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ABSTRACT

Political scientists, and social scientists more generally, rely on statistical modeling

to understand complex systems and behaviors. However, as interest grows in not only

how political actors change over time, but why they change, it is increasingly necessary

to explore the use of dynamic models of time. In this dissertation, I introduce, describe,

and implement an early version of a new estimation strategy of the Lotka-Volterra, or

predator/prey, model that is theoretically and empirically accessible to political scientists.
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Chapter 1

Introduction

Political scientists, and social scientists more generally, rely on statistical modeling

to understand complex systems and behaviors. Traditionally, political methodologists

rely primarily on generalized linear models (GLM), resulting in a deeply ingrained set of

assumptions about how and why events occur in societies. Abbott (1988) coined the term

general linear reality (GLR) to characterize these assumptions. GLR is a way of thinking

about how the world works and arises from treating linear models as representative of

actual societal functions. Crucially, Abbott argues that the assumptions underpinning

GLR “prevent the analysis of many problems interesting to theorists and empiricists

alike” (Abbott 1988, p. 169). Therefore, it is necessary to explore alternative modeling

techniques in order to continue to expand our understanding of the world around us. GLM

is a powerful technique, especially when carefully applied. Therefore, my suggestion to

diversify the political methodology toolkit is not a derogation of GLR nor GLM. Instead,

this project seeks to expand the breadth of models available to empiricists, particularly in

cases where the underlying theoretical assumptions of linearity are unreasonable or might

be violated.

The most fundamental goal of linear modeling is to identify a regression coefficient

or set of coefficients that estimate a best-fit line that lies as close as possible to all

of the observed data points (Stock, Watson, et al. 2007). The slope of the best-fit

line remains constant across all observations. However, it seems intuitively unreasonable

to assume that this characterization is representational of all human behavior (Abbott

1988). Therefore, alternative modeling techniques, specifically those that rely on nonlinear

ordinary differential equations (ODE), might open or re-open new pathways of analysis
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by relaxing the often intractable assumptions that underlie GLM. ODE understand the

world in a fundamentally different way compared to GLM. They directly model rates of

change of variables of interest and allow flexibility of several of the key assumptions of

GLM. There are several configurations of ODE based around different theories. I focus on

population dynamics models, and the Lotka-Volterra (LV) model in particular. LV is most

commonly used in ecological models to capture the interdependent relationship between

predator and prey. Appearing in Equation 1.1, LV are a pair of nonlinear ODE that model

the relationship between two interdependent populations. We can conceptualize several

types of political relationships that might fit within this framework. Modeling political

relationships in this way allows us to think about political time series data in new ways.


dx
dt

= αx− βxy

dy
dt

= δxy − γy
(1.1)

The LV model, when correctly applied, is useful in several key ways. First, it allows

us to directly model the rates of change of two (or more) interdependent time series.

Although political scientists often discuss rate of change, it is rarely modeled directly.

Substantively, modeling rate of change is particularly beneficial in capturing how a given

set of variables are affecting population growth or decline at any given point in time.

Especially when it is theoretically unrealistic to assume that the independent variables

change at a constant linear rate over time, it is appropriate to explore alternative nonlinear

modeling techniques such as the Lotka-Volterra model. LV, because it is composed of

ordinary differential equations that are functions of time, directly models rates of change

over time. The most basic assumption of LV is that the rates of change are nonlinear

and oscillate over time. The pair of equations measure two unique rates of change: dx
dt

and dy
dt

. The former is understood as the rate of change of a ‘prey’ population, x, at any

given point in time, t and the later is understood as the rate of change of the ‘predator’
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population, y, at time t. Specifically, because the LV model is nonlinear, it allows us to

capture complex relationships between actors whose behavior cannot be assumed to obey

a constant, linear transformation.

Second, GLR assumes that “the causal meaning of a given attribute cannot, in general,

depend on its context in either space or time [and] its effect does not change as other

variables change around it, not is its causal effect redefined by its own past” (Abbott

1988, p. 180). While, in practice, this is often remedied by the inclusion of interaction

terms or lagged variables into a GLM, GLR as a paradigm has a difficult time explaining

their inclusion. GLR as a world view struggles to visualize interaction terms: interaction

terms in particular require one to visualize the existence of all cases between two points

in time within a multi-dimensional space. Nonetheless, complex interactions define most

historical processes (Abbott 1988). The Lotka-Volterra model, however, eliminates the

need for such complex visualization.

LV is a model of endogeneity because the variables of interest are inherently depen-

dent upon the time and environment within which they exist. In its most basic form,

LV captures the behavior of two populations that grow and shrink in direct response to

one another. In order to induce this interconnectedness, the populations of both predator

and prey are included in the calculation of both derivatives. Concretely, the prey popula-

tion’s rate of change is a function of its intrinsic growth rate, α, and its death rate from

predation, β. On the other hand, the predator’s death rate, γ, is intrinsic and its growth

rate, δ, is the product of intrinsic growth and growth from predation. While LV is not

unique in its ability to handle endogeneity, it is a very straightforward and easy way to

visualize in the real world. In more complex predator-prey models, environmental factors

further contextualize the relationship and make the rate of change of the two populations

dependent upon their environmental context as well as upon one another.

Third, but tangentially, GLR assumes that the “observed sequence of attributes over

time does not influence their ultimate result” (Abbott 1988, p. 178). However, this as-
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sumption presents a challenge to our intuitive theoretical understanding of both historical

and social processes, many of which rely on the supposition that the sequence of events is

integral in the outcome. For example, the common historical narrative about the lead-up

to the first World War holds that preceding events and their short and long-term effects

ultimately led to the collapse of enough international alliances, thus leading to War. The

nature of ODE, particularly when they are functions of time, naturally induce dependence

on past events. When solving the LV model at discrete time points, x and y are equal

to the predator and prey populations at t− 1 and produce a population estimate at time

t. Several common, highly effective models such as ARIMA and Vector Autoregression

(VAR) do allow variables to depend on the past. Therefore, if dependence on past behav-

ior or sequence of events is the primary motivation in model selection, it is important to

further theoretically assess the data to determine whether or not LV is the appropriate

choice.

Finally, LV is capable of producing new quantities of interest. The pair of equations

exist in equilibrium under two conditions. First, extinction occurs when both derivatives

equal 0. Extinction conditions are substantively interesting to the study of political

phenomena when one of the populations of interest is, consciously or not, attempting to

eliminate its counterpart in a parasitic relationship. For instance, governments attempting

to eradicate terrorism might fall into this category. The second equilibrium, steady state,

is the point at which both populations maintain their values. In the basic model utilized

in this project, steady state represents indefinite sustainability for both populations and

is determined by the values of the four parameters. Again, when applied to political

phenomena, we can envision a scenario where two populations that exist in a steady state

equilibrium experience an exogenous shock to the system. Using LV, we would be able to

measure the effect of that shock on the previously stable equilibrium.

The underlying assumptions of Lotka-Volterra describe both the intrinsic qualities of

each population as well as ways they relate to each other. First, we must be able to reason-
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ably assume that the parameters governing the birth and death rates of each population

are positive. When this assumption is violated, the two populations are unstable leading

to either systemic extinction or the extinction of one side and the exponential growth of

the other. Second, the populations cannot be negative because they are drawn from a

continuous count distribution. Third, LV is an appropriate choice when we can reason-

ably hypothesize that each population of interest grows and shrinks in direct response to

the other. In other words, if theory supports the idea that causality might be cyclical,

or endogenous, then LV might be an appropriate means of modeling that relationship.

Finally, LV is a continuous time model; therefore, it is best applied when the populations

of interest can be thought of as existing and changing dynamically over time. Chapter 2

develops these and other conditions that predicate the selection of LV as the appropriate

model.

Chapter 2 begins by exploring previous uses of LV in empirical social science studies,

primarily within sociology, since the late 1970s. This is followed by a discussion about LV

in detail, including the differences between GLR and LV and the specific ways in which

LV can augment the political science empirical toolkit. I then introduce a new strategy for

estimating the Lotka-Volterra parameters that relies on Ordinary Least Squares (OLS)

to estimate the four parameter values. Unlike previous estimation methods that rely

on a discrete approximation of the LV equations to estimate LV, I circumvent the need

to do so by relying on the implicit relationship between predator and prey and directly

estimating the Lotka-Volterra parameters. In order to demonstrate the efficacy of this

estimation strategy, I test it on simulated LV data under several conditions. I focus on two

general sets of simulations. The first set of models is a basic Lotka-Volterra configuration

where the populations change only in response to their own intrinsic qualities and to

changes in the other population. The second set of models adds complexity into the

LV system by making the parameters dependent upon an exogenous covariate. Within

each set of models, I also test two different ways of adding noise into the simulated data,
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demonstrating that the estimation method is extremely sensitive to noise, depending on

how noise is added into the system. In later chapters, I utilize this estimation strategy to

extract the parameter values of real-world data.

Chapter 3 is a case study based around Ura’s (2014) empirical study of the ambiguity

surrounding the direction of causality between Supreme Court (SCOTUS) decisions and

attitudes of the American public. Scholars are generally split over the direction of causality

in that relationship. Those in support of a thermostatic model argue that the Federal

government, in general, is responsive to public opinion. The other side of the debate

supports a theory of legitimation, where public mood is shaped in response to Supreme

Court decision making. Although fundamentally split over the direction of causality, there

is uniform agreement that there exists a strong relationship between the two variables.

Ura’s study represents an initial attempt to settle the debate between the two models.

Empirically, he utilizes an Error Correction Model (ECM) because these models measure

both short- and long-term effects and finds evidence in support of both models: there is a

thermostatic response in the short-term and a response more consistent with legitimation

theory over long periods of time.

It is reasonable to assume that there is endogeneity in Ura’s data. Intuitively, public

mood and SCOTUS decision making likely act in response to one another, to at least

some degree. Ura’s results support this assertion because they seem to imply a reversal of

causality over time. LV is an appropriate choice in model when seeking to extend Ura’s

work for two reasons. First, the LV equations are functions of time. Because time seems to

be an integral determinant in which mechanism is at work in Ura’s data, it is appropriate

to extend Ura’s work by applying his data to a time dependent model. Second, and more

importantly, LV measures rates of change over time. This can allow us to visualize how

the two variables relate to one another at different points in time as well as how and when

Ura’s exogenous covariates impact the changes in their relationship. I find support for

Ura’s conclusions that both the thermostatic model and legitimation theory are active
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mechanisms underlying the relationship between SCOTUS decision making and public

mood.

Chapter 4 is a case study based on Jaeger and Paserman’s (2008) study characterizing

the relationship between Israel and Palestine during the Second Intifada. The relationship

between Israel and Palestine has often been described as a tit-for-tat cycle of violence

where “violence by one party causes violence by the other party and vice versa” (Jaeger

and Paserman 2008, p. 1591). If this is true, then LV is a theoretically appropriate model

for the data. However, through the use of VAR, Jaeger and Paserman find evidence that

causality in the relationship is unidirectional: Israel responds predictably to Palestinian

violence but the opposite does not hold true.

I chose Jaeger and Paserman’s study as a second case study in order to test their

refutation of the conventional characterization of the Israeli/Palestinian relationship in a

different way. Ultimately, after applying the Israel/Palestine data to the LV model, I find

support for Jaeger and Paserman’s conclusions about unidirectional causality. Therefore,

LV is not the appropriate model for this data. However, not fitting with LV in particular

does not exclude the potential for other pairs of ODE to be more theoretically robust

models for this data, particularly because the rate of change of violence between the

two sides remains a substantively interesting concept that ODE is capable of measuring

directly.

Ultimately, I argue that the use of ODE, and LV in particular, is a valuable new

way for political scientists to think about the world in conjunction with GLM. Ordinary

differential equation frameworks grant us flexibility in the underlying assumptions of GLM

and also allow us to directly model rates of change, which are substantively interesting,

especially in complex systems. I focus exclusively on the application of Lotka-Volterra

to political relationships. However, more broadly, this project serves to demonstrate

the utility of broadening empirical modeling to include ordinary differential equations

models.
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Chapter 2

The Lotka-Volterra Model for Analyzing Political

Time-Series Data

In this chapter, I introduce and explore a population dynamics approach as an alterna-

tive method to analyze the relationship between highly interdependent political variables.

Specifically, I re-conceptualize these types of relationships from the perspective of predator

versus prey in a natural environment. The Lotka-Volterra system of ordinary, nonlinear

differential equations allow us to simulate the impact of behavioral changes of one side

of a highly interdependent relationship upon the overall dynamic of a two-party relation-

ship. Originally developed in the early 20th century to model biological systems, these

models have a broad applicability that extends far beyond the natural sciences that can

allow researchers to test theory by parameterizing x and deriving quantities we’re unable

to obtain from more mainstream, linear methods. This method is not only appropriate

and useful for any data that makes sense within the analogy of predator and prey, but

also useful for data with feedback loops where the quantities of interest are useful and

applicable. Although researchers across multiple social science fields have been interested

in using the Lotka-Volterra model for several decades, these models are not widely utilized

in empirical time series studies.

Along with building upon previous work, this method is a beneficial addition to the

political methodology toolkit in three key ways. First, it allows us to navigate around some

of the intractable assumptions and problems that underpin more mainstream methods

such as endogeneity concerns and autocorrelation associated with including time in a more

traditional time series model. In other words, dynamic modeling is a novel approach that

strays from the paradigm of the linear model and advances practical time series analysis.
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The Lotka-Volterra approach introduced in this dissertation is a workable statistical model

using differential equations with a novel estimation strategy. Differential equations are

useful in this context because they allow us to look at the rates of change of x and y over

time, a topic that is often discussed in time series analysis, but that is rarely modeled

directly. Similarly, this approach allows us to model feedback loops directly instead of

assuming they introduce endogeneity and bias into the model. Thus, this method might

allow this modeling technique to fit more easily with causal inference than more traditional

methods because this model explicitly models feedback instead of getting stuck or simply

assuming there is no feedback.

Second, this method can provide new and substantive values of interest. Compared to

the values we can extract from more mainstream methods such as VAR and ECM, Lotka-

Volerra can provide values for a fixed point where both populations remain constant over

time (indefinitely in the most simplistic version of the model), extinction conditions, and

parameter values for each of the variables of interest. These parameter values directly

correlate to the growth and death rates of the data being modeled. This method allows

us to forecast future estimates of the values of x and y. Finally, this method answers

academically interesting questions, but can serve to inform practical policy questions

such as how the implementation of new counter-terrorism strategies or societal changes

impact the frequency of domestic terror attacks.

When added alongside the other prominent methods for modeling time series data

within political methodology, the Lotka-Volterra method is a new approach that rep-

resents a significant paradigm shift by providing researchers an alternative, non-linear

perspective in approaching highly interdependent data. Benefits of including this new

tool to the political methodology toolkit include an honest and realistic way on analyzing

these complex data and the ability to avoid imposing assumptions such as endogeneity

or linearity onto those data. The remainder of this chapter is broken down into several

key parts. First, I examine challenges often presented by contemporary, competitive time
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series data. This is followed by a frank discussion about how the Lotka-Volterra method

can provide an alternative to current modeling techniques by answering new and different

questions as well as a discussion about previous uses of Lotka-Volterra in social science.

Third, I introduce and describe the Lotka-Volterra method in detail. Finally, I include

a simulation my estimator. Largely due to endogeneity in the estimation strategy, the

estimator underperforms and produces biased coefficient estimates. In response to this, it

is important to be clear that the estimator I describe in this chapter is meant to serve as

a launching point for future work in this area. Therefore, I identify several paths forward

for this work that could address or potentially remedy these issues.

2.1 Existing Time Series Analysis Methods

Vector autoregression (VAR) captures linear interdependencies among multivariate time

series data.1 It is a linear function of the past values of a set of k variables. The goal

of the VAR is to generate the impulse response functions (IRF) and to estimate Granger

causality. VAR is an appropriate approach when researchers are unwilling or unable to

make assumptions about the direction of causality and assume that both variables are

stationary. First introduced into the political science literature in 1989, VAR has become

a go-to method for modeling political science time series variables (Freeman, Williams,

and Lin 1989). VAR relies on three key assumptions. First, it assumes that all k time

series variables are stationary, meaning that the data fluctuate around the same mean

over time and are not cointegrated. However, this stipulation is often untrue in real-

world data that is often stochastic and interdependent in nature. If the data are not

stationary, researchers must rely on another method such as a Vector Error Correction

Model (VECM).

Second, VAR assumes the error terms in the VAR equations are uncorrelated (Box-

1For further discussion on VAR, see Lütkepohl (2006) and Box-Steffensmeier, et. al. (2014).
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Steffensmeier, Freeman, Hitt, and Pevehouse 2014). Although not “causal” according

to the traditional causal inference definition, the Granger test generates a single p-value

from an f -test that assesses if the prior history of x affects the current value of y after

controlling for the prior history of y (Box-Steffensmeier, Freeman, Hitt, and Pevehouse

2014). In other words, VAR allows for Granger causality to occur in either direction,

meaning it is an autodistributed lag model in both directions. However, if an underlying

theory suggests a causal order, the modeler must make substantive changes to the model

itself by using an auto-distributed lag model where y is regressed on lagged y and lagged

x with an indeterminant amount of lags. The Granger causality test is performed by

conducting an f -test on all of the coefficients on lagged x to test whether they are all

equal to zero at the same time. If x has a significant f -test for all y, and not vice-versa, x

is said to Granger cause y. However, in analyzing the results of a Granger causality test,

the modeler is looking for a high p-value, challenging the notion that a high p-value is

not definitive proof of causality. Granger causality tests do not convey directionality or

magnitude of causality of a non-zero effect.

Finally, VAR requires the modeler to determine the lag structure of the data. Not

only must the lag structure for x and y be the same, but the number of lags is cho-

sen atheoretically (Box-Steffensmeier, Freeman, Hitt, and Pevehouse 2014). It might be

unrealistic to assume the same number of lags on both x and y. This is true largely

because if you want to control for the past history of y when assessing the effects of the

past history of x on y, intuitively, the number of lags on y should be at least as long as

the number of lags on x, but may not be identical. Similarly, the use of lags raises the

issue of multicollinearity, thus causing the individual coefficient estimates to have little

to no substantive meaning (Aguiar-Conraria, Magalhães, and Soares 2012). However, the

selection of lags is, inherently, an atheoretical process. Thus, it might present a problem

for political science researchers whose approach to mathematical modeling is rooted in

theory and supported by the method.
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Another typical tool for modeling time series data are Error Correction Models (ECM),

which are used on cointegrated data to estimate the long- and short-term effects of one

time series on another when there is assumed to be an underlying stochastic trend between

the two time series.2 They are used to estimate how quickly a dependent variable returns

to equilibrium after a shock to the system. This approach is appropriate if the variables

are non-stationary and cointegration is present. An ECM consists of two parts. First, a

differenced VAR shows the short term effects of the impulse on the response. Second, the

model estimates a cointegrating equation, showing the long term effects of the impulse on

the response. This method requires the time series to be non-stationary, or completely

unrelated but integrated. Therefore, before utilizing an ECM, the modeler must test

for cointegration. Two variables are cointegrated if both are non-stationary in and of

themselves but have a relationship to one another that is stationary. There is an ongoing

debate within political methodology as to whether stationary variables can be thought of

as cointegrated.3

ECMs are useful for the analysis of non-stationary, cointegrated data. However, despite

their utility, ECMs have a few key drawbacks. First, ECMs rely on an atheoretical test of

cointegration, a principle that is contradictory to political science methodological research

which champions methods work that is theoretically driven. ECMs are also difficult to

interpret and can be difficult to estimate, especially when compared to ecological models

that produce a clear and concise output. Second, the cointegrating equation is difficult to

substantively interpret. Finally, as discussed, a debate is ongoing about whether or not

ECMs can apply to stationary variables.

