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Abstract

Rank aggregation is a widely applicable task in various domains, including voting, gaming, and recommenda-
tion systems. It involves combining pairwise or listwise comparisons to generate a unified ranking. This topic
has a long history and is still relevant today: it dates back to democratic voting systems in Ancient Greece;
it was modeled in psychology experiments in the last century, and it is the cornerstone of reinforcement
learning with human feedback (RLHF) in large language model (LLM) fine-tuning to produce high quality
output aligned with human values. In the era of big data, with an abundance of available data, there is a
growing need for efficient and accurate analysis to uncover hidden knowledge.

Motivated by the inefficiencies during usage and acquisition of data from multiple sources with different
levels of quality during rank aggregation, this work aims to address the challenges of efficiently and accurately
dealing with heterogeneous data sources in multiple scenarios.

First of all we propose a novel model that originates from the Random Utility Model (RUM) to take
account of the heterogeneity of data sources. Next, we devised an active ranking algorithm that works not
only for the proposed model but also for a wider class of models that in the family of Strong Stochastic
Transitivity (SST) models.

Noted by the inefficiency of the active ranking algorithm above for Weak Stochastic Transitivity (WST)
models that are more prevalent in real-world scenarios, we further propose a new variant of the active ranking
algorithm that is able to handle WST models. Following this work, we provide the heterogeneous variant of
this algorithm that also efficiently aggregates from multiple data sources setting.

Active ranking techniques aim to minimize the number of samples needed to generate an aggregated
ranking by strategically selecting data based on existing information and rankings. If the objective of the
algorithm is both to rank items and to collect rewards such as on online shopping platforms where the
seller is interested in both collecting the revenue and figuring out the best seller, the ranking problem can
be formulated as a dueling bandits problem. This work further covers this case by considering several
generalized linear models that contains variable data source quality. We first fill the void of lack of Borda
score bandits in the field by proposing a new variant of the dueling bandits algorithm that is able to handle
Borda score. This work is further extended to the variance-aware Borda score dueling bandits that is able
to handle the heterogeneous data sources setting. The proposed methods achieve nearly optimal regret for
this class of problems.
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Chapter 1

Introduction

1.1 Wide Range of Rank Aggregation Applications and Approaches

Rank aggregation is the task of recovering the order of a set of objects from pairwise comparisons, partial
rankings, or full rankings provided by users or experts. This approach offers several advantages over tra-
ditional rating systems: comparisons are more natural for humans to make and provide more consistent
results since they don’t rely on arbitrary scales. Ranked data can be collected both explicitly through user
queries and passively through observation of user behavior, such as product purchases, search engine clicks,
or streaming service choices.

The applications of rank aggregation span diverse domains, from classical social choice theory (de Borda,
1781) to modern applications in information retrieval (Dwork et al., 2001), recommendation systems (Bal-
trunas et al., 2010; Piech et al., 2013), and bioinformatics (Aerts et al., 2006; Kim et al., 2015). In recom-
mendation systems, rank aggregation combines various factors like purchase history and browsing behavior
into unified product rankings. In gene expression analysis, it helps identify genes most relevant to specific
diseases by combining rankings from different statistical methods. Search engines use rank aggregation to
merge results from different ranking algorithms and user click patterns. In sports, it helps determine team
rankings by combining results from multiple matches and tournaments. Political voting systems (Caplin and
Nalebuff, 1991; Conitzer and Sandholm, 2005) use rank aggregation to combine individual voter preferences
into a collective decision. In clinical trials, it helps rank treatment effectiveness by combining results from
different evaluation metrics and expert assessments. Additional applications include ranking players in online
gaming systems (Herbrich et al., 2006; Minka et al., 2018).

The data available for rank aggregation typically consists of pairwise comparisons or partial rankings of
item subsets. The goal is to combine these into a unified ranking across all items, subject to predefined
assumptions or scoring systems. This data is often collected from multiple users or annotators who may
have varying levels of expertise or precision in their assessments.

This work focuses on improvement on three main aspects of rank aggregation, each addressing different
use cases and objectives:

1. Static Aggregation: Inferring rankings from previously collected preferential data.

2. Active Ranking: Optimizing data collection by actively selecting which comparisons to sample based
on existing data.

3. Dueling Bandits: Balancing exploration and exploitation while actively ranking items to maximize
rewards.

1.1.1 Static Aggregation

The task of aggregating pairwise comparisons is to infer a ranking from those comparisons from distinct pairs.
It is similar to learning a ranking from noisy pairwise comparisons, and it has been studied in many works
including Hunter (2004); Braverman and Mossel (2008); Negahban et al. (2012); Wauthier et al. (2013).
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Instead of assuming the same probability for all comparisons, it is natural to assume that the comparison
of similar items is more likely to be noisy than those items that are distinctly different. This intuition is
reflected in the random utility model (RUM) or stochastic utility model (SUM). It includes models known
as the Thurstone model (Thurstone, 1927) and Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952;
Luce, 1959; Hunter, 2004), where each item has a true score, and data sources provide rankings of subsets
of items by comparing approximate versions of these scores corrupted by additive noise.

To aggregate the comparisons for RUM, a maximum likelihood estimator (MLE) for the score (utility) of
the item given the observed pairwise comparison data for BTL models (Hunter, 2004). Alternatively, Rank
Centrality proposed by Negahban et al. (2012) is an iterative method with a random walk interpretation
which perform the inference more efficiently than the MLE. And it is shown that it performs as well as the
MLE and it provided non-asymptotic performance guarantees. Chen and Suh (2015) extend this work to
identify the top-k candidates efficiently.

1.1.2 Active Ranking

The methods described in the previous section are passive and only apply to the already collected data. A
possible improvement to increase data collection efficiency is to actively request the data required to perform
inference. In contrast to passive algorithms, active algorithms leverage assumptions embedded in the models
to identify the most informative pairs to query, thus reducing the sample complexity.

Ailon (2012) proposes an active learning approach that assumes no transitivity in pairwise ordering with
nearly optimal loss from pairwise comparisons to obtain an approximate aggregated ranking. Starting from
Maystre and Grossglauser (2017), active ranking methods from noisy comparisons have seem similar design
that resembles “Merge Sort” or “Binary Search Insertion Sort” for deterministic scenario. This works provides
an approximate ranking of the items of interest. This trend is further explored by Ren et al. (2019) who pro-
vided an analysis for a distribution agnostic active ranking scheme called the Iterative-Insertion-Ranking
(IIR) algorithm for the exact ranking problem. It maintains a preference tree and performs ranking by in-
serting items one after another. During the insertion process, every item is to be compared with increasingly
similar items to determine its placement in the ranking.

1.1.3 Dueling Bandits with Side Information

Dueling Bandits is derived from the Multi-Armed Bandits (MAB) problem (Lattimore and Szepesvári,
2020), which is an interactive process where in each round, an agent chooses an arm to pull and receives a
noisy reward as feedback. For MAB, the feedback is usually numerical. However, compared to preferential
feedback, numerical feedback is more difficult to gauge and prone to errors in many real-world applications.
This motivates Dueling Bandits (Yue and Joachims, 2009), where the agent repeatedly pulls two arms at a
time and is provided with feedback being the binary outcome of “duels” between the two arms.

In many real-world applications, side information is available for each option that needs to be ranked.
This side information can provide valuable insights into the ordering of the options. For example, in e-
commerce, an item’s category and other attributes can influence user preferences. Similarly, in the movie
industry, factors such as genre, plot, directors, and actors can play a role in decision-making. To address such
scenarios, contextual bandit algorithms have been developed. These algorithms leverage the side information
provided to the agent and assume that rewards have a linear structure. Various algorithms (Filippi et al.,
2010; Abbasi-Yadkori et al., 2011; Li et al., 2017; Jun et al., 2017) have been proposed to utilize this contextual
information.

1.2 Preliminaries

Assume there are N items to be ranked, and there are M sources that can provide preferential feedback, i.e.,
a given source returns the preferred item when being presented with two items after comparison. Specifically,
an “item” can be something that is subject to ordering according to quality, popularity, usefulness, skills,
etc. For instances, those items appears when we are ranking movies, political candidates, clinical drugs
under trial, sports teams, respectively. And a “source” is the provider of the feedback, such as crowd-source
worker, expert in a certain field, voter, observation method in scientific experiments, etc.
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We use i, j, k to index into the set of items [N ] := {1, 2, · · · , N}, and use u, v to index into the set of
information sources [M ]. And for each comparison, we use r ∈ {0, 1} to denote the response of it, where
r = 1 denotes the first item in the pair is preferred in the response provided by the source.

It is assumed that the feedback r of from a comparion pair (i, j) is a random variable that has an expected
value of pi,j : Pr(r = 1) = Pr(i ≻ j) = pi,j . A probability matrix is defined as P := {pi,j} if there is only a
single source, or it is treated as a single one. If it is assumed that for different sources of comparisons such

probabilities are different, then we define a set of probability matrices as P (u) := {p(u)i,j }, u ∈ [M ], where the
superscript u denotes the source.

Define π(·) : [N ] → [N ] as a mapping that maps from the position in the ranking to the actual item.
And σ(·) : [N ] → [N ] as the position of item in the ranking. The inverse of them satisfies π(i) = σ−1(i)
or σ(i) = π−1(i). Under this definition, a ranking of N items can be written as π(1) ≻ π(2) · · · ≻ π(N) is
equivalent to σ−1(1) ≻ σ−1(2) · · · ≻ σ−1(N).

We use normal letters to denote scalars, lowercase bold letters to denote vectors, and uppercase bold
letters to denote matrices. If each item in the pair being compared brings in additional side information, we
denote it as (x,y), where x,y ∈ Rd. In this case, we use two vectors to denote the items that are compared
instead of the index numbers. If the index i ∈ [N ] is given, we also use xi ∈ Rd to denote its feature vector.
For a vector x, ∥x∥ denotes its ℓ2-norm. The weighted ℓ2-norm associated with a positive-definite matrix

A is defined as ∥x∥A =
√
x⊤Ax. The minimum eigenvalue of a matrix A is written as λmin(A). We use

A ⪰ B to denote that the matrix A−B is positive semi-definite.

1.2.1 Rank Aggregation Models

In real-world scenarios, there are multiple approaches to model and aggregate rankings. These approaches
can be broadly categorized into three main classes, each with progressively less restrictive assumptions:

1. Random Utility Models: These models assume that each item has an underlying latent score or
utility. The probability of one item being preferred over another depends on the difference between
their scores. Items with higher scores are ranked higher. This is the most structured approach, as it
assumes a clear relationship between item scores and preferences.

2. Stochastic Transitivity Models: These models focus on the transitivity property of preferences
without assuming underlying scores. If item A is preferred to B, and B is preferred to C, then A
should be preferred to C. This approach is more flexible than utility models but still maintains some
structure in the preference relationships.

3. Score-Based Models: These models define rankings based on aggregate scores derived from pairwise
comparison probabilities. The ranking is determined by how well each item performs against others,
without assuming any underlying structure or transitivity. This is the most flexible approach, as it
makes minimal assumptions about the nature of preferences.

1.3 Random Utility Models

In aggregating rankings, the raw data is often noisy and inconsistent. One approach to arrive at a single
ranking is to assume a generative model for the data whose parameters include a true score for each of the
items. This approach is known as the Random Utility Model (RUM) or Stochastic Utility Model (SUM),
which is classified as a utility theory model in ranking (Fishburn et al., 1979; Tversky and Kahneman, 1981).

The fundamental assumption in RUM is that each item i ∈ [N ] has a latent score (utility) si, and the
rank corresponds to the magnitude order of these utilities. When comparing items, users provide rankings
by comparing approximate versions of these scores corrupted by additive noise. This intuition reflects that
comparisons between similar items are more likely to be noisy than those between distinctly different items.

