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Toward A Multi-modal, Interactive and Smart Cognitive Assis-
tant For Emergency Response

M Arif Imtiazur Rahman

(ABSTRACT)

Emergency Medical Services (EMS) providers communicate extensively with many

different stakeholders in emergency scenarios to ensure that the correct measures are

taken and adverse outcomes are minimized. While communicating, the severity of the

scene as well as the condition of the injured patients are often mentioned. Although

state-of-the-art technologies such as noise-canceling microphones, smartwatches, and

other devices aid the communication and recovery procedure, EMS training and pro-

viding care in emergency scenarios still remain very challenging and mostly manual-

effort dependent. Most emergency scenes demand dynamic information flow, such as

changing vitals, changing medication dosage, etc. which makes the task even more

difficult. Previously, very few research have focused on building solutions that reduce

the cognitive overload on the care providers, and provide interactive assistance based

on the quality of the activity. This thesis presents novel research solutions for devel-

oping an automated cognitive assistant for EMS providers. Our research attempts to

move the state-of-the-art toward a more comprehensive and automation orientated

EMS intervention by utilizing natural language processing and transformer based

language models on EMS textual corpus; and by effectively combining deep learn-

ing and attention mechanisms on data from smartwatch-based sensors and image

data. The following research contributions with evaluations are presented. First, the

thesis demonstrates the implementation of GRACE - a natural language processing
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based component to address formal documentation or reporting of critical informa-

tion for emergency response. Second, the thesis presents an on-scene, data-driven,

and protocol-specific framework, emsReACT, for interactive and personalized feed-

back to EMS providers during EMS training sessions and mock real-time incidents

for cardiac arrest related cases. Third, a robust language model EMS-BERT is de-

veloped, for understanding the clinical concepts from live and existing EMS corpus.

Fourth, two models SenseEMS and EgoCap are presented; for hand activity detection,

monitoring, and real-time quality assessment, and a dataset development method for

vision based EMS assistance, respectively. SenseEMS uses deep neural networks on

smartwatch-based sensor data from the care providers. EgoCap dataset is developed

by first-person captioning of images, which can be potentially used for scene under-

standing with contextual and visual features. The research results include working

with regional EMS providers and certified EMS personnel, and involve real-life data

collection and evaluation to show the effectiveness of each of the components. To

summarize, the evaluation presented in this thesis successfully supports the hypoth-

esis of the value of developing a cognitive assistant for EMS providers, and implies a

successful feasibility of cognitive assistants for broader safety-critical domains.
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Chapter 1

Introduction

1.1 Motivation and Challenges

During emergency situations, first-responders collect, aggregate, filter, and interpret

information from different sources. Processing such a huge amount of real-time in-

formation at the incident scene requires a significant amount of cognitive overload.

This thesis presents key components of a cognitive assistant system for emergency

care providers to reduce their on-scene cognitive overload by real-time collection and

analysis of data; and by providing dynamic, data-driven decision support in an inter-

active manner. The components of the cognitive assistant leverage responder-worn

devices, i.e., microphones, camera and wristwatch-based smart sensors to monitor

activities and verbal communications, and aggregate the dynamic information with

static sources, i.e., emergency response protocol guidelines to generate insights that

can assist the providers with effective on-scene decision making and post-scene activ-

ity validation during training sessions. The high-level technical challenges addressed

in this thesis are outlined below.

1. Semantic inference from EMS textual data, i.e., negation detection, temporal

expression detection, and value association for accurate information extraction,

and deep inference of EMS text, i.e., distinguishing patient-related information



2

from scene and chronological ordering of information for automated documen-

tation.

2. Developing protocol-specific, data-driven behavioral models for interactive de-

cision support during the EMS training. Context sensing and developing sit-

uational awareness using speech data from the scene for an automated EMS

training assistant to provide customized and accurate decision support accord-

ing to varying degree of responder expertise. The severity of each intervention

and associated risk for not following a proper sequence of actions in timely

manner must be considered to avoid adverse outcome;

3. Domain-specific entity extraction that is unique for emergency response when

compared to current medical and clinical oriented ontologies, as the specialized

vocabulary used by first-responders limits the applicability of existing solutions;

4. Fusion of sensor data to detect and verify the accuracy of gestures for hand

operated interventions performed by the EMS providers. This is critical to de-

tect deviations from standard metrics during training sessions for time-sensitive,

safety-critical interventions, i.e., CPR;

5. Lack of an image dataset for modeling a first person or egocentric captioning

of EMS scene to provide a precise perspective, as a third person narrative

often imposes ambiguity. Egocentric vision data are often contaminated by

noise caused by motion, occlusion, and awkward camera angles which affect the

accuracy of extracting object attributes or key features.
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1.2 Contributions

The first component of the assistant is developed with a vision to relieve the care

providers from the cognitive burden of memorizing crucial facts related to the scene.

This is achieved by automatically filling out the intervention summary report for the

emergency first-responders. A tedious, cognitively overloaded task the care providers

have to perform in any emergency scene is post operative manual report generation.

These reports often lack critical details that are collected from the scene in real-

time. Research shows that in the USA, 13.6% of the time mistakes are made while

inputting information into the summary forms (Burnett et al. 2011). Mistakes happen

in the form of inputting wrong information, forgetting to include a correct piece of

information, and misplacing data in the wrong field of a form. Discussions with first-

responders indicate that automatic form filling followed by only needing to check the

forms would be a tremendous aid in their jobs.

The second contribution of this thesis is the development of an interactive, data-

driven, and real-time framework for providing personalized feedback to the providers

during EMS training sessions for cardiac arrest related cases. Previous studies sug-

gest that automated assistants for EMS ensure improvement of intervention quality

(Nicholson et al. 2017; Daily, Bishop, Steiner, et al. 2007). However, case studies in

the USA show that EMS training programs lack such automated cognitive assistants

(Pozner et al. 2004), and different phases of training are guided by manual efforts

only. EMS providers perform time-sensitive, safety-critical interventions to ensure

patient safety and reduce risk. Usually multiple EMS providers with different level of

expertise and training certification engage in providing care to a single patient. Im-

proving the quality of EMS interventions through interactive, assistive technology can
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contribute to improving the quality of overall emergency healthcare. Moreover, EMS

scenarios vary in terms of degree of severity and complexity. Thus some scenarios re-

quire EMS providers to go through more rigorous training to obtain an adequate level

of expertise. Utilizing audio data obtained from body-worn devices, i.e., microphones,

this thesis presents a cognitive assistant which is situation-aware, and provides real-

time, protocol-specific, personalized feedback to the provider for improved decision

making during EMS training and selective mock incidents for cardiac arrest cases.

Based on an empirical pre-study conducted with EMS providers from local and re-

gional EMS agencies, the findings indicate that automated and provider-customized

feedback with alert messages on quality of physical interventions during EMS training

sessions can have significant positive impact on the providers’ skill level.

The third part of the overall work focuses on addressing the challenges related to

domain-specific entity and concept extraction. For extraction of clinical concepts,

state-of-the-art clinical NLP tools, i.e. MetaMap (Aronson and Lang 2010), cTAKES

(Savova et al. 2010), and CLAMP (Soysal et al. 2017) exist. These tools are designed

for general purpose clinical concept detection from structured medical data. Pre-

liminary experiments for this thesis reveal that these tools obtain poor performance

for real-time EMS transcripts and EMS corpus. Existing bidirectional encoder rep-

resentation from transformer (BERT) based clinical models such as BioBERT (Lee

et al. 2020) is trained with structured textual corpus. EMS live transcripts require a

concept extraction tool that scales well with unstructured dataset. For EMS specific

purposes, this research develops a BERT based model, EMS-BERT, for automated

detection of EMS domain related entity and concepts with lexicon expansion. Using

domain specific dictionary developed from lexicon expansion, EMS-BERT performs

concept extraction from the speech data collected at the scene. EMS-BERT also pro-
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vides solutions for detecting missing data and relation extraction using intervention

dependency static information.

The fourth part of the research, SenseEMS and EgoCap address multimodal assistance

for EMS providers using smartwatch-based sensor data and first-person captioning of

potential EMS scenes, respectively. Using accelerometer, gyroscope, and magnetome-

ter data from the smartwatch, SenseEMS presents an ongoing research development

for hand activity detection and monitoring, and verifying sensitive parameters of EMS

interventions for quality improvement. This research tracks different hand gestures

while performing critical hand operated interventions. The SenseEMS model gener-

ates both real-time and post-scene validation and quality assurance feedback for EMS

providers to improve their skills. Currently, a human supervisor is appointed to verify

all the ongoing hand activity during an EMS incident, and provide separate reports

to acting responders about the quality of their performance. Previous research have

discussed the drawbacks of manual supervision, and proposed using different sensors

for assistance and task verification (Chang, Kang, and P.-C. Huang 2013; Rizzo et al.

2015; Sonntag 2015; Gamberini et al. 2009). However, none of them provide solutions

for an automated system for evaluating the quality of any EMS hand operated inter-

ventions. Ongoing work on SenseEMS aims at creating an automated hand activity

monitoring system to train EMS providers, and providing real-time verification of

intervention quality. Results discussed in this thesis present an improved model for

gesture detection during two hand operated EMS interventions, i.e. chest compres-

sions, and attachment of defibrillation pads; and a real-time approach for detecting

the rate of compression for one of the most the critical, life-saving EMS intervention

- cardiopulmonary resuscitation (CPR).

The last part of the thesis develops an image dataset with first-person captioning of
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daily scenes which are relatable to EMS environments. This dataset, EgoCap, can be

highly influential for automated understanding of the scene and it’s relevant objects.

First-person captioning is significant for EMS as it provides a machine vision of the

notion of “self”. It is important to depict the scene from an egocentric perspective

with an emphasis on the responder’s status, activity, and position. Ego-captioning

is non-trivial since Ego-images can be noisy due to motion and angles. Besides,

describing a scene in a first-person narrative involves drastically different semantics.

Different empirical implications have to be made on top of visual appearance as the

cameraperson is often outside the field of view. EgoCap notes that ego-captions are

often accredited to contextual cues, such as when and where the event unfolds, and

whom the first-responder is interacting with. This inspires the fusion of contexts for

situation-aware captioning as well for an EMS scene. Different aspects of creating

the EgoCap dataset and it’s properties are described in this section of the thesis.

To summarize, the thesis discusses the following solutions for creating a cognitive

assistant for EMS training and mock-real scenes, and creating a common EMS plat-

form by integrating the following tools: (i) formal documentation of patient summary

reports from EMS scenes, (ii) an automated assistant for customized interactive feed-

back and suggestions for cardiac arrest related training, (iii) a language model for

EMS concept/entity detection from EMS corpus, (iv) sensor data fusion for providers’

hand activity detection and monitoring, and ego-captioning of vision data with en-

hanced contextual awareness for EMS. The primary list of contributions and novelties

of this thesis are outlines as following.

• Developed the first natural language processing based system to address formal

documentation or reporting of critical information for patients in an EMS scene.

The assistant addresses the semantic challenges (i.e. information synchroniza-
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tion, value association, negation detection) in EMS text and information vali-

dation (i.e. vitals) for EMS data under both noise-free and noisy conditions.

• Developed a cognitive assistant for providing real-time interactive feedback to

multiple EMS providers during EMS training and mock-real scenes using the

conversational audio data. The thesis presents a protocol and data-driven,

responder-specific approach to provide decision support during the scene, and

create a standard platform for EMS training.

• Developed a transformer based domain-specific language model for EMS domain

that extracts EMS concepts/entities and detects missing information from EMS

corpora. The model combines ontology based lexicon expansion approach with

semantic heuristics and inferences for entity detection and relation extraction.

• Developed a hybrid deep neural based solution to analyze gesture detection for

EMS hand operated interventions, i.e., CPR and defibrillation, using smartwatch-

based sensor data from the providers. The ongoing work provides real-time

metric updates and detects deviations from standard procedures.

• Developed a unique dataset through egocentric captioning of EMS-relevant

daily-life based images from different public image datasets. The new dataset

fuses the contextual knowledge using first-person captioning to provide better

understating of the scene for the EMS providers. In the future, the dataset

will be used to train a transformer-based network with visual-context fusion

modules to automate ego-captioning of EMS scenes with enhanced contextual

awareness.
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1.3 PhD Thesis Statement/Hypothesis:

“By utilizing natural language processing (NLP) and transformer based language mod-

els on on-scene conversational audio data from the care providers and textual corpus

from Emergency Medical Services (EMS); and by effectively combining attention-based

deep learning techniques and egocentric NLP captioning on smartwatch-based sensor

and image data, respectively, it is possible to build intelligent, interactive components

of a cognitive assistant for emergency care providers, and thereby moving the state-

of-the-art toward more comprehensive and automated EMS training, on-scene and

post-scene solutions for the first-responders.”

The rest of the thesis is organized as follows. Chapter 2 presents the literature review -

related work and state-of-the-art for developing different components and a complete

cognitive assistant for EMS. Chapter 3 illustrated by a component called GRACE, for

generating summary reports automatically for cognitive assistance in Emergency Re-

sponse. Chapter 4 describes emsReACT, which is a real-time interactive component

of a cognitive assistant for cardiac arrest training in Emergency Medical Services. In

chapter 5, we present EMS-BERT - a pre-trained language representation model for

the EMS domain. Two of our ongoing research, SenseEMS and EgoCap are discussed

in chapter 6, detailing the potential use of smartwatch based sensor data and first-

Person image captioning with context fusion for multimodal assistance in Emergency

Medical Services.
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Chapter 2

Literature Review

In this chapter, we discuss different aspects and features of the state-of-the-art and

relevant work for designing and developing cognitive assistants for Emergency Medical

Services. We also highlight how our components GRACE (chapter 3), emsReACT

(chapter 4), EMS-BERT (chapter 5), SenseEMS and EgoCap (chapter 6) compare

against the literature.

2.1 Related Work for GRACE

To the best of our knowledge, GRACE is the first work to address the problem of

automatic documentation for the EMS domain. Although, there has been a lot of

work on developing smart assistants for emergency response, none of those focus on

form-filling. The following subsections review the literature for automated form-filling

for emergency situation.

Montanga et al. (Montagna et al. 2019) present TraumaTracker, a trauma tracking

system for documentation. They demonstrate that the accuracy of trauma documen-

tation significantly improves after using TraumaTracker, as the system adds data and

information that were not recorded in the paper documentation. But this system is

deployed only in the trauma domain, GRACE is more generic and can be used for any

medical emergency scenario, if the documentation format is similar. Preum et al. in
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(Sarah Masud Preum, Shu, Ting, et al. 2018), Shu et al. in (Shu, S. Preum, M Pitch-

ford, et al. 2019) and Lindes et al. in (Lindes, Lonsdale, and Embley 2015) discuss

the idea of developing cognitive assistant systems to improve and aid the awareness

of first-responders. However, they do not focus on EMS incident report generation

or documentation for the patients involved.

Transportation, health and many industry applications have seen different cognitive

assistant systems over the years. Authors in (Ha et al. 2014) illustrate a Google

glass based assisting system, which is developed to perform context-aware real-time

scene interpretation by identifying objects for people suffering from cognitive decline.

While the system is useful for this group of people, emergency situations often result

in compromising visual capabilities and video signals may not always carry the whole

information due to missing angles, and other adverse conditions. Thus, audio data

and on-scene conversations are more trustworthy sources for EMS and our module

uses them for documentation of patients.

ImageTrend1 is an increasingly popular tool for documentation, tracking and visual-

ization of EMS information. Another software Emergency Department Information

Exchange (EDIE)2 links all hospital emergency departments by facilitating real-time

communication and collaboration. However, both ImageTrend and EDIE, require

manual input in the initial phase of data collection which is tedious and prone to er-

rors. GRACE does not require any such effort, as summary reports are automatically

generated using the audio data from on-scene EMS conversations.

Different tools exist for extracting information from unstructured clinical texts, in-

cluding, MetaMap (Aronson and Lang 2010), cTAKES (Savova et al. 2010), and

1https://www.imagetrend.com/
2https://collectivemedical.com/ed-utilization/

https://www.imagetrend.com/
https://collectivemedical.com/ed-utilization/
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CLAMP (Soysal et al. 2017). MetaMap combines natural language processing (NLP)

with knowledge-intensive approaches for clinical concept identification and mapping

or normalization. The Clinical Text Analysis and Knowledge Extraction System

(cTAKES) combines rule-based and machine learning techniques to achieve this.

CLAMP is a comprehensive clinical Natural Language Processing (NLP) software

that enables recognition and automatic encoding of clinical information in narratives.

All three of MetaMap, cTAKES and CLAMP use the Unified Medical Language Sys-

tem (UMLS) to extract medical concepts. One of the main issues with using these

tools for EMS documentation or form filling is categorizing the contexts in finer gran-

ularity. For example, MetaMap has Concept Unique Identifiers (CUI) and semantic

type lists which signify whether a clinical concept is ’Disease’ or ’Medication’. But

there is no way to differentiate whether the disease or medication is the current condi-

tion of the patient or an occurrence from the past. GRACE, on the other hand, uses

NLP based heuristics to categorize contexts in finer granularity which is necessary

for filling the form. There have been some other works on clinical document sum-

marization and information extraction including (Y. He 2016; Mujjiga et al. 2019).

However, they focus only a subset of information relevant for EMS documentation

and require significant amount of annotated data, which is not available for the EMS

domain.

2.2 Related Work for emsReACT

emsReACT addresses the problem of insufficient, real-time automation techniques in

EMS training; and proposes an interactive, real-time, first-responder specific solution

using training scene audio data. Authors in (Koutitas, S. Smith, and Lawrence 2020)
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leverage augmented reality and virtual reality based technologies for EMS training.

However, we argue that emergency scenarios may have poor visibility issues and

require real-time assistants, and the training phase should provide best surrounding

conditions to the EMS providers. Using audio data eliminates visibility concerns.

During the training, EMS providers go through various cognitive overloads in cardiac

arrest related cases. Facilitating them with state-of-the-art real-time tools during

training with minimum equipment overload can significantly improve the quality of

the rescue task. Authors in (Guo, Fu, et al. 2017) developed a method which presents

pattern-based state-chart modeling approach for medical best practice guidelines such

as model medical guidelines with basic state-chart elements. As this method is often

not adequate for guaranteeing the correctness and safety of medical cyber-physical

systems, and formal verification is required. To resolve the clinical validation aspect

of the previous work, authors in (Guo, Ren, et al. 2016) and (Wu et al. 2014) proposed

an approach that transforms medical best practice guidelines to verifiable state-chart

models and supports both clinical validation in collaboration with medical doctors

and formal verification. However, none of these approaches adhere to the real-time

dynamic aspect for any critical protocols. Previous studies (Daily, Bishop, Steiner,

et al. 2007) suggest that automated, real-time assistants for EMS training will ensure

improvement of rescue quality. Authors in (Rahman, S. Preum, et al. 2020; Rahman,

Sarah M Preum, et al. 2020) have addressed the challenges discussed in this chapter,

but they do not provide a real-time solution that scales for different level of expertise

of the providers. Although there exist a few assisting systems for emergency response,

most of them are generic and lack depth for any specific purpose. Sensitive cases such

as cardiac arrest require extensive details and analysis in training sessions to prepare

the EMS providers for real-world scenarios. emsReACT is a context aware real-

time assistant that addresses this specific domain by assessing the clinical condition
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using training-scene audio data, and dynamically interacting with the EMS providers

in real-time during EMS training. The following sections highlight related cognitive

assistants from relevant domains, and explain how emsReACT is unique from existing

literature.

Lindes et al. in (Lindes, Lonsdale, and Embley 2015) discuss the idea of developing

cognitive assistant systems to improve the awareness of EMS providers. Preum et

al. (Sarah Masud Preum, Shu, Ting, et al. 2018; S. Preum et al. 2019b) and Shu et

al. (Shu, S. Preum, Pitchford, et al. 2019) presented a voice-based cognitive assistant

system for suggesting interventions to EMS providers in real-time. Montanga et al.

(Montagna et al. 2020) present TraumaTracker, a trauma tracking system for trauma

patients. The authors demonstrate that the accuracy of trauma recovery significantly

improves after using TraumaTracker, as the system adds data and information that

were not recorded in the initial paper documentation. This system mainly emphasizes

the documentation aspect. Compared to these systems, emsReACT is more effective

in the essence of providing feedback and suggestions in real-time during training.

Authors in (Rahman, Sarah M Preum, et al. 2020) and (S. Preum et al. 2019b)

provide new methods on top of the state-of-the-art techniques for clinical concept

extraction. These methods are modified for real-time use for emsReACT.

