Pt film to the substrate: 1) the

boundary resistance at the Pt/Ni interface, 2) the thermal resistance of the Ni layer, given

in equivalent units of hBD by the ratio of the film thermal conductivity and thickness, and

3) the boundary resistance between the Ni layer and the Si (or Ge) substrate, see Figure

7.11a.

While we will consider some of the conductances individually, the primary conductance

of interest for comparison with the previous molecular dynamics work and the quantity
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(a)

(b)

Figure 7.11: Theoretical thermal resistor network for a Pt film on a Si substrate with a Ni intermediate
layer.

of most interest to industry will be the total conductance from the Pt film to the Si or

Ge substrates. Following the thermal resistor analogy, we can treat the individual com-

ponents as series resistors and define a total effective conductance, see Figure 7.11b, given

mathematically by:

hBD,eff =

[
1

hBD,Pt/Ni
+
dNi

kNi
+

1

hBD,Ni/Si

]−1

(7.2)

Assuming that the metal-metal hBD will be high (i.e. the resistance low), the thermal

transport from the Pt film to the substrate will be dominated by the resistance of the Ni

layer and the Ni-Si interface. We know that for intermediate layer thicknesses on the order

of 1s-100s of nm that size effects will alter the film thermal conductivity and will therefore

Figure 7.12: Thermal conductivity as a function of film thickness, for data from Hopkins et al. [21], Li-Dan
et al. [22], and Caffrey et al. [23]. Image reproduced from Li-Dan et al. [22].
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be a function of thickness [81, 108, 178, 251, 291–294]. The thermal conductivity of Ni as

a function of film thickness has been studied in literature [21–23], see Figure 7.12. Using

the data in Figure 7.12, we can estimate how the conductance of the Ni layer will vary as a

function of the film thickness. The values used in the analysis of the TTR data are shown

for each thickness in Table, 7.2. Assuming the thermal conductivity of Pt and Ni behave

similarly at reduced thickness, based on the reduction in Ni thermal conductivity at 100

nm as compared to the bulk, the thermal conductivity of the 100 nm Pt film is reduced by

30% to account for thin film effects.

7.5.2 Sensitivity Analysis

For each of the systems the sensitivity was calculated as a function of time and hBD

to ensure sufficient sensitivity to all parameters deduced. As an example, for the system

of 100 nm of Pt on Si with a 5 nm Ni intermediate layer, the sensitivity as a function of

time and hBD is shown in Figures 7.13a and 7.13b respectively. The averaged sensitivity

(a)

(b)

Figure 7.13: (a) The sensitivity coefficient as a function of time and parameter and (b) the sensitivity
coefficient as a function of hBD and parameter for 100 nm of Pt on Si with a 5 nm Ni intermediate layer.
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Table 7.3: Averaged sensitivity coefficient, Savg,X
p , for the parameters in the system of 100 nm of Pt on Si

with a 5 nm Ni intermediate layer.

Property SXp Property SXp Property SXp

L1-C 0.5445 L1-d 0.3191 L1-kz 0.2258
L2-C -0.0040 L2-d -0.0098 L2-kz 0.0058
LS-C -0.2737 LS-kz -0.2737 hBD,12 -0.0816
hBD,2S -0.2209

coefficients, Savg,X
p , for the various parameters are given in Table 7.3. A full list of the

sensitivity parameters for the measured systems is given in Appendix E.

7.5.3 Raw Data

The results of the deduced data are shown in Figures 7.14-7.17. In Figures 7.14 and

7.16 the total effective thermal conductance from the Pt film to the substrate is shown as

calculated using the resistor network analysis shown in Equation 7.2. In Figures 7.15 and

7.17 the individual Ni/Si and Ni/Ge hBD values as a function of Ni thickness layers are

provided. The error bars shown in the plots of the data points represents a 95% confidence

on the calculated mean hBD value for the measurements distributed across the 45 random

points on the sample.

Total Pt-to-Si Conductance

Figure 7.14: Total conductance from Pt to Si based on the thermal resistor network model, see Equation
7.2, as a function of the Ni intermediate layer thickness. The data points represent the average hBD value and
the error bars represent a 95% confidence in the precision of the deduced value based on repeated samplings.
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Ni-to-Si Interface Conductance

Figure 7.15: Thermal boundary conductance from the Ni intermediate layer to the Si substrate as a
function of the Ni intermediate layer thickness. The horizontal line represents an independently measured
system of 100 nm of Ni on Si. The data points represent the average hBD value and the error bars represent
a 95% confidence in the precision of the deduced value based on repeated samplings.

Total Pt-to-Ge Conductance

Figure 7.16: Total conductance from Pt to Ge based on the thermal resistor network model, see Equation
7.2, as a function of the Ni intermediate layer thickness. The data points represent the average hBD value and
the error bars represent a 95% confidence in the precision of the deduced value based on repeated samplings.
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Ni-to-Ge Interface Conductance

Figure 7.17: Thermal boundary conductance from the Ni intermediate layer to the Ge substrate as a
function of the Ni intermediate layer thickness. The horizontal line represents an independently measured
system of 100 nm of Ni on Ge. The data points represent the average hBD value and the error bars represent
a 95% confidence in the precision of the deduced value based on repeated samplings.

We will note that in Figures 7.14 and 7.15 that the baseline value for Pt on Si is

below that previously reported in literature by Stevens et al. (hBD = 145 MW/m2K)

[10]. We are, however, confident in our results as they represent the average from 45 scans

randomly selected across the sample surface and include confidence bounds in the overall

accuracy based on a quasi-stochastic treatment of the uncertainty in the input parameters,

see Chapters 5 and 6. The difference in the results may be due to differences in the substrate

preparations which would alter the presence of an oxide at the Si surface, and/or variations

in the input parameters. We note that Stevens et al. used bulk properties for the Pt film

which at 29 nm may be affected by nanoscale effects.

For each scan the thermal model was compared to the collected data in the temporal

pump-to-probe delay range of 200 ps to 7850 ps. With the addition of the Ni layer, there is an

increased possibility of electron-phonon coupling and therefore it may take a longer period

of time after the initial heating for the thermal processes to become predominantly diffusive.

To ensure that the inspected time period is such that the primary thermal processes are

diffusive, the deduced results were compared at modeling start times out to 1000 ps. This

analysis showed no major deviation in the trends observed in the results. A minor increase

in the measured conductance was found for delayed start times but not enough to affect

the interpretation of the results. A more in-depth analysis needs to be completed to find
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the ideal time range.

7.5.4 Accuracy Analysis

To determine the overall accuracy in the deduced results, the quasi-stochastic accuracy

analysis that was developed in Chapter 6 was implemented for the experimental systems in

this chapter. The uncertainties used for each of the input parameters are shown in Table

7.4. The values listed in the table are considered to be a 2σ value for the uncertainty in the

input parameters. That is the say that there is an approximately 95% probability that the

true value of the input parameter lies within the given percentage. The distribution of the

deduced hBD values from the quasi-stochastic accuracy analysis is shown for the 100 nm

Pt on Si system with 5 nm and 10 nm Ni intermediate layers in Figures 7.18a and 7.18b,

respectively.

Table 7.4: Uncertainty in the TTR/TDTR input parameters for the example of a system of 100 nm of Pt
on Si (hBD = 140 MW/m2K) where L1 and LS denote the Pt film and Si substrate layer respectively.

Parameters

Standard L1C L1k,z L1d hBD,12 L2C L2k,z L2d hBD,2S LSC LSk,z

Deviation 5% 5% 10% 50% 5% 5% 10% 50% 5% 5%

(a) (b)

Figure 7.18: Distribution of deduced hBD values for the system 100 nm of Pt on Si with a intermediate
Ni of (a) 5 nm and (b) 10 nm with the assumed uncertainty in the input parameters provided by Table 6.8.

257



Chapter 7. Vibrationally Mediating Materials 7.5

7.5.5 Final Results

Using the results of the accuracy analysis the data for the total conductance between the

Pt film and the semiconductor substrates, see Figures 7.14 and 7.16, are replotted to include

the uncertainty in the accuracy of the results, see Figures 7.19 and 7.20. In these plots,

the black error bars represent 95% confidence bounds in the precision of the average total

effective conductance found for multiples measurements and analyzed using the nominal

thermophysical input parameters to the TTR model.

Figure 7.19: Total conductance from Pt to Si based on the thermal resistor network model, see Equation
7.2, as a function of the Ni intermediate layer thickness. The data points represent the average hBD value
and the black error bars represent a 95% confidence in the precision of the deduced value based on repeated
samplings. The green error bars represent the uncertainty in the accuracy of the deduced results based on
uncertainties in the input parameters, see Table 7.4.

Figure 7.20: Total conductance from Pt to Ge based on the thermal resistor network model, see Equation
7.2, as a function of the Ni intermediate layer thickness. The data point represents the average hBD value
and the black error bar represents a 95% confidence in the precision of the deduced value based on repeated
samplings. The green error bar represents the uncertainty in the accuracy of the deduced results based on
uncertainties in the input parameters, see Table 7.4.

The results for the Pt/Si system shown in Figure 7.19 indicate that the addition of
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the 5-10 nm Ni intermediate layer5 increases the total Pt-to-Si boundary conductance by

approximately a factor of 2.6 over the baseline case of Pt on Si with no Ni intermediate

layer. As the thickness of the Ni intermediate layer increases the Ni-Si hBD decreases, see

Figure 7.15, as well as the conductance of the Ni layer due to the added thickness. This

in turn decreases the overall conductance of the system as the thickness of the Ni layer

increases. However, the total conductance remains above the baseline Pt/Si case except for

a Ni thickness of 100 nm. For the Pt/Ge case however, while there is an initial increase

in the total Pt-to-Ge conductance with the addition of 5-10 nm of Ni of about a factor of

1.8, the total conductance drops below the baseline values for Ni thicknesses greater than

30 nm.

7.6 Results and Interpretation

The results of the previous molecular dynamics studies [14, 151, 151] and the trends in

the experimentally measured conductance for the Pt/Ni/Si(Ge) system all point towards

the possibility of tuning hBD through the use of an intermediate layer between solid ma-

terials. To support the quantitative argument for the ability to tune hBD and in order to

better understand the experimental results, we will consider several mechanisms which may

influence thermal transport in the measured system beyond the “bridging effect”.

7.6.1 Bonding Analysis

While comparing the experimental work to the molecular dynamics simulations the ideal

situation would be to assume that changing the elemental species comprising the solid layers

would only alter the vibrational spectra. Of course in reality the pairing of elemental species

can lead to any number of complex interactions. One of the most prominent changes in the

system configuration besides the change in vibrational spectra, and the one that is most

often brought up in an attempt to cast doubt in the vibrational bridging interpretation is

the change in bonding.

5As discussed in Chapter 6, the uncertainty in the deduced results for the 5 and 10 nm sample prevents
us from considering these averages statistically different. Therefore, we can make no distinction in the
difference between these values.
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Both Pt and Ni have complex interactions with Si and will form several possible sili-

cides under certain stoichiometric and thermodynamic conditions [285–289]. Due to these

complex interactions it is difficult to quantitatively determine the bonding strength of the

Pt-Si and Ni-Si interface, without detailed characterization. However, if for the sake of

argument we assume that Ni creates a stronger bond to Si, as compared to that of Pt, we

would expect an increase in the hBD at the metal-Si interface [16, 155, 157–160].

To consider the impact of bonding at the metal-semiconductor interface we will consider

a thought experiment. Assuming that the increase in hBD observed with the addition of

the Ni layer is due to increased bonding only, we will consider the measured Ni-Si hBD

for the 5 nm Ni to be the bonding contribution. This is a reasonable assumption as it is

common practice in thin film microfabrication to use a 5-10 nm layer of an oxide forming

metal to increase the adhesion of an otherwise poorly bonded film and substrate [295]. If

bonding is the only factor contributing to the increased conductance, we would expect that

after the addition of the 5 nm Ni layer, the subsequent conductance for thicker intermediate

layers would only be driven by the added conductance of the Ni layer. The contribution to

conductance as a function of Ni thickness is shown in Figure 7.21.

Figure 7.21: Effective conductance of a Ni film, hBD,eff = kNi/dNi, as a function of film thickness, with the
thermal conductivity of Ni taken from Li-Dan et al. [22], see Figure 7.12.

If we use this concept and the data shown in Figure 7.21 we can interpret the theoretical

trend in the data under this assumption. Figure 7.22 shows the original total conductance

measured from the experimental data along with the theoretical conductance assuming

the 5 nm of Ni establishes the bonded interface and subsequently for the remaining Ni

thicknesses the hBD is unaffected and the total conductance is driven by the changes to Ni
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conductance with thickness only. Comparing the trends in the measured and theoretical

data, the results show that bonding alone should not be able to account for the observed

trends in the experimental results. As discussed in Chapter 2, there are many factors

that can influence hBD simultaneously and bonding is no doubt one factor in the measured

samples, however the analysis of the results support the hypothesis that in part the trends

in the experimental results are due to modified phonon properties.

Figure 7.22: Total conductance as a function of Ni intermediate layer thickness assuming a Ni-Si boundary
conductance of hBD = 38.8 MW/m2K (the measured value for the Pt/5nmNi/Si sample) and the total
conductance of the thicker Ni layers driven by the Ni conductance only.

7.6.2 Electron Boundary Conductance

One of the major differences between the MD simulations conducted and the experi-

mental data taken is the use of metallic films and intermediate layers in the experiments as

compared to the simulations. As discussed in Section 7.4.1, the choice of metallic intermedi-

ate layers was motivated by the high thermal conductivity of thin film metals as compared

to thin film semiconducting layers, and as also a metallic film is necessary for TTR/TDTR

measurements. This difference in material systems poses the question as to whether the

results from experimental measurements can be correlated to the simulation results and if

the conclusions regarding the mechanisms behind the results are the same.

Classical molecular dynamics simulations, as implemented in English et al. [14] and

Liang et al. [20, 151], do not include the interactions or contributions of free electrons in

the material systems. In these experiments however, since transition metals were used as

both the film and intermediate layer, the question is raised as to what contribution electrons
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have to the thermal transport and therefore if the effects observed are phonon or electron

dominated. It is well established that electrons are the primary thermal carriers in metals

and therefore boundary conductance across metal-metal interfaces is electron dominated

and large compared to metal-nonmetal and nonmetal-nonmetal interfaces [75, 92, 296].

At metal-nonmetal interfaces the role of electrons in boundary conductance is not as well

intuitively established. Therefore to ensure that the resulting enhancement in hBD observed

in the experimental data conforms to the original hypothesis of modified interfacial phononic

properties, a more in depth assessment of electron contributions to hBD at metal-nonmetal

interfaces was undertaken.

Thermal energy carrying electrons that travel in the metal film are assumed to encounter

a potential barrier at the interface formed at the metal-semiconductor junction. The height

of the barrier depends on the band structure of the two materials comprising the interface

and the width or thickness of the barrier depends on the metal work function, the work

function of the semiconductor, along with the semiconductor doping density and permittiv-

ity. The electron-electron boundary conductance across the metal/semiconductor interface

is modeled based on the work of Bartkowiak et al. and daSilva et al. [184, 297].

Ideal Metal-Semiconductor Junctions

The work function by definition is the energy difference between the Fermi level and

the vacuum level in a material, and is denoted qφm and qφsc,n for a metal and semicon-

ductor respectively [24]. Considering the case of an ideal metal-semiconductor system with

no surface states, oxides, or other abnormalities, the band structure of an isolated high

work-function metal, i.e. qφm > qφsc,n, and an isolated n-type semiconductor is shown

in Figure 7.23a. The difference between the conduction band of the semiconductor and

the vacuum level is given by qχ where χ is the electron affinity in volts. When the metal

and semiconductor are brought into contact the Fermi levels of the two systems will align

with the Fermi level of the semiconductor being lowered relative to the metal, in the high

work-function case, where the magnitude of the lowering is equal to the difference between

the work functions of the two systems, see Figure 7.23b. On contact, electrons will flow

from the conduction band of the semiconductor into the metal and accumulate near the
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(a) Isolated systems

(b) Metal-semiconductor (n-type) contact

Figure 7.23: Energy band diagrams of (a) an isolated metal and isolated n-type semiconductor adjacent
to each other and (b) a metal-semiconductor (n-type) contact at thermal equilibrium.

surface. This migration of electrons leaves behind an electron-depleted region of width W

in the semiconductor interface region. The potential barrier to electrons moving from the

metal across the interface into the n-type semiconductor is given by [24]:

qφB,n = q (φm − χ) = Eo (7.3)

where q is the electron charge, φB,n is the barrier height in eV for a n-type semiconductor,

φ, is the metal work function in eV, χ is the electron affinity in volts, and Eo is the potential

barrier height in eV. A selection of electron affinities for various semiconductors is given in

Table 7.5 and the work functions for various clean metals in vacuum shown in Figure 7.24.
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Table 7.5: Electron affinity, qχ, of various semiconductors.

Electron Electron
Semiconductor Affinity [eV] Semiconductor Affinity [eV]

Si 4.05 InP 4.38
Ge 4.00 AlN 0.60

GaP 3.80 BN 4.50
GaAs 4.07 GaN 4.10
InAs 4.90 GaSb 4.06
InSb 4.59

Being able to establish the height of the potential barrier for a metal/semiconductor system

is the first major step in calculating the electron boundary conductance.

Figure 7.24: Work function for various clean metals in vacuum [24, 25].

Electron Boundary Resistance

Traditionally it is assumed that for thermal transport in metal/non-metal systems the

primary thermal energy carriers are phonons, and thereby the dominant resistance to ther-

mal boundary transport is phonon mediated boundary resistance near the metal/non-metal

junction. The contribution of thermal electrons to transport and therefore the boundary

affects impeding electron flow are considered to be negligible. To that end as discussed

in Chapter 2, a large amount of both experimental and theoretical work has gone into

understanding phonon mediated transport across solid-solid boundaries, with the primary

theoretical model being the DMM [72]. It has been suggested that there is a similar resis-

tance to the flow of thermal electrons across a boundary [184, 297–302]. To quantify this

phenomena Bartkowiak et al., developed an expression for the electron boundary resistance

based in analogy to the Wiedemann-Franz law [297].
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Following the work of Silva and Kaviany, the electron boundary resistance, RBD,ee, is

given by [184]:

1

RBD,ee
=
π2

3

T

RBD,el

(
kB
q

)2

(7.4)

where T is the temperature, RBD,el is the electrical boundary resistance, kB is the Boltzmann

constant, and q is the electronic charge. In order to determine RBD,el, the mechanism of

electron barrier transport must be determined. In theory, there are two primary mechanisms

of electron transport across the metal-semiconductor interface, either tunneling through the

barrier or thermionic emission over the barrier. In practice however the two mechanisms

are not easily decoupled. Depending on the shape of the barrier, i.e. if near the apex the

barrier is thin, the rates of tunneling and thermionic emission may be coupled, leading to a

more complex problem. In the work of Bartkowiak et al. the two primary barrier transport

mechanisms are discussed: quantum mechanical tunneling, and thermionic emission. In

order to determine the dominant transport mechanism, tunneling or thermionic emission,

the barrier height, Eo, and width, dB, must be estimated.

Estimation of the barrier height, Eo, was discussed for the ideal metal/semiconductor

junction previously. The barrier width, dB, is estimated from the width of the depletion

region, W , where dB = (W/2). For the case of zero applied voltage, the width of the

depletion region is given by [184]:

W =

(
2εrεoEo,J
q2N

)1/2

(7.5)

where εr is the relative permittivity of the semi-conductor, εo is the free space permittivity,

Eo,J is the barrier height in Joules, and N is the donor/acceptor concentration of the

semiconductor.

Assuming tunneling transport through the potential barrier, the electrical boundary

resistance is given by [184]

1

RBD,el,tn
=

4πq2me,scP

h3
P

[
h2
PEo,J

8π2me,scd2
B

]1/2

(7.6)

where me,sc is the effective mass of the electrons/holes in the semiconductor, hP is Planck’s
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constant, Eo,J is the potential barrier height, dB is the potential barrier thickness and P is

the tunneling probability. The tunneling probability is given by [184]:

P =

1 +
E2
o,J sinh2

[
8π2me,sc (Eo,J − E) d2

B/h
2
P

]1/2
4E (Eo,J − E)


−1

(7.7)

where E is the electron energy measured from the bottom of the potential barrier, such

that E < Eo,J .

Assuming the primary mechanism of electron transport is thermionic emission, the elec-

trical boundary resistance is given by [184]:

1

RBD,el,te
=
qBT exp−Eo,J/kBT

kB
(7.8)

where B is equal to B = 120 × 104 A/m2K2, and Eo,J is assumed to be much larger than

kBT . For the two transport mechanisms, tunneling is assumed the primary mechanism if:

[
h2
PEo,J(

8π2me,scd2
B

)]−1/2

kBT � 1 (7.9)

otherwise thermionic emission is assumed [297].

The total thermal boundary resistance including phonons and electrons is given by:

1

RBD
=

1

RBD,pp
+

1

RBD,ee
+

1

RBD,ep
+

1

RBD,pe
(7.10)

whereRBD,pp is the phonon-dominated boundary resistance, RBD,ee is the electron-dominated

boundary resistance, and RBD,ep and RBD,pe is the resistance due to the interaction of

phonon and electrons across the interface. For the sake of simplicity at this point it is

assumed that there is no direct heat transport between electron and phonons on either side

of the interface in either direction, i.e. RBD,ep and RBD,pe →∞. Therefore, we will assume

that the boundary resistance will be a function of the phonon-phonon and electron-electron

interaction only.
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Calculated Electron Thermal Conductance

In the experimental data collected, the four primary metal-semiconductor interfaces of

interest are Pt/Si, Ni/Si, Pt/Ge, and Ni/Ge. Using the formulation presented above, it was

prudent to determine what changes in electron transport could be expected theoretically

when the thermally restrictive interface was changed from a Pt/Si (Pt/Ge) to a Ni/Si

(Ni/Ge) interface. As mentioned previously, the difficulty in modeling a Schottky barrier

arises in determining the value of the barrier height and the doping density of the substrate.

To better understand how these variations affect the overall electronic contributions to

thermal transport, various doping concentrations were modeled over a range of barrier

heights. The parameters used in the calculations are shown in Table 7.6.

Table 7.6: Properties of semiconductor elements used to model electron boundary conductance.

Property Si Ge

εr 11.68 16.20
me,sc [kg] 0.98mo 1.60mo

T [K] 300 300

In order to determine the electron boundary conductance, the first task is to deter-

mine the primary method that electrons utilize to cross the potential barrier, tunneling or

thermionic emission. The criteria for electron tunneling is given by Equation 7.9 and is

shown as a function of barrier height in Figure 7.25. To check the tunneling condition in

Figure 7.25, the barrier width, d, is calculated via Equation 7.5, and given as a function of

Figure 7.25: Tunneling condition as a function of barrier height. Tunneling occurs if d is much less than
the tunneling condition, based on Equation 7.9.
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barrier height, Eo, in Figure 7.26. Comparing the data in Figures 7.25-7.26 we find that

except for the cases of the highly doped substrates and low barrier heights, the criteria for

tunneling is generally not met.

Figure 7.26: Barrier width as a function of barrier height for various substrate doping densities.

If tunneling is assumed, the tunneling probability as a function of the metal-semiconductor

barrier height for various doping concentrations is shown in Figure 7.27. The tunneling

probability was calculated from Equation 7.7 using the parameters shown in Table 7.6. The

plot in Figure 7.27 shows that expect for a high semiconductor doping concentration the

tunneling probably drops close to zero for barrier heights greater then 0.1 eV. As can be

expected, as the tunneling probability is reduced the contributions of electrons to thermal

boundary conductance drops significantly above 0.1 eV for all but the cases of heavily doped

semiconductors.

Figure 7.27: Tunneling probability as a function of metal-semiconductor interface barrier height for various
semiconductor doping concentration.

As shown in Equation 7.8, when assuming that the primary mechanism for electron
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Figure 7.28: Electron thermal boundary conductance assuming electron tunneling as a function of metal-
semiconductor interface barrier height, for various semiconductor doping concentrations.

transport across the interface is thermionic emission, the results are independent of the

substrate doping. The primary factor of interest is the barrier height, Eo, and the contribu-

tion of electron boundary conductance due to thermionic emission as a function of barrier

height is shown in Figure 7.29. Similar to the case of barrier tunneling, the continuation

of electrons to boundary conductance via thermionic emission drops off significantly for

barrier heights over 0.1 eV.

Figure 7.29: Electron thermal boundary conductance assuming electron thermionic emission as a function
of metal-semiconductor interface barrier height independent of semiconductor doping concentrations.

Theoretical and Experimental Barrier Heights

In order to calculate the electron boundary resistance across a metal-semiconductor

interface the major parameter that needs to be determined is the barrier height Eo. For
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the ideal case, the barrier height can be determined from the metal work function and the

semiconductor electron affinity based on Equation 7.3. For the materials in this study, the

work functions of the two metals are qφm = 5.56 eV and qφm = 5.15 eV for Pt and Ni,

respectively. The electron affinity for the two substrates, as given in Table 7.5, are qχ = 4.05

eV and qχ = 4.00 eV for Si and Ge, respectively. Therefore, the ideal barrier heights for

metal-semiconductor interfaces of interest are: Eo,P t/Si = 1.51 eV, Eo,Ni/Si = 1.10 eV,

Eo,P t/Ge = 1.56 eV, and Eo,Ni/Ge = 1.15 eV. With the barrier heights all being above 1

eV, the plots in Figures 7.29 and 7.28 indicate that there is little contribution of electrons

transporting across the metal-semiconductor interface.

The values given for the Schottky barrier heights of the metal-semiconductor systems,

calculated from Equation 7.3, are for the ideal case only. For non-ideal interfaces, the actual

barrier height has been shown to be strongly affected by conduction during fabrication,

[143, 303] and to vary depending on the investigator [304]. The measured upper bound for

Schottky barrier heights at 300 K on n-type semiconductor substrates was given by Sze and

Ni [24] as Eo,P t/Si = 0.90 eV, Eo,Ni/Si = 0.74 eV, Eo,Ni/Ge = 0.49 eV, and Chi et al. [305]

provided measured values for Pt/Ge systems in the range of Eo,P t/Ge = 0.62 − 0.63 eV.

Even for the reduced Schottky barrier height in real systems, the contributions of electrons

to hBD for either tunneling or thermionic emission are less that 1 MW/m2K.

The analysis of the potential contributions of electrons to thermal boundary conductance

for the systems in this study indicates that the effect of electrons can be neglected at

the metal-semiconductor interface. While there is little doubt that at the Pt/Ni interface

electrons will be the primary energy carriers, before transporting thermal energy into the

substrate the electrons in the Ni must couple their energy to the phonon system in the

Ni layer. It is therefore the modification of the phononic properties of the Ni layer as a

function of thickness in comparison to the phononic properties of the Si or Ge substrate that

drives the change in conductance observed in the experimental system. This supports that

while transport is not 100% phonon dominated as in the molecular dynamics simulations,

phonons are the primary energy carriers into the substrate.
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7.7 Chapter Summary

In this chapter, I presented the concept of modifying hBD at a solid-solid interface by

inserting a material with mediating vibrational properties between the two solids to act as a

“vibrational bridge” and increase the probability of elastic phonon transport. The concept

was motivated by previous experimental work and more detailed studies conducted using

molecular dynamics simulations which demonstrated that inserting an intermediate layer

of mediating vibrational properties increased hBD by increasing the overlap in the occupied

phonon density of states between the film, substrate, and intermediate layer. Using the

relations developed by the MD studies, a series of Pt/Si and Pt/Ge samples were fabricated

with Ni intermediate layers with thicknesses in the range of 5-100 nm. The total conductance

between the Pt film and the semiconductor substrate was measured in these system using the

transient thermoreflectance technique to deduce hBD. The results indicated a strong increase

in hBD for the Pt/Si system with the addition of the Ni intermediate layer across several

Ni thicknesses. Additionally, subsequent analysis of the impact of bonding and electron

thermal transport at the Ni-semiconductor indicated that electrons play a minority role in

thermal transport and that while increased bonding enhanced hBD, bonding alone could

not describe the observed trend in the data. In conclusion, the effective total conductance

in the Pt/Si system was shown to increase by as much as 158% with the addition of a 5

nm Ni layer, and remained above the baseline Pt-to-Si conductance for thicknesses up to

50 nm. While the results and trends presented indicate enhanced conductance with the

addition of the Ni layer, the results are still preliminary and cannot be directly attributed

to a vibrational bridging effect. A more detailed analysis must be conducted to determine

if the mechanism of enhanced conductance is due to vibrational bridging or another affect.
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8.1 Summary and Conclusions

Understanding the fundamental processes dictating hBD and developing methods to

phononically engineer the thermal performance of solid structures is critical to continued

advancements in the performance and proliferation of nanodevices. The pump-probe ther-

moreflectance experiment is a powerful tool in the measurement of nanoscale thermophysical

properties and critical to the further development of phononic engineering efforts. In this

dissertation several contributions were presented aimed at extending the capabilities of the

thermoreflectance experiment and increasing the accuracy and precision of the deduced

results.

In Chapter 1 the lineage of how thermal management limitations have at times restricted

advances in device performance and have in part forced the implementation of new device
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structures was presented. The basics of thermal management across a number of length

scales were presented and a summary of management techniques provided. Chapter 2

focused specially on thermal boundary conductance and the current analytical models used

to predict its magnitude and trend in various systems. A review of predominate literature

was provided for the major factors that have been shown to influence thermal boundary

conductance. Together, Chapters 1 and 2 were developed to provide a strong introduction

to the general scope and current state of the art in thermal management specifically focused

on thermal boundary conductance.

Experimentally, the design and setup of the thermoreflectance system used in this work

was described in detail in Chapter 3. The system was disassembled, redesigned, and rebuilt

during my tenure as a graduate student with an effort to improve the overall functionality

and robustness of the experiment, incorporating many design features developed since the

system was first installed.

Described in Chapter 4 from a mathematical point of view, the methodology used to

model the thermoreflectance signal and deduce a parameter of interest was presented. The

theoretical model was also redeveloped and extended from a single film lumped capacitance

model, to a multilayer model taking into account the effects of pulse accumulation and

radial thermal conduction that have been previously presented by Cahill and Schmidt [230,

231]. The model was also extended to include modulation of the pump laser by a pulsed

modulation waveform which takes into account higher harmonics present in the measured

signal and allows for variation in the duty cycle of the modulation waveform.

Together, Chapters 3 and 4 provide the basic physical and mathematical structure of the

thermoreflectance system. It is my hope that these chapters will provide a valuable reference

to individuals trying to understand and/or implement the thermoreflectance technique in

their own research. So few details are typically provided in literature, hopefully this work

helps to fill in some of the gaps often omitted.

In Chapter 5 more details on the numerical application of the thermal model developed

in Chapter 4 were presented, including convergence criteria for the infinite summations in

the thermal model. These results should allow for accurate application of the model without

the need for each individual to retest convergence. Methods were also presented to speed
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up convergence to allow for large scale modeling of the thermal system, and the quasi-

stochastic treatment of sensitivity and accuracy analyses. In addition, several practical

tools in the operation and analysis of the thermoreflectance experiment were developed and

presented including quantification of the sensitivity of the model to the input parameters,

the quantification of noise in the data, and the identification of statistical outliers in the

deduced results.

The application of the thermoreflectance technique to measure and understand thermal

transport at the nanoscale relies heavily on the statistical interpretation of the results to

infer thermophysical properties of the measured system. Chapter 6 discussed some of the

basic concepts of statistical inference as it applies to thermoreflectance data. A set of

empirical relations were developed to predict the estimated standard deviation in the final

results based on the sensitivity coefficient of the parameter of interest and the signal-to-

noise in the data. Having a priori knowledge of the estimated standard deviation in the

results will assist in the design of experimental parameters and save time and experimental

resources. To test the statistical assumptions commonly used to describe collected data,

the nonparametric bootstrap was introduced as a means to diagnose the statistical validity

of several primary assumptions. A method to quasi-stochastically determine the accuracy

of the final result based on the uncertainty of the input parameters was also established

which takes into account the covariance between the input parameters, as an improvement

over previous analytic models.

Finally, in Chapter 7, relying on the methodologies developed in Chapters 3-6 to ensure

robust and accurate results, thermoreflectance measurements were presented on Pt/Si and

Pt/Ge systems with the addition of a metallic intermediate layer of varying thickness added

at the metal-semiconductor interface to act as a “phonon bridge” to improve the metal-

semiconductor thermal conductance. The results showed that for the Pt/Si system, the Ni

intermediate layer dramatically increased hBD compared to the baseline Pt/Si conductance

for thin Ni layers up to 50 nm in thickness. The results were compared to a theoretical

analysis assuming the increased hBD was from improved metal-semiconductor bonding and

theoretical calculations of the contribution of electron transport at the metal-semiconductor

interface. Overall, the results of Chapter 7 support the concept “vibrational bridging”
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via intermediate layers as a means to enhance and tune solid-solid interface conductance.

However, the results are only preliminary and more in-depth work must be conducted in

order to determine whether the observed increase in conductance can be attributed to a

“vibrational bridging” phenomena or some other modification effect.

It is my hope that the work presented in this dissertation will provide those who study

thermal transport at the nanoscale and use the thermoreflectance technique a useful guide

and a basis for which new and more in depth studies can be developed in pursing a greater

understanding of nanoscale thermal transport which in turn will lead in part to the next

revolution in nanoelectronic devices.