Consider a set of N items with score vector s = (s1, · · · , sN )
⊤
. These items are evaluated by a set of M

independent data sources. For each item i, a data source estimates an empirical score as:

zi = si + ϵi, (1.3.1)
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where ϵi is random noise introduced during evaluation. This coarse estimate zi is implicit and cannot be
directly observed. Instead, data sources only produce rankings by sorting these scores. For a subset of items
{i1, · · · , ih} ⊆ [N ], where 2 ≤ h ≤ N , we have:

Pr (π(1) ≻ π(2) ≻ · · · ≻ π(h)) = Pr
(
zπ(1) > zπ(2) > · · · > zπ(h)

)
, (1.3.2)

where i ≻ j indicates that i is preferred to j and {π(1), · · · , π(h)} is a permutation of {i1, · · · , ih} indicating
the ranking as we defined in the previous section. Each comparison produces a new score estimate, which
are commonly assumed to be i.i.d. (Braverman and Mossel, 2008; Negahban et al., 2012; Wauthier et al.,
2013).

The distribution of ϵi determines the link function and leads to several widely used models. If ϵi fol-
lows a Gumbel distribution, it corresponds to the BTL model(Bradley and Terry, 1952), while a Gaussian
distribution leads to the Thurstone model (case V) (Thurstone, 1927).

For pairwise comparisons, the probabilistic model assumes that for an observation i ≻ j:

Pr(i ≻ j) = µ(si − sj) (1.3.3)

where µ(·) is a link function that is symmetric about (0, 1
2 ), increasing monotonically, and satisfies µ(x) +

µ(−x) = 1. The logistic function σ(x) = (1 + exp(−x))−1 is a popular choice that leads to the BTL model.
The absolute difference of pi,j with 1

2 represents the noisiness of the collected samples. To simplify the
discussion, we define the following terms as the gap of a comparison: ∆i,j := |pi,j − 1

2 |, and superscript with

(u) to indicate data sources if applicable: ∆
(u)
i,j := |p(u)i,j − 1

2 |.

Linear Stochastic Utility Models When items have associated feature vectors, we can extend RUM to
Linear Stochastic Utility Models (Bengs et al., 2022). Here, it is assumed that si = x⊤

i θ
∗, where θ∗ ∈ Rd is

an unknown global parameter that has to be estimated.
For a pair of items with feature vectors x,y ∈ Rd, we have:

P(r = 1) = P(item with x is preferred over item with y) = µ((x− y)⊤θ∗). (1.3.4)

Various estimation and aggregation algorithms have been developed for RUM and its special cases
(Hunter, 2004; Guiver and Snelson, 2009; Hajek et al., 2014; Chen and Suh, 2015; Vojnovic and Yun,
2016; Negahban et al., 2016). In this work, we mainly focus on the Maximum Likelihood Estimation (MLE)
methods.

1.4 Stochastic Transitivity Models

In RUM, the model satisfies the Strong Stochastic Transitivity (SST) assumption (Feige et al., 1994; Mohajer
et al., 2017; Falahatgar et al., 2017a, 2018; Ren et al., 2018, 2019; Saha and Gopalan, 2019). SST requires
items that have closer ranks to be more difficult to compare, i.e. if i ≻ j ≻ k, then pi,k ≥ max (pi,j , pj,k) >

1
2 .

However, the SST assumption can be too strong for scenarios where relative noisiness of the comparison
outcome is not related to ranking. For instance, in sports, match outcomes are usually affected by team
tactics. Team k may play a tactic that counters team i, resulting in a higher winning rate against team i
compared with team j. Furthermore, items usually have multidimensional features and people may compare
different pairs based on different features. A close pair in the overall ranking is thus not necessarily harder
to compare than a pair that has a large gap. For example, when comparing cars, people might compare a
given pair based on their interior design and another pair based on performance. As another example, in an
experiment with games of chance with different probabilities of winning and payoffs Tversky (1969), it was
observed that “people chose between adjacent gambles according to the payoff and between the more extreme
gambles according to probability, or expected value.” A sensible relaxed version of this assumption waives
the original requirement and instead assumes that the ranking of items aligns with the probabilities. It only
requires that pi,j > 1

2 when i is preferred to j, i.e., i ≻ j. This is called the Weak Stochastic Transitivity
(WST) assumption and implies that if i ≻ j and j ≻ k then i ≻ k.

We formally state these two assumptions as below.
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Assumption 1.4.1 (Weak Stochastic Transitivity). For a given data source u, for any pair of items (i, j)
and (j, k), if pui,j ≥ 1

2 and puj,k ≥ 1
2 then pui,k ≥ 1

2 .

WST implies that if i ≻ j and j ≻ k, then i ≻ k, which eliminates the possible cyclic order dependency
and guarantees that an exact order of items can be inferred.

Assumption 1.4.2 (Strong Stochastic Transitivity). For a given data source u, for any pair of items (i, j)
and (j, k), if pui,j ≥ 1

2 and puj,k ≥ 1
2 , then pui,k ≥ max{pui,j , puj,k} ≥ 1

2 .

1.5 Score-Based Ranking

Although WST can be considered a natural and reasonably weak assumption, there are situations where
WST does not hold as an ordering over items may not exist or, if it does, all comparison probabilities are
not necessarily consistent with that ranking. So another line of research is to allow comparison probabilities
pi,j to take any value in (0, 1) as long as pi,j + pj,i = 1.

In such scenarios, rankings can be defined and derived based on various criteria defined beforehand.
Some popular choices for such scores are the Borda score (Heckel et al., 2019; Katariya et al., 2018; Shah
and Wainwright, 2017) and the Copeland score (Busa-Fekete et al., 2013; Zoghi et al., 2015).

The Borda score is defined as

B(i) :=
1

N − 1

∑
j∈[N ],j ̸=i

pi,j . (1.5.1)

It is essentially an average of all possibilities of the item i wins the other items. The Copeland score is
defined as

C(i) :=
1

N − 1

∑
j∈[N ],j ̸=i

1{pi,j > 1/2}. (1.5.2)

A Copeland winner is the item that beats the most number of other items. It can be viewed as a “thresholded”
version of Borda winner.

1.6 Summary of Notations

For clarity, we summarize the key notations used throughout this work:
Asymptotic Notation. We use standard asymptotic notations including O(·), Ω(·), and Θ(·) in their usual

sense. The notations Õ(·), Ω̃(·), and Θ̃(·) denote their corresponding weaker forms that hide logarithmic
factors.
General Notation. We use lowercase letters for scalars, lowercase bold letters for vectors, and uppercase
bold letters for matrices. For a vector x, ∥x∥ denotes its Euclidean norm. For a positive integer N , we define
[N ] := {1, 2, . . . , N}.

• Sets and Indices:

– [N ]: Set of items to be ranked

– [M ]: Set of information sources: could be users, oracles, judges, or annotators

– i, j, k ∈ [N ]: Indices for items

– u, v ∈ [M ]: Indices for information sources

• Probabilities and Preferences:

– pi,j : Probability that item i is preferred over item j

– p
(u)
i,j : Probability that item i is preferred over item j by source u

– r ∈ {0, 1}: Binary response from a comparison
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– P = {pi,j}: Probability matrix for single source

– P (u) = {p(u)i,j }: Probability matrix for source u

• Rankings and Mappings:

– π : [N ]→ [N ]: Mapping from rank position to item index

– π−1 : [N ]→ [N ]: Inverse mapping from item index to rank position

– σ−1 : [N ]→ [N ]: Mapping from rank position to item index

– σ : [N ]→ [N ]: Inverse mapping from item index to rank position

– ≻: Preference relation (i ≻ j means item i is preferred over j)

• Feature Vectors and Parameters:

– x,y ∈ Rd: Feature vectors for items

– xi ∈ Rd: Feature vector for item i

– θ∗ ∈ Rd: Unknown parameter vector

• Comparison Metrics:

– ∆i,j = |pi,j − 1
2 |: Gap between comparison probability and random guess

– ∆
(u)
i,j = |p(u)i,j − 1

2 |: Gap for source u

– µ(·): Link function

– σ(x) = (1 + exp(−x))−1: Logistic function1

1.7 Thesis Outline

In this thesis, we present our research on extending rank aggregation models to effectively handle multiple
information sources with varying levels of accuracy. We develop novel methods to address active learning
challenges under different stochastic transitivity assumptions, both in single-source and heterogeneous-source
settings. Additionally, we explore how incorporating side information can improve ranking efficiency, partic-
ularly when optimizing for the Borda score in dueling bandits setting.

Table 1.1 summarizes the contributions of the thesis and compares it with existing works. In next sections,
we will give a brief discussion of our contributions in order.

Model or Objective Homogeneous Heterogeneous
Assumption Data Source Data Source

RUM (Section 1.3) Static Aggregation (Section 1.1.1) Negahban et al. (2016) Chapter 2
SST (Section 1.4) Active Ranking (Section 1.1.2) Ren et al. (2019) Chapter 3
WST (Section 1.4) Active Ranking (Section 1.1.2) Chapter 4 Chapter 5

Score-based (Section 1.5) Dueling Bandits (Section 1.1.3) Chapter 6 Chapter 7

Table 1.1: Thesis Overview

The following paragraph summarizes the author’s contributions and corresponding publications for each
chapter of this thesis. In Chapter 2, the author was responsible for the problem formulation, algorithm
implementation, and experiments, which resulted in a co-first author publication (Jin et al., 2020). For
Chapter 3, the author took charge of the problem formulation, initial proof development, implementation,
and experiments, leading to another co-first author publication (Wu et al., 2022). In Chapter 4, the author
contributed algorithm implementation, experiments, and developed an improved efficiency version, resulting

1This may have clashing notation with the σ in Section 1.4. However, the context should make it clear which one is being
referred to.
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in a second author publication (Lou et al., 2022). Chapter 5 saw the author responsible for the problem
formulation, upper bound proof development, implementation, and experiments, culminating in a co-first
author publication (Jin et al., 2025) that is currently under review. For Chapter 6, the author handled the
problem formulation, implementation, and experiments, resulting in a second author publication (Wu et al.,
2024). Finally, in Chapter 7, the author was in charge of the problem formulation, initial proof development,
implementation, and experiments, leading to a co-first author publication (Di et al., 2024).

1.7.1 Heterogeneous Random Utility Model

Traditional data models described in Sections 1.1.1 and 1.3, can only treat information gathered from multiple
sources as a single one. This limitation is partially addressed using multiple methods that can handle
heterogeneous populations of users with varying levels of expertise under multiple problem settings.

In the Heterogeneous Random Utility Model (HRUM) proposed an aggregation method for preference
data that has already been acquired. This method can take into account the accuracy levels of different
comparison providers. By allowing different noise distributions, the proposed model expands the generality
of original framework of RUM, and as such, extends the Bradley-Terry-Luce/Plackett-Luce (BTL/PL) model
for pairwise comparisons to heterogeneous populations of information sources. Under this framework, the
rank aggregation algorithm is based on alternating gradient descent to simultaneously estimate the underlying
item scores and accuracy levels of different sources from noisy pairwise comparisons.

Specifically, it is assumed that each information source has a different probability of making mistakes in
evaluating items, i.e., the evaluation noise of source u is controlled by a scaling factor γu > 0. The proposed
model is then represented as follows:

zui = si + ϵi/γu. (1.7.1)

Based on the estimated scores zui of each information source for each item, the probability of a certain
ranking pair of items provided by source u is again given by Eq. (1.3.2). With the larger the γu, the more
accurate for the source. This extension actually applies to both pairwise comparisons and rankings, though
pairwise comparisons are the main focus of this work.

This work theoretically shows that the proposed algorithm produced an estimate that converges to
unknown scores {si}i∈[N ] and the accuracy factors {γu}u∈[M ] at a locally linear rate up to a tight statistical
error under mild conditions. For models with specific noise distributions such as the For their extension
of BTL models, it is proved statistical errors in the order of O(N2 log(MN2)/(MT )). When M = 1, the
statistical error matches the error bound in the state-of-the-art work for single source model (Negahban
et al., 2016).

