
1

Virginia General District and Circuit Court Data Scraping Project

Technical Report

Presented to the Faculty of the

School of Engineering and Applied Science

University of Virginia

By

David Stern

May 1, 2021

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signed: ___

Approved: _______________________________________ Date ________________________

Jack W. Davidson, Professor, Department of Engineering and Computer Science

2

Introduction

 This document describes the State Court Trial and Appellate Database (SCOUTAPP-

DB). It will be primarily comprised of two sections. The first section aims to explain the

functionality of SCOUTAPP-DB, as well as its purpose and potential uses. The second section

will elaborate of what I in particular have contributed to the project. This document is intended

to be understandable to those unaffiliated with the project, as well as those with minimal or no

programming experience. Thus, the first section should provide the necessary background

information to comprehend the second section.

Functionality and Purpose

 SCOUTAPP-DB is a project adapted from work initially completed independently by

Ben Schoenfeld. Ben’s initial court scraper publicized data from Virginia Court System records,

which are not under any copyright protection. This data was then made available for bulk

download on Ben’s website at http://virginiacourtdata.org/. This downloadable data consisted of

large .csv files that were organized by year and type of court. SCOUTAPP-DB is an expansion

on Ben’s scraper and website with some additional improvements added.

3

Figure 1: Screenshot from Ben Schoenfeld's Website

Functionality

The SCOUTAPP-DB project consists of two major components: a data scraper and a

website. The data retrieved by the scraper is used to fill a mysql database that allows the website

to run, which is also where the data is made downloadable. I will first describe the scraper in

greater detail before moving onto the website.

A data scraper is a program which extracts data from a source into some form of human-

readable output. Our data scraper extracts court case information from Virginia general district

and circuit courts. Examples of the kinds of information scraped includes hearing date,

information about the plaintiffs and defendants, and judgment. The full list of kinds of

information scraped is outlined in our data dictionaries, of which there are four (district civil,

district criminal, circuit civil, and circuit criminal). Our scraper extracts data from two different

sites. Data for the district courts is extracted from eapps.courts.state.va.us, while data for the

circuit courts is extracted from ewsocis1.courts.state.va.us. The scraper creates directories for

each individual court (these directories will be created wherever the scraper code is located),

which each contain subdirectories for each year data was scraped for. Each of these

subdirectories will then contain two .json files, one for civil data and one for criminal data. These

4

files are where the case data is actually stored. If these files already exist when the scraper is run,

then the scraper will merely append the newly scraped data to them rather than writing to new

ones or overwriting the current ones. It should also be noted that the circuit court scraper and the

general district court scraper must be run separately.

Figure 2: Excerpt from Circuit Civil Data Dictionary

Figure 3: Example of Data Scraped (District Civil)

 Our scraper code is written in javascript using Node Package Manager (npm) and

Puppeteer. As the websites we are scraping from use Captcha for human verification, a bypass

5

Captcha key is needed to run the scraper. Once all environment setup is completed, our scraper

can be run using the command “npm start”, which will have the scraper run across all courts and

years until a timeout inevitably occurs. We also have a shell script that can run more specific

commands such as scraping only specific courts and years, or even running multiple instances of

the scraper in parallel (though this uses a lot of CPU).

Figure 4: List of Commands for Shell Script

 The second part of the SCOUTAPP-DB project is the website. Our website queries from

a mysql database in which we have stored all of our scraped data. This means that the website

will look at parts of the data contained in the database and format it into a .csv file based on the

specifications of the user. The website currently features a simplistic user interface (UI). Though

it is not yet finished (as this project will continue on past this semester), the goal is to refine the

UI but still keep it simplistic. Users will be able to select which courts and/or years they want to

retrieve data from, and the data meeting these specifications will be outputted to them in a .csv

file format. It is also possible that other file formats will be supported in the future. However,

most of the back-end (code) for this project is dependent on the scraper, which is why the

website will remain relatively simple.

6

Figure 5: Database Schema for Circuit Civil Courts

Purpose

 The primary goal of SCOUTAPP-DB is to provide easy access to Virginia court case data

in bulk to the public. Though this data is already publicly available at the websites listed earlier

(the ones we are scraping from), they are not available in a table or database format, making

large-scale analysis extremely difficult. Moreover, the process of retrieving data from these

websites is cumbersome, as there are many intermediary web pages to go through, as well as the

Captchas mentioned previously. Thus, a data scraper is necessary to collect this data into a

systematic, analyzable format. SCOUTAPP-DB provides this, and it makes the collected data

easily accessible and downloadable to anyone who needs it. This provides many more research

7

opportunities into the Virginia court system than would previously be available. With this bulk

data, researchers would be able to identify trends and correlations across the data. Further

analysis could potentially expose biases within the court system. The ability to filter by data and

court also allows researchers to identify specific courts that are especially prevalent in these

trends, or how trends have changed over time (perhaps due to a change in judge for example).

Essentially, this project was established on the idea that having more data available to the public

could allow us to identify and alleviate problems that exist within systems currently in place.

 Of course, we considered that having certain data available to the public is not always a

good thing. This is why we prioritized anonymity by removing defendant names from our

scraped data. This is because we wanted the data from our scraper to be used to find larger-scale

problems with the court system, rather than having it be used against specific people. For

example, we did not want someone to be denied a loan because of data retrieved from our

scraper.