8.2 Outlook and Suggested Future Work

While the work presented in this dissertation represents a significant effort to advance the

understanding and accuracy of thermal measurements via the thermoreflectance technique

and the ability to phononically engineer interface conductance, there is always more work

to be done. With this in mind and based on the lessons learned in the completion of this

dissertation, there are several avenues that can advance the work presented here and that

merit future study:

8.2.1 Chapter 6

My desire is that the results of Chapter 6 will help to drive the robust statistical treat-

ment of thermoreflectance data and encourage the inference of population parameters rather

than solely the presentation of collected results. I am by no means a statistician and there is

therefore always room for improvement in the statistical methodologies used to analyze the

experimental results beyond what was presented in this work. In particular, the presented

work on the bootstrapping technique was only an introduction to a complex and powerful

statistical tool. Much more work can be done in refining the bootstrapping methodology

used, particularly for the application of predicting confidence intervals. There are a number

of improvements to the basic methods presented in this work, each with their own strengths

and weaknesses, and more work must be undertaken to find the methods best suited for
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thermoreflectance data.

The discrepancy of the standard deviation predicted by the simulated data compared to

the results of the experimentally collected data indicate that the experimental system is not

reaching the theoretical limit of precision. While it may not be possible to reach this limit

exactly, it is worth investigating possible reasons behind the discrepancy and potential

methods to improve the experimental results. One possible avenue to investigate is the

filtering of the noise in the data by the lock-in amplifier and other filters. While the noise in

the data on the whole follows a normal distribution, under and/or improper filtering during

the course of an individual scan may be introducing artifacts in the measured signal that

impacts the results on a scan-by-scan basis and therefore the standard deviation between

measurements.

The biggest challenge to determining the true value of a thermophysical parameter

deduced from the thermoreflectance experiment with a high degree of accuracy is reducing

the uncertainty in the input parameters. While there are ancillary methods that can be

used to independently measure certain thermophysical input parameters, each have their

own uncertainties and experimental costs. To reduce the dependency on outside equipment

and increase the capability of the thermoreflectance experiment, it is important to know how

many parameters can be “safely” deduced from the collected data. Using the established

criteria for determining parameter sensitivity and the modeling methods presented, a more

in depth analysis of multiparameter fitting should be completed.

8.2.2 Chapter 7

One challenge to the experimental work on the vibrational bridging concept will always

be the use of metallic intermediate layers. While the work in this dissertation supports

the concept of modified vibrational properties over electron dominated effects, experiments

sometimes speak louder than words. With the proper collaboration with those who could

produce epitaxially grown Ge intermediate layers on Si substrates, it would be worth repro-

ducing this work with a Pt/Ge/Si system. In lieu of semiconducting intermediate layers,

it would be useful to measure the Schottky barrier heights of the Pt/Si system with and

without the addition of the Ni intermediate layer as quantitative evidence of the potential
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contribution of electrons to thermal transport. In addition, to support the tunability of

the vibrational bridging effect, it would be useful to compare the relative “strength” of the

bridging effect by varying the Debye temperature of the substrate to include different Debye

mismatches between the film, substrate, and intermediate layer.

In as much as the top metallic film is required to complete the TTR/TDTR analysis, it

creates a disconnect between the previous molecular dynamics work and the experimental

results. The MD work, and the concept of “vibrational bridging,” is developed on phonon

properties alone, while in the experimental system phonons do not participate to an ap-

preciable degree until considering the Ni-substrate interface. Therefore, in a system that

contains metallic films the “vibrational bridging” concept may not be the best manner to

picture the enhancement effect as there is no phonon “communication” between the Pt and

the substrate. It may be more apt to consider the modification to thermal conductance in

terms of the modified phonon properties of the Ni layer in relation to the substrate, while

maintaining high overall film-to-substrate conductance due to the intrinsically high thermal

conductivity of the intermediate layer.
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A.1 Introduction

In this appendix, the fundamental topics of crystallography and phonons are discussed,

with an emphasis on the development of the phonon dispersion relation and the phonon

density of states (PDOS) from crystal properties. The general development of these relations
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from fundamental lattice dynamics is presented and the relationship between the phonon

properties and thermal transport is discussed. Most, if not all, of the information provided

is based on, and is readily available in, some of the major texts in solid-state and nanoscale

physics, namely Kittel [306], Ashcroft and Mermin [32], Dove [307], and Chen [33]. The

primary purpose of this appendix is to provide a “crash course” in phonon physics in solids,

and develop the basic tenants and terminology required to better understand the discussed

literature in Chapter 2 and the experimental studies and results in Chapter 7.

A.2 Crystallography

The logical starting point is to discuss the medium of interest, in this case solids, which

can in whole, or in part, be crystalline in nature1. Crystallography deals extensively with the

structure, properties, and organization of atoms, clusters, and molecules in crystalline solid

structures. In its most basic form, a crystal can be considered a configuration of particles,

whose structure can be repeated periodically in three directions. It is this periodic nature

that gives crystallography its strength. Consider that a block of copper, 1 in3 in volume,

contains roughly 1024 atoms. If we were to assign individual coordinates to each copper

atom, in three dimensions, using 6 characters for each label, at 1 byte per character, it would

take over 2.5× 1025 bytes, or roughly 2.5 trillion terabytes of memory just to store the xyz

location of each atom within the volume. Clearly if we want to investigate anything more

than the smallest collections of atoms we need to have some tricks to make things more

manageable. The next few subsections will introduce the basic mathematical definitions

and terminologies of a crystal in real space, and introduce the concept of a reciprocal space,

the crystallographic analog of the Fourier transform, which will provide the tools necessary

to deal with “large” collections of atoms.

1Solids can also of course be amorphous, however this work will focus primarily on crystalline and
poly-crystalline materials.
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A.2.1 Crystals in Real Space

The definition of a crystal’s structure in space requires two components; a lattice and a

basis, i.e.

crystal structure = lattice + basis (A.1)

The lattice is the mathematical representation of points in space that define the crystal

and give it its periodicity. The basis describes how the atom, or atoms2, are distributed

around each lattice point. For a basis of 1, the logical configuration is that 1 atom is located

at each lattice point. For a basis greater than 1, the atoms are clustered around each lattice

point in some configuration, the details of which are unimportant at this point provided

that the relation between the lattice points and the basis atoms remains consistent. Due

to this periodicity, every point in the lattice has identical surroundings. That is, if we

were to stand on a lattice point, looking around in all directions, and taking note of the

surroundings, and then were to move to a different lattice point and repeat the observation,

the surroundings would look identical in both cases.

Mathematically, the translation from one lattice point to another can be represented

through the set of primitive lattice vectors, ~a1, ~a2, and ~a3, such that [33]:

~R = n1 ~a1 + n2 ~a2 + n3 ~a3 (A.2)

where ~R is the translation vector and n1, n2, and n3 are integer values. The vectors, ~ai,

being defined as primitive, implies that using any integer combination of these vectors in

three dimensions, one can reach every point within the lattice. As examples, Figure A.1

shows a 2D lattice structure with several regions defined, shaded in gray, with primitive

lattice vectors a1 and a2 highlighted. We can notice, that the primitive lattice vectors are

not unique, and there can be several different variations of lattice vectors, three of which

are shown in Figure A.1. Additionally in Figure A.1, we have lattice vectors denoted a∗1

and a∗2, these are examples of non-primitive lattice vectors. Through integer combinations

of a∗1 and a∗2, we are unable to reach all the lattice points within the 2D lattice, such as

2Again, the basis can also represent the organization of a collection of atomic clusters, molecules, etc.,
but for the sake of description we will typically refer only to atoms.

281



Appendix A. Fundamentals of Solid State Physics A.2

Figure A.1: A two-dimensional lattice with vectors, a1 and a2, highlighting three examples of primitive
lattice vectors, which also define three examples of primitive unit cells, shaded in grey. Additionally vectors
a∗1 and a∗2 provide two examples of sets of non-primitive lattice vectors, which define two examples of
conventional unit cells, shaded in blue.

those lattice points located within the blue shaded regions in Figure A.1.

Sets of primitive lattice vectors define the edges of parallelepipeds that are designated

as primitive unit cells, examples of which are the gray shaded regions of Figure A.1.

The primitive unit cell is the smallest reproducible unit, i.e. the smallest volume, that

can be used to construct the entire lattice. Each primitive unit cell contains exactly one

lattice point. For crystals with a basis of 1, such as the 2D crystal shown in Figure A.1,

this can include 1/4 of an atom at each corner of the parallelepiped. However, as primitive

lattice vectors are degenerate, so are the defined regions of the primitive unit cell. A special

case of the primitive unit cell is the Wigner-Seitz unit cell, shown in Figure A.2. The

Wigner-Seitz unit cell is constructed by connecting the adjacent lattice points around a

point of interest, see the blue lines in Figure A.2, and bisecting each of those blue lines

perpendicularly at the midpoint, see the lines denoted in red. The smallest region defined

by these planes, shaded in gray, is the Wigner-Seitz unit cell for that lattice. Again, since

it is a primitive unit cell, it contains only one lattice point.

The non-primitive lattice vectors in Figure A.1, a∗1 and a∗2, define the edges of unit cells,

which are denoted as non-primitive (or conventional) unit cells. While not the smallest

reproducible volume, and therefore can contain more than one lattice point, conventional
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Figure A.2: Schematic of the construction of the Wigner-Seitz unit cell for a two-dimensional lattice with
a monatomic basis.

unit cells are often more convenient to visualize the lattice symmetry.

The symmetry of a lattice is a property by which the system can undergo some movement

or operation and arrive at a state which is indistinguishable from the original configuration

[308]. Different types of crystal lattices are typically defined based on their symmetry prop-

erties. The typical properties of interest are the symmetry related to inversion, reflection,

and rotation. The unit cell is said to have inversion symmetry, if there is a point in which

the unit cell remains invariant under the translation ~R → −~R. The unit cell is said to

have reflection symmetry, if there exits a plane such that when a mirror reflection along

this plane is performed, the unit cell remains invariant. Finally, the unit cell is said to have

rotational symmetry, if there exists an axis such that if the cell is rotated about that axis

through some angle, the cell will remain invariant.

An infinite array of lattice points constructed via the translation vector, ~R, is an exam-

ple of a Bravais lattice. In total, there are 14 different Bravais lattices in three dimensions,

see Figure A.3, which can be further broken down by 7 crystal systems: triclinic, mono-

clinic, orthorhombic, tetragonal, cubic, hexagonal, and trigonal. Note that by definition,

all the Bravais lattices have inversion symmetry, with monoclinic and cubic systems having

reflection and rotation symmetry as well. The majority of elemental solids form either cubic

or hexagonal lattices.
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A.2.2 Crystals in Reciprocal Space

While we have discussed the construction of a Bravais lattice through the translation

vector, ~R, and provided examples of the 14 primary Bravais lattices, see Figure A.3, we

have yet to discuss how we identify the types of crystal structures in real systems. We can

study the crystal structure of an unknown system through the process of diffraction. The

discussion of diffraction at this point will serve two purposes 1) to provide a basic introduc-

tion to the interaction of electromagnetic radiation and a crystal lattice, and perhaps more

importantly 2) to develop the concept of reciprocal space. As we mentioned initially, for all

but the smallest of samples, i.e. dimensions on the order of nanometers, systems will have

an exceedingly large number of atoms. Attempting to track that many atoms, or unit cells,

is computationally and mathematically difficult, if not impossible, depending on the system

size. The definition of a reciprocal space3 allows us to invert regular space. Therefore, what

was relatively large in regular space, such as the distance across a long chain of atoms, will

be small in reciprocal space, making it more mathematically tractable. On the other hand,

the small distances will become large, however the minimum distances have a lower bound,

Figure A.3: The 14 types of Bravais lattices, representing 7 crystal systems: triclinic, monoclinic, or-
thorhombic, tetragonal, cubic, hexagonal, and trigonal.

3Reciprocal space is sometimes called k-space or q-space because it related to and has the same units as
a wavevector, often denoted k or q.
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given by the interatomic spacing, a, below which there will be no new usable information.

We will begin by discussing the diffraction experiment to give a physical picture of the

reciprocal space, before developing the concept in a more mathematical framework.

We know from fundamental experimental physics, that electromagnetic radiation inci-

dent on a small aperture, such as a slit, with a wavelength that is on the order of the

slit dimensions, will produce a diffraction pattern. In crystallography, when x-rays or elec-

trons are incident on a periodic chain of atoms, they will undergo similar diffraction, with

constructive and destructive interference creating a pattern of light and dark regions on a

detector screen, see Figure A.4a. If we now consider an array of atoms, see Figure A.4b, the

x-rays produce a periodic array of points on the detector screen. These points are a physical

manifestation of the reciprocal lattice. Because it is a reciprocal lattice, if we were to move

the atoms further apart, in one or both directions, the points on the screen, the lattice

points of the reciprocal lattice, would move closer together, see Figure A.4c. Similarly, if we

were to move the atomic planes closer together, the points in the reciprocal lattice would

move further apart, see Figure A.4d.

Now we will consider how the periodic nature of the regular lattice factors into the

mathematical description of the reciprocal lattice. To begin, we take a one-dimensional

array of atoms, as in Figure A.5, assuming a uniform spacing between each atom, defined

by the lattice constant, a. Due to the periodic nature of the array, we can also assume that

many properties of the system are periodic, such as the electron density, potential energy

fields, and mass density. If we consider periodicity in the mass density, we can relate the

mass density at a given point x, ρ (x), to the mass density at any other lattice point by:

ρ (x) = ρ (x+ na) (A.3)

where a is the lattice constant and n is an integer value. Periodic systems such as this

are well suited to be treated in terms of Fourier Analysis4. In terms of a Fourier series of

4Fourier analysis will be relied on heavily in Chapter 4 when discussing the interaction of the periodic
laser pulses from the laser system.
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(a) (b)

(c) (d)

Figure A.4: A schematic representation of x-ray diffraction for (a) a single row of periodic atoms, (b) a
2D array of atoms in a square lattice, (c) the real space lattice stretched in the vertical direction and (d)
the real space lattice compressed in the vertical direction.

complex exponentials, the relation for the mass density in Equation A.3 can be written as:

ρ (x) =
∑
m

ρm exp [iGmx] (A.4a)

ρ (x+ na) =
∑
m

ρm exp [iGm (x+ na)] (A.4b)

Equation A.4b can be rewritten as:
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Figure A.5: Schematic of a periodic one-dimensional chain of atoms of uniform mass m, and interatomic
spacing a.

ρ (x+ na) =
∑
m

ρm exp [iGmx] exp [iGmna] (A.5)

Equating Equations A.4a and A.5 implies that:

exp [iGmna] = 1 (A.6)

which is the case under the condition that:

Gmna = 2π × integer (A.7)

This relation can easily be extended to three dimensions by considering the vector form of

G and recalling that integer sums of the lattice constant a was the definition of the primitive

translation vector ~R. Therefore, in three-dimensional space we define:

~Gm · ~Rn = 2π × integer (A.8)

Where ~G is defined as the reciprocal translation vector, which is given by:

~G = m1
~b1 +m2

~b2 +m3
~b3 (A.9)

where ~bi is a primitive reciprocal lattice vector and mi is an integer. The relationship

between the primitive lattice vectors and the primitive reciprocal lattice vectors is given by

[306]:

~b1 = 2π
~a2 × ~a3

~a1 · ( ~a2 × ~a3)
(A.10a)

~b2 = 2π
~a3 × ~a1

~a1 · ( ~a2 × ~a3)
(A.10b)
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~b3 = 2π
~a1 × ~a2

~a1 · ( ~a2 × ~a3)
(A.10c)

From Equation A.8, we can infer that if ~R is the translation vector in real space (with

units of meters), then for the equation to remain unitless, the reciprocal space translation

vector ~G must have units of meters−1. Because the reciprocal lattice vector ~G has the same

translational symmetry as the real space lattice vector ~R used to define the Bravais lattice,

see Equations A.2 and A.9, the reciprocal space representation of a real space Bravais lattice,

is also a Bravais lattice5.

Just as in the case of the real space lattice, we can define a fundamental cell in reciprocal

space, which is the smallest repeatable volume which contains all pertinent wave informa-

tion. This reciprocal space equivalent of the Wigner-Seitz unit cell in real space, is defined

as the first Brillouin zone in reciprocal space. By definition, the first Brillouin zone “is

the smallest volume entirely enclosed by planes that are the perpendicular bisectors of the

reciprocal lattice vectors drawn from the origin” [306]. We can construct the first Brillouin

zone in reciprocal space, using this definition in a similar manner that we used to construct

the Wigner-Seitz unit cell, see Figure A.2.

In Figure A.6 is a reciprocal space representation of a two-dimensional real space square

lattice. To construct the first Brillouin zone from a central lattice point, we can draw

an arrow (shown in red) to a first nearest-neighbor lattice point, and draw a perpendic-

ular line bisecting that distance (see the red lines). This process is repeated for the four

nearest-neighbor atoms. The smallest region bounded by these red lines represents the first

Brillouin zone (shaded in red). To construct higher order Brillouin zones, we can repeat

the process using the next nearest-neighbors and the third nearest-neighbors for the second

and third Brillouin zones respectively. For a real space square lattice of lattice constant a

the dimensions of the Brillouin zone in reciprocal space is 2π/a, meaning that central to the

lattice point, k ranges from −π/a to π/a. The importance and power of the first Brillouin

zone will become more apparent as we discuss modes of vibration in the periodic crystal.

5Note that this does not imply that the reciprocal lattice has the same structure as the real space lattice.
While the reciprocal lattice of a real space simple cubic lattice is simple cubic, the reciprocal lattice of a
real space face-centered cubic lattice is body-centered cubic lattice, and conversely the reciprocal lattice of
a real space body-centered lattice is a face-centered cubic lattice.
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Figure A.6: Representation of a real space square lattice in reciprocal space showing the construction of
the first (red), second (blue) and third (yellow) Brillouin zones.

A.3 Phonons

To this point, we have discussed crystals in terms of their structure, i.e. the lattice and

basis, from a static point of view, attributing no motion to the atoms. It is this crystal

structure, along with the types of chemical bonding holding the crystal together, that

determines many of the physical properties of a material. Allotropes of carbon are probably

one of the best examples of this idea, with the property differences between diamond and

graphite arising due to the difference in bonding properties between the isometric and

hexagonal lattice of each material respectively. However, if we only considered atoms in

a rigid lattice, i.e. no flexibility in the bonds, we would not be able to describe such

properties as the ability to store thermal energy, i.e. the specific heat, or the ability to

transport thermal energy, i.e. the thermal conductivity. With our primary interest in this

work being thermal transport, we seek to describe how the vibrational motion of the atoms

in a crystal allow for the propagation of some finite amount of energy E, at a velocity

v. As mentioned in Chapter 1, the primary energy carriers in non-metallic materials, i.e.

semiconductors and insulators, are phonons.

Phonons are quantized vibrations of the crystal lattice, and are the quantum mechanical
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equivalents to normal modes of a classical system6. Therefore, a phonon of a given frequency

or wavelength is expected to extend throughout the entire dimension of the system, and

is linearly independent of other normal modes. A superposition of such modes will form

a wavepacket with a narrow spatial extent, and if the spatial extent is on the order of, or

below, the interatomic spacing of the crystal, the phonon wavepacket can be treated as

a particle [33]. The properties of phonons will become more apparent as we discuss the

formulation of the phonon dispersion relation.

A.3.1 Phonon Polarizations

However, before developing some of the fundamental properties of phonons in a solid,

it is important to discuss two specific allowed “families,” or as we will call them, polariza-

tions of phonons. These polarizations are easiest to picture in a two-dimensional lattice,

however the interpretation will hold for the three-dimensional structure as well. In the

two-dimensional lattice, we will consider the displacement of entire planes of atoms. In the

longitudinal polarization, the atomic planes are displaced in the same, or opposite, direction

of the wavevector, k, see Figure A.7a. For waves that are of transverse polarization, the

displacement of the atomic planes is perpendicular to the direction to k, see Figure A.7b.

One can imagine that in the two-dimensional case there is one transverse polarization, while

there are two, and none, in the three-dimensional and one-dimensional cases respectively.

(a) (b)

Figure A.7: Schematic of the types of phonon polarizations available in a two-dimensional lattice, (a)
longitudinal and (b) transverse.

6Phonons are given a unique name, instead of normal modes, to indicate that they are a quantum entity,
and therefore in addition to being described as a wave, can also be described as a quasi-particle.

290



Appendix A. Fundamentals of Solid State Physics A.4

A.4 Phonon Dispersion

When discussing the propagation of heat, we are in essence, talking about the propa-

gation of energy. Therefore, in the discussion of elastic waves, i.e. phonons, in a crystal,

it would be convenient to describe a relationship between some property that describes the

wave, and the energy the wave carries. We know from quantum mechanics that the energy

of a quantum entity, such as a photon or phonon, can be directly related to the angular

frequency by, E = ~ω. Also in physics, it is common to describe a wave in terms of its

wavevector ~k, which is related to the wavelength of the wave, and is proportional to the

momentum carried by the wave. We therefore seek to relate the wavevector ~k to the phonon

frequency ω, which is known as the phonon dispersion relation.

From the phonon dispersion relation, we will find that we can obtain several important

quantities and principles that will serve in both the understanding and modeling of thermal

transport. We will begin with the simple case of a one-dimensional crystal with a monatomic

basis and later expand our analysis to a diatomic basis which will introduce additional

phonon branches.

A.4.1 Vibrations of a 1D Lattice with a Monatomic Basis

To begin with a simple classical mechanics example, without the loss of generality, we

will consider a one-dimensional monatomic chain of atoms connected by massless springs,

see Figure A.8. Due to the restriction of the motion of the atoms to the x-direction only, this

formulation will focus on only longitudinal phonons7. While this is a relatively simplistic

example, it, along with the one to follow, will provide the necessary tools for a general

discussion of the properties of phonons in solids. In this treatment, m is the mass of the

atom, K is the force constant between atoms, and a is the equilibrium interatomic spacing.

All three of these properties are assumed to be uniform across the chain, and j is provided as

the atomic index. In this derivation we will make the following assumptions: 1) that we have

an ensemble of N atoms in total, 2) the potential energy is a minimum when the atoms

are at their equilibrium positions, 3) we will only consider nearest-neighbor interactions

7We will discuss the translation of these principles to three-dimensions, including transverse phonons,
in an upcoming section.
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Figure A.8: Schematic of a one-dimensional monatomic chain of atoms. Here m is the mass of the atoms,
K is the force constant between atoms, a is the equilibrium interatomic spacing, and j is the index of the
atom. The top row of atoms is the equilibrium configuration, with the lower row depicting atoms displaced
from equilibrium by a distance uj+i.

between atoms, and 4) the average displacement of the atoms is less than their interatomic

spacing, a.

Now considering the motion of atoms, if we move the jth atom from its equilibrium

position, xoj , to a new position xj , we can define the atomic displacement uj by:

uj = xj − xoj (A.11)

When an atom in the linear chain is displaced, the “spring” potential between the atoms

introduces a restoring force which tries to return the atoms to their equilibrium positions.

Assuming only nearest-neighbor interactions, the restoring force on an atom j, arises from

the displacement of the atoms on either side, i.e. the displacement of atom j+ 1 relative to

atom j, and the displacement of atom j−1 relative to atom j. Using Newtonian mechanics8,

the net force on atom j is given by [33]:

Fm = K (uj+1 − uj)−K (uj − uj−1) (A.12)

Applying Newton’s second law to Equation A.12 we have:

Fm = m
d2uj
dt2

= K (uj+1 − uj)−K (uj − uj−1) (A.13)

8This could also be interpreted via quantum mechanics, but again the more simplistic classical treatment
will suffice to elicit the phonon physics of interest.
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m
d2uj
dt2

= K [−2uj + uj+1 + uj−1] (A.14)

Equation A.14 is a special form of the wave equation given by [33]:

m
∂2u

∂t2
= Ka2∂

2u

∂x2
(A.15)

Therefore we can seek solutions of the form of normal modes of oscillation, i.e:

u(ja, t) ∝ uei(~kja−ωt) (A.16)

where ~k is the wavevector, ja is the discrete location of the jth atom9, ω is the phonon

frequency, and t is the time in the usual sense. Substituting Equation A.16 into Equation

A.14 we have:

−mω2uei(
~kja−ωt) = −K

[
2uei(

~kja−ωt) − uei(~k(j+1)a−ωt) − uei(~k(j−1)a−ωt)
]

(A.17)

mω2uei(
~kja−ωt) = Kuei(

~kja−ωt)
[
2− e−i~ka − ei~ka

]
(A.18)

mω2 = K
[
2− e−i~ka − ei~ka

]
(A.19)

Switching notation to sines and cosines we have:

mω2 = K [2− (cos ka− i sin ka)− (cos ka+ i sin ka)] (A.20)

mω2 = 2K [1− cos ka] (A.21)

ω(~k) =

√
2K(1− cos ka)

m
(A.22)

Finally using the trigonometric identity sin2 θ = 1
2(1− cos 2θ), we have:

ω(~k) = 2

√
K

m

∣∣∣∣sin 1

2
ka

∣∣∣∣ = ωc

∣∣∣∣sin 1

2
ka

∣∣∣∣ (A.23)

where k is the wavevector, K is the spring constant, m is the atomic mass, a is the in-

9The factor ja illustrates the discrete nature of the solutions due to the discrete spacing between the
atoms, as composed to the more traditional solution to the wave equation which is continuous in x.
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teratomic spacing and wc is defined as the cutoff frequency. Equation A.23, is the phonon

dispersion relation that we sought, which is sometimes referred to as the sine-type dispersion

relation.

The phonon dispersion relation from Equation A.23 is plotted in Figure A.9 in the

range of −4π/a ≤ k ≤ 4π/a. One striking observation from Figure A.9 is that the phonon

dispersion relation is repetitive over the range of 2π/a. As discussed previously in Section

A.2.2, all unique wave information for the crystal is contained within the first Brillouin

zone. Therefore, it is typically not necessary to plot the phonon dispersion relation beyond

the first Brillouin zone, see Figure A.10. Typically of greatest importance when analyzing

the phonon dispersion relation is the behavior of phonons in the long and short wavelength

limits, and the slope of the dispersion relation, which provides the phonon group velocity

as a function of wavevector.

Figure A.9: Phonon dispersion relation assuming a sine-type relation, as in Equation A.23, extended from
−4π/a ≤ k ≤ 4π/a.

A.4.2 Phonon Behavior in the Brillouin Zone

A useful exercise in understanding the behavior of phonons in a crystal, is to consider

their properties, particularly the slope of the dispersion curve, at the extremes of the Bril-

louin zone.
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Figure A.10: Phonon dispersion relation assuming a sine-type relation, as in Equation A.23, within the
extent of the first Brillouin zone.

Long Wavelength Limit - Brillouin Zone Center

We begin by considering the long phonon wavelength limit, which in reciprocal space,

relates to small wavevectors, i.e. as ~k approaches zero, also called the zone center. If we

consider the slope of the phonon dispersion at the Brillouin zone center we have:

lim
~k→0

∂ω

∂~k
= lim

~k→0

∂

∂k

[
2

√
K

m

∣∣∣∣sin 1

2
ka

∣∣∣∣
]

= a

√
K

m
(A.24)

Integrating we have:

ω = a

√
K

m

∣∣∣~k∣∣∣ = c~k (A.25)

where c is the speed of sound in the crystal = a
√

K
m . This implies that longitudinal acoustic

phonons10 at the Brillouin zone center, travel at the speed of sound in the crystal. In

certain cases, to simplify analyses, rather than the sine-type dispersion (see Equation A.23),

the phonon dispersion is assumed to be linear, with a slope equal to the speed of sound

in the crystal, as shown by the red dashed line in Figure A.10. This is the so called

Debye approximation, which holds well for long phonon wavelengths but breaks down as

the phonon wavelength decreases near the Brillouin zone edge. The distribution of phonon

10The phonons discussed for the one-dimensional monatomic chain are designated as acoustic phonons
due to having a similar frequency and group velocity to sound waves in a material. Later when discussing
the diatomic chain we will compare these to optical phonons.
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wavelengths, i.e. more long or short, is a function of temperature, through the statistical

mechanical application of the Bose-Einstein distribution. Typically, more long phonon

wavelengths will be present at low temperatures with shorter wavelength phonons becoming

more prevalent at higher temperatures. Therefore, the Debye assumption is typically more

valid for transport at low temperature, breaking down as temperature increases. When

describing energy storage, the Debye assumption is asymptotically correct in the high and

low temperature limits, and is quite accurate at intermediate temperatures.

Short Wavelength Limit - Brillouin Zone Edge

At the opposite end of the spectrum, the Brillouin zone edge, the slope of the dispersion

relation is given by:

lim
~k→π

a

∂ω

∂~k
= lim

~k→π
a

a

√
K

m

∣∣∣∣cos
1

2
ka

∣∣∣∣ (A.26)

Which evaluates in the limit as ~k approaches the edge of the Brillouin zone as:

∂ω

∂~k
= 0 = vg (A.27)

where vg is the phonon group velocity. Physically, this indicates that phonons are non-

propagating at the Brillouin zone edge. That is to say, that phonons at the Brillouin zone

edge form standing waves, with the atoms in the linear chain oscillating completely out of

phase with each other.

Interpretation in 3-dimensional Space

Thus far, the simple example of a one-dimensional chain of atoms has served well to

elicit some of the properties of phonons within the Brillouin zone, and provide a formula-

tion of the dispersion relation for longitudinal acoustic phonons. Left unresolved however,

is a discussion on how these formulations will change when considering a three-dimensional

crystal structure. Potentially the largest physical change when considering phonons in a

multi-dimensional space is the ability of the atoms to vibrate in more than one direction. As

the analysis is extended into three dimensions, rather than single atoms vibrating indepen-

dently of each other, entire planes of atoms will be displaced. This concept can be difficult
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to visualize in three dimensions, but can be readily visualized in two-dimensional space,

as was alluded to in Figure A.7, when the types of phonon polarizations were discussed.

Beyond the longitudinal mode that follows parallel to the wavevector, ~k, one can envision

two additional directions orthogonal to the longitudinal mode. These additional modes are

defined as the transverse acoustic modes.

In these additional orthogonal directions one can imagine there will be different force

constants and interatomic distances. To understand the varying interatomic spacing, recall

Figure A.3, which showed the 14 types of Bravais lattices, and we notice that there will be

different lattice constants, a, in the different crystallographic directions, dependent on the

type of lattice. To understand the change in force constant, K, we again turn to a formu-

lation of classical mechanics. Under the same assumptions that the dispersion relation was

derived, i.e. small displacements, Hooke’s law states that the strain and stress in an elastic

solid are linearly related [306]. From this relation, along with some simplifying assumptions,

it is possible to determine the phonon group velocities in the primary crystallographic di-

rections. It is not necessary to belabor the derivations here, however Figure A.11 provides

the proportionality of the elastic stiffness constants, Cij , for each phonon polarization in

the three primary crystallographic directions. It is this variation in elastic force constants

in the primary crystallographic directions that vary the form of the dispersion relation for

(a) (b) (c)

Figure A.11: Elastic stiffness constants, Cij , for the longitudinal and transverse phonon polarizations
in the 3 primary crystallographic directions. Note that in the [100] and [111] directions, the transverse
polarization modes are degenerate.
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each phonon branch and/or direction. The formulation that was derived in Section A.4.1

for the one-dimensional monatomic case is still valid however, the steps simply must be

repeated with the appropriate force constant K, and lattice constant a, when treating each

phonon polarization and/or crystallographic direction.

To illustrate the full three-dimensional phonon dispersion relation, the phonon dispersion

of solid argon at 0 K is shown in Figure A.12, for the crystallographic directions of high

symmetry. Note that as indicated in Figure A.11, for the [100] and [111] crystallographic

directions, the transverse phonon polarizations are degenerate.

Figure A.12: The phonon dispersion relation for solid Argon in the directions of high symmetry at 0 K,
modeled with the lattice dynamics program, General Utility Lattice Program (GULP) [13].

A.4.3 Vibrations of a 1D Lattice with a Diatomic Basis

Thus far, we have only considered the simplest of examples, the one-dimensional chain

of like atoms, with a monatomic basis. We will now increase the complexity by switching

to a diatomic basis, on a one-dimensional chain, see Figure A.13. Here we have alternating

atoms of mass m and M , and we will assume m < M . In terms of the force constant K,

we are able to assume that it is either the same between each atom, or alternates as well.

For the sake of simplicity, we will assume that K is uniform throughout the chain. A more
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Figure A.13: Schematic of a one-dimensional diatomic chain of atoms. Here m and M are the masses of
the two types of atoms, K is the force constant between atoms, a is the equilibrium interatomic spacing,
and j is the index of the atom. The top row of atoms is the equilibrium configuration, with the lower row
depicting atoms displaced from equilibrium by a distance uj+i and vj+i.

detailed view of the various permutations of mass and force constant combinations can be

found in Dove [307].