Authors in (Sarah Masud Preum, Munir, et al. 2021) provide a detailed survey on

types of cognitive assistants in healthcare and other domains. Many cognitive assis-

tants directly interact with a target user in real-time. For instance, authors in (Qian,

Deguet, and Kazanzides 2018) present an assistant for robotic surgery which interacts

with the human surgeon. However, based on different requirements, often cognitive

assistants may interact with multiple users. RoNA (Hu et al. 2011) is a humanoid,

mobile robotic nursing assistant for lifting and moving patients and heavy objects
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inside a hospital to increase patient and nurse safety and operational efficiency. It

interacts with an operator through a visual interface where the operator can see and

control movements. Similarly, some cognitive assistants interact with the patient and

their primary caregiver (Pollack et al. 2002; R. Li, B. Lu, and McDonald-Maier 2015)

or professional healthcare provider (Rajanna et al. 2016). emsReACT is unique be-

cause it provides feedback through an interface which is accessible to multiple EMS

providers in real-time, the feedback mechanism is situation-aware and customized

according to different skill levels of the EMS providers.

The modes of interaction for different cognitive assistants are mainly verbal and non-

verbal (Sarah Masud Preum, Munir, et al. 2021). A mixed reality (MR) based assis-

tant discussed in (Gamberini et al. 2009) provides training elderly individuals through

interactive games in real-time, the authors discuss natural interaction through a table-

top MR platform. Tabletop interfaces mainly use touch-screens and multi-touch tech-

nologies, they do not require using a mouse or a touch-pad. A lot of the assistants

often perform multi-modal interaction by combining both verbal and nonverbal inter-

actions (Rincon et al. 2019; DeVault et al. 2014). Authors in (Koutitas, K. S. Smith,

et al. 2019) proposes augmented reality and virtual reality based technologies for EMS

training. However, we consider using the audio data as the safest mode. Visibility is-

sues such as smoke, loss of power may interrupt augmented reality and virtual reality

based assistants during training and real EMS scene. Only few of these interaction

mechanisms address the challenge of varying degree of users’ expertise level. Also,

some of the above mentioned operations are not as safety-critical and time-sensitive

as EMS training. emsReACT, on the other hand, provides customized interactions

in a time-sensitive manner to EMS providers during EMS training. The mode of

feedback is textual as audio feedback may interrupt the ongoing process for the EMS
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providers. However, audio feedback feature is available if the providers choose to use

it.

Existing context-aware systems usually have some underlying representation of con-

texts, these systems learn the context in different ways. The set of contexts for a

cognitive assistant can be categorized into temporal, spatial, the user or personal,

and situational contexts (Kolenik and Gams 2021). For a real-time cognitive assis-

tant, the user context includes a user’s physiological, psychological, behavioral, and

medical context. emsReACT provides real-time feedback and they are customized to

one or more of the following EMS provider and/or patient contexts.

• Psychological contexts which refer to a human’s emotion, mood, personality,

level of positivity, and other psychological factors. For example, in EMS the

first-responders are prohibited to provide CPR to patients beyond 5 minutes

as the provider’s psychological factors may degrade afterwards. emsReACT

incorporates this constraint in it’s design.

• Behavioral contexts which encompass an EMS provider’s behavior, action, pre-

defined priority or preferences, level of skills, and professional training and

certification. emsReACT uses the level of certification and skills of the EMS

providers to understand such context in real-time during EMS training.

• Medical contexts which refer to a patient’s current and past medical history,

present medical condition, symptoms, diagnosis, medications, genetic profile,

family history, and similar medical factors. emsReACT uses dynamic patient

condition to understand the medical context during EMS training in real-time.

• The adaptive context or situational context includes environmental context,

process context, and operational context. emsReACT is aware of situational
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context in terms of ongoing process, operations, and predefined protocols. From

training scene audio data, emsReACT provides adaptive feedback by assessing

the dynamic context in real-time during EMS training for better learning ex-

perience for the EMS providers.

2.3 Related Work for EMS-BERT

Different tools exist for extracting information from unstructured clinical texts, in-

cluding, MetaMap (Aronson and Lang 2010), cTAKES (Savova et al. 2010), CLAMP

(Soysal et al. 2017) and EMSContExt (Sarah Masud Preum, Shu, Alemzadeh, et

al. 2020). MetaMap combines natural language processing (NLP) with knowledge-

intensive approaches for clinical concept recognition and mapping for normalization.

The Clinical Text Analysis and Knowledge Extraction System (cTAKES) combines

rule-based and machine learning techniques to achieve this. CLAMP is a comprehen-

sive clinical Natural Language Processing (NLP) software that enables recognition

and automatic encoding of clinical information in narratives. EMSContExt uses

a weakly supervised approach for recognition of EMS concepts from textual corpus

leveraging lexical, medical and EMS domain knowledge integration. All of these tools

and methods use either the Unified Medical Language System (UMLS), or lexicon

expansion approach to extract medical concepts. Two of the main drawbacks of using

these tools for EMS entity recognition is their inability for categorizing the contexts

in finer granularity, and lack of correlation understanding. For example, MetaMap

has Concept Unique Identifiers (CUI) and semantic type lists which signify whether

a clinical concept is ’Disease’ or ’Medication’. But there is no way to differenti-

ate whether the disease or medication is the current condition of the patient or an
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occurrence from the past, i.e., recognition of context or relations between entities.

Our proposed system EMS-BERT, on the other hand, uses a domain specific bidi-

rectional transformer (BERT) based language model and a simultaneous pre-training

technique to recognize entity, their relation and inferring missing information from

an unstructured, relatively small-sized EMS corpora. There have been some other

works on clinical document summarization and information extraction including, (De-

varakonda and Tsou 2015; Y. He 2016; Mujjiga et al. 2019). However, these works

focus only on a subset of information and are not specialized for the EMS domain.

The introduction of transformer based language models such as the Bidirectional

Encoder Representations from Transformers (BERT) (Devlin et al. 2018) has signifi-

cantly increased the performance of information extraction from free text. Previously,

authors in (Pennington, Socher, and C. D. Manning 2014) proposed a vector represen-

tation for words called GloVe embeddings. GloVe does not explore the context while

creating the word embeddings which means that the meaning of any specific word in

different contexts will render the same embeddings. To address this limitation, au-

thors in (Peters, Neumann, Iyyer, et al. 2018) came up with the idea of contextualized

word-embeddings called ELMo, which created word embeddings using a bidirectional

LSTM. ELMo is trained with a language modeling objective. ULMFiT (Howard and

Ruder 2018) is another successful model for training a neural network with language

modeling objective and fine-tuning for a specific task. However, all these models

take into account the next occurring words and disregard the context from the pre-

vious words. BERT on the other hand, addresses the limitations in these prior works

by taking the contexts of both the previous and next words into account instead of

just looking at the next set of words for context. BERT (Devlin et al. 2018) is a

contextualized word-representation model which is based on masked language mod-
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eling (MLM). BERT model is pre-trained using bidirectional transformers (Vaswani

et al. 2017). There are two steps in the BERT framework: pre-training and fine-

tuning. During pre-training, the model is trained on unlabeled, large-sized corpora.

For fine-tuning, the BERT model is first initialized with pre-trained weights, and all

the weights are fine-tuned using labeled data from the downstream tasks. BERT

pre-training is optimized for two unsupervised classification tasks - masked language

modeling (MLM) and next sentence prediction (NSP). The training instance of MLM

is a single modified sentence. Each token in the sentence has a 15% chance of being

replaced by a special token [MASK]. The chosen token is replaced with 80% of the

time, 10% with another random token, and the remaining 10% with the same token.

The MLM objective is to find a cross-entropy loss on predicting the masked tokens.

Next sentence prediction (NSP) is a binary classification task for predicting whether

two segments follow each other in the original text. Positive instances are created

by taking consecutive sentences from the text corpus. Negative instances are cre-

ated by pairing segments from different documents. Positive and negative instances

are sampled with equal probability. The NSP objective is designed to improve the

performance of downstream tasks, such as natural language inference, which require

reasoning regarding the relationships between pairs of sentences. Figure 2.1 (Wada

et al. 2020) shows the basic architecture of a BERT model.

Recent BERT models such as RoBERT and ToBERT (Pappagari et al. 2019) provide

solutions for classification on long text, KnowBERT (Peters, Neumann, Logan IV,

et al. 2019) incorporates different knowledge bases into BERT. In the masked lan-

guage modeling approach of BERT, words in a sentence are randomly erased and

replaced with a special token. A transformer is used to generate a prediction for

the masked word based on the unmasked words surrounding it. With the masked
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Figure 2.1: Basic architecture of BERT

Figure 2.2: Overview of EMS-BERT model

language modeling objective, BERT has achieved improved results for many NLP

tasks. Different research with BERT such as BioBERT (Lee et al. 2020), Clinical-

BERT (Alsentzer et al. 2019), and SciBERT (Y. Peng, Yan, and Z. Lu 2019) showed

that additional pre-training of BERT models on a large domain-specific text corpus

results in satisfactory performance in their specific text-mining tasks. For the clinical

domain, models such as BioBERT and ClinicalBERT perform text-mining on struc-

tured clinical corpora. However, EMS or Emergency Medical Service domain is very

different from traditional clinical corpora. The EMS dataset is mostly unstructured,

the providers use different sets of semantics and lexicons during their communication
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and post-incident summary reports. For data mining on our EMS corpora which

consists of live-transcriptions and post-scene narratives, existing medical and clinical

BERT models do not perform as well as they perform on their respective domain.

Hence we develop the EMS-BERT language model for entity recognition, relation

extraction and inferring missing information from an EMS corpus.

2.4 Related Work for SenseEMS and EgoCap

Hand gesture detection using smartwatch-based sensor data has gained significant

attention in recent years. Numerous studies have explored different approaches and

algorithms to accurately detect and recognize hand gestures using data from various

sensors embedded in smartwatches. Different studies such as (Kunwar et al. 2022;

Wen, Ramos Rojas, and A. K. Dey 2016; Zhu et al. 2018) proposed machine learning-

based approaches that utilized accelerometer and gyroscope data from a smartwatch

to detect and classify hand gestures. Another research (Bi et al. 2021) focused on com-

bining data from multiple sensors, including accelerometer, gyroscope, to enhance the

accuracy of hand gesture detection and present the design, implementation and eval-

uation of a smartwatch-based, freehand human–computer interaction system. These

studies, along with several others highlight the potential of smartwatch-based hand

gesture detection in EMS and provide valuable insights into the design of effective

algorithms and systems for real-time hand activity detection and related assistance

during EMS training and real-scene applications.

In NLP, it is recognized that coherent texts can be summarized through attention

(Lebanoff et al. 2020; Zhao et al. 2019). This lends captioning models the power

of comprehending the scene using external sources of information. Hence, we are
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inspired to fuse the contexts as additional information in egocentric way. Conceptual

Caption dataset (Sharma et al. 2018) harvests over 3 million image-text description

pairs from the Internet, which manifests semantic diversity whereas blurs boundaries

between first-person and other narratives. Although popular third-person captioning

datasets, such as COCO (Lin et al. 2014), are valuable sources, they cannot be directly

used for ego-captioning. Current egocentric visual captioning datasets are limited in

either scale or diversity. Charades-Ego (Sigurdsson et al. 2018) and EPIC-Kitchens

(Damen et al. 2018) are labelled in Human Activity Classification (HAC) only, and

are constrained in terms of scene diversity. Deepdiary (Fan, Zhang, and Crandall

2018) and EDUB-SegDesc (Bolanos et al. 2017) combined release fewer than 300 ego-

image samples in total. Ego4D (al. 2021) is a large-scale egocentric video dataset

collected across the globe. Unfortunately, the annotations only provide HAC labels

and template-based captions like “A interacts with B”. We contrast EgoCap with

existing datasets with egocentric approach. To summarize, there is currently a lack

of sizeable datasets supporting egocentric captioning studies, and this study aims to

develop an ego-caption based EMS dataset in future.
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Chapter 3

GRACE: Generating Summary

Reports Automatically for

Cognitive Assistance in Emergency

Response

EMS (emergency medical service) plays an important role in saving lives in emer-

gency and accident situations. When first responders, including EMS providers and

firefighters, arrive at an incident, they communicate with the patients (if conscious),

family members and other witnesses, other first responders, and the command center.

The first responders utilize a microphone and headset to support these communica-

tions. After the incident, the first responders are required to document the incident

by filling out a form. Today, this is performed manually. Manual documentation

of patient summary report is time-consuming, tedious, and error-prone. We have

addressed these form filling problems by transcribing the audio from the scene, iden-

tifying the relevant information from all the conversations, and automatically filling

out the form. Informal survey of first responders indicate that this application would

be exceedingly helpful to them. Results show that we can fill out a model sum-

mary report form with an F1 score as high as 94%, 78%, 96%, and 83% when the
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data is noise-free audio, noisy audio, noise-free textual narratives, and noisy textual

narratives, respectively.

3.1 Problem, Challenges and Overview

Emergency Medical Service (EMS) responders communicate extensively with many

different stakeholders in emergency scenarios to ensure that the correct measures

are taken and adverse outcomes are minimized. While communicating, the severity

of the scene as well as the condition of the injured patients are often mentioned.

State-of-the-art technologies such as omni-directional microphones, noise-canceling

microphones, headphones, the global positioning system (GPS) and other devices aid

the communication and recovery procedure. Currently, a textual narrative of the

scene as well as a summary report for the patients are created afterward. These

reports often lack critical details that are collected from the scene in real-time, but

forgotten. Research shows that in the USA, 13.6% of the time mistakes are made

while inputting information into the summary forms. Mistakes happen in the form

of inputting wrong information, forgetting to include a correct piece of information

and misplacing data in the wrong field of a form (Burnett et al. 2011). Such manual

errors can be attributed to the following factors. First, unfavorable circumstances

such as getting a call at 2 AM as well as multitasking activities at the scene create

adversarial conditions for the first-responders. Second, as responders try to remember

the events from the scene, their recall of the events is often not 100% accurate.

Finally, most emergency scenes demand dynamic information flow, such as changing

vitals, changing medication dosage, etc. which makes the task of post-incident form

filling accurately even more difficult. Discussions with first responders indicate that
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automatic form filling followed by only needing to check the forms would be a

tremendous aid in their jobs.

At first, with the availability of accurate transcription tools and the current state of

NLP research, this may seem like a simple task. However, this is not true, as many

challenges must be overcome. These challenges include:

1. domain-specific concept extraction that is unique for emergency response when

compared to current medical and clinical oriented ontologies, as the specialized

vocabulary used by first responders limits the applicability of current solutions;

2. semantic inference from EMS data, e.g., negation detection, temporal expression

detection, and value association for accurate information extraction;

3. minimizing the effects of noisy environments and noisy data, missing data,

homophones, and other realistic speech issues on information extraction;

4. deep inference of EMS text, including, (a) distinguishing patient-related in-

formation from scene and unrelated information in the conversations and (b)

chronological ordering of information since the scene is not always narrated

linearly.

We developed GRACE (Generating Summary Reports Automatically for Cognitive

Assistance in Emergency Response) to solve the above-mentioned challenges. We

have collaborated with a regional ambulance agency to get access to 8,000 textual

narratives of real EMS scenarios. We also developed 119 simulated audio versions

of a subset of the narratives with and without noise to evaluate the variation of the

performance of GRACE in presence of noise in speech data, as most emergency scenes
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are noisy. Further noise insertion in textual corpus is investigated for the validation

of GRACE. The main contributions in our chapter are:

• Developed the first NLP based system to address formal documentation or re-

porting of critical information for emergency response. Our thorough evaluation

uses real EMS dataset that includes both textual and speech EMS data. We

have explored the applicability of three benchmark NLP clinical information

extraction tools for EMS domain, namely, MetaMap (Aronson and Lang 2010),

cTAKES (Savova et al. 2010), and CLAMP (Soysal et al. 2017). GRACE out-

performs these benchmark tools for information extraction for documentation

of emergency response events.

• Demonstrated the impact of noise on audio and textual narratives of emergency

incidents and developed a resilient form-filling module that performs acceptably

under adverse and noisy conditions. Since emergency response is a low-resource

domain in terms of availability of realistic information-rich data, we have gener-

ated synthetic noisy conversational data with varying degree and types of noise

based on real EMS data for evaluating GRACE.

• Resolved some semantic challenges of domain-specific information extraction

for EMS documentation, including, negation detection in EMS text and infor-

mation validation (e.g., vitals) for EMS data under both noise-free and noisy

conditions.
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Figure 3.1: Solution steps for GRACE

3.2 Approach and Solution

Figure 4.1 shows the overview of our solution. Although there are many tools to

extract medical information, categorizing them into specific fields of the EMS form

requires further text processing. This requires additional logic and heuristics com-

pared to the state-of-the-art tools. In the following subsections, we describe our

solution.

3.2.1 Speech-to-text conversion

The first step of our solution is speech-to-text conversion, marked by 1⃝ in Figure

4.1. There is a lot of noise in EMS scenes, and the accuracy of transcriptions are

significantly affected under such adverse conditions (Sarah Masud Preum, Shu, Ting,

et al. 2018). Solving this problem is important, but not the subject of this chapter.

In the experiments in this chapter, we consider both accurate transcription and noisy

transcription to reflect the potential variations in the performance of off-the-shelf

speech recognition tools.
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3.2.2 EMS concept extraction

After speech-to-text conversion, EMS concepts are extracted from the converted text

in step 2⃝ (Figure 4.1). Ranking of concepts is done using state-of-the-art medical

NLP tools, i.e. MetaMap, CLAMP, and cTAKES. In this chapter, we used Concept

Unique Identifiers (CUIs) to filter concepts, and the ranking of concepts is done by

using the confidence scores provided by MetaMap. A threshold for confidence score

for each type of concept was defined by training our module with training data.

Unless a concept ranked above the threshold, it was discarded.

Since MetaMap supports ranking of concepts and unique identifiers according to the

confidence scores, it is used in GRACE for clinical context detection and concept

extraction. On top of MetaMap, we use different heuristics and linguistic rules to

extract necessary information for fields of the form. cTAKES and CLAMP are used

for validating the output of MetaMap. First, all the clinical contexts are filtered

through MetaMap to discard scene and non-patient related information. We have

derived a minimum threshold of confidence score of 5.00 for each of the concepts

to be considered. For some of the concepts though, the threshold score is higher.

For example, to detect medication and intervention related information, we keep the

threshold to 5.00 to ensure all possible concepts are extracted. But for chief complaint

or illness history of the patient, our tests with training data illustrate that a threshold

of 10.00 works best by omitting false positives. The clinical concepts above certain

confidence score are further checked with cTAKES and CLAMP, to ensure that all

the state-of-the-art tools identify those as clinical concepts. Unless two of the tools

signify a concept as clinical, we discard them. After filtering out non-clinical concepts,

we try to understand the semantic meaning (next step below) of each concept and

align them with the fields of the form.
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3.2.3 Semantic inference

Understanding semantics in textual corpus is a challenging problem and different

techniques for identifying semantics exist in the literature (Mujjiga et al. 2019). For

semantic inference (step 3⃝ in figure 4.1) such as negation detection and value

association for vitals (i.e. blood glucose levels, Glasgow coma score, respiratory,

blood pressure, pulse, peripheral capillary oxygen saturation or SPO2, etc.), we use

modifier selection tools, dependency parsers, and entity recognizers. Specifically,

NegEx (Chapman et al. 2001) and Stanford dependency parser (Cer et al. 2010) are

used for negation detection and StanfordNER (Finkel, Grenager, and C. Manning

2005) is used for associating vitals to their values. However, without punctuation it is

quite difficult to understand the context of the narrative. Researchers have identified

various methods for adding punctuation in a text corpus (Say and Akman 1996), and

recent developments have seen neural network based approaches. Authors in (Tilk

and Alumäe 2016) discussed a recurrent bidirectional neural network for missing

punctuation. Although this accuracy is not sufficient, we used their online tool to

add punctuation into our transcripts as overall performance of GRACE improves

afterwards.

