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Abstract 

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that causes significant morbidity and 

mortality, especially in women of child-bearing age. Only one new drug has been approved by the FDA in 60 years for treatment 

of SLE. The heterogeneity of the disease induces varied symptoms and laboratory abnormalities that occur in different combinations 

and points in time. To investigate these phenotypic variations, we performed a genome wide mRNA expression comparison 

between nine human whole blood datasets and three lupus mice splenic datasets. We aim to clarify what aspects of the major 

preclinical lupus mice used by Pharma for drug studies are relevant to signaling pathways abnormal in human lupus patients that 

Pharma has developed drugs to treat. Differential expression analysis identified the differentially expressed (DE) genes shared 

between seven human datasets and three mice strains, BXSB.yaa, NZB/W and MRL/lpr. Through cell type and functional 

enrichment of the DE genes shared between species, the three strains, BXSB.yaa, NZB/W and MRL/lpr were found to uniquely 

model the interferon signature, germinal center B cell signature and autophagy, respectively. To characterize the mechanisms of 

human disease modeled by each strain in greater detail, mouse and human weighted gene co-expression network analysis 

(WGCNA) modules of genes preserved between species were identified. Cell type and functional enrichment of preserved modules 

identified that the BXSB.yaa, NZB/W and MRL/lpr mice uniquely modeled cell cycle, the innate immune response and 

transcription regulation in human disease, respectively. To deconstruct manifestation heterogeneity, a variational autoencoder 

(VAE) with Gaussian priors was employed in an unsupervised approach to cluster human lupus patients based on clinical 

characteristics. The VAE clusters identified as the least and most active disease states were used as labels for supervised 

classification. The supervised models input Log2 gene expression values perturbed with Gaussian noise. The results suggest 

WGCNA serves as a more robust approach than differential expression for understanding interspecies relationships on the 

transcriptomic level. Further, WGCNA and module preservation revealed the specific gene modules in mice that regulate immune 

pathways and model human disease. The results also suggest that unsupervised clustering serves as a novel tool to deconstruct 

patient heterogeneity by means of clinical expression and that ensemble methods prove most useful to link genetic expression to 

clinical traits after clusters had been established. 

 

 

Keywords: Systemic Lupus Erythematosus, Differential Expression, Weighted Gene Co-expression Network Analysis, Gaussian 

Mixture Variational Autoencoder, Ridge, Random Forest, Gradient Boosted, K-Nearest Neighbors

Introduction 

    SLE is an autoimmune disease inducing a variety of symptoms 

including severe fatigue, joint pain, rash and anemia (Schur & Hahn, 

2019). The reported prevalence of SLE in the United States is 20 to 150 

cases per 100,000, climbing to 406 per 100,000 in African American 

women (Chakravarty et al., 2007). The heterogeneity of the disease 

induces varied symptoms and laboratory abnormalities that occur in 

different combinations and points in time for each patient (Fritzler et al., 

2018). The complexity of the disease has challenged immunologists for 

years, leading to only one new drug to be FDA approved for SLE 

treatment in 60 years. Clarifying the aspects of the major preclinical lupus 

mice used by Pharma for drug studies that are relevant to signaling 

pathways abnormal in human lupus patients would help clinicians in 

designing preclinical drug trials. No literature currently exists comparing 

the gene expression of the three main models to be investigated, 

BXSB.yaa, NZB/W and, MRL/lpr which engender lupus in three distinct 

manners. All of these mice model limited aspects of lupus, including the 

mechanism bearing disease progression.  

    The current state of literature reports the immunological characteristics 

of each mouse model, but there is a strong overlap in biomarkers and 

symptom manifestation between mice. All three murine models exhibit 

glomerulus nephritis, splenomegaly, increased antinuclear antibody 

expression, increased anti-dsDNA antibody expression and weakened 

IFN signature (Andrews et al., 1978; Deane et al., 2007; Du, Sanam, 

Kate, & Mohan, 2015). All three mice imitate immune dysregulation and 

kidney disease in humans (Gómez-Guzmán et al., 2014; Santiago-Raber 

et al., 2008). There are apparent differences as well, such as MRL/lpr 

mice model arthritis and neurological manifestations better than its 

counterparts, NZB/W and BXSB.yaa, which excel in modelling the 

endothelial effects of SLE and acute kidney disease, respectively 

(Santiago-Raber et al., 2008; Virdis et al., 2015). However, the strong 

overlap in immunological characteristics call for a more robust 
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understanding of differences in disease manifestation due to genomic 

variation between species. 