If a researcher is diligent in choosing their model based on the aforementioned criteria

and considerations, they obtain a model that describes the linear relationship(s) between

their variables. These results specifically answer questions regarding how the change in

2For further discussion on ECM, see Lütkepohl (2006) and Box-Steffensmeier, et. al. (2014).
3For additional discussion on the ongoing debate, see Keele and Webb (2016) and Grant and Lebo

(2016).
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one variable affects the change in the other variable(s) and at what point in time that

change occurs. In cases where these are the relevant questions of interest, VAR and

ECM remain the appropriate method of modeling. However, in special cases that either

do not satisfy the underlying assumptions of either model or look to answer different

questions such as extinction criteria or fixed point(s), Lotka-Volterra can be used in lieu

of or alongside these more common methods to further broaden our understanding of the

world.

2.2 Challenges Posed by Modeling Contemporary Time Series

Data Sets

The nature of political time series data as complex, random, or redundant poses several

challenges to statistical modeling. Several of these challenges are discussed below. While

I do not intend to argue that contemporary, mainstream methods of time series analysis

are inadequate, I do argue that there are several new questions about competitive time

series data that can be answered by utilizing the Lotka-Volterra method, which simply

offers a new perspective on these data. To achieve this end, I explore how two major time

series models view the world and compare them each to the Lotka-Volterra method to

demonstrate how Lotka-Volterra and build upon these common methods to answer new

questions. Used alongside these methods, I argue that Lotka-Volterra can broaden our

understanding of the world.

First and foremost, time series data is often rife with autocorrelation, which inflates

standard errors, thus limiting the power of inference (Stock, Watson, et al. 2007). While

often an indication of a misspecified model, the ideal solution is re-specifying the model

itself; however, this solution is atheoretical, assuming the initial model was chosen, based

on theory, to best fit the data. In the same vein, time series data is prone to spurious

correlation, wherein any two variables that trend over time will be correlated in a statis-
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tically significant way regardless of whether a causal relationship between the two exists

(Stock, Watson, et al. 2007).

Third, coefficients are a narrow means of understanding causal effects for several rea-

sons. First, we are often uncertain of the timing and magnitude of the effects of coeffi-

cients, raising the question whether the β change is instantaneous or occurs over time.

In traditional regression and GLM models, coefficients are static when allowing them to

change over time might more accurately capture reality. A shift from looking to achieve

linear slopes to modeling cycles as the principle mode of thinking about competitive data

can express fundamentally different conclusions than traditional linear approaches. Espe-

cially in the case of feedback loops, which are often present in political time series data,

a new approach based on cyclical modeling, such as Lotka-Volterra, offers a more elegant

method of modeling because it is fundamentally a model of feedback loops.

Other methods commonly used to analyze time series data include Vector Autoregres-

sion and Error Correction Models. While these models successfully capture their own

intricacies of time series data, they may not capture the complex and often random or

cyclical relationships between two or more highly interdependent populations, especially

in “irregular cycles without fixed periodicity”(Aguiar-Conraria, Magalhães, and Soares

2012, pg. 500). This is not to presume that these methods are fundamentally flawed.

Instead, VAR, ECM, and other common methods should be understood as making very

specific kinds of statements about very specific types of data and the choice to use an

alternate method such as Lotka-Volterra should be driven by which questions the re-

searcher is asking. In other words, Lotka-Volterra provides methodologists an alternative

lens through which to analyze political time series data.

In cases of irregular or transient cycles, the new perspective offered by Lotka-Volterra

can offer insights about cyclical patterns. In this type of special case, traditional methods

might be inappropriate because cycles that are more prominent in Time Period A might

remain undetected or are over-detected, thus attributing a “blip”, to the entire time series
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(Aguiar-Conraria, Magalhães, and Soares 2012). Weakliem (2010) even goes to far as to

argue that many advanced methods of analyzing time series data are not “usefully applied

to most political [science time series] data” (p. 637). These methods can be complicated

to substantively interpret for a variety of reasons. For example, in a VAR model with

15 lags, one would have to report 240 coefficients, all of which are more or less void

of substantive meaning (Aguiar-Conraria, Magalhães, and Soares 2012). The following

section will examine two such methods, VAR and ECM, in greater detail to highlight ways

in which Lotka-Volterra can offer an alternative method to broaden our ability to draw

conclusions about competitive time series data. It is important, however, to keep in mind

that the observations offered in the following section do not represent ‘shortcomings’ or

‘faults’ in these common methods. Instead, these reflections are simply an insight into

how Lotka-Volterra can be applied to answer questions in special cases where the data of

interest do not fit the assumptions of more common methods.

2.3 Benefits of Lotka-Volterra Models

In contrast to static theories that describe the attributes of individuals or organizations

at a discrete time point, dynamic models are useful for understanding how and why

individuals or social systems change over time (Tuma and Hannan 1984, p. 4). As

theoretical interest in social science has increasingly trended towards exploring systematic

change over time, dynamism in empirical modeling is an increasingly valuable tool.

Lotka-Volterra can improve upon common approaches by answering new and inter-

esting substantive questions about cyclical, competitive variables. This section lays out

several questions that LV is well-suited to answer and the benefits of using LV as opposed

to other, traditional methods, in those specific cases. The Lotka-Volterra approach offers

several advantages over previous methods. First, variables are not required to be either

stationary or non-stationary, because ecological models can apply to all types of relation-
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ships. This eliminates the need for atheoretical and hard-to-interpret tests for stationarity

that are inherent in more traditional models. Similarly, LV approaches do not rely on

atheoretical selection of model components. Substantively speaking, ecological models are

theory-driven, especially when the data work well with the predator/prey analogy as in

the case of modeling the relationship between terrorist and counter-terrorism responses.

Unlike VAR or ECM, ecological models are not only theoretically driven, but are easier to

substantively interpret as a result. For example, VAR relies on the atheoretical selection

of lag structure while ECM relies on atheoretical tests of cointegration. Lotka-Volterra,

on the other hand, is a model chosen theoretically that tests both primary and secondary

theory and is not beholden to the Gauss-Markov assumptions underlying standard OLS

approaches.

Second, Lotka-Volterra allows us to model social and political variables of interest as

a cyclical process as opposed to a linear process. This interpretation of human behavior

is inherently useful in competitive situations where the actions of Side A are determined

by the actions of Side B (and vice versa). It is also useful over long periods of time where

the periodicity of behavior is not fixed (Aguiar-Conraria, Magalhães, and Soares 2012).

Next, LV does not answer questions about x and y, but about the rates of change

of those variables. More common models such as VAR and ARMA are adequate at

identifying cycles; however, they are inadequate at examining cycles that vary over time

(Aguiar-Conraria, Magalhães, and Soares 2012). Lotka-Volterra, on the other hand, allows

us to simulate the impact of behavioral changes on one side of a heavily interdependent

relationship upon the overall dynamic of a two (or more) party system and examine how

that cyclical behavior changes in intensity across multiple periods.

Finally, Lotka-Volterra allows us to analyze data without the restrictions of the Gauss-

Markov assumptions that underlie traditional GLM and other linear approaches. The

Lotka-Volterra approach, and the use of ordinary differential equation models in gen-

eral, provides a theoretical alternative that has been selected to fit the data, allowing
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researchers to avoid concern with whether the Gauss-Markov assumptions are met or not

and then attempting to correct any violations that do occur. In certain relationships, the

assumptions underlying linear frameworks may hinder or prohibit modeling and should

be relaxed (Abbott 1988).

The LV approach is an entirely novel way of modeling time series in political sci-

ence. While I recognize that it is not a catch-all for all applications, it is a good fit for a

specific class of problems, namely problems that involve highly interdependent relation-

ships between two or more sets of actors. For example, expanding beyond terrorism and

conflict studies, predator-prey models might be useful to study competition among polit-

ical candidates, the legislative process, and inter-agency competition among government

bureaucracies.

LV models can answer inherently different questions than more traditional methods.

For example, LV models are capable of modeling systemic equilibrium in two ways, both

occurring when the rate of change is set equal to zero. This can result from one of

two conditions. First, both populations can be sustained at their current respective

population levels for an indefinite period of time: {y = α
β
, x = γ

δ
} where the birth rate of

each population is proportional only to its death rate. This stability condition results in

a consistent ebb and flow of population sizes that stays equal, on average, over time.

Second, and perhaps most interesting, is the event of extinction. In the event of

extinction, the two equations reduce to {y = 0, x = 0}, implying that the two populations

will be indefinitely sustained at zero members. Of particular interest are the conditions

that lead to extinction. For instance, we might be able to model a scenario in which

the predator begins eating significantly more prey than usual, and determine whether

this alone would force the prey’s extinction. However, unless the prey are artificially

manipulated into extinction, both populations can get infinitesimally close to zero and

still recover in number, making extinction extremely difficult, if not impossible, to obtain

naturally in the simplified version of the model (Begon, Harper, Townsend, et al. 1986).
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2.4 The Lotka-Volterra Model in Detail

Developed in the early 20th century separately by both Alfred J. Lotka (Lotka 1910)

and Vito Volterra (Volterra 1938), the Lotka-Volterra equations are a pair of first-order,

nonlinear, differential equations. This set of ordinary differential equations (ODE’s) is

often used in mathematical biology and ecology to describe the dynamics of the interaction

between two interdependent species, one the predator and one the prey (Gotelli 2008).

The set of ODE’s has a continuous and deterministic solution, meaning the ebb and flow

of the predator and prey populations overlap and the solution to the equations oscillates

on an ellipse (Begon, Harper, Townsend, et al. 1986).

The Lotka-Volterra approach has been in use, albeit sparsely, in social science be-

ginning with Hannan & Freeman (1977); however, the model was not empirically im-

plemented until 1981 (Carroll 1981). In political science specifically, Francisco (1995)

adapted the Lotka-Volterra model to empirically evaluate the interdependent relation-

ship between coercion and protest in coercive states. Other than this single application,

Lotka-Volterra has not been a widely utilized tool in political science for two key reasons.

First, Lotka-Volterra is technically advanced, and can be difficult to properly implement.

I intend to resolve this issue by writing an accessible R package to allow researchers to

easily apply this method to their own sets of data. However, I argue that the key reason

this method has not permeated political science methodology more broadly is because

it doesn’t fit within the traditional, dominant paradigm for model selection in politi-

cal methodology. Instead of automatically beginning with OLS, evaluating whether the

Gauss-Markov assumptions are met or not, and accounting for violations of those assump-

tions, the Lotka-Volterra approach is a theoretical model that is selected to fit the data.

The set of equations is reproduced below:
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dx

dt
= αxt − βxtyt

dy

dt
= δxtyt − γyt

(2.1)

where:

� dx
dt

and dy
dt

represent the growth rates of prey and predator species, respectively, over

time;

� xt and yt represent the population of the prey predator species, respectively; and

� α, β, γ, and δ are non-negative constants that represent the growth and death rates

of prey and predator, respectively.

The prey population’s rate of change is determined by its own natural birth or gen-

eration rate minus the rate of predation, and the predator population’s rate of change

is determined by subtracting its natural death rate from its rate of predation. Figure

2.1 graphically depicts how changing each parameter with fixed starting values alters the

shape of the graph.

The Lotka-Volterra equations rely on five key assumptions. First, the rate of change

of either population, predator or prey, is proportional to its size. Second, the prey has

an unlimited food supply. Third, without predation, the prey population would increase

exponentially and without prey, the predator population would decrease exponentially.

Fourth, the size of the predator population is entirely dependent upon the size of the prey

population. Finally, the external environment is inconsequential to the relationship (Be-

gon, Harper, Townsend, et al. 1986). Assumptions four and five are conceptually violated

when dealing with political data; however, I have adapted the Lotka-Volterra equations

to accept the input of exogenous covariates so that the model may more accurately mimic

real-world scenarios. In order to achieve this end, each of the four parameters is not only
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Figure 2.1: Effects of Altering Lotka-Volterra Parameters

estimated to be a function of time, but also the function of a at least one exogenous

variable.

In keeping with these assumptions, it is important to note that the prey parameters

must relate to one another in a specific way to maintain stability within the system:

{α > β}. The birth rate of the prey (α) must be greater than the death rate (β) because,

in the absence of predation, the prey population increases exponentially. On the other

hand, as long as the prey population is sufficiently large, the birth rate of the predator (δ)

is not required to be greater than its death rate (γ) because there is ample food (prey) to

sustain the predator over time.

The set of differential equations can result in equilibrium in three ways: the exponential
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growth of the prey in the absence of the predator, extinction, and a fixed point where

neither population changes over time (Skvortsov, Ristic, and Kamenev 2018). Each of

these values is interesting, but the latter two are the most substantively interesting in

the study of political science. Extinction events occur when both populations reach 0:

{y = 0, x = 0}. When this occurs, both populations remain extinct forever. This fixed

point is unstable and represents a saddle point, thus making natural extinction of both

species difficult, suggesting artificial manipulation of the populations is necessary to force

total extinction (Kinoshita 2013). This quantity is interesting for studying social science

because it can allow us to examine how external stimuli can affect the continued existence

of one side of an interdependent dataset.

{
y =

α

β
, x =

γ

δ

}
(2.2)

The third solution, the population equilibrium or steady state, shown in Equation 2.2,

“corresponds to the balanced coexistence of the two species with oscillating but stable

populations” (Skvortsov, Ristic, and Kamenev 2018, pg. 373). The eigenvalues of the

Jacobian matrix associated with this fixed point are conjugates of one another, resulting

in an ellipse around the fixed point. These orbits will continue to circle around the

fixed point without converging upon it (Kinoshita 2013). In other words, the fixed point

represents population stability. The steady state is reminiscent of a Nash equilibrium,

where neither side has incentive to change its behavior because doing so would ultimately

disadvantage that side. It is also important to note that, even when α is fixed, we can

still calculate the value of the steady state. Equation 2.3 demonstrates the proof of this
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assertion:

{
y =

α̂

β̂
, x =

γ̂

δ̂

}
(2.3a){

y =
α
α
β
α

, x =
γ
α
δ
α

}
(2.3b){

y =
1
β
α

, x =
γ
α
δ
α

}
(2.3c){

y =
1

β̂ + θβzi
, x =

γ̂ + θγzi

δ̂ + θδzi

}
(2.3d)

This particular specification of Lotka-Volterra is the appropriate model choice when

several criteria are met. First, and most fundamentally, we must be able to reasonably

assume that the two populations of interest grow and shrink in direct response to one

another. Because LV is a model of competition, it is important that the two populations

of interest are not only competing for resources, but that growth in the prey population

directly causes growth in the predator population, which in turn causes the prey’s popula-

tion to decline followed by a decline in the predator population. If we cannot hypothesize

that the relationship between the two populations can be analogized to predator/prey,

but may have a mutualistic, commensalistic, or parasitic relationship, we would need to

fundamentally reformulate the model. Tangentially, we have to analyze the goals of both

populations of interest.

In the LV model discussed here, the two populations are exclusively interested in sur-

vival: the predator population eats the prey to survive and thrive and the prey reproduces

at a rate to survive predation. However, if the goal of one population is to eradicate the

other or help the other thrive, the relationship is no longer characterized as predator/prey.

In order to make this determination, we have to delve into the underlying theory about

any dyadic relationship of interest to truly understand the motivations of both sides. For

example, in Chapter 4, I analyze the relationship between Israel and Palestine during the

Second Intifada. Although it has often been characterized as a tit-for-tat cycle of violence,

22



we may also hypothesize that the goal of the Israelis stretches beyond simple survival with

regards to Palestine. I argue, in this particular case, that Israel’s level of violence is mo-

tivated by more than surviving Palestinian violence, making it a poor candidate for the

LV model.

A simple, but not infallible, way of testing whether a particular relationship is amenable

to LV is to examine the phase-space plot of the data. If the relationship between the pro-

posed predator and prey populations do not form any sort of elliptical orbits, they are

likely incompatible with the LV method. However, visual inspection will not work if, for

instance, there are multiple steady states and multiple ellipses that overlap or confound.

In this case, it might also benefit us to run a preliminary Granger test for causality. For

example, a Granger test of the Ura data, which is a good fit for LV, returns results con-

sistent with causality in both directions. On the other hand, a Granger test of the Jaeger

and Paserman data, which I show is not amenable to LV, is unable to reject the null

hypothesis to identify causality in either direction. Visual inspection and the Granger

test should not be the final determinant of whether LV is appropriate or not; however,

they can serve as an additional means of identifying the underlying causal structure of

the data and whether or not it is consistent with the Lotka-Volterra assumptions.

Finally, the data for both the predator and prey populations must be understood as

continuous counts and constrained above zero. LV originated as way to model preda-

tor/prey relationships in nature; therefore, it doesn’t make sense to think about a nega-

tive population. However, this isn’t to say that data that includes negative values is fully

incompatible with LV. For example, in Chapter 3, I examine the relationship between

Supreme Court decision making and public mood. Both are composite indices as op-

posed to concrete physical populations. Therefore, as long as we maintain the same scale

of the data and adjust our understanding of the different values in the indices, we can

reasonably transform them to satisfy the data requirements of LV. It is also conceivable

to develop a model of competition that is not beholden to the requirement of positive
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numbers, although this is outside the scope of this particular project.

2.5 Previous Uses of Lotka-Volterra in Social Science

Historically, sociologists have utilized Lotka-Volterra models to study interorganizational

ecology (Carroll 1981). Much of the subsequent work with Lotka-Volterra is built upon

work by Ayala, Gilpin and Ehrenfeld (1973), who performed population ecology exper-

iments on fruit fly populations. What distinguishes this particular study over previous

work, thus making it a solid foundation for later sociologists, is the use of simple OLS

regression to solve a series of eleven ODE models, eight of which utilize Lotka-Volterra as

a special case. While the OLS approach is useful in the case of inter-species competition in

biology, Nielsen and Hannan (1977) identify that, in human social organizations, autocor-

relation and heteroskedasticity in the data make OLS an inappropriate approach. In order

to correct these issues, Nielsen and Hannan suggest the use of weighted generalized least

squares (WGLS) and interpret the various dynamic parameters of social organizations as

dependent variables (Nielsen and Hannan 1977, p. 479).

Further expanding upon Ayala, et. al., are Hannan and Freeman (1977) and Meyer

et. al. (1977). As two of the earliest theoretical applications of the Lotka-Volterra

system of equations to human social organizations, all three suggest the use of a logistic

model of growth as opposed to the traditional assumption of exponential growth. In

their earlier theoretical application, Hannan and Freeman identify several constraints of

the application of purely ecological population models to human social organizations.

For instance, some of those constraints that are unique to human social organizations

include the incomplete amount of information passed on to organizational decision makers,

internal politics, limits on resource pools, and organizational constraints generated from

their own organizational histories (Hannan and Freeman 1977, p. 931).

While Hannan and Freeman speak more abstractly, Meyer et. al. theoretically apply
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ecological population modeling to the expansion of enrollment in the American school

system. This concrete example mainly serves to demonstrate the importance of taking

into account the unique properties of human-generated data. As opposed to biological

applications of population dynamic models where information is passed generationally

through genetics, information in human-based systems is inherently more complex. Thus,

we must take the time to examine trends in the data at hand in order to identify the correct

model specification. Notably, in this specific case, Meyer, et. al. observe that their data

is diffused along a logistic curve, thus theorizing that a logistic version of the Lotka-

Volterra equations is more appropriate for analyzing organizational growth as compared

to the traditional, exponential curve of biological Lotka-Volterra models (Meyer, Ramirez,

Rubinson, and Boli-Bennett 1977).