Similar to the monatomic chain, expressions can be developed for the force on each type

of atom:

m
d2uj
dt2

= K [−2uj + vj + vj−1] (A.28a)

M
d2vj
dt2

= K [−2vj + uj+1 + uj ] (A.28b)

Again, we seek solutions of the form of normal traveling waves:

u(ja, t) ∝ uei(~kja−ωt) (A.29a)

v(ja, t) ∝ vei(~kja−ωt) (A.29b)

Inserting Equations A.29a-A.29b into Equations A.28a-A.28b we have:

−Muω2 = Kv
(

1 + e−ika
)
− 2Ku (A.30a)

−mvω2 = Ku
(

1 + eika
)
− 2Kv (A.30b)
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These two equations have solutions when their determinant is zero, therefore we have:

∣∣∣∣∣∣ 2K −mω2 −K
[
1 + eika

]
−K

[
1 + eika

]
2K −Mω2

∣∣∣∣∣∣ = 0 (A.31)

or

mMω4 − 2K (m+M)ω2 + 2K2 (1− cos ka) = 0 (A.32)

Solving for ω we find the dispersion relation for the diatomic case:

ω
(
~k
)

=

[
K (m+M)

mM
± 1

2mM

√
4K2 (m+M)2 − 8mMK2 (1− cos 2ka)

]1/2

(A.33)

While still solvable, we immediately notice that the complexity of Equation A.33 is sig-

nificantly increased as compared to the monatomic dispersion relation given by Equation

A.23.

A.4.4 Phonon Behavior in the Brillouin Zone

As with the case of the monatomic chain, the behavior of phonons within certain regions

of the Brillouin zone is potentially more telling than considering the entire dispersion itself.

Therefore, we will again take a more in depth look at the behavior of phonons at the center

and edge of the Brillouin zone.

Long Wavelength Limit - Brillouin Zone Center

Looking first at the Brillouin zone center, i.e. as ~k → 0, Equations A.30a and A.30b

reduce to:

−Muω2 = 2Kv − 2Ku (A.34a)

−mvω2 = 2Ku− 2Kv (A.34b)

This set of equations only has solutions when the determinant of the coefficients is zero, i.e:

∣∣∣∣∣∣∣
1− Mω2

2K −1

1 −
(

1− mω2

2K

)
∣∣∣∣∣∣∣ = 0 (A.35)
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From the binomial factor in ω, we know that there will be two solutions, each of which we

will use to define a different phonon branch. Solving for the determinant we have:

1− Mω2

2K
− mω2

2K
+
mMω2

4K2
= 1 (A.36)

Immediately, we see that a solution exits when ω = 0. This is the same result that was ob-

served for the monatomic case, see Figure A.10, as ~k approaches zero, the phonon frequency

does as well. This is indicative of the acoustic branch that was defined in the monatomic

case. Continuing to solve Equation A.36 for ω we have:

ω2

2K
(M +m) =

mMω2

2K

(
ω2

2K

)
(A.37)

ω =

√
2K

mM
(M +m) (A.38)

This solution will be designated as part of the optical branch, see Figure A.15. Comparing

the acoustic and optical branches, the atoms in an acoustic wave oscillate in phase with each

other, see Figure A.14b, similar to sounds waves, hence the acoustic designation. The atoms

in an optical branch however oscillate out of phase with each other, see Figure A.14a, at a

frequency close to the infrared portion of the electromagnetic spectrum, and can therefore

be excited by photons and are hence designed optical phonons [306].

Short Wavelength Limit - Brillouin Zone Edge

Now moving to the Brillouin zone edge for ka = ±π we have:

−Muω2 = Kv
(
1 + e−iπ

)
− 2Ku (A.39)

−mvω2 = Ku
(
1 + eiπ

)
− 2Kv (A.40)

from which we can find two solutions:

ω =

√
2K

M
(A.41a)
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(a) Optical Mode

(b) Acoustic Mode

Figure A.14: Schematic of the motion in (a) a transverse optical mode, i.e the two masses moving 180◦

out of phase with each other, and (b) a transverse acoustic mode, i.e. the two masses moving in phase with
each other, assuming an equal wavelength for both modes.

ω =

√
2K

m
(A.41b)

The difference between these solutions represents a phononic bandgap between the opti-

cal and acoustic branches, the magnitude of which is proportional to the mass difference

between the two atoms in the diatomic chain11, see Figure A.15.

A.4.5 Generalized Discussion 3D Crystal with Z Atoms in the Basis

We have already mentioned that for three-dimensional systems, we have one longitudinal

mode, and two transverse modes which may or may not be degenerate depending on the

crystal system and orientation. With the addition of an atomic basis greater than one,

we saw the splitting of the phonon dispersion into acoustic and optical branches. For a

crystal system with basis of Z atoms, there will be a total of 3Z branches, 3 of which are

always acoustic branches (containing 1 longitudinal and 2 transverse polarizations). There

are a total of 3 (Z − 1) optical branches with 2 (Z − 1) of those branches being transverse

11In the other permutations of this derivation, i.e. for the possible combinations of mass and spring
constants, it is possible for the magnitude of the phononic bandgap to be proportional to K or both m(M)
and K.
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Figure A.15: Phonon dispersion in half of the Brillouin zone, for a diatomic chain of atoms of masses m
and M , connected by massless springs of force constant K. The acoustic branch is shown in blue and the
optical branch in red, with the cutoff frequencies at the Brillouin zone boundaries denoted.

polarizations and the remaining being longitudinal polarization(s). As an example, we

will consider Si, which forms a face-centered cubic lattice with a basis of Z = 2. We

therefore expect a total of 6 branches, 3 acoustic (as with all 3D crystals) and 3 optical (1

longitudinal optical and 2 transverse optical). Figure A.16 provides the phonon dispersion

relation of Si taken from literature [26]. The plotted dispersion does follow the relation for

phonon branches, with 6 total branches, 1 of longitudinal polarization and 2 of transverse

polarization for both the optical and acoustic branches, with the transverse polarizations

being degenerate in the [100] and [111] crystallographic directions, as shown in Figure A.11.

While this methodology of determining the number, and types, of phonon branches

present in the dispersion curve, based on the atomic basis, Z, has been straightforward, the

expansion to the diatomic basis has greatly complicated the analysis of the equations of

motion, to develop the dispersion curves. The dispersion relation of real three-dimensional

systems is typically calculated through lattice dynamics calculations, which uses the prop-

erties of a dynamical matrix, the reciprocal space equivalent of a real space force constant

matrix of an atomic system, to determine the frequency and displacement of the phonons.

A general introduction to lattice dynamics calculations can be found in Dove [307].
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Figure A.16: Phonon dispersion of Si in the directions of high symmetry, image from [26]. The lines are
calculated from [26], and the circles are experimental data. Note: The frequency is given in terms of ν
which is related to ω by a factor of 2π, and the wavevector is denoted q, which is equivalent to k in the
notation of this dissertation.

The development of the phonon dispersion relation provides important information re-

garding the types, frequencies, speeds, and behaviors of phonons in a crystal system. It

is an important component in understanding how the configuration of atoms in a lattice

structure influences the phononic properties of a material. The dispersion relation alone

however does not provide all the necessary information to discuss phonon transport. We

will now discuss how energy level degeneracy is described through the phonon density of

states, and later discuss the interaction of phonons with other crystal structures and other

phonons.

A.5 Phonon Density of States

One of the important lessons of phonon physics that can be taken away from the dis-

persion relation, is that there can be multiple wavevectors, ~k, that can correspond to the

same phonon frequency, and therefore the same phonon energy. This is illustrated by the

red line shown in Figure A.16. This concept is represented in Figure A.17, with a constant

energy sphere represented in red, where there are numerous combinations of directional

wavevectors, kx,y,z, that can reach the energy surface.
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Figure A.17: Schematic representation a constant energy surface in k-space.

(a) (b)

Figure A.18: Schematic of the first quadrant of a constant energy surface in k-space depicting (a) the
determination of the number of quantum states that fit into that volume and (b) the differential expansion
of the spherical volume in k-space.

To understand the behavior of phonons and their relation to heat transfer, it is helpful

to determine, for a given frequency, the number of quantum states that correspond to that

energy level. To accomplish this, we are essentially interested in determining the number

of quantum states that “fit” into a spherical volume in k-space, see Figure A.18a. Due to

the fact that the energy levels in solids are quasi-continuous, we will look for the number of

states between a wavevector k and k+ dk, see Figure A.18b. Therefore, for an infinitesimal
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change in the wavevector, k, we have:

dN

dkV
= Modes per unit volume in k-space (A.42)

In three-dimensional space, the unit volume in k-space is give by:

dk = dkxdkydkz =

(
2π

L

)(
2π

L

)(
2π

L

)
=

(
2π

L

)3

(A.43)

Therefore, for one mode per unit volume, we have:

dN

dkV
=

1(
2π
L

)3 (A.44)

Separating and integrating: ∫
dN =

∫ (
L

2π

)3

dkV (A.45)

where, assuming a spherical Brillouin zone, we have:

dkvolume = k2
r sin θ dkrdθdφ (A.46)

N(~k) =
V

8π3

∫ 2π

0

∫ π

0

∫ k

0
k2
r sin θ dkrdθdφ (A.47)

Completing the integration:

N(~k) =
V

6π2
k3 (A.48)

where N(~k) is the # of states between k and k + dk per polarization and V is the volume

of the quantum state. We will denote n
(
~k
)

as the # of states between k and k + dk per

unit volume per polarization, i.e.:

n(~k) =
k3dk

6π2
(A.49)

Finally, the # of states between k and k + dk per unit volume, per unit wavevector, per

polarization, which is what is typically meant when referring to the phonon density of states

(PDOS), in k-space, is given by:

D(~k) =
k2

2π2
(A.50)
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The advantage of deriving the PDOS in k-space, is that to this point we have made no

assumptions about the form of the dispersion relation. During application, the PDOS can

be converted to a function of ω through the dispersion relation.

A.5.1 Debye Assumptions

The simplest example, which will be shown for clarity, is the application of the Debye

dispersion relation, which is given by:

ω = vDk (A.51)

where vD is the Debye velocity. Starting from n(~k), and inserting the Debye dispersion

solved in terms of k and dk, we have:

n(ω) =
1

2π2

(
ω

vD

)2 1

vD
dω (A.52)

Simplifying and converting to the # of states between ω and ω + dω per unit volume, per

unit frequency, per polarization, the PDOS under the Debye assumption is given by:

D(ω) =
ω2

2π2v3
D

(A.53)

Using a similar process, the pDOS assuming a sine-type phonon dispersion relation, see

Equation A.33, is given by:

D(ω) =
2

a3π2√ωωc

(
sin−1

[√
ω
ωc

])2

√
1− ω

ωc

(A.54)

Figure A.19a shows the PDOS, under the Debye assumption, for FCC Cu. As expected

from Equation A.53, the PDOS has a quadratic dependence on ω. Figure A.19b shows the

PDOS of solid Ar at 0 K, calculated from lattice dynamics using GULP [13]. Since both

Cu and solid Ar are FCC structures, we would anticipate similar trends in the PDOS. At

frequencies below 6 THz, the PDOS in Figure A.19b shows close to ω2 dependence, similar

to the Debye model. However, above 6 THz there is significant deviation from the ω2 trend.
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(a) (b)

Figure A.19: (a) Debye density of states for FCC Cu from Equation A.53 and (b) DOS of solid Ar at 0 K
calculated from lattice dynamics, GULP [13].

This is due to the deviation of the Debye (linear) model from the actual dispersion at high

frequencies.

The phonon density of states provides a quantification to the number of available

wavevectors, k, or frequencies, ω, that correspond to the same phonon energy. A high

value of the density of states at a given frequency implies there are many states that can

be occupied with that energy. Conversely, a density of states of zero at a given frequency

indicates that no phonons can occupy that energy level. However, while the PDOS provides

a quantification of how many, and what frequencies are possible, it alone does not describe

what phonons are present in a system. How the phonons are distributed within the PDOS

at a given temperature is determined from Bose-Einstein statistics. The product of the

PDOS with the statistical distribution of phonon energies, i.e. the Bose-Einstein distribu-

tion, is called the occupied phonon density of states. The occupied phonon density of states

is used in the calculation of the phonon energy, heat capacity and thermal transport, which

was discussed further in Chapter 2.

A useful quantity in summarizing the phononic properties of a material, to a crude but

useful approximation, is the Debye temperature, ΘD, given by [306]:

ΘD =
~ωD
kb

(A.55)
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with ωD, the maximum allowed frequency under the Deybe assumption, given by:

ωD =

(
6π3v3N

V

)1/3

(A.56)

where N/V is the number of modes per unit volume. The Debye temperature provides

an indication of the temperature at which all phonon modes are excited and a system

approaches the classical limit. In the same manner, being proportional to the maximum

frequency, ωD, the Debye temperature provides an indication to the strength of the bonds

in the material. A high Debye temperature material, has a high cutoff frequency ωD, and

therefore strong bonds are implied. In the same manner, a low Debye temperature material

has a low cutoff frequency implying weak bonds. Examples of several Debye temperatures

at room temperature are shown in Table A.1. In Chapters 2 and 7 we will look closer at

the role of the Debye temperature in predicting thermal transport.

Table A.1: Room temperature Debye temperatures, ΘD, for various elements. Data taken from [32].

Element ΘD [K] Element ΘD [K]

C 1860 Nb 275
Ti 380 Ag 215
Cr 460 In 129
Ni 375 W 310
Al 394 Pt 230
Si 625 Au 170
Ge 360 Pb 88
Pd 275 Bi 120

Having established the phonon dispersion relation and the density of states, it is possible

to calculate energy properties of a system, such as the phonon energy, U , and the heat

capacity, CV . This will not be belabored here, but can be found in numerous solid-state

texts [32, 306, 309]. Since the primary focus of this work is thermal transport, instead a

brief focus will be placed on the interaction of phonons within a material system.

A.6 Phonon Scattering

In the development of the phonon dispersion relation and phonon density of states, we

have made the major assumptions that the crystals were perfect infinite periodic structures,
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and that the forces between atoms were harmonic. When considering thermal transport

within a system, these assumptions lead to an infinite thermal conductivity. We know that

real systems have a finite thermal conductivity, which is due to sources of thermal resistance

within the material. To understand how the interactions of phonons with a material, and

themselves, affects thermal transport, we will briefly derive an expression for the thermal

conductivity of a material, and discuss the various scattering mechanisms which impede

phonon transport.

A.6.1 Transport Processes - Boltzmann Transport Equation

The challenge that arises when we begin to talk about thermal transport processes, is

that we are no longer discussing a system at equilibrium. Due to this nonequilibrium state,

we can no longer describe the system in terms of an equilibrium distribution function, e.g.

the Boltzmann distribution for phonons (Bosons), but rather we must use a nonequilibrium

distribution function. Therefore, in order to describe transport, we must have a way to

describe the change in the nonequilibrium distribution function as a function of time. The

most straightforward way to do this is to consider the position vector ~r, and the momen-

tum vector ~p, for a system of N particles. Mathematically this is accomplished through

the application of the Liouville equation, and computationally this is part of the basis of

molecular dynamics simulations. Both of these methods can be computationally expensive

with the Liouville equation requiring 2p × N variables, where p is the number of degrees

of freedom, and molecular dynamics simulations taking on the order of hours to days to

complete depending on the domain size.

To simplify the analysis, and significantly reduce the number of variables, Boltzmann

considered one particle and its interaction with the rest of the “system”, with the properties

of the other (N − 1) particles being averaged. This simplification of the Liouville equation

leads to the Boltzmann Transport Equation (BTE), given by [33]:

∂f

∂t
+
d~r

dt
· ∇rf +

d~p

dt
· ∇pf =

(
∂f

∂t

)
c

(A.57)

where f is the distribution function, ∂f∂t is the change in the distribution function with time,
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d~r
dt · ∇rf is the change in position, d~p

dt · ∇pf is the change in momentum, and
(
∂f
∂t

)
c

is the

“scattering term”. Rather then using momentum ~p we can also write the BTE in terms of

velocity (~p = m~v):

∂f

∂t
+ ~v · ∇rf +

~F

m
· ∇vf =

(
∂f

∂t

)
c

(A.58)

The terms on the left side of the equation account for changes in the distribution function

due to outside influences, such as external forces. The term on the right, the scattering

term, lumps together the interactions of the one particle with the rest of the system. The

challenge in the application of the BTE is the definition of the scattering term. The rigorous

way of dealing with the scattering term is to solve the time-dependent Schrödinger equation

for the two particle system, or use perturbation theory to solve for a scattering integral.

However, due to this complexity, it is common to simplify the analysis of the scattering

term by evoking the relaxation time approximation.

The relaxation time approximation assumes that for a quasi-equilibrium system, i.e.

small perturbations from equilibrium, there is a characteristic time for the system to return

to equilibrium, given by τ , called the relaxation or scattering time, i.e.:

∂f

∂t
=
f − fo
τ

(A.59)

As we are interested in the distribution of phonons, we will use the Bose-Einstein distribu-

tion function, which at equilibrium is given by:

fo =
1

exp
(

~ω
kBT

)
− 1

(A.60)

Additionally, we will define a function g which represents the deviation of the system from

an equilibrium state, such that:

f = fo + g (A.61)

Inserting this formulation into the BTE, see Equation A.58, we have:

∂g

∂t
+
∂fo
∂t

+ ~v · ∇rfo + ~v · ∇rg +
~F

m
· ∇vfo +

~F

m
· ∇vg = −g

τ
(A.62)
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Using this formulation of the BTE, we can solve to find an expression for the distribution

function, f , in terms of a small perturbation from equilibrium, g. Assuming perturbations

from equilibrium are small, which is generally true for diffusive systems, we can assume the

following: 1) the system is at steady state, i.e. the transient terms are negligible, 2) the

gradient of g is much smaller than the gradient of fo, 3) similarly, g is much smaller than

fo and 4) because we are dealing with phonons, there are no external forces. Under these

assumption, Equation A.62 reduces to:

f = fo − τ
∂fo
∂T

~v · ∇T (A.63)

where f is the nonequilibrium distribution function, which can then be used to calculate

transport phenomenon such as thermal conductivity, which we will now discuss. We will

find that the term of major importance that will follow through in the derivation of thermal

conductivity, is the scattering time, τ , which we will provide examples of and discuss further

in Section A.6.3.

A.6.2 Heat Flux in 1-Dimension - Thermal Conductivity

We will begin deriving the thermal conductivity by starting with a general expression

for heat flux in one dimension [33]:

Jqx(x) =

∫ ωmax

0

∫ 2π

0

∫ π

0
vg cos θ~ωf

D(ω)

4π
sin θ dωdθdφ (A.64)

where ωmax is the highest phonon frequency, such as that given by the cutoff frequency

of the Debye or sine-type phonon dispersion relation. Substituting the expression for the

distribution function that was presented earlier, see Equation A.63, we have:

Jqx(x) =

∫ ωmax

0

∫ 2π

0

∫ π

0
vg cos θ~ω

[
fo − τ

∂fo
∂T

~v · ∇T
]
D(ω)

4π
sin θ dωdθdφ (A.65)

If we now integrate over the azimuthal angle and simplify we have:

Jqx(x) = −1

2

dT

dx

∫ ωmax

0

∫ π

0
τv2

g sin θ cos2 θ~ωD(ω)
∂fo
∂T

dωdθ (A.66)
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The first term in the integration containing fo, dropped out because fo represents an equilib-

rium distribution with equal amount of energy going in opposite directions, and therefore no

net flux. Equation A.66 can be related to the thermal conductivity by evoking the Fourier

Law, given by [33]:

Jqx = −k dT
dX

(A.67)

Therefore we get the following equation for the thermal conductivity:

k =
1

2

∫ ωmax

0

∫ π

0
τv2

gCω sin θ × cos2 θ dθdω (A.68)

If we assume that the material properties are isotropic, this reduces to:

k =
1

3

∫ ωmax

0
τv2

g~ωD(ω)
dfo
dT

dω (A.69)

In terms of the energy stored in a crystal, the phonon heat capacity is given by [33]:

Cω =

∫ ωc

0
~ωD(ω)

dfo
dT

dω

Therefore, the thermal conductivity is given by:

k =
1

3

∫ ωmax

0
τv2

gCω dω (A.70)

where τ is the mean phonon scattering time and vg is the phonon group velocity. If we

assume that both τ and vg are independent of frequency, the expression for thermal con-

ductivity is reduced to the classical kinetic relation:

k =
1

3
Cvgl (A.71)

where l is the phonon mean free path = τvg. The mean free path by definition is the average

distance a phonon travels between collisions with other “objects’ such as impurities, defects,

other phonons, etc. Therefore, τ is the average time between successive collisions. It is

the frequency of these collisions that reduces the ability to transport thermal energy and

313



Appendix A. Fundamentals of Solid State Physics A.6

leads to a finite thermal conductivity. To better understand how phonons scatter, we will

look at a few scattering mechanisms, and provide empirical formulations associated with

each mechanism to show the functional dependency of the scattering rate, τ−1, on phonon

frequency.

A.6.3 Phonon Scattering Events

Mass-difference Scattering

The first type of scattering that we will consider is mass-difference scattering, which

is due to the presence of a different than average atomic mass within the crystal lattice.

This could be due to either the presence of impurity atoms and/or the presence of atomic

isotopes. The mass-difference scattering rate is given by [310]:

1

τm
=
Voω

4

4πv3
g

Γm

where Vo is the atomic volume, vg is the phonon group velocity, and ΓM is the form factor,

given by [310]:

Γm = fi

[(
∆Mi

M̄

)2

+ 2

{(
∆Gi
Ḡ

)
− 6.4γ

(
∆δi
δ̄

)}2
]

where fi is the fractional proportion of atoms with mass Mi, M̄ is the average atomic mass,

Gi is the average atomic stiffness constant between the impurity atom and the nearest-

neighbor atoms, G is the atomic stiffness constant of the host lattice, γ represents the

average Grüneisen anharmonicity parameter in the atomic bonds, and δi is the cube root

of the atomic volume for the ith impurity atom in its own lattice.

The scattering due to impurities can in theory be reduced by working with high quality

materials, however it should be noted that Si for example, in nature, contains a mixture

of 3 primary isotopes, 92% 28Si, 4.6% 29Si, and 3.1% 30Si [310]. Due to the strong depen-

dence on phonon frequency, and the ever present atomic isotopes, mass-difference scattering

contributes significantly to thermal resistance.
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Phonon-Phonon Scattering

Phonons can also scatter with other phonons12. This process can be categorized by two

different types of events depending on the momentum, which is directly proportional to the

wavevector, k, of the phonon pairs. These are denoted as normal and Umklapp13 processes.

In a normal process, two phonon of wavevector k1 and k2 combine14 to form a phonon of

wavevector k3, see Figure A.20a. The combination of these two phonons preserves both

energy and crystal momentum, leaving the net direction of phonon transport unchanged.

Due to this conservation, normal processes do not alter the dynamic movements of phonons,

and therefore normal processes alone, would lead to infinite thermal conductivities.

(a) (b)

Figure A.20: Schematic of phonon-phonon scattering processes within the first Brillouin zone for (a)
normal phonon processes and (b) Umklapp phonon processes.

In an Umklapp process, two phonon of wavevector k1 and k2 again combine to form

a phonon of wavevector ḱ3, however in this case, the wavevector ḱ3 falls outside the first

Brillouin zone, see Figure A.20b. We recall that phonons with wavevectors outside the

first Brillouin zone carry no more information than those within the first zone, because

their wavelengths are shorter than the interatomic spacing. However, we can map ḱ3 to

an equivalent wavevector, k3, within the first Brillouin zone through the addition of the

reciprocal lattice vector ~G, see Equation A.9. We note however, see Figure A.20b, that

12Note that in Section A.4 we derived the dispersion of phonons based on a purely harmonic potential
between the atoms, which lead to non-interacting normal modes. In real system, anharmonicity in the
interatomic potential lead to interactions between phonons.

13The name Umklapp derives from the German word Umklappen, which means to turn over.
14A phonon-phonon scattering event can also be considered the splitting of a phonon into two phonons

of lesser energy.
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the resulting wavevector k3, has changed direction as compared to the initial phonons. It

is this change in the net direction of propagation of the resulting phonon that gives rise to

thermal resistance due to phonon-phonon scattering. The rate of Umklapp scattering, τ−1
U ,

can be difficult to calculate but an approximate relation has been given by [311]:

1

τU
≈ ~γ2

Mv2
gθD

ω2T exp

{
−θD
3T

}
(A.72)

where γ is the Grüneisen anharmonicity parameter, M is the atomic mass, vg is the phonon

group velocity, and ΘD is the Debye temperature of the material. Due to an increasing pop-

ulation of high k phonons with increasing temperature, Umklapp scattering is the dominant

resistive thermal process at high temperatures, for materials with a low defect density.

Matthiessen’s Rule

Mass/impurity and phonon-phonon scattering are but two examples of phonon scatter-

ing that limits thermal transport. Phonons can also scatter at boundaries, in low dimen-

sionality structures, with electrons, etc., each with their own unique scattering rates. The

combination of these processes leads to the total relaxation time, as presented in the BTE

and shown in the derivation of the phononic thermal conductivity. The total relaxation

time is often calculated from the combination of individual scattering times15, through

Matthiessen’s Rule, given by [33]:

1

τt
=
∑
j

1

τj
(A.73)

where τj are the individual scattering times for normal processes, Umklapp processes,

mass/impurity scattering, etc:

1

τt
=

1

τn
+

1

τu
+

1

τm
+ . . . (A.74)

The magnitude of these scattering rates, at different temperatures and frequencies, provides

valuable insight into the dominate processes impacting thermal transport.

15Matthiessen’s rule assumes that the individual scattering mechanisms are linearly independent from
each other.
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A.7 Appendix Summary

In this appendix I presented a brief overview into the fundamentals of solid-state physics,

as they apply particularly to thermal transport. I began by discussing the types of crystal

systems, and developed the concept of a reciprocal space to aid in the mathematical descrip-

tion of large collections of atoms. Considering the vibrational motion of atoms within the

crystal lattice, I presented the concept of the phonons, and described how they are related

by energy and wavevector in a crystal through the development of the phonon dispersion

relation. The types and number of modes available in a material was developed in the

phonon density of states, with the occupied density of states describing the distribution of

phonon frequencies at a given temperature. Finally, I discussed how phonons traveling in

a material interact with features in the material and other phonons. Using the concepts

developed, in Chapter 2 we will look specifically at how phonons are transported between

two dissimilar materials, and how each materials phononic properties, i.e. dispersion and

density of states, impact the flow of thermal energy across a boundary.
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B.1 Reflectivity vs Reflectance

There are sometimes discrepancies in using the terms reflectivity and reflectance to

describe the amount of incident light that is reflected at the interface between two materials

of differing optical properties. It is generally accepted, and is the convention used in this

dissertation, that the reflectivity of a material is an inherent property of the material, while

the reflectance is dependent on the particular configuration of the materials comprising the

interface. With our particular interest in the interaction of laser energy with thin metallic

films, the defining criteria in this case will be the film thickness.

The primary quantity of interest in comparing the use of reflectivity or reflectance in

thin films is the optical penetration depth, OPD, given by [23]:

δ =
λ

4πkf
(B.1)

where λ is the incident photon wavelength and kf is the extinction coefficient of the metallic

film. An example of the OPD of a Pt film as a function of incident photon wavelength is
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shown in Figure B.1. For film thicknesses several times the OPD, the metallic film is

considered “optically thick” and in terms of optical properties behaves like the bulk element.

When the film thickness is on the order of the OPD depth, special consideration must be

taken, and the properties of the metallic film alone are not sufficient to accurately represent

the reflection of incident photon energy.

Figure B.1: Optical penetration depth in Pt as a function of incident photon wavelength, calculated using
Equation B.1. Optical constant data provided from [27].

When the metallic film interacting with the laser energy is optically thick, the reflectivity

as a function of the complex indicies of refraction of the system, assuming normal incidence,

is given by [312]:

Rbulk =
(n1 − no)2 + k2

1

(n1 + no)
2 + k2

1

(B.2)

where ni and ki are the real and imaginary components of the index of refraction respec-

tively. Therefore, as an example, the bulk reflectivity of a Pt film is given by:

Rbulk,Pt =
(2.79− 1)2 + 4.8852

(2.79 + 1)2 + 4.8852
(B.3a)

Rbulk,Pt = 0.7081 (B.3b)

However when the metallic film is optically thin, the reflectivity of the film is affected by

the optical properties of the substrate, and the relectivity model given in Equation B.2 is

modified to take into account these properties. The reflectivity of the optically thin system
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is given by [313]:

Rthin =
abe2kη + cde−2kη + 2r cos (2nfη) + 2s sin (2nfη)

bde2kη + ace−2kη + 2t cos (2nfη) + 2u sin (2nfη)
(B.4a)

a = (nf − na)2 + k2
f (B.4b)

b = (nf + ns)
2 + k2

f (B.4c)

c = (nf − ns)2 + k2
f (B.4d)

d = (nf + na)
2 + k2

f (B.4e)

r =
(
n2
a + n2

s

) (
n2
f + k2

f

)
−
(
n2
f + k2

f

)2 − n2
an

2
s − 4nansk

2
f (B.4f)

t =
(
n2
a + n2

s

) (
n2
f + k2

f

)
−
(
n2
f + k2

f

)2 − n2
an

2
s + 4nansk

2
f (B.4g)

s = 2kf (nf − na)
(
n2
f + k2

f + nans
)

(B.4h)

u = 2kf (ns + na)
(
n2
f + k2

f − nans
)

(B.4i)

η =
2πd

λ
(B.4j)

where the subscripts a, f, s refer to the ambient (typcially air), film, and substrate respec-

tively, d is the film thickness, and λ is the incident photon wavelength. As an example, the

reflectance as a function of film thickness for Al, Au, Pt, and Ni on a Si substrate is shown

in Figure B.2 with properties used in the calculations provided in Table B.1.

Property Al Au Pt Ni Si Ambient

n 2.699 0.177 2.79 2.45 3.705 1
k 9 4.964 4.885 4.34 0.088 0

λ = 785 nm

Table B.1: Optical and laser properties used in the calculation of reflectance and reflectivity of Al,Au,Pt,
and Ni shown in Figure B.2.
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Figure B.2: Reflectance as a function of film thickness for Al, Au, Pt, and Ni on Si substrates in air, based
on Equations B.4a-B.4j. The dashed lines are the reflectance of the given bulk metals using Equation B.2.
Optical properties used in the calculations are shown in Table B.1.
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C.1 Square Wave of Arbitrary Duty Cycle

In order to modulate the pump beam, and thereby allow the system to lock into the

probe signal, the electro-optical modulator (EOM) and the lock-in amplifier are provided

with a driving function via a function generator or alternative source. The derivation of

the thermal model typically assumes a sinusoidal modulation waveform for modulation of

the pump beam, see Section C.3. However, as part of the work in this dissertation that

formulation was extended to incorporate a pulsed waveform, i.e. a square waveform with
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an arbitrary duty cycle. The pulsed waveform supplied to the EOM for pump modulation

in the TTR/TDTR experiment, x(t), is of the form given by:

x(t) =

 1 0 < t < d/2− τd

0 d/2− τd < t < To/2− τd
(C.1)

where To is the period of the function, d is the time the function is “on” (High logic), D

is the duty cycle, and τd is the delay time, see Figure C.1. In our implementation of the

pump-probe spectroscopy experiment, the pump is advanced rather than the probe delayed

to obtain the pump-to-probe delay and temporal resolution of the temperature decay, see

Chapter 3. Therefore, in reference to the temporal location of the modulation waveform

at t = 0, a time shift, i.e. a phase shift, will be observed as a function of the pump-probe

delay time, τd. When the duty cycle is 50%, i.e. D = 0.5, the pulsed waveform is more

commonly referred to as a square waveform.

Figure C.1: Generalization of the pulsed wavefunction that we seek, given by Equation C.1.

The waveform described in Equation C.1 and represented in Figure C.1, can be for-

mulated from Fourier Series analysis with the complex representation of the continuously

periodic time signal given by [226]:

x(t) =
∞∑

k=−∞
ake

ik(2π/To)t (C.2)
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where the ak ’s are the Fourier coefficients which can be calculated by given by:

ak =
1

To

∫
To

x(t)e−ik(2π/To)t dt (C.3)

The special DC component, a0, and the general cases of the AC Fourier coefficients, ak, can

be derived for the pulsed waveform Equation C.3. Therefore we have:

DC Fourier Coefficient - a0

a0 =
1

To

∫
To

x(t) dt (C.4)

=
1

To

∫ d/2−τd

−d/2−τd
1 dt+

1

To

∫ To/2−d/2−τd

−To/2+d/2−τd
0 dt (C.5)

a0 =
d

To
(C.6)

AC Fourier Coefficients - ak

ak =
1

To

∫
To

x(t)e−ik(2π/To)t dt (C.7)

=
1

To

∫ d/2−τd

−d/2−τd
e−ik(2π/To)t dt+

1

To

∫ To/2−d/2−τd

−To/2+d/2−τd
0 dt (C.8)

=
1

To

1

−ik(2π/To)
e−ik(2π/To)t

∣∣∣∣d/2−τd
−d/2−τd

(C.9)

ak =
1

−2πik

[
e−ikπd/To+ikωoτd − eikπd/To+ikωoτd

]
(C.10)

ak =
1

−2πik

[
e−ikπd/To − eikπd/To

]
eikωoτd (C.11)

The final Fourier representation of the pulsed waveform, with an arbitrary duty cycle, D,
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is given by:

x(t) =
d

To
+

∞∑
k=−∞
k 6=0

ake
ik(2π/To)t (C.12)

where ak is given by Equation C.11

In order to test the validity of the formulated waveform given in Equations C.12 and

C.11, and to compare to the functional form sought in Figure C.1 the plotted wavefunction

for duty cycles of 10, 25, 50, and 75% is shown in Figure C.2. Interpretation of the plots

indicated that the formulation of the waveform developed, see Equation C.12, follows the

criteria set forth in Equation C.1.