3.3 Experimental Setting

Table 4.2 summarizes our datasets. We have generated synthetic data by adding

relevant noise profiles to original noise-free audios, however some of our audio data

originally had background noise. We have also used textual data from our collabora-

tor, a regional ambulance agency. To train our module, we have randomly selected

half of each type of data shown in Table 4.2, while the other half is used for test
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purposes. The lengths of the audio files vary from one-minute to four-minutes. The

artificial noise was added in continuous and discreet mode, and randomly. The am-

plitude of noise profiles were as high as the amplitude of the original audio, while the

minimum amplitude of noise is half of the main audio. For textual narratives, all 32

annotated versions were randomly chosen and consists of minimum 1,000 words and

maximum of 5,000 words. Due to limited and constrained resources, and restrictions

in collecting live data in real-world EMS scenarios, we consider our dataset to be

sufficient for this research. Also, annotating the dataset by professional EMS per-

sonnel is a time-consuming and difficult process. However, we are planning to collect

more data from real world EMS training scenes and extend our collaboration with

various Advanced Life-Support (ALS) EMS providers to enrich our experiments on

this research.

3.3.1 Generating synthetic data

We have used the following five types of data for evaluating GRACE:

(i) EMS narratives: We have 8,000 post-incident narratives of different EMS scenarios

from our regional collaborators. These textual corpora were used to determine the

accuracy of our system. Since these data is not annotated and the annotation process

is expensive in terms of both time and intellectual effort, this task can not be crowd-

sourced for reliable and correct annotation. Instead, a small subset of 32 narratives

was randomly selected from this data for training and testing purposes.

(ii) Noisy EMS narratives: We utilized different noise-insertion methods in existing

research (e.g., (Agarwal et al. 2007)) to insert noise in the textual data mentioned

above to validate the robustness of GRACE in presence of textual noise.
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(iii) Noise-free audios from the EMS narratives: we have selected 12 test case scenarios

from the data we obtained from our regional collaborator (different subset of data

when compared to the subset mentioned above) and asked certified EMS responders

to simulate a real scene for each of those. There was minimal ambient noise.

(iv) Noisy audio: The same procedure as above was followed, however, there was

substantial noise around the scene. The noise was typically people talking in the

background, screaming and ambulance siren.

(v) Simulated noisy audio: For the noise-free audio mentioned in the third point

above, 8 different types of artificial background noise were inserted with varying

degree of intensity. Thus 96 additional synthetic noisy audio data were generated

from 12 noise-free audios and 8 noise profiles.

Figure 3.2: Sample fields in patient summary report form, filled fields colored in
blue/red demonstrate the output of GRACE
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Table 3.1: Description of synthesized datasets

Type Description Size

Text EMS narratives 32
Noise-inserted EMS nar-
ratives 32

Audio

Noisy audio (with ambi-
ent noise) 11

Noise-free audio 12
Audio with artificially
injected noise (using 8
noise profiles)

(12*8) =
96

3.3.2 Accuracy metrics

We conducted our experiments according to the form layout from one of our regional

collaborators- a local fire response agency. Figure 3.2 shows the fields in the form.

The minimum fields required in a post EMS documentation are locally standardized

by ImageTrend (mentioned in section 2.1), and we included all the required fields in

our model report. All the textual and audio data mentioned above was manually

annotated according to this form layout by two graduate students working on this

project, both of them are certified Emergency Medical Technicians (EMT). The anno-

tations were further reviewed by certified EMS personnel to ensure correctness.Since

our target is to measure how accurately GRACE can create summary forms, we have

selected Precision, Recall, and F1 Score as our accuracy metrics.

3.4 Evaluation

GRACE outputs acceptable accuracy numbers for all the fields in the form shown

in Figure 3.2. Typical fields such as Medication Administration, Vital Signs, and
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Procedures yield an average F1 score of 0.79, 0.86 and 0.71 for test data that in-

cludes noise-free audio, noisy audio, noise-free narratives and noisy narratives. The

performances of the medical concept extraction tools (e.g. MetaMap, cTAKES, and

CLAMP) are also comparable for these information fields. Due to limitation of space,

we omit further details for these fields. Also, because of the chapter space limits and

because of their difficulties and importance we choose to show results of our negation

detection step and the filling in the most important fields, including Chief Complaint,

HPI (History of Present Illness), and PMH (Past Medical History). Appendix A holds

detailed results for all the fields.

3.4.1 Performance of negation detection

Although state-of-the-art tools use an enriched set of rule bases for detecting negation

in clinical texts and electronic health records, it is difficult to identify if sentences

have multiple negations or multiple contexts. For example, transcriptions such as

patient denied having shortness of breath or patient denied having lack of chest pain

contains double negations. Multiple negated contexts are also difficult to determine,

e.g., ”patient denied having headache, shortness of breath and chest pain”. Another

issue is that ill-punctuated transcriptions create lots of false positives in our train

and test data while detecting negation. We have experimented with off-the-shelf and

state-of-the-art tools such as DEEPEN (Mehrabi et al. 2015), NegEx (Chapman et al.

2001), MetaMap, and cTAKES. The accuracy of each tool is shown in Figure 3.3, the

experiment was done with all of the test data in Table 4.2. NegEx outperforms all

the other tools; the F1 score of NegEx is 0.81 with the highest precision compared

to other tools. Although recall of DEEPEN is higher than NegEx (0.77 compared to

0.76 of NegEx), but the precision and F1 score is lower for our data. MetaMap and
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cTAKES have built-in negation detectors which can be used solely for detecting neg-

ative phrases, but they perform poorly; their F1 score is 0.44 and 0.49, respectively.

Since NegEx performs the best, we adapt NegEx for GRACE. Additional customiza-

tion is done on top of NegEx by adding to the existing rule base and incorporating

heuristics for detecting multiple negated contexts in a sentence.

Figure 3.3: Baseline comparison for negation detection

3.4.2 Accuracy of critical medical information

Chief Complaint

The chief complaint (CC) of the patient is challenging to define as there are multiple

clinical contexts in the narrative. Medical information extraction tools provide dif-

ferent tags for chief complaint, e.g. ”sign or symptom” by cTAKES; ”findings”, ”sign

or symptom” and ”injury or poisoning” by MetaMap; or”problem” class in CLAMP.

But these tags could relate to any of the contexts of other fields in the form also,

such as past medical history, history of present illness, allergies and so on. On top

of the tools used, hypothesis developed in GRACE detects the most likely candidate

for chief complaint from the contexts in the transcription. Figure 3.4 summarizes the

accuracy of our findings for chief complaint, and also demonstrates the comparison

with the state-of-the-art tools. For the clarity of the figure and due to space limita-
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tions, we show the F-1 scores only. The tags mentioned above were used for each of

the tools to extract the chief complaint candidates. These results are compared with

the ground-truth data annotated by a real EMS responder.

We apply different heuristics and keyword identification for determining the chief

complaint of the patient. Our investigation with EMS transcripts reveal that the chief

complaint of the patient is generally mentioned at the beginning of scene description.

Lack of correct punctuation causes difficulty in understanding the semantic meaning,

thus we apply the punctuation insertion mechanism discussed in (Tilk and Alumäe

2016), after the speech-to-text conversion step. The resultant narratives are filtered

for clinical concepts by MetaMap, cTAKES and CLAMP; we only select the clinical

concepts that are found up to first three sentences. These clinical concepts have higher

probability of holding the information of chief complaint of the patient. GRACE seeks

for any mention of phrases like ”The patient is complaining of” or ”Chief complaint

is” or ”The patient is suffering from”, and if found then finds which clinical concept(s)

are related to that phrase using dependency parsers. The first two clinical concepts

with highest confidence scores (determined by MetaMap, cTAKES and CLAMP) are

selected as chief complaints unless such phrases are mentioned explicitly. If at least

one common concept does not exist in the output of all three tools, we leave the field

empty for post-scene manual input by first-responders with a highlighted remark to

draw their attention.

The implication of the result in Figure 3.4 is two-fold. First, state-of-the-art tools are

far off from defining clinical information in finer granularity. Although the concepts

in concern are detected fairly accurately (acceptable precision), but the false positives

and false negatives are too high (poor recall). MetaMap, CLAMP and cTAKES has

an average F1 score of 0.65, 0.64 and 0.62 respectively for noise-free audio, noisy
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Figure 3.4: GRACE outperforms the state-of-the-art clinical information extraction
tools for detecting Chief Complaint from each EMS dataset used in our evaluation.

audio, noise-free narratives and noisy narratives while determining chief complaints.

GRACE uses additional logic and filter to narrow down the possible results and

achieves an average F1 score of 0.83. Second, many of the concepts are previous

symptoms or past history, but they were detected as probable chief complaint by the

tools. When using only the tags mentioned above, the tools return a lot of clinical

concepts, most of which are effects of the chief complaint or related to the development

of current conditions of the patient. GRACE, on the other hand, uses additional

heuristics, ranking, and semantic inference to distinguish the clinical concepts, and

selects chief complaint with better accuracy. Our understanding is that assuming the

chronological development of patient’s clinical condition in the transcription plays an

important role in increased F1 score of GRACE, 0.85, 0.72, 0.93 and 0.81 for noise-

free audio, noisy audio, noise-free narratives and noisy narratives, respectively. Most

of the information transcribed in the middle or later sections of the audio data do

not contribute to the chief complaint; information in the beginning holds all the true

positives.
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History of Present Illness (HPI) and Past Medical History (PMH)

History of present illness (HPI) and past medical history (PMH) are very important

information to understand patients’ condition and the development of the symptom.

Empirically, there are certain keywords and phrases which first-responders use to

signify HPI and PMH, for example “Patient has been feeling stomach ache for two

days” or “She took pregnancy-related pills two months ago”. Our heuristics use state-

of-the-art NLP tools to understand the difference, and determine possible candidates

for both of these fields in the form. The significance of detecting correct informa-

tion in these two fields are very important, as the range of candidates span from

clinical concepts to daily activities which might be linked with the current condition

of the patient. Past information related to allergies are also critical, because many

of our false positives are caused due to miss-classification of this information, and

interchanged content in these fields. Our heuristics only rely on specific keywords

for this part, however we use an entity recognizer and different NLTK classifiers to

separate the related information. Figure 3.5 and 3.6 summarize our findings for HPI

and PMH respectively, comparison with other tools is irrelevant as there is no specific

tag or semantics provided by these tools to identify the two categories. One impor-

tant thing to mention here is that our module is tested on data which do not have

any time-stamps, we assume that chronological ordering of development of patient’s

symptoms is maintained while transcribing. Average F1 scores for HPI and PMH

are 0.71 and 0.70. This is due to the inability of GRACE to understand the context

at times due to lack of proper punctuation and noise in transcriptions. Within sen-

tence boundaries, transcribing multiple symptoms which relate to different fields of

the form adds to the challenge. One important thing to mention for all fields of the

form is that no specific keyword or verbalization was predefined while generating the
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synthetic data. It is our understanding that explicit mentioning of the context and

better noise-canceling techniques can improve the accuracy of these fields.

Figure 3.5: Accuracy of GRACE for detecting HPI

Figure 3.6: Accuracy of GRACE for detecting PMH

3.5 Conclusion

This chapter addresses the problem of automatic summary report generation for pa-

tients involved in an EMS scenario. Using simulated audio data from the scene and

conversations from first-responders, we show that our solution can generate an initial

summary report by filtering and identifying relevant EMS information and context.

We are the first to show that such documentation can be done with an F1 score as

high as 94%, 78%, 96%, and 83% when the data is noise-free audio, noisy audio,

noise-free textual narratives, and noisy textual narratives, respectively. Due to ap-

proval issues, we are yet to test our system in real-world EMS scenarios, but we are
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planning to deploy the system in EMS training soon. Our solution is not robust to

all kinds of error and noise at the moment; however we claim that GRACE is very

helpful for first-responders as it provides them with an initial draft of the summary

of an injured patient, which can further be modified later manually if needed, to

finalize post EMS scene documentation. The EMS responders do not have to com-

pletely depend on their memory for the task; and even though the accuracy is not

perfect, the first-responders will highly benefit by the automate initial draft. In the

future we plan to highlight missing interventions and critical inconsistencies detected

from the conversation regarding patient’s clinical condition. We also aim to develop a

more generic and scalable approach by considering multi-patient and multi-responder

scenes, and by applying machine learning techniques.
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Chapter 4

emsReACT: A Real-Time

Interactive Cognitive Assistant for

Cardiac Arrest Training in

Emergency Medical Services

EMS (emergency medical services) deals with cardiac arrest cases more frequently

than any other fatal health conditions all over the world. We have developed emsRe-

ACT, a real-time interactive cognitive assistant, to train EMS providers for cardiac

arrest cases in an emergency situation. This customized tool interacts in real-time

with the first-responder and collects critical information. Using the conversational

audio data available at EMS training sessions, emsReACT provides responder-specific

decision support during the training based on domain specific information extraction,

context-aware tracking of cardiac arrest protocols, and the dynamically changing con-

dition of the patient. emsReACT leverages a dynamic behavioral model and a task-

graph of two frequently used cardiac arrest EMS protocols.We have developed an

intelligent abstraction mechanism with a critical risk-rating that drives an anytime

algorithm to meet time requirements for regular and critical situations. Our thorough

experimentation reveals an average end-to-end time of 2.7 seconds and 1.8 seconds
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for regular and critical interventions, thereby meeting the time requirements of 7 and

3 seconds, respectively. A qualitative study also reflects that over 70% of the 31 sur-

veyed EMS providers rate the system as helpful to properly train the first-responders

for executing cardiac arrest protocols.

4.1 Problem, Challenges and Overview

Cardiac arrest is a complex, life-threatening health condition and one of the leading

causes of death all over the world. In addition to the number of lives lost, cardiac

arrest has a considerable economic impact as measured in terms of productive years of

life lost due to premature death or other avoidable neurological disabilities (Graham,

McCoy, Schultz, et al. 2015). Several factors can affect the outcome of an out-of-

hospital cardiac arrest. One of which is the efficacy of emergency medical services

(EMS) providers and first-responders who provide initial care to the suffering patient.

To improve the quality of emergency healthcare in such crucial EMS scenarios, real-

time interactive and assistive technologies should be adopted in EMS training sessions.

However, case studies from the U.S. and Europe show that EMS training programs

lack such automated cognitive assistants (Sarah Masud Preum, Munir, et al. 2021),

and different phases of training are guided by manual interventions. Moreover, EMS

scenarios vary in terms of degree of severity and complexity. A real-time cognitive

assistant can contribute in multiple ways to improve the EMS training sessions for

cardiac arrest protocols since the first responder would be physically working on a

dummy and obtaining real-time feedback on their actions.

Key characteristics of cardiac arrest make the problem challenging. First, interven-

tions relevant to the EMS cardiac arrest protocols are complex and must meet time
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constraints. Second, to follow the complex recovery procedure, first-responders need

to recall critical information under a high-stress, overworked environment. This can

lead to avoidable human errors (Burnett et al. 2011). Third, different interventions

possess varying levels of severity, risk, and required degree of EMS training and ex-

pertise. Fourth, the importance of these factors also changes dynamically with time

as the condition of the patient changes. For example, even some low-risk interven-

tions might cause irreversible damage to patients if they are performed in an ill-timed

or non-synchronized manner.

Addressing these characteristics of cardiac arrest lead to the following technical chal-

lenges:

• How to develop and implement a behavioral model of cardiac arrest protocols

that match the dynamics of the patient recovery procedure. The model should

demonstrate real-time situational awareness, i.e., it needs to reflect the dynamic

information flow (e.g., the state of the patient) of an emergency cardiac arrest

scene while interacting with first-responders within specific end-to-end time

constraints. The dynamic information flow includes: (i) changing vitals, (ii)

required medication dosage, (iii) varying degrees of risk, (iv) time-sensitivity

and (v) dependencies between interventions.

• How to perform real-time and accurate concept extraction from conversational

data on cardiac arrest which is unique for the EMS domain when compared

to in-hospital medical and clinical text. This demands a specialized, domain-

specific EMS lexicon to overcome the existing clinical concept extraction tools’

limitations.

• How to perform real-time scheduling of a collection of collaborating tasks with
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dynamic deadlines driven by a risk factor. In addition, the solution should

achieve acceptable performance under the effects of ambient noise at the scene,

e.g., the noise of passing vehicles and bystanders’ conversation.

Prior to creating a solution, we performed an empirical study conducted with EMS

providers from local and regional EMS agencies. We found that automated and

provider-customized feedback on the quality of physical interventions during EMS

training should have significant positive impact on the skill development of the

providers. For example, analyzing the training scene speech data from EMS providers

to generate protocol specific feedback on interventions does not require any alter-

ations during the incident, and creates lesser cognitive overload and better learning

conditions for EMS providers.

To address the challenges and train first-responders properly for executing cardiac

arrest protocols, we have developed emsReACT - A Real-Time Interactive Cogni-

tive Assistant for Cardiac Arrest. Training in Emergency Medical Services. Note

that since first-responders constantly communicate with each other during an scene,

emsReACT is based on collecting and utilizing conversational data.

The main contributions of this emsReACT are:

• Developed and evaluated the first NLP based, real-time, and anytime cogni-

tive assistant to provide automated, in-depth cognitive support in Emergency

Medical Services (EMS) training sessions for time-sensitive and safety-critical

cardiac arrest protocols. To the best of our knowledge, EMS still remains a

novel domain for deploying and investigating an anytime automated assistant.

Our research is the first one to address this scope.

• Designed a behavioral model and a task-graph as a state machine using the
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action-flow from the recovery procedure for two most frequently used cardiac

arrest protocols. We deployed abstraction on the state-machine to solve the

challenge of dynamic deadlines for generating feedback in different severity lev-

els. We also introduced a risk-rating metric that dynamically controls an any-

time algorithm to produce results in-time depending on the changing severity

of the patient. Feedback in critical and regular situations have an average end-

to-end response time of 1.8 s and 2.7 s respectively, both of which are within

the requirements.

• For evaluation of emsReACT, we have collaborated with a regional EMS provider

to get access to 12,000 textual narratives of real EMS scenarios. With direct

participation of multiple EMS providers, we have recreated training exercises

from 600 conversational textual cases. By injecting relevant types of noise pro-

files to mimic real EMS scenes in the audio data, we have evaluated different

performance metrics of emsReACT.

• Experimented on noisy audio data to address the real-world issues and devel-

oped a resilient system that generalizes acceptably well under adverse situations.

emsReACT outperforms benchmark tools such as MetaMap (Aronson and Lang

2010), cTAKES (Savova et al. 2010), and CLAMP (Soysal et al. 2017) for the

task of real-time information extraction specific to cardiac arrest cases. Consid-

ering the correctness, first-responders’ expertise level, and timing, emsReACT

feedback achieves an average F1-score of 87%.

• A survey of 31 EMS first-responders indicates that 23 of them mark the module

as helpful for real-world cardiac arrest training. This provides strong evidence

of the utility of the system.
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4.2 Background on Cardiac Arrest

This section presents a brief background on cardiac arrest protocols, necessary inter-

ventions and their related EMS training procedures.

4.2.1 Cardiac Arrest Protocol

There are four different forms of cardiac arrest - ventricular fibrillation (VF), non-

perfusing ventricular tachycardia (VT), asystole (A) and pulseless electrical activity

(PEA) (Parish, Goyal, and Dane 2018). In this chapter, we use the recovery protocols

for two of these types of cardiac arrest - Ventricular Fibrillation (VF), and Pulseless

Electrical Activity (PEA). The recovery protocols for these two types of cardiac arrest

are complex and dynamic. A partial segment of two frequently used versions of

the recovery process for the cardiac arrest protocol is depicted in Figure 4.2. For

emsReACT, we use this standard EMS recovery protocol as the underlying model of

a real-time feedback system. According to our EMT collaborators, each of the actions

and interventions must be carried out in a timely manner for both of these protocols.

The collaborators decided the time requirements to be a maximum time delay of 7

seconds for regular interventions and 3 seconds for critical interventions.

4.2.2 Intervention Risk and Certification Level of EMS Providers

EMS providers have different certifications, and they are allowed to perform different

types of interventions. For example, there are two categories of cardiopulmonary

resuscitation (CPR) training for healthcare providers and professional rescuers: (i)

Basic Life Support (BLS), and (ii) Advanced Life Support (ALS) or Advanced Car-
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diac Life Support (ACLS). BLS providers are experienced with skills of scene safety,

patient assessment, CPR by chest compressions, breathing, use of an automated

external defibrillator (AED) and bag valve mask (BVM). EMT-basic providers are

considered BLS. Compared to BLS providers, ALS or ACLS providers may give in-

jections, administer medications, and place advanced intubation or airways - such

as an endotracheal tube, laryngeal mask airway or esophageal-tracheal tube. EMT-

advanced, EMT-enhanced and paramedics certification holders are ALS providers.