    Some genetic associations have been made between the models and 

humans. BXSB.yaa strains double the expression of TLR7 (Santiago-

Raber et al., 2008). This gene is crucial for the pathogenesis of the disease 

in both this strain and human patients as it correlates with IFNα 

expression (Celhar, Magalhães, & Fairhurst, 2012; Deane et al., 2007). 

NZB/W mice have the Sle1 and Nba2 loci, which are known to have a 

syntenic parallel region in humans on chromosome 1, 1q21-44 (Morel et 

al., 1997). These regions are known to be associated with lupus in both 

species, specifically to autoantibody production (Shai et al., 1999; Tsao 

et al., 1997). MRL/lpr mice and lupus patients are both associated with 

Fas and Fas ligand polymorphisms, which increase susceptibility to lupus 

(Lee, Choi, Ji, & Song, 2016; Moudi, Salimi, Mashhadi, Sandoughi, & 

Zakeri, 2013). As this review nearly exhausts the known genetic 

associations, and considering the heterogeneity of SLE, there remains 

much to uncover between these models and humans. 

The field of computational pharmacology currently does not present a 

model to highlight the similarities between lupus mice and SLE humans. 

Further, the field does not indicate ideal treatment for cohorts of lupus 

patients based on gene expression analysis. However, bioinformaticians 

are aiming to improve personalized medicine by predicting activity state 

based on gene expression. In 2018, Kegerreis et al. employed generalized 

linear models and RF classifiers on microarray data to predict active 

states of lupus with a peak of 81% accuracy (Kegerreis et al., 2019). This 

research aims to continue the computationally driven research aspects of 

personalized medicine in lupus through gene expression analysis. 

Through a bioinformatics driven approach, we perform genome wide 

mRNA expression comparison between nine human whole blood datasets 

and three lupus mice splenic datasets. Whole blood samples are the best 

proxy for the splenic samples taken in mice we have access to as both 

serve to model the innate and adaptive immune response in the disease 

state (Nikpour et al., 2007). We utilized differential expression 

techniques to identify the DE genes between healthy humans and SLE 

patients and mice with and without treatment. By employing an 

orthogonal analysis to differential expression, we identify gene modules 

for each data set, grouped by similarity in a scale-free network. We 

compare the enrichment of genomic signatures of the DE genes shared 

and the modules preserved between species. We also deconstruct human 

lupus patient heterogeneity by employing unsupervised clustering and 

validate the clusters with supervised classification. 

 

Materials and Methods 

Selection, QC, and normalization of raw data files 

     Raw data files for human whole blood samples from SLE patients and 

healthy controls (HC) were obtained from the publicly accessible Gene 

Expression Omnibus (GEO) repository. Data from splenic lupus mice 

were accessed from Roopenian, Reilly and Scholmchik. Accession 

numbers and descriptions for all datasets used are summarized in S1 

Table. 

    Processing of raw datafiles from microarray samples was conducted 

with Bioconductor packages GEOquery, affy, affycoretools, and 

simpleaffy in R. Dataset were assessed for quality control through visual 

artifacts or poor RNA hybridization using Affymetrix QC plots, and were 

normalized by RMA, GCRMA or NEQC where appropriate. Log2 

intensity values were procured from the normalized expression data and 

formatted as expression set objects (E-sets). Principal component 

analysis (PCA) plots were generated for all cell types in each experiment 

to inspect for batch effects and remove outliers.  