Aldrich (1979) expanded upon the use of logistic-based formulas for organizational

growth. He largely rationalizes this argument using the idea of carrying capacity, or

the maximum sustainable number of organizations within a given environment. In other

words, any given environment can only accommodate a set number of organizations and

once that upper limit is reached, growth slows and eventually flattens into the steady

state where no more growth can occur (Aldrich 1979, p. 64). When considering inter-

organizational competition specifically, Aldrich argues that dependencies that occur be-

tween organizations are largely based on resource scarcity. For example, when an orga-

nization has a monopoly on an otherwise scarce resource, competing organizations will

become dependent upon the monopolizer. However, the monopolizer is only realistically

able to distribute a set number of resources to its dependents, the environmental carry-

ing capacity, which resembles a logistic curve with rapid initial growth of the number of

dependents that eventually tapers off and stops growing (Aldrich 1979, p. 266).

Nielsen and Hannan (1977) estimated an empirical study of the expansion of education

in the United States using a discrete time linear partial-adjustment model. They analyzed

the models with weighted generalized least squares regression on panel data with a 5-year
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lag in order to estimate the speed of adjustment of each level of education as a function of

not only its own population, but the population of the other two levels as well. However,

their estimates of the adjustment parameters at each educational level were sometimes

negative, unrealistically implying explosive growth in the education system (Tuma and

Hannan 1984, p. 496).

Carroll (1981) built directly upon the foundation built by Nielsen and Hannan. He

argued that Lotka-Volterra is more appropriate than the linear partial-adjustment model

because “it emphasizes resource constraints, interorganizational competition, and tempo-

ral disequilibrium” (Carroll 1981, p. 586). Carroll reformulated Nielsen and Hannan’s

linear partial-adjustment model as a discrete approximation of the LV model. This strat-

egy, Carroll argued, was necessary because the integral solution for LV has not yet been

found. In order to approximate the two derivatives, Carroll identified “a numerically

tractable, discrete time approximation to the integral solution of the model” for each

population of interest that “converge[d] to the differential equation as the time interval

becomes infinitesimally small” (Carroll 1981, p. 590). He proceeded to estimate each of

these models using nonlinear WGLS “applied to pooled time-series...cross-sectional data”

in order to remedy complications attributed to autocorrelation and heteroskedasticity

(Carroll 1981, p. 591).

Carroll also focuses heavily on the role external variables play on organizational

growth. Therefore, he builds upon the models developed by Ayala et. al. (1973) that are

designed to incorporate external, environmental variables. Incorporating these external,

independent variables inherently transforms the original Lotka-Volterra set of equations

to rely on more than just the internal dynamics between two organizations. This is nec-

essary largely due to the fact that human social organizations rely upon a more diverse

and complex set of variables beyond internal, population competition. The estimation of

the coefficients associated with these external variables is complicated by the fact that

the integral solution to the Lotka-Volterra system of equations has never been found,
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although it is known to exist. In an attempt to mitigate this dilemma, he estimates pa-

rameters with an approximate instead of an exact solution. This approach, he argues, is

significantly more feasible, flexible, and generalizable (Carroll 1981, p. 598).

Following the 1980’s, the use of the Lotka-Volterra method within sociology has largely

fallen out of favor, likely as the result of a combination of two competing factors. First, at

the time, complications arose from the lack of an integral solution to the set of equations

as well as the difficulties associated with estimating parameters within that constraint

(Ünver 2008). Similarly, in the 1980s, estimating and optimizing the approximate Lotka-

Volterra equations was technologically cumbersome. However, even as technology and

estimation time improved, LV specifically did not make a major comeback. Instead, the

discipline transitions to LV-inspired survival models that focused on density-dependent

growth. This shift may have been spurred on by the tight coupling between theory and

method that is inherent in the survival framework.

These empirical studies all have in common the use of exact discrete approximations

of the Lotka-Volterra equations. Because there is no known explicit integral solution for

the Lotka-Volterra equations, it is necessary to approximate the equations. In general,

discrete approximations “approximate the dynamic differential equations (DDE) with a

difference equation that is convenient for numerical analysis and...approaches the DDE as

the discrete interval in the difference equation becomes infinitesimal” (Tuma and Hannan

1984, p. 485). In other words, all of these authors are approximating functions for x

and y, whether from a non-linear logistic model (Nielsen and Hannan, 1977) or from the

Lotka-Volterra models themselves (Carroll 1981, Tuma 1984).4

What makes the approach in this project distinct from these previous studies is the

use of the implicit relationship between predator and prey. My strategy of estimating the

Lotka-Volterra parameters is not a discrete approximation of the Lotka-Volterra equations.

4For a full discussion on the underlying mathematics of different discrete approximation techniques,
see Tuma (1984).
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Instead, it is based on the calculation of a constant, C, and is the integral solution to the

phase-state of the relationship. In other words, the estimated coefficients do not tell us

anything directly about the rates of change of x and y; instead, it directly informs us of

how the two populations grow and shrink in response to one another. The purpose, then,

is to circumvent the need to approximate the ODE and to directly estimate the Lotka-

Volterra parameters. It is reasonable to ask, then, where the value lies in a workaround

that does not directly estimate dx
dt

and dy
dt

. However, if we have accurate estimates of the

LV parameters, we can still draw informed conclusions about quantities of interest such

as extinction conditions, steady state, and the phase-space. These parameter estimates

can also be fed into the Lotka-Volterra set of equations in order to directly estimate dx
dt

and dy
dt

.

2.6 Estimating The Generalized Lotka-Volterra Model

I have adapted and expanded upon the basic Lotka-Volterra model to include exogenous

variables and dynamic parameter values. I have coined this new iteration of the LV

model the Generalized Lotka-Volterra (G-LV) Model. This new approach to LV modeling

allows us to introduce control variables and external data into the calculation of the four

LV parameters, thus allowing us to make different types of conclusions about cyclical,

cointegrated time series data that are influenced by their environment as well as by the

natural ebb and flow of the populations of the predator and prey. This approach allows

us to answer several questions that other methods do not answer. For example, we

can estimate how alterations in environmental factors, such as policy changes, economic

conditions, or natural phenomena affect patterns of behavior. Specifically, by introducing

covariates into the Lotka-Volterra equations, the birth and death rates of the variables are

allowed to change over time, dependent upon the exogenous covariates. This introduces

significant flexibility into the model by dispelling the underlying assumption that LV
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produces a single, repetitive cycle and allowing researchers to model any kind of feedback

loop of interest.

The estimation strategy offered in this section offers a quicker and more direct ap-

proach to estimating Lotka-Volterra parameters. In order to demonstrate the efficacy

of the Generalized Lotka-Volterra method as a means of analyzing cyclical, interdepen-

dent, and messy political data, I implement a simulation on artificially generated data

with known starting values for the parameters.5 The purpose of the simulation is to

demonstrate that a linear model, derived from the calculation of the constant of the

set of ordinary differential equations does, in fact, come close to the true values of the

pre-established parameters from which the simulated data was created, regardless of how

much noise is introduced into the data.


dx
dt

= αxt − βxtyt
dy
dt

= δxtyt − γyt
(2.4a)

dy

dx
=

dy
dt
dx
dt

=
δxy − γy
αx− βxy (2.4b)

dy

dx
=
(y
x

)( δx− γ
α− βy

)
(2.4c)

x(α− βy)dy = y(δx− γ)dx (2.4d)

α− βy
y

dy =
δx− γ
x

dx (2.4e)∫
α

y
− βdy =

∫
δ − γ

x
dx (2.4f)

α log(y)− βy + c1 = δx− γ log(x) + c2 (2.4g)

C = βy − α log(y) + δx− γ log(x) (2.4h)

The goal of the simulation is to ultimately arrive at estimates for three of the four

5See Appendices A-B for the annotated Rmarkdown simulation code.
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Lotka-Volterra parameters from simulated data. However, this is impossible because,

when attempting to choose parameter estimates that minimize the variance of the constant

equation, without making assumptions about the properties of x and y, we must set all

parameters equal to 0, thus resulting in a trivial solution. One effective solution is to

divide both sides of the equation by one of the parameters (e.g. α). This solution avoids

a trivial outcome because, if we set α = 0, when algebraically rearranging the equation,

dividing by 0 breaks the equations:

C = βy − α log(y) + δx− γ log(x) (2.5a)

C

α
=
βy − α log(y) + δx− γ log(x)

α
(2.5b)

C

α
=
βy

α
− α log(y)

α
+
δ(x)

α
− γ log(x)

α
(2.5c)

C∗ = β∗y − log(y) + δ∗x− γ∗ log(x) (2.5d)

where C∗ = C
α

, β∗ = β
α

, δ∗ = δ
α

, and γ∗ = γ
α

.

We can further algebraically rearrange the formula for the constant to allow researchers

to estimate the parameters using OLS regression. By doing so, we not only make the

estimation strategy more user-friendly and familiar, but this allows us to easily extract

standard errors and calculate coverage. In the output of the new regression formula, the

regression coefficients correspond to the Lotka-Volterra parameter estimates:

log(y) = β∗y + δ∗x− γ∗ log(x)− C∗ (2.6)

Although the equation can be rearranged and run as a linear regression, this model is

not a traditional regression model, largely due to the endogeneity introduced by including

log(y) on the left side of the equation and y on the right. This endogeneity ultimately

biases the estimates of the coefficients and causes imprecision in the model.
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To extend the model further, I have adapted the above estimation strategy to also in-

clude one or more external covariates in the estimation of three non-fixed base parameters.

Each parameter in the simulation, β∗, δ∗, and γ∗, is constructed as an independent linear

model that includes a general intercept and a coefficient(s) on the external variable(s).

An example of parameter construction follows:

β∗ =
β̂ + θβzt

α
(2.7)

where:

� β∗ is the original LV parameter;

� β̂ is the main effect of the parameter β;

� θβ is the coefficient on the external data; and

� zt is the external data.

This same process is carried out to estimate the values of the three non-fixed parame-

ters as a function of one or more external variables. After each parameter is estimated, the

Lotka-Volterra equation is applied using the linearly-estimated parameters to represent

β∗, δ∗, and γ∗, with α set constant at 1. The inclusion of an external covariate currently

requires that covariate to be categorical instead of continuous. Using this estimation

strategy, if the external covariate is continuous, the number of coefficients increases expo-

nentially with each included external variable. This occurs because, for each unique value

of the external variable, the constant term changes.

Although this is a novel estimation strategy that is quick, easy, and reliable in esti-

mating the values of interest, the means of including external data is a notable limitation

of this method. It requires us to potentially over-simplify external data, thus potentially

losing nuance in the overall analysis. In the next section, I walk through the steps of the

simulation that ultimately prove that this estimation strategy is an effective approach to

analyzing data that is amenable to the Lotka-Volterra approach.
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2.7 Simulation of the G-LV Method

The goal of simulation is to determine how often, on average, the estimator arrives at the

correct parameter estimates. Typical linear models take the form Y = β0 +βjXj where Y

is the dependent variable (the effect), Xj is the independent variable (the cause), and βj

is the coefficient on Xj that describes the effect of Xj on Y . Adding noise into this classic

linear model is fairly straightforward. In these models, Xj are assumed exogenous and y

endogenous; therefore, it’s natural to think of Xj as the ‘cause’ and Y as the ‘effect’ and

to add noise onto Y . Substantively, we are uncertain about the actual effect that Xj has

on y. In other words, we are certain about the values of our independent variables and

uncertain about the values of the dependent variable. Consequently, it is intuitive to add

noise onto Y because this linear model should estimate, within a margin of error, the true

effect of Xj on Y on average.

Substantively, error in LV data is really error in counts; however, the counts of both x

and y are inextricably linked because the DGP of both x and y are defined as endogenous

processes causing both x and y to act as both cause and effect. Therefore, in order to

preserve this relationship, we must carefully assess different ways of introducing error into

the system before proceeding. I argue that we can add noise into the simulation in two

different ways: during the generation of the simulation data itself (internal) or after the

simulation data has been generated (external).

Internal noise in the Lotka-Volterra system is most commonly modeled using a stochas-

tic Lotka-Volterra model.6 Stochastic LV accounts for random noise in the environment,

which is “the chief cause of fluctuations in the ecosystem” and can cause major changes

in the dynamic of the system (Aratò 2003, p. 710). The stochastic LV system is modeled

using stochastic differential equations derived from the deterministic LV model and have

6For more information, see Tuma and Hannan (1984), Bahar and Mao (2003), Mao, Yuan, and Zou
(2004), and Baosheng, Shigeng, and Yang (2011).
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taken several forms including simple diffusion processes (Aratò, 2003) and stochastic de-

lay differential equations (Mao, Yuan, and Zou, 2004). When thinking about real-world

data, especially in political science, noise in the environment is omnipresent and affects

all types of actors. We can think of this noise as it pertains to political relationships as

actors with goals that exceed simple survival, mitigating factors in a relationship such

as economic conditions, or regime change, among many others. Despite the utility of

introducing and modeling stochastic noise in the environment, I have chosen to introduce

error on the count data both because this is a more familiar and accessible approach

for political scientists and because measurement error in political time series data is so

common a phenomenon.

Political time series data is often rife with measurement error. One of the most blatant

examples of this exists in the literature on terrorism. A vast portion of empirical studies

on terrorism rely on data from the National Consortium for the Study of Terrorism and

Responses to Terrorism’s (START) Global Terrorism Database (GTD). However, during

the digitization process, the data for 1993 were lost while transferring handwritten data

to a new office space and have never been recovered in full (START 2020). This missing

data has impeded the ability of researchers to run large-n studies across the entirety of

GTD’s date range (Acosta and Ramos 2017). In an effort to remedy this issue, several

researchers have constructed their own time-series of terrorist events in 1993. While these

substitute time series are invaluable assets to terrorism studies and I do not intend to

denigrate them, we should still consider them as ‘best guess’ efforts at recreating the

lost data and potentially suffering from measurement error, making them systematically

different from the GTD as a whole.

In order to simulate measurement error in this simulation, we can add noise post-hoc

onto the deterministic values of x and y, which have been generated directly from the

Lotka-Volterra equations with known parameters. By incorporating noise in this way, we

can directly control how the counts are biased. The key argument in favor of introducing
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noise into the system in this way is that the non-noisy data are drawn from a determin-

istic Lotka-Volterra population; however, as the result of imperfect observation, we are

uncertain about the accuracy of our observed counts. The goal, then, is to determine how

well the estimation strategy captures the true parameter values, on average, given this

type of noisy data. We can simulate measurement error in three ways: by adding noise

onto x, onto y, and onto both.

log(y) = β∗y + δ∗x− γ∗ log(x)− C∗ (2.8)

First, let’s consider introducing noise solely into the count of the prey population, x.

Substantively, this type of behavior occurs in social science when we imprecisely count the

prey population, x, but are confident in our count of y. For example, we might observe this

type of bias if we are regressing a count of internally displaced persons (IDP) on a country’s

GDP. GDP is easily quantifiable; however, an accurate count of IDP can be exceptionally

difficult, especially in war-torn areas. By adding noise only onto the x variable, we induce

errors-in-variables bias, which occurs when the independent variable (IV) is imprecisely

measured. When the imprecise variable is included as a regressor, the regression model

includes an error term that includes the difference between the actual and observed values

of the independent variable (IV). If the observed value of the IV is correlated with that

error term, endogeneity exists in the model and the coefficient estimates on x and log(x)

will be both biased and inconsistent (Stock, Watson, et al. 2007, p. 320). Additionally,

adding noise onto only x also preserves the multicollinearity in the model that is caused by

including both x and log(x) as regressors. The estimates of γ∗ and δ∗ both have a variance

inflation factor (VIF) of above 20, indicating high multicollinearity. Highly correlated

independent variables decrease the precision of the parameter estimates, can produce

estimates with the incorrect sign, and make the coefficient estimates highly sensitive to

small changes in the model. Therefore, if we add noise only onto the x variable, we expect
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to observe poor coverage of γ∗ and δ∗ and near perfect estimation of y. We observe this

behavior in the sample simulation results in Table 2.1.

Table 2.1: Sample Simulation Results

(1) (2)
Noise on x Noise on y

RMSE Coverage Bias RMSE Coverage Bias

β∗ 0.001 99.88% −4.3× 10−5 0.004 62.95% 0.003
γ∗ 0.030 3.64% −2.8× 10−2 0.017 93.41% 0.005
δ∗ 0.007 3.76% −6.7× 10−3 0.004 93.79% 0.001

10,000 Trials, random additive noise with a standard deviation of 0.15.

Adding noise solely onto the predator population, y, reduces the precision of the entire

model by preserving the endogeneity that is induced by including y on both the left and

right hand side of the linear model. Including y on the right hand side and log(y) on

the left hand side of the linear equation induces endogeneity because, when y is acting

as a predictor for a transformed version of itself, it will inevitably be correlated with the

model’s error term. Therefore, we expect reduced precision in the model overall because

endogeneity increases the standard errors of the coefficients, leading to larger confidence

intervals. Not including error on x preserves the amount of the dependent variable that

x and log(x) can explain, thus not significantly misspecifying their coefficient estimates.

Finally, we can add noise onto both x and y, which is the strategy I use for the full

simulation. This is the preferable path forward for two reasons. First, it preserves the

endogeneity and multicollinearity built into the model by including y on both sides of

the equation as well as including x in two ways on the right hand side of the equation.

Therefore, we remain faithful to the structure of the linear model as it’s written. Second,

theoretically, including error in both x and y aligns with the fact that social science time

series data is rarely perfectly measured, especially when the variables of interest only

tacitly measure the phenomena. While this is the most faithful way of including error

35



into the linear model, it does pose challenges. Because of the aforementioned endogeneity

and multicollinearity concerns, we will expect to observe both bias and reduced coverage in

the simulation results. This is an important focal point and implies one of two hypotheses

about the quality of the estimation strategy. First, the estimator itself could be flawed:

inducing endogeneity by rearranging the implicit relationship with log(y) on the left hand

side of the linear equation is, in fact, a poor way to approach model estimation. Second,

it could also suggest that adding noise post-hoc into x and y is a poor way to think about

error in the model. In other words, it might make more sense to introduce error into the

creation of x and y instead of adding it after the fact. In other words, the way we think

about noise in this model is important and isn’t necessarily straightforward.

Figure 2.2: The Effect of Different Levels of Random Noise

(a) No Noise (b) sd = 0.05

(c) sd = 0.15 (d) sd = 0.30
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The final determination we must make with regard to noise before proceeding is how

much noise to introduce into the system. Because the estimator is based on the implicit

relationship between x and y in the phase-space, in order to visualize the noise, Figure 2.2

plots the phase-space plots of x versus y with no noise and then at three different levels

of random noise. This visualization is important to contextualize how noise impacts

the relationship between predator and prey and reflects the noisiness of real world data.

For the purposes of this simulation, I have chosen to generate noise from a multivariate

random normal distribution with a standard deviation of 0.05 and 0.15.

In order to demonstrate the efficacy and ease of this estimation strategy, I conduct

four independent simulations at different levels of noise and with different numbers of

covariates. The simulations are carried out in several steps: data generation, simulation,

and output. Each simulation is run, in full, four times: once each for number of external

variables included in the simulation (either zero or one) and, within those, once for each

level of noise. I will begin by discussing the simulation that includes zero covariates.