Table 4.1 shows certification levels required for some of the interventions. For as-

sociated risks, a higher value indicates a higher risk. Risk-rating (O), risk-rating

(NDWI), and risk-rating (DWNI) indicates associated original risk, risk if not done

when indicated, and risk if done when not indicated, respectively.

Table 4.1: Some of the dynamic risks and required certification levels

Intervention
EMS cer-
tification
level

Risk-
rating
(O)

Risk-
Rating
(NDWI)

Risk-
Rating
(DWNI)

Prerequisites/
Checks

12-lead ecg Paramedic 1 4 1 BP, pulse, vitals
assist venti-
lation (bvm)

EMT-
Basic 2 4 1 Check Pt aller-

gies
cardiac mon-
itor

EMT-
Basic 1 4 1 Check Pt aller-

gies
chest decom-
pression Paramedic 1 4 4 Check Pt aller-

gies

CPR EMT-
Basic 4 4 2 Allergies

defibrillation EMT-
Basic 4 4 3 Allergies

intubation EMT-
Advanced 4 4 4 Allergies

oropharyngeal
airway inser-
tion

EMT-
Basic 1 4 2 Check Pt aller-

gies
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Figure 4.1: emsReACT solution overview

4.3 Solution

emsReACT processes the training scene conversation of the care providers in real-

time to understand the ongoing procedure, and provides suggestions and feedback.

Specifically, the speech data is collected from the first-responder who is wearing a

microphone. For each intervention, the first-responder is required to verbalize each of

the actions for peer verification. Thus, using audio data from a training scene does not

create any additional burden on the care providers. Figure 4.1 shows the high-level

architecture of the system. The following subsections 4.3.1,4.3.2, and 4.3.5 briefly

describe the overall assistant and are included for completeness. The subsections

4.3.3 and 4.3.4 detail the main contributions of real-time dynamic scheduling for this

chapter.

4.3.1 Speech-to-text conversion

The first step of our solution is speech-to-text conversion in real-time. There is a lot

of noise in EMS scenes, and the accuracy of transcriptions are significantly affected

under such noisy conditions (Sarah Masud Preum, Shu, Ting, et al. 2018). In the
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experiments of this chapter, we consider both accurate and noisy transcriptions to

reflect the potential variations in the performance of the off-the-shelf speech recog-

nition tools. As this is not one of the main contributions of this chapter, we do not

detail the process here. We use the state-of-the-art Google Speech API for this step.

4.3.2 Concept extraction and context detection

Cardiac arrest related concepts are extracted in real-time from the speech, and con-

verted to text as depicted in Figure 4.1. For extraction of concepts from the text,

state-of-the-art clinical NLP tools, i.e. MetaMap (Aronson and Lang 2010), cTAKES

(Savova et al. 2010), EMSContExt (Sarah Masud Preum, Shu, Alemzadeh, et al.

2020) and CLAMP (Soysal et al. 2017) exist. However, these state-of-the-art tools

are not best suited for real-time applications and they are not adapted for the EMS

domain. In emsReACT, we use an EMS specific language model (described in Chap-

ter 5) for detecting concepts from the speech using a lexicon expansion approach. We

developed a detailed cardiac ontology (müller2006sudden; Narayan, P. J. Wang,

and Daubert 2019) to detect concepts from live speech data. A group of certified EMS

providers helped us to develop a dictionary, D1 with the following: (i) a specialized

lexicon for cardiac arrest cases, (ii) a comprehensive vocabulary with a contextually

mapped set of synonymous concepts and their possible homophones in noisy tran-

scripts, and (iii) the related conditions/intervention prerequisites that might occur

before/during the scene. We develop a bidirectional encoder representation from a

transformer (BERT) based model for automated lexicon expansion and create another

domain specific dictionary, D2. Using binary classification on the dictionaries D1 and

D2 in real-time, cardiac concepts are extracted from the speech narratives. We omit

further details here as this is not our main contribution for this contribution.
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4.3.3 Task abstraction for scheduling an anytime feedback

Figure 4.2: Intervention flow (partial) for VF and PEA recovery

Cardiac arrest protocols do not follow any static flow of action, rather the overall

procedure consists of many different dynamic actions or tasks (Figure 4.2). Imple-

menting a system to adhere to the complexities of the interactions and associated

time constraints is challenging. For example, most of the tasks are correlated with

one another, however some of the tasks and dependencies are not mandatory. In

addition, sometimes optional measures are also performed by the first responders for

comprehensiveness of the patient recovery process. Critical tasks must always be

carried out in a timely manner, while non-critical or optional tasks act as collabo-

rative components for an improved patient recovery. The state of the patient which

dynamically changes is the impetus for assigning a dynamic deadline to the collec-

tion of tasks. The dependency of the critical tasks must be carefully performed, but

skipping the non-critical tasks and dependencies provide an option for the scheduling
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Figure 4.3: Task abstraction concept for emsReACT

solution to adhere to the dynamically determined time-constraints. For emsReACT,

we intelligently design the mandatory and optional nature of task correlation using

an abstraction method (Yao et al. 2020). This abstraction enables emsReACT to

solve the dynamic time constraint issue and thereby providing real-time feedback to

first responders for incidents with different severity.

A key component of our solution is creating the task graph. The entire patient re-

covery process from Figure 4.2 must be converted into a task-graph with necessary

abstractions for adhering to different time constraints, and how components depend

upon each other, including different types of task collaborations. To provide some

details, Figure 4.3 highlights the task-graph abstraction for a small portion of the

recovery model. Here, the filled and dashed arrows indicate mandatory and optional

task dependency, respectively. A task is denoted by an oval shape, and a set of

related tasked is represented as a module in rectangular shape. For each Taskijk

or Moduleijk, the associated properties i, j, and k denote whether the task/module

is mandatory or optional (null task), the associated risk level according to current
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parameters or information, and the required list of information and pre-requisites,

respectively. Dt denotes the dynamic deadline for the originating task. Depending

on the severity and critical nature, this deadline updates dynamically for generating

feedback through the Output Feedback step. We discuss a dynamic risk-rating based

approach for updating the time-constraint deadline in the following subsection (sub-

section 4.3.4). A potential feedback must be provided within this time-constraint

for the associated task if any information or pre-requisite is missing in the input.

If the time-constraint deadline permits, the optional route of the task-graph is ex-

plored for more comprehensive feedback. Otherwise, a prompt feedback is provided

within the time limit using the limited available information. This type of scheduling

method is uncommon in the literature in an application level, specifically when we

have both “within” module anytime decisions and in-the-large anytime decisions ”at

the end-to-end” module level.

4.3.4 Real-time risk-rating assessment for situational aware-

ness

To adhere to the different time-constraints for generating a feedback, we calculate a

risk-rating via an anytime algorithm (Algorithm 1 in Figure 4.7). This rating indi-

cates the current severity of the scene. The following criteria determine the dynamic

risk-rating of the situation: (i) the set of allowed interventions by the acting EMS

provider, (ii) the changing conditions of the patient, i.e., newly detected interventions

and concepts and (iii) the dynamic risks associated with ongoing procedure. Table

4.1 shows the risks associated with each intervention, and how the severity of the

situation changes when the care provider fails to carry them out in timely manner.

Following the complex recovery procedure and dynamic task-graph illustrated in sub-
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section 4.3.3, and combining the current risk-rating with associated time constraint

for each intervention, emsReACT calculates the sensitiveness of the situation in real-

time. Then, the assistant provides feedback to the first-responders to meet the time

requirements of 3 seconds for high-risk or critical conditions (risk-rating > 7), and

7 seconds for low-risk or regular situations (risk-rating < 7). If the deadline is 3

seconds, then emsReACT performs only the mandatory tasks and none of the op-

tional, and when the deadline is 7 seconds the the system attempts to accommodate

all of the tasks. The feedback component maximizes the accuracy of the automated

response by allowing as much information as possible from the input audio stream

within the time constraints. However, this timing constraint sometimes forces the

algorithm to ignore some part of the remaining audio stream. Our experiments show

that the critical cases sometimes lose additional information due to this time con-

straint. But for regular cases where the risk-rating is below 7, the anytime algorithm

waits for the end of the intervention sub-task. The risk-rating and feedback deadline

are constantly being monitored and updated with the change, update, or discovery of

new scene concepts and interventions. For interaction between the real-time assistant

and first-responder in the training, a list of frequently asked questions during EMS

training for cardiac arrest cases is also provided to emsReACT. The first-responders

can ask questions during the process and emsReACT can respond to those queries to

minimize the cognitive overload of memorizing different steps.

4.3.5 Personalized feedback generation for smart interaction

Different certification levels of care providers mandate the presence of multiple EMS

providers in cardiac arrest related EMS training. When the acting EMS provider

verbalizes intervention details for peer verification, emsReACT identifies the speaker
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Figure 4.4: Speaker identification technique for emsReACT

and verifies the certification level of the EMS provider. This feature provides person-

alized feedback for specific level of EMS providers. Additionally, in some life-critical

interventions such as CPR compressions, emsReACT uses speech identification tech-

nique along with the training scene transcriptions to provide a timely reminder for

switching EMS provider to avoid exhaustion.

emsReACT is equipped with a speaker identification component which processes on

scene conversation. To ensure the system is real-time, the model is trained with

all the trainees before the beginning of the session. Different approaches exist in

the literature for speaker identification. Sequence-to-sequence models are used for

solving speaker identification problem such as(Seki et al. 2018), however the training

phase is costly. Deep neural network based solutions (W. He, Motlicek, and Odobez

2018) are not effective for real-time EMS environment. We apply the basic method

proposed in ARASID (Z. Chen et al. 2019), this method is specially suitable for
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adverse conditions found during EMS training. Our experiments reveal following

reasons for using this method: (i) ARASID identifies speakers using an artificial

reverberation generator with different parameters to generate different artificial voice

samples for each speaker. This means that it works well with limited training samples.

(ii) The solution is easy to deploy, (iii) It filters out non-speech and overlapped speech

samples, and separates non-trained speakers’ samples. This feature means that the

system filters out a large portion of background speech such as television speech, or

an outside visitor. We do not detail the training method of ARASID for emsReACT

as this is out of scope for the contribution of this chapter.

Figure 4.4 shows the architecture, training and testing details of ARASID for em-

sReACT. For emsReACT, we generate the MFCC features while training the system

with speakers as an artificial reverberation sample generation requires small amount

of sample data for training. For testing, we modify the basic ARASID model and

generate i-vectors from the features, instead of generating GMM-UBM based speaker

identification system. The latter approach requires using different reflection coeffi-

cients to model realistic levels of reverb, which is inappropriate for real-time opera-

tion. We calculate the fusion score from all the sample and rank the most probable

candidate speaker.

4.4 Evaluation Settings and Results

For evaluation or emsReACT, we have synthesized a dataset from real-world post in-

cident EMS narratives obtained through our regional collaborator. EMS scenes were

recreated for training exercises with multiple certified EMS providers in the labora-

tory settings. Techniques discussed in (Rahman, Sarah M Preum, et al. 2020) were
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applied to develop synthesized dataset with noise-free audio, noisy audio, noise-free

textual data, and noisy textual data. Although emsReACT takes audio streams as

inputs, additional evaluation is conducted with the textual narratives to emphasize

the robustness of emsReACT with respect to qualitative errors and different types

of noises due to real-time transcription. Different styles of communication among

the first-responders are also examined. We collected speech data from 14 EMT pro-

fessionals along with their certification level while creating audio simulations to val-

idate the accuracy of our speaker identification component. We used synonymous

concepts, noise mappings and different homophones to enrich our specialized EMS

lexicon (Sarah Masud Preum, Shu, Alemzadeh, et al. 2020). Our dataset is created

in a comprehensive fashion by considering audio, text and relevant noise profiles for

training and testing different parts of emsReACT individually and in combination,

i.e. accuracy and latency of speech to text conversation, cardiac concept detection,

and quality of generated feedback in terms of generic and personalized nature. Time-

sensitivity is added as a feature in deciding the accuracy. An ill-timed correct feedback

is considered as false positive.

4.4.1 Data Collection and Labelling

As live data collection in real EMS scenes requires certain approval and has privacy

concerns, we collaborated with a regional EMS provider organization to collect the

post-scene transcripts. We applied a style-transferring mechanism to recreate con-

versational data from these narratives. The annotations were supervised by certified

EMS providers. Table 4.2 shows the sources, sizes, and types of our dataset. We

have generated synthetic data by adding relevant audio and textual noise to origi-

nal noise-free data (Rahman, Sarah M Preum, et al. 2020). However, some of our
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Table 4.2: Description of synthesized dataset for emsReACT

Type Description Size/Samples

Text EMS narratives 200
Noise-inserted EMS nar-
ratives 200

Audio

Noisy audio (ambient
noise) 20

Noise-free audio 20
Noise profiles 8
Audio with artificial
noise (using 8 noise
profiles)

(20 X 8) = 160

audio data originally had background noise. We have also used textual data from

our regional collaborator, a regional ambulance agency (RAA). Each of the textual

narrative samples comprises of 1000-1200 words, and the audio samples are 5-10 min-

utes long on average. To train emsReACT and different components of it, we have

randomly selected half of each type of data shown in Table 4.2, whereas the other

half is used for test purposes.

4.4.2 Experimental Results

For the sensitivity of each intervention, correct timing of each feedback is an impor-

tant element for emsReACT. The overall accuracy depends on the accuracy of each

component. For example, if the speaker identification component did not detect the

correct EMS provider and provided personalized feedback according to the wrong

certification level, accuracy metrics record lower performance results. We also con-

sider a correct, but ill-timed suggestion or reminder as false positive for evaluating

the feedback system. Due to a lot of actual and simulated noise in our recreated

EMS datasets, often parts of the original transcript gets distorted. This condition
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Table 4.3: Performance of emsReACT for personalized on-scene feedback and time
delay

Performance of emsReACT / Metrics Average Latency of Each Sentence Level Subtask (s) P R F-1

On-scene personalized feedback (regular) Speech to text transcription via Google API 0.94 s 0.89 0.86 0.87Processing for concept and semantics detection 1.76 s

On-scene personalized feedback (critical) Speech to text transcription via Google API 0.57 s 0.78 0.71 0.74Processing for concept and semantics detection 1.24 s

is the most contributing factor for overall lower accuracy numbers. Noise in audio

sometimes leads to an indecisive state for emsReACT, different accents and communi-

cation styles adversely effect the speech recognition component. To demonstrate the

applicability and time-sensitivity of emsReACT during EMS training sessions, here

we show the accuracy of processing for concept detection, and generating an accu-

rate feedback. We train the speaker identification component before the simulation,

the transcription and speaker identification phase takes place concurrently. Table

4.3 shows the summary of overall accuracy. However, if the situation is detected as

critical, emsReACT provides instantaneous feedback without further processing the

transcription. This reduces the average time latency, but ignoring the remaining of

the transcription causes the Precision, Recall and F-1 score to drop slightly. The

minimum, average, and maximum end-to-end time for regular and critical feedback

are 2.1, 2.7, 4.6 seconds, and 1.3, 1.8, 2.4 seconds, respectively.

Figure 4.5: Accuracy of emsReACT for different types of data
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Performance of Speech-to-Text Conversion under Noise

We evaluate comparative performances of state-of-the-art speech-to-text conversion

tools under noise. Three off-the-shelf speech to text APIs - Google speech API,

Microsoft speech API, IBM BlueMix API and one offline tool DeepSpeech (Hannun

et al. 2014) are compared for accuracy and latency metrics using live speech and

audio data in both noisy and noise-free environments, as depicted in Table 4.4. The

performance is measured in terms of runtime (seconds) and word error rate (WER)

(Sarah Masud Preum, Shu, Ting, et al. 2018). The runtime indicates time needed

to transcribe each sentence on average, the word error rate (WER) is indicative

of how much noise or distortion exists in the transcription. The Google cloud API

outperforms the other tools in terms of WER (at least 16% lower than any of the three

tools compared), thus we select this API for emsReACT even though this requires

internet connectivity and slightly longer (0.15 seconds) runtime than the offline tool

DeepSpeech. Even though the WERs are somewhat high, our solutions are robust to

this amount of WER as we use a vocabulary which is comprised of empirical mappings

of homophones and distorted versions to original concepts.

Table 4.4: Comparison for training scene transcription tools.

Metric/Tools Google
Speech

Microsoft
Speech

IBM
BlueMix DeepSpeech

WER (%) 31 47 49 61
Runtime (s) 0.94 1.08 1.23 0.79
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Table 4.5: Comparison for cardiac concept detection and/or generating feedback

Method Avg.
time (s) Metric

Detecting
cardiac
concepts

Generalized
feedback

Personalized
feedback

emsReACT 2.7
P 95.14 93.72 88.89
R 91.73 89.64 85.29
F1 93.40 91.64 87.05

IMACS 3.11
P 85.91 85.01 N/A
R 88.54 82.03 N/A
F1 87.21 83.49 N/A

MetaMap 3.14
P 71.94 N/A N/A
R 63.21 N/A N/A
F1 67.29 N/A N/A

CLAMP 3.21
P 65.21 N/A N/A
R 58.14 N/A N/A
F1 61.47 N/A N/A

cTAKES 3.9
P 60.24 N/A N/A
R 63.95 N/A N/A
F1 62.04 N/A N/A

Comparison with existing methods for clinical concept detection and per-

sonalized feedback generation

State-of-the-art clinical information extraction tools such as MetaMap, cTAKES, and

CLAMP work well with textual narratives. But these tools also process for other as-

pects of clinical contexts such as ranking, categorization and confidence scores. Thus

the time required for detecting one specific concept is often too high for a real-time

system. IMACS (Rahman, S. Preum, et al. 2020) provides feedback in real-time,

however the feedback is generic for all the first-responders. emsReACT provides

first-responder specific and customized solutions in real-time. Table 4.5 shows the

comparison of average F-1 score, and average time required for, (i) generating a

feedback/reminder, and (ii) detecting a cardiac concept during EMS training, respec-

tively from different types of data from our testing dataset for all state-of-the-art
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methods. emsReACT has the highest F-1 score of 91% (at least 8% higher compared

to IMACS) and lowest average time of 2.7 seconds (at least 0.4 seconds lower com-

pared to other approaches) to generate a generalized feedback in real-time and to

detect a cardiac concepts, respectively. For generating a feedback personalized ac-

cording to the expertise level of the current first-responder, emsReACT shows an F-1

score of 87%. emsReACT identifies the first-responder from speech, and uses a map-

ping that holds the certification level information for that specific first-responder for

providing customized feedback. As IMACS does not generate personalized feedback,

and MetaMap, cTAKES, CLAMP do not generate any feedback, we compare the

accuracy of generalized feedback with IMACS and detection of cardiac arrest related

concepts with all four of the methods.

Details of Precision and Recall scores are also listed in Table 4.5. emsReACT has at

least 9% higher Precision and 3% higher Recall compared to the other approaches for

detecting cardiac concepts. This is due to the generalization towards a wide range

of noisy, real-world cases. emsReACT matches concepts from live narratives against

a predefined vocabulary set listed with all possible cardiac arrest related concepts.

This approach significantly reduces the false positives, and provides higher Precision

scores. Compared to IMACS, we have also developed a mapping of homophones to

the original cardiac concepts to ensure more resilience of emsReACT under noisy sit-

uations. The database we developed also consists of different pre-requisites of various

interventions, and range of acceptable numerical quantities for intervention lengths

and medication dosages for the cardiac symptoms. Using these information, emsRe-

ACT detects possible missing information and diagnosis while the training scene is

ongoing, and provides crucial, decisive and timely feedback. This unique approach

yields better Recall scores for emsReACT. For providing generalized feedback, emsRe-
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ACT outperforms IMACS by at least 8% in Precision and by 7% in Recall. Training

with a larger dataset increases the accuracy of our solution.

Performance of emsReACT for different types of data

To train our module, we have randomly selected half of each type of data shown

in Table 4.2. The other half is used for testing. The test dataset shows that for

different types of data, average F-1 score is 87% (Figure 4.5) for generating the correct

feedback specific to first-responder’s expertise level. The error is mainly due to the

inaccurate transcription from the speech-to-text engines, specially noisy surroundings

affect emsReACT adversely. As we induce different noise profiles into the audios, the

performance of emsReACT decreases. Some of the error is propagated due to out-of-

flow actions by the first-responders. emsReACT detects only the interventions that

are verbalized by them and recognized by the speech API. The inclusion of correct

timing of feedback as a feature for determining accuracy metrics results in lower

performance numbers. Low recall rate is contributed by some of the out-of-time

feedback by emsReACT. Missing information from the conversational data creates

a time-lag in the processing. emsReACT sends a wrong alert while waiting for the

data, and consequently provides an incorrect feedback. Ill-timed correct suggestions

are also resulted from such cases.