(a) (b)

(c) (d)

Figure C.2: Plot of the waveform given by Equations C.12 and C.11 for a frequency of 1 Hz, i.e. f = 1
Hz, τd = 0, for a duty cycles (a) D = 0.10, (b) D = 0.25, (c) D = 0.50, and (d) D = 0.75.
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C.2 Frequency Domain Signal Analysis - Reduction of Pulsed

Modulation to Sinusoidal Modulation

In order to test the validity of Equations C.11 and C.12, beyond the plots shown in

Figure C.2, we will consider the special case where D = 0.5 and k = {−1, 1}. We know

from Fourier analysis that a square wave, or pulsed wave, can be constructed from an infinite

summation of complex exponentials (sines and cosines), see Figure C.3. Therefore for the

case of k = {−1, 1}, the solution for the pulsed waveform should reduce to the sinusoidal

solution. In the case of the waveform shown in Figure C.1, since x(t) is symmetric about

x = 0 for D = 0.5, x(t) is formed from an infinite summation of cosine waves of odd

harmonics. Therefore for the case of k = {−1, 1} we expect to seek a solution of the form:

Figure C.3: Amplitude as a function of time, for the pulsed wave formulation, Equations C.11 and C.12,
showing the sum of 1, 3, 5, 7, and 5000 harmonic terms, k. Assuming f = 1 Hz, D = 0.5, and τd = 0.

x(t) = Re
{
eiωot

}
= cos(ωot) (C.13)

Beginning with the formulation of the Fourier coefficients from Equation C.11:

ak =
1

−2πik

[
e−ikπd/To − eikπd/To

]
eikωoτd (C.14)

for D = 0.5, k = {−1, 1}, and τd = 0

ak =
1

−2πik

[
e−ikπ/2 − eikπ/2

]
(C.15)
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a1 = a−1 =
1

π
(C.16)

Therefore considering the AC component of Equation C.12 we have:

x(t) =
1

π
eiωot +

1

π
eiωot (C.17)

x(t) =
eiωot + eiωot

π
(C.18)

This solution looks very similar to the Euler relation for a cosine wave given by:

x(t) =
eiωot + eiωot

2
(C.19)

However, we note that the denominator of our derivation is a factor of π rather than a

factor of 2 as given by the Euler relation. This discrepancy can be explained by considering

the formulation of the pulsed waveform in this analysis. We derived the functional form

of the pulsed waveform specifically to reach a maximum value of unity during the ‘on”

condition. Taking a look at the Fourier coefficients, shown in Figure C.4, we see that there

are an equal number of harmonic components with positive and negative contributions,

with amplitudes reducing as 1/k to form the square wave. Therefore for a duty cycle of

50% the contributions of the first harmonic components must be greater than 1/2. This is

also noted in Figure C.3 where the first harmonic wave exceeds a magnitude of one, and it

is only when higher harmonics are considered that the waveform converges towards unity.

Figure C.4: Fourier coefficients, ak, for the first 61 harmonic terms, assuming D = 0.50 and τd = 0.
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C.3 Frequency Domain Signal Analysis - Sinusoidal Modu-

lation

Traditionally the effects of higher harmonics and non-symmetric duty cycles are ignored

and the modulation function of the pump is assumed to be sinusoidal. Here to show the

parallel path and the simplified case, the derivation of the transfer function is reproduced

following the work of Schmidt [228] in the notation and formulation of this work.

Again we will begin by considering a train of impulses from the laser given by:

qgen (t) = Q

∞∑
n=−∞

δ (t− nT ) (C.20)

and a sinusoidal modulation function given by1

x(t) = eiωoteiωoτd (C.21)

Recalling from Chapter 4, the sampled function in the frequency domain assuming the

pump laser to be an impulse-train of period Ts, is given by:

Xp(ω) =
Qpm

Ts

∞∑
k=−∞

P

(
ω − k2π

Ts

)
(C.22)

where P (ω) is the sampling function, i.e. the modulation waveform. In this case the

sampling function is the complex sinusoidal function given by Equation C.21, which in the

frequency domain is given by:

P (ω) = 2πδ(ω − ωo)eiωoτd (C.23)

Inserting Equation C.23 into C.22, the frequency domain solution for a periodic pump

1As was the case for the derivation of the pulsed waveform, we must also account for the delay of the
pump relative to the waveform at t = 0, which is the temporal reference of the lock-in, by including a phase
factor eiωoτd .
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impulse-train modulated by a complex sinusoid is given by:

Q(ω) = Xp(ω) =
2πQpm

Ts

∞∑
M=−∞

δ(ω − ωo −Mωs)e
iωoτd (C.24)

Recall that the temperature response in the time domain is the convolution of the impulse

heat input and the temperature response of the system, which in the frequency domain is

given by the product of the two, i.e.

Θ(t) = Q(t) ∗ h(t)
F←→ Θ(ω) = Q(ω)H(ω) (C.25)

Therefore the temperature response of a system due to thermal input from a sinusoidal

modulated pump impulse-train is given by:

Θ(ω) =
2πQpm

Ts

∞∑
M=−∞

H(ω)δ(ω − ωo −Mωs)e
iωoτd (C.26)

In order to monitor the temperature response of the system to the modulated heat input

from the pump, the system must be “sampled” a second time by the probe. The functional

form of the probe impulse-train is given by:

ppr(t) = βQpr

∞∑
l=−∞

δ (t− nT − τd) (C.27)

where Qpr is the heat input of the probe, β is a constant that contains information about

the thermoreflectance coefficient of the sample and the gain in the measurement electronics,

and τd is the time delay between the pump and probe impulses. In the frequency domain

the probe impulse function is given by:

P (ω) =

[
2πβQpr

Ts

∞∑
l=−∞

δ

(
ω − l2π

Ts

)]
e−iωτd (C.28)

Using the same methodology as in Chapter 4.2.2 it can be shown that:

Z(ω) =
2πβQpmQpr

T 2
s

∞∑
M=−∞

∞∑
l=−∞

H(ω − lωs)δ(ω − ωo − (l +M)ωs)e
−ilωsτdeiωoτd (C.29)
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This function will equal zero expect in cases where the contents of the delta function evaluate

to zero, i.e.:

ω − ωo − (l +M)ωs = 0 (C.30)

Assuming ω is within the lock-in bandwidth, i.e. ω = ωo, we find that this condition is only

satisfied when l = −M , therefore:

Z(ω) =
2πβQpmQpr

T 2
s

∞∑
M=−∞

H(ω +Mωs)δ(ω − ωo)eiMωsτdeiωoτd (C.31)

Taking the inverse Fourier transform we arrive at the transfer function of interest:

z(t) = Z(ωo)e
iωot (C.32)

where

Z(ωo) =
βQpmQpr

T 2
s

∞∑
M=−∞

H(ωo +Mωs)e
iMωsτdeiωoτd (C.33)

This is the “common” solution for the time domain system response and complex transfer

function reported by various groups [230, 231, 245, 251].

C.3.1 Lock-in Amplifier Signal

As was done in Chapter 4.2.3, we are interested in the lock-in amplifiers response in

channels X and Y to the time domain input given by Equation C.32. Both terms in

Equation C.32, Z(kωo) and eiωot are complex terms and therefore z(t) is of the form:

z(t) = (a+ ib)(c+ id) (C.34)

where

a = Re {Z(ωo)} (C.35a)

b = Im {Z(ωo)} (C.35b)
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c = Re
{
eiωot

}
= cos(ωot) (C.35c)

d = Im
{
eiωot

}
= sin(ωot) (C.35d)

Therefore,

z(t) = (Re {Z(ωo)}+ i Im {Z(ωo)}) (cos(ωot) + i sin(ωot)) (C.36)

z(t) = Re {Z(ωo)} cos(ωot) + i Im {Z(ωo)} cos(ωot)

+ iRe {Z(ωo)} sin(ωot)− Im {Z(ωo)} sin(ωot) (C.37)

In terms of the lock-in analysis for the pump-probe spectroscopy experiment, we are inter-

ested in the physical signal to be measured, i.e. the real component of z(t), therefore we

have:

z(t) = Re {Z(ωo)} cos(ωot)− Im {Z(ωo)} sin(ωot) (C.38)

Where the X and Y components of the lock-in output are given by:

X = Re {Z(ωo)} (C.39a)

Y = Im {Z(ωo)} (C.39b)

In complex analysis the real, X, and imaginary, Y , components of a complex signal Z can

be given in terms of the complex conjugate Z∗:2

Re {Z(ωo)} =
1

2
[Z + Z∗] (C.40)

Im {Z(ωo)} =
1

2i
[Z − Z∗] (C.41)

where Z∗(ωo) = Z(−ωo). Therefore the final form of the lock-in components, X and Y , for

the system response due to the sinusoidal modulation waveform is given by:

2Note that this the same form as Equations 4.36a and 4.36b for the first harmonic terms, i.e. k = {−1, 1},
expect for the magnitude of the coefficient, which is explained in Appendix C.3.
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X =
1

2

βQpmQpr

T 2
s

[ ∞∑
M=−∞

H(ωo +Mωs)e
iMωsτ

+

∞∑
M=−∞

H(−ωo +Mωs)e
iMωsτd

]
eiωoτd (C.42a)

Y =
−i
2

βQpmQpr

T 2
s

[ ∞∑
M=−∞

H(ωo +Mωs)e
iMωsτ

−
∞∑

M=−∞
H(−ωo +Mωs)e

iMωsτd

]
eiωoτd (C.42b)

C.4 Feldman Analysis - Layer Temperature

Recalling from Chapter 4.3 we have that the temperature on either side of the heat

source, located at z = ξ, is given by:

T̃n

(
ξ+
)
− T̃n

(
ξ−
)

= − Q

2γn,Q

 1

−1

 (C.43)

Inserting Equations 4.65a and 4.65b into Equation C.43 we have:

TN+1

 B+

B−

+ T0

 A+

A−

 = − Q

2γn,Q

 1

−1

 (C.44)

Using this we obtain two equations and two unknowns:

TN+1B
+ − T0A

+ = − Q

2γn,Q
(C.45a)

TN+1B
− − T0A

− =
Q

2γn,Q
(C.45b)

Equation C.45b is then solved for TN+1:

TN+1 =
1

B−
Q

2γn,Q
+ T0

A−

B−
(C.46)
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Plugging Equation C.46 into Equation C.45a it follows that:

(
1

B−
Q

2γn,Q
+ T0

A−

B−

)
B+ − T0A

+ = − Q

2γn,Q
(C.47)

T0

(
B+A−

B−
−A+

)
= − Q

2γn,Q

(
1 +

B+

B−

)
(C.48)

T0 =
− Q

2γn,Q
B−+B+

B−

A−B+−B−A+

B−

(C.49)

T0 =
Q

2γn,Q

B+ +B−

A+B− −A−B+
(C.50)

Similarly, if we solve Equation C.45a or C.45b for T0 and insert into the other, it can be

shown that:

TN+1 =
Q

2γn,Q

A+ +A−

A+B− −A−B+
(C.51)

C.5 Feldman Analysis - Probe Through Glass

In Chapter 4.3.2 we looked at two examples of sample configurations and constructed

the Ã and B̃ matrices to show the effects of the semi-infinite substrate assumption. Here

will we derive Ã and B̃ for a more complex configuration where we are heating and probing

the surface of the metal film through glass, see Figure C.5. For this configuration we assume

only one layer, i.e. N=1, and that the glass slide and the substrate are semi-infinite. This

configuration has been used in order to probe the thermal properties of liquids and spin

coated films [240, 314] Beginning with Equation 4.68a we can construct the Ã:

Ã = Ũ1 (0)× Γ̃1→0 ×
(

1

0

)
(C.52)
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Figure C.5: Schematic of the indexing scheme used in the thermal analysis for a sample configuration
where heating and probing are through a glass layer.

Expanding

Ã =
1

2
×

 1 0

0 1

×
 1 + γ0

γ1
− γ0

hBD,1→0
1− γ0

γ1
+ γ0

hBD,1→0

1− γ0

γ1
− γ0

hBD,1→0
1 + γ0

γ1
+ γ0

hBD,1→0

×
 1

0

 (C.53)

Simplifying

Ã =
1

2
×

 1 + γ0

γ1
− γ0

hBD,1→0

1− γ0

γ1
− γ0

hBD,1→0

 (C.54)

In contrast to the previous examples in Chapter 4.3.2, the properties of γ0 are not zero,

and therefore will contain the properties of the glass. Because the substrate is assumed to

be semi-infinite the formation of the B̃ matrix is the same as in Chapter 4.3.2.

B̃ = Ũ1 (d1)× Γ̃1→2 ×
(

0

1

)
(C.55)

Expanding

B̃ =
1

2
×

 exp [−q1d1] 0

0 exp [q1d1]


×

 1 + γ2

γ1
− γ2

hBD,1→2
1− γ2

γ1
+ γ2

hBD,1→2

1− γ2

γ1
− γ2

hBD,1→2
1 + γ2

γ1
+ γ2

hBD,1→2

×
 0

1

 (C.56)
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Simplifying

B+ =
1

2
×
[(

1− γ2

γ1
+

γ2

hBD,1→2

)
exp [−q1d1]

]
(C.57a)

B− =
1

2
×
[(

1 +
γ2

γ1
+

γ2

hBD,1→2

)
exp [q1d1]

]
(C.57b)
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D.1 Testing for Normality

Through out the analysis in this chapter, there are several areas where the method

in which we proceed will be dependent on being able to assume a normal distribution,

or that the given distribution behaves normally to a good approximation. In theory, we

could take a sufficiently large number of TTR/TDTR scans, analyze the data to deduce a

thermophysical value, and create a histogram in an attempt to estimate the shape of the

population of values. This of course brings us back to the problem of taking large sets of

data. What we would ideally like, is a way to test for Normality from a subset of data, and

make inference as to the properties of the distribution. Very seldom does a discrete sampling

correspond exactly to a normal distribution so there will be a certain amount of judgment

in determining normality. There is no one method that is used to test a distribution of data

for Normality, and in fact there are over 40 normality tests found in literature [315, 316].
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Generally, the different methods to test Normality can be broken down into graphical,

numeric, and testing methods. We will use a combination of these 3 methods in order to

test for normality. To better discuss the merits of several of the methods that will be used

throughout the course of this work, we exam a simulated population with known mean and

standard deviation, µ = 100 MW/m2K and σ = 1 MW/m2K respectively.

D.1.1 Graphical Methods for Testing Normality

The simplest methods for assessing Normality, are graphical methods. Probably the

most common of the graphical methods is to plot a histogram of the data. Figures D.1a

and D.1c show a histogram of the model data. Figure D.1a is generated from a random

sampling from a normal distribution, and Figure D.1c from a skewed normal distribution.

While the histogram of the data, is a quick visual format to asses how the data is distributed,

depending on the number of samples and the bin size, it is somewhat subjective to determine

whether the data is distributed normally or not. Therefore, in addition to a histogram of the

data, we can also consider a normal quantile-quantile plot (Q-Q pot). In the Q-Q plot, the

data is plotted against the quantiles of a normal distribution with the mean and standard

deviation of the data. If the distribution of the data is normal, the data points will lay

along the straight line, see Figure D.1b. Deviation away from the line, is indicative of a

deviation away from Normality, see Figure D.1d. While graphical comparisons such as the

histograms and Q-Q plots shown in Figure D.1 provide quick analysis as to the normality

of a distribution of data, as the sample size decreases, it becomes more difficult to asses the

results, see Figure D.2.

D.1.2 Numerical Methods for Testing Normality

Turning to more numerical methods, we can consider the skew, βskew, and kurtosis,

βkurt of the distribution, given by Equations 6.7a and 6.7b respectively. We know that

for a perfectly normal distribution that the skew and kurtosis should be equal to zero and

three respectively, and any deviation from these values indicates a deviation for normality.

Along with the histrograms plotted in Figures D.1a and D.1c, the skew and kurtosis are also

reported. We see that both distributions have similar kurtosis, however, the distribution
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(a) (b)

(c) (d)

Figure D.1: Normal data, µ = 100 MW/m2K σ = 1 MW/m2K

(a) (b)

Figure D.2: Normal data, µ = 100 MW/m2K σ = 1 MW/m2K, n = 20

in Figure D.1c has a larger skew compared to Figure D.1a. While the skew and kurtosis

provide a good quantitative measure of the normality of a given distribution, again care

must be taken, because both the skew and kurtosis can vary for small sample sizes.

Figure D.3 illustrates how a small number of data points can effect the measurement of
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the skew and kurtosis of a distribution. Figures D.3a and D.3b give the graphical analysis

of 5000 data points selected from a normal distribution, along with the skew and kurtosis

of the overall population. In Figures D.3c and D.3d the skew and kurtosis as a function of

the number of data points used in the calculation is shown. From the plots, it is apparent

that when the number of data points is small, there is large variations in the calculated

skew and kurtosis. Therefore, while providing valuable quantification of the Normality of

larger data sets, care must be taken in interpreting the results as the number of data points

decreases.

(a) (b)

(c) (d)

Figure D.3: Normal data, skew and kurtosis as a function of the number of data points.

D.1.3 Hypothesis Testing for Normality

The final group of methods for testing the Normality of a distribution involves the

process of hypothesis testing. It is assumed that the null hypothesis is that the distribution
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is normal, and the alternate hypothesis is that the distribution is not normal, i.e.

H0 : The distribution is normal (D.1a)

H1 : The distribution is not normal (D.1b)

The various tests that can be performed in order to test the validity of the null hypoth-

esis can typically be separated in to three categories, 1) empirical distribution function

(EDF) tests, moment tests, and correlation tests [316]. Examples of EDF tests include

the Kolmogorov-Smirnov (KS), Cramer-von Mises (CV), and Andreson-Darling (AD) test,

which compute a measurement of discrepancy between the hypothesized distribution of the

data and the normal distribution. Moment tests compare the third and fourth moments

(which we already know as the skew and kurtosis) of the normal distribution to that of

the test distribution. Finally, the correlation tests compare the ratio of the weighted least

squares from a normal population to the sample variance. The most common of these tests

being the Shapiro-Wilk test, which is the test that will be used for this analysis.

The Shapiro-Wilk test was first developed in 1965 to test the Normality of small samples

sizes in the range of 3 ≤ n ≤ 50 and was later extended in 1995 to be used for sample sizes

in the range of 3 ≤ n ≤ 5000. The Shapiro-Wilk test calculates the test statistic, W given

by [317]:

W =

(
n∑
i=1

aix(i)

)2

n∑
i=1

(xi − x)2
(D.2)

where x(i) is the ordered sample values (i.e. x(1) is the smallest value), x is the sample

mean, and ai is the weighting constant generated from the mean, variance, and covariance

of a normal distribution and given by [317]:

a =
mTV−1

(mTV−1V−1m)1/2
(D.3)

where m are the expected values of random variables sampled from the normal distribution

and V is the covariance matrix.

The test statistic of the Shaprio-Wilk test, W , ranges in value between zero and one,
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with small values of W rejecting the null hypothesis (Normality). In multiple analyses,

the Shapiro-Wilk test has been shown to be one of the best tests for identifying Normality

and ideal for smaller sample sizes [315, 318, 319]. In fact, since the test statistic is biased

based on sample size, care must be taken with large sample sets, which could produce a

statistically significant p-value regardless of the underling distribution.

All the methods presented for testing for Normality, graphical, numerical, and hypothesis

testing, can provide insight into how a subset of data, and/or how the underlying population

is distributed. However, in each case there are also limitations to the interpretations based

on several factors. Therefore, it is not recommended to rely on one method exclusively, and

we will therefore compare results from each test in making a judgment of Normality.
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MODELING ANALYSIS OF

PT/NI/SI(GE) SYSTEM

E.1 Averaged Sensitivity Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 342

E.2 Sensitivity Parameter as a Function of Time . . . . . . . . . . . . . . . . . . 343

E.1 Averaged Sensitivity Parameter

Table E.1: Averaged sensitivity parameter for the 100 nm Pt on Si system.

Pt/Si System

Ni Thickness L1C L1kz L1d L2C L2kz Lsd LSC LSkz TBC 12 TBC2S
0 0.4383 0.3255 0.1134 — — — -0.1309 -0.1309 -0.5018 —
5 0.5445 0.3191 0.2258 -0.0040 -0.0098 0.0058 -0.2737 -0.2737 -0.0816 -0.2209

10 0.5271 0.3267 0.2007 -0.0114 -0.0188 0.0073 -0.2611 -0.2611 -0.0787 -0.2227
20 0.4957 0.3355 0.1606 -0.0300 -0.0339 0.0039 -0.2249 -0.2249 -0.0729 -0.2447
30 0.4616 0.3420 0.1199 -0.0541 -0.0449 -0.0093 -0.1858 -0.1858 -0.0670 -0.2662
50 0.4059 0.3505 0.0557 -0.1144 -0.0586 -0.0558 -0.1273 -0.1273 -0.0587 -0.2701

100 0.3219 0.3643 -0.0422 -0.2984 -0.0625 -0.2359 -0.0386 -0.0386 -0.0461 -0.2019
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Table E.2: Averaged sensitivity parameter for the 100 nm Pt on Ge system.

Pt/GeSystem

Ni Thickness L1C L1kz L1d L2C L2kz Lsd LSC LSkz TBC 12 TBC2S
0 0.3439 0.3384 0.0061 — — — -0.1642 -0.1642 -0.3538 —
5 0.3745 0.3503 0.0246 -0.0114 -0.0060 -0.0054 -0.2199 -0.2199 -0.0501 -0.2176

10 0.3622 0.3574 0.0051 -0.0262 -0.0116 -0.0146 -0.2131 -0.2131 -0.0487 -0.2068
20 0.3249 0.3662 -0.0411 -0.0615 -0.0199 -0.0416 -0.1693 -0.1693 -0.0435 -0.2275
30 0.2925 0.3714 -0.0786 -0.1021 -0.0254 -0.0768 -0.1304 -0.1304 -0.0394 -0.2361
50 0.2586 0.3760 -0.1171 -0.1863 -0.0325 -0.1539 -0.0804 -0.0804 -0.0356 -0.2192

100 0.2293 0.3824 -0.1529 -0.3925 -0.0342 -0.3583 -0.0133 -0.0133 -0.0306 -0.1277

E.2 Sensitivity Parameter as a Function of Time

Figure E.1: The sensitivity coefficient as a function of time for 100 nm of Pt on Si.

Figure E.2: The sensitivity coefficient as a function of time for 100 nm of Ni on Si.
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Figure E.3: The sensitivity coefficient as a function of time for 100 nm of Pt on Si with a 5 nm Ni
intermediate layer.

Figure E.4: The sensitivity coefficient as a function of time for 100 nm of Pt on Si with a 10 nm Ni
intermediate layer.

Figure E.5: The sensitivity coefficient as a function of time for 100 nm of Pt on Si with a 20 nm Ni
intermediate layer.
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Figure E.6: The sensitivity coefficient as a function of time for 100 nm of Pt on Si with a 30 nm Ni
intermediate layer.

Figure E.7: The sensitivity coefficient as a function of time for 100 nm of Pt on Si with a 50 nm Ni
intermediate layer.

Figure E.8: The sensitivity coefficient as a function of time for 100 nm of Pt on Si with a 100 nm Ni
intermediate layer.
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Figure E.9: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge.

Figure E.10: The sensitivity coefficient as a function of time for 100 nm of Ni on Ge.

Figure E.11: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge with a 5 nm Ni
intermediate layer.
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Figure E.12: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge with a 10 nm Ni
intermediate layer.

Figure E.13: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge with a 20 nm Ni
intermediate layer.

Figure E.14: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge with a 30 nm Ni
intermediate layer.
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Figure E.15: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge with a 50 nm Ni
intermediate layer.

Figure E.16: The sensitivity coefficient as a function of time for 100 nm of Pt on Ge with a 100 nm Ni
intermediate layer.
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Supplement S. Modeling and Fitting of Data S.1

S.1 Simulation Parameters

S.1.1 100 nm Al on Si Substrate Series

Table S.1: Thermophysical properties used in modeling of an Al film on Si substrate, with various hBD

values, used in the work of this dissertation.

Layer Properties Layer 1 Layer S

Specific Heat - C [J/m3K] 2.44× 106 1.66× 106

Thermal Conductivity - kr [W/mK] 237 148
Thermal Conductivity - kz [W/mK] 237 148

Thickness - d [nm] 100 Infinite

Laser Properties

Absorbed Power [W] 0.03
Pump Waist [µm] 70
Probe Waist [µm] 15
Rep Rate [MHz] 0.250

Modulation Rate [MHz] 0.125
Duty Cycle [%] 50

S.1.2 100 nm Al on AlN Substrate Series

Table S.2: Thermophysical properties used in modeling of an Al film on AlN substrate, with various hBD

values, used in the work of this dissertation.

Layer Properties Layer 1 Layer S

Specific Heat - C [J/m3K] 2.44× 106 2.41× 106

Thermal Conductivity - kr [W/mK] 237 285
Thermal Conductivity - kz [W/mK] 237 285

Thickness - d [nm] 100 Infinite

Laser Properties

Absorbed Power [W] 0.03
Pump Waist [µm] 70
Probe Waist [µm] 15
Rep Rate [MHz] 0.250

Modulation Rate [MHz] 0.125
Duty Cycle [%] 50
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Supplement S. Modeling and Fitting of Data S.2

S.1.3 100 nm Al on Ge Substrate Series

Table S.3: Thermophysical properties used in modeling of an Al film on Ge substrate, with various hBD

values, used in the work of this dissertation.

Layer Properties Layer 1 Layer S

Specific Heat - C [J/m3K] 2.44× 106 1.73× 106

Thermal Conductivity - kr [W/mK] 237 59.9
Thermal Conductivity - kz [W/mK] 237 59.9

Thickness - d [nm] 100 Infinite

Laser Properties

Absorbed Power [W] 0.03
Pump Waist [µm] 70
Probe Waist [µm] 15
Rep Rate [MHz] 0.250

Modulation Rate [MHz] 0.125
Duty Cycle [%] 50

S.2 Simulation Parameter Sensitivity Coefficient - hBD

Sensitivity parameters of the major thermophysical inputs of the modeled systems as a

function of hBD.

S.2.1 100 nm Al on Si Substrate Series

Figure S.1: Sensitivity coefficient per parameter as a function of hBD for the 100 nm of Al on Si system
where L1 denotes the Al film and LS the substrate.
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S.2.2 100 nm Al on AlN Substrate Series

Figure S.2: Sensitivity coefficient per parameter as a function of hBD for the 100 nm of Al on Si system
where L1 denotes the Al film and LS the AlN substrate.

S.2.3 100 nm Al on Ge Substrate Series

Figure S.3: Sensitivity coefficient per parameter as a function of hBD for the 100 nm of Al on Si system
where L1 denotes the Al film and LS the Ge substrate.
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S.3 Simulation Parameter Sensitivity Coefficient - Time

Sensitivity parameters of the major thermophysical inputs of the modeled systems as a

function of time.

S.3.1 100 nm Al on Si Substrate - 1.00 MW Series

Figure S.4: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 1.00 MW/m2K.

S.3.2 100 nm Al on Si Substrate - 1.29 MW Series

Figure S.5: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 1.29 MW/m2K.
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S.3.3 100 nm Al on Si Substrate - 1.67 MW Series

Figure S.6: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 1.67 MW/m2K.

S.3.4 100 nm Al on Si Substrate - 2.15 MW Series

Figure S.7: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 2.15 MW/m2K.

S.3.5 100 nm Al on Si Substrate - 2.78 MW Series

Figure S.8: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 2.78 MW/m2K.
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S.3.6 100 nm Al on Si Substrate - 3.59 MW Series

Figure S.9: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 3.59 MW/m2K.

S.3.7 100 nm Al on Si Substrate - 4.64 MW Series

Figure S.10: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 4.64 MW/m2K.

S.3.8 100 nm Al on Si Substrate - 5.99 MW Series

Figure S.11: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 5.99 MW/m2K.
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S.3.9 100 nm Al on Si Substrate - 7.74 MW Series

Figure S.12: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 7.74 MW/m2K.

S.3.10 100 nm Al on Si Substrate - 10.00 MW Series

Figure S.13: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 10.00 MW/m2K.

S.3.11 100 nm Al on Si Substrate - 12.90 MW Series

Figure S.14: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 12.90 MW/m2K.
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S.3.12 100 nm Al on Si Substrate - 16.70 MW Series

Figure S.15: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 16.70 MW/m2K.

S.3.13 100 nm Al on Si Substrate - 21.50 MW Series

Figure S.16: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 21.50 MW/m2K.

S.3.14 100 nm Al on Si Substrate - 27.80 MW Series

Figure S.17: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 27.80 MW/m2K.

382



Supplement S. Modeling and Fitting of Data S.3

S.3.15 100 nm Al on Si Substrate - 35.90 MW Series

Figure S.18: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 35.90 MW/m2K.

S.3.16 100 nm Al on Si Substrate - 46.40 MW Series

Figure S.19: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 46.40 MW/m2K.

S.3.17 100 nm Al on Si Substrate - 59.90 MW Series

Figure S.20: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 59.90 MW/m2K.
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S.3.18 100 nm Al on Si Substrate - 77.40 MW Series

Figure S.21: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 77.40 MW/m2K.

S.3.19 100 nm Al on Si Substrate - 100.00 MW Series

Figure S.22: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 100.00 MW/m2K.

S.3.20 100 nm Al on Si Substrate - 129.00 MW Series

Figure S.23: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 129.00 MW/m2K.
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S.3.21 100 nm Al on Si Substrate - 167.00 MW Series

Figure S.24: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 167.00 MW/m2K.

S.3.22 100 nm Al on Si Substrate - 215.00 MW Series

Figure S.25: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 215.00 MW/m2K.

S.3.23 100 nm Al on Si Substrate - 278.00 MW Series

Figure S.26: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 278.00 MW/m2K.
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S.3.24 100 nm Al on Si Substrate - 359.00 MW Series

Figure S.27: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 359.00 MW/m2K.

S.3.25 100 nm Al on Si Substrate - 464.00 MW Series

Figure S.28: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 464.00 MW/m2K.

S.3.26 100 nm Al on Si Substrate - 599.00 MW Series

Figure S.29: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 599.00 MW/m2K.
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S.3.27 100 nm Al on Si Substrate - 774.00 MW Series

Figure S.30: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 774.00 MW/m2K.

S.3.28 100 nm Al on Si Substrate - 1000.00 MW Series

Figure S.31: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Si system for hBD = 1000.00 MW/m2K.

S.3.29 100 nm Al on AlN Substrate - 1.00 MW Series

Figure S.32: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 1.00 MW/m2K.
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S.3.30 100 nm Al on AlN Substrate - 1.29 MW Series

Figure S.33: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 1.29 MW/m2K.

S.3.31 100 nm Al on AlN Substrate - 2.78 MW Series

Figure S.34: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 2.78 MW/m2K.

S.3.32 100 nm Al on AlN Substrate - 5.99 MW Series

Figure S.35: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 5.99 MW/m2K.
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S.3.33 100 nm Al on AlN Substrate - 12.90 MW Series

Figure S.36: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 12.90 MW/m2K.

S.3.34 100 nm Al on AlN Substrate - 27.80 MW Series

Figure S.37: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 27.80 MW/m2K.

S.3.35 100 nm Al on AlN Substrate - 59.90 MW Series

Figure S.38: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 59.90 MW/m2K.
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S.3.36 100 nm Al on AlN Substrate - 100.00 MW Series

Figure S.39: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 100.00 MW/m2K.

S.3.37 100 nm Al on AlN Substrate - 129.00 MW Series

Figure S.40: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 129.00 MW/m2K.

S.3.38 100 nm Al on AlN Substrate - 167.00 MW Series

Figure S.41: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 167.00 MW/m2K.
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S.3.39 100 nm Al on AlN Substrate - 215.00 MW Series

Figure S.42: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 215.00 MW/m2K.

S.3.40 100 nm Al on AlN Substrate - 278.00 MW Series

Figure S.43: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 278.00 MW/m2K.

S.3.41 100 nm Al on AlN Substrate - 359.00 MW Series

Figure S.44: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 359.00 MW/m2K.
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S.3.42 100 nm Al on AlN Substrate - 464.00 MW Series

Figure S.45: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 464.00 MW/m2K.

S.3.43 100 nm Al on AlN Substrate - 599.00 MW Series

Figure S.46: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 599.00 MW/m2K.

S.3.44 100 nm Al on AlN Substrate - 774.00 MW Series

Figure S.47: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 774.00 MW/m2K.
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S.3.45 100 nm Al on AlN Substrate - 1000.00 MW Series

Figure S.48: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/AlN system for hBD = 1000.00 MW/m2K.

S.3.46 100 nm Al on Ge Substrate - 1.00 MW Series

Figure S.49: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 1.00 MW/m2K.