     The raw data was annotated to the matching Affymetrix product using 

chip definition files (CDF) and any unidentified genes by Affymetrix 

CDFs were annotated using the custom definitions from the BrainArray 

CDF. Alternatively, the raw data was genotyped on the matching 

Illumina Immunochip. Unnormalized raw data counts collected from 

RNA-Seq were trimmed for both adaptor sequences and quality. These 

reads were then aligned to the genome (Ensembl.org) using 

Bowtie2/Tophat2 and counted via HTSeq.  

    The chips and genome browsers used for the microarray and RNAseq 

are summarized in S1 Table. At this point, differential expression 

analysis and Weighted Gene Co-expression Network Analysis were 

carried out on data sets.  

Differential gene expression analysis  

    The E-sets were passed through a filter, removing genes or probes that 

had low intensity or were unannotated. For datasets collected by 

microarray, the remaining expression values were corrected for variance 

using local empirical Bayesian shrinkage using the ebayes function in the 

Bioconductor LIMMA package. RNASeq data was corrected using the 

lfcShrink function in the DESeq2 package. Benjamini-Hochberg false 

discovery rate correction was applied. DE genes within each study were 

filtered to retain DE genes with an FDR < 0.2, which were considered 

statistically significant. The FDR filter was applied to diminish the 

number of false negative results.  

Weighted gene co-expression network analysis (WGCNA) 

 

    Log2 normalized microarray or RNASeq expression values were used 

as inputs to WGCNA to conduct an unsupervised clustering analysis. 

This approach resulted in groups of densely interconnected genes we call 

co-expression modules. For each dataset, the network strength between 

probe or gene expression was calculated in a scale-free topology matrix 

(TOM). The probe or gene was clustered into WGCNA modules based 

on TOM distances. The resultant dendrograms were trimmed to isolate 

modular groups, cut on a detection height of 1 and merging height of 0.2. 

The modules were labeled using semi-random color assignments.  

 

Module Preservation  

 

Modules preserved between species were determined by passing three 

selection criteria. First, we characterized each module by its eigengene, 

or the module’s first principal components. If Pearson correlation by 

point-biserial correlation found the module eigengene (ME) to be 

significantly correlated (p <0.05) to the disease state, it was kept for 

further analysis. Second, we calculated the preservation score given each 

mouse module to every human module. Modules are preserved if the 

preservation score, as quantified by an average of co-expression density 

within modules and connectivity between modules, is over 2. Third, the 

modules must be correlated to the disease state in the same direction. 

Cell type and functional gene characterization  

The CellScan and Biologically Informed Gene Clustering (BIG-C)  

(Grammer et al., 2016) tools characterize genes into cell types and 

functional groups, respectively. The tools are curated by utilizing 

publicly available information from online tools and databases including 

UniProtKB/Swiss-Prot, GO Terms, KEGG pathways, NCBI PubMed, 

and the Interactome. The functional enrichment of the DE genes was 

calculated through a Fischer’s exact test, referenced against the a priori 
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tools. Big-C V4.4, human CellScan V1.6 and mouse CellScan V1.0 were 

used.  

 

Variational Autoencoder (VAE) with Gaussian mixture prior 

distributions 

 

     VAEs are unsupervised models built learn meaningful latent spaces. 

The VAE is based on an autoencoding framework which can discover 

linear and nonlinear features through data compression paired with 

ReLU, Softplus and linear activation functions. Sixteen clinical 

characteristics from GSE88884 were input to the model and were 

represented as binary inputs representing yes or no. The traits included 

human ancestry, lupus manifestations and treatments of drugs. By 

adapting the generalized architecture of a variational autoencoder (Shu, 

2016), we were able to construct an identity function, or the simplest 

possible representation of the input data.  

    The standard autoencoder is composed of two sequential neural nets, 

an encoder and a decoder, and is trained by minimizing reconstruction 

error. However, the VAE learns the distribution of the explanatory 

features over samples, through both a mean and standard deviation vector 

encoding (Way & Greene, 2018). 

    The goal of an encoder is to create a low-dimensional representation 

of the input data that represents the prior probability distribution. This 

prior probability distribution is normally isotropic over the latent 

variables. However, as lupus patients are greatly heterogenous, we 

represent the prior distribution as a Gaussian mixture in our model.  The 

goal of a decoder is to reconstruct the original input data from the prior 

probability distribution in the simplest representation possible.  