Qualitative Evaluation

emsReACT is also evaluated qualitatively by collecting anonymous EMS providers’

responses using a Likert scale-based rating and open-ended interview. 31 EMS

providers, who were not involved in the development phase, participated in the eval-
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Figure 4.6: Survey from 31 anonymous EMS providers

uation. For the overall idea and performance of emsReACT, 23 of the participating

EMS providers consider the solution as either above standard, useful, or very useful as

depicted in Figure 4.6. However, the remaining group of 8 EMS providers remarked

that emsReACT might occasionally hinder care-providing when the provider interacts

with it. Interestingly, in an open-ended interview, the later group also disagreed with

the idea of using electronic devices and gadgets such as a microphone during EMS

scene. The average year of EMS experience for the first and second groups are over

4 and 8 years, respectively. The demographic information collected in the beginning

of the survey indicates that the second group of 8 EMS providers were less exposed

to technological gadgets during their overall professional careers. Appendix B holds

more survey details and an example scene.

4.5 Discussion

emsReACT’s accuracy is not 100% so it may sometimes provide wrong advice or

feedback. However, it is not intended to work alone. Instructors work alongside

emsReACT and can correct occasional errors. Overall, the results are promising for
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training EMS responders for cardiac cases. This is based on our initial survey results

that suggest that emsReACT will be influential to affect the training on making deci-

sions in critical situations. In the future we expect that emsReACT can also be used

in actual EMS scenes. But further user studies are required to improve the perfor-

mance of emsReACT where no instructors are present. A dynamic risk-rating based

variant of anytime algorithm is used for emsReACT in the EMS domain with accept-

able results. We believe that the key solutions developed here, including dynamic

understanding of safety critical scenes that have unique vocabularies, dynamically

computing safety critical risk indexes, and having such indexes drive real-time any-

time algorithms can be used in other applications such as training police and fire,

various military training, emergency departments in hospitals, and for in-hospital

surgeries. The methods discussed in this research can be extended to address in-

home emergency situations using existing systems such as Alexa, Google Home, etc.

Our future goal includes using reinforcement learning instead of rule-based solutions

for real-time assistance via safety-critical applications.

4.6 Conclusion

To the best of our knowledge, emsReACT is the first cognitive assistant that addresses

the challenges of personalized, interactive decision support in EMS training. By

utilizing an intelligent abstraction method in the recovery task-graph in real-time,

emsReACT builds a collaborative pipeline of tasks that runs first without deadlines,

and then dynamically identifies different timing constraints based on a novel risk

factor. Importantly, this pipeline is not a static DAG (directed-acyclic-graph) and

there needs to be a collaborative interaction between the elements of the pipeline.
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This combination of real-time challenges is not solved in the literature; thus, our

solution is novel. Moreover, leveraging a novel data driven approach on the live speech

data, emsReACT provides cognitive solutions for automated assessment of dynamic

cardiac arrest related EMS training scenes. emsReACT provides customized feedback

to the care providers according to their specific certification level in timely manner.

Our thorough evaluation shows an average F1-score of 87% for personalized feedback

generation in EMS training sessions in real-time, the average end-to-end time recorded

for the feedback is 1.8 and 2.7 seconds for critical and regular cases respectively,

which is within the acceptable delay span according to professional EMT personnel.

Extensive survey with 31 anonymous EMS providers reveal that emsReACT can play

an important role in reducing the real-time cognitive overload. In the future we expect

that emsReACT can also be used in actual EMS scenes. The methods discussed in

this research can further be extended to address other complex system task-graphs,

i.e., those found in systems that combine artificial intelligence and real-time solutions

such as smart cities, smart health, etc.
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Figure 4.7: Assessing situational awareness by dynamic risk-rating calculation via a
form of an end-to-end Anytime Algorithm
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Chapter 5

EMS-BERT: A Pre-Trained

Language Representation Model

for the Emergency Medical

Services (EMS) Domain

Emergency Medical Services (EMS) is an important domain of healthcare. First re-

sponders save millions of lives per year. Machine learning and sensing technologies

are actively being developed to support first responders in their EMS activities. How-

ever, there are significant challenges to overcome in developing these new solutions.

One of the main challenges is the limitations of existing methods for EMS text min-

ing, and developing a highly accurate language model for the EMS domain. Several

important Bidirectional Encoder Representations from Transformer (BERT) models

for medical domains, i.e., BioBERT and ClinicalBERT, have significantly influenced

biomedical text mining tasks. But extracting information from the EMS domain is

a separate challenge due to the uniqueness of the EMS domain, and the significant

scarcity of a high-quality EMS corpus. In this research, we propose EMS-BERT

- a BERT model specifically developed for EMS text-mining tasks. For data aug-

mentation on our small, classified EMS corpus which consists of nearly 2.4M words,
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we use a simultaneous pre-training method for transfer-learning relevant information

from medical, bio-medical, and clinical domains; and train a high-performance BERT

model. Our thorough evaluation shows at least 2% to as much as 11% improvement

of F-1 scores for EMS-BERT on different classification tasks, i.e., entity recognition,

relation extraction, and inferring missing information when compared both with exist-

ing state-of-the-art clinical entity recognition tools, and with various medical BERT

models.

5.1 Problem, Challenges and Overview

Emergency Medical Services (EMS) provide emergency medical care to patients who

are involved in an incident that causes serious illness or injury. EMS play an intricate

role in healthcare, each component of EMS performs coordinated efforts for providing

emergency medical care to the patient(s). An EMS system does not exist in isolation,

rather it is integrated with other healthcare related services intended to maintain

and enhance a community’s health and safety. Emergency services often provide the

most timely initial care to begin the recovery process for the patient. In the USA

alone, EMS providers save thousands of lives everyday and initiate a primary phase

of patient recovery through the healthcare system (Al Amiry and Maguire 2021). To

improve healthcare and provide better services to the patients, the EMS domain can

not be ignored. Sometimes, the whole recovery phase of the patient is conducted by

EMS. EMS providers perform different interventions on the patient, and collect lots

of data during an EMS scene for future treatment. The information regarding the

recovery process and patient health are documented after each EMS episode. Using

this data from the EMS scene, novel methods such as an EMS specific language model
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can be built to analyze patient information and predict patient outcome. State-of-

the-art assistants for medical care heavily rely on correct detection of EMS related

medical information. An EMS specific language model can also be utilized in EMS

based applications such as (S. Preum et al. 2019a; Sarah Masud Preum, Shu, Ting,

et al. 2018; Rahman, Sarah M Preum, et al. 2020) for developing a better, robust and

more automated healthcare system.

EMS reports hold significant data related to different EMS protocols, interventions,

and clinical conditions of the patient (Rahman, Sarah M Preum, et al. 2020). As

EMS scenes occur frequently (especially during the COVID-19 pandemic) (Al Amiry

and Maguire 2021), and these reports are always generated afterwards, analysis of

such information can also play an important role in optimizing the entire process,

i.e., save money, time, and lives by better understanding of the EMS information and

their correlation to improve performance in the future (Kim et al. 2021).

Different machine learning techniques exist in the literature to uncover patterns and

improve predictions (Yu, Beam, and Kohane 2018; Nguyen-Duc et al. 2021; Xiao, E.

Choi, and Sun 2018). However, unstructured, high-dimensional, and sparse informa-

tion such as EMS reports are difficult to use in traditional machine learning models.

In recent years, advances in deep learning and transformers have led to great progress

towards generic and personalized predictions in different medical domains. A key con-

tributing factor to this success is the introduction of large multimodal health data

such as electronic health records (EHR) (Shickel et al. 2017). Each individual’s EHR

can link data from many sources, i.e. doctor visits and hospital episodes. This data

contains entities/concepts such as diagnoses, interventions, lab tests, clinical narra-

tives, and more. The adoption of EHR systems has greatly impacted the frequency

of hospitalization of patients (K. Huang, Altosaar, and Ranganath 2019; Y. Li et al.
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2020) and detection of severe illnesses (Poplin et al. 2018; Ardila et al. 2019). On the

contrary, the EMS domain has seen almost no advancements in processing the EMS

data for understanding the patient condition and personalized treatment generation.

Just like the EHR data, an EMS dataset can be utilized to develop a domain specific

language model for text-mining purposes in EMS based applications.

For developing a domain-specific language model, pre-training of the language model

on large-scale raw textual corpus has already made a tremendous contribution for

transfer learning in natural language processing (NLP). Introduction of transformer-

based language models, such as Bidirectional Encoder Representations from Trans-

formers (BERT) has significantly improved the performance of information extrac-

tion from free text in the general domain (Devlin et al. 2018). For domain-specific

purposes, many studies showed that additional pre-training of the BERT model on

a domain-specific corpus results in better performance in their specific text-mining

tasks. Two of the most contributing factors for developing a domain adapted language

model are the size of the training corpus, and the relevance of training dataset. For

example, BERT models such as BioBERT and ClinicalBERT localize on biomedical

and clinical text, respectively (Lee et al. 2020; Alsentzer et al. 2019). However, these

models are developed for the medical domain, and the EMS domain is significantly

separate from both. Although the performance of the medical BERT models is good

for entity and relation detection tasks, other barriers exist to relate the localization

to the EMS domains. For example, information extraction and correlation detection

for the EMS domain is unique from the previous two domains when compared to

the lexicon of in-hospital medical and clinical corpora (Kim et al. 2021). The EMS

domain has its own uniqueness because of the specialized vocabulary which the first

responders use. These are the main reasons which limit the applicability of current



69

medical and clinical solutions. Compared to existing clinical and medical dataset, the

EMS dataset is often specialized, unstructured and noisy. Our experiments suggest

that concept detection as well as semantic inference from EMS data, i.e., negation

detection, temporal expression detection, and value association for accurate informa-

tion extraction requires different approaches compared to the clinical state-of-the-art

methods and tools (S. Preum et al. 2019a). However, due to the lack of available

datasets in the EMS domain, we devise a solution to utilize the overlapping portion

of clinical and medical datasets for augmenting our experimental EMS dataset. Since

both domains are based on medical issues, there also exists overlap between EMS

and the clinical domain. Some portions of EMS concepts are similar to clinical and

medical concepts such as disease names and medication names.

As our EMS dataset is limited, we utilize data augmentation from related clinical

and medical BERT models to develop EMS-BERT: A Pre-Trained Language

Representation Model for Emergency Medical Services (EMS) Domain for

text-mining purposes in EMS. For developing EMS-BERT, we implement simultane-

ous pre-training (Wada et al. 2020) method using two relevant types of corpora and

combine them to create a sizable corpus of over 1.5B words. We augment our training

corpus with amplified vocabulary from these related domains as well as from the gen-

eral domain. First, we show the efficiency of our method for downstream text-mining

tasks, i.e., entity/concept recognition, relation extraction, and inferring missing infor-

mation using comparison with predefined EMS protocols on EMS documents. Then,

we also demonstrate that when applied on the EMS domain, our approach provides

a better pre-trained model that outperforms existing BERT models from the general,

medical, clinical, and bio-medical domains, i.e., BERT-Base, BioBERT, and Clinical-

BERT, and existing clinical concept recognition methods, i.e., MetaMap, CLAMP,
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and cTAKES. The main contributions of this research are:

• To the best of our knowledge, EMS-BERT is the first BERT based language

model for clinical entity/concept related text-mining purposes on an EMS spe-

cific textual corpus. The novelty lies in the new EMS domain where we apply

the BERT technique, and in creating the training instances for the model.

• Leveraging the state-of-the-art method of simultaneous pre-training, EMS-BERT

is developed using an EMS corpus of real-scene transcripts and post-scene sum-

mary reports. This corpus is larger than any other EMS corpus available; and

the corpus is augmented with medical, clinical, bio-medical and general cor-

pora with the simultaneous pre-training method. Subsequently, we show that

the localization of EMS entities with EMS-BERT is feasible using our method.

• We compared the performance of EMS-BERT with state-of-the-art techniques

and without the simultaneous pre-training method. EMS-BERT with simul-

taneous pre-training outperforms existing BERT based models from relevant

domains (i.e. BERT-Base, BioBERT, ClinicalBERT) and existing clinical con-

cept recognition methods (i.e. MetaMap, CLAMP, cTAKES, EMSContExt) in

F-1 scores for EMS entity recognition and relation extraction from EMS corpora

by 5% to 11%, and by 2% to 6%, respectively. Also, using standard EMS pro-

tocols and guidelines, EMS-BERT infers missing EMS information from EMS

documents with at least 7% to as much as 14% better accuracy compared to

other methods.
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5.2 Methodology and Solution

In the following subsections, we describe the underlying methods for EMS-BERT.

Figure 4.1 (Wada et al. 2020) shows an overview of the overall approach.

Figure 5.1: Simultaneous pre-training for EMS-BERT

5.2.1 Data augmentation

Through regional collaborators, we have access to 40,000 EMS narratives from real

EMS scenes. These EMS narratives constitute over 2.4M words which contain differ-

ent EMS concepts or entities, i.e., signs and symptoms, interventions, and medication

information. Even though we have 40,000 narratives, this is relatively small compared

to other dataset sizes for different domain specific BERT models (5.1). Besides the

size, most of this narrative corpus are structured as they are created as post-scene

summary reports. However, EMS narratives are also created with unstructured, on-

scene communication based transcripts. EMS-BERT should be able to extract critical

information from on-scene EMS narratives which is created by speech transcriptions

collected at emergency scenes. So we need an EMS dataset which contains attributes

such as noise, sparsity and of an unstructured nature for training EMS-BERT. For
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noisy and distorted EMS entities, we created a mapping of distorted entities to orig-

inal EMS entities for the EMS-BERT model. The tokenization uses this mapping

for suggesting the potential correct entity. Besides the noise, to train EMS-BERT

with a sizable corpus for including broader medical and clinical entities, we devise

a simultaneous pre-training method using a corpus from relevant domains. We have

augmented the dataset by the following two methods to include both of these features.

Textual noise insertion.

We utilized different noise insertion methods in textual corpora to emulate EMS

narratives created from on-scene transcripts. Since the speech-to-text conversion

sometimes yields distortion and inappropriate homophones in the presence of noise,

we have used the state-of-the-art noise insertion methods to simulate similar kinds

of errors. These noisy textual narratives are used for training EMS-BERT to mimic

on-scene EMS transcripts. Authors in (Rahman, Sarah M Preum, et al. 2020) discuss

the possible kinds of noise found in textual data. The authors in (Subramaniam

et al. 2009) highlight on text produced by processing signals and demonstrate that

they are often noisy for automated processing. We have implemented a modified

version of SpellMess (Subramaniam et al. 2009) to introduce spelling errors in the

EMS corpus. This modified version can change and/or substitute phonetically similar

segments in a word, e.g., replacing a word with a homophone. We have created a list

of possible homophones found in clinical context from (LaFleur-Brooks and LaFleur

2005). Besides insertion, deletion and substitution of letters, homophone substitution

is highly correlated with the kind of impact noise found in EMS transcriptions.
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5.2.2 Simultaneous pre-training of EMS-BERT.

The standard BERT model does not perform well in specialized domains (Lee et al.

2020). To overcome this limitation, possible techniques include additional pre-training

on domain-specific corpora from an existing pre-trained BERT model, or pre-training

from scratch on domain-specific corpora. A main benefit of the former is that the

computational cost of pre-training is lower than the latter. The main advantage of the

latter is the availability of its custom vocabulary, but the disadvantage is that the pre-

trained neural language model may be less adaptable if the number of documents in a

specific domain is small. Due to the scarcity of public EMS corpora, both approaches

seem infeasible. So we argue that transfer-learning from relevant and general domain

will create a more accurate language model for EMS domain.

For general corpora, state-of-the-art BERT-Base is pre-trained using EnglishWikipedia

and the Books Corpus (Devlin et al. 2018). The vocabulary is quite different from

EMS corpora, thus rendering this pre-training corpus only is quite inappropriate.

BioBERT is the first BERT model released for the biomedical domain (Lee et al.

2020) which is initialized from BERT-Base and trained using PubMed abstracts.

ClinicalBERT is also a clinically oriented BERT model (Alsentzer et al. 2019) which

is initialized from BioBERT v1.0 and trained with additional steps using MIMIC-III

clinical notes. We use the BioBERT and ClinicalBERT vocabulary with BERT-base

to augment our EMS corpora for simultaneous pre-training of EMS-BERT.

Table 5.1 summarizes the previous BERT-based dataset we use to augment our EMS

corpora. Training a BERT model with a smaller corpus degrades the performance

by introducing more false positives. As there is no public EMS corpus and collecting

real-world EMS narrative is subject to different prohibitions, we adopted the method
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of simultaneous pre-training introduced by the authors in OuBioBERT (Wada et al.

2020) to increase the size and cover additional entities. Simultaneous pre-training

of BERT with domain specific knowledge and generic corpora provides better re-

sults. This is achieved by increasing the frequency of pre-training instances for MLM

(masked language modeling). Instead of only using the corpus from the medical do-

main, we use documents from the EMS domain too, with the general medical domain.

Using the negative instances of NSP (next sentence prediction) where a sentence pair

is constructed by pairing two random sentences from different documents, simulta-

neous pre-training method also increases the number of combinations of documents

and enhances EMS word representations in the vocabulary.

The simultaneous pre-training technique is illustrated in Figure 5.1. This approach

successfully creates an efficient pre-training corpora from multiple domains. While

pre-training the EMS-BERT model, the core corpora is constituted from both the

general and medical domains. The EMS corpora is considered as subordinate corpora

here, which is used to create mixed training instances. During the implementation,

the entire corpus was divided into smaller text files. This was particularly helpful to

create simultaneous pre-training instances from different type of corpora. The com-

binations of NSP are determined within each split file, and the duplicate factor is set

to define the number of times the sentences are used. There are two problems that

arises in these cases. The first is that the duplicate factor is applied to the entire

corpora of both core corpora and subordinate corpora. Thus, the smaller corpora

remain relatively small. The second problem is that the combinations of NSP are

limited to the file that was initially split. To solve these issues, both core corpora

and subordinate EMS corpora are first divided into smaller documents with the same

size for EMS-BERT. Later, we combine them to create pre-training instances. When
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we combined them, it was ensured that the documents in both of the corpora would

be comparable in terms of their file sizes and diversity of the patterns. Using this

technique, more instances from core corpora were used compared to those from sub-

ordinate corpora. With this homogeneously mixed dataset, the model achieved a

higher increase in the frequency of pre-training for MLM. Using documents of core

corpora for the process of pre-training creates larger training dataset than the origi-

nal BERT method. It also generates an increased number of different combinations

of documents compared to the original method. Core corpora and subordinate cor-

pora were combined so that their proportion were equal, thus a higher number of

pre-training instances were created to train the EMS-BERT model. Comparing with

the state-of-the-art BERT models and their pre-training dataset, our dataset volume

is comprehensive and provides a better accuracy for the EMS domain. Appendix C

shows a sample document from out EMS corpus.

5.2.3 Fine tuning EMS-BERT

For fine-tuning, a pre-trained language model generates a set of vectors with con-

textual representations. A task-specific prediction layer placed on top produces the

final output for the application. Task-specific model parameters are trained from the

task-specific training data. While training, BERT model parameters are fine-tuned

by gradient descent using back-propagation. An input instance from EMS corpora

goes through task-specific pre-processing and addition of special instance markers

([CLS], [SEP], etc.). The transformed input is then tokenized using the pre-training

vocabulary of the neural language model. The sequence of vectors in contextual rep-

resentations taken from the language model is then processed by a feature module

and input into a prediction module to produce its final output of the given task.



76

A sentence is transformed into an instance for BERT by replacing target entities

with dummy tokens and adding special tokens. In the relation-extraction task, we

use [CLS] BERT encoding as a featurizer and predict the relationship between the

entities by multi-class classification. The relation extraction task predicts relations

between two entities and their types mentioned in the sentence. We explored three

entities from the EMS corpora - signs and symptoms, medications, and interventions.

Our experiments predicted all the six pairs of relations among these three entities from

the textual corpora.

Utilizing the approach discussed in the BLUE benchmark (Y. Peng, Yan, and Z.