Future Prospects

 Though the Virginia scraper is now completed and a simple website has been put in

place, we have talked about possible advancements that could be made in the future. For

example, our scraper may one day advance beyond just Virginia to other states as well. Also, as

mentioned previously, advancing the UI of the website is a future goal that we have in mind, as

well as potentially supporting other file formats besides .csv files.

Contributions

 Much as the structure of SCOUTAPP-DB itself, my own work on the project can be

divided into two halves. In the first semester of working on the project, I spent most of my time

8

getting things set up and then working on the website. During the second semester, I worked on

the scraper instead, as well as some intermediary work and documentation that supported the

overall project. In this section, I will detail the specifics of my contributions to the project during

the past year.

Data Dictionaries

 My first major assignment after getting my virtual environment working was to upload

the data dictionaries to the website. The data dictionaries detail all of the fields that are outputted

when downloading datasets from the website. For each field, the following components are

given: the name of the field, a description of what the field means, the variable type of the field

(integer, boolean, etc.), and possible values the field can take on if applicable to that field.

Another project member and I worked to get these data dictionaries (given to us as four separate

Word documents) onto their own separate pages on the website. We decided to split up the work

between district and circuit courts, and I was in charge of adding the two circuit court data

dictionaries (circuit civil and circuit criminal).

 It should be noted that we collaboratively worked on both the scraper and the website

using Github repositories. This allowed members of the project to work on parts of it

simultaneously without needing to rewrite someone else’s code. The website was created using

Django, which is a framework for building web applications. It uses a model-view-controller

(MVC) design pattern, where the data is stored in the “model” which is represented to the user as

a “view,” and the “controller” processes input from the user and updates the model and view

accordingly. Since the data dictionaries are individual web pages that do not react much to any

user input, I mainly only had to edit the view portion to add them to the website. To do this, I

added two html files (known as templates in Django) to the repository: one for the circuit civil

9

data dictionary and one for the circuit criminal data dictionary. I then had to translate each data

dictionary into html code. Since I was told to keep the UI simple, as we planned to do more

formatting to the UI of the website once everything else was completed, I kept the format of the

dictionaries similar to how they appeared in the Word documents (shown in Figure 2). Since

each field was stored in its own table, I ended up creating many html tables for each page. As the

Word documents were fairly long, the html templates ended up being quite lengthy as well. After

that, I simply had to update the controller to prompt a switch to the correct data dictionary web

page when the user indicates to do so (note that in Django, the controller is confusingly named

“views.py”).

Various Documentation

 Throughout both semesters, I wrote a few documents that helped contribute to the project

in ways other than just code. As the setup process for this project is fairly complicated, and we

have new contributors coming and going quite commonly, I was tasked with writing setup

instructions for both the website and the scraper individually. While not entirely comprehensive,

as different contributors experience different issues with the setup process depending on their

computer and work environment, these instructions were meant to help catch new member up to

speed more easily than simply going through the trials and tribulations of repeating the setup

process for each new member.

 First, I created setup instructions for the website as I was figuring it out myself. We

initially used a virtual machine located on a dedicated courts server so as to not have to install

too much stuff locally. We were given accounts to connect to the courts server machine. From

there we had to launch vmware, a piece of software for running virtual machines, and create a

new virtual machine. As a display server was necessary for launching vmware, I downloaded

10

XMing. This virtual machine is where we would download the website source code and launch

the site. My instructions detail any bugs and fixes I had with the setup process, recommended

software such as XMing and Putty, necessary packages to be installed on the virtual machine

such as mysql and Chromium, and commands to run the website.

Figure 6: Excerpt from Website Setup Instructions

 Instructions for the scraper were far less complicated. As the virtual environment used to

launch the website proved to be too slow for running the scraper for several project members, we

found alternative methods for running the scraper. All that was necessary was a Linux

environment, so I used a virtual machine I had locally on my computer, but others solutions,

such as the Windows Subsystem for Linux, work as well. As I did not have to detail setting up a

new virtual environment for the scraper instructions, they ended up being much shorter. All I had

11

to explain for the most part was the process of installing npm and Puppeteer, as well as setting up

the bypass Captcha key. I also once again noted any bugs and fixes I had for the whole process.

Figure 7: Scraper Setup Instructions

 Finally, one other piece of documentation I helped with was a comparison between our

scraped data and that of Ben Schoenfeld’s scraper. We did this in order to ensure robustness of

our scraper (meaning we did not want to miss any important fields). The original document was

written by another project member. However, after the document was created, and updated

version of the scraper was then posted to Github. I then updated the document to be consistent

with the newest version of the scraper.

12

Figure 8: Excerpt from Comparison to Ben's Scraped Data

Database Population

As mentioned previously, the website makes queries from a database in order to provide

downloadable csv data to the user. In order to do this, a database containing all of our scraped

data needed to be created. I was part of a three-person team working on this goal, where one

member created the database itself, I worked to populate the database with the data from the

scraper, and another member worked to query from the populated database. In order to

accomplish my task, I wrote a Python program which takes in a json file as input. It then

converts that file into a json object in Python, which it is then able to insert into a mysql

database.