    The network architecture is summarized in figure 4. The encoder 

consists of three hidden layers, the first two containing eight nodes each 

and the third containing four nodes. By inputting the clinical 

characteristics of for each patient individually, we were able to transform 

the data in the first two layers and use the third layer to summarize the 

mean and standard deviation of the transformed input data. The decoder 

is a reflection of the encoder without associated biases for each layer, as 

input data should model bias, while the simplest reconstruction of that 

data should not (Dilokthanakul et al., 2017). The network was 

constructed using Python’s TensorFlow (V 1.14) and trained under the 

AdamOptimizer to minimize cross entropy loss over 500 epochs. 

 

Supervised machine learning algorithm and validation  

   We employed four machine learning models from three distinct 

families of classifiers to validate the results of the VAE. The Ridge 

classifier, k-nearest neighbors classifier (KNN), random forest (RF) 

classifier, and a gradient boosted (GB) classifier were deployed. The 

Ridge, RF and GB, and KNN models were deployed using the sklearn 

.linear model, .ensemble, and .neighbors packages.  

 The purple and the crimson clusters were determined to be least and most 

active, respectively. This classification was decided through visual 

examination of proportionalities of traits with in clusters. The normalized 

Log2 gene expression from the 430 inactive and 466 active patients was 

used as inputs for the classifiers. The inputs were filtered to 126 genes, 

after removing all genes that did not correlate to the disease state 

(Correlation under 0.25).  The models were set to classify patients’ 

activity state under a random 10-fold cross-validation that was carried 

out by randomly assigning each patient to one of ten groups. One of the 

groups was used as the test set and the classifier was trained on the 

remaining data. 

   To validate the supervised models, gaussian perturbations were added 

to the genes. A Gaussian distribution was created for the variation each 

gene in each class. A noise value was selected from the gene’s variation 

distribution and assigned to be added or subtracted from the original 

value. The same models were rerun with the new noisy input. The 

receiver operating characteristic (ROC) curves were generated using the 

sklearn.metrics package. 

Results 

Differential expression of genes in lupus mice and lupus patients 

    To assess the genes dysregulated in the disease state, we analyzed gene 

expression profiles of splenic tissue from lupus mice with and without 

treatment and compared the results to gene expression profiles of whole 

blood samples from lupus patients and healthy controls (HC). 

    Before comparing interspecies gene profiles, we examined the DE 

genes shared between human whole blood data. For seven of the human 

datasets (GSE22908, GSE29536, GSE39088, GSE45921, GSE49545, 

GSE61635 and GSE88884), only 54 statistically significant (FDR < 0.2) 

DE genes were shared between species (Fig. 1.). The lack of overlapping 

genes is likely attributed the vast heterogeneity between lupus patients. 

The heterogeneity is validated by perimeter of figure 1 showing that the 

majority of DE genes are unique to each dataset.  The three mice datasets 

contained only 64 overlapping genes. This result was expected 

considering the different clinical manifestations of each strain (Andrews 

et al., 1978; Theofilopoulos & Dixon, 1985). 

  

Cell type and functional characterization of communal DE gene 

signatures between species 

 

    The significant enrichments (p < 0.05, OR > 1) of the interspecies cell 

type and functional changes represented by the divergent gene signatures 

in SLE patients and lupus mice are summarized in figure 2. The heatmap 

indicates the significant enrichment of the monocyte, myeloid, B and T 

cell types between each human dataset and the BXSB.yaa strain. This 

enrichment validates that the BXSB.yaa strain models both the innate and 

adaptive immune response of human lupus (Bubier et al., 2009; Herrada 

et al., 2019). The BXSB.yaa strain models interferon stimulation and 

pattern recognition receptor pathway, as all human datasets showed 

communal enrichment of these functions with this strain.  
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Figure 2. Cell type enrichment heatmap of shared DE genes: The 

enrichment heatmap shows cell type categories as columns. The rows are for 

the overlapping DE genes between each mouse and each human dataset. OR is 
odds ratio.  