S.3.47 100 nm Al on Ge Substrate - 2.15 MW Series

Figure S.50: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 2.15 MW/m2K.
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S.3.48 100 nm Al on Ge Substrate - 3.59 MW Series

Figure S.51: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 3.59 MW/m2K.

S.3.49 100 nm Al on Ge Substrate - 7.74 MW Series

Figure S.52: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 7.74 MW/m2K.

S.3.50 100 nm Al on Ge Substrate - 16.70 MW Series

Figure S.53: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 16.70 MW/m2K.
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S.3.51 100 nm Al on Ge Substrate - 46.40 MW Series

Figure S.54: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 46.40 MW/m2K.

S.3.52 100 nm Al on Ge Substrate - 100.00 MW Series

Figure S.55: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 100.00 MW/m2K.

S.3.53 100 nm Al on Ge Substrate - 129.00 MW Series

Figure S.56: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 129.00 MW/m2K.
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S.3.54 100 nm Al on Ge Substrate - 167.00 MW Series

Figure S.57: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 167.00 MW/m2K.

S.3.55 100 nm Al on Ge Substrate - 215.00 MW Series

Figure S.58: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 215.00 MW/m2K.

S.3.56 100 nm Al on Ge Substrate - 278.00 MW Series

Figure S.59: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 278.00 MW/m2K.
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S.3.57 100 nm Al on Ge Substrate - 359.00 MW Series

Figure S.60: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 359.00 MW/m2K.

S.3.58 100 nm Al on Ge Substrate - 464.00 MW Series

Figure S.61: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 464.00 MW/m2K.

S.3.59 100 nm Al on Ge Substrate - 599.00 MW Series

Figure S.62: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 599.00 MW/m2K.
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S.3.60 100 nm Al on Ge Substrate - 774.00 MW Series

Figure S.63: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 774.00 MW/m2K.

S.3.61 100 nm Al on Ge Substrate - 1000.00 MW Series

Figure S.64: Sensitivity of the real signal, X, as a function of time for the thermal parameters in the 100
nm Al/Ge system for hBD = 1000.00 MW/m2K.
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S.4 Simulation Summary - Al/Si 1.00 MW Series

S.4.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.4: Summary of simulation data - 100 nm Al/Si 1.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 1.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.62 1.12± 0.054 0.86± 0.0024 68.03 1.00± 0.010 0.15± 0.0004
15.68 1.00± 0.039 0.64± 0.0018 72.35 1.01± 0.009 0.15± 0.0004
21.05 1.04± 0.030 0.49± 0.0014 79.11 1.01± 0.008 0.14± 0.0004
26.12 1.00± 0.025 0.40± 0.0011 82.15 1.01± 0.008 0.13± 0.0004
31.80 1.01± 0.021 0.34± 0.0009 87.53 1.01± 0.008 0.12± 0.0003
36.43 1.01± 0.019 0.31± 0.0009 91.73 1.01± 0.007 0.12± 0.0003
41.94 1.01± 0.016 0.26± 0.0007 97.99 1.01± 0.007 0.11± 0.0003
47.27 1.01± 0.014 0.22± 0.0006 102.50 1.01± 0.007 0.11± 0.0003
51.68 1.00± 0.013 0.21± 0.0006 107.79 1.01± 0.006 0.10± 0.0003
57.16 1.01± 0.012 0.19± 0.0005 113.53 1.01± 0.006 0.09± 0.0003
62.34 1.01± 0.011 0.17± 0.0005

Figure S.65: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 1.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

399



Supplement S. Modeling and Fitting of Data S.5

S.5 Simulation Summary - Al/Si 1.29 MW Series

S.5.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.5: Summary of simulation data - 100 nm Al/Si 1.29 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 1.29 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.53 1.33± 0.059 0.96± 0.0027 66.42 1.30± 0.010 0.16± 0.0005
15.78 1.32± 0.042 0.68± 0.0019 71.41 1.30± 0.010 0.16± 0.0004
20.87 1.28± 0.032 0.52± 0.0014 76.28 1.29± 0.009 0.15± 0.0004
25.72 1.31± 0.026 0.42± 0.0012 82.11 1.30± 0.008 0.13± 0.0004
31.59 1.31± 0.021 0.34± 0.0010 87.35 1.30± 0.008 0.12± 0.0003
37.02 1.31± 0.019 0.30± 0.0008 92.39 1.30± 0.007 0.12± 0.0003
40.90 1.30± 0.016 0.26± 0.0007 99.33 1.29± 0.007 0.11± 0.0003
46.62 1.30± 0.014 0.23± 0.0006 101.86 1.30± 0.007 0.11± 0.0003
52.30 1.28± 0.013 0.21± 0.0006 106.82 1.30± 0.006 0.10± 0.0003
56.85 1.29± 0.011 0.18± 0.0005 112.35 1.30± 0.006 0.10± 0.0003
62.40 1.30± 0.011 0.17± 0.0005

Figure S.66: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 1.29 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.6 Simulation Summary - Al/Si 1.67 MW Series

S.6.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.6: Summary of simulation data - 100 nm Al/Si 1.67 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 1.67 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.39 1.71± 0.062 1.00± 0.0028 66.01 1.68± 0.011 0.17± 0.0005
15.52 1.70± 0.042 0.67± 0.0019 71.79 1.68± 0.009 0.15± 0.0004
20.64 1.69± 0.033 0.53± 0.0015 76.72 1.68± 0.008 0.13± 0.0004
25.78 1.65± 0.025 0.41± 0.0011 81.05 1.68± 0.009 0.14± 0.0004
31.10 1.70± 0.022 0.35± 0.0010 85.89 1.68± 0.007 0.12± 0.0003
35.75 1.67± 0.019 0.31± 0.0009 91.93 1.67± 0.007 0.12± 0.0003
40.75 1.67± 0.017 0.27± 0.0007 95.38 1.68± 0.007 0.11± 0.0003
46.44 1.69± 0.015 0.24± 0.0007 101.67 1.68± 0.007 0.11± 0.0003
51.19 1.68± 0.014 0.22± 0.0006 105.33 1.68± 0.006 0.10± 0.0003
55.72 1.67± 0.012 0.19± 0.0005 111.28 1.68± 0.006 0.10± 0.0003
60.42 1.68± 0.011 0.19± 0.0005

Figure S.67: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 1.67 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.7 Simulation Summary - Al/Si 2.15 MW Series

S.7.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.7: Summary of simulation data - 100 nm Al/Si 2.15 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 2.15 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.39 2.16± 0.064 1.04± 0.0029 65.77 2.15± 0.010 0.16± 0.0005
15.43 2.18± 0.043 0.69± 0.0019 71.37 2.16± 0.009 0.15± 0.0004
20.51 2.16± 0.033 0.53± 0.0015 76.64 2.16± 0.008 0.13± 0.0004
26.04 2.17± 0.025 0.41± 0.0011 80.89 2.16± 0.009 0.14± 0.0004
30.75 2.19± 0.021 0.34± 0.0009 85.57 2.16± 0.008 0.13± 0.0004
36.29 2.16± 0.018 0.29± 0.0008 90.73 2.16± 0.007 0.12± 0.0003
40.05 2.16± 0.017 0.28± 0.0008 95.11 2.15± 0.007 0.12± 0.0003
46.42 2.16± 0.014 0.23± 0.0006 101.64 2.16± 0.007 0.11± 0.0003
51.49 2.15± 0.013 0.21± 0.0006 105.49 2.16± 0.007 0.11± 0.0003
56.94 2.16± 0.011 0.19± 0.0005 110.34 2.16± 0.006 0.10± 0.0003
60.98 2.16± 0.011 0.17± 0.0005

Figure S.68: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 2.15 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.7.2 Fitting Film Thickness - d1

Table S.8: Summary of simulation data - 100 nm Al/Si 2.15 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 2.15 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
10.39 120.88± 3.744 60.27± 0.1682 65.77 100.49± 0.479 7.71± 0.0215
15.43 110.88± 2.644 42.57± 0.1188 71.37 100.06± 0.420 6.77± 0.0189
20.51 106.17± 1.901 30.50± 0.0857 76.64 100.21± 0.396 6.38± 0.0178
26.04 102.81± 1.285 20.66± 0.0578 80.89 100.10± 0.398 6.40± 0.0179
30.75 100.74± 1.016 16.34± 0.0457 85.57 100.07± 0.374 6.02± 0.0168
36.29 101.49± 0.890 14.33± 0.0400 90.73 100.03± 0.348 5.61± 0.0156
40.05 100.99± 0.806 12.94± 0.0363 95.11 100.09± 0.337 5.42± 0.0151
46.42 100.94± 0.669 10.78± 0.0300 101.64 99.99± 0.310 5.00± 0.0139
51.49 100.99± 0.618 9.96± 0.0277 105.49 100.01± 0.305 4.92± 0.0137
56.94 100.49± 0.547 8.81± 0.0246 110.34 99.92± 0.288 4.65± 0.0129
60.98 100.07± 0.503 8.10± 0.0226

Figure S.69: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 2.15 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.8

S.8 Simulation Summary - Al/Si 2.78 MW Series

S.8.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.9: Summary of simulation data - 100 nm Al/Si 2.78 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 2.78 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.27 2.80± 0.064 1.03± 0.0029 66.20 2.80± 0.010 0.16± 0.0005
15.39 2.78± 0.044 0.71± 0.0020 70.29 2.79± 0.010 0.15± 0.0004
20.52 2.80± 0.035 0.56± 0.0016 74.19 2.78± 0.009 0.15± 0.0004
25.58 2.80± 0.027 0.44± 0.0012 80.56 2.78± 0.009 0.14± 0.0004
30.86 2.79± 0.022 0.35± 0.0010 85.20 2.79± 0.008 0.13± 0.0004
35.78 2.78± 0.020 0.32± 0.0009 89.31 2.79± 0.008 0.13± 0.0004
40.09 2.80± 0.017 0.27± 0.0008 95.08 2.78± 0.007 0.11± 0.0003
45.55 2.79± 0.015 0.24± 0.0007 100.68 2.79± 0.007 0.11± 0.0003
50.51 2.80± 0.013 0.22± 0.0006 105.66 2.79± 0.006 0.10± 0.0003
55.44 2.80± 0.012 0.20± 0.0006 110.15 2.79± 0.006 0.10± 0.0003
60.47 2.79± 0.011 0.18± 0.0005

Figure S.70: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 2.78 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.9

S.9 Simulation Summary - Al/Si 3.59 MW Series

S.9.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.10: Summary of simulation data - 100 nm Al/Si 3.59 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 3.59 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.04 3.59± 0.069 1.11± 0.0031 64.20 3.61± 0.011 0.17± 0.0005
15.17 3.64± 0.044 0.70± 0.0020 70.39 3.60± 0.010 0.16± 0.0004
20.31 3.59± 0.035 0.56± 0.0016 74.55 3.59± 0.009 0.15± 0.0004
25.02 3.57± 0.027 0.44± 0.0012 78.64 3.60± 0.009 0.14± 0.0004
29.64 3.61± 0.022 0.36± 0.0010 84.61 3.60± 0.008 0.13± 0.0004
35.46 3.58± 0.019 0.31± 0.0009 89.04 3.60± 0.008 0.13± 0.0004
40.37 3.59± 0.017 0.28± 0.0008 94.72 3.60± 0.007 0.12± 0.0003
44.93 3.60± 0.016 0.25± 0.0007 99.48 3.60± 0.007 0.11± 0.0003
49.54 3.60± 0.014 0.23± 0.0006 104.62 3.59± 0.006 0.10± 0.0003
55.17 3.59± 0.013 0.21± 0.0006 108.83 3.60± 0.006 0.10± 0.0003
60.15 3.60± 0.012 0.19± 0.0005

Figure S.71: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 3.59 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.10

S.10 Simulation Summary - Al/Si 4.64 MW Series

S.10.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.11: Summary of simulation data - 100 nm Al/Si 4.64 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 4.64 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
9.81 4.68± 0.074 1.18± 0.0033 63.14 4.64± 0.011 0.18± 0.0005
14.76 4.63± 0.048 0.77± 0.0021 69.21 4.65± 0.010 0.17± 0.0005
19.90 4.64± 0.034 0.55± 0.0015 72.32 4.65± 0.009 0.15± 0.0004
24.65 4.67± 0.029 0.47± 0.0013 78.87 4.65± 0.009 0.14± 0.0004
29.42 4.66± 0.024 0.39± 0.0011 81.11 4.64± 0.009 0.14± 0.0004
34.44 4.65± 0.020 0.32± 0.0009 87.43 4.65± 0.008 0.13± 0.0004
38.88 4.65± 0.018 0.29± 0.0008 92.31 4.64± 0.008 0.13± 0.0003
44.15 4.65± 0.015 0.25± 0.0007 97.66 4.65± 0.007 0.12± 0.0003
49.42 4.65± 0.014 0.23± 0.0006 102.41 4.66± 0.007 0.11± 0.0003
54.08 4.65± 0.013 0.21± 0.0006 106.17 4.65± 0.007 0.11± 0.0003
58.60 4.65± 0.012 0.19± 0.0005

Figure S.72: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 4.64 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.10

S.10.2 Fitting Film Thickness - d1

Table S.12: Summary of simulation data - 100 nm Al/Si 4.64 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 4.64 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
9.81 103.86± 1.652 26.32± 0.0750 63.14 100.09± 0.231 3.72± 0.0103
14.76 102.94± 1.095 17.62± 0.0493 69.21 99.94± 0.217 3.50± 0.0098
19.90 101.38± 0.750 12.07± 0.0337 72.32 99.87± 0.200 3.23± 0.0090
24.65 100.45± 0.629 10.14± 0.0283 78.87 99.98± 0.184 2.96± 0.0082
29.42 100.25± 0.516 8.31± 0.0232 81.11 100.06± 0.182 2.94± 0.0082
34.44 100.28± 0.423 6.82± 0.0190 87.43 99.86± 0.171 2.75± 0.0077
38.88 100.17± 0.386 6.22± 0.0173 92.31 99.98± 0.165 2.66± 0.0074
44.15 100.02± 0.329 5.31± 0.0148 97.66 99.88± 0.153 2.47± 0.0069
49.42 100.10± 0.307 4.94± 0.0138 102.41 99.74± 0.146 2.36± 0.0066
54.08 100.03± 0.272 4.38± 0.0122 106.17 99.90± 0.140 2.25± 0.0063
58.60 100.02± 0.255 4.12± 0.0115

Figure S.73: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 4.64 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.11

S.11 Simulation Summary - Al/Si 5.99 MW Series

S.11.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.13: Summary of simulation data - 100 nm Al/Si 5.99 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 5.99 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
9.79 5.99± 0.071 1.14± 0.0032 63.14 6.00± 0.011 0.18± 0.0005
14.46 6.01± 0.049 0.79± 0.0022 66.18 6.00± 0.010 0.16± 0.0005
19.43 5.99± 0.036 0.59± 0.0016 71.94 6.00± 0.009 0.15± 0.0004
24.02 5.98± 0.029 0.47± 0.0013 75.72 6.00± 0.009 0.15± 0.0004
28.97 5.98± 0.024 0.38± 0.0011 81.03 6.00± 0.009 0.14± 0.0004
34.29 5.98± 0.021 0.34± 0.0009 85.16 6.00± 0.008 0.13± 0.0004
37.97 6.00± 0.019 0.30± 0.0008 91.56 5.99± 0.008 0.13± 0.0004
42.86 6.00± 0.017 0.27± 0.0007 92.91 6.00± 0.007 0.12± 0.0003
48.29 6.00± 0.015 0.24± 0.0007 99.42 5.99± 0.007 0.11± 0.0003
52.33 5.99± 0.013 0.22± 0.0006 105.03 6.00± 0.007 0.11± 0.0003
56.90 6.00± 0.013 0.20± 0.0006

Figure S.74: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 5.99 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.12

S.12 Simulation Summary - Al/Si 7.74 MW Series

S.12.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.14: Summary of simulation data - 100 nm Al/Si 7.74 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 7.74 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
9.49 7.81± 0.073 1.17± 0.0033 60.18 7.74± 0.012 0.19± 0.0005
14.29 7.73± 0.050 0.80± 0.0022 66.23 7.74± 0.011 0.17± 0.0005
18.93 7.74± 0.036 0.58± 0.0016 68.30 7.75± 0.010 0.16± 0.0004
23.66 7.74± 0.030 0.49± 0.0014 74.02 7.75± 0.010 0.16± 0.0004
28.03 7.72± 0.027 0.43± 0.0012 79.46 7.74± 0.009 0.14± 0.0004
32.66 7.73± 0.023 0.37± 0.0010 83.20 7.75± 0.009 0.14± 0.0004
37.17 7.74± 0.019 0.31± 0.0009 88.50 7.74± 0.008 0.13± 0.0004
41.96 7.74± 0.017 0.28± 0.0008 93.51 7.74± 0.008 0.12± 0.0003
46.74 7.75± 0.015 0.25± 0.0007 96.36 7.75± 0.007 0.12± 0.0003
51.15 7.75± 0.014 0.23± 0.0006 101.00 7.75± 0.007 0.11± 0.0003
57.00 7.75± 0.012 0.20± 0.0006

Figure S.75: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 7.74 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.13

S.13 Simulation Summary - Al/Si 10.00 MW Series

S.13.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.15: Summary of simulation data - 100 nm Al/Si 10.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 10.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
9.15 9.95± 0.081 1.30± 0.0036 58.17 10.00± 0.013 0.20± 0.0006
13.69 9.97± 0.055 0.88± 0.0025 64.09 10.00± 0.011 0.18± 0.0005
18.05 10.02± 0.040 0.65± 0.0018 67.02 10.02± 0.010 0.17± 0.0005
22.32 10.00± 0.034 0.54± 0.0015 70.61 10.01± 0.010 0.16± 0.0005
26.93 10.01± 0.027 0.44± 0.0012 75.47 10.01± 0.010 0.16± 0.0004
31.14 10.00± 0.023 0.37± 0.0010 79.78 10.00± 0.009 0.14± 0.0004
35.96 10.01± 0.019 0.31± 0.0009 84.99 10.02± 0.008 0.14± 0.0004
40.87 10.00± 0.018 0.28± 0.0008 88.65 10.01± 0.008 0.13± 0.0004
45.12 10.02± 0.016 0.26± 0.0007 94.60 10.01± 0.008 0.12± 0.0003
49.68 10.00± 0.015 0.24± 0.0007 98.34 10.01± 0.007 0.12± 0.0003
53.08 9.99± 0.013 0.21± 0.0006

Figure S.76: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 10.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.13

S.13.2 Fitting Film Thickness - d1

Table S.16: Summary of simulation data - 100 nm Al/Si 10.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 10.00 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
9.15 102.13± 0.817 13.14± 0.0367 58.17 100.00± 0.120 1.93± 0.0054
13.69 100.95± 0.532 8.57± 0.0239 64.09 99.99± 0.107 1.73± 0.0048
18.05 100.20± 0.385 6.20± 0.0173 67.02 99.86± 0.100 1.61± 0.0045
22.32 100.27± 0.324 5.22± 0.0146 70.61 99.98± 0.097 1.56± 0.0043
26.93 100.13± 0.263 4.23± 0.0118 75.47 99.93± 0.093 1.51± 0.0042
31.14 100.15± 0.222 3.58± 0.0100 79.78 99.99± 0.085 1.37± 0.0038
35.96 99.99± 0.185 2.99± 0.0083 84.99 99.86± 0.080 1.30± 0.0036
40.87 100.09± 0.168 2.71± 0.0076 88.65 99.94± 0.079 1.28± 0.0036
45.12 99.89± 0.153 2.47± 0.0069 94.60 99.96± 0.073 1.17± 0.0033
49.68 100.10± 0.142 2.28± 0.0064 98.34 99.88± 0.068 1.10± 0.0031
53.08 100.10± 0.128 2.06± 0.0057

Figure S.77: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 10.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.14

S.14 Simulation Summary - Al/Si 12.90 MW Series

S.14.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.17: Summary of simulation data - 100 nm Al/Si 12.90 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 12.90 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
8.66 12.90± 0.085 1.36± 0.0038 55.79 12.90± 0.013 0.21± 0.0006
13.04 12.93± 0.056 0.90± 0.0025 60.13 12.91± 0.013 0.20± 0.0006
17.28 12.89± 0.041 0.67± 0.0019 64.23 12.92± 0.012 0.19± 0.0005
21.51 12.91± 0.034 0.55± 0.0015 67.35 12.90± 0.011 0.18± 0.0005
26.05 12.94± 0.028 0.46± 0.0013 72.69 12.91± 0.011 0.17± 0.0005
30.06 12.92± 0.026 0.41± 0.0011 76.63 12.92± 0.009 0.15± 0.0004
34.56 12.89± 0.021 0.34± 0.0010 81.36 12.91± 0.009 0.15± 0.0004
38.42 12.91± 0.019 0.31± 0.0009 86.04 12.91± 0.009 0.14± 0.0004
43.36 12.91± 0.018 0.28± 0.0008 90.43 12.91± 0.008 0.13± 0.0004
46.96 12.92± 0.015 0.25± 0.0007 93.18 12.90± 0.008 0.14± 0.0004
52.38 12.92± 0.014 0.22± 0.0006

Figure S.78: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 12.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.15

S.15 Simulation Summary - Al/Si 16.70 MW Series

S.15.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.18: Summary of simulation data - 100 nm Al/Si 16.70 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 16.70 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
8.21 16.70± 0.093 1.49± 0.0042 52.58 16.72± 0.015 0.25± 0.0007
12.24 16.71± 0.063 1.01± 0.0028 56.14 16.70± 0.014 0.22± 0.0006
16.40 16.68± 0.047 0.76± 0.0021 60.28 16.71± 0.013 0.21± 0.0006
20.27 16.72± 0.038 0.62± 0.0017 65.54 16.71± 0.011 0.18± 0.0005
24.20 16.71± 0.033 0.52± 0.0015 68.53 16.71± 0.011 0.18± 0.0005
28.54 16.71± 0.027 0.43± 0.0012 73.82 16.70± 0.010 0.17± 0.0005
32.50 16.73± 0.023 0.38± 0.0010 75.51 16.71± 0.010 0.17± 0.0005
36.76 16.70± 0.022 0.35± 0.0010 79.34 16.71± 0.010 0.16± 0.0004
40.68 16.71± 0.020 0.32± 0.0009 83.94 16.71± 0.009 0.15± 0.0004
43.86 16.72± 0.018 0.28± 0.0008 88.75 16.71± 0.009 0.14± 0.0004
48.91 16.72± 0.016 0.26± 0.0007

Figure S.79: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 16.70 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.16

S.16 Simulation Summary - Al/Si 21.50 MW Series

S.16.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.19: Summary of simulation data - 100 nm Al/Si 21.50 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 21.50 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
7.63 21.50± 0.110 1.77± 0.0049 48.44 21.51± 0.017 0.27± 0.0007
11.39 21.49± 0.073 1.18± 0.0033 51.69 21.52± 0.016 0.25± 0.0007
15.08 21.51± 0.054 0.86± 0.0024 55.36 21.50± 0.015 0.24± 0.0007
19.09 21.55± 0.041 0.67± 0.0019 60.12 21.51± 0.014 0.22± 0.0006
22.81 21.52± 0.037 0.59± 0.0016 63.39 21.51± 0.013 0.21± 0.0006
26.19 21.52± 0.031 0.49± 0.0014 66.31 21.51± 0.012 0.20± 0.0006
29.88 21.52± 0.028 0.45± 0.0012 71.85 21.51± 0.011 0.19± 0.0005
33.72 21.50± 0.025 0.40± 0.0011 75.43 21.51± 0.010 0.17± 0.0005
37.64 21.54± 0.022 0.35± 0.0010 77.36 21.51± 0.011 0.17± 0.0005
41.05 21.51± 0.019 0.31± 0.0009 82.38 21.51± 0.010 0.16± 0.0004
44.80 21.48± 0.018 0.29± 0.0008

Figure S.80: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 21.50 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.16

S.16.2 Fitting Substrate Thermal Conductivity - kS

Table S.20: Summary of simulation data - 100 nm Al/Si 21.50 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 21.50 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
7.63 179.32± 13.205 192.41± 0.6557 48.44 148.80± 2.205 35.38± 0.0994
11.39 185.68± 11.624 170.93± 0.5720 51.69 150.50± 2.118 34.09± 0.0952
15.08 182.57± 8.987 135.45± 0.4314 55.36 147.34± 1.955 31.48± 0.0878
19.09 173.38± 6.283 99.19± 0.2878 60.12 147.58± 1.788 28.82± 0.0803
22.81 169.39± 5.829 92.89± 0.2645 63.39 147.69± 1.719 27.70± 0.0771
26.19 158.98± 4.315 68.83± 0.1956 66.31 147.28± 1.618 26.07± 0.0727
29.88 156.94± 3.832 61.26± 0.1734 71.85 146.91± 1.499 24.16± 0.0673
33.72 153.29± 3.387 54.25± 0.1529 75.43 146.58± 1.342 21.62± 0.0603
37.64 156.14± 3.042 48.87± 0.1369 77.36 145.78± 1.387 22.34± 0.0623
41.05 151.11± 2.667 42.80± 0.1202 82.38 145.68± 1.249 20.10± 0.0562
44.80 147.64± 2.481 39.93± 0.1115

Figure S.81: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 21.50 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.16

S.16.3 Fitting Film Thickness - d1

Table S.21: Summary of simulation data - 100 nm Al/Si 21.50 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 21.50 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
7.63 100.71± 0.464 7.47± 0.0209 48.44 100.14± 0.070 1.13± 0.0031
11.39 100.49± 0.314 5.07± 0.0141 51.69 100.09± 0.066 1.06± 0.0029
15.08 100.28± 0.228 3.67± 0.0102 55.36 100.18± 0.063 1.01± 0.0028
19.09 100.05± 0.174 2.81± 0.0078 60.12 100.15± 0.058 0.93± 0.0026
22.81 100.14± 0.154 2.48± 0.0069 63.39 100.13± 0.055 0.89± 0.0025
26.19 100.15± 0.129 2.07± 0.0058 66.31 100.13± 0.052 0.83± 0.0023
29.88 100.14± 0.117 1.88± 0.0052 71.85 100.14± 0.048 0.78± 0.0022
33.72 100.20± 0.105 1.69± 0.0047 75.43 100.12± 0.043 0.70± 0.0019
37.64 100.04± 0.091 1.46± 0.0041 77.36 100.15± 0.046 0.73± 0.0020
41.05 100.14± 0.082 1.32± 0.0037 82.38 100.14± 0.042 0.67± 0.0019
44.80 100.25± 0.077 1.24± 0.0034

Figure S.82: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 21.50 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.17

S.17 Simulation Summary - Al/Si 27.80 MW Series

S.17.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.22: Summary of simulation data - 100 nm Al/Si 27.80 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 27.80 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
6.93 27.79± 0.127 2.05± 0.0057 43.87 27.81± 0.020 0.33± 0.0009
10.38 27.71± 0.078 1.26± 0.0035 47.60 27.81± 0.018 0.30± 0.0008
13.84 27.83± 0.062 1.00± 0.0028 51.10 27.81± 0.017 0.28± 0.0008
17.14 27.81± 0.050 0.80± 0.0022 54.77 27.79± 0.016 0.26± 0.0007
20.67 27.81± 0.042 0.67± 0.0019 58.62 27.80± 0.016 0.25± 0.0007
23.73 27.84± 0.036 0.58± 0.0016 61.46 27.82± 0.014 0.23± 0.0006
27.40 27.82± 0.031 0.50± 0.0014 65.07 27.81± 0.014 0.22± 0.0006
30.72 27.84± 0.028 0.46± 0.0013 66.79 27.82± 0.013 0.21± 0.0006
34.00 27.81± 0.025 0.40± 0.0011 70.40 27.81± 0.013 0.21± 0.0006
37.74 27.80± 0.024 0.39± 0.0011 74.85 27.81± 0.011 0.18± 0.0005
41.39 27.80± 0.021 0.34± 0.0009

Figure S.83: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 27.80 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.17

S.17.2 Fitting Substrate Thermal Conductivity - kS

Table S.23: Summary of simulation data - 100 nm Al/Si 27.80 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 27.80 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
6.93 173.00± 9.694 146.26± 0.4648 43.87 148.40± 1.543 24.81± 0.0694
10.38 163.60± 6.200 97.93± 0.2839 47.60 148.74± 1.415 22.80± 0.0635
13.84 170.42± 5.636 89.91± 0.2555 51.10 148.47± 1.294 20.83± 0.0581
17.14 163.33± 4.429 71.05± 0.1997 54.77 146.73± 1.198 19.31± 0.0538
20.67 157.18± 3.489 56.05± 0.1570 58.62 147.17± 1.157 18.65± 0.0519
23.73 156.74± 2.947 47.33± 0.1327 61.46 148.27± 1.063 17.14± 0.0477
27.40 153.19± 2.468 39.69± 0.1110 65.07 147.87± 1.061 17.10± 0.0476
30.72 153.67± 2.232 35.90± 0.1004 66.79 148.45± 0.966 15.56± 0.0433
34.00 149.89± 1.907 30.66± 0.0858 70.40 147.77± 0.958 15.43± 0.0430
37.74 148.99± 1.800 28.95± 0.0810 74.85 147.30± 0.866 13.95± 0.0389
41.39 148.70± 1.618 26.05± 0.0727

Figure S.84: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 27.80 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.18

S.18 Simulation Summary - Al/Si 35.90 MW Series

S.18.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.24: Summary of simulation data - 100 nm Al/Si 35.90 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 35.90 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
6.16 35.95± 0.154 2.48± 0.0069 39.66 35.90± 0.023 0.38± 0.0011
9.26 35.94± 0.102 1.65± 0.0046 42.02 35.90± 0.023 0.37± 0.0010
12.32 35.96± 0.076 1.22± 0.0034 45.62 35.92± 0.021 0.34± 0.0009
15.32 35.93± 0.062 1.00± 0.0028 48.16 35.91± 0.019 0.31± 0.0009
18.27 35.93± 0.055 0.89± 0.0025 51.33 35.91± 0.019 0.30± 0.0008
21.53 35.97± 0.041 0.67± 0.0019 54.62 35.91± 0.018 0.29± 0.0008
24.41 35.90± 0.039 0.62± 0.0017 57.19 35.91± 0.017 0.27± 0.0007
27.21 35.87± 0.035 0.56± 0.0016 59.66 35.93± 0.016 0.25± 0.0007
30.89 35.90± 0.029 0.47± 0.0013 63.72 35.91± 0.015 0.24± 0.0007
33.29 35.93± 0.030 0.48± 0.0013 66.85 35.91± 0.014 0.22± 0.0006
35.61 35.92± 0.026 0.43± 0.0012

Figure S.85: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 35.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.18

S.18.2 Fitting Substrate Thermal Conductivity - kS

Table S.25: Summary of simulation data - 100 nm Al/Si 35.90 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 35.90 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
6.16 183.40± 8.155 128.76± 0.3736 39.66 147.40± 1.012 16.31± 0.0455
9.26 162.73± 4.801 76.35± 0.2183 42.02 147.34± 0.971 15.63± 0.0436
12.32 159.00± 3.647 58.38± 0.1647 45.62 148.09± 0.900 14.50± 0.0404
15.32 154.96± 2.883 46.31± 0.1298 48.16 147.52± 0.818 13.18± 0.0367
18.27 153.86± 2.524 40.59± 0.1135 51.33 147.64± 0.800 12.89± 0.0359
21.53 152.17± 1.862 29.93± 0.0838 54.62 147.44± 0.772 12.44± 0.0346
24.41 149.71± 1.727 27.82± 0.0776 57.19 147.38± 0.719 11.59± 0.0323
27.21 147.11± 1.486 23.88± 0.0668 59.66 148.03± 0.665 10.72± 0.0299
30.89 147.82± 1.246 20.04± 0.0560 63.72 147.13± 0.640 10.31± 0.0287
33.29 149.19± 1.289 20.76± 0.0579 66.85 146.96± 0.582 9.37± 0.0261
35.61 148.35± 1.151 18.52± 0.0517

Figure S.86: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 35.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.19

S.19 Simulation Summary - Al/Si 46.40 MW Series

S.19.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.26: Summary of simulation data - 100 nm Al/Si 46.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 46.40 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
5.38 46.39± 0.198 3.20± 0.0089 34.62 46.38± 0.030 0.48± 0.0013
8.09 46.35± 0.129 2.08± 0.0058 37.08 46.41± 0.029 0.48± 0.0013
10.67 46.46± 0.095 1.54± 0.0043 39.74 46.38± 0.026 0.42± 0.0012
13.35 46.47± 0.086 1.38± 0.0038 42.64 46.43± 0.024 0.39± 0.0011
16.04 46.44± 0.066 1.07± 0.0030 45.00 46.42± 0.023 0.38± 0.0010
18.60 46.43± 0.058 0.93± 0.0026 47.57 46.40± 0.023 0.37± 0.0010
21.40 46.42± 0.049 0.79± 0.0022 50.33 46.42± 0.022 0.35± 0.0010
24.07 46.44± 0.044 0.72± 0.0020 52.65 46.41± 0.021 0.33± 0.0009
26.48 46.41± 0.041 0.67± 0.0019 55.02 46.40± 0.019 0.31± 0.0009
29.25 46.41± 0.035 0.57± 0.0016 57.85 46.40± 0.018 0.29± 0.0008
31.92 46.40± 0.033 0.54± 0.0015