1.7.2 Adaptive Sampling of Heterogeneous Users in Active Ranking

In the context of heterogeneous rank aggregation problems, sources often have varying levels of accuracy
when comparing pairs of items. This diversity in source accuracy suggests that a uniform querying strategy
may not be optimal. While in the previous section, the problem of when the dataset is static how to efficiently
infer the aggregated rank is addressed.

If we have the liberty to actively choose the pair to compare, thus opens up the possibility that can further
save the data acquisition cost. To address this challenge, we proposed an active sampling strategy based
on source elimination. This strategy estimates the ranking of items using noisy pairwise comparisons from
multiple sources and improves the average accuracy of the sources by maintaining an active set. Specifically,
a short history of source responses is maintained for a set of comparisons. When the inferred rank of these
comparisons is estimated to be true with a high confidence, it is then used to calculate a reward based on
the recorded responses. Then an upper confidence bound (UCB)-style elimination process is performed to
remove inaccurate sources from active source set. Experiments on both synthetic and real-world datasets
demonstrate that the adaptive sampling algorithm based on source elimination is much more sample efficient
than baseline algorithms and can sometimes reach the performance of an source algorithm.

To reduce the analysis complexity of the algorithm, we assume that for each pair (i, j) for the same

source u, the comparison probability is the same across all possible pairs, which means ∆
(u)
i,j := ∆u,∀(i, j) ∈
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[N ] × [N ]. Then the best source can be defined as u∗ = argmax∆u∗ . Additionally, we define a shorthand
to reduce clutter:

F (x) = x−2(log log x−1 + log(N/δ)). (1.7.2)

Given the problem setup in Section 1.2 to rank items with sources. Let C denotes the sample complexity
when the algorithm stops. It is proved that if the best source is known beforehand, the sample complexity
is as follows:

Cu∗ = Θ
(
N∆−2

u∗

(
log log∆−1

u∗ + log(N/δ)
))

= Θ(NF (∆u∗)). (1.7.3)

Define ∆̄ = 1
M

∑
u∈[M ] ∆u to be the average accuracy of all sources which corresponds to an algorithm that

samples each information source uniformly at random. In this case, the sample complexity is:

Cave = Θ(NF (∆̄0)) (1.7.4)

Their proposed algorithm is able to achieve a result as follows:

Calg = Θ(NF (∆u∗)) + o(N
(
F (∆̄0)− F (∆u∗)

)
) + o

(
N
)
. (1.7.5)

The last two terms are negligible when compared with the first term. Therefore, it can perform compa-
rably efficiently as if the best source were known while enjoying an advantage over the naive algorithm with
sample complexity Cave.

1.7.3 Active Ranking under Weak Stochastic Transitivity Assumption

Recovering the full ranking of N items under a more general setting, where only WST holds, while SST is
not assumed to hold has not been studied in the field. A δ-correct algorithm, Probe-Rank proposed in this
work actively infers the ranking from noisy pairwise comparisons. A sample complexity upper bound for
Probe-Rank is proven as:

Õ

(
N

N∑
i=2

∆−2
σ(i),σ(i−1)

)
, (1.7.6)

which only depends on the preference probabilities between items that are adjacent in the true ranking. This
improves the sample complexity of Iterative-Insertion-Ranking (IIR) (Ren et al., 2019) that depend
on the preference probabilities for all pairs of items. The sample complexity of IIR is as follows, where
∆i = minj∈[N ],i̸=j ∆i,j :

O

(∑
i∈[N ]

∆−2
i

(
log log

(
∆−1

i

)
+ log(N/δ)

))
(1.7.7)

In extreme cases, there could be several item pairs that have comparison probability close to 1/2 thus
making the gap ∆i close to zero, which in turn renders this bound vacuous. Probe-Rank thus mitigates this
issue by only having the dependency on the adjacent items in final rankings.

1.7.4 Heterogeneous Active Ranking under WST Assumptions

We have discussed the algorithms for aggregating preferential data from a single or homogeneous source
under the RUM assumption, the SST assumption, and the WST assumption. However, in today’s world
where a vast amount of data is involved, it is more desirable to use active or adaptive algorithms to reduce
the cost of data acquisition.

Given the heterogeneous nature of the data sources, it is important to explore active ranking techniques
that can handle such diversity. In previous sections, the active ranking problem under the SST assumption
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was studied. However, their assumption about the pairwise comparison probabilities are uniform across each
pair is quite restrictive and may not hold in real-world scenarios.

When comparing two arbitrary items i and j, denote the gap as ∆
(u)
i,j = |p(u)i,j − 1/2|, it is easy to see a

trivial solution is to construct an “average” source from a pool of sources by randomly sampling one source
and query the pair (i, j).

Define the average gap as: ∆̄i,j :=
1
M

∑M
u=1 ∆

(u)
i,j , which represents a trivial aggregation of all sources by

randomly sampling one source and querying the pair (i, j), any single-source algorithm can work under the
multi-source setting as if the one source has accuracy gap ∆̄i,j . We also introduce the average hardness as

H̄i,j :=
1

(∆̄i,j)2
.

Next, we define

Hi,j :=
M∑M

u=1(∆
(u)
i,j )

2

as the hardness factor of a given pair (i, j) by deploying the technique provided by Saad et al. (2023).
These hardness factors are directly proportional to the sample complexity. It is straightforward to prove
that Hi,j ≤ H̄i,j by Cauchy-Schwartz inequality. As the sample complexity is directly proportional to the
hardness factor, we can improve the efficiency of the algorithms for WST.

We propose to develop a new algorithm which has a bi-level design: at the higher level, it actively
allocates comparison budgets to all undetermined pairs until the full ranking is recovered; at the lower level,
it attempts to compare the pair of items and selects the more accurate sources simultaneously using the
method that can achieve a better rate.

1.7.5 Score-Based Contextual Dueling Bandits

The optimal algorithm that matches the lower bound for the contextual bandits with RUM assumption has
been well studied (Saha, 2021; Bengs et al., 2022). As we discussed before, the RUM assumption is quite
restrictive. To remove the restriction, we can directly consider the score-based methods using Copeland
score or Borda score. Copeland score targeted bandit without contextual information has been studied in
the dueling bandits by Zoghi et al. (2015). And the optimality under the Borda score criteria has been
adopted by several previous works (Jamieson et al., 2015; Falahatgar et al., 2017a; Heckel et al., 2018). In
a work that studied the problem of regret minimization for adversarial dueling bandits (Saha et al., 2021).

They proved a T -round Borda regret upper bound Õ(K1/3T 2/3). And a matching Ω(K1/3T 2/3) lower bound
for stationary dueling bandits using Borda regret, where K is the number of arms. This result implies that
for multi-armed stochastic dueling bandit, the minimum Borda regret must be of the order Ω(K1/3T 2/3).

To solve the problem when the set of arms are changing or even infinite, we proposed to take contextual
information into account when the preference probabilities depend on a linear function of d-dimensional
feature vectors. We proved upper and lower bounds on the Borda regret which is determined by d instead
of K when K ≫ d, or it can even be infinite. The regret lower bound is of order Ω(d2/3T 2/3) for the Borda
regret minimization problem, where d is the dimension of contextual vectors and T is the time horizon.
An explore-then-commit type algorithm for the stochastic setting is proposed, which has a nearly matching
regret upper bound Õ(d2/3T 2/3). Empirical evaluations on both synthetic data and a simulated real-world
environment conducted corroborated the theoretical analysis.

1.7.6 Variance-Aware Contextual Dueling Bandits

Existing dueling bandits algorithms do not consider the uncertainty of the pairwise comparison between
dueling arms and suffer from an Õ(d

√
T ) regret, where d is the dimension of the context and T is the

number of rounds. In an information-theoretic perspective, greater uncertainty or variance suggests a higher
level of difficulty and lower information gain. We formulate this problem under the contextual dueling
bandits framework, where the binary comparison of dueling arms is generated from a generalized linear
model (GLM). We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a
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variance-aware regret bound Õ
(
d
√∑T

t=1 σ
2
t + d

)
, where σt is the variance of the pairwise comparison in

round t, d is the dimension of the context vectors, and T is the time horizon. Our regret bound naturally
aligns with the intuitive expectation — in scenarios where the comparison is deterministic, the algorithm only
suffers from an Õ(d) regret. We perform empirical experiments on synthetic data to confirm the advantage
of our method over previous variance-agnostic algorithms.
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Chapter 2

Heterogeneous Random Utility
Models

2.1 Introduction

Conventional models of ranked data and aggregation algorithms that rely on them make the assumption
that the data is either produced by a single user (data source)1 or from a set of users (data sources) that are
similar. In real-world datasets, however, users that provide the raw data are usually diverse with different
levels of familiarity with the objects of interest, thus providing data that is not uniformly reliable and
should not have equal influence on the final result. This is of particular importance in applications such as
aggregating expert opinions for decision-making and aggregating annotations provided by workers in crowd
sourcing settings.

We study the problem of rank aggregation for heterogeneous populations of users. We present a general-
ization of Random Utility Model (RUM), called the Heterogeneous Random Utility Model (HRUM), which
allows users with different noise levels, as well as a certain class of adversarial users. Unlike previous efforts
on rank aggregation for heterogeneous populations such as Chen et al. (2013); Kumar and Lease (2011), the
proposed model maintains the generality of Thurstone’s framework and thus also extends its special cases
such as BTL and PL models. We evaluate the performance of the method using simulated data for different
noise distributions. We also demonstrate that the proposed aggregation algorithm outperforms the state-of-
the-art method for real datasets on evaluating the difficulty of English text and comparing the population
of a set of countries.

2.2 Related Work

When restricted to comparing pairs of items, Thurstone’s model reduces to the BTL model (Zermelo, 1929;
Bradley and Terry, 1952; Luce, 1959; Hunter, 2004) if the noise follows the Gumbel distribution, and to the
Thurstone Case V (TCV) model (Thurstone, 1927) if the noise is normally distributed. Recently, Negahban
et al. (2012) proposed Rank Centrality, an iterative method with a random walk interpretation and showed
that it performs as well as the maximum likelihood (ML) solution (Zermelo, 1929; Hunter, 2004) for BTL
models and provided non asymptotic performance guarantees. Chen and Suh (2015) studied identifying the
top-K candidates under the BTL model and its sample complexity.

Thurstone’s model can also be used to describe data from comparisons of multiple items. Hajek et al.
(2014) provided an upper bound on the error of the ML estimator and studied its optimality when data
consists of partial rankings (as opposed to pairwise comparisons) under the PL model. Yu (2000) studied
order statistics under the normal noise distribution with consideration of item confusion covariance and user
perception shift in a Bayesian model. Weng and Lin (2011) proposed a Bayesian approximation method for
game player ranking with results from two-team matches. Guiver and Snelson (2009) studied the ranking

1In this chapter, we use the term user to refer to any entity that provides ranked data. In specific applications other terms
may be more appropriate, such as voter, expert, judge, worker, and annotator.
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aggregation problem with partial ranking (PL model) in a Bayesian framework. However, due to the nature of
Bayesian method, above mentioned work provided few theoretical analysis. Vojnovic and Yun (2016) studied
the parameter estimation problem for Thurstone models where first choices among a set of alternatives are
observed. Raman and Joachims (2014, 2015) proposed the peer grading methods for solving a similar
problem as ours, while the generative models to aggregate partial rankings and pairwise comparisons are
completely different. Very recently, Zhao et al. (2018) proposed the k-RUM model which assumes that the
rank distribution has a mixture of k RUM components. They also provided the analyses of identifiability
and efficiency of this model.