Lu 2019), this task is implemented as a sentence classification task by using anony-

mous entities within the sentences and predefined tags such as @SYMPTOM$ and

@INTERVENTION$ (Lee et al. 2020). Figure 5.2 shows a general architecture of

fine-tuning a BERT model for downstream tasks (Wada et al. 2020). We fine-tune

EMS-BERT for the following two tasks: (i) EMS concept recognition, and (ii) rela-

tion extraction. Compared to regular clinical corpora, EMS concepts cover a wide

range of clinical conditions, medications, and intervention. These entities may be

correlated depending on the recovery protocol. Relation extraction from EMS cor-

pora signifies such dependencies and infers missing information from the narratives.

Thus, accuracy of relation extraction task highlights potentially missing attributes

from a given set of EMS interventions. For comprehensiveness of the evaluation, we

compare EMS-BERT with state-of-the-art clinical concept detection tools, and with

relevant BERT models for clinical and medical domain. Two evaluations are detailed

in the following sections. First, we studied the EMS entity/concept recognition using

state-of-the-art clinical concept recognition baseline tools such as MetaMap (Aron-

son and Lang 2010), cTAKES (Savova et al. 2010), and CLAMP (Soysal et al. 2017).
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Second, we showed the accuracy of relation extraction using EMS-BERT using the

ground truth developed by EMS professionals.

Figure 5.2: A fine-tuning example for EMS-BERT model

5.3 Evaluation of downstream tasks

In this section, we describe the experimental setup and dataset used to pre-train and

test EMS-BERT. We also present the results of the experiments for recognition of

EMS entities, relation extraction, and inferring missing information.

5.3.1 Experimental design and dataset

Setup

We use mixed precision training of FP16 computation for both pre-training and fine-

tuning EMS-BERT. This method accelerates the computation significantly compared



78

Table 5.1: Dataset for EMS-BERT

Model Corpus Number of Words Domain
BERT-base English Wikipedia, Book Corpus 2B General
BioBERT Wikipedia, Books, PubMed, PMC 3.5B General, Medical
ClinicalBERT MIMIC-III (Health Records) 1.5B Medical
EMS-BERT EMS Corpora 2.4M EMS

to other methods as it uses half-precision format. Two NVIDIA RTX-8000 of 32 GB

size GPU are used for pre-training; a single GPU is used for fine-tuning. The configu-

ration and weight initialization are almost same as the BERT-base. We modified the

NVIDIA implementation to utilize FP16 computation, gradient accumulation, and

a layer-wise adaptive based optimizer (LAMB) (You et al. 2019). For pre-training,

we set the maximum sequence length of 128 tokens and trained the model for 5,068

steps using the global batch size (GBS) of 65,536 and a LAMB optimizer with the

learning rate (LR) of 6e–3. Subsequently, we continued to train the model allowing

a sequence length up to 512 tokens for an additional 1,272 steps to learn positional

embeddings. The size of the amplified vocabulary is 30,700.

For EMS entity recognition, EMS-BERT performs sequential labelling and detects

the required entities in the given text. The BERT encoding of a given sequence

of token predicts the label and recognizes the entity. The relation extraction task

predicts relations between two entities and their types mentioned in the sentence.

We explored three entities from the EMS corpora - signs and symptoms, medication,

and intervention. Our experiments predicted all six relations among these three

entities from the textual corpora. We also avoid overfitting by inserting dummy

tags for entities, as depicted in Figures 4.1 and 5.2. Using the relation extraction

task and a mapping of prerequisites of different entities developed by certified EMS

professionals, we infer potentially missing information from the EMS test set. This

information depicts how thoroughly each of the approaches cover the EMS entities in
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an EMS document.

Dataset and metrics

Table 5.2: Entity/Concept recognition using EMS-BERT

Method/Metric Precision Recall F-1 score
BERT-Base 52.58 51.21 51.89
EMS-BERT-wsn 64.87 61.09 62.91
CLAMP 69.29 62.58 63.42
cTAKES 62.94 65.81 64.34
KnowBERT 67.34 66.17 66.75
ClinicalBERT 69.59 68.24 68.91
MetaMap 71.23 68.47 69.82
BioBERT v1.1 73.84 70.81 72.29
EMSContExt 74.62 71.54 73.05
EMS-BERT 81.24 76.59 78.85

We utilized some of the datasets used in BERT-base (Devlin et al. 2018), BioBERT

(Lee et al. 2020) and ClinicalBERT (K. Huang, Altosaar, and Ranganath 2019) to

pre-train EMS-BERT. BERT-base use English Wikipedia and Book Corpus as general

domain corpora. BioBERT and ClinicalBERT use PubMed abstracts and PubMed

Central Full-Text articles (PMC) (McEntyre and Lipman 2001), and Medical In-

formation Mart for Intensive Care III dataset (MIMIC-III) (Johnson et al. 2016),

respectively. These two datasets hold information specific to the medical and clinical

domain. For EMS-BERT, we create our simultaneous training instances by combin-

ing the general, medical and clinical domain information with EMS corpora (depicted

in Figure 5.1). Table 5.1 summarizes the datasets used to pre-train EMS-BERT. For

EMS corpora, we used 36,000 EMS narratives for creating simultaneous training in-

stances and 4,000 annotated EMS narratives for validation and testing EMS-BERT.

The testing set includes both noisy, unstructured EMS transcripts and structured,

post-scene EMS narratives. Certified EMS professionals supervised the annotation
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of the EMS dataset. Since our target is to measure how accurately EMS-BERT rec-

ognizes EMS entities, i.e., signs and symptoms, medications, and interventions, and

extract relations between each of the entity pairs, we have selected Precision, Recall

and F-1 Score as our accuracy metrics. We also compare EMS-BERT’s simultaneous

pre-training method with a knowledge integration based approach known as Know-

BERT (Peters, Neumann, Logan IV, et al. 2019). KnowBERT integrates knowledge

bases into BERT using knowledge attention and a recontextualization component

(KAR).

5.3.2 Experimental results

In this section, we detail the results obtained with EMS-BERT using the augmented

dataset. We then compare these results with other state-of-the-art techniques and

tools from the literature. For ablation studies of simultaneous pre-training, we also

used a different pre-training of EMS-BERT which does not utilize a simultaneous

pre-training method. The results obtained with this version is labelled under EMS-

BERT-wsn to show the efficacy of simultaneous pre-training for our corpus. The

following example helps to understand the evaluations. Let us consider the following

portion of a sample narrative.

“The patient is in cardiac arrest so we start CPR compressions. I am going to do

BVM bag valve mask. Check for chest rise...”

In our evaluations, cardiac arrest is extracted as an EMS concept of type “signs and

symptoms”, and CPR compressions is extracted as of type “intervention”. The first

relation is detected between cardiac arrest and CPR compressions in the “signs

and symptoms - intervention” category. For missing data prediction, if the narrative
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did not include information regarding chest rise concept after BVM bag valve

mask intervention, EMS-BERT documents a flag using the protocol dependency

chart.

EMS entity recognition

Table 5.2 shows the overall average scores of EMS entity recognition, i.e., of signs and

symptoms, interventions, and medication. For the noisy and structured test dataset,

the average F-1 score for EMS-BERT is 78.85 (72.91 and 81.68, respectively). EMS-

BERT outperforms the other state-of-the-art tools by at least 5%. Comparison with

EMS-BERT-wsn emphasizes the significant of simultaneous pre-training for the EMS

corpora. The average F-1 score for EMS-BERT-wsn is only 52.91. We observe that

for BERT-Base, which is pre-trained on only the general domain corpus, the result

if very poor. The average F1-score is 51.89 for BERT-Base which is significantly

lower than that of the other state-of-the-art models. On the other hand, BioBERT

v1.1 achieves higher scores than ClinicalBERT for the EMS dataset. The better

results of BioBERT v1.1 is due to the higher similarity of EMS corpus with PubMed

abstracts and PubMed Central Full-Text articles (PMC), compared to the Medical

Information Mart for Intensive Care III dataset (MIMIC-III). For KnowBERT, the

knowledge integration approach shows good results with an average F-1 score of 66.75.

However, our insight suggests that the non-overlapping entities of the EMS domain

and other medical, clinical domain plays a significant role for this relatively lower

score. All these low scores of the other BERT models on the EMS dataset can also be

attributed to the following generic reasons: (i) the lack of a silver-standard dataset

for training previous state-of-the-art models, and (ii) different training/test set splits

used in previous work which were unavailable. For clinical concept recognition tools
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Table 5.3: Relation extraction using EMS-BERT

Relation Metric BERT-Base KnowBERT BioBERT v1.1 EMS-BERT

Signs & Symptoms - Signs & Symptoms
P 60.51 73.51 77.29 79.58
R 58.57 70.32 72.49 73.91
F-1 59.52 71.88 74.81 76.64

Signs & Symptoms - Intervention
P 62.54 71.61 74.38 77.92
R 59.78 70.87 71.94 76.51
F-1 61.13 71.21 73.14 77.21

Signs & Symptoms - Medication
P 61.75 72.84 75.87 78.62
R 57.39 69.74 74.94 75.54
F-1 59.49 71.26 75.40 77.05

Intervention - Intervention
P 67.31 78.61 77.31 80.67
R 64.32 74.62 73.88 77.92
F-1 65.78 76.56 75.56 79.27

Intervention - Medication
P 64.38 66.94 71.62 73.94
R 65.90 65.17 69.58 71.39
F-1 65.13 66.04 70.59 72.64

Medication - Medication
P 51.84 60.25 63.57 68.67
R 50.68 54.39 59.84 64.31
F-1 51.25 57.17 61.65 66.42

such as MetaMap, CLAMP, and cTAKES, these tools exhibit a high false positive

rate. One possible reason is the over-generalization of entities. A semi-supervised

approach such as EMSConExt shows a better F-1 score compared to these three

tools, but EMS-BERT also outperforms EMSContExt.

Entity relation extraction

The relation extraction results of different BERT models are shown in Table 5.3. We

predict the relations between the following three EMS entities - signs and symptoms

(S.&S.), intervention (Int.) and medication (Med.). EMS-BERT achieved better

performance than the other state-of-the-art models. On average, EMS-BERT ob-

tained a higher F1 score (2%-5% higher) than original BERT-Base, KnowBERT and

BioBERT v1.1 on EMS dataset. Table 5.3 shows that the accuracy of relation ex-
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traction for medication - medication is lower compared to the other pairs of relation.

This is due to the inability of the model to detect other connecting contexts of the

medications among themselves. Certain medications are labeled as prohibited with

each other, however for the other pairs it is difficult to create a connection unless

all of the underlying contexts are explicitly mentioned in the corpus and detected

by the model. So any false positive or false negative in all other relation extraction

may affect the relation extraction of multiple medications. For the other pairs of

entities, the relation is much more straight forward, and EMS-BERT shows better

results for those. Other models such as BioBERT v1.1 were not pre-trained using the

augmented EMS corpora, so the lower performances are expected. KnowBERT shows

good results compared to BERT-Base, this is because of the knowledge integration

from the augmented EMS dataset. But compared to the results of EMS-BERT, the

F-1 scores for relation extraction for each pair of entity are 5-12% lower on average.

For BERT-Base, pre-training only with general domain corpus negatively impacts

the outcome of relation extraction from the EMS corpus. The F-1 scores for relation

extraction are 9-20% lower for each entity pair.

Inferring missing concept/entity

Table 5.4: Total coverage of related EMS entities/concepts

Approach/Metric Coverage (%)
ClinicalBERT 77.96%
BioBERT v1.1 84.47%
EMS-BERT 91.21%

To measure the detection of missing information, we calculate the total coverage of

concepts by EMS-BERT and other methods. Then, a concept dependency model

developed by certified EMS personnel predicts the missing information by compar-

ing with the output of all the methods. For each of the entities found in an EMS
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narrative, there are some other entities which are correlated and expected to be pre-

ceded/followed in an EMS narrative. These are often prerequisites and post-requisites

of various interventions and medications. Sometimes, they are not mentioned in the

transcript or post-scene narrative. Using each of the entities in our test set, our

EMT collaborators developed a document with dependencies among the EMS enti-

ties. When an entity is detected by EMS-BERT, it checks the list of all the correlated

entities against the detected entity and infers the potentially missing entities in the

original transcript. For example, a cardiac arrest protocol which exhibits the inter-

vention CPR, must also have information regarding an IV intervention in the corpora.

Table 5.4 shows the comparison of BERT, BioBERT v1.1 and EMS-BERT for recog-

nition of all possible EMS entities which are correlated. Here, EMS-BERT shows

highest accuracy for inferring potentially missing information by detecting the max-

imum number of entities and their potentially correlated missing entities correctly.

EMS-BERT outperforms the other two models by at least 7% for overall data depen-

dency capture. This improvement is also significant for understanding the context

of the situation and providing personalized patient care in latter stages of recovery.

Inferring potentially missing information from live EMS transcripts and post-scene

narratives lead to better EMS training and performance.

5.4 Discussion

For the data mixing strategy and ablations, we do not have any ablation study at

the moment to support the equal nature in core and subordinate corpora for aug-

menting the dataset. We have the data mixing research as a future goal for the

project. Our future study will target finding what proportion of mixing both kinds
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of corpora yield best results, and whether there exist other approaches for data aug-

mentation with similar or better results. Different methods for augmenting a dataset

with amplified vocabulary exist in the literature, such as LSTM and transfer learn-

ing based approaches. In this study, we adopt the simultaneous pre-training method

and compared it with multiple knowledge base integration by KAR methods (Pe-

ters, Neumann, Logan IV, et al. 2019). As a future milestone of this research, we

will investigate other data augmentation methods, run more comprehensive ablation

studies for simultaneous pre-training, and compare their results with our current ap-

proach. Wolf et al. in (Y. Wang et al. 2020) discussed the construction of the uncased

vocabulary via byte-pair encoding (BPE) (Sennrich, Haddow, and Birch 2015) using

tokenizers. We implemented the uncased vocabulary as a custom vocabulary to suit

a small corpus. A small corpus often shows biases towards subordinate corpora. To

solve this problem, we amplified the core corpora and made the corpus size the same

as that of the subordinate corpora. The authors in (H. Wang et al. 2021) presented

Bidirectional LSTM and BERT approaches to detect entity from EMS audits from

Singapore Civil Defense Force. However, our EMS dataset is comparatively unstruc-

tured, noisy and a portion of it is created from live transcripts from real EMS scenes.

The authors in (H. Wang et al. 2021) mentioned that one probable reason for their

low scores with BiLSTM is the inability to handle misspelling in the dataset. Our hy-

pothesis for developing EMS-BERT precisely highlights this condition of our dataset.

The authors used basic BERT-Base and ClinicalBERT models instead of developing

a custom BERT model. As we are focused to develop a generic model to detect EMS

concepts and understand their correlations, we concentrated on developing a custom

BERT for EMS domain. Our future goal also includes using EMS-BERT for other

downstreaming tasks such as negation detection, vitals validation, etc. from EMS

corpora.
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In this chapter, we present a study for augmenting the dataset compared to using only

the EMS corpora without data augmentation. The results of EMS-BERT without si-

multaneous pre-training and data augmentation are documented and the experiment

results show significant improvement when the simultaneous pre-training method is

applied. We show that EMS-BERT outperforms ClinicalBERT and BioBERT for en-

tity recognition, relation extraction, and inferring missing information for our EMS

corpora. However, ClinicalBERT and BioBERT were developed for the medical and

bio-medical domain. They are not pre-trained for the EMS domain. A more compre-

hensive comparison with a BERT model specifically pre-trained on EMS corpus will

further strengthen the significance of EMS-BERT and it’s simultaneous pre-training

technique. For application of EMS-BERT, there are multiple potential scope. Cog-

nitive assistants developed for the emergency response domain may leverage from

deploying EMS-BERT in their backend. For example, different types of cognitive

assistants for the emergency domain such as (S. Preum et al. 2019a; Sarah Masud

Preum, Shu, Ting, et al. 2018), automated form filling (Rahman, Sarah M Preum,

et al. 2020) and other applications require clinical and medical entity detection from

an EMS corpus. EMS-BERT can be very effective for such assistants and applica-

tions. These previous systems used different clinical concept detection tools, but our

experiments clearly indicate better F-1 scores with EMS-BERT for the EMS domain.

Currently, we are working on adapting the EMS-BERT model for real-time applica-

tions. We envision developing a cognitive application for introducing automation in

EMS training. EMS-BERT will be deployed to detect different concepts in this appli-

cation. The application will provide customized suggestions and feedback according

to the severity level of the training and experience level of the first responder.



87

5.5 Conclusion

To the best of our knowledge, EMS-BERT is the first language model specialized for

the EMS domain. For amplifying the existing EMS corpus which consists of post-

scene EMS narratives and live-transcripts, EMS-BERT also utilizes general, clinical,

and medical corpus from state-of-the-art BERT, BioBERT and ClinicalBERT models.

Using simultaneous pre-training technique on the amplified vocabulary, we demon-

strated that a practical BERT based model can be constructed for EMS downstream

tasks. Our thorough experimentation also demonstrates that EMS-BERT outper-

forms the existing state-of-the-art medical and clinical models by at least 2% to as

much as 11% for F-1 scores in downstream tasks such as entity recognition, rela-

tion extraction, and inferring missing information on EMS domain. Even though

there is room for improvement for the accuracy, the results suggest that EMS-BERT

can successfully handle the complex challenges, i.e., unstructured, sparse, noisy, and

high-dimensional dataset for text-mining related tasks in EMS domain. EMS-BERT

also emphasizes the significance of a specialized BERT based language model for

EMS specific corpus, and distinguishes the EMS domain from medical and clinical

datasets.
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Chapter 6

SenseEMS & EgoCap

Wearable computing devices such as smartwatches and smart-glasses are becoming

popular now-a-days. The EMS domain can benefit by using sensor and vision based

datasets from these gadgets. EMS providers wear smartwatches while using their

hands extensively for the rescue operation and providing care to the patients in an

EMS scene. To utilize computer vision techniques on smart-glass based images or

video data for scene understanding from the EMS responders’ view point, exploring

first-person captioning on images is important. An egocentric of first-person caption-

ing image dataset provides machine vision of the notion of “self”. In this chapter, we

present two models, SenseEMS and EgoCap, which address using smartwatch based

sensor data for providers’ hand operated EMS intervention gesture detection and real-

time monitoring, and an image dataset with ego-captioning with fusion of contextual

cues which exhibits situation-aware captioning, respectively. SenseEMS uses a hybrid

deep neural network with appropriate real-time algorithms using the accelerometer,

gyroscope, and magnetometer data to detect hand operated activity gestures, i.e.

CPR compressions, and to provide real-time quality assessment on different metrics

of the activity, i.e., the rate of CPR compressions. Our results for this ongoing re-

search show promising accuracy. SenseEMS currently detects CPR rate with less

than 4% error and a F-1 score of CPR compression related gesture detection using

the hybrid deep neural network is 90F̀or EgoCap, this research creates 2.1K ego-
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images, over 10K ego-captions, and 6.3K contextual labels, to close the gap of lacking

ego-captioning datasets. This dataset is unique compared to the state-of-the-art, as

EgoCap incorporates contextual labelling with first-person captioning. The dataset

is diverse, which makes it a comprehensive candidate for developing models from an

egocentric perspective with emphasis on the responder’s activity and position.

6.1 Problem, Challenges and Overview

Wearable devices, such as smartwatches and smart-glasses, offer specific advantages

for emergency medical services (EMS). Smartwatches equipped with various sensors

can continuously monitor hand movements of the care providers. This data can be

transmitted in real-time, allowing the providers to assess the quality of their ongo-

ing hand operated activity and make informed decisions about the required medical

interventions. Smart-glasses provide another hands-free way for EMS personnel to

communicate with colleagues or medical professionals during emergencies. Respon-

ders can use smart-glasses to record the scene images and transmit live video feeds,

allowing remote experts to provide guidance and support. Using computer vision

techniques, the access to relevant image data from an EMS scene can assist in mak-

ing situation-aware and informed decisions for providing appropriate care. In this

chapter, we present the analysis and results of two of our ongoing research projects,

SenseEMS and EgoCap. SenseEMS is developed for EMS providers’ hand activity

gesture detection and parameter monitoring using smartwatch based sensor data.

EgoCap is an image dataset with egocentric captioning to bridge the gap between

state-of-the-art visual EMS assistants and automated egocentric contextual scene

narration from live images for emergency responders.
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6.1.1 SenseEMS - using smartwatch based sensor data for

hand activity gesture detection and parameter moni-

toring in EMS

From the perspective of smartwatch based sensor data, EMS providers use their hands

extensively to complete various interventions during an EMS rescue. Hand operated

interventions include attaching different equipment on the patient’s body, adminis-

tering medications, and performing life-saving procedures such as CPR compressions.