Figure S.87: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 46.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.19

S.19.2 Fitting Substrate Thermal Conductivity - kS

Table S.27: Summary of simulation data - 100 nm Al/Si 46.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 46.40 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
5.38 166.43± 5.566 88.75± 0.2525 34.62 147.73± 0.730 11.76± 0.0328
8.09 155.50± 3.390 54.41± 0.1528 37.08 148.36± 0.727 11.71± 0.0326
10.67 154.49± 2.483 39.96± 0.1116 39.74 147.62± 0.629 10.14± 0.0282
13.35 153.87± 2.242 36.09± 0.1007 42.64 148.55± 0.597 9.62± 0.0268
16.04 150.86± 1.659 26.70± 0.0745 45.00 148.23± 0.563 9.07± 0.0253
18.60 150.29± 1.451 23.38± 0.0651 47.57 147.79± 0.550 8.85± 0.0247
21.40 149.78± 1.247 20.10± 0.0560 50.33 148.32± 0.527 8.49± 0.0237
24.07 149.70± 1.095 17.64± 0.0492 52.65 148.10± 0.502 8.08± 0.0225
26.48 148.98± 1.023 16.48± 0.0459 55.02 147.86± 0.475 7.66± 0.0213
29.25 148.37± 0.870 14.02± 0.0391 57.85 147.69± 0.433 6.98± 0.0194
31.92 148.27± 0.824 13.28± 0.0370

Figure S.88: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 46.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.19

S.19.3 Fitting Film Thickness - d1

Table S.28: Summary of simulation data - 100 nm Al/Si 46.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 46.40 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
5.38 100.45± 0.340 5.48± 0.0153 34.62 100.07± 0.052 0.83± 0.0023
8.09 100.28± 0.222 3.57± 0.0100 37.08 100.03± 0.051 0.81± 0.0023
10.67 100.03± 0.163 2.62± 0.0073 39.74 100.07± 0.044 0.72± 0.0020
13.35 99.99± 0.145 2.34± 0.0065 42.64 99.99± 0.042 0.67± 0.0019
16.04 100.00± 0.112 1.81± 0.0050 45.00 100.01± 0.040 0.64± 0.0018
18.60 100.02± 0.099 1.59± 0.0044 47.57 100.03± 0.040 0.64± 0.0018
21.40 100.01± 0.084 1.35± 0.0038 50.33 100.00± 0.037 0.60± 0.0017
24.07 99.98± 0.076 1.23± 0.0034 52.65 100.01± 0.036 0.57± 0.0016
26.48 100.02± 0.071 1.15± 0.0032 55.02 100.03± 0.033 0.54± 0.0015
29.25 100.04± 0.060 0.97± 0.0027 57.85 100.04± 0.031 0.50± 0.0014
31.92 100.04± 0.057 0.92± 0.0026

Figure S.89: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 46.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

423



Supplement S. Modeling and Fitting of Data S.20

S.20 Simulation Summary - Al/Si 59.90 MW Series

S.20.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.29: Summary of simulation data - 100 nm Al/Si 59.90 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 59.90 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
4.94 60.05± 0.259 4.17± 0.0116 30.94 59.89± 0.041 0.66± 0.0018
7.38 59.85± 0.165 2.67± 0.0074 33.70 59.91± 0.038 0.61± 0.0017
9.83 59.97± 0.129 2.08± 0.0058 35.81 59.91± 0.035 0.56± 0.0016
12.21 60.05± 0.102 1.65± 0.0046 38.48 59.91± 0.033 0.53± 0.0015
14.78 59.86± 0.082 1.33± 0.0037 40.76 59.90± 0.031 0.49± 0.0014
16.91 59.91± 0.074 1.20± 0.0033 42.51 59.92± 0.029 0.46± 0.0013
19.39 59.93± 0.066 1.07± 0.0030 45.49 59.90± 0.027 0.44± 0.0012
21.74 59.92± 0.056 0.90± 0.0025 47.95 59.92± 0.026 0.42± 0.0012
24.03 59.92± 0.052 0.85± 0.0024 48.99 59.91± 0.026 0.42± 0.0012
26.59 59.93± 0.048 0.78± 0.0022 52.46 59.91± 0.023 0.37± 0.0010
28.69 59.91± 0.042 0.68± 0.0019

Figure S.90: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 59.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.20

S.20.2 Fitting Substrate Thermal Conductivity - kS

Table S.30: Summary of simulation data - 100 nm Al/Si 59.90 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 59.90 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
4.94 158.08± 3.798 60.80± 0.1716 30.94 147.63± 0.545 8.78± 0.0244
7.38 151.50± 2.345 37.69± 0.1055 33.70 147.79± 0.511 8.23± 0.0229
9.83 151.29± 1.808 29.12± 0.0812 35.81 147.72± 0.473 7.62± 0.0212
12.21 151.17± 1.413 22.73± 0.0635 38.48 147.69± 0.441 7.11± 0.0198
14.78 147.90± 1.106 17.81± 0.0497 40.76 147.44± 0.417 6.72± 0.0187
16.91 148.68± 1.025 16.51± 0.0460 42.51 147.78± 0.388 6.25± 0.0174
19.39 148.62± 0.917 14.78± 0.0412 45.49 147.53± 0.367 5.92± 0.0165
21.74 148.13± 0.761 12.26± 0.0342 47.95 147.72± 0.356 5.74± 0.0160
24.03 147.99± 0.707 11.39± 0.0317 48.99 147.59± 0.349 5.62± 0.0156
26.59 148.18± 0.665 10.72± 0.0298 52.46 147.57± 0.310 5.00± 0.0139
28.69 147.93± 0.566 9.12± 0.0254

Figure S.91: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 59.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.21

S.21 Simulation Summary - Al/Si 77.40 MW Series

S.21.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.31: Summary of simulation data - 100 nm Al/Si 77.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 77.40 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
3.84 77.75± 0.414 6.67± 0.0186 24.89 77.42± 0.064 1.02± 0.0029
5.75 77.70± 0.267 4.30± 0.0120 26.90 77.42± 0.059 0.94± 0.0026
7.69 77.50± 0.204 3.29± 0.0092 28.05 77.41± 0.054 0.88± 0.0024
9.63 77.47± 0.164 2.64± 0.0073 30.47 77.41± 0.052 0.84± 0.0023
11.38 77.46± 0.142 2.28± 0.0064 32.29 77.45± 0.049 0.78± 0.0022
13.31 77.44± 0.118 1.91± 0.0053 33.69 77.46± 0.044 0.71± 0.0020
15.31 77.41± 0.101 1.63± 0.0045 36.08 77.44± 0.042 0.68± 0.0019
17.05 77.39± 0.087 1.41± 0.0039 37.62 77.42± 0.040 0.65± 0.0018
18.94 77.48± 0.079 1.28± 0.0036 39.78 77.39± 0.040 0.64± 0.0018
20.97 77.37± 0.075 1.20± 0.0033 41.72 77.41± 0.038 0.62± 0.0017
22.85 77.35± 0.068 1.10± 0.0031

Figure S.92: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 77.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.21

S.21.2 Fitting Substrate Thermal Conductivity - kS

Table S.32: Summary of simulation data - 100 nm Al/Si 77.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 77.40 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
3.84 158.32± 3.345 53.79± 0.1504 24.89 148.14± 0.472 7.60± 0.0212
5.75 152.88± 2.068 33.25± 0.0930 26.90 148.09± 0.434 6.99± 0.0195
7.69 150.53± 1.546 24.92± 0.0694 28.05 148.04± 0.407 6.55± 0.0182
9.63 149.47± 1.246 20.08± 0.0559 30.47 147.92± 0.385 6.21± 0.0173
11.38 149.12± 1.070 17.24± 0.0481 32.29 148.22± 0.358 5.78± 0.0161
13.31 148.63± 0.879 14.15± 0.0394 33.69 148.36± 0.330 5.32± 0.0148
15.31 148.33± 0.758 12.21± 0.0340 36.08 148.17± 0.313 5.04± 0.0140
17.05 148.08± 0.649 10.46± 0.0291 37.62 147.98± 0.302 4.86± 0.0135
18.94 148.66± 0.587 9.45± 0.0263 39.78 147.73± 0.297 4.78± 0.0133
20.97 147.77± 0.556 8.97± 0.0250 41.72 147.97± 0.286 4.61± 0.0128
22.85 147.75± 0.510 8.21± 0.0229

Figure S.93: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 77.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.22

S.22 Simulation Summary - Al/Si 100.00 MW Series

S.22.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.33: Summary of simulation data - 100 nm Al/Si 100.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 100.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
3.22 100.36± 0.656 10.57± 0.0295 20.73 100.10± 0.101 1.63± 0.0045
4.80 100.46± 0.428 6.90± 0.0192 22.12 100.08± 0.096 1.55± 0.0043
6.35 100.37± 0.332 5.35± 0.0149 23.38 100.14± 0.088 1.42± 0.0040
7.99 100.12± 0.274 4.42± 0.0123 25.37 100.05± 0.080 1.28± 0.0036
9.58 100.09± 0.220 3.55± 0.0099 27.10 100.06± 0.079 1.28± 0.0036
11.07 100.10± 0.195 3.13± 0.0087 28.54 100.02± 0.075 1.21± 0.0034
12.74 100.09± 0.167 2.69± 0.0075 30.32 99.98± 0.069 1.12± 0.0031
14.33 100.02± 0.147 2.36± 0.0066 31.60 100.03± 0.066 1.07± 0.0030
15.98 100.07± 0.140 2.25± 0.0063 33.07 99.96± 0.062 1.00± 0.0028
17.53 100.02± 0.122 1.97± 0.0055 35.01 100.06± 0.059 0.95± 0.0027
18.90 99.97± 0.110 1.77± 0.0049

Figure S.94: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/Si with hBD = 100.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.22

S.22.2 Fitting Substrate Thermal Conductivity - kS

Table S.34: Summary of simulation data - 100 nm Al/Si 100.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 100.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
3.22 152.94± 2.766 44.46± 0.1245 20.73 148.51± 0.402 6.47± 0.0180
4.80 151.88± 1.779 28.65± 0.0799 22.12 148.38± 0.386 6.22± 0.0173
6.35 150.47± 1.341 21.58± 0.0603 23.38 148.65± 0.351 5.65± 0.0157
7.99 149.28± 1.097 17.67± 0.0493 25.37 148.27± 0.315 5.07± 0.0141
9.58 148.74± 0.886 14.28± 0.0398 27.10 148.26± 0.313 5.05± 0.0141
11.07 148.78± 0.785 12.64± 0.0352 28.54 148.16± 0.301 4.85± 0.0135
12.74 148.64± 0.677 10.90± 0.0304 30.32 147.99± 0.275 4.43± 0.0123
14.33 148.21± 0.582 9.38± 0.0261 31.60 148.19± 0.267 4.30± 0.0120
15.98 148.40± 0.560 9.03± 0.0252 33.07 147.90± 0.247 3.98± 0.0111
17.53 148.29± 0.489 7.89± 0.0220 35.01 148.29± 0.236 3.81± 0.0106
18.90 148.08± 0.440 7.09± 0.0197

Figure S.95: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/Si with hBD = 100.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.22

S.22.3 Fitting Film Thickness - d1

Table S.35: Summary of simulation data - 100 nm Al/Si 100.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 100.00 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
3.22 100.48± 0.392 6.32± 0.0176 20.73 99.96± 0.059 0.95± 0.0026
4.80 100.01± 0.253 4.08± 0.0114 22.12 99.97± 0.056 0.91± 0.0025
6.35 99.95± 0.194 3.12± 0.0087 23.38 99.93± 0.051 0.83± 0.0023
7.99 100.04± 0.160 2.58± 0.0072 25.37 99.98± 0.046 0.75± 0.0021
9.58 100.03± 0.129 2.08± 0.0058 27.10 99.98± 0.046 0.75± 0.0021
11.07 100.00± 0.114 1.84± 0.0051 28.54 100.00± 0.044 0.71± 0.0020
12.74 99.99± 0.098 1.58± 0.0044 30.32 100.02± 0.041 0.65± 0.0018
14.33 100.03± 0.086 1.38± 0.0038 31.60 99.99± 0.039 0.63± 0.0018
15.98 100.00± 0.082 1.32± 0.0037 33.07 100.03± 0.036 0.59± 0.0016
17.53 100.01± 0.072 1.16± 0.0032 35.01 99.97± 0.035 0.56± 0.0016
18.90 100.03± 0.065 1.04± 0.0029

Figure S.96: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/Si with hBD = 100.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.23

S.23 Simulation Summary - Al/Si 129.00 MW Series

S.23.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.36: Summary of simulation data - 100 nm Al/Si 129.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 129.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.76 133.70± 1.136 17.05± 0.0548 17.82 129.12± 0.164 2.64± 0.0074
4.12 130.97± 0.733 11.23± 0.0346 19.13 128.95± 0.149 2.40± 0.0067
5.48 130.43± 0.557 8.79± 0.0255 20.45 128.89± 0.152 2.44± 0.0068
6.87 129.82± 0.439 6.96± 0.0200 21.88 129.04± 0.143 2.29± 0.0064
8.27 129.52± 0.369 5.87± 0.0168 23.34 129.08± 0.130 2.10± 0.0059
9.57 129.18± 0.307 4.93± 0.0139 24.65 128.99± 0.122 1.96± 0.0055
11.01 128.93± 0.269 4.31± 0.0121 25.90 129.10± 0.112 1.81± 0.0050
12.39 128.98± 0.243 3.90± 0.0109 27.28 129.05± 0.111 1.79± 0.0050
13.64 128.95± 0.221 3.54± 0.0100 28.42 128.95± 0.101 1.63± 0.0046
15.06 129.06± 0.204 3.28± 0.0092 29.58 128.99± 0.100 1.62± 0.0045
16.36 129.08± 0.182 2.91± 0.0082

Figure S.97: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/Si with hBD = 129.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.23

S.23.2 Fitting Substrate Thermal Conductivity - kS

Table S.37: Summary of simulation data - 100 nm Al/Si 129.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 129.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
2.76 154.41± 2.559 41.21± 0.1149 17.82 148.05± 0.352 5.67± 0.0158
4.12 149.72± 1.578 25.40± 0.0709 19.13 147.73± 0.321 5.17± 0.0144
5.48 150.11± 1.229 19.80± 0.0552 20.45 147.51± 0.324 5.23± 0.0146
6.87 149.23± 0.958 15.43± 0.0430 21.88 147.87± 0.304 4.89± 0.0136
8.27 148.64± 0.797 12.85± 0.0358 23.34 148.08± 0.279 4.50± 0.0125
9.57 148.18± 0.655 10.54± 0.0294 24.65 147.76± 0.262 4.22± 0.0118
11.01 147.61± 0.571 9.20± 0.0256 25.90 148.00± 0.239 3.86± 0.0107
12.39 147.65± 0.516 8.32± 0.0232 27.28 147.80± 0.234 3.78± 0.0105
13.64 147.70± 0.471 7.58± 0.0211 28.42 147.66± 0.213 3.44± 0.0096
15.06 147.76± 0.431 6.94± 0.0193 29.58 147.75± 0.216 3.48± 0.0097
16.36 147.83± 0.386 6.22± 0.0173

Figure S.98: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/Si with hBD = 129.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.24

S.24 Simulation Summary - Al/Si 167.00 MW Series

S.24.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.38: Summary of simulation data - 100 nm Al/Si 167.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 167.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.37 172.83± 1.833 28.51± 0.0852 15.38 166.91± 0.301 4.78± 0.0137
3.57 168.25± 1.232 19.50± 0.0563 16.46 166.98± 0.272 4.39± 0.0122
4.75 167.70± 0.952 15.09± 0.0434 17.61 167.01± 0.248 3.94± 0.0113
5.93 167.09± 0.758 12.21± 0.0340 18.97 166.93± 0.245 3.89± 0.0112
7.12 167.56± 0.625 9.91± 0.0285 20.15 166.89± 0.216 3.48± 0.0097
8.30 167.27± 0.537 8.52± 0.0245 21.35 166.99± 0.214 3.39± 0.0097
9.45 167.45± 0.482 7.65± 0.0220 22.44 167.02± 0.200 3.17± 0.0091
10.61 167.14± 0.424 6.72± 0.0193 23.06 167.04± 0.200 3.17± 0.0091
11.80 166.99± 0.373 5.92± 0.0170 24.54 166.89± 0.181 2.88± 0.0083
13.04 167.31± 0.334 5.30± 0.0152 26.05 167.07± 0.176 2.80± 0.0080
14.21 167.03± 0.310 4.92± 0.0142

Figure S.99: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/Si with hBD = 167.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.24

S.24.2 Fitting Substrate Thermal Conductivity - kS

Table S.39: Summary of simulation data - 100 nm Al/Si 167.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 167.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
2.37 155.61± 2.474 39.79± 0.1113 15.38 148.10± 0.352 5.66± 0.0158
3.57 150.11± 1.511 24.33± 0.0678 16.46 148.11± 0.322 5.18± 0.0144
4.75 149.21± 1.151 18.55± 0.0517 17.61 148.11± 0.286 4.61± 0.0128
5.93 148.96± 0.925 14.89± 0.0415 18.97 148.14± 0.285 4.59± 0.0128
7.12 149.00± 0.727 11.72± 0.0326 20.15 148.05± 0.261 4.21± 0.0117
8.30 148.40± 0.622 10.03± 0.0279 21.35 148.18± 0.252 4.05± 0.0113
9.45 148.76± 0.582 9.38± 0.0261 22.44 148.11± 0.235 3.79± 0.0106
10.61 148.63± 0.507 8.16± 0.0227 23.06 148.26± 0.237 3.82± 0.0106
11.80 148.07± 0.443 7.13± 0.0199 24.54 148.12± 0.218 3.52± 0.0098
13.04 148.91± 0.398 6.42± 0.0179 26.05 148.16± 0.203 3.27± 0.0091
14.21 148.33± 0.369 5.95± 0.0166

Figure S.100: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 167.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.25

S.25 Simulation Summary - Al/Si 215.00 MW Series

S.25.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.40: Summary of simulation data - 100 nm Al/Si 215.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 215.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.13 222.50± 3.255 50.05± 0.1531 13.80 215.04± 0.456 7.30± 0.0206
3.21 218.14± 2.152 34.05± 0.0984 14.77 214.76± 0.421 6.74± 0.0190
4.26 217.52± 1.588 25.29± 0.0721 16.01 215.28± 0.406 6.49± 0.0183
5.34 215.72± 1.188 19.00± 0.0537 16.94 215.12± 0.383 6.12± 0.0173
6.37 215.19± 0.968 15.48± 0.0438 18.12 215.03± 0.337 5.38± 0.0152
7.45 215.19± 0.851 13.61± 0.0385 19.07 215.11± 0.339 5.42± 0.0153
8.52 215.05± 0.744 11.91± 0.0336 20.25 215.03± 0.305 4.87± 0.0138
9.56 215.06± 0.645 10.32± 0.0292 21.18 215.02± 0.291 4.66± 0.0132
10.60 215.59± 0.596 9.54± 0.0269 22.25 214.91± 0.281 4.50± 0.0127
11.71 215.07± 0.544 8.71± 0.0246 23.34 214.80± 0.273 4.37± 0.0124
12.73 214.99± 0.512 8.20± 0.0232

Figure S.101: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 215.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.25.2 Fitting Substrate Thermal Conductivity - kS

Table S.41: Summary of simulation data - 100 nm Al/Si 215.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 215.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
2.13 151.52± 2.248 36.18± 0.1010 13.80 147.96± 0.327 5.27± 0.0147
3.21 150.14± 1.475 23.77± 0.0662 14.77 148.11± 0.319 5.14± 0.0143
4.26 149.62± 1.099 17.71± 0.0494 16.01 148.05± 0.289 4.65± 0.0130
5.34 148.57± 0.863 13.91± 0.0387 16.94 147.72± 0.270 4.35± 0.0121
6.37 148.37± 0.702 11.32± 0.0315 18.12 148.04± 0.254 4.09± 0.0114
7.45 148.06± 0.630 10.14± 0.0283 19.07 148.04± 0.248 4.00± 0.0111
8.52 147.96± 0.523 8.42± 0.0235 20.25 147.99± 0.228 3.68± 0.0102
9.56 148.04± 0.461 7.43± 0.0207 21.18 147.83± 0.214 3.45± 0.0096
10.60 148.42± 0.445 7.17± 0.0200 22.25 147.89± 0.204 3.29± 0.0092
11.71 147.87± 0.386 6.22± 0.0173 23.34 147.87± 0.201 3.23± 0.0090
12.73 148.20± 0.374 6.03± 0.0168

Figure S.102: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 215.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.25.3 Fitting Film Thickness - d1

Table S.42: Summary of simulation data - 100 nm Al/Si 215.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 215.00 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
2.13 100.63± 0.567 9.13± 0.0254 13.80 100.06± 0.088 1.42± 0.0040
3.21 100.15± 0.381 6.14± 0.0171 14.77 100.03± 0.084 1.36± 0.0038
4.26 99.96± 0.293 4.72± 0.0131 16.01 100.03± 0.077 1.25± 0.0035
5.34 100.12± 0.229 3.69± 0.0103 16.94 100.10± 0.072 1.17± 0.0032
6.37 100.09± 0.186 3.00± 0.0084 18.12 100.03± 0.067 1.09± 0.0030
7.45 100.13± 0.165 2.66± 0.0074 19.07 100.03± 0.066 1.07± 0.0030
8.52 100.12± 0.140 2.25± 0.0063 20.25 100.04± 0.061 0.98± 0.0027
9.56 100.08± 0.124 1.99± 0.0055 21.18 100.07± 0.057 0.91± 0.0025
10.60 99.97± 0.119 1.91± 0.0053 22.25 100.06± 0.054 0.88± 0.0024
11.71 100.10± 0.102 1.65± 0.0046 23.34 100.07± 0.054 0.86± 0.0024
12.73 100.02± 0.099 1.60± 0.0045

Figure S.103: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 215.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.26 Simulation Summary - Al/Si 278.00 MW Series

S.26.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.43: Summary of simulation data - 100 nm Al/Si 278.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 278.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.97 324.26± 8.503 134.53± 0.3887 12.68 278.79± 0.752 12.13± 0.0338
2.95 290.25± 3.898 61.70± 0.1781 13.73 278.29± 0.660 10.63± 0.0296
3.93 284.06± 2.786 44.45± 0.1263 14.76 278.65± 0.638 10.27± 0.0287
4.92 281.18± 2.189 35.08± 0.0988 15.62 278.31± 0.576 9.28± 0.0258
5.93 281.58± 1.828 29.38± 0.0822 16.49 278.28± 0.569 9.18± 0.0256
6.86 280.61± 1.423 22.88± 0.0640 17.54 278.67± 0.532 8.57± 0.0239
7.84 280.14± 1.271 20.48± 0.0570 18.67 277.81± 0.496 8.00± 0.0223
8.85 278.22± 1.077 17.34± 0.0483 19.56 278.22± 0.469 7.55± 0.0210
9.80 278.92± 0.989 15.94± 0.0444 20.61 278.16± 0.456 7.35± 0.0205
10.84 279.04± 0.855 13.76± 0.0384 21.47 278.18± 0.456 7.35± 0.0205
11.80 279.11± 0.831 13.38± 0.0373

Figure S.104: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 278.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.26.2 Fitting Substrate Thermal Conductivity - kS

Table S.44: Summary of simulation data - 100 nm Al/Si 278.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 278.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.97 151.14± 2.200 35.39± 0.0989 12.68 148.11± 0.344 5.55± 0.0155
2.95 151.42± 1.542 24.85± 0.0692 13.73 147.94± 0.315 5.07± 0.0141
3.93 149.90± 1.079 17.38± 0.0485 14.76 148.05± 0.286 4.62± 0.0129
4.92 148.37± 0.855 13.77± 0.0384 15.62 148.19± 0.279 4.50± 0.0125
5.93 147.91± 0.697 11.23± 0.0313 16.49 148.13± 0.264 4.25± 0.0118
6.86 148.19± 0.610 9.83± 0.0274 17.54 148.06± 0.248 4.00± 0.0111
7.84 148.45± 0.559 9.00± 0.0251 18.67 148.00± 0.236 3.81± 0.0106
8.85 148.04± 0.501 8.08± 0.0225 19.56 147.86± 0.217 3.50± 0.0097
9.80 147.90± 0.435 7.01± 0.0195 20.61 148.00± 0.217 3.50± 0.0098
10.84 147.67± 0.391 6.30± 0.0176 21.47 148.03± 0.200 3.22± 0.0090
11.80 147.74± 0.355 5.72± 0.0159

Figure S.105: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 278.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.27 Simulation Summary - Al/Si 359.00 MW Series

S.27.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.45: Summary of simulation data - 100 nm Al/Si 359.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 359.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.98 410.03± 10.889 174.24± 0.4922 12.79 359.44± 1.236 19.89± 0.0555
2.98 384.26± 6.335 101.73± 0.2853 13.78 360.04± 1.213 19.54± 0.0545
4.00 377.38± 4.926 79.31± 0.2213 14.88 359.72± 1.109 17.87± 0.0498
4.96 366.75± 3.415 54.90± 0.1537 15.77 360.15± 1.030 16.60± 0.0462
5.97 367.34± 2.865 46.09± 0.1288 16.82 359.69± 0.952 15.34± 0.0427
6.93 365.50± 2.503 40.30± 0.1124 17.57 359.10± 0.976 15.74± 0.0438
7.93 363.40± 2.202 35.47± 0.0989 18.64 359.35± 0.884 14.24± 0.0397
8.93 361.23± 1.800 28.99± 0.0808 19.22 360.13± 0.850 13.69± 0.0382
9.90 361.84± 1.733 27.93± 0.0778 20.71 359.90± 0.803 12.95± 0.0361
10.89 360.13± 1.519 24.47± 0.0682 21.50 359.61± 0.773 12.45± 0.0347
11.78 360.57± 1.420 22.88± 0.0637

Figure S.106: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 359.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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S.27.2 Fitting Substrate Thermal Conductivity - kS

Table S.46: Summary of simulation data - 100 nm Al/Si 359.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 359.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.98 153.49± 2.247 36.22± 0.1009 12.79 148.05± 0.316 5.10± 0.0142
2.98 149.39± 1.380 22.23± 0.0620 13.78 148.09± 0.299 4.81± 0.0134
4.00 148.67± 1.076 17.34± 0.0483 14.88 148.19± 0.280 4.51± 0.0126
4.96 148.51± 0.801 12.90± 0.0359 15.77 147.83± 0.254 4.10± 0.0114
5.97 147.78± 0.684 11.02± 0.0307 16.82 147.99± 0.239 3.86± 0.0107
6.93 148.18± 0.632 10.19± 0.0284 17.57 148.15± 0.235 3.78± 0.0105
7.93 148.03± 0.532 8.58± 0.0239 18.64 148.19± 0.227 3.66± 0.0102
8.93 148.39± 0.447 7.21± 0.0201 19.22 147.97± 0.217 3.50± 0.0097
9.90 148.32± 0.407 6.56± 0.0183 20.71 148.01± 0.202 3.25± 0.0091
10.89 148.28± 0.379 6.11± 0.0170 21.50 148.15± 0.195 3.15± 0.0088
11.78 148.18± 0.355 5.72± 0.0159

Figure S.107: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 359.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.28

S.28 Simulation Summary - Al/Si 464.00 MW Series

S.28.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.47: Summary of simulation data - 100 nm Al/Si 464.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 464.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.98 513.24± 13.808 220.61± 0.6251 12.69 466.65± 1.879 30.27± 0.0843
3.02 490.11± 8.238 132.42± 0.3707 13.58 465.24± 1.722 27.75± 0.0773
3.91 478.42± 6.410 103.15± 0.2881 14.43 464.81± 1.696 27.34± 0.0761
4.85 476.74± 5.287 85.16± 0.2374 15.51 465.25± 1.546 24.90± 0.0694
5.83 472.82± 4.307 69.37± 0.1934 16.24 463.60± 1.441 23.22± 0.0647
6.79 469.03± 3.707 59.73± 0.1663 17.19 464.25± 1.434 23.11± 0.0644
7.79 469.07± 3.071 49.44± 0.1380 18.44 465.29± 1.369 22.06± 0.0614
8.66 469.19± 2.989 48.18± 0.1342 19.20 464.04± 1.273 20.51± 0.0571
9.82 467.37± 2.556 41.19± 0.1147 20.30 464.19± 1.120 18.05± 0.0503
10.88 467.53± 2.364 38.10± 0.1061 21.11 463.62± 1.152 18.56± 0.0517
11.74 465.65± 2.058 33.16± 0.0923

Figure S.108: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 464.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.28

S.28.2 Fitting Substrate Thermal Conductivity - kS

Table S.48: Summary of simulation data - 100 nm Al/Si 464.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 464.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.98 152.49± 2.233 35.93± 0.1004 12.69 147.83± 0.310 4.99± 0.0139
3.02 149.32± 1.353 21.79± 0.0607 13.58 148.11± 0.289 4.65± 0.0130
3.91 149.18± 1.088 17.54± 0.0488 14.43 148.15± 0.286 4.61± 0.0128
4.85 148.67± 0.869 14.00± 0.0390 15.51 147.91± 0.270 4.35± 0.0121
5.83 148.04± 0.729 11.74± 0.0327 16.24 148.27± 0.246 3.96± 0.0110
6.79 148.26± 0.625 10.07± 0.0280 17.19 148.17± 0.246 3.97± 0.0110
7.79 147.70± 0.514 8.28± 0.0231 18.44 147.87± 0.225 3.63± 0.0101
8.66 147.87± 0.479 7.72± 0.0215 19.20 148.08± 0.217 3.50± 0.0098
9.82 147.93± 0.419 6.76± 0.0188 20.30 148.03± 0.195 3.14± 0.0087
10.88 147.93± 0.385 6.21± 0.0173 21.11 148.06± 0.190 3.06± 0.0085
11.74 148.22± 0.349 5.63± 0.0157

Figure S.109: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 464.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.28

S.28.3 Fitting Film Thickness - d1

Table S.49: Summary of simulation data - 100 nm Al/Si 464.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 464.00 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
1.98 100.65± 0.859 13.84± 0.0385 12.69 100.13± 0.123 1.99± 0.0055
3.02 100.38± 0.544 8.77± 0.0244 13.58 100.00± 0.116 1.86± 0.0052
3.91 100.19± 0.425 6.84± 0.0191 14.43 99.99± 0.113 1.82± 0.0051
4.85 100.11± 0.347 5.60± 0.0156 15.51 100.09± 0.108 1.75± 0.0049
5.83 100.29± 0.290 4.68± 0.0130 16.24 99.94± 0.097 1.57± 0.0044
6.79 100.15± 0.247 3.97± 0.0111 17.19 99.97± 0.097 1.57± 0.0044
7.79 100.30± 0.206 3.32± 0.0092 18.44 100.09± 0.089 1.43± 0.0040
8.66 100.18± 0.190 3.06± 0.0085 19.20 100.01± 0.086 1.39± 0.0039
9.82 100.14± 0.168 2.70± 0.0075 20.30 100.02± 0.078 1.25± 0.0035
10.88 100.10± 0.152 2.44± 0.0068 21.11 100.02± 0.075 1.21± 0.0034
11.74 99.98± 0.139 2.23± 0.0062

Figure S.110: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 464.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.29

S.29 Simulation Summary - Al/Si 599.00 MW Series

S.29.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.50: Summary of simulation data - 100 nm Al/Si 599.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 599.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.96 645.82± 18.160 290.59± 0.8208 12.45 602.71± 2.631 42.37± 0.1181
2.91 629.35± 11.945 191.62± 0.5385 13.83 600.08± 2.441 39.33± 0.1095
3.96 619.26± 8.546 137.51± 0.3841 14.47 600.56± 2.161 34.83± 0.0970
4.81 604.98± 6.864 110.61± 0.3080 15.42 600.73± 2.224 35.85± 0.0998
5.86 606.29± 5.796 93.36± 0.2603 16.44 600.23± 1.962 31.60± 0.0881
6.80 603.28± 4.930 79.41± 0.2214 17.16 600.46± 1.878 30.25± 0.0843
7.73 603.11± 4.336 69.87± 0.1946 18.12 600.66± 1.884 30.35± 0.0845
8.78 601.12± 3.658 58.93± 0.1643 19.29 598.94± 1.737 27.99± 0.0779
9.62 603.95± 3.428 55.23± 0.1538 19.87 599.97± 1.672 26.95± 0.0751
10.48 601.38± 3.113 50.16± 0.1397 21.48 599.10± 1.517 24.44± 0.0681
11.79 602.54± 2.823 45.49± 0.1267

Figure S.111: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 599.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