Almost all aforementioned works assume that all the data is provided by a single user or that all users have
the same accuracy. However, this assumption is rarely satisfied in real-world datasets. The accuracy levels
of different users are considered in Kumar and Lease (2011), which assumes that each user is correct with a
certain probability and studies the problem via simulation methods such as naive Bayes and majority voting.
In their pioneering work, Chen et al. (2013) studied rank aggregation in a crowd-sourcing environment for
pairwise comparisons, modeled via the BTL or TCV model, where noisy BTL comparisons are assumed to
be further corrupted. They are flipped with a probability that depends on the identity of the worker. The
k-RUM model proposed by Zhao et al. (2018) considered a mixture of ranking distributions, without using
extra information on who contributed the comparison, it may suffer from common mixture model issues.

2.3 Modeling Heterogeneous Ranking Data

2.3.1 The Heterogeneous Random Utility Model

In real-world applications, users often have different levels of expertise and some may even be adversarial.
Therefore, it is natural for us to propose an extension of the Thurstone’s model presented above, referred to
as the Heterogeneous Random Utility Model (HRUM), which has the flexibility to reflect the different levels
of expertise of different users. Specifically, we assume that each user has a different level of making mistakes
in evaluating items, i.e., the evaluation noise of user u is controlled by a scaling factor γu > 0.

Throughout this chapter, we use n to denote the number of items and m to denote the number of users.
The vector s = (s1, . . . , sn) represents the true scores of all items, and γ = (γ1, . . . , γm) represents the
expertise levels of all users. The proposed model is then represented as follows:

zui = si + ϵi/γu. (2.3.1)

Based on the estimated scores of each user for each item, the probability of a certain ranking of h items pro-
vided by user u is again given by (1.3.2). While this extension actually applies to both pairwise comparisons
and multi-item orderings, we mainly focus on pairwise comparisons in this chapter.

When two items i and j are compared by user u, we denote by Y u
ij the random variable representing the

result,

Y u
ij =

{
1 if i ≻ j;

0 if i ≺ j.
(2.3.2)

Let F denote the CDF of ϵj − ϵi, where ϵi and ϵj are two i.i.d. random variables. For the result Y u
ij of

comparison of i and j by user u, we have

Pr(Y u
ij = 1; si, sj , γu) = Pr(ϵj − ϵi < γu(si − sj)) = F (γu(si − sj)) . (2.3.3)

It is clear that the larger the value of γu, the more accurate the user is, since large γu > 0 increases the
probability of preferring an item with higher score to one with lower score.

We now consider several special cases arising from specific noise distributions. First, if ϵi follows a Gumbel
distribution with mean 0 and scale parameter 1, then we obtain the following Heterogeneous BTL (HBTL)
model:

log Pr(Y u
ij = 1; si, sj , γu) = log

eγusi

eγusi + eγusj
= − log(1 + exp(−γu(si − sj))), (2.3.4)
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Figure 2.1: The effect of γu on the probability of error for a BTL comparison in which items have scores 0
and 1. In particular, for large negative values of γu, the user is accurate (with a high level of expertise) but
adversarial.

which follows from the fact that the difference between two independent Gumbel random variables has the
logistic distribution. We note that setting γu = 1 recovers the traditional BTL model (Bradley and Terry,
1952).

If ϵi follows the standard normal distribution, we obtain the following Heterogeneous Thurstone Case V
(HTCV) model:

log Pr(Y u
ij = 1; si, sj , γu) = logΦ

(
γu(si − sj)√

2

)
, (2.3.5)

where Φ is the CDF of the standard normal distribution. Again, when γu = 1, this reduces to Thurstone’s
Case V (TCV) model for pairwise comparisons (Thurstone, 1927).

Adversarial users: Under our heterogeneous framework, we can also model a certain class of adversarial
users, whose goal is to make the estimated ranking be the opposite of the true ranking, so that, for example,
an inferior item is ranked higher than the alternatives. We assume for adversarial users, the score of item
i is C − si, for some constant C. Changing si to C − si in (2.3.3) is equivalent to assuming the user has
a negative accuracy γu. In this way, the accuracy of the user is determined by the magnitude |γu| and
its trustworthiness by sign(γu), as illustrated in Figure 2.1. When adversarial users are present, this will
facilitate optimizing the loss function, since instead of solving the combinatorial optimization problem of
deciding which users are adversarial, we simply optimize the value of γu for each user.

One relevant work to ours is the CrowdBT algorithm proposed by Chen et al. (2013), where they also
explored the accuracy level of different users in learning a global ranking. In particular, they assume that
each user has a probability ηu of making mistakes in comparing items i and j:

Pr(Y u
ij = 1; si, sj , ηu) = ηu Pr(i ≻ j) + (1− ηu) Pr(j ≻ i), (2.3.6)

where Pr(i ≻ j) and Pr(j ≻ i) follow the BTL model. This translates to introducing a parameter in the
likelihood function to quantify the reliability of each pairwise comparison. This parameterization, however,
deviates from the additive noise in Thurstonian models defined as in (1.3.1) such as BTL and Thurstone’s
Case V. Specifically, the Thurstonian model explains the noise observed in pairwise comparisons as resulting
from the additive noise in estimating the latent item scores. Therefore, the natural extension of Thurstonian
models to a heterogeneous population of users is to allow different noise levels for different users, as was
done in (2.3.1). As a result, CrowdBT cannot be easily extended to settings where more than two items
are compared at a time. In contrast, the model proposed here is capable to describe such generalizations of
Thurstonian models, such as the PL model.

2.3.2 Rank Aggregation via Maximum Likelihood Estimation

In this section, we define the pairwise comparison loss function for the population of users and propose an
efficient and effective optimization algorithm to minimize it. We denote by Y u the matrix containing all
pairwise comparisons Y u

ij of user u on items i and j. The entries of Y u are 0/1/?, where ? indicates that
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the pair was not compared by the user. Furthermore, let Du denote the set of all pairs (i, j) compared by
user u. We define the loss function for each user u as

Lu (s, γu;Y
u) = − 1

ku

∑
(i,j)∈Du

log Pr(Y u
ij = 1|si, sj , γu)

= − 1

ku

∑
(i,j)∈Du

logF (γu(si − sj)) ,

where ku = |Du| is the number of comparisons by user u. Then, the total loss function for m users is

L (s,γ;Y ) =
1

m

m∑
u=1

Lu (s, γu;Y
u) , (2.3.7)

where γ = (γ1, . . . , γm)⊤ and Y = (Y 1, . . . ,Y m). We denote the unknown true score vector as s∗ and
the true accuracy vector as γ∗. Given observation Y , our goal is to recover s∗ and γ∗ via minimizing the
loss function in (2.3.7). To ensure the identifiability of s∗, we follow Negahban et al. (2016) to assume that
1⊤s∗ =

∑n
i=1 s

∗
i = 0, where 1 ∈ Rn is the all one vector. The following proposition shows that the loss

function L is convex in s and in γ separately if the PDF of ϵi is log-concave.

Proposition 2.3.1. If the distribution of the noise ϵi in (2.3.1) is log-concave, then the loss function
L(s,γ;Y ) given in (2.3.7) is convex in s, and in γ respectively.

The log-concave family includes many well-known distributions such as normal, exponential, Gumbel,
gamma and beta distributions. In particular, the noise distributions used in BTL and Thurstone’s Case V
(TCV) models fall into this category. Although the loss function L is non convex with respect to the joint
variable (s,γ), Proposition 2.3.1 inspires us to perform alternating gradient descent (Jain et al., 2013) on s
and γ to minimize the loss function. As is shown in Algorithm 2.1, we alternating perform gradient descent
update on s (or γ) while fixing γ (or s) at each iteration. In addition to the alternating gradient descent
steps, we shift s(t) in Line 4 of Algorithm 2.1 such that 1⊤s(t) = 0 to avoid the aforementioned identifiability
issue of s∗. After T iterations, given the output s(T ), the estimated ranking of the items is obtained by

sorting {s(T )
1 , . . . , s

(T )
n } in descending order (item with the highest score in s(T ) is the most preferred).

Algorithm 2.1 HRUM with Alternating Gradient Descent

1: input: learning rates η1, η2 > 0, initial points s(0) and γ(0) satisfying ∥s(0) − s∗∥22 + ∥γ(0) − γ∗∥22 ≤ r,
number of iteration T , comparison results by users Y .

2: for t = 0, . . . , T − 1 do
3: s̃(t+1) = s(t) − η1∇sL

(
s(t),γ(t);Y

)
4: s(t+1) = (I− 11⊤/n)s̃(t+1)

5: γ(t+1) = γ(t) − η2∇γL
(
s(t),γ(t);Y

)
6: end for
7: output: s(T ), γ(T ).

As we will show in the next section, the convergence of Algorithm 2.1 to the optimal points s∗ and γ∗ is
guaranteed if an initialization such that s(0) and γ(0) are close to the unknown parameters is available. In
practice, to initialize s, we can use the solution provided by the rank centrality algorithm (Negahban et al.,
2012) or start from uniform or random scores. In this chapter, we initialize s and γ, as s(0) = 1 and γ(0) = 1.
We note that multiplying s or γ by a negative constant does not alter the loss but reverses the estimated
ranking. Implicit in our initialization is the assumption that the majority of the users are trustworthy and
thus have positive γ. When data is sparse, there may be subsets of items that are not compared directly or
indirectly. In such cases, regularization may be necessary, which is discussed in further detail in Section 2.5.
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2.4 Theoretical Analysis

In this section, we provide the convergence analysis of Algorithm 2.1 for the general loss function defined
in (2.3.7). Without loss of generality, we assume the number of observations ku = k for all users u ∈ [m]
throughout our analysis. Since there’s no specific requirement on the noise distributions in the general
HRUM model, to derive the linear convergence rate, we need the following conditions on the loss function
L, which are standard in the literature of alternating minimization (Jain et al., 2013; Zhu et al., 2017; Xu
et al., 2017b,a; Zhang et al., 2018; Chen et al., 2018). Note that all these conditions can actually be verified
once we specify the noise distribution in specific models. We provide the justifications of these conditions in
the appendix.

Condition 2.4.1 (Strong Convexity). L is µ1-strongly convex with respect to s ∈ Rn and µ2-strongly
convex with respect to γ ∈ Rm. In particular, there is a constant µ1 > 0 such that for all s, s′ ∈ Rn,

L(s,γ) ≥ L(s′,γ) + ⟨∇sL(s′,γ), s− s′⟩+ µ1/2∥s− s′∥22.

And there is a constant µ2 > 0 such that for all γ,γ′ ∈ Rm, it holds

L(s,γ) ≥ L(s,γ′) + ⟨∇γL(s,γ′),γ − γ′⟩+ µ2/2∥γ − γ′∥22.

Condition 2.4.2 (Smoothness). L is L1-smooth with respect to s ∈ Rn and L2-smooth with respect to
γ ∈ Rm. In particular, there is a constant L1 > 0 such that for all s, s′ ∈ Rn, it holds

L(s,γ) ≤ L(s′,γ) + ⟨∇sL(s′,γ), s− s′⟩+ L1/2∥s− s′∥22.

And there is a constant L2 > 0 such that for all γ,γ′ ∈ Rm, it holds

L(s,γ) ≤ L(s,γ′) + ⟨∇γL(s,γ′),γ − γ′⟩+ L2/2∥γ − γ′∥22.

The next condition is a variant of the usual Lipschitz gradient condition. It is worth noting that the
gradient is derived with respect to s (or γ), while the upper bound is the difference of γ (or s). This
condition is commonly imposed and verified in the analysis of expectation-maximization algorithms (Wang
et al., 2015) and alternating minimization (Jain et al., 2013).

Condition 2.4.3 (First-order Stability). There are constants M1,M2 > 0 such that L satisfies

∥∇sL(s,γ)−∇sL(s,γ′)∥2 ≤M1∥γ − γ′∥2,
∥∇γL(s,γ)−∇γL(s′,γ)∥2 ≤M2∥s− s′∥2,

for all s, s′ ∈ Rn and γ,γ′ ∈ Rm.

Note that the loss function in (2.3.7) is defined based on finitely many samples of observations. The next
condition shows how close the gradient of the sample loss function is to the expected loss function.