The simulation data were generated in several steps. In the case of the zero-covariate

simulation, first, I assign fixed values for the four LV parameters: α = 1, β∗ = 0.4, γ∗ =

0.4, and δ∗ = 0.1. The simulation’s goal is to generate parameters that, as accurately

as possible, produce the output data from the ‘ode’ command in the ‘deSolve’ package

in R. The ‘ode’ command takes several inputs: starting values of the parameters, initial

state (population at t = 0), and number of time steps over which to estimate. The

‘ode’ command is a built-in solver for ordinary differential equations. I utilize the ‘lsode’

solver built into the package (Soetaert, Petzoldt, and Setzer 2010). In cases of abnormal

parameters or extinction, the Lotka-Volterra system of equations is stiff. The default

solver for the ‘ode’ function is the ‘lsoda’ function which makes a choice to evaluate the

system as stiff or non-stiff. However, to have greater control over the solver, I chose to

utilize ‘lsode,’ which allows users to specify whether the system is stiff or not (Soetaert,

Petzoldt, and Setzer 2010).
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Figure 2.3: Lotka-Volterra Output, Zero External Variables

(a) Estimated Population Level (b) Phase-Space Plot with Steady State

The actual Lotka-Volterra equations are built into a custom Lotka-Volterra model

function, ‘LotVmod.’ The initial state is equal to (x = 5, y = 4), time is equal to 200

steps, and Pars variable includes the values of the four Lotka-Volterra parameters. The

function returns 200 observations for the populations of x and y. Figure 2.3a displays the

output of the data generation process with zero covariates and Figure 2.3b displays the

phase-space plot of the simulated data along with the steady state at {y = 2.5, x = 4.0}

After data generation, the actual simulation begins.7. For each of 100,000 trials, the

simulation adds random noise into both x and y consistent with the above discussion.

I then run the linear model and extract standard errors and coefficient estimates to be

used later for the calculation of fit statistics including root mean squared error (RMSE),

coverage, and bias. The simulation ends by producing an output report including the

the RMSE and the percent coverage. Those results, for both levels of noise, are available

in Table 2.2. Notice that, even for very small amounts of noise, the estimator does not

achieve 95% coverage, further highlighting the issues of endogeneity identified previously.

The final simulation includes a single, exogenous dummy covariate. The data for the

single covariate simulation were generated in several different steps and is unique from

7See Appendix A for the annotated R code of the zero-covariate simulation
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Table 2.2: Simulation Results, No External Variables

(1) (2)
sd = 0.05 sd = 0.15

RMSE Coverage Bias RMSE Coverage Bias

β∗ 0.001 90.47% 0.0003 0.004 68.71% 0.003
γ∗ 0.006 90.78% −0.003 0.029 67.79% −0.023
δ∗ 0.002 92.34% −0.001 0.007 72.92% −0.005

the zero-covariate simulation in various ways. First, in order to include an exogenous

variable into the simulation, I adjust the equation to include that external variable as

an interaction term in the calculation of the three non-fixed parameters. Including the

exogenous variable as an interaction term makes each non-fixed parameter a function of

the external variable. In other words, non-fixed parameters are a function of changes

in the external variable (Stock, Watson, et al. 2007). Therefore, the three non-fixed

coefficients reflect the effects of both intrinsic fluctuations in population and variations in

exogenous covariate. In order to pass the exogenous variable through the regression, we

also must include a categorical indicator, µ, that serves to identify ‘eras’, or periods where

the value of zt switches from 0 to 1. Although it is not necessarily required to subtract

out the interaction term, I have chosen to do so because, when it is included, it negates

one of the era dummies due to perfect collinearity. It is important to note that, the more

eras that are included in dummy variable µ, the more degrees of freedom are consumed.

This will become especially important when applying this method to real-world data,

particularly if that data has a small sample size and will be addressed more in-depth in

following chapters. The linear model associated with the single-covariate simulation is

available in Equation 2.9.

α log(y) = β̂y + θβyz + δ̂x+ θδxz − γ̂ log(x) + θγ log(x)z − z + µ− C∗ (2.9)
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Figure 2.4: Lotka-Volterra Output, One External Variable

(a) Estimated Population Level (b) Phase-Space Plot with Steady States

The estimation procedure begins by assigning known values to the main effects coeffi-

cients on the parameters (α = 1, β̂ = 0.4, γ̂ = 0.4, and δ̂ = 0.2) as well as the coefficients

on the interaction term (θβ = 0.1, θγ = 0.1, and θδ = 0.1). Next, I generated a random

dummy variable, zt, to serve as the external variable. I then generated the simulation

data by running the ‘ode’ command within a loop that operated one time-step at a time.

Each iteration of the loop used the output from the previous iteration as the starting

state value to be fed into the ODE solver. This allows the corresponding value of the

exogenous variable to go into the calculation of the equivalent population value at each

time step. The state and time variables remain constant between the zero and one co-

variate simulations. Figure 2.4a displays the output of the data generation process with

one covariate and Figure 2.4b shows the phase-space plot of that data.

Note that in Figure 2.4b, the phase-space plot is significantly less elegant in appear-

ance than that of the zero-covariate simulation. This is because, when we incorporate

an exogenous covariate, the steady state fluctuates and the phase-space becomes more

complicated. When populations shift as the result of a change in zt, the steady state

shifts as well: when zt = 0, the steady state is at {y = 2.5, x = 4.0} and when zt = 1, the

steady state is at {y = 2, x = 2.5}.
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I again test the estimator across 100,000 trials and, like in the zero-covariate simula-

tion, random noise is added in to the deterministic values of x and y at the beginning of

each trial. Notice that, while it is still evident that the phase plots are getting noisier,

the change between levels of noise is not as dramatic as in the zero-covariate simulation.

Figure 2.5: The Effect of Different Levels of Random Noise

(a) No Noise (b) sd = 0.05

(c) sd = 0.15 (d) sd = 0.30

Each trial then calculates the linear model and extracts the standard errors and RMSE.

The results for the single covariate simulation, for both levels of noise, are available in

Table 2.3. Notice, again, that we have coverage below 95% as well as bias in the estimates.

Both are the direct result of the endogeneity built into the model.
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Table 2.3: Simulation Results, One External Variable

(1) (2)
sd = 0.05 sd = 0.15

RMSE Coverage Bias RMSE Coverage Bias

β̂ 0.006 88.20% −0.001 0.018 79.55% −0.008
γ̂ 0.012 89.15% 0.196 0.039 80.22% −0.026

δ̂ 0.004 87.39% −0.201 0.014 70.26% −0.010

θβ 0.014 81.12% −0.008 0.066 35.18% −0.057
θγ 0.035 82.31% −0.015 0.148 48.98% −0.123
θδ 0.013 78.72% −0.007 0.059 37.26% −0.051

2.8 Discussion

This new estimation strategy is a new, substantively interesting, easy, and effective way to

estimate Lotka-Volterra models that will advance political science methodology in several

ways. First, and most importantly, this new estimation method is user-friendly and

familiar in its execution: an interested researcher simply runs the linear model the same

as any other regression, directly interpreting the regression coefficients as the parameter

values that correspond to the four Lotka-Volterra parameters. However, there are two

major issues with the estimator in its current form. First, the manner of including noise

into the estimation strategy is only one way of introducing uncertainty into the model.

This, then, leads to two clear paths forward for this project. While it is intuitive to

political scientists to include noise on the data itself, we can also conceptualize uncertainty

in terms of the four Lotka-Volterra parameters and also represents one major way forward

for this project. We could also explore the use of stochastic differential equations to

introduce noise in to the DGP of the predator and prey populations.

The most glaring problem in this model is caused by the endogeneity induced by

including log(y) on the left hand side of the linear model and y on the right hand side. This
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leads to biased parameter estimates and poor precision from inflated standard errors. In

order to address this concern, future work might explore ways to address the endogeneity.

Until that point, it is important to keep in mind that the parameter estimates obtained

from this model applied to real-world data are likely incorrect, to some degree. Finally,

it would be valuable both theoretically and empirically to assess estimators beyond OLS

such as non-linear least squares. This would be a beneficial next step, especially when we

can reasonably assume that the relationship between predator and prey is not linear.

Despite these issues in the estimation strategy, LV as an approach is beneficial for

describing dynamic processes in political science. Endogeneity caused by feedback loops

is often found in time series data and may presents challenges to estimating more tradi-

tional time series models. Not only does endogeneity introduce bias into linear models,

but it violates the assumption of the exogeneity of independent variables that underlies

regression analysis. However, Lotka-Volterra is a useful, theoretically robust alternative

that directly models endogeneity and highly interdependent variables. Further, feedback

loops are not a concern within the Lotka-Volterra paradigm because this method directly

models them. The Lotka-Volterra system of equations conceptually approaches two vari-

ables as not only interdependent, but directly responsible for changes in one another’s

population. In other words, it is an explicit model of feedback. The model’s use of differ-

ential equations allows the researcher to directly model how two or more interdependent

variables change over time and in relation to one another, thus providing much needed

flexibility in some of the intractable assumptions underlying other methods of time se-

ries analysis. While Lotka-Volterra does not replace any current methods of time series

analysis, it does offer a new perspective and can broaden our understanding of complex,

competitive data sets.

Finally, this method generates previously unresearched, but substantively interesting,

values of interest. Extinction, fixed points, and futures are all of substantive interest to

researchers in the social sciences. The steady state is of particular interest when applied
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to competitive political science time series data. If we observe a relationship moving from

volatility towards stability, the underlying mechanism may be a Lotka-Volterra process

where the predator and prey are moving towards the steady state. This is useful for

prediction by estimating what types of stimuli might interrupt volatile processes and be-

gin shifting the relationship towards stability. For example, alluding to the analysis in

the upcoming chapters, this method might allow researchers to more accurately forecast

how terrorist cells are most likely to respond to the implementation of critical legisla-

tion, changes in international trade, or military decisions by the governments actively

fighting against them. Lotka-Volterra, then, is a new addition to the time series analysis

toolkit. I intend to demonstrate the assertion that the estimation strategy developed

earlier in this chapter is a useful and user-friendly way of advancing the understanding

of several literatures within the social sciences. Examples might include literatures that

deal with interdependent variables such as studies of domestic terrorism, voting behavior,

and international trade.

2.9 Conclusion

In this chapter, I introduced a new estimation strategy for the Lotka-Volterra set of

ordinary differential equations that can be used as an alternative method of analyzing

time series data. Despite previous interest in this specific type of modeling, interest has

dwindled over the last thirty years, likely due to the difficult and cumbersome estimation

strategies previously indicated that made this approach difficult to apply. I have demon-

strated, through the use of four simulations, that estimating these models can be a simple

and effective process.

The remaining two chapters introduce and explore the role that the Generalized Lotka-

Volterra method can play in expanding the conclusions of two different articles, one in

American politics and the other in transnational terrorism. Each of the two articles
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employs one of the two main time series analysis methods discussed earlier in this chapter.

Ura (2014) utilizes an ECM to assess the relationship between the Supreme Court of

the US and public opinion while Jaeger and Paserman (2008) utilize a VAR model to

characterize and analyze the Israeli-Palestinian relationship during the Second Intifada. I

intend to build upon the conclusions drawn by these scholars by using the Lotka-Volterra

approach to answer new questions. The results of these two case studies will aim to

demonstrate the model’s utility to analyzing real-world political science time series data.
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Chapter 3

Case Study 1: Public Mood and Supreme Court

Decision-making

There is an academically established and significant relationship between public opin-

ion and Supreme Court decision-making in the United States. However, there is an

ongoing debate among scholars about the underlying mechanism driving the relationship.

The field is generally split between those who advocate for a thermostatic model of pub-

lic opinion and those advocating legitimation theory. Ura (2014) was the first to make

an attempt to settle the debate between these two theories by empirically assessing the

competing predictions of the two models. In order to achieve this end, Ura utilizes Error

Correction Models (ECM) because they measure both short- and long-term effects for

each independent variable in the model (Ura 2014a, pg. 111). Ultimately, Ura found

evidence to support thermostatic behavior in the short-term and legitimation behavior

over long periods of time. Ura’s work is often cited in ongoing research on Supreme Court

legitimacy, decision-making, and the relationship between SCOTUS’ rulings and public

opinion.

I chose this particular study because it is a conceptually good fit for Lotka-Volterra

(LV) modeling. As discussed in Chapter 2, the most important criteria in determining

whether or not LV is a good fit for a particular relationship is identifying whether the

two populations of interest are, in fact, in direct competition and whether they directly

influence the growth and decline of one another. Because, in this case, we are discussing

composite indices, it does not make sense to talk about the goals of one population versus

the other. However, it does make sense to think about public mood and Supreme Court

behavior as a chicken-and-egg problem: we know public mood is responsive to the behavior
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of the government, but the government is also responsive to public opinion. If this is true,

LV is a theoretically appropriate model choice. Finally, as discussed in Chapter 2, a

Granger test on the direction of causality in the data rejects the null hypothesis and

indicates bidirectional causality.

In this chapter, I briefly introduce the debate within the literature surrounding the

characterization of the relationship between public mood and SCOTUS decision making.

I follow this with an exploration of Ura’s methods and conclusions followed by an intro-

duction of the Lotka-Volterra method as an alternative approach to analyzing his data. To

be clear, this new analysis does not seek to disprove nor critique Ura’s methods. Instead,

it serves as an extension of Ura’s work by attempting to draw new conclusions and to

answer new questions about the competitive relationship between Supreme Court decision

making and fluctuations in public opinion. I find that LV is a robust way of modeling

the dynamic relationship between Supreme Court behavior and public mood; however,

due the issues with estimation strategy identified in Chapter 2, largely endogeneity, the

parameter estimates in this chapter are biased.

3.1 Background

In 2014, there existed strong evidence and a general consensus in favor of the thermostatic

model (Erikson, MacKuen, and Stimson 2002).1 This model predicts two key behaviors.

First, that the public’s preferences regarding policy change fluctuate to some measurable

degree as the result of ongoing changes in the public policy environment. In other words,

the population is sensitive to the public policy environment and adapts their opinions

in response to fluctuations in the policy environment. According to the thermostatic

model, this reciprocal relationship between public opinion and decision-making by all

branches of the Federal government is the driving force underlying fluctuations in public

1Also see Flemming, Bohte and Wood (1997) and Stimson (1999).
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opinion (Wlezien 1995; Wlezien 1996). Therefore, the thermostatic model is responsible

for explaining at least a portion of the national government’s responsiveness to changes

in public opinion (Erikson, MacKuen, and Stimson 2002).

Second, the thermostatic model predicts a negative relationship between the ideolog-

ical direction of Supreme Court decisions and fluctuations in public opinion (Ura 2014a,

p. 110). More concretely, the relationship can be described as cyclical: as Supreme

Court opinions become more liberal, the public’s desire for more liberal policies becomes

increasingly sated, peaks, and eventually reverses and results in an increasingly conserva-

tive public mood (Ura 2014a, p. 110).

Legitimation theory directly contradicts the thermostatic model in its prediction of

the direction of causality between public mood and SCOTUS behavior. First suggested

in 1957, legitimation theory largely emerged in direct response to the thermostatic model.

The latter is traditionally applied to elected branches of government; however, public

mood behaves differently in response to the actions of political appointees as opposed

to the actions of elected officials (Dahl 1957). Legitimation theory proceeds under two

assumptions that are in direct contrast with the thermostatic model. First, the close

association of the Court to the Constitution and other powerful symbols of institutional

legitimacy and justice is strong enough to attract public attitudes towards decisions made

by the Supreme Court (Dahl 1957). In the broader scheme, this association with these

symbols has allowed the Court to retain its legitimacy among the public even when the

Court’s decisions are unpopular in the eyes of the public (Gibson and Nelson 2015, p.

173).

Second, legitimation theory predicts a positive relationship between the ideological

leanings of SCOTUS’ decisions and fluctuations in public opinion (Ura 2014a, p. 110).

Supreme Court decisions are intrinsically persuasive and, as a result, shape public atti-

tudes even on extremely polarizing and controversial issues such as abortion (Hoekstra

2003, p. 90). Over time, the effects of SCOTUS decisions accumulate, drawing public
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opinion closer in line with the Supreme Court. Especially when Court decisions are re-

flective of common trends in public opinion across issues, this cumulative effect amounts

to a change in public mood to more closely align with SCOTUS’ policy positions (Martin

and Quinn 2002; McGuire and Stimson 2004).

In order to begin the process of settling the debate between these two theories of

public opinion responsiveness to SCOTUS decision-making, Ura (2014) employs a single-

equation, bivariate error correction model (ECM) to analyze public mood between 1956

and 2009. This ECM, developed by Bardsen (1989) takes the form of Equation 3.1:

∆Yt = α0 + α∗1Yt−1 + β∗1∆Xt + β∗2Xt−1 + εt (3.1)

“where α1 indicates the speed of the re-equilibration of Y to a deviation from its

equilibrium with X, β2 reflects the long-run effect of changes in X on Y , and β1 indicates

the contemporaneous relationship between a change in X and and a change in Y ” (Ura

2014a, p. 116).

Ura’s justification for the decision to utilize an ECM over an autoregressive distributed

lag model is four-fold. First, ECMs indicate both the direction and the magnitude of

each independent variable on shifts in the public’s mood. Second, error correction models

serve to measure the temporal dynamics of predictive relationships (Ura 2014a, p. 116).

Third, ECMs implemented via OLS have proven successful in identifying underlying data

generation processes even when sample sizes are small (Keele and DeBoef 2008). Finally,

Ura is speaking to the debate that ECMs, while traditionally applied to cointegrated time

series data, may be effectively utilized to model data with no cointegration, regardless of

the data’s stationarity (Keele and DeBoef 2008).

Ura’s data consists of the dependent variable, public mood, as well as four indicators

he theorizes contribute to changes in public mood. The mood variable is an index that

measures the liberalism of public opinion that is drawn directly from Stimson’s (2009)
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annual mood index. Figure 3.1 displays the two key variables of interest, standardized

between 0 and 1 in order to more clearly show the relationship at each period of time.

Figure 3.1: Standardized Time Series Plot of the Two Variables of Interest

The first two independent variables, inflation and unemployment, are very straightfor-

ward measurements, both derived from Bureau of Labor and Statistics reports. Inflation

“is the change in the Consumer Price Index (January to December) in each year” (Ura

2014a, p. 116). Unemployment is the “average annual rate of unemployment” (Ura 2014a,

p. 116).

The remaining two independent variables are more complex in structure. The third

independent variable, the public policy index, begins with Mayhew’s (1991, 2011) list of

“major or important pieces of legislation passed in each year (selected based on media

coverage of Congress” (Ura 2014a, p. 116). Each law is coded as either liberal or conser-

vative, and the net number of laws that are coded as liberal serve as an annual indicator

of the policy liberalism created by Congress. Once Ura determined that value, he utilized

it alongside the President’s policy liberalism to calculate the final index. The final index
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scores “...each year’s policy outputs as the difference between its value and the mean of

the annual series an then taking the sum of the resulting series at each point in time”

(Ura 2014a, p. 116).

The final independent variable, named the ‘caselaw index,’ is an aggregate index of

the ideological content of SCOTUS’ decisions (Ura 2014a, p. 116). Mirroring the policy

index, Ura (2014) identifies important Supreme Court cases, defined by Epstein and Segal

(2000) as those whose decisions are printed on the front page of the New York Times.

Ura proceeds to count the total number of important decisions per year. Finally, Ura

“construct[s] a cumulative measure of liberalism in the Supreme Court’s decisions by

rescaling the net number of liberal decisions in each period as its deviation from the mean

value of the annual Supreme Court liberalism series and taking the sum of the series at

each point in time” (Ura 2014a, p. 116). Table 3.1 displays the basic descriptive statistics

of each variable in the model.

Table 3.1: Descriptive Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Mood 55 58.3 4.2 50.0 54.9 60.9 66.7
Policy Index 55 19.2 17.7 −13.6 −1.2 34.1 40.8
Unemployment 55 5.8 1.4 3.5 4.8 6.8 9.7
Inflation 55 3.9 2.9 0.1 1.9 4.5 13.3
Caselaw Index 55 43.8 36.8 −1.4 6.8 74.0 114.5

In order to reflect the theoretical claims of the thermostatic model, the caselaw index

and policy index are cumulative measures of policymaking. The thermostatic model,

which predicts that the strength of the public’s desire for changes in policy liberalism

“is, in part, a function of the total, issue-by-issue divergence between public policy and

the public’s preferences” (Ura 2014a, p. 116). Legitimation theory, on the other hand,

“predicts that the Supreme Court may support or undermine policies by validating or

vetoing them in its decisions” (Ura 2014a, p. 116). Ultimately, the justification for
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utilizing composite indices for these two variables is the idea that, in both theories, the

total liberalism or conservatism of SCOTUS’ rulings is what should ultimately act on

mood (Ura 2014a, p. 116).