    

 The DE genes of the NZB/W strain share enrichment of germinal center 

B and T Regulatory cell types, as well as the anti-proliferation and fatty 

acid biosynthesis pathways, with the DE genes of four human datasets. 

The cell type enrichment indicates this strain closely models results 

expected from spontaneous germinal center activity arising from many 

human autoimmune disorders (Domeier, Schell, & Rahman, 2017).  

    The overlapping DE genes between the MRL/lpr models and humans 

found autophagy and proteasome enrichment in seven human datasets. 

As perturbations in autophagy lead autoimmune disorders, including 

lupus, we can conclude that the MRL/lpr models dysregulation of the 

degradation of cytoplasmic constituents (Pierdominici et al., 2012).      

However, the MRL/lpr model failed to find significant enrichment of any 

cell types shared with the human datasets. This was not expected 

considering the BXSB.yaa and NZB/W strains shared the adaptive 

immune signatures with humans, and that we expected to see B cell 

should promote spontaneous T cell activation in the MRL/lpr model  

(Chan & Shlomchik, 1998). 

    Further, interspecies comparison showed no enrichments or de-

enrichment of plasma cells, which was unexpected considering other 

studies have measured increased differentiation of B lymphocytes into 

plasma in all strains and human lupus. (Hutloff et al., 2004; Iii et al., 

2004; Terzoglou, Routsias, Moutsopoulos, & Tzioufas, 2004; Yan, Deng, 

Wang, Sun, & Wei, 2015). These inconsistencies in results suggest that 

functional enrichment of differential expression analysis fails to 

characterize all mechanisms driving lupus. 

 

Enrichment of lupus mice gene signatures of disease-correlated 

WGCNA modules   

 

    The inconsistencies from the differential expression analysis were 

investigated by employing an orthogonal approach, WGCNA, for each 

mouse dataset. WGCNA generates gene co-expression modules 

connected in a scale-free network. The modules were prioritized to those 

significantly correlated to the disease state. WGCNA found four 

BXSB.yaa, eight NZB/W and thirteen MRL/lpr modules correlated to the 

disease state.  

    The majority of cell types excluding plasmacytoid dendritic cells and 

activated T cells were enriched in at least one module between all three 

mice. Further, the BXSB.yaa strain uniquely expressed a CD8 T cell 

signature. This results aligns with established research indicating IL-2 as 

a potent inducer of CD8+ T cells in BXSB.yaa mice (Bubier et al., 2009).  

Antigen presenting cells were uniquely enriched in the NZB/W strain. 

This strain showed a strong enrichment of low-density granulocytes  

(LDG). The LDG signature is of interest as a target for therapy of lupus 

humans and has not been identified to be enriched in any mouse model 

(LDG, 2019). The MRL/lpr mouse shows the significant enrichment of 

the monocyte cell type and the T regulatory cell type.  

   This analysis serves primarily as a proof of concept for cell type 

enrichment of the genes within selected module tested, giving the authors 

confidence in uncovering the enrichment of genes within modules 

preserved between species.    

 

Interspecies module preservation enrichment analysis 

 

    Functional and cell type enrichment analysis was performed on the 

genes within the preserved modules between each mouse model and 

human dataset. In figure 3, the genes within the magenta module of the 

BXSB.yaa strain and the human modules preserved to the magenta 

module are analyzed for functional enrichment. The interferon, pattern 

recognition receptor and pro apoptosis signatures in human lupus were 

modeled by the magenta module. This comparison was extended between 

the mouse modules correlated to the disease state and their respective 

human modules preserved. The results are summarized in table 1.  

OR 
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Figure 3. Functional enrichment heatmap of preserved modules: The 

enrichment overlaps of genes between the BXSB.yaa magenta module and its 

preserved human modules. Biological functions are columns. The rows are for 
the overlapping preserved genes between one mouse module and each human 

dataset. The arrows identify three signatures of interest, interferon, pattern 

recognition receptor and pro-apoptosis. The scale is odds ratio.  