Condition 2.4.4. Denote L̄ as the expected loss, where the expectation of L is taken over the random
choice of the comparison pairs and the observation Y . With probability at least 1− 1/n, we have

∥∇sL(s,γ)−∇sL̄(s,γ)∥2 ≤ ϵ1(k, n),

∥∇γL(s,γ)−∇γL̄(s,γ)∥2 ≤ ϵ2(k, n),

where n is the number of items and k is the number of observations for each user. In addition, ϵ1(k, n) and
ϵ2(k, n) will go to zero when sample size k goes to infinity.

ϵ1(k, n) and ϵ2(k, n) in Condition 2.4.4 are also called the statistical errors (Wang et al., 2015; Xu et al.,
2017a) between the sample version gradient and the expected (population) gradient.

Now we deliver our main theory on the linear convergence of Algorithm 2.1 for general HRUM models.
Full proofs can be found in the appendix.
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Theorem 2.4.5. For a general HRUM model, assume Conditions 2.4.1, 2.4.2, 2.4.3 and 2.4.4 hold and
that M1,M2 ≤

√
µ1µ2/4. Denote that ∥s∗∥∞ = smax and ∥γ∗∥∞ = γmax. Suppose the initialization

guarantees that ∥s(0) − s∗∥22 + ∥γ(0) − γ∗∥22 ≤ r2,where r = min{µ1/(2M1), µ2/(2M2)}. If we set the step
size η1 = η2 = µ/(12(L2 +M2)), where L = max{L1, L2}, µ = min{µ1, µ2} and M = max{M1,M2}, then
the output of Algorithm 2.1 satisfies

∥s(T ) − s∗∥22 + ∥γ(T ) − γ∗∥22 ≤ r2ρT +
ϵ1(k, n)

2 + ϵ2(k, n)
2

µ2

with probability at least 1− 1/n, where the contraction parameter is ρ = 1− µ2/(48(L2 +M2)).

Remark 2.4.6. Theorem 2.4.5 establishes the linear convergence of Algorithm 2.1 when the initial points
are close to the unknown parameters. The first term on the right-hand side is called the optimization error,
which goes to zero as iteration number t goes to infinity. The second term is called the statistical error of
the HRUM model, which goes to zero when sample size mk goes to infinity. Hence, the estimation error of
our proposed algorithm converges to the order of O((ϵ1(k, n)

2 + ϵ2(k, n)
2)/µ2) after t = O(log((ϵ1(k, n)

2 +
ϵ2(k, n)

2)/µ2r2)/ log ρ) iterations.

Note that the results in Theorem 2.4.5 hold for any general HRUM models with Algorithm 2.1 as a solver.
In particular, if we run the alternating gradient descent algorithm on the HBTL and HTCV models proposed
in Section 2.3, we will also obtain linear convergence rate to the true parameters up to a statistical error
in the order of O(n2 log(mn2)/(mk)), which matches the state-of-the-art statistical error for such models
(Negahban et al., 2016). We provide the implications of Theorem 2.4.5 on specific models in the following
section.

2.4.1 Implications of Specific Models

Our Theorem 2.4.5 is for general HRUM models that satisfy Conditions 2.4.1, 2.4.2, 2.4.3 and 2.4.4. In
this subsection, we will show that the linear convergence rate of Algorithm 2.1 can also be attained for
specific models without assuming theses conditions when the random noise ϵi in (2.3.1) follows the Gumbel
distribution and the Gaussian distribution respectively.

Heterogeneous BTL model

We first consider the model with Gumbel noise. Specifically, {ϵi}i=1,...,n follow the Gumbel distribution with
mean 0 and scale parameter 1. Then we obtain the HBTL model defined in (2.3.4). The following corollary
states the convergence result of Algorithm 2.1 for HBTL models.

Corollary 2.4.7. Consider the HBTL model in (2.3.4) and assume the sample size k ≥ n2 log(mn)/m2. Let
∥s∗∥∞ = smax, maxu |γ∗u| = γmax and minu |γ∗u| = γmin. Assume γmaxsmax = C0 for a constant C0 ≥ 1/2
and

smax ≤
√
m∥s∗∥2
n

· γmine
5C0

32
√
2γmax(1 + e5C0)2

.

Suppose the initialization points s(0) and γ(0) satisfy that ∥s(0) − s∗∥22 + ∥γ(0) − γ∗∥22 ≤ r2, where r =
min{∥s∗∥2/2, γmin/2, smax,

√
γmaxsmax}. If we set the step size small enough such that

η1 = η2 <
mne5C0Γ2

1

6(1 + e5C0)2(mΓ4
2 + 32n2C2

0 )
,

where Γ1 = min{γmin/2, ∥s∗∥2} and Γ2 = max{2γmax, 2∥s∗∥2}, then the output of Algorithm 2.1 satisfies

∥s(T ) − s∗∥22 + ∥γ(T ) − γ∗∥22 ≤ r2ρT +
Λn2 log(4mn2)

mk

with probability at least 1 − 1/n, where ρ = 1 − η(µ − 6η(Γ4
2/n

2 + 32C2
0/m))/2 and Λ is a constant which

only which depends on C0, γmax and Γ1.
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Remark 2.4.8. According to Corollary 2.4.7, when the initial points s(0) and γ(0) lie in a small neighborhood
of the unknown parameter s∗,γ∗, the proposed algorithm converges linearly fast to a term in the order of
O(n2 log(mn2)/(mk)), which is called the statistical error of the HBTL model. Note that when m = 1, the
statistical error reduces to O(n2 log(n)/k), which matches the state-of-the-art estimation error bound for
single user BTL model (Negahban et al., 2016). In addition, we assumed that ∥s∗∥∞ ≲ O(

√
m/n∥s∗∥2) in

order to derive the linear convergence of Algorithm 2.1. When m is in the same order of n, the requirement
reduces to ∥s∗∥∞ ≲ O(∥s∗∥2/

√
n). This assumption is similar to the spikiness assumption in Agarwal et al.

(2012); Negahban and Wainwright (2012), which ensures that there are not too many items that have zero
or nearly zero scores.

Heterogeneous Thurstone Case V model

Now we consider the HRUM model with Gaussian noise. Assume that {ϵi}i=1,...,n are i.i.d. from N(0, 1).
Then the general HRUM model becomes HTCV model defined in (2.3.5), which generalizes the single user
TCV model (Thurstone, 1927). Before we present the convergence results of Algorithm 2.1 for this model,
we first remark some notations of the normal distribution to simplify the presentation. In particular, let
Φ(x) be the CDF of standard normal distribution. We define H(x) = (Φ′(x)2 − Φ(x)Φ′′(x))/Φ(x)2, which
can be verified to be a monotonically decreasing function.

Corollary 2.4.9. Consider the HTCV model in (2.3.5) and assume the sample size k ≥ n2 log(mn)/m2.
smax, γmax, γmin and C0 are defined the same as in Corollary 2.4.7. Assume smax satisfies

smax ≤
√
m∥s∗∥2
n

· γminH(5C0)

30γmax(Φ(−5C0)−1 +H(−5C0))
.

Suppose the initialization points s(0) and γ(0) satisfy that ∥s(0) − s∗∥22 + ∥γ(0) − γ∗∥22 ≤ r2, where r =
min{∥s∗∥2/2, γmin/2, smax,

√
γmaxsmax}. If we set the step size

η1 = η2 <
mnΓ2

1H(5C0)

6(mΓ4
2 + 50n2C2

0 )H(−5C0)2
,

where Γ1 = min{γmin/2, ∥s∗∥2} and Γ2 = max{2γmax, 2∥s∗∥2}, then the output of Algorithm 2.1 satisfies

∥s(T ) − s∗∥22 + ∥γ(T ) − γ∗∥22 ≤ r2ρT +
Λ′n2 log(4mn2)

mk

with probability at least 1− 1/n, where ρ = 1− η(µ− 6η(Γ4
2/n

2 + 32C2
0/m))/2 and Λ′ is a constant which

only depends on C0, γmax and Γ1.

Remark 2.4.10. Corollary 2.4.9 suggests that under suitable initialization, Algorithm 2.1 enjoys a linear
convergence rate when the random noise follows the standard normal distribution. The statistical error for
the HTCV model is in the order of O(n2 log(mn2)/(mk)). We again need the ‘spikiness’ assumption on the
unknown score vector s∗ in order to ensure the algorithm to find the true parameter. The results are almost
the same as those of the HBTL model presented in Corollary 2.4.7 except that the constants in the HTCV
model depends on the normal CDF Φ and its first and second derivatives.

2.4.2 Proof of the Generic Model

In this section, we provide the proof of Theorem 2.4.5 for general HSUM.

Proof of Theorem 2.4.5. According to the update in Algorithm 2.1 and the fact that 1⊤s∗ = 0, we have

∥s(t+1) − s∗∥22 = ∥(I− 11⊤/n)(s̃(t+1) − s∗)∥22
≤ ∥s̃(t+1) − s∗∥22
= ∥s(t) − s∗∥22 + η21∥∇sL(s(t),γ(t))∥22 − 2η1⟨∇sL(s(t),γ(t)), s(t) − s∗⟩,
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where the inequality comes from the fact that ∥I − 11⊤/n∥2 ≤ 1. We first bound the second term on the
right hand side above

∥∇sL(s(t),γ(t))∥22 ≤ 3∥∇sL(s(t),γ(t))−∇sL(s(t),γ∗)∥22 + 3∥∇sL(s(t),γ∗)−∇sL(s∗,γ∗)∥22
+ 3∥∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗)∥22

≤ 3M2
1 ∥γ(t) − γ∗∥22 + 3L2

1∥s(t) − s∗∥22 + 3ϵ1(k, n)
2,

where the first inequality is due to ∇sL̄(s∗,γ∗) = 0 and the second inequality is due to Conditions 2.4.2,
2.4.3, and 2.4.4. Now we bound the inner product term. Note that

⟨∇sL(s(t),γ(t)), s(t) − s∗⟩
= ⟨∇sL(s(t),γ(t))−∇sL(s∗,γ(t)), s(t) − s∗⟩+ ⟨∇sL(s∗,γ(t))−∇sL(s∗,γ∗), s(t) − s∗⟩

+ ⟨∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗), s(t) − s∗⟩.

By strong convexity (Condition 2.4.1) of L we have

⟨∇sL(s(t),γ(t))−∇sL(s∗,γ(t)), s(t) − s∗⟩ ≥ µ1∥s(t) − s∗∥22. (2.4.1)

Applying Young’s inequality and Condition 2.4.3, we obtain

|⟨∇sL(s∗,γ(t))−∇sL(s∗,γ∗), s(t) − s∗⟩| ≤ ∥∇sL(s∗,γ(t))−∇sL(s∗,γ∗)∥2 · ∥s(t) − s∗∥2

≤ αM2
1

2
∥γ(t) − γ∗∥22 +

1

2α
∥s(t) − s∗∥22, (2.4.2)

where α > 0 is an arbitrarily chosen constant. In addition, by Condition 2.4.4 and Young’s inequality we
have

|⟨∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗), s(t) − s∗⟩| ≤ ∥∇sL(s∗,γ∗)−∇sL̄(s∗,γ∗)∥2 · ∥s(t) − s∗∥2

≤ 1

2µ1
ϵ1(k, n)

2 +
µ1

2
∥s(t) − s∗∥22. (2.4.3)

Combining (2.4.1), (2.4.2) and (2.4.3), we have

⟨∇sL(s(t),γ(t)), s(t) − s∗⟩ ≥ µ1α− 1

2α
∥s(t) − s∗∥22 −

αM2
1

2
∥γ(t) − γ∗∥22 −

1

2µ1
ϵ1(k, n)

2.