Ura performed his analysis in Stata; however, because my own analysis is conducted

in R, I precisely replicated the results presented in Table 1 (Ura 2014a, p. 118). In a

minimal amount of code, I used the ‘ecm’ R package to estimate (Bansal 2019). The ‘ecm’

package uses a modified version of the traditional ECM:

∆Y = β0 + β1∆x1,t + ...+ βi∆xi,t + γyt−1 + γ1x1,t−1 + ...+ γixi,t−1, (3.2)

whereγi = −γαi

This modification is necessary in order to model the ECM using the OLS function in

base R (Bansal 2019). Therefore, this version of the equation falls perfectly in line with

Ura’s own analysis, which is implemented by “estimating an OLS model of the first dif-

ference of mood expressed as a function of the first lag of mood (error correction) as well

as the first difference (short-run effect) and first lag (long-run effect) of the caselaw index

(Supreme Court liberalism), policy (congressional liberalism), inflation, and unemploy-

ment” (Ura 2014a, p.117). A reproduction of the majority of Ura’s results are available

in Table 3.2 side-by-side the results produced by running the same model in R.

One important potential caveat that Ura (2014) notes is a legitimate concern about the

endogeneity of Supreme Court decision-making and public mood. In order to account for

that endogeneity, Ura reestimates the ECM using instrumental variable (IV) regression.

Because this model produced “comparable estimates of the short-run and long-run effects

of Supreme Court liberalism for public mood” (Ura 2014a, p. 118). These estimates are

indicative of endogeneity having no substantial effect on Ura’s conclusions drawn from the

OLS solution to the ECM. Consequently, I have omitted those results from Table 3.2.2

2See Ura (2014m p. 118) for the full table.
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Table 3.2: Error Correction Model of Annual Mood (1956-2009): Replication Results

Predictors (Expected Sign) Effects (Ura 2014)† Effects (Replication)

Long-Run Effects
Caselaw Indext−1 (+/−) 0.02* 0.024*

(0.01) (0.011)
Policy Indext−1 (−) -0.07* -0.073*

(0.02) (0.021)
Inflationt−1 (−) -0.29* -0.291*

(0.13) (0.127)
Unemploymentt−1 (+) -0.24 -0.238

(0.19) (0.19)
Short-Run Effects
∆ Caselaw Indext (+/−) -0.09* -0.092*

(0.04) (0.039)
∆ Policy Indext (+) 0.07 0.068

(0.07) (0.072)
∆ Inflationt (−) -0.30* -0.305*

(0.13) (0.129)
∆ Unemploymentt−1 (+) -0.23‡ -0.321

(0.19) (0.269)
Error Correction and Constant
Error Correction (Moodt−1) -0.28* -0.284*

(0.08) (0.078)
Constant 19.49* * 19.492*

(5.14) (5.142)
R2 0.42 0.42

Note: Standard errors in parentheses. N = 54

† Table replicated from Table 1 on pg. 118 of Ura (2014).

‡ The results table in (Ura 2014a, p. 118) list the effect of ∆ Unemploymentt−1 (+) as -0.23 (0.19); however, rerunning
Ura’s original code in Stata estimates the effect to be equal to -0.32 (0.269), thus matching the replication results in R.

The results of Ura’s ECMs indicate the presence of both short- and long-term relation-

ships in the data. In the short term, the negative coefficient on the relationship between

SCOTUS liberalism and public mood supports the thermostatic model. However, the pos-

itive long-term effect lends credence to the legitimization response hypothesis. In other

words, the relationship between the Supreme Court and the public mood is characterized

by a complex interaction. Although there is likely to be public backlash immediately fol-
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lowing SCOTUS decisions, in the long-run, the public mood begins to shift closer toward

the ideological position of the court (Ura 2014a, p. 118).

Ura’s (2014) work has been integral in informing several research areas. First, Ura

informs the literature on the legitimacy of the Supreme Court, specifically in regards

to how public opinion reacts to unpopular Court decisions (Gibson and Nelson 2015).

Generally speaking, SCOTUS retains enough legitimacy among the public that, despite

public dissatisfaction with any single ruling, its legitimacy does not waver (Gibson and

Nelson 2016).

Second, Ura has advanced research on how the Court articulates and hands down rul-

ings and opinions (Black, Owens, Wedeking, and Wohlfarth 2016b). Specifically, this area

of research focuses on how Supreme Court Justices alter the clarity of their written opin-

ions in response to the anticipated reaction of public opinion (Black, Owens, Wedeking,

and Wohlfarth 2016b). The argument that Justices write clearer, more concise, and more

accessible opinions when their rulings conflict with popular public sentiment supports

the idea that public opinion does, in fact, directly influence the Court (Black, Owens,

Wedeking, and Wohlfarth 2016a).

Finally, Ura (2014) has contributed to research on the complex relationship between

SCOTUS and public opinion. Bryan and Kromphardt (2016) cite Ura’s work in arguing

that individual SCOTUS Justices are uniquely sensitive to public opinion, especially when

public support of SCOTUS is low and/or when the salience of any given case is high. More

broadly, the overall public’s view of the Court’s legitimacy does not necessarily decline

in response to individual opinions that are contrary to the interests of individuals (Badas

2016).

To continue to move the debate forward, I suggest the use of Lotka-Volterra as a means

of answering new, interesting questions about the dynamic relationship between SCOTUS

and public mood. To be clear, I am not suggesting LV as a means of improving upon

Ura’s methods, but as a way of generating several new quantities of interest. First, Lotka-
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Volterra can identify the steady-state of the Supreme Court - public opinion relationship.

In other words, Lotka-Volterra offers another way to measure under what conditions the

two variables balance each other out and exist in more or less stable equilibrium. This is

conceptually beneficial because it allows us to explore the environmental conditions under

which there is relative calm between public mood and Supreme Court behavior.

On the other side of the same coin, LV is poised to estimate the conditions under which

SCOTUS is a driver of public opinion or vice versa, and whether a positive or negative

relationship exists between the two. This is simply another way to speak to the debate

between the thermostatic model and legitimation theory. By approaching the debate from

a different angle, I suggest we might be able to provide further evidence in favor of Ura’s

conclusions. This quality of LV makes it a useful forecasting tool by allowing researchers

to evaluate what may have occurred as the result of different decisions in the past and

how fluctuations in decision making in the future relate to public opinion.

Finally, LV is another way to address the endogeneity that theoretically exists in Ura’s

data because Lotka-Volterra is, intrinsically, a model of endogeneity.

3.2 The LV Approach to Analyzing the Supreme Court-Public

Mood Relationship

The first step in applying the Lotka-Volterra method to Ura’s (2014) data, is to load,

arrange, and clean the original data (Ura 2014b). The original data file is in Stata

format; therefore, using Stata, I convert the data file into a comma-separated file, which

is more easily and accurately loaded into and manipulated in R. In order to demonstrate

the efficacy of the LV method using Ura’s data, I only include one covariate. While this

does present a significant limitation in my conclusions, the goal of this section is two-

fold. First, to demonstrate the ease in which this method can be applied to real-world

data. Second, I present cursory values of interest that are unique to the Lotka-Volterra
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method such as steady state. Future iterations of this study will include all three external

covariates that Ura includes in his analysis.

In Ura’s ECM, the dependent variable is Mood; therefore, in line with the OLS es-

timation strategy I utilize to estimate the LV parameters, I have assigned Mood to the

predator and Ura’s independent variable of interest, Policy, to the prey. Because the OLS

estimation strategy I employ involves the logistic transformation of both of these popula-

tions, both must be greater than 0. Policy, however, has a minimum value of about −14;

therefore, I use a simple transformation to uniformly increase the variable’s value. This

is a valid option because policy is an index and, as long as we preserve the scale of the

variable and the relationships between observations, transforming it does not change the

variable’s underlying meaning.

Policy = policy −min(policy) + 1 (3.3)

Equation 3.4 is the regression formula used to estimate the parameter values with one

external variable.

log(y) = β̂y + θβz1yz1 − γ̂ log(x)− θγz1 log(x)z1 + δ̂x+ θδz1xz1 − z1 + µ− C∗ (3.4)

where:

� x and y are the initial starting values for Policy (prey) and Mood (predator), re-

spectively;

� β̂, γ̂, and δ̂ are the main effects coefficients on the traditional LV parameters divided

by α;

� θβ, θγ, and θδ are the coefficients on the independent variable and also divided by

α;
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� z1t is the value of the the exogenous covariate; and

� µ is a control dummy variable that indicates when the value of zt changes.

The value of both Mood and Policy at t = 0 are assigned as the starting state values for

prey and predator, respectively. Finally, I also include one of three exogenous variables

used in Ura’s analysis: inflation. However, because the estimation method is carried

out using OLS and the coefficients on those variables are the quantities of interest, the

exogenous variable is treated as a binary dummy coefficient. A binary variable interaction

regression model is the appropriate measurement tool in this case because the coefficients

on the exogenous variables are interdependent, where the estimated “effect of changing

one of the binary independent variables...” influences “...the value of the other binary

variable[s]” (Stock, Watson, et al. 2007, p. 278). This estimation strategy also allows

me to effectively control the output of the regression and avoid a veritable explosion of

coefficient values. To assign binary values, I assign values below each variable’s median as

equal to 0 and those above equal to 1. Table 3.3 displays a summary of the transformed

variables. In the estimation, the variables are treated as factors.

Table 3.3: Summary of Manipulated Covariates

Variable Median Value Nz = 0 Nz = 1

Inflation 3.30 27 28
Caselaw Index 34.33 27 28
Unemployment Rate 5.60 27 28

The inclusion of only 55 observations can be problematic and reduce precision by

widening the confidence intervals and offsetting some of the problems with endogeneity.

However, this does not mean we get better estimates. Instead, we likely have worse

estimates because of such a small N . While sample size is an issue, the most obvious

concern with this estimation strategy is the endogeneity introduced by including y on

both sides of the regression equation. Endogeneity biases our coefficient estimates and
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inflates standard errors, reducing the precision of the model. While we can conceive some

workarounds or remedies to the issue, these are outside the scope of this particular project.

However, in the discussion section below, I touch on some of these paths forward.

Once the data is ready to be applied to the Lotka-Volterra method, I run the linear

model and extract and assign the coefficient values that correspond to each parameter.

However, it is important to note: the OLS estimator does not provide an estimate for the

parameter α. Therefore, if we are interested in prediction or steady state and extinction

conditions, we must estimate α. In order to achieve this, I construct an optimization

routine that carries out several steps. The routine is fed a random initial value of α. Each

iteration of the optimizer divides the parameter estimates obtained from the linear model

by the updated value of α, solves the pair of ODE, and then calculates the sum of squared

errors (SSE) between the observed data and the predicted values obtained from solving

the LV system. The optimizer concludes when it has minimized the SSE. Estimates for

the exogenous covariates are available in Table 3.4. The results in Table 3.4 reflect the

raw estimates of the coefficients and preserve the directionality estimated by the linear

model. However, before inserting the parameters into the Lotka-Volterra equation, we

must reverse the signs on γ̂ and θγ. This is because, in the linear model in Equation 3.4,

γ and θγ, both have negative signs.

It is imperative to note that Model 2 represents a special case because the coefficient on

δ̂ is negative and the coefficient on γ̂ is positive. This violates the most basic assumption

of non-negative parameters. A negative δ̂ describes a negative growth rate of the predator.

With a negative growth rate and positive death rate, we expect exponential decline of

the predator population. Because the populations are constrained [0,∞), if any of the

parameters fall below 0, so do population values, thus further evidence that this ratio

of parameters leads to extinction. Substantively, this ratio of parameters suggests an

unstable system where, regardless of the population of the prey, the predator will quickly

go extinct and the prey will grow exponentially. Within a system with this specification of
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Table 3.4: Estimated L-V Coefficients

(1) (2) (3) (4)
Coefficient

α 0.95 0.93 0.92 0.98

β̂ 0.71 0.67 0.70 0.62
(0.010) (0.017) (0.019) (0.020)

θβinflation - 0.11 - -
- (0.022) - -

θβcaselaw - - 0.08 -
- - (0.023) -

θβunemployment - - - 0.14
- - - (0.024)

γ̂ -0.06 0.48 -0.22 -0.23
(0.151) (0.377) (0.179) (0.273)

θγinflation - 0.35 - -
- (0.869) - -

θγcaselaw - - -0.04 -
- - (0.400) -

θγunemployment - - - 0.05
- - - (0.772)

δ̂ 0.04 -0.38 0.14 0.16
(0.102) (0.277) (0.121) (0.180)

θδinflation - 0.32 - -
- (0.511) - -

θδcaselaw - - 0.07 -
- - (0.260) -

θδunemployment - - - -0.08
- - - (0.432)

Steady State {y, x}
0 Covariates {1.33, 1.62} - - -

1 Covariate
zt = 0 - {1.38, 1.27} {1.30, 1.61} {1.58, 1.44}
zt = 1 - {1.19, 2.40} {1.18, 1.25} {1.29, 2.33}

Standard Errors in Parentheses

coefficients, there exists no dependence of one population upon the other. In other words,

this particular specification of Lotka-Volterra described above is likely not an appropriate
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model for this particular configuration of predictors. In the case of Model 2, this might

be occurring because inflation and other economic factors have a major impact on public

mood that does not, in turn, directly impact Supreme Court behavior. We can observe

this behavior in the estimates of the θ coefficients: the estimate of θβ is significantly lower

than the estimates of θγ and θδ indicating a much stronger effect on the coefficients for

public mood than for the Supreme Court.

Figure 3.2: Actual vs. Predicted Values: Zero Covariates

Model 1: Zero Covariates

In order to test the fit of the parameter estimates, I solve the Lotka-Volterra equations

using the estimated parameter values and plot the predicted versus actual values of the

independent and dependent variables. Figure 3.2 plots the predicted values of Model 1,

the zero-covariate model. The predicted results indicate an inaccurate fit. Substantively

speaking, this suggests that the system is not self-perpetuating and is driven by one or

more additional covariates of interest.

This assertion is further supported by the phase-space plot of the raw data in Figure

3.3. There are two distinct orbits in the data. This phenomenon happens as the result

of a shock to or fluctuation in the system (Kinoshita 2013). Therefore, I argue that one

or more external covariates are contributing to the relationship between x and y in a

meaningful way. Visually, the need for at least one additional covariate is obvious in the
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Figure 3.3: Phase-Space Plot of Observed Data

phase-space plot of Model 1 in Figure 3.4. The regular orbit around a single fixed point

is not an accurate representation of the observed system.

Figure 3.4: Phase Plot of Model 1

Models 2-4 are efforts at identifying possible causes of the observed phase shift in the

observed data and therefore incorporate one of Ura’s (2014) original covariates: inflation

rate, caselaw index, or unemployment rate. Figure 3.5 displays the plots of the predicted

values of Models 2-4 with 95% confidence intervals. The plots of Models 3 and 4 show

periodic trends in the predicted results that seem to occasionally oscillate in tandem with

their respective known values, the predicted values are often over-estimated. However, the

most important observation from these plots is the way in which the exogenous variables
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shape the predicted values. In Figures 3.2 and 3.2, we have very crude predicted values

for both policy and mood, although Figure 3.2 seems to capture the two obvious local

maxima, albeit not very accurately.

Figure 3.5: Actual vs. Predicted Values: 1 Covariate

Model 2: Inflation

Model 3: Caselaw Index

Model 4: Unemployment Rate
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These graphs show significant differences in the shape of the predicted values. And,

while none of the models predict the actual values particularly well overall, there are

trends present in portions of each graph of predicted values that seem to reflect trends

in the actual values. For example, from t = 40 onward in Figure 3.5, we see a trough

that simultaneously appears in the actual data, whereas this behavior is nonexistent in

Figure 3.5. In other words, we can get a sense of the ways in which these exogenous

covariates interact and shape the observed population data. Substantively, this suggests

that omitted variables are important in predicting the relationship between public mood

and policy liberalism.

Figure 3.6: Phase-Space Plots with Steady States

(a) Model 3: Caselaw Index (b) Model 4: Unemployment Rate

The phase-space plots of Models 3 and 4 suggest relative stability in systems that

include either caselaw index or unemployment as predictors. Both have two obvious

orbits, with the phase plot of Model 3 demonstrating the most stability. Figure 3.6a

implies that the caselaw index does not induce any instability in the relationship and

does not demand the addition of any other covariates: there are only two orbits and both

circle around their respective fixed points with regularity.

The phase-space plot of Model 4 also suggests some measure of stability around the

two fixed points; however, there are three distinct orbits. Substantively speaking, this

suggests that the relationship between x and y is more sensitive and responsive to shifts

in the unemployment rate than to changes in the caselaw index. The orbits in Figure 3.6b
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imply that frequent or sharp changes in the unemployment rate deal a significant shock

to the system, and that the system could potentially lack sustainability in the long-term.

This volatility may potentially be corrected by including additional predictor variables in

the Lotka-Volterra model.

Figure 3.7: Phase Plot of Model 2

The graphs of the predicted values of Model 2 are interesting and unique for several

reasons. When the signs of δ̂ and γ̂ are reversed, we expect the predator to go extinct and

the prey to grow exponentially. However, we observe the opposite behavior in the plots of

the predicted values. This suggests two things. First, that the inclusion of the inflation

rate forces the system into instability and eventual collapse. This collapse is evident in

the phase-space plot of Model 2 in Figure 3.7. This suggests that, on its own, inflation

does not contribute to the self-perpetuating nature of the system. Instead, inflation alone

forces x and y apart. Substantively, this would suggest that, as inflation increases, policy

mood rapidly becomes more liberal and SCOTUS becomes more conservative and they

do not come back together. Because we do not observe this of behavior in reality, we

can conclude that inflation has a polarizing effect on the two populations that might be

mitigated by additional covariates of interest.
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3.3 Discussion

The Lotka-Volterra model’s simplest purpose is to establish how two populations interact

with one another. My extension extends this purpose to also include how exogenous

covariates affect the overall system. In utilizing the Lotka-Volterra method to analyze

Ura’s (2014) data, I find evidence that supports his conclusion that both thermostatic

and legitimation theories can (and do) exist within the same dataset and are not mutually

exclusive phenomena. In other words, the relationship between public mood and the

liberalism of SCOTUS decisions is endogenous and ebbs and flows in a cyclical way.

Further, evidence from the phase plots does imply that public mood and SCOTUS policy

liberalism exist in relative stasis throughout the study period. This suggests that the

relationship is symbiotic, where changes in one inevitably impact the other. This assertion

is consistent with a significant portion of the literature that provides evidence of the

endogeneity of public mood and Supreme Court decision making. 3

This symbiotic relationship is fragile when introducing exogenous covariates and the

system is extremely sensitive to shocks. Exogenous data included in the estimation of the

Lotka-Volterra model significantly shifts the shape of the predicted values over time and

alters the steady state(s) of the overall system. The system is so sensitive to exogenous

data that the inclusion of inflation as an indicator forced the extinction of an otherwise

stable system. That is not to say that inflation is an insignificant covariate. Instead, it

implies that inflation, on its own, results in the complete divergence of policy liberalism

and public mood. This is likely because inflation directly impacts the individuals whose

opinions compose the public mood and does not impact the Supreme Court in the same

way, thus forcing the relationship out of relative stasis. Substantively, that would suggest

that high rates of inflation are associated with a sharp, upward (liberal) trend in SCOTUS

3For further information, see Casillas, Enns, and Wholfarth (2011), McGuire and Stimson (2004) and
Stimson, MacKuen, and Erikson (1995).
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policy-making and a sharp, downward (conservative) trend in the public mood. While

this hypothesis is in line with the results of Ura’s error correction model, in order to fully

explore this hypothesis within the Lotka-Volterra context, we would need to employ a

model with inputs that are not constrained above 0.