Most of these hand operated interventions contain dynamic parameters from both

the provider’s and patient’s point of view. For example, CPR compressions and its

parameters vary according to the age of the patient. For CPR, the first responder

needs to be switched after a certain period of time to ensure proper quality of the

compression. An EMS provider has to go through different levels of training before

performing these interventions in a real scene. Case studies in the U.S. show that the

EMS programs rarely use any assistive technology for quality assessment. Even to-

day, the training for hand operated interventions are guided manually (Hobbs 2020).

To improve the quality of interventions and to classify sensitive hand operated emer-

gency interventions, real-time and automated technologies can be adopted for EMS

training sessions and actual scenes (Sarah Masud Preum, Munir, et al. 2021). To

this end, we present in this chapter our ongoing research SenseEMS, an automated

assistant which uses smartwatch based sensor data for detecting and monitoring hand

operated EMS gestures for interventions such as CPR compressions. This is a chal-

lenging problem because different responders move their hands differently. There

are many confounding hand moving gestures, and even the activities of interest have

many similar motions to each other for different types of patients.
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Due to the popularity of smartwatches and necessity of tracking time, first responders

wear smartwatches on their wrist during EMS training and real scenes. This enables

us to easily collect acceleromoter, gyroscope, and magnetometer data when they are

performing EMS interventions. Leveraging state-of-the-art deep learning networks

and appropriate real-time algorithms, we can process these sensor data for automated

classification of different EMS intervention gestures and activities, and assessment of

quality for specific parameters of the hand operated activity. Previous research (Wen,

Ramos Rojas, and A. K. Dey 2016; Samyoun et al. 2021) have addressed finger and

hand motion detection using sensor data from different sources. However, the EMS

domain remains unexplored for the usability of smartwatch based sensor data for

activity detection and monitoring. Our goal is to separate the interventions of interest

from regular hand movements and provide automated quality assessment with real-

time parameter prediction. This greatly benefits the EMS training procedure, and

improves the real-scene application. Figure 6.1 shows an overview for the problem

and our proposed solution.

Figure 6.1: Overview of using smartwatch based sensor data for hand operated ac-
tivity detection and monitoring in EMS
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6.1.2 EgoCap - an image dataset with egocentric captioning

Applying computer vision techniques in EMS domain has become increasing feasi-

ble as vision data collected by body-worn cameras have seen a dramatic surge in

the past decade. These image data contain valuable information about the cam-

era person’s status as well as the surroundings. Although object-detection oriented

scene understanding has accomplished tremendous success, egocentric vision data are

typically contaminated by motion blurring, hand occlusion, and awkward camera an-

gles (al. 2021). Describing egocentric vision data using natural language, also called

ego-captioning, is currently an active research topic. Ego-captioning aims at human-

understandable interpretation of vision data which is crucial for various life-logging

applications such as EMS. Prospective use cases include auto calorie intake recording

for people on a diet (Bolaños, Dimiccoli, and Radeva 2017), daily activity tracking for

patients (Fan and Crandall 2016), and event summarization for emergency respon-

ders (Rahman, Sarah M Preum, et al. 2020). As shown in Figure 6.2, first-person

captioning provides a precise perspective in storytelling, whereas, a third-person nar-

rative poses ambiguity. Moreover, a first-person narrator places the viewer at the

centre of the action and lends credence to the narration. The first-person perspective

establishes rapport with readers by sharing a personal narrative with them directly.

Thus, ego-captioning is also critical for artificial intelligence to establish the notion

of “self”.

The state-of-the-art data-driven captioning has largely focused on describing the con-

tents objectively, such as third-person narrative (W. Liu et al. 2021; Anderson et al.

2018). This results in most captioning datasets being labelled in the third person,

such as COCO (Lin et al. 2014) and MSR-VTT (Xu et al. 2016). In this chapter, we

present our ongoing research to ego-image captioning techniques and how we plan to
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"A pair of hands are
giving CPR."

"A pair of hands are
giving CPR."

 "I am giving CPR to
a patient."

 "I am watching
someone giving CPR

to a patient."

Body-worn Camera Captured Scene 3rd-person Captioning 1st-person Captioning

Figure 6.2: In EMS, first-person captioning will resolve ambiguity where third-person
fails.

use the model for EMS domain. First-person captions cannot be easily created from

third-person captions, as syntax of a first-person narrative is semantically different

from a third-person narrative. Empirical implications of the camera person’s status

have to be made as the cameraperson is usually outside the field of view. To this

end, here we present a new dataset, EgoCap, comprising life-logging images with

five ego-captions each to generate first-person captions consistently. We select source

images from prevailing datasets - COCO (Lin et al. 2014), MSVD (D. L. Chen and

Dolan 2011), MSR-VTT (Xu et al. 2016), and Ego4D (al. 2021)) to avoid privacy

issues and to increase scene diversity. EgoCap incorporates contextual labels such as

where, when, and whom, through querying surveyors. Due to privacy reasons, and

the time-consuming nature of creating a dataset from scratch, we use EMS relevant

images from these public repositories instead of collecting images from actual EMS

scenes.
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6.2 Approach and Solution

In the following subsections, we detail the current solution of SenseEMS and approach

for creating the EgoCap dataset.

6.2.1 Methodology for SenseEMS

To facilitate automated and improved learning experiences during the training, and

better performances in real-EMS scenes for the EMS providers, SenseEMS uses smart-

watch based sensor data for the detection and quality assessment of CPR compres-

sions. This thesis only presents the details on gesture detection for CPR, and real-time

rate estimation for assessment of CPR quality. For this research, we use Samsung

Galaxy Smartwatch5 and Asus Zenwatch2 models for collecting data from accelerom-

eter, gyroscope, and magnetometer sensors. We use an android app WaDa(Mondol et

al. 2018) to collect the sensor data. The sensor readings are collected with timestamps

throughout the event at 50Hz sampling rate. Before processing, several statistical fea-

tures are extracted from the data. Each of the sensors provides data signals along

the X, Y , and Z axes. Pre-processing is required to remove the noisy artifacts from

the sensor readings. Specifically, we pass the raw signals through a finite impulse

response filter to remove the high-frequency vibration noises. Window size of 0.1s

and an overlap of 50% is selected for the training purpose. Statistical features are

generated from each window, i.e., the mean, standard deviation, kurtosis, and skew

feature. For classifying CPR compressions gestures, the features are fed to a hybrid

learning model which is a parallel combination of CNN and RNN (Samyoun et al.

2021). Figure 6.3 shows the high level architecture of the classifier model. We use

different number of filters for convolutional layers. The parameters of the model are
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chosen based on a preliminary evaluation on a validation set of our overall sensor

dataset. Combination of CNN and RNN allows capturing the spatial and temporal

correlation present in input sensor data. As a result, the combination of these two

networks identifies the continuous activity gestures with high accuracy. For detecting

the CPR rate, SenseEMS uses dispersion based peak detection using Z-score on the

standard deviation feature. CPR rate is calculated from the average time between

consecutive peaks.

Figure 6.3: A hybrid attention model with deep neural network for EMS activity
(CPR) detection

For CPR, a complete compression cycle consists of following two gestures- (i) com-

pression on chest via downward movement of palm(s) for specific time and depth, and

(ii) upward rebound for specific time and height. These two gestures are depicted

by 1⃝ and 2⃝ signs in the Figure 6.4, along with different types of compressions for

different patients. Table 6.1 shows details of parameter variation for CPR.

6.2.2 Methodology for Creating EgoCap Dataset

To create the first-person captioning for EgoCap image dataset, each image is given

five captions in only egocentric narrative alongside three contextual labels - where,
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Figure 6.4: Basic types and gestures for CPR

when, and whom. EgoCap consists of 2.1K images, covering most daily scenes. Due

to the unavailability of any large and public EMS dataset, we utilize images or video

frames from widely acknowledged datasets as sources to maximize scene diversity.

These source images with EMS scene relevance are collected from datasets widely

acknowledged in visual-semantic studies as well, including COCO (Lin et al. 2014),

MSVD (D. L. Chen and Dolan 2011), MSR-VTT (Xu et al. 2016), and Ego4D (al.

2021). This not only maximizes scene diversity, but evades privacy concerns for re-

lease, which would have been an issue if we attempted to work with EMS based

images. We shuffle the sources and handpick images that strictly conform to the

shooting angle of a wearable camera, and incorporate multiple categories defined in

original sources. The labeling was conducted by five surveyors with expert knowl-

edge in computer vision, NLP, and visual captioning. The annotations are further

verified through a review and correction process. The context labels are regarded as

probability distributions for contextual representation learning.
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Table 6.1: Types and parameters of CPR.

Patient
Type

Depth
(inches)

Count
in
Each
Cycle

Rate
Compression
Ventilation
Ratio

Reference
Gesture

Adult (≥ 12
years) 2 30 100-

120/min 30:2

Child (1-12
years) 2 30 100/min 30:2

Infant (≤ 1
years) 1.5 30 100/min 30:2

Source Image Selection

One of the reasons for choosing images from above mentioned sources is that these

sources come with either third-person captions or Human Activity Classification

(HAC) labels which can be used for reference. We take into account these soft refer-

ences to optimize image theme distribution and HAC distribution as shown in Figure

6.5. It can be seen that more than one third of the images capture interaction with

people or salient object(s) in sight, while the rest are casual shootings without clear

themes. We also define a set of criteria to exclude images that are not deemed ego-

images, i.e., staged scenes or cartoons. No scripted scenes are allowed, and blurred

or hand-occluded frames are incorporated without bias to reflect real-world noises

embedded in ego-images. A reporting mechanism is implemented to allow surveyors

to skip the image if it is found inappropriate for ego-captioning.
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Ego4D
60.2%

COCO
13.9%

MSVD
10.5%

MSRVTT

15.4%

Distribution of Sources
Interacting with people

9.9%

Salient object in sight 26.4%

Unclear
63.8%

Distribution of Themes

Doing sth. 54.9%
No defined activity45.1%

Proportion of Classified Activity

I'm doing sth.

73.5%

I see others' doing sth.

26.5%

I do v.s. Others do

Figure 6.5: The composition of EgoCap (top left), Distribution of image themes (top
right), Proportion of images with explicitly labelled activity or not (bottom left), and
Proportion of “I do” versus “I see others do” in those with classified activity labels
(bottom right).

Annotations

User Interface. The core idea of EgoCap dataset is to label the images using

qualified and diverse first-person narratives. Similar to COCO, we aim to create

five captions for each image. In doing so, we assign five surveyors, who are trained

to write ego-captioning following specific guidance. To minimize repetitions, the

surveyors cannot see each other’s captions. The source images are designed to emerge

in random orders to reduce the fatigue factor. In order to streamline and standardize

the user input, we create a web-based graphic user interface (GUI) to allow easy

logging and formatting of the captions. An example of the annotation panel is shown

in Figure 6.6. We set explicit instructions and visual aids to guide the surveyors in

captioning. In short, we expect the surveyor to consider as the cameraperson and

to use a sentence to describe own status, activity, current location, etc. The caption
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Figure 6.6: An illustration of the EgoCap user interface prompting inputs of ego-
captions and contextual knowledge.

should focus on “my” activity, “my” interaction with the object or creature in sight,

and “my” surroundings. The labeling task was divided into 21 splits each of which

comes with 100 ego-images.

Contextual Information. We also poll contextual information for each image.

These tagging options include (a) where: am “I” indoor, outdoor, or ambiguous;

(b) when: is it daytime, at night, or ambiguous; (c) whom: am “I” interacting with

human, object/animals, or ambiguous. This is designed to collect auxiliary contextual

facts about the ego-images from human intelligence.

Label Verification. It is common that the surveyors misunderstand the scene or

some samples draw disagreement. We adopt an anomaly filtering and reviewing pro-

cess to remove inappropriate samples and correct captions. There are two mechanisms

designed for this. Firstly, the labels are sorted by mutual similarity measures to re-

veal potential irrelevant captions. This is performed on the basis of taking turns

to use one candidate caption as hypothesis and the others as references to compute

average BLEU (Papineni et al. 2002) scores. The inconsistent captions were updated.

Secondly, a reporting button allows a surveyor to mark as irrelevant if a source image

is found inappropriate, i.e., a synthesis cartoon frame. These potentially irrelevant
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samples were picked out and reviewed on qualification.

6.3 Results and Analysis

In this section, we compare SenseEMS with two other existing methods for hand

gesture detection and present our preliminary findings for CPR rate detection using

z-score method on standard deviation of sensor data. We further analyze EgoCap by

comparing the dataset with other state-of-the-art dataset as well.

6.3.1 SenseEMS Comparisons

We collected smartwatch based sensor data from 20 EMT participants and 20 non-

EMT participants with previous experience of performing CPR. The participants

wore the smartwatch on their dominant wrist while performing all the three different

variants of CPR. The participants were aged from 24-50 years old. Half of the par-

ticipants were male and the other half were female. Each participant provided data

for 5 minutes to evaluate the accuracy of CPR gesture detection and rate estimation

model.

Table 6.2: Different methods for CPR hand gesture detection

Metric/Tools
bi-LSTM
(Zhu et al.
2018)

SVM (Wen,
Ramos Rojas,
and A. K. Dey
2016)

SenseEMS

Precision 0.88 0.84 0.92
Recall 0.87 0.79 0.89
F-1 0.87 0.81 0.90

Figure 6.7 shows our results for CPR rate estimation using accelerometer data and
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Figure 6.7: CPR rate estimation based on Accelerometer data

peak detection algorithm. Table 6.2 shows accuracy of SenseEMS for CPR compres-

sions gesture detection against other state-of-the-art techniques. SenseEMS records

highest average F-1 score of 90% for our current test dataset, compared to other so-

lutions based on bidirectional LSTM (Zhu et al. 2018) and SVM (Wen, Ramos Rojas,

and A. K. Dey 2016) based networks. This result only highlights the basic gesture

detection for CPR. In future, we aim to combine the gestures for CPR and other

hand operated activity classification from continuous sensor stream.

6.3.2 EgoCap Dataset Analysis

After reviewing and anomaly removal, we selected 2079 verified images for captioning

(1252 from Ego4D; 289 from COCO; 218 from MSVD; 320 from MSR-VTT). Finally,

EgoCap comprises over 10K ego-captions alongside 6.3K contextual tags. We also

retrieve weak labels of third-person captions or HACs from their source datasets, and

associate them for reference. To the best of our knowledge, this is a first sizable

dataset, with labelled contextual information, that allows end-to-end ego-caption

learning. We compare EgoCap to existing datasets for size and different features
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Table 6.3: A comparison of existing egocentric or captioning datasets.

Datasets Size Labels
Diverse OD⋄ HAC⋆ Third-caption First-caption Context

COCOLin et al. 2014 118K ✓ ✓ ✓
MSVDD. L. Chen and Dolan 2011 1.9K ✓ ✓

MSR-VTTXu et al. 2016 10K ✓ ✓
Charades-EgoSigurdsson et al. 2018 4K ✓
EPIC-KitchensDamen et al. 2018 100h ✓ ✓

DeepdiaryFan, Zhang, and Crandall 2018 7.7K△ ✓ ✓
EDUB-SegDescBolanos et al. 2017 1.3K† ✓

Ego4Dal. 2021 3025 h ✓ ✓
EgoCap 2.1K ✓ ✓ ✓

⋄ Object Detection.
⋆ Human Activity Classification.
△ Fewer than 300 images are released for privacy concerns.
† Unavailable for download.

of labelling. As shown in Table 6.3, the size of EgoCap is currently minimal, but

EgoCap is the only dataset with contextual labelling for first-person captioning. The

dataset is diverse, which makes it a comprehensive candidate for developing models

in safety-critical applications such as emergency response.

6.4 Conclusion

This chapter presents two challenges and solutions for sensor and visual data based

assistance to EMS providers. First, we present SenseEMS, a smartwatch retrieved

sensor data based method for hand activity gesture detection and monitoring in Emer-

gency Medical Systems (EMS). Using an attention based hybrid deep neural network

for detecting patterns in CPR compressions, and a suitable real-time algorithm on the

extracted features, SenseEMS provides post-scene classification and real-time quality

assessment for the rate of CPR during the training and real-scenes. SenseEMS cur-

rently detects CPR rate with less than 4% error and a F-1 score of CPR compression

related gesture detection using the hybrid deep neural network is 90%. Surveying 31

anonymous EMS providers on SenseEMS reveals a potential influence of this research
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in EMS domain. Second, we create a dataset, EgoCap, with egocentric image-caption

pairs with context knowledge of location, time, and saliency of the scene. EgoCap

comprises over 10K ego-captions alongside 6.3K contextual tags. This is a first siz-

able dataset with labelled contextual information that allows end-to-end ego-caption

learning. An important future work includes creating an EMS dataset for first-person

captioning, and developing a situation-aware model for visual application in EMS

scenes.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Technology is revolutionizing the way emergency medical services (EMS) respond to

critical situations. The use of advanced medical equipment and software in EMS has

dramatically improved patient outcomes and reduced response times. For instance,

GPS tracking devices, advanced communication systems, and telemedicine technolo-

gies enable EMS teams to quickly locate and respond to emergencies. Additionally,

the use of advanced medical devices such as defibrillators, ventilators, and monitoring

systems have greatly improved the quality of care provided to patients. Furthermore,

electronic medical records have made it easier to access patient information, making

it easier for EMS teams to provide the right treatment in a timely manner. Although

technology plays a vital role in emergency medical services and improving patient

outcomes, most of the EMS oriented training and tasks still remain under-explored

from an intelligent automation point of view. To this end, this thesis attempts to

invent new and innovative solutions for developing an automated and intelligent cog-

nitive support system for the EMS care providers using computer science oriented

research methods.The vision of the thesis revolves around the idea that by utilizing

natural language processing (NLP) and transformer based language models on on-

scene conversational audio data from Emergency Medical Services (EMS) providers
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and textual EMS corpus; and by effectively combining transformer-based attention

techniques with deep learning and egocentric NLP captioning on data from differ-

ent sensors and image data, respectively; this thesis shows how to build intelligent,

interactive components of a cognitive assistant for emergency care providers, and

thereby moving the state-of-the-art toward more comprehensive and automated EMS

training, and for on-scene and post-scene solutions for first-responders.

Currently, many EMS tasks are manually operated, and very few researchers have

addressed the challenges for developing assistive tools for automation of these tasks.

For example, firstly, creating a manual summary report in EMS can be tedious and

time-consuming. During emergencies, EMS teams must prioritize patient care and

respond quickly, leaving little time for administrative tasks. Manual report creation

can be particularly challenging, given the high-stress and fast-paced environment of

EMS. Additionally, the accuracy of the report heavily relies on the memory and

attention to detail of the reporting personnel. Human error is always a risk, espe-

cially when working under pressure which can lead to inaccurate information being

recorded. Automated reporting systems and technology can reduce the burden of

manual reporting and improve the accuracy and speed of report creation, allowing

EMS teams to focus on providing critical care to patients in need. After extensive

interviews with emergency responders, one chapter of this thesis has addressed the

technical challenges for developing a cognitive assistant for automatically generat-

ing post-scene patient summary report using the audio data from EMS responders’

communications. This component, GRACE, has relieved the care providers from

cognitive overload of using their memory during and after stressed situations for the

documentation purposes. GRACE is the first natural language processing (NLP)

based system to address formal documentation or reporting of critical information



106

for emergency response. Through a thorough evaluation using real EMS dataset and

noise-simulated cases that includes both textual and speech EMS data, this research

proves the efficacy of GRACE. The solution achieves an F1 score as high as 94%,

78%, 96%, and 83% when the data is noise-free audio, noisy audio, noise-free textual

narratives, and noisy textual narratives, respectively for automated post-EMS patient

summary report generation using a standard report form.