Therefore, we have

∥s(t+1) − s∗∥22 ≤
(
1 + 3L2

1η
2
1 − η1

(
µ1 −

1

α

))
∥s(t) − s∗∥22 +M2

1 (3η
2
1 + αη1)∥γ(t) − γ∗∥22

+ (3η21 + η1/µ1)ϵ1(k, n)
2. (2.4.4)

Similarly, we can bound ∥γ(t+1) − γ∗∥22 as follows

∥γ(t+1) − γ∗∥22 ≤
(
1 + 3L2

2η
2
2 − η2

(
µ2 −

1

β

))
∥γ(t) − γ∗∥22 +M2

2 (3η
2
2 + βη2)∥s(t) − s∗∥22

+ (3η22 + η2/µ2)ϵ2(k, n)
2, (2.4.5)

where β > 0 are arbitrarily chosen constants. In particular, set α = µ2/(4M
2
1 ), β = µ1/(4M

2
2 ) and

η1 = η2 = η. When M1,M2 ≤
√
µ1µ2/4, we have

∥s(t+1) − s∗∥22 + ∥γ(t+1) − γ∗∥22 ≤ (1 + 3(L2
1 +M2

2 )η
2 − µ1η/2)∥s(t) − s∗∥22

+ (1 + 3(L2
2 +M2

1 )η
2
2 − µ2η/2)∥γ(t) − γ∗∥22

+ (3η2 + η/µ1)ϵ1(k, n)
2 + (3η2 + η/µ2)ϵ2(k, n)

2

≤ (1 + 3(L2 +M2)η2 − µη/2)(∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22)
+ (3η2 + η/µ)(ϵ1(k, n)

2 + ϵ2(k, n)
2), (2.4.6)
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where L = max{L1, L2}, M = max{M1,M2} and µ = min{µ1, µ2}. Note that we have ∥s0 − s∗∥22 + ∥γ0 −
γ∗∥22 ≤ r2 by some initialization process. We can prove that ∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22 ≤ r2 for all t ≥ 0
by induction. Specifically, assume it holds for t, then it suffices to ensure

(3η + 1/µ)(ϵ1(k, n)
2 + ϵ2(k, n)

2) ≤ r2(µ/2− 3(L2 +M2)η), (2.4.7)

which holds when k is sufficiently large. Choosing η to be sufficiently small, we can ensure that 1 + 3(L2 +
M2)η2 − µη/2 ≤ 1. In particular, we can set η = µ/(12(L2 +M2)), which implies

∥s(t+1) − s∗∥22 + ∥γ(t+1) − γ∗∥22 ≤ ρ
(
∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22

)
+ (3η2 + η/µ)(ϵ1(k, n)

2 + ϵ2(k, n)
2),

with ρ = 1− µ2/(48(L2 +M2)). Therefore, we have

∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22 ≤ ρt
(
∥s0 − s∗∥22 + ∥γ0 − γ∗∥22

)
+

3η2 + η/µ

1− ρ
(ϵ1(k, n)

2 + ϵ2(k, n)
2)

≤ r2ρt +
ϵ1(k, n)

2 + ϵ2(k, n)
2

µ2
,

which completes the proof.

2.4.3 Proofs of Specific Examples

In this section, we will provide the convergence analysis of Algorithm 2.1 for two specific examples with
different noise distributions. In particular, we will show that Conditions 2.4.1 and 2.4.2 can be verified
under these specific distributions. Recall the log-likelihood function

L (s,γ;Y ) = − 1

mk

m∑
u=1

∑
(i,j)∈Du

logF
(
γu(si − sj);Y

u
ij

)
. (2.4.8)

For the ease of presentation, we will omit Y in the rest of the proof and assume that the observation set
Du is parametrized by k = |Du| and vectors al,u ∈ Rn for l = 1, . . . , k, where each al,u = eil − ejl for some
pair of items (il, jl) that is compared by user u and ei is the natural basis. Then, we can rewrite the loss
function in terms of vector s as follows

L (s,γ) = − 1

mk

m∑
u=1

k∑
l=1

logF
(
γua

⊤
l,us;Y

u
iljl

)
. (2.4.9)

Denote g(x) = − logF (x) for x ∈ R. Then we can calculate the gradient of loss function L with respect to
s and γ.

∇sL(s,γ) =
1

mk

m∑
u=1

k∑
l=1

g′
(
γua

⊤
l,us
)
γual,u,

∇γL(s,γ) =
1

mk



∑k
l=1 g

′
(
γ1a

⊤
l,1s
)
a⊤l,1s

...∑k
l=1 g

′
(
γua

⊤
l,us
)
a⊤l,us

...

 .

(2.4.10)
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And the Hessian matrix can be calculated as

∇2
sL(s,γ) =

1

mk

m∑
u=1

k∑
l=1

g′′
(
γua

⊤
l,us
)
(γu)

2al,ua
⊤
l,u,

∇2
γL(s,γ) =

1

mk
diag



∑k
l=1 g

′′
(
γ1a

⊤
l,1s
)
a⊤l,1sa

⊤
l,1s

...∑k
l=1 g

′′
(
γua

⊤
l,us
)
a⊤l,usa

⊤
l,us

...

 ,

(2.4.11)

where diag(x) is the diagonal matrix with diagonal entries given by x.

Proof of Heterogeneous BTL model

Recall the definition in (2.3.7). The loss function can be written as

L (s,γ) = 1

mk

m∑
u=1

k∑
l=1

g
(
γua

⊤
l,us;Y

u
iljl

)
, (2.4.12)

where g(·) is defined as

g(x;Y u
iljl

) = − log
exp(Y u

iljl
x)

1 + exp(x)
. (2.4.13)

Therefore, the loss function of the HBTL model can be rewritten as follows:

L (s,γ) = 1

mk

m∑
u=1

k∑
l=1

log
(
1 + exp(γua

⊤
l,us)

)
− Y u

iljl
γua

⊤
l,us. (2.4.14)

Recall the gradients and Hessian matrices calculated in (2.4.10) and (2.4.11). We need to calculate g′(·) and
g′′(·). In particular, we have

g′(x;Y ) =
−Y + (1− Y ) exp(x)

1 + exp(x)
, g′′(x;Y ) =

exp(x)

(1 + exp(x))2
. (2.4.15)

It is easy to verify that g′(x) is monotonically increasing on R. For any |x| ≤ θ, we have

−1
1 + e−θ

≤ g′(x;Y = 1) ≤ −1
1 + eθ

,
e−θ

1 + e−θ
≤ g′(x;Y = 0) ≤ eθ

1 + eθ
. (2.4.16)

Furthermore, g′′(x) = g′′(−x), g′′(x) is increasing on (−∞, 0] and decreasing on [0,∞). Hence, for all |x| ≤ θ,
we have

eθ/(1 + eθ)2 ≤ g′′(x) ≤ g′′(0) = 1/4. (2.4.17)

We can further show that the following lemmas hold, which validates Conditions 2.4.1, 2.4.2, 2.4.3 and 2.4.4
used in the convergence analysis.

The first two lemmas verify the strong convexity and smoothness of L with respect to s and γ respectively.

Lemma 2.4.11. Suppose the noise ϵ follows the Gumbel distribution and the sample size mk ≥ 64(γmax +
r)2/(γmin − r)2n log n. Let r ≤ min{smax,

√
γmaxsmax}, for all s, s′ ∈ Rn,γ ∈ Rm such that ∥s − s∗∥2 ≤

r, ∥s′ − s∗∥2 ≤ r and ∥γ − γ∗∥2 ≤ r, we have

L(s,γ) ≥ L(s′,γ) + ⟨∇sL(s′,γ), s− s′⟩+ µ1

2
∥s− s′∥22,

L(s,γ) ≤ L(s′,γ) + ⟨∇sL(s′,γ), s− s′⟩+ L1

2
∥s− s′∥22,
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where the coefficients are defined as

µ1 =
(γmin − r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
, L1 =

(γmax + r)2

n
.

Lemma 2.4.12. Suppose the noise ϵ follows the Gumbel distribution and the sample size satisfies k ≥
18(smax + r)4n2/(m2(∥s∗∥2 + r)4) log(mn). Let r ≤ min{smax,

√
γmaxsmax}, for all s ∈ Rn,γ,γ′ ∈ Rm such

that ∥s− s∗∥2 ≤ r, s⊤1 = 0, and ∥γ − γ∗∥2 ≤ r, ∥γ′ − γ∗∥2 ≤ r, we have with probability at least 1− 1/n
that

L(s,γ) ≥ L(s,γ′) + ⟨∇γL(s,γ′),γ − γ′⟩+ µ2

2
∥γ − γ′∥22,

L(s,γ) ≤ L(s,γ′) + ⟨∇γL(s,γ′),γ − γ′⟩+ L2

2
∥γ − γ′∥22,

where the coefficients are defined as

µ2 =
(∥s∗∥2 + r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
, L2 =

(∥s∗∥2 + r)2

n
.

Lemma 2.4.13. Let r ≤ min{smax,
√
γmaxsmax}, for all s ∈ Rn,γ ∈ Rm such that ∥s−s∗∥2 ≤ r, ∥s′−s∗∥2 ≤

r and ∥γ − γ∗∥2 ≤ r, ∥γ′ − γ∗∥2 ≤ r, we have

∥∇sL(s,γ)−∇sL(s,γ′)∥2 ≤
√
2(1 + 2γmaxsmax)√

m
∥γ − γ′∥2,

∥∇γL(s,γ)−∇γL(s′,γ)∥2 ≤
√
2(1 + 2γmaxsmax)√

m
∥s− s′∥2.

Lemma 2.4.14. Let r ≤ min{smax,
√
γmaxsmax}, for all s ∈ Rn,γ ∈ Rm such that ∥s − s∗∥2 ≤ r and

∥γ − γ∗∥2 ≤ r. Denote L̄ as the expected loss which takes expectation of L over the random choice of
comparison pair. We have

∥∇sL(s,γ)−∇sL̄(s,γ)∥2 ≤ ϵ1(k, n) :=
2(γmax + r)

1 + e−5γmaxsmax

√
2 log(2n)

mk
,

∥∇γL(s,γ)−∇γL̄(s,γ)∥2 ≤ ϵ2(k, n) :=
10γmaxsmax

1 + e5γmaxsmax

√
2 log(2mn)

mk
,

holds with probability at least 1− 1/n.

Proof of Corollary 2.4.7. Now we prove the convergence of Algorithm 2.1 for Gumbel noise. Our proof will
be similar to that of Theorem 2.4.5. In particular, we only need to verify that Conditions 2.4.1, 2.4.2, 2.4.3
and 2.4.4 hold when the noise follows a Gumbel distribution. According to Lemmas 2.4.11 and 2.4.12, we
know that L(s,γ) is µ1-strongly convex and L1-smooth with respect to s, and is µ2-strongly convex and
L2-smooth with respect to γ. More specifically, when mk ≥ 64n log(n), we have

µ1 ≥ (γmin − r)2e5C0/(n(1 + e5C0)2), L1 ≤ (γmax + r)2/n, (2.4.18)

where we use the fact that γmaxsmax = C0. In addition, note that smax ≤
√
m/n∥s∗∥s and ∥s(t) − s∗∥ ≤ r.

Hence if mk ≥ 18 log(mn), we have

µ2 ≥ (∥s∗∥2 + r)2e5C0/(n(1 + e5C0)2), L2 ≤ (∥s∗∥2 + r)2/n (2.4.19)

By Lemma 2.4.13 and the assumption that C0 ≥ 1/2, we know that L satisfies the first-order stability
(Condition 2.4.3) with M1 = M2 = 4

√
2γmaxsmax/

√
m. Note that by assumption, we have

smax ≤
γmine

2C0

16
√
2γmax(1 + e2C0)2

√
m∥s∗∥2
n

.
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This immediately implies that M = M1 = M2 ≤
√
µ1µ2/4. Therefore, by similar arguments as in the

proof of Theorem 2.4.5, we need to set step sizes η1 = η2 = η < µ/(6(L2 +M2)), where µ = min{µ1, µ2},
L = max{L1, L2}. In fact, it suffices to set

η <
mne5C0Γ2

1

6(1 + e5C0)2(mΓ4
2 + 32n2C2

0 )
,

with Γ1 = min{γmin/2, ∥s∗∥2} and Γ2 = max{2γmax, 2∥s∗∥2}. We thus obtain

∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22 ≤ r2ρt +
ϵ1(k, n)

2 + ϵ2(k, n)
2

µ2
≤ r2ρt +

Λn2 log(4mn2)

mk
,

where ρ = 1 − η(µ − 6η(Γ4
2/n

2 + 32C2
0/m))/2 and the last inequality comes from Lemma 2.4.14 with the

constant Λ defined as follows:

Λ = max

{
200C2

0 (1 + e5C0)2

Γ4
1e

10C0
,
8(γmax + r)2(1 + e5C0)4

Γ4
1(1 + e−5C0)2

}
.