 

Based on the significant enrichment of the anti-proliferation, pro-

apoptosis and reactive oxygen species protection pathways between a 

BXSB.yaa module and 8 of the human datasets, this mouse seems 

uniquely to model the dysregulation of cell cycle in human lupus. This 

result aligns with the current state of literature (Otani et al., 2020). The 

significant enrichment of the plasmacytoid dendritic cell over three 

human datasets indicates the BXSB.yaa strain uniquely models the 

overexpression of this interferon producing cells in human patients. This 

result aligns with literature mirroring the analysis regarding the Yaa locus 

and interferon alpha tuning germinal center B cell selection (Lesser et al., 

2020). The NZB/W strain was characterized to uniquely model the innate 

immune response as a myeloid signature was enriched over three human 

datasets. This novel result calls for experimental validation as it has not 

been published in literature. The MRL/lpr mouse highlighted functional 

enrichment of transcription factors, mRNA processing, mRNA splicing 

and chromatin remodeling in four human datasets, indicating that this  

strain appropriately model’s transcription regulation. This results calls 

for further investigation as to the specific cell types enriched, specifically 

splenocytes, B cells and T cells (Liu et al., 2006). Module preservation 

indicated that all three strains model inflammatory signaling, cell cycle 

dysregulation and activated adaptive immune response, as expected 

(Gómez-Guzmán et al., 2014; Santiago-Raber et al., 2008; Virdis et al., 

2015). The result summary highlighted the signatures we saw from the 

differential expression analysis, excluding the autophagy and proteasome 

enrichment the MRL/lpr mouse modeled. The inconsistencies in results 

can likely be explained by the modules constructed to include genes 

irrelevant to the disease state.    

 

 

Unsupervised clustering of lupus patients characterized by clinical 

traits 

 

    The model was asked to characterized five clusters from the 

GSE88884 dataset. Five clusters were chosen to represent a tied gaussian 

mixture model as that combination of mixture type and components 

minimized the Bayesian Information Criteria, a method structured to 

identify the true model amongst several candidates.  

    The model identified five distinct groups- purple (430 patients), blue 

(52 patients), green (125 patients), orange (130 patients) and crimson 

(466 patients). The proportions of the patients with a certain clinical 

manifestation with each cluster are summarized in table _. Notably, 

double stranded DNA antibodies, a key biomarker in lupus diagnostics, 

are identified in only 10% of the purple cluster, and in 96% of the crimson 

cluster (Wu et al., 2017). Further, increased complement c3, which 

promotes inflammation, was identified in only 7% of the purple cluster 

and 92% of the crimson cluster. We labeled lupus patients as either in the 

active group (crimson) or inactive (purple) group. Unsupervised 

clustering serves as a novel tool to deconstruct patient heterogeneity by 

means of clinical characteristics. 

 

 

Transcript expression validates unsupervised clusters in supervised 

machine learning approaches 

 

    To validate the clusters created by clinical traits, we employed 

supervised machine learning models to classify patients labeled to the 

active and inactive groups (crimson and purple) using their gene 

expression as inputs. Two ensemble methods, one non-parametric model 

and one linear regularization model were used. Model performance was 

assessed by area under curve (AUC), sensitivity, the proportion of true 

positives to all true positives and false negatives, and specificity, the 

proportion to true negatives over all true negatives and false positives. 

The results are averaged over 10-fold cross validations. The non-

parametric model (K-Nearest Neighbor) performed the worst of the four 

models, resulting in an AUC of 0.70, a sensitivity of 0.66 and specificity 

of 0.74. The ensemble methods (Gradient Boosted and Random Forest) 

were nearly identical as both classified the active and inactive groups 

with an AUC of 0.74, a sensitivity of 0.73 and a specificity of 0.75. 

Lastly, the Ridge model was the most successful classifier, returning and 

AUC of 0.80, a sensitivity of 0.78 and a specificity of 0.811. 