The application described in this chapter is limited in several ways, many of which

could be addressed in extensions of this project. First, my conclusions are limited by

sample size. Ura’s (2014) data only covers 55 time points, largely due to limits on sample

size in the construction of the mood index before 1956 (Ura 2014a). While that is a long

enough study period to generate results in the basic Lotka-Volterra context, it quickly

leads to using up degrees of freedom in the estimation of the coefficients when multiple

covariates are included in the model and leads to imprecise coefficients.

Second, the real-world relationship between public mood and SCOTUS decision-

making does not occur in a vacuum, and this approach to modeling that relationship

is limited by the fact that it only incorporates covariates that affect both x and y. An

interesting extension of this project would introduce additional complexity into the envi-

ronment. An example would be conditioning the model on one or more external covariates

such as political climate, including a competition coefficient, and introducing a carrying

capacity to the environment. These types of complexities would help to remove the rela-

tionship from the vacuum and place it into the context of a more realistic environment.

Similarly, it would be scholastically interesting to add additional interaction terms to the

model in order to see how different combinations of variables affect the dynamics of the

relationship. A possible extension of this particular project might incorporate additional

covariates by modifying Equation 3.4:

α log(y) = β̂y+θβz1tyz1t+θβz2tyz2t+ ...+ δ̂x+θδz1txz2t+θδz1txz2t−z1t−z2t−z1tz2t+µ−C∗

(3.5)
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where zjt is a second exogenous variable. Following the convention for constructing

Equation 3.5, it is possible to add any number of exogenous covariates to the estimator.

Finally, as discussed in Chapter 2, the model loses a significant amount of predictive

power because we are forced to transform the exogenous covariates into binary dummy

variables for ease of computation, readability, and interpretation. Because these variables

are generalized in such a crude way, we lose significant amounts of information and are

unable to extract the most accurate coefficient estimates. Future iterations of this project

might focus on an elegant way of incorporating continuous exogenous variables into the

system.

Despite these limitations, this type of analysis can inform the broader literature on

the dynamics between public opinion and government decision making at all levels of

government. Lotka-Volterra can address questions specifically about how different local,

state, and/or national conditions impact the relationship between the public and the

government. Further, this type of model could serve to predict how changes in those

conditions would alter the system by identifying what types of shocks impact the dynamic

and cause it to shift to a new equilibrium or out of equilibrium entirely. For example, it

might be applied to the elected branches of government, specifically the legislative branch

to inform political strategists how changes in a given law or regulation might impact

public mood and possibly, by extension, a candidate’s favorability with a given sector of

the public.

3.4 Conclusion

In this chapter, I analyzed Ura’s (2014) data on the relationship between public mood

and policy liberalism of the Supreme Court using the Lotka-Volterra method. I find early

evidence to support Ura’s conclusions that both the thermostatic and legitimation models

are not necessarily mutually exclusive processes. Instead, they characterize the relation-
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ship at different periods of time. Despite several limitations to this specific approach, this

study also highlights the sensitivity of the Lotka-Volterra model to both small changes in

parameter values as well as different exogenous covariates. Substantive future work for

this case study might include narrowing down the types of SCOTUS legislation of interest,

narrowing down public mood, or examining the relationship between other branches or

levels of government and public mood.
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Chapter 4

Case Study 2: Israel and Palestine in the Second

Intifada

An ongoing debate within the broader academic dialog about the Israeli-Palestinian

conflict wrestles with whether or not the relationship can be characterized as a tit-for-tat

cycle of violence or not. Jaeger and Paserman (2008) were really the first to argue against

the notion of the relationship as inherently cyclical. They contribute directly to the debate

by empirically analyzing the relationship between Palestinian and Israeli violence during

the Second Intifada in order to determine whether the “pattern of violence in the conflict

[could]...be characterized as a cycle, in which violence by one party causes violence by the

other party and vice versa, or whether causality is unidirectional” (Jaeger and Paserman

2008, p. 1591). They ultimately conclude that, while Israel responds in a predictable way

to Palestinian violence, the reverse is not substantiated by the data.

I chose this particular case study because the debate in the literature can be charac-

terized as a debate as to whether this relationship fits the assumptions of Lotka-Volterra

or not. For those arguing that the relationship is, in fact, a cycle of violence, then the

underlying assumptions of Lotka-Volterra should not be violated. However, I find pre-

liminary evidence to support Jaeger and Paserman’s conclusions that the relationships

is, in fact, not cyclical. In fact, I argue that disparities in the goals, technology, and or-

ganization of Israel and Palestine fundamentally violate the Lotka-Volterra assumptions,

making it an inappropriate model choice. This information is interesting in an of itself,

because it highlights the need for rigorous theoretical justification prior to the selection of

the Lotka-Volterra model for competitive relationships. Finally, as discussed in Chapter

2, a Granger test on the direction of causality in the data fails reject the null hypothesis
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and does not confirm causality in either direction, lending further evidence to support the

conclusion that LV is a poor choice for this particular dataset.

In this chapter, I briefly introduce the literature that characterizes the relationship be-

tween Israel and Palestine in order to build a foundation for evaluating the characteristics

of the relationship overall during the study period. I follow this with a presentation and

analysis of Jaeger and Paserman’s (2008) methods and conclusions about the direction of

causality of violence during the Second Intifada. I then present Lotka-Volterra as both

an extension of and a different perspective in approaching their main research question.

Finally, I apply Jaeger and Paserman’s data to the Lotka-Volterra framework developed

in Chapter 2 and discuss the results. The discussion of the results focuses mainly on both

describing how and examining why, precisely, Lotka-Volterra fails when it is applied to a

case that violates its underlying assumptions.

4.1 Background

The Second (al-Aqsa) Intifada began in September 2000 following Israeli Defense Minister

Ariel Sharon’s visit to the Temple Mount (United Nations 2020). Widely considered

an affront to Islamic faith and traditions, Palestinian extremists, largely led by Hamas

and Palestine Islamic Jihad (PIJ), launched a sustained violent campaign against Israeli

targets that lasted until January 2005 (Beitler 2004). The conflict, often characterized

by a large-scale military response by Israel and sustained guerrilla warfare tactics by

Palestinian militant groups, resulted in thousands of deaths on both sides of the conflict.

In the years since the Second Intifada began, a growing body of literature has focused

on empirically analyzing the dynamics of the Israel-Palestine conflict, particularly with

regards to terrorism (Jaeger and Paserman 2008). These works largely focus on the ways

in which the conflict affects politics and economics as well as the efficacy of counter-

terrorism tactics. Getmansky and Zeitzoff (2014) examine the ways in which the threat
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of terrorism, measured as a function of changes in rocket range, affects voting behavior

in Israeli national elections. Berrebi and Klor (2006, 2008) similarly conclude that a

higher expected level of terrorism increases support of right-wing parties. Eckstein and

Tsiddon (2004) describe the effect terrorism has on financial markets, arguing that ongoing

terrorism is responsible for a decrease in per capita consumption.

The most robust section of this literature measures the direct effects of different coun-

terterrorism strategies on terrorism production (Zussman and Zussman 2006, p. 193).

Kaplan, et. al. (2005) focus on how targeted killings by Israel increases the recruitment

of Palestinians to terrorist organizations and ultimately results in an increased rate of sui-

cide bombings. On the other hand, they find that preventative arrests are a much more

effective counterterrorism tactic at reducing suicide bombings (Kaplan, Mintz, Mishal,

and Samban 2005, p. 226).

Zussman and Zussman (2006) further the debate by using the Israeli stock market as

an indicator of the efficacy of targeted killing of Palestinian terrorists. They identify a

strong reaction from the market following the assassinations of senior Palestinian leaders,

declining ”following assassinations targeting senior political leaders [and rising] following

assassinations of senior military leaders” (Zussman and Zussman 2006, p. 204). Dugan

and Chenoweth (2012) incorporate rational choice into the debate by arguing that Israel

should shift their counterterrorism response to focus on more than punishment. They

argue that states, in general, should also heavily focus on raising the expected utility of

abstaining from terrorism (Dugan and Chenoweth 2012, p. 598).

The majority of the literature is Israel-centric, focusing heavily on how terrorism, and

the conflict more broadly, shape Israeli politics and economics. However, tangential to

Dugan and Chenoweth’s use of rational choice, Berrebi and Lakdawalla (2007) model

the spatio-temporal dynamics that influence terror organizations’ choices in targets and

timing. They argue that Palestinian terrorist organizations rationally choose their targets

by considering accessibility, political importance, and Jewish population. Similarly, unless
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a potential target is a regional or national capital, the time between attacks corresponds

to a decrease in an area’s overall risk of future terrorism events.

While a significant portion of the discussion surrounding the dynamics of the conflict

falls into one of these three categories, a broader question underlies the entire debate: can

scholars even characterize the conflict as ‘cyclical?’ Several scholars have characterized

this period as a vicious cycle of violence where violence by one side begets violence by

the other side and vice versa. For example, Berrebi and Klor (2006) characterize the the

Second Intifada as fluctuating periods of relative calm and violence that ebb and flow

in a cyclical pattern. Although this is the most common understanding of the Israel-

Palestine relationship, an emerging body of literature argues that this classification is

a mischaracterization (Goldstein, Pevehouse, Gerner, and Telhami 2001). Jaeger and

Paserman (2006) argue that describing the conflict as an endless cycle of violence followed

by relative calm is a vast oversimplification of the conflict’s dynamics. Instead, they

conclude that Israel responds in a predictable and systematic way to Palestinian terrorism

while the Palestinians do not seem to act in direct response to Israeli violence (Jaeger and

Paserman 2006, p. 45).

Jaeger and Paserman (2008) build upon these articles by directly addressing the fun-

damental question of whether violence between Palestinians and Israelis “affects the inci-

dence and intensity of each side’s reaction” (Jaeger and Paserman 2008, p. 1591). They

conclude that causality flows from “violence committed by Palestinians to violence com-

mitted by Israelis, and not vice versa” (Jaeger and Paserman 2008, p. 45). In other words,

the Palestinians might deliberately randomize when they respond to Israeli violence. In

order to demonstrate these conclusions, they model Israeli and Palestinian violence be-

tween September 2000 and January 2005 using a series of Vector Autoregression models

(VAR).

The main data of interest was collected from B’Tselem and includes a comprehensive

listing of every fatality from both sides during the Second Intifada (B’Tselem 2020). Of
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Table 4.1: Descriptive Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Palestinian Fatalities 53 61.6 46.6 4 37 66 250
Israeli Fatalities 53 18.8 19.4 1 8 27 125
Barrier Length (100 km) 53 61.9 81.1 0 0 167.12 197.9

the 4,238 fatalities included in the final dataset, 994 are Israeli and 3,244 are Palestinian.

The Israeli data “includes all civilian and members of the security forces killed during

[the study] period, either in Israel...or in the Territories, as well as foreign civilians killed

by Palestinians. The Palestinian fatality count includes all civilians and members of the

security forces, as well as foreign civilians killed by Israeli security forces and civilians”

(Jaeger and Paserman 2008, p. 1592). Substantively speaking, the number of Palestinian

fatalities is an indicator of Israeli violence and vice versa. The authors also subdivide the

study period into seven unique periods.1 Figure 4.1 displays the monthly fatalities on

both sides and the seven phases of the conflict.

The final covariate of interest is the length of the Israeli-built separation barrier that

separates Israel from much of the West Bank. Construction of the barrier began in 2002

and its purpose and route remain hotly debated between supporters and opponents (Just

Vision 2020).2 The data for this covariate was derived from data provided by the Israeli

Ministry of defense based on the date of completion and length of each segment (Jaeger

and Paserman 2008).

Jaeger and Paserman identify three main, underlying factors that might drive the

conflict: incapacitation, deterrence, and vengeance. In other words, violence by one side

works in one of three ways. First, violence by one side could limit its opponent’s ability

to retaliate. Second, violence by one side could cause sufficient fear in the opponent to

deter future violence. Finally, violence could cause the opponent to retaliate (Jaeger and

1Jaeger and Paserman (2005) provide a detailed description of each of these periods.
2Also see B’Tselem (2017).
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Figure 4.1: Monthly Fatalities

Paserman 2008, p. 1593). In order to model these dynamic links, the authors utilize a

VAR framework, available in Equation 4.1

Palt
Isrt

 = A0 + A1

Palt−1

Isrt−1

+ ...+ Ap

Palt−p
Isrt−p

+BXt + εt, (4.1)

“where the Aj’s and B are matrices of coefficients, Xt is a vector of exogenous variables

that may shift the reaction function up or down, and εt is the vector error term” (Jaeger

and Paserman 2008, p. 1594). The dependent variable in the reaction function is the

number of fatalities of the opposite group. The VAR is is specified two ways. In the

first VAR, Palt and Isrt are dummy variables representing whether or not a fatality

occurred on day t. In the second specification, Palt and Isrt are equal to aggregate

number of fatalities for any given day. “All models [were] estimated equation by equation
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with ordinary least squares and heteroskedasticity-consistent standard errors” (Jaeger and

Paserman 2008, p. 1594). However, before executing the VAR models, the authors present

two nonparametric impulse response functions (IRF) for Israel and Palestine. They are

replicated in Equations 4.2 and 4.3, respectively, “where Ps and Is are the number of

Palestinian and Israeli fatalities on day s (Jaeger and Paserman 2008, p. 1595).

IsrRFt =


∑

s:Is>0

Is∑
s:Is>0

1

−1


∑
s:Is−t>0

Ps∑
s:Is−t>0

1
− 1

T

∑
s

Ps

 (4.2)

PalRFt =


∑

s:Ps>0

Ps∑
s:Ps>0

1

−1


∑
s:Ps−t>0

Is∑
s:Ps−t>0

1
− 1

T

∑
s

Is

 (4.3)

Figure 4.2 displays my replications of the author’s empirical response function plots,

as calculated in R.

Along with the IRF plots, Jaeger and Paserman calculate a set of four VAR models.

Each model is either an Israeli or Palestinian impulse function and, under each, is a model

of incidence of a fatality on a given day or a number of fatalities on that day. A table

of replicated results is available in Appendix C and displays only the results that Jaeger

and Paserman highlight: the coefficients on lagged Israeli and Palestinian fatalities for

the Israeli and Palestinian reaction functions, respectively. The results in this table, along

with the IRF plots lead the authors to conclude that violence between Israel and Palestine

is a tit-for-tat cycle of violence, at least during the Second Intifada. Instead, they find

that with regards to levels of past violence, Israel reacts in a more predictable way to

Palestinian violence. On the other hand, Palestinian violence is much more difficult to

predict. The authors further conclude that no net deterrent nor incapacitation effects are

present in the relationship (Jaeger and Paserman 2008, p. 1598).

The goal of the next section is to contribute to the debate about the nature of Israeli-

Palestinian violence by applying Lotka-Volterra, assisted by my OLS estimator. I suggest
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Figure 4.2: Empirical IRF Plots†

(a) Israeli Empirical Response Function

(b) Palestinian Empirical Response Function

†Confidence Intervals differ slightly from Jaeger and Paserman due to the translation from Stata to R.
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the use of Lotka-Volterra as a means of both answering new, interesting questions and

looking at the conflict from a different perspective. I intend to use the LV method de-

scribed in Chapter 2 to take a deeper dive into the endogeneity that may or may not

exist within the relationship as well as when or how the relationship might become or

remain stable or lose stability all together. Similarly, I look to Lotka-Volterra to aid in

characterizing the nature of the relationship between Israeli and Palestinian violence as

cyclical or non-cyclical, per the ongoing debate in the literature.

4.2 The LV Approach to Analyzing the Israeli-Palestinian Re-

lationship

Prior to any application, we must make an educated decision of which variable of interest

to assign to the predator (y) and which to the prey (x). This choice was difficult because,

at different stages of the conflict, both sides demonstrated behavior consistent with the

assumptions that characterize predator behavior. I will address this particular concern

in depth later in the chapter when discussing the results of the LV models. Despite the

difficulty in choosing which side to attribute to predator and which to prey, in order to

carry out the application of the LV model on Jaeger and Paserman’s data, we must assign

values to x and y.

I settled on assigning the monthly Palestinian death toll, an indicator of Israeli violence

towards Palestinians, as the prey.3 I assign Israeli violence (total Palestinian deaths per

month) to the ‘prey’ population largely because, in order to maintain a stable Lotka-

Volterra relationship, the intrinsic reproduction rate (α) of the prey must be greater than

the growth rate (δ) of the predator. When this ratio is reversed, it is implied that the

3The assignment of predator and prey is neither an political statement nor an attempt to place guilt
or blame on either party to the conflict. The term ‘prey’ is not synonymous with ‘victim.’ For more
information on civilian deaths and tactics employed by both sides, see Amnesty International (2001),
Moghadam (2003), Duschinsky (2011), Manekin (2013), and B’Tslem (2020).
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prey cannot reproduce in sufficient numbers to satisfy the predator. This in turn results

in a higher death or emigration rate (γ) of the predator, violating the ratio of δ > γ and

ultimately leading to the extinction of the predator.

With the decision of which populations to assign to x and y made, I begin the process

of preparing the data for application to the LV method and OLS estimator by loading

their monthly data into R. I extract only the observations that occur during the study

period from September 2000 to January 2005. Unlike the data used in Chapter 3, no

additional data manipulation of x or y is necessary before proceeding with the analysis

because both populations are both continuous count variables and, therefore, naturally

constrained above zero.

In order to construct the exogenous covariates, I generate a set of seven of ‘period’

dummy variables, one for each period in the study, that equal 1 during the time frame that

period covers and 0 otherwise. However, for this particular study I only look at two out of

the seven periods. The first period of interest runs from the September 11, 2001 terrorist

attacks until the inception of Operation Defensive Shield at the end of March, 2002. Many

observers believed that the terror attacks and subsequent US response effectively gave

the Israeli government permission “to pursue more proactive measures against militant

and terrorist groups, including incursions into the Palestinian-administered Territories”

(Jaeger and Paserman 2005, p. 5). Measures included the beginning of the long-term

Israeli-enforced confinement of Palestinian Authority President Yasser Arafat in December

2001 until October 2004 (Jaeger and Paserman 2005).

The second period I focus on is the time between President George W. Bush’s Middle

East speech on June 24, 2002 and the beginning of the ceasefire on June 29, 2003. The

speech marked a renewed US, and eventually global, effort to broker peace and negotiate

a settlement to violence in the region (Jaeger and Paserman 2005, p. 7). I chose this

period largely because it is characterized by multinational attempts to move both parties

to the conflict closer to the negotiating table, as well as generally stable levels of violence.
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It also represents the longest of the periods identified in Jaeger and Paserman’s dataset,

covering 12 of the 53 months.

While these are the two periods I focus on in this study, this is not to say that other

periods during the conflict are unimportant. Therefore, extensions of this project could

and should seek to incorporate the rest of the periods individually or all of the periods.

Unfortunately, in the current specification of the OLS estimator, including seven predictor

variables is unwieldy, and leads to the inclusion of 127 total interaction terms.