Secondly, another important aspect of EMS is training the care providers which is

also currently a manually guided event. Automated assistants can play a crucial role

in emergency medical responder training by providing an immersive and interactive

learning experience. In a high-stress, real-life emergency situation, responders need

to be able to think instantly and make split-second decisions. An automated assistant

can provide personalized feedback and support to each trainee, addressing knowledge

gaps and improving overall performance. Moreover, an automated assistant can sig-

nificantly reduce the costs and time associated with traditional training methods, such

as instructor-led training, classroom lectures, and hands-on simulations. Overall, an

automated assistant can help improve the effectiveness of emergency medical respon-

der training, ensuring that responders are better equipped to handle emergencies and

save lives. For addressing this issue and associated challenges, another chapter of

this thesis presents an assistant for interactive training and mock real scenes. The

most frequently occurring emergency event in USA is cardiac arrest, and the research

scope is narrowed down to this specific emergency event for building a comprehensive

responder-customized intelligent component. This system, emsReACT, is the first

cognitive assistant that addresses the challenges of personalized, interactive decision

support in EMS training. By utilizing an intelligent abstraction method in the re-

covery task-graph in real-time, emsReACT builds a collaborative pipeline of tasks
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that runs first without deadlines, and then dynamically identifies different timing

constraints based on a novel risk factor. A thorough evaluation of emsReACT shows

an average F1-score of 87% for personalized feedback generation in EMS training

sessions in real-time. The average end-to-end time recorded for the feedback is 1.8

and 2.7 seconds for critical and regular cases respectively, which is within the ac-

ceptable delay span according to professional EMT personnel. Extensive survey with

31 anonymous EMS providers reveal that emsReACT can play an important role in

reducing the real-time cognitive overload, and creating a geographically common and

scalable platform for training the EMS care providers with same standards.

The third challenge addressed in this thesis lies in detecting EMS related entities from

EMS textual corpus. An EMS domain specific language model is necessary because

it can provide specialized support for detecting relevant information and relation

from the communication narratives of the EMS field. EMS personnel need to com-

municate quickly and accurately, as they often deal with life-threatening situations

where every second counts. A dedicated language model that is trained specifically

on EMS terminology, procedures, and protocols can greatly assist in locating and

interpreting EMS-specific ontology which is different from existing medical and clin-

ical vocabulary. Additionally, a domain-specific language model can help reduce the

likelihood of misunderstandings information, and detecting potentially missing in-

formation. Ultimately, an EMS-specific language model can improve the efficiency

and safety of emergency medical services, potentially discovering life saving informa-

tion. For addressing these issues in EMS text processing, one chapter of this thesis

presents EMS-BERT - the first language model specialized for the EMS domain. For

amplifying the existing EMS corpus which consists of post-scene EMS narratives and

live-transcripts, EMS-BERT also utilizes general, clinical, and medical corpus from
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state-of-the-art BERT (Devlin et al. 2018), BioBERT (Lee et al. 2020) and Clini-

calBERT (K. Huang, Altosaar, and Ranganath 2019) models. Using simultaneous

pre-training technique on the amplified vocabulary, the thesis demonstrated that a

practical BERT based model can be constructed for EMS downstream tasks. EMS-

BERT thorough experimentation also demonstrates that the model outperforms the

existing state-of-the-art medical and clinical models by at least 2% to as much as 11%

for F-1 scores in downstream tasks such as entity recognition, relation extraction, and

inferring missing information using static protocol guidelines for the EMS domain.

Another chapter presents two challenges for sensor and visual data based assistance

to EMS providers. These two ongoing research projects address hand activity de-

tection and monitoring in EMS using smartwatch-based sensor data, and processing

image data for understanding an EMS scene using first-person captioning of images,

in particular, respectively. For different activities, smartwatches have become increas-

ingly popular due to their ability to track various physical activities, including hand

movements. In EMS, the ability to accurately recognize and monitor providers’ hand

activity is crucial. Smartwatch-based sensor data can provide important information

about the providers’ hand movements, which can aid in identifying the type of ongo-

ing activity and guiding medical intervention. This data can also help in monitoring

the type and progress of the intervention by the provider during the treatment and

rehabilitation process. Moreover, smartwatch-based sensor data can enable the EMS

team to track their own movements and activities during training sessions, ensuring

that they are not overexerting themselves and risking injury. Therefore, the use of

smartwatch-based sensor data for providers’ hand activity recognition and monitor-

ing in EMS can greatly improve provider performance outcome and ensure the safety

of EMS personnel in training sessions. In this thesis, we also present our ongoing
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research model, SenseEMS, for hand activity gesture detection and a real-time moni-

toring approach using an attention based hybrid deep neural network, and dispersion

based z-score calculation on features extracted from smartwatch-based acceleromoter,

gyroscope, and magnetometer data, respectively. Compared to other solutions based

on bidirectional LSTM and SVM networks, SenseEMS currently records higher av-

erage F-1 score of 90% on our test dataset for gesture detection on one of the most

crucial and life-saving EMS intervention - CPR compression. This ongoing research

also reveals less than 4% error for detecting CPR rate with SenseEMS using real-time

peak detetction method. Surveying multiple anonymous EMS providers on SenseEMS

reveals a potential influence of this research in EMS domain.

The thesis also discusses developing a dataset for processing image data to understand

an EMS scene. This last of the thesis illustrates first-person captioning of images in

particular. First-person captioning of images is important for EMS because it can

provide critical information about a patient’s condition that may not be immediately

apparent to care providers. By capturing images from the perspective of the per-

son providing care, first-person captioning can offer a more accurate and detailed

account of the patient’s injuries, symptoms, and vital signs, as well as hazardous con-

dition of the surrounding. This can be especially important in emergency situations

where time is of the essence and quick decision-making is required. Additionally,

first-person captioning in real-time can serve as a valuable tool for communication

between medical professionals, allowing them to share information and collaborate

more effectively in order to provide the best possible care for the patient. However,

there is no public EMS image dataset and collecting EMS image data requires multi-

ple approvals and time-consuming efforts. In this thesis, first-person captioning idea

has been experimented on real-life and publicly available image dataset. We create
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a dataset, EgoCap, with egocentric image-caption pairs and context knowledge of lo-

cation, time, and saliency of potentially relevant indoor and outdoor scenes. EgoCap

consists of 2.1K images with five egocentric captions each, covering most daily scenes

which are common for EMS cases. The labeling was conducted by five surveyors with

expert knowledge in EMS, computer vision, NLP, and visual captioning.

7.2 Future Work

We envision further research on the problems discussed in this thesis. One of the

main ideas for future work includes an extensive survey with EMS responders. For

GRACE, we are yet to test our system in real-world EMS scenarios. In the future

we plan to highlight missing interventions and critical inconsistencies detected from

the conversation regarding patient’s clinical condition. We also aim to develop a

more generic and scalable approach by considering multi-patient and multi-responder

scenes, and by applying suitable machine learning techniques.

For emsReACT, the accuracy is not 100% so it may sometimes provide wrong advice

or feedback. However, it is not intended to work alone. Instructors work alongside

emsReACT and can correct occasional errors. In the future, we expect that emsRe-

ACT can also be used in actual EMS scenes. But further user studies are required

to improve the performance of emsReACT where no instructors are present. In the

future, the methods discussed in this research can be extended to address in-home

emergency situations using existing systems such as Alexa, Google Home, etc. Our

future goal includes using reinforcement learning instead of rule-based solutions for

real-time assistance via safety-critical applications.

For the data mixing strategy and ablations in EMS-BERT, we do not have any ab-
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lation study at the moment to support the equal nature in core and subordinate

corpora for augmenting the dataset. We have the data mixing research as a future

goal for the project. Our future study will target finding what proportion of mixing

both kinds of corpora yield best results, and whether there exist other approaches for

data augmentation with similar or better results. Different methods for augmenting a

dataset with amplified vocabulary exist in the literature, such as LSTM and transfer

learning based approaches. As a future milestone of this research, we will investigate

other data augmentation methods, run more comprehensive ablation studies for si-

multaneous pre-training, and compare their results with our current approach. As

we are focused to develop a generic model to detect EMS concepts and understand

their correlations, we concentrated on developing a custom BERT for EMS domain.

Our future goal also includes using EMS-BERT for other down stream tasks such as

negation detection, vitals validation, etc. from EMS corpora.

Figure 7.1: Basic types and gestures for CPR

The SenseEMS results currently highlight the basic gesture detection for CPR com-
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pressions only. In the future, we will combine the gestures for continuous activ-

ity detection from continuous sensor stream for CPR compressions, and other hand

operated interventions. Besides the rate of CPR, we also aim to deduce depth of

compressions in real-time. Currently, we are working on distinguishing the gestures

for defibrillation (Defib) pad and bag-valve-mask (BVM) attachments, as shown in

Figure 7.1.

Future work for EgoCap includes creating an EMS dataset using first-person cap-

tioning, and developing an enhanced transformer network to fuse the contextual

knowledge which brings about state-of-the-art captioning on the EgoCap dataset.

Currently, we are working on developing an enhanced transformer network that fuses

the contextual knowledge using a stacked, multi-headed cross-attention layer along-

side visual features.
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Appendix A

Appendix - GRACE: Generating

Summary Reports Automatically

for Cognitive Assistance in

Emergency Response

A.1 Detailed Results for All Fields of The Form
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Table A.1: Detailed accuracy of miCaRe for all fields of our model summary report
form for different data types

Field in the Form
Accuracy
Measure

Noise-free
audio

Noisy
audio

Noise-free
narratives

Noisy
narratives

Demographic Information
Precision 0.97 0.97 1.00 0.94
Recall 0.85 0.82 1.00 0.93

F1 Score 0.91 0.89 1.00 0.93

Chief Complaint (CC)
Precision 0.88 0.77 0.95 0.83
Recall 0.81 0.67 0.91 0.79

F1 Score 0.85 0.72 0.93 0.81

History of Present Illness (HPI)
Precision 0.81 0.75 0.85 0.81
Recall 0.57 0.51 0.77 0.64

F1 Score 0.67 0.61 0.81 0.72

Past Medical History (PMH)
Precision 0.61 0.42 0.84 0.72
Recall 0.89 0.70 0.78 0.71

F1 Score 0.73 0.53 0.81 0.72

Allergies
Precision 0.75 0.69 0.81 0.69
Recall 0.61 0.61 0.70 0.61

F1 Score 0.68 0.65 0.76 0.65

Medication (Meds)
Precision 0.87 0.81 0.92 0.78
Recall 0.91 0.76 0.81 0.71
F1 score 0.89 0.79 0.87 0.75

Procedure/Treatment/Transport
(PE/RX/TX)

Precision 0.87 0.72 0.84 0.65
Recall 0.81 0.70 0.78 0.72

F1 Score 0.84 0.71 0.81 0.69

Vital Signs
Precision 0.98 0.88 0.97 0.84
Recall 0.95 0.83 0.96 0.81

F1 Score 0.967 0.86 0.97 0.83

Procedure Details
Precision 0.83 0.72 0.89 0.70
Recall 0.81 0.62 0.77 0.53

F1 Score 0.82 0.67 0.83 0.61

Medication Administrated
Precision 0.87 0.71 0.94 0.84
Recall 0.98 0.90 0.87 0.79

F1 Score 0.93 0.80 0.91 0.82
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Appendix B

Appendix - emsReACT: A

Real-Time Interactive Cognitive

Assistant for Cardiac Arrest

Training in Emergency Medical

Services

B.1 Survey Details

31 responders took this survey for evaluating miCaRe, none of these responders were

involved in the development phase. Due to the ongoing pandemic, we could not

meet the responders, so they did not test miCaRe physically. However we shared

a detailed video demonstrating the use of miCaRe during simulated training scenes.

Following Likert scale based rating questionnaire was used to understand what the

responders thought about miCaRe, the responders provided additional background

information such as their experience level, professional span, detailed list of specialized

interventions, etc. We also collected open ended answers to specific questions, we

include some of those questions here.



130

(i) Technology can provide crucial assistance when combined with human efforts

during EMS scenes.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(ii) Using electronic devices and gadgets such as microphone and smartwatch during

EMS scene does not hinder the process of providing care.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(iii) If you answered Agree or Strongly Agree in the question above, what other

devices you feel might be used during EMS scene without adding any burden

on the responder? For example, smart glasses, drones, robots, etc.

• Your Answer:

(iv) The responders will not require too much adaptation in their course of action

if miCaRe is used during real EMS scenes.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(v) If you answered Disagree or Strongly Disagree in the question above, why do

you think the adaptation will be difficult?

• Your Answer:

(vi) Even though EMS scenes are dynamic and fast evolving, miCaRe assistant can

keep up with the responders and will not slow down the care providing process.
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• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(vii) miCaRe will help standardize EMS protocols over broader geographic territory

and provide a common platform for training.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(viii) Using conversational audio data for miCaRe is effective for EMS training and

real EMS scenes.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(ix) Using sensor data from electronic devices for miCaRe is effective for EMS train-

ing and real EMS scenes.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(x) Interactive feedback feature of miCaRe is effective for EMS training and real

EMS scenes.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(xi) Post scene quality assurance of CPR of miCaRe is effective for EMS training

and real EMS scenes.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree



132

(xii) Using miCaRe during EMS training and real EMS scenes will be helpful for the

responders.

• Strongly Disagree • Disagree • Agree • Strongly Agree • Neither Agree or

Disagree

(xiii) Overall, the idea and performance of miCaRe in EMS training scenes and po-

tential real scenes in future will be-

• Problematic • Below Standard • Standard • Useful • Very Useful

B.2 Example of a training scene conversation among

responders

Here, provider 1 is registered as a paramedic, provider 2 is an EMT-basic, provider

3 is a firefighter. The less the expertise level, the more detailed the feedback from

miCaRe.

Provider 1: Unit 94 on scene.

Provider 3: Mr. John Doe is in cardiac arrest. Starting compressions now.

emsReACT Log Display: Patient Name= John Doe. Time of compression initiation

12:02:00. Timer set for CPR provider switch every 5 minutes.

Provider 2: I’m going to start BVM with 6 Litres of Oxygen.

emsReACT Log Display: Time of BVM initiation = 12:02:10. Parameters 6 Litres of

Oxygen.

emsReACT Emergency Prompt: Please check for chest rise.

Provider 3: There’s good chest rise.

emsReACT Log Display: Good chest rise at 12:02:15.
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Provider 1: Defibrillation pads attached. The patient is in ventricular fibrillation.

emsReACT Log Display: Time of attachment of defibrillation pads = 12:02:30.

emsReACT Emergency Prompt: Start defibrillation at 120 Joules. Please

check for EKG waveform.

Provider 1: Alright everyone, we’re defibrillating at 120 Joules! Hands off.

emsReACT Log Display: Time of first defibrillation = 12:03:00. Energy level = 120

Joules. Timer started for defibrillation protocol for every 2 min.

Provider 1: No ROSC, I’m starting CPR again.

Provider 1: Okay, I’m going to try to start an IV on the left arm.

emsReACT Log Display: Started timer for vascular access protocol.

Provider 3: I’m going to try for intubation.

emsReACT Log Display:Please check if you are allowed to do this intervention! Time

of first intubation attempt 12:03:30.

Provider 1: Okay I will try! Shoot, I can’t get the IV.

Provider 1: Alright, airway is secured with 8.0 ET tube.

emsReACT Log Display: Time airway was achieved 12:04:00. Type and size of airway

8.0 ET.

emsReACT Emergency Prompt: Please auscultate lungs, check chest rise,

check vitals ETCO2.

Provider 3: I’m seeing good chest rise and I’m hearing good lung sounds bilaterally.

emsReACT Log Display: Good chest rise, good lung sounds bilaterally at 12:04:20.

emsReACT Emergency Prompt: Please second defibrillation at 150 Joules in

10 seconds at 12:05:00.

Provider 2: Time to defibrillate at 150 Joules. Stop CPR!

emsReACT Log Display: Second defibrillation time = 12:05:00 Energy level = 150

Joules.
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Provider 1: No ROSC again!

emsReACT Emergency Prompt: Please restart CPR.

emsReACT Emergency Prompt: In 10 seconds start intraosseous access.

Provider 1: CPR started. Okay, I’m going to go for an IO in the right humerus. IO

is in place in the right humerus, starting normal saline, wide open. emsReACT Log

Display: Time CPR: 12:07:30, access achieved = 12:07:30. Type of fluid started =

normal saline. Location = right humerus.

emsReACT Emergency Prompt: Please start epinephrine sequence protocol.

Administer epinephrine 1:10,000 1mg IVP

Provider 1: Okay, I’m giving Mr. Doe epinephrine 1:10,000 1mg IV push.

emsReACT Log Display: Medication name = epinephrine, dosage = 1:10,00 1mg,

route of administration = IVP, time of administration = 12:08:00. Timer for epinephrine

sequence every two minutes started.

emsReACT Emergency Prompt: Please consider post-medication flush and

Amiodarone 300 mg IVP.

Provider 1: Giving the post medication flush and an IV push of Amiodarone 300 mg

now.

emsReACT Log Display: Medication name = Amiodarone, dosage = 300 mg, route

of administration = IVP, time of administration = 12:08:30.

emsReACT Emergency Prompt: Please administer second epinephrine dosage

in ten seconds at 12:10:00.

Provider 1: Okay I’m giving epinephrine again now.

Provider 1: This is epinephrine 1:10,000 1mg given by IV push and we’re giving it to

Mr. Doe.

emsReACT Log Display: Medication name = epinephrine, dosage = 1:10,000 1mg,

route of administration = IVP, time of administration = 12:10:00.
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emsReACT Emergency Prompt: Please switch CPR provider, 5 minutes up!

Provider 3: Okay I’ll take over CPR.

emsReACT Log Display: Full adult, follow CPR protocol one please. Time of provider

change 12:12:30. Restarted CPR protocol timer.

Provider 2: Let’s do a medication cross check. Show all medications applied.

emsReACT Log Display: 1. IO access achieved = 12:07:30. Type of fluid started =

normal saline. Location = right humerus. Medication name = epinephrine, dosage

= 1:10,00 1mg, route of administration = IVP, time of administration = 12:08:00.

2. Medication name = epinephrine, dosage = 1:10,00 1mg, route of administration =

IVP, time of administration = 12:08:00.

3.Medication name = Amiodarone, dosage = 300 mg, route of administration =

IVP, time of administration = 12:08:30. Medication name = epinephrine, dosage =

1:10,000 1mg, route of administration = IVP, time of administration = 12:10:20.

Provider 1: We have ROSC.

emsReACT Log Display: Time of ROSC found 12:17:00.

emsReACT Emergency Prompt: Please administer amiodarone drip 150 mg

over 10 mins by IV pump.

Provider 1: How do you dilute the amiodarone again?

emsReACT Emergency Prompt: Dilute 150mg of amiodarone in 100mL D5W

to yield 1.5mg/mL.

Provider 1: I’m administering amiodarone drip 150 mg over 10 minutes via IV pump.

emsReACT Log Display: Medication name = amiodarone, dosage = 150mg, route of

administration = IV drip over 10 mins, time of administration = 12:18:00.

emsReACT Emergency Prompt: Please consider post medication flush.

Provider 1: Giving the post medication flush and an IV push of Amiodarone 300 mg

now.
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emsReACT Log Display: Medication name = Amiodarone, dosage = 300 mg, route

of administration = IVP, time of administration = 12:18:30.

Provider 1: Okay we are done now, patient is responding let’s transfer him to hospi-

tal. Generate log reports now. emsReACT Emergency Prompt: Patient summary

report generated at 12:20:00. Please check the activity log document to

verify. Thanks, goodbye!
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Appendix C

Appendix - EMS-BERT: A

Pre-Trained Language

Representation Model for

the Emergency Medical Services

(EMS) Domain

C.1 A sample document from the EMS corpus

(De-identified) ”Dispatched for a sick person, that was changed to abdominal pain en

route. Arrived to find the patient sitting outside of his house on porch steps leaning

over holding his abdomen. Abdominal Pain found. The patient stated that he was

discharged yesterday from local hospital and was diagnosed with pancreatitis. His pain

onset was yesterday after dilaudid wore off, prescribed percocets did no effect with pain

management per patient. Pain described as sharp pain, 10 out of 10, no radiation.

He stated that his pain was in his entire abdomen, but worse in lower quadrants.

The patient has had a heart attack, 2 stents put in. He stated that he has history of

bradycardia. The patient was also given medication for nausea, but it did not work and
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he is still nauseous. PMH, medications, and medication allergies as noted. Alert and

oriented person, place, event, and time are aware. Airway is patent, unobstructed, and

self maintained. Breathing has equal bilateral chest rise and fall, clear lung sounds.

Circulation has pms x 4, no bleeding noted, good turgor, no diaphoresis, skin warm

pink and dry. The patient denies chest pain, shortness of breath, vomiting, back pain,

syncope, lightheadedness, or blurry vision. Vitals obtained and documented. 12 lead:

Sinus Bradycardia. 20 G IV in right hand connected to a 10gtts/ml drop set connected

to a bag of 2000ml NS. 250ML Bolus of NS administered. Transported the patient

to local hospital per patient’s request. Patient condition unchanged. Report and care

given to RN in room. Unable to obtain the patient’s insurance due to his high level

of pain.”
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