445



Supplement S. Modeling and Fitting of Data S.29

S.29.2 Fitting Substrate Thermal Conductivity - kS

Table S.51: Summary of simulation data - 100 nm Al/Si 599.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 599.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.96 154.30± 2.260 36.42± 0.1014 12.45 147.71± 0.342 5.51± 0.0153
2.91 150.08± 1.568 25.27± 0.0704 13.83 148.19± 0.312 5.03± 0.0140
3.96 149.01± 1.075 17.33± 0.0483 14.47 148.00± 0.279 4.50± 0.0125
4.81 149.54± 0.893 14.39± 0.0401 15.42 147.98± 0.284 4.58± 0.0128
5.86 148.32± 0.743 11.98± 0.0334 16.44 147.87± 0.255 4.10± 0.0114
6.80 148.42± 0.632 10.19± 0.0284 17.16 147.99± 0.245 3.94± 0.0110
7.73 148.33± 0.543 8.74± 0.0244 18.12 147.92± 0.239 3.85± 0.0107
8.78 148.35± 0.473 7.62± 0.0212 19.29 148.15± 0.226 3.65± 0.0102
9.62 147.86± 0.439 7.08± 0.0197 19.87 147.91± 0.221 3.57± 0.0099
10.48 148.16± 0.404 6.50± 0.0181 21.48 147.99± 0.192 3.10± 0.0086
11.79 147.78± 0.364 5.87± 0.0163

Figure S.112: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 599.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.30

S.30 Simulation Summary - Al/Si 774.00 MW Series

S.30.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.52: Summary of simulation data - 100 nm Al/Si 774.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 774.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.96 845.30± 24.946 396.93± 1.1339 12.58 772.37± 3.728 60.07± 0.1673
3.01 813.87± 15.815 254.60± 0.7105 13.50 774.52± 3.257 52.46± 0.1462
3.93 798.04± 12.242 197.28± 0.5494 14.36 777.96± 3.110 50.11± 0.1396
4.92 791.16± 9.819 158.22± 0.4406 15.58 775.29± 2.849 45.91± 0.1279
6.02 791.50± 7.664 123.50± 0.3439 16.48 775.97± 2.747 44.27± 0.1233
6.91 786.92± 6.754 108.85± 0.3031 16.88 777.12± 2.622 42.25± 0.1177
7.80 782.26± 5.785 93.17± 0.2597 17.98 772.54± 2.511 40.46± 0.1127
8.88 779.23± 5.062 81.57± 0.2272 18.91 775.71± 2.376 38.28± 0.1066
9.75 775.35± 4.862 78.35± 0.2182 20.95 774.14± 2.273 36.64± 0.1020
10.64 773.21± 4.158 67.01± 0.1866 21.10 775.87± 2.070 33.34± 0.0929
11.70 776.21± 3.728 60.07± 0.1673

Figure S.113: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 774.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.30

S.30.2 Fitting Substrate Thermal Conductivity - kS

Table S.53: Summary of simulation data - 100 nm Al/Si 774.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Si, hBD = 774.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.96 152.04± 2.280 36.73± 0.1024 12.58 148.48± 0.371 5.98± 0.0167
3.01 149.88± 1.481 23.85± 0.0665 13.50 148.11± 0.326 5.26± 0.0146
3.93 149.21± 1.166 18.79± 0.0523 14.36 147.68± 0.301 4.85± 0.0135
4.92 148.59± 0.930 14.98± 0.0417 15.58 148.05± 0.286 4.61± 0.0128
6.02 147.97± 0.741 11.94± 0.0333 16.48 147.86± 0.273 4.40± 0.0122
6.91 147.99± 0.654 10.55± 0.0294 16.88 147.90± 0.257 4.15± 0.0115
7.80 148.18± 0.580 9.35± 0.0260 17.98 148.21± 0.254 4.09± 0.0114
8.88 148.23± 0.501 8.08± 0.0225 18.91 147.88± 0.238 3.83± 0.0107
9.75 148.45± 0.484 7.79± 0.0217 20.95 148.08± 0.223 3.60± 0.0100
10.64 148.47± 0.415 6.69± 0.0186 21.10 147.78± 0.210 3.38± 0.0094
11.70 148.06± 0.377 6.07± 0.0169

Figure S.114: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 774.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.31

S.31 Simulation Summary - Al/Si 1000.00 MW Series

S.31.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.54: Summary of simulation data - 100 nm Al/Si 1000.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Si, hBD = 1000.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.97 1176.73± 40.124 634.82± 1.8343 12.57 1002.30± 5.039 80.88± 0.2271
2.92 1058.09± 24.232 387.94± 1.0947 13.61 1004.28± 4.714 75.62± 0.2125
3.84 1031.97± 16.782 267.58± 0.7612 14.31 1002.88± 4.242 68.09± 0.1912
4.85 1024.05± 13.540 216.88± 0.6114 15.58 1005.74± 4.189 67.23± 0.1888
5.80 1015.56± 11.577 185.81± 0.5217 16.39 1005.80± 3.878 62.25± 0.1748
6.86 1014.28± 9.373 150.82± 0.4213 17.41 1003.13± 3.749 60.15± 0.1690
7.86 1008.66± 8.048 129.04± 0.3630 18.35 997.09± 3.367 53.98± 0.1519
8.67 1009.57± 7.594 121.88± 0.3422 19.20 1003.29± 3.121 50.09± 0.1406
9.77 1007.11± 6.545 105.05± 0.2949 20.52 1001.96± 3.220 51.68± 0.1451
10.77 1006.63± 6.037 96.89± 0.2720 20.37 1004.01± 3.039 48.77± 0.1369
11.70 1001.83± 5.247 84.22± 0.2364

Figure S.115: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 1000.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.31

S.31.2 Fitting Substrate Thermal Conductivity - kS

Table S.55: Summary of simulation data - 100 nm Al/Si 1000.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Si, hBD = 1000.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.97 150.08± 2.540 40.91± 0.1141 12.57 148.10± 0.381 6.15± 0.0171
2.92 151.03± 1.702 27.43± 0.0764 13.61 147.90± 0.353 5.69± 0.0159
3.84 149.02± 1.258 20.26± 0.0564 14.31 148.03± 0.328 5.29± 0.0147
4.85 148.80± 0.982 15.82± 0.0441 15.58 147.80± 0.317 5.11± 0.0142
5.80 148.72± 0.847 13.64± 0.0380 16.39 147.61± 0.287 4.63± 0.0129
6.86 148.07± 0.698 11.25± 0.0314 17.41 147.88± 0.282 4.55± 0.0127
7.86 148.35± 0.616 9.92± 0.0276 18.35 148.29± 0.262 4.22± 0.0118
8.67 148.10± 0.557 8.98± 0.0250 19.20 147.82± 0.241 3.89± 0.0108
9.77 148.05± 0.489 7.88± 0.0219 20.52 148.01± 0.241 3.88± 0.0108
10.77 148.07± 0.453 7.31± 0.0203 20.37 147.76± 0.233 3.75± 0.0105
11.70 148.16± 0.405 6.52± 0.0182

Figure S.116: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 1000.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.31

S.31.3 Fitting Film Thickness - d1

Table S.56: Summary of simulation data - 100 nm Al/Si 1000.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Si, hBD = 1000.00 MW/m2K

SNP µ - [nm] σ - [nm] SNP µ - [nm] σ - [nm]
1.97 103.00± 1.451 23.38± 0.0651 12.57 100.10± 0.210 3.38± 0.0094
2.92 100.25± 0.931 15.00± 0.0418 13.61 100.19± 0.195 3.14± 0.0088
3.84 100.56± 0.688 11.08± 0.0309 14.31 100.08± 0.182 2.93± 0.0082
4.85 100.27± 0.549 8.84± 0.0246 15.58 100.19± 0.174 2.80± 0.0078
5.80 100.15± 0.466 7.51± 0.0209 16.39 100.32± 0.158 2.54± 0.0071
6.86 100.32± 0.394 6.34± 0.0177 17.41 100.15± 0.154 2.48± 0.0069
7.86 100.11± 0.339 5.46± 0.0152 18.35 99.93± 0.144 2.32± 0.0065
8.67 100.22± 0.306 4.93± 0.0137 19.20 100.16± 0.134 2.15± 0.0060
9.77 100.18± 0.268 4.32± 0.0120 20.52 100.04± 0.131 2.11± 0.0059
10.77 100.12± 0.249 4.01± 0.0112 20.37 100.19± 0.129 2.08± 0.0058
11.70 100.08± 0.224 3.60± 0.0100

Figure S.117: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Si with hBD = 1000.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.32

S.32 Simulation Summary - Al/AlN 1.00 MW Series

S.32.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.57: Summary of simulation data - 100 nm Al/AlN 1.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on AlN, hBD = 1.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.45 1.08± 0.056 0.90± 0.0025 65.42 1.01± 0.011 0.17± 0.0005
15.69 0.99± 0.041 0.66± 0.0018 71.28 1.01± 0.009 0.15± 0.0004
21.01 1.02± 0.032 0.52± 0.0015 76.77 1.01± 0.008 0.14± 0.0004
25.86 1.00± 0.025 0.40± 0.0011 81.05 1.01± 0.008 0.13± 0.0004
30.60 1.00± 0.021 0.34± 0.0009 87.96 1.01± 0.008 0.12± 0.0003
36.19 1.01± 0.018 0.30± 0.0008 93.01 1.00± 0.007 0.12± 0.0003
41.70 1.01± 0.017 0.27± 0.0007 99.52 1.01± 0.006 0.10± 0.0003
46.71 1.00± 0.014 0.23± 0.0006 103.83 1.00± 0.006 0.10± 0.0003
51.10 1.01± 0.013 0.21± 0.0006 105.64 1.01± 0.006 0.10± 0.0003
56.35 1.01± 0.012 0.19± 0.0005 113.24 1.01± 0.006 0.09± 0.0003
62.93 1.00± 0.011 0.18± 0.0005

Figure S.118: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 1.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.33

S.33 Simulation Summary - Al/AlN 1.29 MW Series

S.33.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.58: Summary of simulation data - 100 nm Al/AlN 1.29 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on AlN, hBD = 1.29 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.25 1.43± 0.061 0.98± 0.0027 66.01 1.30± 0.010 0.17± 0.0005
15.34 1.28± 0.044 0.70± 0.0020 71.41 1.29± 0.009 0.15± 0.0004
20.90 1.31± 0.032 0.51± 0.0014 77.96 1.30± 0.009 0.14± 0.0004
26.12 1.28± 0.026 0.42± 0.0012 81.44 1.29± 0.009 0.14± 0.0004
30.49 1.30± 0.023 0.36± 0.0010 87.17 1.30± 0.008 0.12± 0.0003
36.18 1.29± 0.019 0.31± 0.0009 90.33 1.30± 0.007 0.11± 0.0003
41.10 1.31± 0.017 0.27± 0.0008 96.24 1.29± 0.007 0.11± 0.0003
46.05 1.29± 0.014 0.23± 0.0006 99.37 1.29± 0.007 0.11± 0.0003
51.32 1.30± 0.013 0.21± 0.0006 104.95 1.29± 0.006 0.10± 0.0003
56.02 1.30± 0.012 0.19± 0.0005 113.14 1.29± 0.006 0.10± 0.0003
60.49 1.30± 0.011 0.17± 0.0005

Figure S.119: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 1.29 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.34

S.34 Simulation Summary - Al/AlN 2.78 MW Series

S.34.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.59: Summary of simulation data - 100 nm Al/AlN 2.78 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on AlN, hBD = 2.78 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.27 2.81± 0.066 1.06± 0.0030 65.87 2.79± 0.010 0.16± 0.0005
15.03 2.77± 0.046 0.73± 0.0020 70.98 2.79± 0.009 0.15± 0.0004
20.19 2.80± 0.033 0.54± 0.0015 74.97 2.78± 0.009 0.15± 0.0004
24.86 2.81± 0.027 0.44± 0.0012 80.28 2.79± 0.008 0.14± 0.0004
29.65 2.80± 0.023 0.37± 0.0010 83.89 2.80± 0.008 0.13± 0.0004
34.65 2.78± 0.020 0.32± 0.0009 89.47 2.79± 0.008 0.12± 0.0003
40.09 2.79± 0.017 0.27± 0.0008 94.15 2.79± 0.007 0.12± 0.0003
44.72 2.79± 0.015 0.24± 0.0007 99.46 2.79± 0.007 0.11± 0.0003
49.91 2.78± 0.014 0.22± 0.0006 103.32 2.79± 0.007 0.11± 0.0003
54.60 2.79± 0.013 0.20± 0.0006 110.50 2.78± 0.006 0.10± 0.0003
60.18 2.78± 0.011 0.18± 0.0005

Figure S.120: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 2.78 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.35

S.35 Simulation Summary - Al/AlN 5.99 MW Series

S.35.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.60: Summary of simulation data - 100 nm Al/AlN 5.99 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on AlN, hBD = 5.99 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
9.66 5.98± 0.073 1.18± 0.0033 60.81 6.00± 0.011 0.18± 0.0005
14.30 5.98± 0.049 0.79± 0.0022 65.75 5.99± 0.011 0.17± 0.0005
18.89 5.99± 0.036 0.59± 0.0016 70.41 6.00± 0.010 0.16± 0.0004
23.61 6.00± 0.028 0.46± 0.0013 76.94 6.01± 0.009 0.14± 0.0004
28.16 6.02± 0.025 0.40± 0.0011 79.68 5.99± 0.009 0.14± 0.0004
33.01 5.99± 0.020 0.32± 0.0009 85.26 6.00± 0.008 0.13± 0.0004
37.91 6.00± 0.018 0.29± 0.0008 89.94 5.99± 0.008 0.12± 0.0003
43.54 5.99± 0.016 0.26± 0.0007 94.96 5.99± 0.007 0.12± 0.0003
47.41 5.99± 0.014 0.23± 0.0006 99.49 6.00± 0.007 0.11± 0.0003
51.57 5.99± 0.013 0.21± 0.0006 104.44 6.00± 0.006 0.10± 0.0003
56.44 5.99± 0.012 0.20± 0.0006

Figure S.121: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 5.99 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.36

S.36 Simulation Summary - Al/AlN 12.90 MW Series

S.36.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.61: Summary of simulation data - 100 nm Al/AlN 12.90 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 12.90 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
8.76 12.91± 0.080 1.29± 0.0036 53.31 12.91± 0.014 0.22± 0.0006
12.94 12.89± 0.055 0.89± 0.0025 59.08 12.90± 0.012 0.19± 0.0005
17.20 12.93± 0.044 0.70± 0.0020 62.80 12.90± 0.011 0.18± 0.0005
21.45 12.88± 0.033 0.53± 0.0015 67.12 12.90± 0.011 0.17± 0.0005
25.64 12.89± 0.028 0.45± 0.0013 71.21 12.90± 0.010 0.16± 0.0005
30.12 12.91± 0.024 0.38± 0.0011 75.04 12.91± 0.010 0.16± 0.0004
34.39 12.90± 0.021 0.34± 0.0010 82.09 12.91± 0.008 0.14± 0.0004
38.03 12.90± 0.018 0.29± 0.0008 84.12 12.91± 0.009 0.14± 0.0004
42.68 12.91± 0.017 0.28± 0.0008 89.42 12.91± 0.008 0.13± 0.0004
48.03 12.90± 0.015 0.24± 0.0007 92.64 12.90± 0.008 0.12± 0.0003
50.34 12.90± 0.014 0.23± 0.0007

Figure S.122: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 12.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.37

S.37 Simulation Summary - Al/AlN 27.80 MW Series

S.37.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.62: Summary of simulation data - 100 nm Al/AlN 27.80 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 27.80 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
6.86 27.89± 0.114 1.84± 0.0051 43.35 27.80± 0.018 0.29± 0.0008
10.06 27.83± 0.077 1.23± 0.0034 46.66 27.82± 0.017 0.27± 0.0008
13.73 27.83± 0.055 0.89± 0.0025 51.47 27.81± 0.015 0.25± 0.0007
16.88 27.83± 0.049 0.79± 0.0022 53.64 27.81± 0.014 0.23± 0.0006
20.28 27.77± 0.037 0.60± 0.0017 57.00 27.81± 0.013 0.22± 0.0006
23.23 27.81± 0.034 0.54± 0.0015 60.36 27.81± 0.013 0.21± 0.0006
26.78 27.81± 0.029 0.47± 0.0013 63.89 27.81± 0.013 0.20± 0.0006
30.46 27.81± 0.026 0.42± 0.0012 66.59 27.81± 0.011 0.18± 0.0005
33.33 27.80± 0.024 0.39± 0.0011 69.59 27.80± 0.011 0.18± 0.0005
36.69 27.82± 0.022 0.35± 0.0010 73.89 27.81± 0.011 0.17± 0.0005
40.06 27.82± 0.020 0.32± 0.0009

Figure S.123: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 27.80 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.38

S.38 Simulation Summary - Al/AlN 59.90 MW Series

S.38.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.63: Summary of simulation data - 100 nm Al/AlN 59.90 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 59.90 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
4.22 60.04± 0.228 3.67± 0.0102 26.96 59.94± 0.037 0.59± 0.0016
6.36 59.97± 0.152 2.45± 0.0068 29.24 59.89± 0.034 0.54± 0.0015
8.38 59.95± 0.116 1.87± 0.0052 30.99 59.93± 0.032 0.52± 0.0015
10.59 59.95± 0.094 1.51± 0.0042 33.02 59.90± 0.030 0.49± 0.0014
12.86 59.96± 0.073 1.18± 0.0033 35.30 59.91± 0.028 0.45± 0.0012
14.60 59.84± 0.065 1.05± 0.0029 37.07 59.90± 0.027 0.43± 0.0012
16.47 59.94± 0.060 0.97± 0.0027 38.55 59.92± 0.025 0.41± 0.0011
18.39 59.92± 0.054 0.87± 0.0024 40.44 59.91± 0.025 0.40± 0.0011
21.51 59.88± 0.046 0.74± 0.0021 43.23 59.91± 0.023 0.36± 0.0010
22.76 59.93± 0.045 0.73± 0.0020 44.63 59.89± 0.022 0.35± 0.0010
25.27 59.91± 0.039 0.63± 0.0017

Figure S.124: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 59.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.38

S.38.2 Fitting Substrate Thermal Conductivity - kS

Table S.64: Summary of simulation data - 100 nm Al/AlN 59.90 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 59.90 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
4.22 339.80± 13.189 209.97± 0.5992 26.96 285.80± 1.644 26.46± 0.0739
6.36 311.80± 7.835 125.75± 0.3530 29.24 283.30± 1.493 24.05± 0.0670
8.38 298.02± 5.353 85.96± 0.2411 30.99 285.66± 1.457 23.48± 0.0654
10.59 293.87± 4.326 69.60± 0.1944 33.02 283.77± 1.337 21.54± 0.0600
12.86 291.71± 3.460 55.73± 0.1554 35.30 284.01± 1.232 19.85± 0.0553
14.60 285.15± 3.014 48.54± 0.1353 37.07 283.53± 1.184 19.08± 0.0531
16.47 288.48± 2.753 44.34± 0.1236 38.55 284.30± 1.133 18.25± 0.0508
18.39 286.92± 2.470 39.80± 0.1108 40.44 284.15± 1.095 17.63± 0.0492
21.51 284.33± 2.064 33.25± 0.0927 43.23 284.14± 1.003 16.17± 0.0450
22.76 286.53± 2.032 32.73± 0.0912 44.63 283.00± 0.983 15.84± 0.0441
25.27 285.03± 1.743 28.08± 0.0782

Figure S.125: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 59.90 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

459



Supplement S. Modeling and Fitting of Data S.39

S.39 Simulation Summary - Al/AlN 100.00 MW Series

S.39.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.65: Summary of simulation data - 100 nm Al/AlN 100.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 100.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.53 100.93± 0.561 9.03± 0.0252 16.55 99.99± 0.087 1.41± 0.0039
3.81 100.35± 0.391 6.30± 0.0176 17.60 100.02± 0.080 1.29± 0.0036
5.06 100.06± 0.280 4.51± 0.0125 18.99 100.04± 0.075 1.20± 0.0033
6.34 100.05± 0.231 3.73± 0.0104 20.31 100.05± 0.070 1.13± 0.0032
7.59 99.90± 0.193 3.10± 0.0086 21.60 100.02± 0.065 1.05± 0.0029
8.90 99.96± 0.168 2.70± 0.0075 22.72 100.01± 0.062 1.00± 0.0028
10.12 100.10± 0.142 2.29± 0.0064 24.11 100.05± 0.059 0.96± 0.0027
11.41 99.94± 0.119 1.92± 0.0053 25.38 100.01± 0.054 0.87± 0.0024
12.66 99.92± 0.116 1.87± 0.0052 26.38 100.02± 0.053 0.85± 0.0024
13.94 100.04± 0.103 1.66± 0.0046 27.77 99.97± 0.052 0.83± 0.0023
15.16 99.98± 0.094 1.52± 0.0042

Figure S.126: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 100.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.40

S.40 Simulation Summary - Al/AlN 129.00 MW Series

S.40.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.66: Summary of simulation data - 100 nm Al/AlN 129.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 129.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.15 130.55± 0.924 14.80± 0.0417 13.56 129.02± 0.148 2.37± 0.0067
3.22 129.66± 0.600 9.61± 0.0271 14.58 129.01± 0.131 2.09± 0.0059
4.34 129.27± 0.454 7.27± 0.0205 15.89 129.09± 0.126 2.02± 0.0057
5.31 129.28± 0.373 5.97± 0.0168 16.74 129.01± 0.117 1.87± 0.0053
6.39 129.30± 0.301 4.82± 0.0136 18.18 128.98± 0.106 1.69± 0.0048
7.44 128.98± 0.252 4.03± 0.0114 18.86 129.09± 0.106 1.70± 0.0048
8.85 129.19± 0.225 3.61± 0.0102 19.82 128.95± 0.100 1.61± 0.0045
9.56 129.05± 0.206 3.29± 0.0093 21.19 128.96± 0.089 1.42± 0.0040
10.92 128.92± 0.180 2.88± 0.0081 21.98 128.98± 0.089 1.43± 0.0040
11.81 128.95± 0.164 2.62± 0.0074 23.44 129.02± 0.087 1.40± 0.0039
12.70 129.14± 0.158 2.53± 0.0071

Figure S.127: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 129.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.40

S.40.2 Fitting Substrate Thermal Conductivity - kS

Table S.67: Summary of simulation data - 100 nm Al/AlN 129.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 129.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
2.15 307.21± 6.679 107.09± 0.3013 13.56 284.57± 1.009 16.26± 0.0453
3.22 293.83± 4.159 66.89± 0.1870 14.58 284.57± 0.898 14.48± 0.0403
4.34 289.50± 3.064 49.30± 0.1377 15.89 284.95± 0.835 13.46± 0.0375
5.31 288.22± 2.578 41.50± 0.1158 16.74 284.46± 0.791 12.74± 0.0355
6.39 287.78± 2.071 33.37± 0.0929 18.18 284.16± 0.708 11.41± 0.0318
7.44 285.27± 1.717 27.66± 0.0771 18.86 285.03± 0.722 11.63± 0.0324
8.85 286.53± 1.561 25.16± 0.0701 19.82 284.15± 0.674 10.85± 0.0302
9.56 285.37± 1.415 22.80± 0.0635 21.19 283.96± 0.598 9.63± 0.0268
10.92 284.28± 1.218 19.64± 0.0547 21.98 284.14± 0.600 9.67± 0.0269
11.81 284.49± 1.112 17.92± 0.0499 23.44 284.44± 0.592 9.54± 0.0266
12.70 285.32± 1.075 17.31± 0.0482

Figure S.128: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 129.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.41

S.41 Simulation Summary - Al/AlN 167.00 MW Series

S.41.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.68: Summary of simulation data - 100 nm Al/AlN 167.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 167.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.77 169.71± 1.563 25.16± 0.0702 11.21 167.05± 0.246 3.94± 0.0111
2.63 167.68± 1.064 17.11± 0.0478 12.18 166.97± 0.230 3.68± 0.0104
3.54 167.66± 0.786 12.62± 0.0354 13.07 166.93± 0.223 3.56± 0.0101
4.37 167.04± 0.642 10.30± 0.0289 14.13 167.24± 0.208 3.33± 0.0094
5.26 166.99± 0.539 8.65± 0.0243 14.59 167.12± 0.207 3.32± 0.0094
6.15 166.77± 0.459 7.37± 0.0207 15.72 166.94± 0.184 2.93± 0.0083
6.92 167.22± 0.414 6.63± 0.0187 16.63 167.03± 0.174 2.78± 0.0078
7.85 166.75± 0.354 5.67± 0.0160 17.58 166.90± 0.156 2.49± 0.0071
8.82 166.96± 0.339 5.43± 0.0153 18.39 166.88± 0.153 2.45± 0.0069
9.66 167.17± 0.286 4.58± 0.0129 18.90 166.87± 0.153 2.45± 0.0069
10.42 166.83± 0.274 4.39± 0.0124

Figure S.129: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 167.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.42

S.42 Simulation Summary - Al/AlN 215.00 MW Series

S.42.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.69: Summary of simulation data - 100 nm Al/AlN 215.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 215.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.51 219.42± 2.357 37.12± 0.1083 9.79 214.71± 0.414 6.61± 0.0187
2.27 216.03± 1.614 25.76± 0.0731 10.36 215.18± 0.381 6.09± 0.0173
3.01 215.30± 1.286 20.55± 0.0582 11.23 214.70± 0.339 5.42± 0.0154
3.79 214.61± 1.000 15.98± 0.0453 11.97 214.96± 0.320 5.11± 0.0145
4.50 214.62± 0.856 13.66± 0.0387 12.63 214.60± 0.310 4.95± 0.0140
5.29 214.63± 0.721 11.52± 0.0326 13.49 214.87± 0.286 4.56± 0.0129
6.09 214.83± 0.636 10.15± 0.0288 14.26 215.05± 0.265 4.23± 0.0120
6.78 214.49± 0.564 9.02± 0.0255 15.03 214.71± 0.254 4.05± 0.0115
7.55 214.83± 0.520 8.31± 0.0235 15.86 214.91± 0.257 4.10± 0.0116
8.28 215.33± 0.461 7.37± 0.0209 16.56 214.70± 0.237 3.78± 0.0107
8.91 215.16± 0.436 6.96± 0.0197

Figure S.130: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 215.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.43

S.43 Simulation Summary - Al/AlN 278.00 MW Series

S.43.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.70: Summary of simulation data - 100 nm Al/AlN 278.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 278.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.38 285.96± 4.387 68.58± 0.2030 8.83 277.81± 0.498 8.03± 0.0224
2.06 281.32± 2.588 40.97± 0.1183 9.43 277.87± 0.440 7.09± 0.0197
2.75 281.10± 1.922 30.65± 0.0872 10.18 277.93± 0.430 6.92± 0.0193
3.42 277.85± 1.406 22.48± 0.0636 10.81 277.82± 0.410 6.61± 0.0184
4.11 278.73± 1.145 18.43± 0.0515 11.62 277.64± 0.367 5.92± 0.0165
4.67 277.74± 0.982 15.82± 0.0441 12.12 277.65± 0.346 5.58± 0.0155
5.45 279.02± 0.830 13.36± 0.0373 12.91 277.76± 0.339 5.46± 0.0152
6.09 278.43± 0.709 11.42± 0.0319 13.31 277.95± 0.313 5.04± 0.0140
6.84 277.95± 0.635 10.23± 0.0285 14.45 277.82± 0.294 4.73± 0.0132
7.47 278.12± 0.602 9.69± 0.0270 14.94 277.87± 0.296 4.77± 0.0133
8.15 277.33± 0.552 8.90± 0.0248

Figure S.131: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 278.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.43

S.43.2 Fitting Substrate Thermal Conductivity - kS

Table S.71: Summary of simulation data - 100 nm Al/AlN 278.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 278.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.38 291.46± 5.360 85.80± 0.2421 8.83 284.98± 0.858 13.83± 0.0385
2.06 290.01± 3.746 60.24± 0.1684 9.43 285.32± 0.776 12.50± 0.0348
2.75 289.47± 2.723 43.87± 0.1222 10.18 284.37± 0.758 12.20± 0.0341
3.42 287.39± 2.175 35.03± 0.0977 10.81 285.18± 0.689 11.10± 0.0309
4.11 288.36± 1.800 28.99± 0.0808 11.62 284.62± 0.633 10.20± 0.0284
4.67 287.57± 1.658 26.73± 0.0744 12.12 284.68± 0.623 10.04± 0.0280
5.45 287.02± 1.428 23.01± 0.0641 12.91 284.47± 0.566 9.11± 0.0254
6.09 286.26± 1.228 19.80± 0.0551 13.31 284.89± 0.544 8.77± 0.0244
6.84 286.00± 1.043 16.81± 0.0468 14.45 284.49± 0.500 8.06± 0.0224
7.47 285.63± 1.004 16.18± 0.0451 14.94 284.79± 0.512 8.25± 0.0230
8.15 284.26± 0.900 14.48± 0.0404

Figure S.132: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 278.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.44

S.44 Simulation Summary - Al/AlN 359.00 MW Series

S.44.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.72: Summary of simulation data - 100 nm Al/AlN 359.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 359.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.29 402.69± 9.024 143.95± 0.4091 8.28 359.84± 0.924 14.87± 0.0415
1.91 376.01± 4.736 75.51± 0.2148 8.88 359.79± 0.837 13.48± 0.0376
2.56 371.10± 3.610 57.94± 0.1627 9.59 360.41± 0.792 12.75± 0.0356
3.21 371.18± 2.919 46.99± 0.1311 10.17 359.96± 0.780 12.58± 0.0350
3.80 365.21± 2.218 35.72± 0.0996 10.84 359.13± 0.692 11.16± 0.0311
4.47 361.50± 1.712 27.51± 0.0771 11.48 360.10± 0.674 10.87± 0.0303
5.11 362.12± 1.513 24.34± 0.0680 12.12 360.19± 0.635 10.24± 0.0285
5.67 361.16± 1.390 22.35± 0.0625 12.66 359.78± 0.608 9.78± 0.0273
6.35 360.37± 1.212 19.50± 0.0545 13.40 359.76± 0.581 9.36± 0.0261
6.97 360.30± 1.113 17.93± 0.0500 14.07 359.44± 0.552 8.90± 0.0248
7.60 360.23± 0.999 16.09± 0.0449

Figure S.133: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 359.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.45

S.45 Simulation Summary - Al/AlN 464.00 MW Series

S.45.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.73: Summary of simulation data - 100 nm Al/AlN 464.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 464.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.25 519.91± 12.208 196.03± 0.5498 8.03 466.06± 1.630 26.26± 0.0731
1.88 494.01± 7.836 126.15± 0.3520 8.54 466.57± 1.556 25.07± 0.0699
2.50 479.95± 5.492 88.41± 0.2467 9.33 464.28± 1.374 22.14± 0.0617
3.13 473.42± 4.185 67.37± 0.1880 9.90 465.06± 1.397 22.51± 0.0627
3.72 473.38± 3.648 58.76± 0.1638 10.57 464.94± 1.316 21.20± 0.0590
4.33 470.53± 3.116 50.14± 0.1401 11.02 465.21± 1.220 19.65± 0.0547
4.94 467.11± 2.759 44.46± 0.1238 11.65 464.33± 1.145 18.45± 0.0514
5.56 468.24± 2.416 38.91± 0.1085 12.28 465.38± 1.089 17.53± 0.0489
6.17 466.72± 2.158 34.77± 0.0968 12.93 464.72± 1.077 17.36± 0.0483
6.85 467.43± 1.915 30.86± 0.0859 13.53 463.88± 0.958 15.44± 0.0430
7.38 465.35± 1.785 28.75± 0.0801

Figure S.134: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 464.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.46

S.46 Simulation Summary - Al/AlN 599.00 MW Series

S.46.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.74: Summary of simulation data - 100 nm Al/AlN 599.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 599.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.18 661.90± 16.837 269.69± 0.7602 7.71 600.25± 2.500 40.29± 0.1122
1.80 628.45± 10.491 168.72± 0.4718 8.33 600.07± 2.135 34.41± 0.0958
2.39 615.55± 7.717 124.17± 0.3469 8.91 599.91± 2.097 33.80± 0.0941
2.98 610.87± 6.098 98.22± 0.2738 9.49 602.15± 2.010 32.39± 0.0902
3.57 603.87± 5.428 87.47± 0.2436 10.01 598.53± 1.819 29.30± 0.0817
4.17 599.56± 4.439 71.53± 0.1992 10.70 600.13± 1.722 27.74± 0.0773
4.75 600.83± 3.850 62.01± 0.1729 11.28 598.67± 1.623 26.16± 0.0729
5.34 600.84± 3.562 57.41± 0.1599 11.89 600.86± 1.546 24.90± 0.0694
5.92 601.09± 3.081 49.65± 0.1383 12.50 601.16± 1.468 23.66± 0.0659
6.55 600.68± 2.790 44.96± 0.1252 13.07 599.04± 1.384 22.30± 0.0621
7.15 599.53± 2.681 43.20± 0.1203

Figure S.135: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 599.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

469



Supplement S. Modeling and Fitting of Data S.46

S.46.2 Fitting Substrate Thermal Conductivity - kS

Table S.75: Summary of simulation data - 100 nm Al/AlN 599.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 599.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.18 302.46± 6.428 103.43± 0.2889 7.71 285.42± 0.909 14.64± 0.0408
1.80 288.72± 3.726 59.98± 0.1674 8.33 285.35± 0.781 12.59± 0.0351
2.39 288.45± 2.780 44.77± 0.1248 8.91 285.07± 0.733 11.82± 0.0329
2.98 286.82± 2.185 35.19± 0.0981 9.49 284.50± 0.699 11.26± 0.0314
3.57 287.90± 1.962 31.62± 0.0881 10.01 285.73± 0.664 10.69± 0.0298
4.17 287.88± 1.597 25.73± 0.0717 10.70 284.82± 0.618 9.95± 0.0277
4.75 286.00± 1.363 21.96± 0.0612 11.28 285.37± 0.583 9.40± 0.0262
5.34 285.87± 1.277 20.58± 0.0573 11.89 284.51± 0.562 9.06± 0.0252
5.92 285.70± 1.124 18.11± 0.0504 12.50 284.52± 0.529 8.52± 0.0237
6.55 285.71± 1.030 16.60± 0.0462 13.07 285.18± 0.502 8.09± 0.0225
7.15 286.09± 0.965 15.55± 0.0433