The manipulation of the barrier wall covariate falls in line with the variable manipu-

lated employed in Chapter 3: all values less than median are assigned a 0 and those above

are assigned a 1. To complement these variables, I also construct two dummy control

variables. The first indicates when the period switches and the second indicates when

new construction has been completed on the barrier wall. Equation 4.4 is the regression

formula used to estimate the parameter values with one external variable.

log(y) = β̂y + θβz1tyz1t − γ̂ log(x)− θγz1t log(x)z1t + δ̂x+ θδz1txz1t − z1t + µ− C∗ (4.4)

where:

� x and y are the initial starting values for Total Israeli deaths per month (prey) and

Total Palestinian deaths per month (predator), respectively;

� β̂, γ̂, and δ̂ are the main effects coefficients on the traditional LV parameters, divided

by α;

� θβ, θγ, and θδ are the coefficients on the independent variable, divided by α;

� z1t is the value of the the exogenous covariate; and

� µ is a control dummy variable that indicates when the value of zt changes.

In total, I run five different OLS models. The results of these models are available in
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Table 4.2. Model 1 includes zero covariates, models 2 - 4 each include a different single

covariate, and model 5 includes both Period 3 and Period 5 as predictors.

There are two extremely interesting observations from these coefficient estimates. First

are the relatively small size of the β̂ and δ̂ coefficients. Substantively, this has implications

for the populations of both x and y. For the prey population, x (Israeli violence), the

small predicted values of β̂ indicate a near-zero death rate from predation. In other

words, small values of β̂ imply that the Palestinian death toll at time t + 1 is minimally

dependent upon both its own population and the number of Israeli deaths at time t. Over

time, such small values of β̂ would likely result in the long-term growth of the prey. The

opposite holds true for the predator population, y (Palestinian violence). The near-zero

value of δ̂ indicates near-zero growth of the predator population over time as the result of

consuming prey. In other words, small values of δ̂ imply that the number of Israeli deaths

at time t + 1 is minimally dependent upon both its own population and the number of

Palestinian deaths t. Overall, these parameter estimates imply eventual extinction of the

predator and exponential growth of the prey.

The second observation is the reversal of the signs of the coefficients of δ̂ and γ̂. The

reversed signs of these two parameters violate the assumption that all four coefficients are

positive. A negative gamma and positive delta suggest both negative population growth

of the predator as well as a positive death rate. Substantively, this suggests that, within a

pure Lotka-Volterra system, that the predator is unable to sustain its population, although

extinction is not necessarily immediate. I suspect, then, that the DGP of the system is

driven by one or more mechanisms that the current specification of the Lotka-Volterra

model is incapable of capturing due to its own underlying assumptions. If the estimated

growth rate of the predator is negative and the death rate positive, but we do not observe

behavior consistent with these predictions, then some other process or set of processes

must be at work keeping the predator population from extinction or the relationship is

not appropriate or LV modeling.
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Table 4.2: Estimated L-V Coefficients

(1) (2) (3) (4) (5)
Coefficient

α 0.32 0.60 0.64 0.61 1.96

β̂ 0.14 0.06 0.11 0.06 0.04
(0.004) (0.005) (0.006) (0.006) (0.008)

θβbarrier - 0.14 - - -
- (0.024) - - -

θβperiod3 - - -0.05 - -0.02
- - (0.017) - (0.178)

θβperiod5 - - - 0.03 -0.01
- - - (0.018) (0.014)

γ̂† 2.25 1.30 0.72 1.38 0.21
(0.194) (0.288) (0.202) (0.263) (0.204)

θ†γbarrier - -1.47 - - -

- (1.109) - - -

θ†γperiod3 - - 0.97 - 0.35

- - (0.858) - (0.854)

θ†γperiod5 - - - -1.71 -0.31

- - - (8.093) (5.756)

δ̂ -0.04 -0.02 -0.008 -0.02 -0.002
(0.003) (0.004) (0.003) (0.004) (0.003)

θδbarrier - 0.02 - - -
- (0.016) - - -

θδperiod3 - - -0.02 - -0.008
- - (0.015) - (0.015)

θδperiod5 - - - 0.03 0.006
- - - (0.130) (0.092)

Steady State {y, x}
0 Covariates {58.97, 2.28} - - - -

1 Covariate
zt = 0 - {10.22, 73.98} {5.93, 93.46} {9.83, 69.86} -
zt = 1 - {2.98, 67.21} {10.85, 54.40} {6.80, 31.15} -

2 Covariates
zt1 = 0, zt2 = 0 - - - - {49.27, 86.49}
zt1 = 1, zt2 = 0 - - - - {101.55, 54.40}
zt1 = 0, zt2 = 1 - - - - {70.09, 31.15}
zt1 = 1, zt2 = 1 - - - - {262.03, 54.45}

Standard Errors in Parentheses
† Before use in the Lotka-Volterra model, the sign of all γ and θγ coefficient estimates is reversed.
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Assuming the relationship does not violate the underlying LV assumptions and we

observe similarly explosive behavior in the parameters, I would suspect an omitted variable

bias is at work, such that we are unable to accurately apply this particular framework

to these data. I hypothesize that, with the correct covariate or series of covariates, we

would obtain parameter estimates with the correct signs and more accurately model the

system as a while. One particular remedy of interest might be the inclusion of exogenous

covariates that only directly affect the population of either predator or prey and not both.

Similar to the inclusion of substrate in biological models, a third differential equation in

the system that directly affects the birth rate of the prey, α, it is entirely feasible to re-

write the LV system of equations to include species-unique predictors. Such an adjustment

to the set of differential equations might allows us to model populations that are either

self-sustaining to a degree (cannibalistic) or those that are, to some degree, reliant upon

different data generating processes. In the case of Israel/Palestine, it is logical to assume

that, because both parties to the conflict are motivated by different political, social, and

economic factors, the underlying DGP of the overall system is not driven by the same

exogenous data. While making such an adjustment would increase the complexity of

the model, it might be worth considering for special subsets of relationships, such as the

Israeli/Palestinian case, where the estimated signs of the coefficients are contrary to what

we expect. Eat your heart out, Occam.

Second, this particular relationship might just be driven by a data generating process

that is not conducive to this particular specification of Lotka-Volterra more generally. It

is possible to recreate this phenomenon with simulated data by applying data created

from sine and cosine waves with different frequencies:

y = sin(i1t)
2

x = cos(i2t)
2

(4.5)

where ij is a set of two different values and t is the number of waves to generate. This
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suggests that certain data generating processes defy, at a fundamental level, characteri-

zation by this specific, and simplistic, specification of Lotka-Volterra.

However, in this particular case, I argue that omitted variables are not causing the

behavior we observe in the parameters. Instead, I hypothesize that the underlying as-

sumptions of Lotka-Volterra are violated, in some meaningful way, thus causing explosive

behavior in the predicted values. In other words, the relationship is not, in fact, cyclical

and the behavior of both sides is not driven by survival. Jaeger and Paserman argue

that the relationship is better characterized by unidirectional causality that is the result

of disparities in the organization and accessible technologies of either side. I agree, but

argue there may be an even more fundamental mechanism at work: the goals of either side

are multidimensional and not dominated by continuing a sustained campaign of violence.

In other words, neither side is perpetuating violence simply for the sake of doing so and

exclusively in response to the other’s level of violence. Instead, I argue that both sides

have goals that supersede the need to continue the violence such as Palestine’s goal of in-

ternationally recognized statehood or Israel posturing both regionally and internationally.

Just because two populations of interest seem to be acting in a tit-for-tat way does not

mean they actually are. In other words, when a behavior is a means to an end unrelated

or only tangentially related to the observed behavior and two populations are engaging

in correlated actions, the model’s assumptions are violated and LV is an inappropriate

choice of model.

For the remainder of this section, I utilize the predicted coefficients to solve the set of

ODE to demonstrate exactly how LV fails when it is applied to a unsuitable relationship.

In order to generate predicted values based on the coefficient estimates, we must first

determine the value of α. In order to achieve this, I utilize the same optimization routine

as in Chapter 3 to estimate a value for α that minimizes the sum of squared errors

of the x and y data combined. With α in hand, I assign the initial values of x and

y to the corresponding first observations in the dataset. I then utilize the coefficient
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estimates to solve the Lotka-Volterra set of differential equations one time-step at a time

to generate predicted data that is dependent upon the value of the external data. Before

discussing the results in depth, it is important to keep in mind that all of the results are

always predicated on the past values of each population. In other words, when we discuss

the predicted impact of any given covariate, that covariate is working in tandem with

population values in the differential equations.

Figure 4.3: Actual vs. Predicted Values: Model 1

Graphically, the predicted population values are plotted against the actual values in

Figure 4.3. It is important to note here the total reversal of the expected behavior of the

predicted values. It appears from the plot of the predicted values of both x and y that

the prey is behaving more like a predator, as it eventually reaches extinction, and the

predator is behaving more like the prey with exponential growth.4 This is substantively

interesting in that it might indicate that, under certain conditions, the ‘predator’ may

behave more like ‘prey’ and vice versa.

Model 3, which includes the period from September 11, 2001 to the start of Operation

Defensive shield, produces predicted coefficient values in line with what we would expect

from reversed signs of δ̂ and γ̂: the predicted extinction of the predator and exponential

growth of the prey. In fact, the shape of the graph of the predator only changes slightly.

4This behavior is still observed when x and y are switched.
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Figure 4.4: Actual vs. Predicted Values: Model 3

The biggest change from Model 1 and Model 3 is the limit of the y-axis: the limit is much

smaller once a covariate is added. While the growth of the predator is still exponential,

it isn’t as explosively exponential as Model 1. This behavior is likely caused by the much

larger (negative) values of γ̂ compared to the values of the δ̂ coefficients produced when

a covariate is included in the model. Plotted in Figure 4.4, the predicted values from

the differential equations seem to suggest that, during period 3, x behaved in line with

expected prey behavior and y in line with expected predator behavior over time. Going

back to Figure 4.1, the observed values during that time period are consistent with this

assertion.

Another interesting feature of this, and other following, set of predicted values is non-

immediate extinction of the prey population. Generally, when a Lotka-Volterra system

collapses, the predator goes extinct almost immediately. However, in these special cases,

when the starting value of y is big enough relative to x and the value of γ̂ is negative

enough, the rate of change is slow enough to maintain the population over a longer period

of time.

Model 2 includes the covariate for completion of the separation barrier. What is

most interesting about these predicted results is that, although they seem to be trending

towards the behavior observed in Models 1 and 3 at the end of the study period, we do
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Figure 4.5: Actual vs. Predicted Values: Model 2

not observe the sharp, exponential changes present in either of those models. Instead, we

observe no significant predicted impact in the number of Israeli deaths. This suggests that

the barrier was not a major contributor to Palestinian violence. However, the interesting

shape of Palestinian deaths suggests that the barrier might have contributed to Israeli

violence towards Palestine initially, but that it eventually curbed Israeli violence. It is

important to remember that this covariate was manipulated into a dummy variable based

on its median value. As a result, we lose potentially valuable information and have less

accurate coefficient values.

Figure 4.6: Actual vs. Predicted Values: Model 4

The predicted values from Model 4, plotted in Figure 4.6, exhibits behavior consistent

with what we would expect from a more traditional predator/prey system. Model 4
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includes the period from the end of Operation Defensive Shield to the beginning of the

ceasefire. This period is characterized by a closer ratio of Israeli to Palestinian fatalities.

This type of predicted behavior might substantively suggest that, during this particular

period of the overall conflict, the roles of predator and prey were reversed and that Israeli

violence was behaving in a way more consistent with expected prey behavior and vice

versa. Logically, this could make sense: during this period, a below average number of

Palestinians were killed (about 60 compared to the overall 61.5) and the graph of the

actual values appears to behave differently than in period 3, for example. Instead of

observing a rise in Palestinian fatalities at t = 0 preceding a rise in Israeli fatalities at

t+1 as we would expect from a traditional predator-prey type of relationship, the behavior

of the curves appears to switch. This type of behavior is inconsistent with Israeli fatalities

representing the predator and Palestinian fatalities representing the prey during this time

period.

Figure 4.7: Actual vs. Predicted Values: Model 5

The final model, Model 5, contains two covariates: both period 3 and period 5. I chose

these two periods for a two-covariate model because, individually, they produce opposite

predicted behavior. While the predicted results more closely resemble those of Model

3 with regards to overall trend, it is interesting to note that there is a marked shift in

several aspects of the two plots. In the predator plot, there is a shift in both the limit of
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the exponential growth at the end of the study period as well as some noticeable variation

across the entire study period. The prey plot most closely resembles the prey plot from

Model 4, but with marked changes largely during the time period that spans period 3.

Substantively, this is likely occurring because the effect of period 3 is actively shaping

the results during period 3. When the period switches to period 5, that effect becomes

dominant. In order to accurately estimate the role each time period plays in affecting the

overall relationship, it is necessary to include all seven periods in the modeling process.

As discussed previously, doing so with the current specification of the OLS estimator is

unwieldy and impractical.

Figure 4.8: Phase Plot, Raw Data

Because the actual data do not follow predicted trends of a Lotka-Volterra system

and are, in fact, explosive, I reiterate the argument that this dyadic relationship is not

suited for LV analysis. Lending credence to this hypothesis is the phase plot of the

raw data (Figure 4.8). Unlike the phase plot of Ura’s raw data (Figure 3.3), there are

no distinct elliptical orbits. Therefore, the highly erratic phase plot indicates that the

system itself is not only inherently unstable but does not behave like phase-state plots of

known predator/prey populations.

The most important takeaway from the phase-space plots is that, there is no elliptical

behavior in the predicted values, and therefore, no evidence that LV is an appropriate
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Figure 4.9: Phase-Space Plots with Steady States

(a) Model 1: Zero Covariates

(b) Model 2: Barrier Wall (c) Model 3: Period 3

(d) Model 4: Period 5 (e) Model 5: Period 3 and Period 5

choice of modeling technique.

4.3 Discussion

The results in the previous section lend credence to Jaeger and Paserman’s overall conclu-

sion that the relationship cannot be accurately “characterized as a self-perpetuating cycle
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of violence” (Jaeger and Paserman 2008, p.1603). The observed instability in the system

might be caused by the nature or underlying goals of each party to the conflict. The

Israeli Defense Forces (IDF) are highly organized and have access to advanced technol-

ogy and intelligence resources. This allows the Israeli government to inflict violence and

fatalities against Palestinians at the government’s will (Jaeger and Paserman 2008). The

Israeli side is both sanctioned and funded by the Israeli government, perhaps explaining

the abnormal behavior in the predicted values of the prey. The government support of the

IDF might be acting like a species-unique covariate that allows the Israeli side to continue

to attack despite the prediction of the covariates that violence would cease.

In contrast, the decentralized and technologically disadvantaged nature of the Pales-

tinian side of the conflict makes a coordinated response to Israeli violence both unpre-

dictable and unorganized (Jaeger and Paserman 2008, p. 1602). This suggests that

something other than past Israeli violence is driving Palestinian behavior. Jaeger and

Paserman further argue that the Palestinians act unpredictably because any coordinated

attack by Palestinian forces could be easily thwarted by the Israelis. Therefore, they

might be incentivized to behave randomly in order to inflict the highest possible cost on

Israel until its demands are met (Jaeger and Paserman 2008; Schelling 1980).

These characteristics of each side suggest that each side is behaving as more than

the simple product of past levels of violence against it. If goals exist above and beyond

sustaining a violent campaign because the other side is doing do, which is likely, then

LV is simply not the correct model to choose. When LV is applied to relationships that

violate its underlying assumptions, especially those that aren’t truly endogenously causal,

we are likely to observe nonsensical coefficients akin to those in Table 4.2.

More fundamentally, it makes sense in a terrorism/counter-terrorism context to imag-

ine spans of time with zero attacks from either side. However, Lotka-Volterra is not

equipped to handle this type of temporary extinction behavior. If this behavior is ob-

served in a dataset, then this specification of LV is inappropriate and would lead to
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explosively incorrect estimated population counts following periods of extinction. While

this particular dataset does not have any periods of non-action, it is

While it makes sense that, to some extent, Palestine and Israel feed off of one another’s

violent behavior whether for revenge or deterrence, the underlying goals of the two sides

complicates our understanding of the relationship and prevents application to the Lotka-

Volterra framework. LV is, however, but one of many dynamic time series models, all

with unique underlying assumptions and constraints. Therefore, the relationship is not

incompatible with a dynamic time series model in general, especially if we are seeking

answers to questions about how or why the behavior of one or both sides changes over

time. In this case, it would be worthwhile to explore other dynamic time models or to

think about how to construct new ones to describe either one or both sides.

4.4 Conclusion

In this chapter, I set out to explore the debate around whether or not the relationship

between Israel and Palestine during the Second Intifada is a self-perpetuating cycle of

violence. I found evidence to support Jaeger and Paserman’s (2008) conclusion that the

relationship is not, in fact, simply characterized as a tit-for-tat system of violence and

argued that this is the result of different goal structures of both parties to the conflict. As

a result, I found that Lotka-Volterra is an inappropriate choice to model this relationship.

The results of applying the Israel/Palestine data to the Lotka-Volterra estimator confirmed

this hypothesis by producing nonsensical parameter estimates and explosive predicted

values. Despite the poor fit of this particular dataset to the LV framework, future work

might look at more narrow aspects of the Israel/Palestine relationship or might look at

deaths as a percentage of total population.
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Chapter 5

Conclusion

Political scientists have consistently relied on the use of a linear framework to analyze

the vast majority of relevant data in the field. While linear modeling is a tried and true

approach to political science data, in this dissertation, I offered an alternative approach

for competitive time series data as a complement to more familiar methods. The non-

linear, dynamic approach of Lotka-Volterra models has the potential to add to the political

science empirical toolkit in several ways.

First, dynamic modeling, and LV in particular, allows empiricists to describe and

explain change over time. As interest in time series continues to grow within the field,

particularly with regards to how and why actors change over time, it will be increas-

ingly beneficial to move beyond discussions about rates of change to actually modeling

them (Tuma and Hannan 1984). Further, a dynamic modeling approach is especially

useful when theory suggests that the rates of change of populations of interest over time

aren’t linear or aren’t constant. Second, Lotka-Volterra models allow us to estimate new

quantities of interest such as extinction and steady state to further describe substantively

interesting political relationships. These quantities can further our understanding of com-

plex political relationships and how exogenous shocks can shift a relationship either into

or out of equilibrium or even existence. Finally, LV in general is a model that, by its

very construction, describes endogenous relationships because the populations of both

predator and prey are included in both differential equations. Therefore, appropriate

dyadic relationships increase and decrease in size in direct response to one another. This

type of behavior is not uncommon in the political and broader social world, although

several other criteria beyond the endogenous nature of causality must be considered when
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choosing Lotka-Volterra as a modeling tool.

The choice of LV as a model requires a rigorous understanding of the populations of

interest. Both populations must be reasonable characterized as existing within a preda-

tor/prey framework. To meet this criteria, the predator population must rely upon the

existence of prey to survive, both populations must grow and shrink in direct response

to the other, survival must be the primary goal of both populations, and all populations

must be greater than 0. These strict assumptions greatly limit the populations that are

suited for modeling within the LV framework. Any conceptual or actual violation of any

of them is ample cause to forgo the LV model. For example, the populations of interest in

the first case study do not violate the theoretical assumptions of Lotka-Volterra: public

opinion is widely accepted as responsive to government behavior and vice versa. How-

ever, when we add a variable that disproportionately affects one of the populations, as

the inclusion of inflation disproportionately affected public mood, the system is no longer

amenable to LV. This, then, further limits the choice of variables to include in the LV

model to those that have a more uniform effect on both populations of interest. In other

words, any exogenous covariates we choose to include in an LV model must affect both

predator and prey in fairly similar ways. Future research into this particular issue would

be valuable, particularly in establishing where the threshold may lie and in examining

other ways of introducing exogenous covariates into the model.