This completes the proof.

Proof of Heterogeneous Thurstone Case V model

In this subsection, we provide the analysis of our algorithm when the noise ϵi follows a Gaussian distribution,
which results in the Thurstone model. The log-likelihood function can be written as

L
(
s,γ;Y

)
=

1

mk

m∑
u=1

k∑
l=1

g(γua
⊤
l,us;Y

u
iljl

). (2.4.20)

with g(·) defined as g(x) = − log Φ(x) with Φ(·) be the CDF of the standard normal distribution. Note that
Pr(Y u

iljl
= 1) = Φ(γua

⊤
l,us) and Pr(Y u

iljl
= 0) = 1 − Φ(γua

⊤
l,us) = Φ(−γua⊤l,us). Thus we can write g(·) as

g(γua
⊤
l,us;Y

u
iljl

) = − log Φ((2Y u
iljl
− 1)γua

⊤
l,us). Note that (2Y − 1)2 = 1, we have

g′(x;Y ) = − (2Y − 1)Φ′(x)

Φ(x)
, g′′(x;Y ) =

Φ′(x)2 − Φ(x)Φ′′(x)

Φ(x)2
.

In order to bound g′(x) and g′′(x), we first calculate the derivatives of Φ(x) as follows:

Φ(x) =

∫ x

−∞

1√
2π

e−
z2

2 dz, Φ′(x) =
1√
2π

e−
x2

2 , Φ′′(x) =
−x√
2π

e−
x2

2 . (2.4.21)

For any θ > 0 such that |x| ≤ θ, we have

e−θ2/2

√
2πΦ(θ)

≤ |g′(x)| ≤ 1√
2πΦ(−θ)

.

We can verify that g′′(x) is monotonically decreasing on Rd and g′′(x) > 0 also always hold. Thus for all
|x| ≤ θ, we have g′′(θ) ≤ g′′(x) ≤ g′′(−θ).

Proof of Corollary 2.4.9. Recall the derivation of the gradient in (2.4.10) and the Hessian in (2.4.11) of the
loss function L. In order to verify Conditions 2.4.1, 2.4.2, 2.4.3 and 2.4.4, we only need the upper and
lower bounds of g′(γua

⊤
l,us;Y

u
iljl

) for all u = 1, . . . ,m and l = 1, . . . , k. Therefore, using exactly the same
proof techniques as in Section 2.4.3, we can also establish strong convexity, smoothness, first-order stability
and the statistical error bound for sample loss function L when the noise ϵ follows the standard normal
distribution. We omit the proof since it is the same as that of the Gumbel case. We can verify that L is
µ1-strongly convex and L1-smooth with respect to s, and is µ2-strongly convex and L2-smooth with respect
to γ. The coefficient parameters are defined as µ1 = (γmin − r)2H(5C0)/n, L1 = (γmax + r)2H(−5C0)/n,

31



µ2 = (∥s∗∥2 + r)2H(5C0)/n and L2 = (∥s∗∥2 + r)2H(−5C0)/n. Note that H(x) is a function defined based
on the normal CDF Φ(·):

H(x) = [Φ′(x)2 − Φ(x)Φ′′(x)]/Φ(x)2,

where Φ,Φ′,Φ′′ are defined in (2.4.21). The loss function L also satisfies Condition 2.4.3 with M = M1 =
M2 = (1/Φ(−5C0) + 5

√
2πH(−5C0)γmaxsmax)/

√
mπ. In order to make sure that M ≤ √µ1µ2/4, we only

need smax ≤
√
πγminH(5C0)/[4γmax(2/Φ(−5C0)) + 5

√
2πH(−5C0)] ·

√
m∥s∗∥2/n. Therefore, by Theorem

2.4.5, if we choose step sizes η1 = η2 = η such that

η <
mnΓ2

1H(5C0)

6(mΓ4
2 + 50n2C2

0 )H(−5C0)2
,

with Γ2 = min{γmin/2, ∥s∗∥2}, Γ2 = max{2γmax, 2∥s∗∥2},

then we are able to obtain the following convergence result:

∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22 ≤ r2ρt +
ϵ1(k, n)

2 + ϵ2(k, n)
2

µ2
, (2.4.22)

where µ = Γ2
1H(5C0)/n, ρ = 1− η(µ− 6η(Γ4

2/n
2 +32C2

0/m))/2 and ϵ1(k, n), ϵ2(k, n) are the statistical error
bounds. Similar to the proof of Lemma 2.4.14, we know that ϵ1(k, n) = (γmax+r)/(

√
πΦ(−5C0))

√
2 log(2n)/(mk)

and ϵ2(k, n) = 10γmaxsmax/(
√
πΦ(−5C0))

√
log(2mn)/(mk). Plugging these two bounds into (2.4.22) yields

∥s(t) − s∗∥22 + ∥γ(t) − γ∗∥22 ≤ r2ρt +
Λ′n2 log(4mn2)

mk
,

which holds with probability at least 1− 1/n, where Λ′ is a constant defines as follows.

Λ′ =
2max{(γmax + r)2, 50C2

0}
πΓ4

1H(5C0)2Φ(−5C0)2
.

This completes the proof.

2.4.4 Proofs of Technical Lemmas

In this section, we provide the proofs of technical lemmas used in the previous section.

Proof of Lemma 2.4.11

We first lay down the following useful lemma.

Lemma 2.4.15. (Tropp, 2012) Consider a sequence of i.i.d. random matrices {Xk} in Rd×d with E[Xk] = 0
and ∥Xk∥2 ≤ R. Then for all t ≥ 0

Pr

(∥∥∥∥∑
k

Xk

∥∥∥∥ ≥ t

)
≤ d exp

(
− t2

2σ2 + 2Rt/3

)
,

where σ2 = ∥
∑

k E[X2
k]∥2.

Proof of Lemma 2.4.11. Using Taylor expansion, we have

L(s,γ) = L(s′,γ) + ⟨∇sL(s′,γ), s− s′⟩+ 1

2
(s− s′)⊤∇2

sL(s̃,γ)(s− s′),

where s̃ = s+ θ(s′ − s) for some θ ∈ (0, 1). In order to show the strong convexity and smoothness of L, we
need to bound the minimal and maximum eigenvalues of ∇2

sL(s,γ). Note that s,γ lie in a neighborhood
with radius r of the true parameters s∗,γ∗ respectively. When r ≤ min{smax,

√
γmaxsmax}, we have

|γua⊤l,us| ≤ |(γu − γ∗
u)a

⊤
l,u(s− s∗)|+ |γ∗

ua
⊤
l,u(s− s∗)|+ |γ∗

ua
⊤
l,us

∗| ≤ 5γmaxsmax. (2.4.23)
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For any ∆ ∈ Rn, we have

1

mk

m∑
u=1

k∑
l=1

(γu)
2 exp(5γmaxsmax)

(1 + exp(5γmaxsmax))2
∆⊤al,ua

⊤
l,u∆ ≤∆⊤∇2

sL(s,γ)∆

=
1

mk

m∑
u=1

k∑
l=1

g′′
(
γua

⊤
l,us
)
(γu)

2∆⊤al,ua
⊤
l,u∆

≤ 1

4mk

m∑
u=1

k∑
l=1

(γu)
2∆⊤al,ua

⊤
l,u∆,

where we used the monotonicity of g′′. Since al,u = eil − ejl and il, jl are uniformly distributed, we have
E[al,ua⊤l,u] = E[eile⊤il + ejle

⊤
jl
− eile

⊤
jl
− ejle

⊤
il
] = 2/nI− 2/n(11⊤/n). We define

Xl,u = (γu)2
[
al,ua

⊤
l,u −

2(I− 11⊤/n)

n

]
, L =

2(I− 11⊤/n)

n
. (2.4.24)

Thus we have E[Xl,u] = 0. Furthermore, we have ∥Xl,u∥2 ≤ 2(γmax + r)2 and E[X2
l,u] ≤ 4(γmax + r)4(n −

1)/n2(I− 11⊤/n). Applying Lemma 2.4.15 yields

Pr

(∥∥∥∥ 1

mk

m∑
u=1

k∑
l=1

Xl,u

∥∥∥∥
2

≥ t

)
≤ 2n exp

(
−t2

8(γmax + r)4(n− 1)/(n2mk) + 4t(γmax + r)2/(3mk)

)
≤ 2n exp

(
−t2

8(γmax + r)4/(nmk) + 4t(γmax + r)2/(3mk)

)
,

which implies that ∥∥∥∥ 1

mk

m∑
u=1

k∑
l=1

Xl,u

∥∥∥∥
2

≤ 8(γmax + r)2 log n

3mk
+ 4(γmax + r)2

√
log n

nmk

≤ 8(γmax + r)2
√

log n

nmk

holds with probability at least 1 − 1/n, where the last inequality holds when mk ≥ 4/9n log n. Therefore,
we have

∥∇2
sL(s,γ)∥2 ≤ (γmax + r)2

(
1

2n
+ 2

√
log n

nmk

)
≤ (γmax + r)2

n
.

On the other hand, for any ∆ ∈ Rn such that ∆⊤1 = 0, we have

1

mk

m∑
u=1

k∑
l=1

∆⊤Xl,u∆ ≥ −8γ2
max

√
log n

nmk
∥∆∥22,

which implies

∆⊤∇2
sL(s,γ)∆ ≥

(
2(γmin − r)2

n
− 8(γmax + r)2

√
log

nmk

)
∥∆∥22.

Therefore, when k is sufficiently large such that mk ≥ 64(γmax + r)2/(γmin − r)2n log n, we have

λmin

(
∇2

sL(s,γ)
)
≥ (γmax − r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
.

This completes the proof.
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Proof of Lemma 2.4.12

Proof. Using Taylor expansion, we get

L(s,γ) = L(s,γ′) + ⟨∇γL(s,γ′),γ − γ′⟩+ 1

2
(γ − γ′)⊤∇2

γL(s, γ̃)(γ − γ′), (2.4.25)

where γ̃ = γ + θ(γ′ − γ) for some θ ∈ (0, 1). Recall the Hessian matrix with respect to γ:

∇2
γL(s,γ) =

1

mk
diag



∑k
l=1 g

′′
(
γ1a

⊤
l,1s
)
a⊤l,1sa

⊤
l,1s

...∑k
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′′
(
γua

⊤
l,us
)
a⊤l,usa

⊤
l,us

...

 .

For any fixed u, we denote Xl,u = a⊤l,usa
⊤
l,us−s⊤Ls, where L is defined as in (2.4.24). Recall the calculation

of g′′ in (2.4.15),(2.4.17) and that |γua⊤l,us| ≤ 5γmaxsmax by (2.4.23), we have

e5γmaxsmax

(1 + e5γmaxsmax)2
≤ g′′

(
γua

⊤
l,us
)
=

exp(γua
⊤
l,us)(

1 + exp(γua⊤l,us)
)2 ≤ 1

4
.