    However, when random gaussian perturbations were added to the gene 

expression data, and used to classify patients, we found that the Ridge 

model fails completely, and performs similarly to guessing. The 

ensemble methods maintain a similar performance, but sacrifice 

sensitivity for specificity. The Random Forest model performs best with 

an AUC of 0.77, a sensitivity of 0.84 and a specificity of 0.7, concluding 

the ensemble methods prove most useful to link genetic expression to 

clinical traits after clusters have been established. The results are 

summarized by the Receiver Operating Characteristic Curves in figure 5.  
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Figure 5. Receiver Operating Characteristic Curves of gene expression perturbed 

with Gaussian noise: The X axis is the false positive rate, the Y axis the true positive 

rate. Performance for Ridge, KNN, RF, and GB are summarized in blue, green, red, 

and yellow, respectively. The table summarizes the AUC, sensitivity and specificity of 

each model.  

Discussion 

    By using gene expression to find the signaling pathways and cell types 

of each preclinical lupus mouse model that are significantly enriched and 

preserved in humans, we aim to construct an enhanced view of the levels 

of immunological characteristic expression.  

    We can conclude that WGCNA serves as a more robust approach than 

DE for understanding interspecies relationships on the transcriptomic 

level. Further, WGCNA and module preservation revealed the specific 

gene modules in mice that regulate immune pathways and model human 

disease. We also learned that unsupervised clustering serves as a novel 

tool to deconstruct patient heterogeneity by means of clinical expression 

and that ensemble methods prove most useful to link genetic expression 

to clinical traits after clusters had been established. 

    Differentiating the strength of shared characteristics, such as immune 

dysregulation, will be useful in planning drug trials tailored to improving 

the condition of a particular clinical manifestation. Progressing the 

current understanding of genetic associations between mouse models and 

human lupus patients will lead to the reality of personalized medicine and 

eventually improve clinical practices. Considering the overlap in 

immunological characteristics, mouse models are usually selected for 

preclinical trials based on literature reviews and recommendations from 

peers. This project fundamentally shifts the approach in selecting mouse 

models by creating a streamlined guide to select a preclinical mouse for 

trials.  

    The novel methodology lies within the statistical filtering pipeline 

designed to reach said goal. Although the statistical tools to determine 

differential expression and modules are established in immunology, the 

scale of the application is novel. Comparing differential expression data 

between two tissue types between three strains of mice is original, and 

extending those modules to find similarities in signaling pathways 

between humans and mice is unprecedented. Further, by applying an 

orthogonal approach to ask how genes interact with each dataset provides 

a necessary validation and improvement of differential expression 

analysis. Gaussian mixture modelling with variational auto-encoders, a 

deep unsupervised clustering model, were developed recently and given 

their complex nature, have not reached applications in lupus. This deep 

model is advantageous over other unsupervised clustering algorithms due 

to its ability to reduce the importance of noisy data when structuring the 

observations (Dilokthanakul et al., 2017). The model is also 

advantageous over more user-dependent approaches, such as a literature-

based review of the module’s contents, as it may uncover patterns 

undiscernible under human scrutiny.  

    By applying the most effective models currently established as well as 

a few novel categorization models not yet tested in determining activity 

state, this project improved upon prediction of disease activity status in 

unrelated gene expression data sets by employing supervised model to 

link clinical traits and genetic expression. A complete literature review 

on the state of ML applications in SLE is summarized in Table huh, as to 

indicate to novelty of this approach.  

    Treatment will improve for patients in the future, given more drugs 

pass FDA standards. If drugs are approved by the FDA for lupus or trials 

show positive results for drugs repositioned into lupus from other 

conditions, mouse models may indicate which disease manifestations of 

lupus are ideally treated by a certain drug in people. As there is no current 

way to prescribe drugs on a patient by patient basis, our unsupervised 

clustering deconstructs heterogeneity in lupus patients. Although not 

tailored to the individual yet, this may be the next step in achieving 

personalized medicine in the field. This research could be used to allow 

clinicians to make decisions for patients on a genomic level. Those 

treatments can then be applied at the optimal time by administering the 

treatment before or at onset of SLE flairs. Therefore, the supervised 

model designed to distinguish active and inactive states of lupus could 

then be applied in real time to indicate flares and recommend action.  

 

End Matter 

All data sets used in these analyses may be downloaded from GEO using 

the accession numbers provided in the methods. 
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