It is important to note, however, that while the variables in the Ura case study do not

necessarily violate the assumptions about both populations, that this specification of LV

is, in general, overly simplistic. By allowing for exponential growth or decline of either

population, the basic LV model is not realistic. This leads to an important improvement

future work could and should focus on: the inclusion of environmental constraints in the

set of ODE. The most common modification to LV in this realm is the introduction of a

carrying capacity for the environment, or an upper limit on population growth. Capping

growth avoids exponential growth and is therefore more realistic. Other environmental
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constraints include limiting the prey’s food source (substrate) and constraints on predator

feeding behavior.

By contrast, in Chapter 4, LV was an inappropriate model choice to describe the

relationship of Israel and Palestine. Although a cursory understanding of that relationship

seems to characterize it as a tit-for-tat cycle of violence, where violence by one side begets

violence by the other, I find preliminary evidence to support Jaeger and Paserman’s

(2008) conclusion that this is not the case at all. Perhaps as a result of asymmetry in the

decision making processes of both sides or the disparity in the technology available, there

does not appear to be a cyclical relationship between the two sides (Jaeger and Paserman

2008). We might also hypothesize that Israel was not necessarily acting to only preserve

its survival, but may have had multiple competing or superseding goals, such as posturing

on the international stage. Because the relationship cannot be reasonably assumed to be

a cycle of violence, the theoretical assumptions of the LV model are violated, making it

an inappropriate choice of model and the reason why the results reported in Chapter 4

are explosive. Even though this particular case does not fit will within the LV framework,

there does exist a relationship between Israeli violence and Palestinian violence that,

perhaps, changes over time. Thus, it is entirely conceivable to identify a different set of

differential equations that account for partial independence of the individual sides or to

model different characterizations of relationships.

Apart from concerns about violations of the model’s theoretical assumptions, there

are several other limitations to the strategy developed in this project resulting from the

construction of the estimation strategy itself. First and foremost, the model is plagued

with endogeneity. As discussed in detail in Chapter 2, including y on both the left

and right hand side of the estimation equation inflates standard errors and biases the

coefficient estimates of the linear model. While endogeneity is most commonly addressed

using Instrumental Variable (IV) regression, which is often used in econometrics to clarify
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causality along with magnitude in a linear model.1.

However, endogeneity in the implicit relationship model is not caused simply by an

independent variable correlating with the error term. Instead, the main source of en-

dogeneity is including y on the right hand side and log(y) on the left hand side of the

equation. This makes both the actual and theoretical choice of an instrument exceed-

ingly difficult because it seems impossible to divorce, in any way, y from a transformed

version of itself, which would violate the exclusion restriction of IV (Ebbes, Papies, and

van Heerde 2016). One possible solution to the endogeneity problem would be to further

rearrange the implicit equation such that both y and log(y) are on one side and x and

log(x) are on the other. While this would require a complicated estimation loop, it might

be a valuable way forward for dealing with endogeneity.

When including exogenous data in the models, in order to limit the degrees of freedom

eaten up and to estimate a non-explosive number of coefficients, I was forced to simplify

the exogenous data into dummy variables indicating whether an observation was above or

below the sample mean. Unfortunately, this dramatically limits the information we can

learn about the effects of these exogenous covariates because it removes all nuance and

interesting variation from the data. When a regression attempts to estimate too many

coefficients, the models may suffer from overfitting, especially when the sample size is

relatively small. Therefore, future work should explore ways of incorporating important

continuous or more refined categorical covariates into the model in a way that avoids

overfitting but preserves the interesting variation of the exogenous covariates.

Next, it is worthwhile to once more consider the inclusion of noise into the simulation in

Chapter 2. Although it is accessible to political scientists to add noise onto the simulated

data itself after data generation, this is not the only means of incorporating noise into the

system. This leads to two interesting paths forward for this work. First, in keeping with

1For a clear an readily accessible explanation of Instrumental Variables regression, I recommend Ebbes,
Papies, and van Heerde (2016)
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the notion of including noise in the predator and prey populations themselves, it would

be useful for future work to explore the use of stochastic Lotka-Volterra models. These

types of LV model population development in a “random environment where random

factors” like white noise influence the growth or death rates of one or both populations

(Du and Sam 2006, p. 83). This would be extremely useful, especially considering the

fact that social actors do not exist within a vacuum and are undoubtedly influenced, to

some degree, by environmental conditions.

It would also be of interest to explore the LV models from a Bayesian perspective,

by including uncertainty in the parameters themselves or in dx
dt

and dy
dy

as a whole. This

could be beneficial to expanding our overall understanding of how the LV system behaves,

especially in light of the fact that starting conditions dramatically influence the outcome

of LV. Therefore, we could perhaps learn even more information by altering starting

conditions or allowing them to vary throughout (Pascual and Kareiva 1996).

Finally, this study relied on ordinary least squares (OLS) to estimate the linear model.

However, I strongly believe that future work in this area should survey other strategies

such as non-linear least squares (NLS). I argue that NLS is an appropriate future approach

for two reasons. First, although I do not utilize a discrete approximation of the differential

equations, prior sociology work in this area utilized non-linear solvers to varying degrees

of success.2 Thus, there is precedent in solving these types of dynamic models in this

way. Second, but tangentially, and more importantly, the graph of predator versus prey

is elliptical, not linear, and as the parameter values deviate further from their ideal value,

the orbits deviate, often radically, from that shape. Non-linear least squares is equipped

to handle this type of behavior in a multivariate space in order to estimate the parameters

that most closely resemble those which result in stability of the elliptical orbits. Therefore,

I think it is a worthwhile effort to explore the theoretical and empirical implications of

solving the implicit relationship model using NLS.

2See Nielsen and Hannan (1977) and Carroll (1981).

96



In all, despite several flaws in its current form, I have presented and demonstrated

the potential for dynamic modeling, and LV specifically, to be a valuable addition to

established time series modeling techniques in political methodology. I believe that, with

further work as outlined above and throughout, this method has the potential to answer

new and unique questions about dynamic political behavior over time.
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This appendix provides the code for the simulation of the Generalized Lotka-Volterra Method with zero
covariates. The simulation begins with loading in the ‘deSolve’ and ‘MASS’ packages. The Control Panel
below sets the initial values required for generating Lotka-Volterra data: the number of simuations to run
(100,000), the known values of the Lotka-Volterra parameters (pars), the intial population of both predator
and prey (yini), and the number of timesteps (times). The variable ‘sd’ is used to add noise into the simulation
and can be changed to incorporate different levels of noise. The reported results in Chapter 2 reflect running
the following simulation with a standard deviation of both 0.05 and 0.15. The higher the standard deviation,
the noisier the data.
library(deSolve)
library(MASS)

iterations <- 100000

n <- 200

pars <- c(alpha = 1, beta = 0.4, gamma = 0.4, delta = 0.1)
yini <- c(x = 5, y = 4)
times <- seq(0, n-1, by = 1)

sd <- 0.05

I then begin the construction of the noise that will be added on to x and y in the simulation. I generate a
matrix with the standard deviation of the errors along the diagonal, allow for correlation between the errors,
and generate a variance-covariance matrix that will ultimately be used in the creation of the error term.
S <- diag(c(sd, sd))
r_yx <- 0 #correlation

R_error <- matrix(c(1, r_yx, r_yx, 1), nrow = 2)
V_error <- S %*% R_error %*% S

Next, I define the Lotka-Volterra function:
LVmod <- function(Time, State, Pars) {

with(as.list(c(State, Pars)), {
dx <- alpha*x - beta*x*y
dy <- delta*x*y - gamma*y
return(list(c(dx, dy)))

})
}

Next, I generate the simulated data generated using the parameters listed above. ‘out’ is a data frame with
200 observations:
out <- data.frame(ode(yini, times, LVmod, pars))

With the simulated data generated, I initialize the results vectors that will be used to store the values
extracted from the OLS regression and begin the simulation. The simulation runs 100,000 times and generates
as many estimates of β∗, γ∗, and δ∗. In line with the discussion in Chapter 2, I generate a matrix of errors
from a multivariate normal distribution to be added on to both x and y. I then run the OLS regression and
extract the coefficient estimates and standard errors. Finally, I set the estimate of γ to negative because, in
the linear model, γ is negative.
beta.est <- as.numeric()
beta.se <- as.numeric()

gamma.est <- as.numeric()

Appendix A: Zero Covariate Simulation
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gamma.se <- as.numeric()

delta.est <- as.numeric()
delta.se <- as.numeric()

for(i in 1:iterations){

e_mat <- mvrnorm(n, rep(0, 2), V_error)

y <- out$y + e_mat[,1]
log.y <- log(y)

x <- out$x + e_mat[,2]
log.x <- log(x)

test.reg <- lm(log.y ~ x + log.x + y)

coefs <- coef(test.reg)
ses <- sqrt(diag(vcov(test.reg)))

beta.est <- c(beta.est, coefs[4])
gamma.est <- c(gamma.est, coefs[3])
delta.est <- c(delta.est, coefs[2])
beta.se <- c(beta.se, ses[4])
gamma.se <- c(gamma.se, ses[3])
delta.se <- c(delta.se, ses[2])

}

gamma.est <- -gamma.est

Finally, I use the results from the simulation to calculate the bias, root mean squared error (RMSE) and
coverage:
bias <- c(beta_star = mean(beta.est) - (pars[['beta']] / 1),

gamma_star = mean(gamma.est) - (pars[['gamma']] / 1),
delta_star = mean(delta.est) - (pars[['delta']] / 1))

rmse <- c(sqrt(mean((beta.est - pars['beta'])^2)),
sqrt(mean((gamma.est - pars['gamma'])^2)),
sqrt(mean((delta.est - pars['delta'])^2)))

coverage <- c(100*mean(((beta.est - qnorm(.975)*beta.se) < pars['beta']) &
((beta.est + qnorm(.975)*beta.se) > pars['beta'])),

100*mean(((gamma.est - qnorm(.975)*gamma.se) < pars['gamma']) &
((gamma.est + qnorm(.975)*gamma.se) > pars['gamma'])),

100*mean(((delta.est - qnorm(.975)*delta.se) < pars['delta']) &
((delta.est + qnorm(.975)*delta.se) > pars['delta'])))
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This appendix offers the code for the simulation of the Generalized Lotka-Volterra Method with one covariate.
The simulation begins with loading in the ‘deSolve’ package. The Control Panel sets the initial values required
for the single covariate Lotka-Volterra model including the number of simuations to run, the known values of
the Lotka-Volterra parameters used for data generation, the intial population of both predator and prey,
and the number of timesteps (200). The variable ‘sd’ is used to add noise into the simulation and can be
changed to incorporate different levels of noise. The reported results in Chapter 2 reflect running the following
simulation with a standard deviation of both 0.15 and 0.3. I also initialize a data frame that will, at the end
of the data generating process, contain the predicted values of x and y.
library(deSolve)
library(dplyr)
library(tidyverse)

iterations <- 100000

n <- 200

sd <- 0.05

times <- seq(0, n-1, by = 1) #time index
state <- c(x = 5, y = 4) #beginning state values

alpha <- 1

beta_star <- 0.4
gamma_star <- 0.4
delta_star <- 0.1

theta_b <- 0.1
theta_d <- 0.1
theta_g <- 0.1

res <- data.frame(times = times, x = NA, y = NA)
res[1,2:3] <- state

The next step is creating the external data. In order to do this, I draw a random sample of 0’s and 1’s with
replacement. I set a seed to ensure the same zt is selected each time the entire program is run.
set.seed(6284)
z_t <- sample(0:1, n, replace=TRUE)
summary(z_t)
set.seed(NULL)

I then begin the construction of the noise that will be added on to x and y in the simulation. I generate a
matrix with the standard deviation of the errors along the diagonal, allow for correlation between the errors,
and generate a variance-covariance matrix that will ultimately be used in the creation of the error term.
S <- diag(c(sd, sd))
r_yx <- 0 #correlation

R_error <- matrix(c(1, r_yx, r_yx, 1), nrow = 2)
V_error <- S %*% R_error %*% S

Next, I define the Lotka-Volterra function. The Lotka-Volterra function is designed to be run one step at a
time:
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LVmod <- function (Time, State, pars) {
with(as.list(c(State, pars)), {

dx <- State[1]*(alpha - beta_star*State[2] - theta_b*z*State[2])
dy <- State[2]*(delta_star*State[1] + theta_d*z*State[1] - gamma_star - theta_g*z)
return(list(c(dx, dy)))

})
}

In this section, I generate the simulated data in a loop that calculates the values of x and y at each time step.
In other words, in the first iterations of the loop, t = 1 (remember, the Lotka Volterra system state values
are the values of x and y at t = 1), z is assigned its value at t = 1 and the state values are assigned their
values at t− 1. This ensures that, with each iteration of the loop, the starting values are the output from the
previous iteration. At the end of the for-loop process, we are left with 200 predicted population values for x
and for y. All predicted values are placed in the previously initialized results vector ‘res.’
for(i in 1:199){

z <- z_t[i]
state <- c(x = res[i,2], y = res[i,3])
pars <- c(alpha = alpha, beta_star = beta_star, theta_b = theta_b,

gamma_star = gamma_star, theta_g = theta_g,
delta_star = delta_star, theta_d = theta_d, z = z)

out <- data.frame(ode(state, seq(0,1,1), LVmod, pars))

res[i+1, 2:3] <- out[2,2:3]
}

With the simulated data generated, I generate a dummy variable that indicates every time the value of z
changes followed by a data frame for use in the linear model:
#Initialize results and standard errors vectors: beta*, gamma*, delta*
beta.est <- as.numeric()
beta.se <- as.numeric()
gamma.est <- as.numeric()
gamma.se <- as.numeric()
delta.est <- as.numeric()
delta.se <- as.numeric()

#Coefficients and standard errors on the external data
theta_beta.est <- as.numeric()
theta_beta.se <- as.numeric()
theta_gamma.est <- as.numeric()
theta_gamma.se <- as.numeric()
theta_delta.est <- as.numeric()
theta_delta.se <- as.numeric()

era <- mutate(res, era = c(0,cumsum(abs(diff(z_t)))))

dat <- data.frame(x = res$x, y = res$y, log.y = log(res$y), log.x = log(res$x),
z_t = z_t, era = as.factor(era[,4]))

The simulation runs 100,000 times and generates as many estimates of β∗, γ∗, δ∗, and the three θ coefficients.
In line with the discussion in Chapter 2, I generate a matrix of errors from a multivariate normal distribution
to be added on to both x and y. I then run the linear model with interaction terms for the external data
and a dummy factor variable indicating when the value of z changes from 0 to 1 and extract the coefficients
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and standard errors. Because, in the linear model, γ is negative, I reverse the signs for γ∗ and θγ once the
simulation is complete.
for(i in 1:iterations){

e_mat <- mvrnorm(n, rep(0, 2), V_error) #n x 2 matrix of correlated errors

log.y <- log(dat$y) + e_mat[,1]
y <- exp(log.y)

log.x <- log(dat$x) + e_mat[,2]
x <- exp(log.x)

test.reg <- lm(log.y ~ x + x*z_t + log.x + log.x*z_t + y + y*z_t - z_t + dat$era)

coefs <- coef(test.reg)
ses <- sqrt(diag(vcov(test.reg)))

beta.est <- c(beta.est, coefs[4])
gamma.est <- c(gamma.est, coefs[3])
delta.est <- c(delta.est, coefs[2])

theta_beta.est <- c(theta_beta.est, coefs[98])
theta_gamma.est <- c(theta_gamma.est, coefs[97])
theta_delta.est <- c(theta_delta.est, coefs[96])

beta.se <- c(beta.se, ses[4])
gamma.se <- c(gamma.se, ses[3])
delta.se <- c(delta.se, ses[2])

theta_beta.se <- c(theta_beta.se, ses[98])
theta_gamma.se <- c(theta_gamma.se, ses[97])
theta_delta.se <- c(theta_delta.se, ses[96])

rm(test.reg)
}

gamma.est <- -gamma.est
theta_gamma.est <- -theta_gamma.est

Finally, I use the results from the simulation to calculate the bias, root mean squared error (RMSE), and
coverage:
bias <- c(beta_star = mean(beta.est) - (.4 / 1),

gamma_star = mean(gamma.est) - (.2 / 1),
delta_star = mean(delta.est) - (.3 / 1),
theta_beta = mean(theta_beta.est) - (.1/1),
theta_gamma = mean(theta_gamma.est) - (.1/1),
theta_delta = mean(theta_delta.est) - (.1/1))

rmse <- c(sqrt(mean((beta.est - beta_star)^2)),
sqrt(mean((gamma.est - gamma_star)^2)),
sqrt(mean((delta.est - delta_star)^2)),
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sqrt(mean((theta_beta.est - theta_b)^2)),
sqrt(mean((theta_gamma.est - theta_g)^2)),
sqrt(mean((theta_delta.est - theta_d)^2)))

coverage <- c(100*mean(((beta.est - qnorm(.975)*beta.se) < beta_star) &
((beta.est + qnorm(.975)*beta.se) > beta_star)),

100*mean(((gamma.est - qnorm(.975)*gamma.se) < gamma_star) &
((gamma.est + qnorm(.975)*gamma.se) > gamma_star)),

100*mean(((delta.est - qnorm(.975)*delta.se) < delta_star) &
((delta.est + qnorm(.975)*delta.se) > delta_star)),

100*mean(((theta_beta.est - qnorm(.975)*theta_beta.se) < theta_b) &
((theta_beta.est + qnorm(.975)*theta_beta.se) > theta_b)),

100*mean(((theta_gamma.est - qnorm(.975)*theta_gamma.se) < theta_g) &
((theta_gamma.est + qnorm(.975)*theta_gamma.se) > theta_g)),

100*mean(((theta_delta.est - qnorm(.975)*theta_delta.se) < theta_d) &
((theta_delta.est + qnorm(.975)*theta_delta.se) > theta_d)))
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Jaeger & Paserman† Replication‡

Incidence Number Incidence Number
Israeli IRF:
Israeli Fatalities

t− 1 0.071 0.128 0.072 0.123
t− 2 -0.001 0.066 -0.001 0.061
t− 3 0.044 0.096 0.040 0.092
t− 4 0.060 0.051 0.062 0.050
t− 5 0.078 0.223 0.076 0.220
t− 6 -0.010 0.050 -0.013 0.050
t− 7 0.014 0.054 0.016 0.050
t− 8 0.047 0.138 0.049 0.131
t− 9 0.072 -0.023 0.070 -0.040
t− 10 0.054 0.049 0.061 0.043
t− 11 0.031 -0.070 0.033 -0.080
t− 12 -0.004 0.002 -0.005 -0.006
t− 13 0.008 0.024 0.011 0.020
t− 14 0.006 0.008 0.005 -0.001

Palestinian IRF:
Palestinian Fatalities

t− 1 -0.009 0.026 -0.009 0.026
t− 2 0.022 0.027 0.020 0.026
t− 3 0.006 0.000 0.010 0.001
t− 4 -0.023 -0.009 -0.020 -0.008
t− 5 0.031 0.014 0.034 0.014
t− 6 -0.027 -0.011 -0.024 -0.011
t− 7 -0.020 -0.029 -0.020 -0.029
t− 8 0.012 0.064 0.012 0.064
t− 9 -0.009 0.005 -0.008 0.005
t− 10 0.004 0.009 0.007 0.009
t− 11 0.008 0.012 0.010 0.012
t− 12 -0.014 -0.026 -0.013 -0.027
t− 13 0.006 -0.020 0.007 -0.020
t− 14 0.016 0.027 0.020 0.027

†Jaeger and Paserman’s (2008) results are taken directly from Table 1 on pg. 1597.
‡Note: Unable to find a replica function of Jaeger & Paserman’s Stata code in R.
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