Figure S.136: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 599.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.47

S.47 Simulation Summary - Al/AlN 774.00 MW Series

S.47.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.76: Summary of simulation data - 100 nm Al/AlN 774.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 774.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.24 859.10± 22.412 359.17± 1.0114 8.11 774.70± 2.956 47.62± 0.1327
1.86 800.06± 13.355 214.78± 0.6006 8.44 777.08± 2.896 46.68± 0.1300
2.46 777.46± 9.948 160.15± 0.4469 9.26 775.76± 2.678 43.16± 0.1202
3.09 773.65± 7.838 126.24± 0.3519 9.91 774.89± 2.520 40.61± 0.1131
3.71 775.52± 6.912 111.27± 0.3105 10.46 774.13± 2.354 37.93± 0.1056
4.26 785.03± 5.917 95.36± 0.2656 10.95 773.86± 2.227 35.89± 0.0999
4.90 778.97± 5.131 82.69± 0.2303 11.57 774.87± 2.086 33.61± 0.0936
5.55 776.80± 4.509 72.66± 0.2023 12.43 776.86± 2.038 32.84± 0.0914
6.13 781.95± 3.984 64.20± 0.1788 12.70 774.07± 1.906 30.70± 0.0856
6.79 778.18± 3.583 57.73± 0.1608 13.58 775.26± 1.793 28.88± 0.0805
7.32 775.05± 3.443 55.49± 0.1545

Figure S.137: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/AlN with hBD = 774.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.48

S.48 Simulation Summary - Al/AlN 1000.00 MW Series

S.48.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.77: Summary of simulation data - 100 nm Al/AlN 1000.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 1000.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
1.21 1098.71± 29.548 473.05± 1.3348 7.89 1002.52± 4.130 66.49± 0.1855
1.82 1029.32± 19.196 308.10± 0.8650 8.51 1003.91± 4.063 65.40± 0.1825
2.44 1015.25± 13.598 218.58± 0.6118 9.14 1002.40± 3.686 59.27± 0.1657
3.04 1009.09± 11.551 185.95± 0.5189 9.72 1001.84± 3.394 54.64± 0.1525
3.63 1007.24± 9.078 146.15± 0.4078 10.36 1003.32± 3.194 51.41± 0.1435
4.23 1005.61± 8.131 130.90± 0.3653 10.97 1002.49± 2.897 46.57± 0.1304
4.88 1004.25± 6.993 112.58± 0.3142 11.53 1003.11± 3.016 48.53± 0.1356
5.45 1003.69± 6.162 99.20± 0.2768 12.16 999.97± 2.791 44.97± 0.1252
6.09 999.60± 5.702 91.80± 0.2562 12.71 1003.61± 2.580 41.51± 0.1159
6.68 999.87± 4.979 80.16± 0.2237 13.35 1002.23± 2.541 40.87± 0.1143
7.30 1006.87± 4.702 75.78± 0.2110

Figure S.138: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/AlN with hBD = 1000.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.48

S.48.2 Fitting Substrate Thermal Conductivity - kS

Table S.78: Summary of simulation data - 100 nm Al/AlN 1000.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on AlN, hBD = 1000.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
1.21 295.81± 6.001 96.42± 0.2701 7.89 285.23± 0.895 14.41± 0.0401
1.82 293.80± 4.096 66.01± 0.1838 8.51 284.86± 0.899 14.48± 0.0403
2.44 289.55± 2.967 47.79± 0.1332 9.14 284.59± 0.805 12.97± 0.0361
3.04 289.45± 2.504 40.35± 0.1124 9.72 284.96± 0.747 12.04± 0.0335
3.63 287.50± 2.011 32.41± 0.0903 10.36 284.59± 0.701 11.29± 0.0314
4.23 286.85± 1.798 28.97± 0.0807 10.97 284.67± 0.632 10.18± 0.0283
4.88 286.20± 1.498 24.13± 0.0673 11.53 284.79± 0.663 10.68± 0.0297
5.45 285.82± 1.377 22.19± 0.0618 12.16 285.08± 0.614 9.89± 0.0275
6.09 286.38± 1.248 20.10± 0.0560 12.71 284.36± 0.568 9.16± 0.0255
6.68 286.03± 1.110 17.89± 0.0498 13.35 284.56± 0.565 9.11± 0.0254
7.30 284.43± 1.023 16.49± 0.0459

Figure S.139: Relative population standard deviation as a function of signal-to-noise parameter for 100 nm
of Al/AlN with hBD = 1000.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.49

S.49 Simulation Summary - Al/Ge 1.00 MW Series

S.49.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.79: Summary of simulation data - 100 nm Al/Ge 1.00 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 1.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.61 1.09± 0.056 0.91± 0.0025 68.15 1.01± 0.010 0.16± 0.0004
15.68 1.02± 0.040 0.64± 0.0018 72.38 1.00± 0.009 0.15± 0.0004
20.81 1.01± 0.031 0.49± 0.0014 75.62 1.02± 0.009 0.14± 0.0004
26.22 1.02± 0.025 0.41± 0.0011 81.25 1.01± 0.008 0.14± 0.0004
31.05 1.01± 0.022 0.36± 0.0010 87.53 1.01± 0.008 0.12± 0.0003
35.79 1.01± 0.019 0.31± 0.0009 93.37 1.01± 0.007 0.11± 0.0003
42.27 1.00± 0.016 0.26± 0.0007 95.28 1.00± 0.007 0.11± 0.0003
46.74 1.00± 0.014 0.22± 0.0006 104.03 1.01± 0.006 0.10± 0.0003
51.54 1.00± 0.013 0.21± 0.0006 105.68 1.01± 0.006 0.10± 0.0003
57.60 1.01± 0.012 0.19± 0.0005 114.56 1.01± 0.006 0.10± 0.0003
62.27 1.01± 0.011 0.17± 0.0005

Figure S.140: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 1.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.50

S.50 Simulation Summary - Al/Ge 2.15 MW Series

S.50.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.80: Summary of simulation data - 100 nm Al/Ge 2.15 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 2.15 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.26 2.19± 0.064 1.03± 0.0029 65.76 2.16± 0.011 0.17± 0.0005
15.39 2.15± 0.043 0.70± 0.0019 72.64 2.16± 0.009 0.15± 0.0004
20.55 2.17± 0.034 0.55± 0.0015 76.64 2.16± 0.009 0.14± 0.0004
25.48 2.13± 0.026 0.42± 0.0012 81.15 2.16± 0.009 0.14± 0.0004
31.31 2.17± 0.022 0.36± 0.0010 86.47 2.16± 0.008 0.13± 0.0004
35.63 2.14± 0.020 0.32± 0.0009 89.39 2.16± 0.008 0.12± 0.0003
40.44 2.15± 0.017 0.27± 0.0007 95.85 2.16± 0.007 0.11± 0.0003
45.98 2.16± 0.015 0.24± 0.0007 105.19 2.15± 0.006 0.10± 0.0003
50.89 2.18± 0.013 0.21± 0.0006 107.10 2.16± 0.007 0.11± 0.0003
55.63 2.16± 0.012 0.20± 0.0005 109.88 2.15± 0.006 0.10± 0.0003
61.24 2.16± 0.011 0.18± 0.0005

Figure S.141: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 2.15 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.51

S.51 Simulation Summary - Al/Ge 3.59 MW Series

S.51.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.81: Summary of simulation data - 100 nm Al/Ge 3.59 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 3.59 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
10.09 3.60± 0.070 1.12± 0.0031 64.07 3.59± 0.011 0.17± 0.0005
14.95 3.63± 0.047 0.76± 0.0021 70.00 3.60± 0.010 0.16± 0.0004
20.26 3.58± 0.034 0.55± 0.0015 73.79 3.60± 0.009 0.15± 0.0004
24.78 3.59± 0.029 0.47± 0.0013 80.57 3.61± 0.008 0.14± 0.0004
29.06 3.60± 0.024 0.38± 0.0011 84.24 3.59± 0.008 0.14± 0.0004
35.56 3.60± 0.020 0.31± 0.0009 89.22 3.60± 0.008 0.13± 0.0004
39.63 3.61± 0.018 0.28± 0.0008 93.45 3.60± 0.007 0.12± 0.0003
44.49 3.60± 0.016 0.26± 0.0007 97.48 3.59± 0.007 0.11± 0.0003
50.36 3.59± 0.014 0.23± 0.0006 102.21 3.59± 0.007 0.11± 0.0003
53.99 3.60± 0.013 0.21± 0.0006 108.06 3.60± 0.006 0.10± 0.0003
58.87 3.61± 0.012 0.20± 0.0005

Figure S.142: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 3.59 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

476



Supplement S. Modeling and Fitting of Data S.52

S.52 Simulation Summary - Al/Ge 7.74 MW Series

S.52.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.82: Summary of simulation data - 100 nm Al/Ge 7.74 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 7.74 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
9.38 7.73± 0.081 1.30± 0.0036 59.88 7.74± 0.013 0.21± 0.0006
14.01 7.71± 0.053 0.86± 0.0024 64.07 7.76± 0.012 0.19± 0.0005
18.57 7.73± 0.040 0.65± 0.0018 69.49 7.74± 0.011 0.17± 0.0005
23.28 7.76± 0.033 0.53± 0.0015 75.15 7.75± 0.010 0.16± 0.0004
27.69 7.75± 0.027 0.44± 0.0012 78.14 7.75± 0.010 0.15± 0.0004
33.38 7.75± 0.022 0.35± 0.0010 82.40 7.75± 0.009 0.15± 0.0004
37.02 7.77± 0.020 0.33± 0.0009 86.77 7.75± 0.008 0.13± 0.0004
43.65 7.75± 0.016 0.26± 0.0007 96.91 7.75± 0.007 0.12± 0.0003
46.50 7.76± 0.016 0.25± 0.0007 97.74 7.75± 0.008 0.13± 0.0003
50.52 7.76± 0.015 0.24± 0.0007 99.00 7.76± 0.008 0.12± 0.0003
55.15 7.76± 0.013 0.22± 0.0006

Figure S.143: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 7.74 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.53

S.53 Simulation Summary - Al/Ge 16.70 MW Series

S.53.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.83: Summary of simulation data - 100 nm Al/Ge 16.70 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 16.70 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
8.06 16.79± 0.106 1.71± 0.0048 51.85 16.71± 0.016 0.26± 0.0007
12.29 16.72± 0.069 1.11± 0.0031 56.04 16.71± 0.015 0.23± 0.0007
16.44 16.79± 0.052 0.85± 0.0024 61.53 16.71± 0.014 0.22± 0.0006
20.32 16.69± 0.042 0.68± 0.0019 63.80 16.71± 0.013 0.21± 0.0006
24.59 16.69± 0.037 0.60± 0.0017 68.81 16.70± 0.012 0.20± 0.0005
28.04 16.73± 0.031 0.50± 0.0014 71.28 16.71± 0.012 0.20± 0.0005
32.19 16.72± 0.026 0.42± 0.0012 75.45 16.70± 0.011 0.18± 0.0005
36.36 16.70± 0.024 0.38± 0.0011 81.93 16.70± 0.010 0.17± 0.0005
40.15 16.71± 0.022 0.35± 0.0010 85.90 16.71± 0.010 0.16± 0.0004
43.84 16.69± 0.019 0.31± 0.0009 87.02 16.72± 0.010 0.16± 0.0004
48.94 16.71± 0.017 0.28± 0.0008

Figure S.144: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 16.70 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.53

S.53.2 Fitting Substrate Thermal Conductivity - kS

Table S.84: Summary of simulation data - 100 nm Al/Ge 16.70 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 16.70 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
8.06 89.69± 7.605 109.58± 0.3819 51.85 63.83± 1.032 16.57± 0.0465
12.29 86.94± 6.188 90.33± 0.3067 56.04 64.05± 0.953 15.33± 0.0429
16.44 84.23± 4.622 67.88± 0.2277 61.53 63.81± 0.880 14.17± 0.0395
20.32 72.92± 2.989 47.07± 0.1373 63.80 63.22± 0.836 13.46± 0.0375
24.59 70.73± 2.608 41.22± 0.1194 68.81 62.19± 0.751 12.08± 0.0338
28.04 71.02± 2.228 35.49± 0.1012 71.28 63.26± 0.775 12.50± 0.0348
32.19 69.01± 1.828 29.26± 0.0826 75.45 62.35± 0.699 11.25± 0.0314
36.36 66.44± 1.620 25.94± 0.0732 81.93 62.29± 0.634 10.20± 0.0285
40.15 66.47± 1.474 23.65± 0.0664 85.90 62.59± 0.619 9.97± 0.0278
43.84 64.04± 1.263 20.28± 0.0569 87.02 62.91± 0.627 10.08± 0.0282
48.94 64.45± 1.117 17.94± 0.0503

Figure S.145: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 16.70 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.54

S.54 Simulation Summary - Al/Ge 46.40 MW Series

S.54.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.85: Summary of simulation data - 100 nm Al/Ge 46.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 46.40 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
5.74 46.56± 0.243 3.91± 0.0109 36.72 46.42± 0.038 0.61± 0.0017
8.60 46.44± 0.158 2.55± 0.0071 38.99 46.42± 0.036 0.59± 0.0016
11.39 46.43± 0.119 1.92± 0.0054 41.15 46.39± 0.033 0.53± 0.0015
14.20 46.44± 0.093 1.50± 0.0042 44.91 46.41± 0.030 0.48± 0.0013
17.09 46.44± 0.080 1.29± 0.0036 47.60 46.40± 0.029 0.47± 0.0013
20.24 46.40± 0.066 1.06± 0.0030 50.61 46.41± 0.027 0.44± 0.0012
22.82 46.44± 0.061 0.98± 0.0027 53.44 46.41± 0.025 0.41± 0.0011
25.61 46.43± 0.055 0.89± 0.0025 56.53 46.40± 0.024 0.38± 0.0011
28.29 46.39± 0.048 0.77± 0.0022 58.49 46.40± 0.024 0.38± 0.0011
31.51 46.40± 0.044 0.72± 0.0020 60.90 46.41± 0.022 0.35± 0.0010
33.91 46.40± 0.040 0.64± 0.0018

Figure S.146: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 46.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.54

S.54.2 Fitting Substrate Thermal Conductivity - kS

Table S.86: Summary of simulation data - 100 nm Al/Ge 46.40 MW Series. Error bounds represent a 95%
confidence level.

100 nm Al on Ge, hBD = 46.40 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
5.74 66.01± 1.780 28.60± 0.0801 36.72 59.98± 0.232 3.74± 0.0104
8.60 61.89± 1.010 16.21± 0.0455 38.99 59.99± 0.227 3.65± 0.0102
11.39 61.14± 0.769 12.38± 0.0346 41.15 59.85± 0.205 3.31± 0.0092
14.20 60.75± 0.597 9.62± 0.0268 44.91 59.87± 0.181 2.92± 0.0081
17.09 60.57± 0.506 8.15± 0.0227 47.60 59.81± 0.180 2.90± 0.0081
20.24 60.14± 0.414 6.67± 0.0186 50.61 59.91± 0.171 2.75± 0.0077
22.82 60.35± 0.376 6.05± 0.0169 53.44 59.88± 0.156 2.52± 0.0070
25.61 60.29± 0.345 5.56± 0.0155 56.53 59.86± 0.147 2.38± 0.0066
28.29 59.95± 0.298 4.80± 0.0134 58.49 59.83± 0.147 2.37± 0.0066
31.51 59.90± 0.276 4.45± 0.0124 60.90 59.90± 0.136 2.19± 0.0061
33.91 59.92± 0.245 3.95± 0.0110

Figure S.147: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 46.40 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.55

S.55 Simulation Summary - Al/Ge 100.00 MW Series

S.55.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.87: Summary of simulation data - 100 nm Al/Ge 100.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 100.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
3.97 101.54± 0.809 13.01± 0.0364 24.78 100.04± 0.128 2.06± 0.0057
6.03 100.78± 0.526 8.47± 0.0236 26.84 100.07± 0.121 1.95± 0.0054
7.87 100.33± 0.408 6.58± 0.0183 29.48 100.09± 0.107 1.73± 0.0048
10.08 100.12± 0.323 5.20± 0.0145 31.20 100.01± 0.101 1.63± 0.0045
11.82 100.11± 0.266 4.29± 0.0120 32.84 100.01± 0.095 1.53± 0.0043
13.61 100.29± 0.238 3.83± 0.0107 34.73 100.05± 0.093 1.51± 0.0042
15.72 100.23± 0.210 3.38± 0.0094 36.27 100.09± 0.091 1.46± 0.0041
17.72 100.16± 0.183 2.94± 0.0082 38.78 100.05± 0.085 1.36± 0.0038
19.79 100.12± 0.162 2.61± 0.0073 40.32 100.06± 0.080 1.29± 0.0036
21.63 99.93± 0.150 2.42± 0.0067 42.69 100.02± 0.073 1.17± 0.0033
23.51 100.03± 0.139 2.24± 0.0062

Figure S.148: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 100.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.55

S.55.2 Fitting Substrate Thermal Conductivity - kS

Table S.88: Summary of simulation data - 100 nm Al/Ge 100.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 100.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
3.97 61.98± 0.850 13.68± 0.0382 24.78 59.90± 0.130 2.10± 0.0058
6.03 60.81± 0.531 8.55± 0.0239 26.84 59.96± 0.122 1.96± 0.0055
7.87 60.26± 0.408 6.58± 0.0183 29.48 60.00± 0.108 1.74± 0.0048
10.08 60.08± 0.333 5.37± 0.0149 31.20 59.91± 0.102 1.64± 0.0046
11.82 60.09± 0.273 4.39± 0.0122 32.84 59.94± 0.095 1.53± 0.0043
13.61 60.23± 0.244 3.94± 0.0110 34.73 59.93± 0.093 1.50± 0.0042
15.72 60.12± 0.209 3.38± 0.0094 36.27 60.00± 0.093 1.49± 0.0042
17.72 60.14± 0.187 3.01± 0.0084 38.78 59.95± 0.085 1.37± 0.0038
19.79 60.02± 0.163 2.62± 0.0073 40.32 59.97± 0.082 1.32± 0.0037
21.63 59.84± 0.154 2.48± 0.0069 42.69 59.92± 0.074 1.19± 0.0033
23.51 59.96± 0.136 2.19± 0.0061

Figure S.149: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 100.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.56

S.56 Simulation Summary - Al/Ge 129.00 MW Series

S.56.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.89: Summary of simulation data - 100 nm Al/Ge 129.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 129.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
3.47 131.51± 1.534 24.18± 0.0704 22.53 129.03± 0.213 3.39± 0.0097
5.17 130.33± 0.963 15.31± 0.0438 24.10 129.28± 0.207 3.30± 0.0094
6.90 130.33± 0.750 11.93± 0.0341 25.64 129.01± 0.194 3.08± 0.0088
8.62 129.20± 0.597 9.50± 0.0272 27.39 129.06± 0.179 2.85± 0.0081
10.34 129.55± 0.470 7.47± 0.0214 29.07 129.03± 0.173 2.75± 0.0079
12.04 129.06± 0.416 6.62± 0.0189 31.24 129.06± 0.163 2.59± 0.0074
13.81 129.56± 0.361 5.75± 0.0164 32.53 129.13± 0.148 2.36± 0.0067
15.52 128.73± 0.311 4.95± 0.0141 34.49 129.20± 0.146 2.32± 0.0066
17.22 129.13± 0.295 4.69± 0.0134 35.31 129.12± 0.144 2.29± 0.0066
18.97 129.18± 0.266 4.22± 0.0121 37.28 129.04± 0.133 2.12± 0.0061
20.66 129.14± 0.237 3.77± 0.0108

Figure S.150: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 129.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.57

S.57 Simulation Summary - Al/Ge 167.00 MW Series

S.57.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.90: Summary of simulation data - 100 nm Al/Ge 167.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 167.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
3.25 171.47± 2.535 39.09± 0.1189 20.65 167.36± 0.388 6.17± 0.0176
4.84 169.51± 1.611 25.52± 0.0736 22.18 167.08± 0.341 5.43± 0.0155
6.47 169.67± 1.246 19.78± 0.0568 24.03 166.99± 0.331 5.26± 0.0150
8.12 167.89± 0.961 15.28± 0.0437 25.98 167.13± 0.303 4.82± 0.0138
9.56 167.96± 0.844 13.42± 0.0384 27.74 167.01± 0.283 4.50± 0.0129
11.25 167.58± 0.702 11.16± 0.0319 28.16 166.71± 0.274 4.35± 0.0124
12.85 167.26± 0.582 9.27± 0.0265 30.11 166.92± 0.248 3.95± 0.0113
14.49 167.22± 0.523 8.31± 0.0238 31.44 167.11± 0.241 3.84± 0.0109
16.01 167.87± 0.487 7.75± 0.0221 33.41 166.94± 0.228 3.63± 0.0104
17.77 167.31± 0.443 7.05± 0.0201 34.81 167.01± 0.223 3.55± 0.0101
19.29 167.06± 0.397 6.31± 0.0181

Figure S.151: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 167.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.58

S.58 Simulation Summary - Al/Ge 215.00 MW Series

S.58.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.91: Summary of simulation data - 100 nm Al/Ge 215.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 215.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
3.07 244.93± 6.285 97.41± 0.2934 19.74 215.45± 0.603 9.68± 0.0272
4.57 222.42± 3.095 48.76± 0.1421 21.12 215.38± 0.582 9.34± 0.0262
6.16 218.37± 2.134 34.04± 0.0967 22.59 215.46± 0.536 8.60± 0.0241
7.50 218.45± 1.754 28.06± 0.0793 23.68 214.87± 0.500 8.03± 0.0225
9.17 216.03± 1.326 21.23± 0.0599 25.70 214.88± 0.464 7.48± 0.0208
10.55 217.15± 1.170 18.83± 0.0526 27.00 215.04± 0.457 7.34± 0.0206
11.92 214.90± 1.020 16.37± 0.0460 28.34 215.08± 0.418 6.73± 0.0188
13.33 215.67± 0.920 14.75± 0.0415 30.31 215.44± 0.394 6.33± 0.0178
15.16 215.36± 0.823 13.26± 0.0369 31.89 215.26± 0.378 6.06± 0.0170
16.63 216.07± 0.717 11.51± 0.0323 33.41 215.20± 0.368 5.90± 0.0166
17.85 215.60± 0.678 10.93± 0.0304

Figure S.152: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 215.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.58

S.58.2 Fitting Substrate Thermal Conductivity - kS

Table S.92: Summary of simulation data - 100 nm Al/Ge 215.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 215.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
3.07 60.98± 0.695 11.19± 0.0312 19.74 59.86± 0.106 1.71± 0.0048
4.57 60.33± 0.488 7.87± 0.0219 21.12 59.85± 0.097 1.56± 0.0043
6.16 60.14± 0.341 5.49± 0.0153 22.59 59.95± 0.094 1.51± 0.0042
7.50 60.15± 0.282 4.54± 0.0127 23.68 59.87± 0.089 1.44± 0.0040
9.17 60.08± 0.239 3.85± 0.0107 25.70 59.85± 0.080 1.29± 0.0036
10.55 60.10± 0.205 3.30± 0.0092 27.00 59.85± 0.075 1.21± 0.0034
11.92 59.99± 0.186 3.00± 0.0084 28.34 59.93± 0.076 1.23± 0.0034
13.33 59.95± 0.162 2.61± 0.0073 30.31 59.90± 0.070 1.13± 0.0031
15.16 59.90± 0.146 2.35± 0.0065 31.89 59.87± 0.067 1.07± 0.0030
16.63 59.99± 0.130 2.09± 0.0058 33.41 59.95± 0.064 1.03± 0.0029
17.85 59.93± 0.119 1.92± 0.0053

Figure S.153: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 215.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.59

S.59 Simulation Summary - Al/Ge 359.00 MW Series

S.59.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.93: Summary of simulation data - 100 nm Al/Ge 359.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 359.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.82 418.09± 13.350 211.44± 0.6097 18.14 362.18± 1.708 27.52± 0.0767
4.22 393.74± 8.780 140.84± 0.3958 19.58 360.51± 1.576 25.39± 0.0707
5.61 381.01± 6.338 101.89± 0.2852 20.55 359.26± 1.476 23.78± 0.0662
6.94 372.29± 4.851 78.02± 0.2181 21.98 360.42± 1.383 22.28± 0.0620
8.35 366.61± 3.876 62.28± 0.1745 23.69 360.37± 1.331 21.45± 0.0597
9.81 365.62± 3.291 52.93± 0.1480 25.11 359.23± 1.294 20.86± 0.0581
11.24 363.64± 2.843 45.77± 0.1277 26.42 360.29± 1.224 19.73± 0.0549
12.55 361.24± 2.461 39.64± 0.1105 27.25 358.41± 1.166 18.78± 0.0524
13.99 362.27± 2.307 37.15± 0.1036 29.40 359.33± 1.028 16.57± 0.0461
15.36 361.23± 2.116 34.08± 0.0950 30.66 359.64± 1.047 16.88± 0.0470
16.83 361.86± 1.893 30.50± 0.0849

Figure S.154: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 359.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.60

S.60 Simulation Summary - Al/Ge 464.00 MW Series

S.60.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.94: Summary of simulation data - 100 nm Al/Ge 464.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 464.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.78 540.87± 20.595 326.18± 0.9405 17.93 466.51± 2.426 39.10± 0.1089
4.18 499.44± 11.695 186.37± 0.5308 19.51 466.45± 2.279 36.71± 0.1023
5.57 479.78± 8.145 130.34± 0.3682 20.55 465.18± 2.225 35.86± 0.0999
6.87 484.64± 6.966 112.09± 0.3131 21.75 466.37± 2.057 33.13± 0.0924
8.30 474.15± 5.559 89.54± 0.2496 23.33 464.94± 1.853 29.86± 0.0831
9.78 470.87± 4.646 74.86± 0.2085 24.70 465.28± 1.735 27.94± 0.0779
11.06 470.44± 4.199 67.63± 0.1885 25.60 463.78± 1.804 29.07± 0.0810
12.37 471.66± 3.609 58.15± 0.1619 27.28 464.31± 1.668 26.88± 0.0749
13.97 466.80± 3.193 51.40± 0.1434 28.59 463.90± 1.565 25.20± 0.0703
15.09 467.10± 3.002 48.36± 0.1348 29.69 463.60± 1.477 23.80± 0.0663
16.99 467.55± 2.645 42.62± 0.1187

Figure S.155: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 464.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.

489



Supplement S. Modeling and Fitting of Data S.60

S.60.2 Fitting Substrate Thermal Conductivity - kS

Table S.95: Summary of simulation data - 100 nm Al/Ge 464.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 464.00 MW/m2K

SNP µ - [W/mK] σ - [W/mK] SNP µ - [W/mK] σ - [W/mK]
2.78 61.12± 0.762 12.27± 0.0342 17.93 59.92± 0.115 1.85± 0.0052
4.18 60.11± 0.513 8.26± 0.0230 19.51 59.88± 0.108 1.74± 0.0048
5.57 60.04± 0.353 5.68± 0.0158 20.55 59.91± 0.101 1.62± 0.0045
6.87 59.95± 0.306 4.94± 0.0138 21.75 59.89± 0.097 1.56± 0.0044
8.30 59.88± 0.245 3.94± 0.0110 23.33 59.92± 0.087 1.41± 0.0039
9.78 60.06± 0.207 3.34± 0.0093 24.70 59.88± 0.083 1.35± 0.0037
11.06 59.87± 0.192 3.10± 0.0086 25.60 59.93± 0.084 1.35± 0.0038
12.37 59.81± 0.164 2.65± 0.0074 27.28 59.91± 0.076 1.23± 0.0034
13.97 60.02± 0.152 2.46± 0.0068 28.59 59.94± 0.073 1.18± 0.0033
15.09 59.95± 0.136 2.19± 0.0061 29.69 59.92± 0.068 1.09± 0.0031
16.99 59.91± 0.120 1.93± 0.0054

Figure S.156: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 464.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.61

S.61 Simulation Summary - Al/Ge 599.00 MW Series

S.61.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.96: Summary of simulation data - 100 nm Al/Ge 599.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 599.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.73 816.81± 46.759 750.11± 2.1081 17.49 600.22± 3.373 54.36± 0.1514
4.05 652.28± 18.325 294.56± 0.8245 18.91 599.03± 3.063 49.34± 0.1375
5.46 621.83± 11.579 186.13± 0.5210 20.25 602.97± 3.134 50.51± 0.1407
6.80 617.73± 9.281 149.26± 0.4173 21.66 600.05± 2.696 43.42± 0.1210
8.16 610.58± 7.608 122.30± 0.3423 22.94 598.77± 2.629 42.37± 0.1180
9.55 606.24± 6.342 102.05± 0.2851 24.58 598.23± 2.437 39.27± 0.1094
10.95 610.83± 5.514 88.72± 0.2478 25.63 600.23± 2.386 38.45± 0.1071
12.25 604.28± 4.876 78.54± 0.2190 27.02 601.24± 2.288 36.87± 0.1027
13.46 602.01± 4.496 72.45± 0.2018 28.76 598.37± 2.141 34.50± 0.0961
14.91 600.80± 4.143 66.77± 0.1859 29.21 600.46± 2.032 32.74± 0.0912
16.45 603.75± 3.752 60.46± 0.1684

Figure S.157: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 599.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.62

S.62 Simulation Summary - Al/Ge 774.00 MW Series

S.62.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.97: Summary of simulation data - 100 nm Al/Ge 774.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 774.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.68 874.29± 36.889 575.69± 1.7098 17.34 777.28± 5.001 79.61± 0.2272
4.02 865.98± 26.465 413.89± 1.2240 18.71 778.08± 4.739 76.36± 0.2127
5.39 823.35± 18.821 297.47± 0.8613 20.15 772.01± 4.312 68.65± 0.1959
6.68 808.62± 13.369 215.01± 0.6012 21.35 778.46± 4.128 65.71± 0.1875
8.10 801.85± 11.343 180.11± 0.5166 22.60 777.41± 3.803 60.55± 0.1728
9.39 780.73± 8.885 141.01± 0.4049 23.95 777.64± 3.624 57.69± 0.1646
10.67 786.46± 8.330 132.40± 0.3790 25.45 778.15± 3.229 52.01± 0.1450
11.96 783.16± 7.290 117.48± 0.3272 26.57 775.43± 3.187 50.73± 0.1448
13.37 787.02± 6.407 103.14± 0.2878 28.11 777.15± 3.057 49.26± 0.1372
14.67 780.03± 5.946 94.51± 0.2705 29.45 774.31± 2.928 46.61± 0.1330
15.98 781.86± 5.352 85.16± 0.2433

Figure S.158: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 774.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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Supplement S. Modeling and Fitting of Data S.63

S.63 Simulation Summary - Al/Ge 1000.00 MW Series

S.63.1 Fitting Film-to-Substrate Boundary Conductance - hBD

Table S.98: Summary of simulation data - 100 nm Al/Ge 1000.00 MW Series. Error bounds represent a
95% confidence level.

100 nm Al on Ge, hBD = 1000.00 MW/m2K

SNP µ - [MW/m2K] σ - [MW/m2K] SNP µ - [MW/m2K] σ - [MW/m2K]
2.82 1153.97± 50.812 782.73± 2.3860 18.09 1007.78± 7.021 110.91± 0.3215
4.19 1165.48± 40.046 624.63± 1.8571 19.45 1007.22± 6.602 104.23± 0.3024
5.60 1092.56± 25.575 401.04± 1.1797 20.62 1014.44± 6.223 98.41± 0.2846
7.08 1066.94± 20.163 316.84± 0.9281 22.32 1008.18± 5.461 86.35± 0.2498
8.17 1053.05± 16.809 270.05± 0.7566 23.50 1010.34± 5.449 86.11± 0.2493
9.75 1021.06± 12.821 205.99± 0.5772 23.91 1006.75± 5.092 80.48± 0.2330
10.95 1017.51± 11.565 182.31± 0.5307 26.01 1006.87± 4.962 78.46± 0.2270
12.38 1014.42± 10.415 164.61± 0.4766 27.28 1004.98± 4.766 75.36± 0.2180
13.96 1013.47± 9.362 147.88± 0.4286 28.97 1001.68± 4.311 68.21± 0.1971
15.41 1007.73± 8.527 134.62± 0.3906 29.89 1000.62± 4.194 66.25± 0.1920
16.65 1007.76± 7.583 119.79± 0.3472

Figure S.159: Relative population standard deviation as a function of signal-to-noise parameter for 100
nm of Al/Ge with hBD = 1000.00 MW/m2K. Error bars represent a 95% confidence interval of the measured
SDR and the solid line represents a best fit of a power law to the data, of the form SDR = a× SNPb, with
parameter a provided for a fixed b = −1, along with the 95% confidence level in a.
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