Since ∇2
γL(s,γ) is a diagonal matrix, the eigenvalues of ∇2

γL(s,γ) can be bounded by

e5γmaxsmax

(1 + e5γmaxsmax)2
min
u

1

mk

k∑
l=1

(
a⊤l,us

)2 ≤ λmin(∇2
γL(,γ))

≤ λmax(∇2
γL(,γ))

≤ 1

4
max
u

1

mk

k∑
l=1

(
a⊤l,us

)2
. (2.4.26)

Since s⊤1 = 0, it is easy to verify E[Xl,u] = E[s⊤(al,ua⊤l,u − L)s] = 0 and |Xl,u| ≤ 6(smax + r)2. For any
fixed u, applying Hoeffding’s inequality yields

Pr

(
− 1

mk

k∑
l=1

Xl,u ≥ t

)
= Pr

(
1

mk

k∑
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)
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− m2t2k
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)
.

Further applying union bound, we have
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(
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∑
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(
1
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)
,

which immediately implies that

λmax(∇2
γL(s,γ)) ≤

1

4
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u

1
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a⊤l,usa
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√
2 log(mn)
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n
(2.4.27)

holds with probability at least 1 − 1/n, where the last inequality is true when the sample size satisfies
k ≥ 5(smax + r)4n2/(m2(∥s∗∥2 + r)4) log(mn). On the other hand, we also have

Pr

(
max
u
− 1

mk

k∑
l=1

Xl,u ≥ t

)
≤
∑
u

Pr

(
− 1

k

k∑
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Xl,u ≥ mt

)
≤ m exp

(
− m2t2k

18(smax + r)4

)
,
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which leads to the conclusion that

λmin(∇2
γL(s,γ)) ≥

e5γmaxsmax

(1 + e5γmaxsmax)2
max
u

1

mk

k∑
l=1

a⊤l,usa
⊤
l,us

≥ e5γmaxsmax

(1 + e5γmaxsmax)2

(
2(∥s∗∥2 + r)2

n
− 3(smax + r)2

m

√
2 log(mn)

k

)
≥ (∥s∗∥2 + r)2e5γmaxsmax

n(1 + e5γmaxsmax)2
(2.4.28)

holds with probability at least 1− 1/n, where the last inequality is due to k ≥ 18(smax+ r)4n2/(m2(∥s∗∥2+
r)4) log(mn).

Proof of Lemma 2.4.13

Proof. Recall the gradient of L with respect to s in (2.4.10). It holds that

∥∇sL(s,γ)−∇sL(s,γ′)∥2 =
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Note that we have |g′(γua⊤l,us)| ≤ 1 and ∥al,u∥2 =

√
2. In addition, by the mean value theorem we have
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⊤
l,us
)
− g′

(
γ′
ua

⊤
l,us
)
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⊤
l,us + (1 − t)γ′

ua
⊤
l,us for some t ∈ (0, 1). By plugging the range of γu and s, we have |x| ≤

5γmaxsmax by (2.4.23) and hence |g′′(x)| = |ex/(1+ex)2| ≤ 1/4. Now we can bound ∥∇sL(s,γ)−∇sL(s,γ′)∥2
as follows:
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Now we prove the upper bound of ∥∇γL(s,γ)−∇γL(s′,γ)∥2. First, we have by (2.4.10) that

∇γL(s,γ)−∇γL(s′,γ) =
1

mk


∑k

l=1 a
⊤
l,1

(
g′
(
γ1a

⊤
l,1s
)
s− g′

(
γ1a

⊤
l,1s

′)s′)
...∑k

l=1 a
⊤
l,u

(
g′
(
γua

⊤
l,us
)
s− g′

(
γua

⊤
l,us

′)s′)
...

 .

Note that for each u, we have
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(
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γua

⊤
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′)s′)
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For the first term in (2.4.29), we have∣∣a⊤l,ug′(γua⊤l,us)(s− s′)
∣∣ ≤ √2∥s− s′∥2.
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For the second term in (2.4.29), applying the mean value theorem yields

∣∣a⊤l,u(g′(γua⊤l,us)− g′
(
γua

⊤
l,us

′))s′∣∣ = ∣∣g′′(x)γua⊤l,u(s− s′
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√
2γmaxsmax

4
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where x = tγua
⊤
l,us+ (1− t)γua⊤l,us

′ for some t ∈ (0, 1). Therefore, we have

∥∇γL(s,γ)−∇γL(s′,γ)∥2 ≤
√
2(1 + 2γmaxsmax)√

m
∥s− s′∥2,

which completes our proof.

Proof of Lemma 2.4.14

Proof. According to (2.4.10), the gradient of L with respect to s is

∇sL(s,γ) =
1

mk

∑
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∑
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By assumption we have |γu| ≤ (γmax + r) and |γua⊤l,us| ≤ 5γmaxsmax by (2.4.23). In addition, we have

∥γual,u/(1 + exp(γual,us))∥2 ≤
√
2(γmax + r)/(1 + e−5γmaxsmax). Applying Hoeffding’s inequality, we have
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holds with probability at least 1− 1/n. Recall the calculation in (2.4.10), the gradient of L with respect to
γ is
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The squared statistical error is
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where the last inequality is due to union bound. For each user u, we have

|(g′(γua⊤l,us)al,u − E[g′(γua⊤l,us)al,u])⊤s| ≤
10γmaxsmax

1 + e−5γmaxsmax
.
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Applying Hoeffding’s inequality yields

Pr
(
∥∇γL(s,γ)−∇γL̄(s,γ)∥2 ≥ t

)
≤ 2m exp

(
−(1 + e−5γmaxsmax)2t2mk

100γ2
maxs
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,

which immediately leads to the conclusion that

∥∇γL(s,γ)−∇γL̄(s,γ)∥2 ≤
10γmaxsmax

1 + e−5γmaxsmax

√
2 log(2mn)

mk

holds with probability at least 1− 1/n. This completes the proof.

Proof of Proposition 2.3.1

Proof. Since the PDF g of the noise terms ϵi is log-concave, and because the convolution of log-concave
functions is log-concave Merkle (1998), the CDF F of ϵj − ϵi for any pair i, j is also log-concave. Hence
h(x) = − logF (x) is convex. The loss function is the sum of terms of the form hiju = h(γu(si − sj)). Fix i,
j, and u. We have

∇2
shiju = h′′(γu(si − sj))(γu)

2(ei − ej)(ei − ej)
⊤,

where ei is the standard unit vector for coordinate i in Rn. By the convexity of h and the fact that
(ei − ej)(ei − ej)

⊤ is positive-definite, the loss function is convex in s. Similarly, it is easy to show that it
is convex in γ.

2.5 Experiments

In this section, we present experimental results to show the performance of the proposed algorithm on
heterogeneous populations of users. The experiments are conducted on both synthetic and real data with
both benign users and adversarial users. We use the Kendall’s tau correlation Kendall (1948) between the

estimated and true rankings to measure the similarity between rankings, which is defined as τ = 2(c−d)
n(n−1) ,

where c and d are the number of pairs on which the two rankings agree and disagree, respectively. Pairs
that are tied in at least one of the rankings are not counted in c or d.

Baseline methods: In Gumbel noise setting, we compare Algorithm 2.1 based on our proposed HBTL
model with (i) the BTL model that can be optimized through iterative maximum-likelihood methods (Negah-
ban et al., 2012) or spectral methods such as Rank Centrality (Negahban et al., 2016); and (ii) the CrowdBT
algorithm (Chen et al., 2013), which is a variation of BTL that allows users with different levels of accuracy.
In the normal noise setting, we compare Algorithm 2.1 based on our proposed HTCV model with TCV
model. We also implemented a TCV equivalent of CrowdBT and report its performance as CrowdTCV.

2.5.1 Experimental Results on Synthetic Data

We set number of items n = 20, number of users m = 9 and set the ground truth score vector s to be
uniformly distributed in [0, 1]. The m users are divided into groups A and B, consisting of 3 and 6 users
respectively. These two groups of users generate heterogeneous data in the sense that users in group A
are more accurate than those in group B. We vary γA in the range of {2.5, 5, 10} and γB in the range of
{0.25, 1, 2.5}, which leads to in total 9 configurations of data generation. For each configuration, we conduct
the experiment under the following two settings:
(1) Benign: γ1, . . . , γ3 = γA (Group A); γ4, . . . , γ9 = γB (Group B).
(2) Adversarial: γ1 = −γA, γ2, γ3 = γA (Group A); γ4, γ5 = −γB , γ6, . . . , γ9 = γB (Group B).
We also test on various densities of compared pairs, which effectively controls the sample size. In particular,
we choose 4 sets of α, which denote the portion of all possible pairs that are compared. The larger the value,
the more pairs are compared by each user. The simulation process is as follows: we first generate n(n − 1)
ordered pairs of items, where n is the number of items. This is equivalent to comparing each unique pair
of items twice. Then for each pair of items, response from every annotator had a probability of α to be
recorded and used for training the model. And α is chosen from {0.2, 0.4, 0.6, 0.8} to make up for four runs.
Each experiment is repeated 100 times with different random seeds.
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Under setting (1), we plot the estimation error of Algorithm 2.1 v.s. number of iterations for HBTL and
HTCV model in Figures 2.2a-2.2b and 2.2c-2.2d respectively. In all settings, our algorithm enjoys a linear
convergence rate to the true parameters up to statistical errors, which is well aligned with the theoretical
results in Theorem 2.4.5.
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Figure 2.2: Evolution of estimation errors vs. number of iterations t for HBTL model (a-b) and HTCV
model (c-d). The plots show the convergence behavior of both score vector s∗ and accuracy parameters γ∗

estimation.

When there is no adversarial users in the system, the ranking results for Gumbel noises under different
configurations of γA and γB are shown in Table 2.1 and the ranking results for normal noises under differ-
ent configurations of γA and γB are shown in Table 2.2. In both tables, each cell presents the Kendall’s
tau correlation between the aggregated ranking and the ground truth, averaged over 100 trials. For each
experimental setting, we use the bold text to denote the method which achieved highest performance. We
also underline the highest score whenever there is a tie. It can be observed that in almost all cases, HBTL
provides much more accurate rankings than BTL and HTCV significantly outperforms TCV as well. In
particular, the larger the difference between γA and γB is, the more significant the improvement is. The only
exception is when γA = γB = 2.5, in which case the data is not heterogeneous and our HRUM model has no
advantage. Nevertheless, our method still achieve comparable performance as BTL for non-heterogeneous
data. It can also be observed that HBTL generally outperforms CrowdBT. But the advantage is not large,
as CrowdBT also includes the different accuracy levels of different users. Importantly, however, as discussed
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in Section 2.3.1, CrowdBT is not compatible with the additive noise in Thurstonian models and cannot be
extended in a natural way to ranked data other than pairwise comparison. In addition, unlike CrowdBT,
our method enjoys strong theoretical guarantees while maintaining a good performance. Tables 2.1 and 2.2
also illustrate an important fact: If there are users with high accuracy, the presence of low quality data does
not significantly impact the performance of Algorithm 2.1.

When there are a portion of adversarial users as stated in setting (2), we consider adversarial users whose
accuracy level γu may take negative values as discussed above. The results for Gumbel and normal noises
under setting (2) are shown in Table 2.3 and Table 2.4 respectively. It can be seen that in this case, the
difference between the methods is even more pronounced.

2.5.2 Experimental Results on Real-World Data

We evaluate our method on two real-world datasets. The first one named “Reading Level” (Chen et al.,
2013) contains English text excerpts whose reading difficulty level is compared by workers. 624 workers
annotated 490 excerpts which resulting in a total of 12, 728 pairwise comparisons. We also used Mechanical
Turk to collect another dataset named “Country Population”. In this crowdsourcing task, we asked workers
to compare the population between two countries and pick the one which has more population. Since the
population ranking of countries has a universal consensus, which can be obtained by looking up demographic
data, it is a better choice than those movie rankings which subjects to personal preferences. There were
15 countries as shown in Table 2.5 which made up to 105 pairwise comparisons. The values were collected
according to the latest demography statistics on Wikipedia for each country as of March 2019. Each user was
asked 16 pairs randomly selected from all those 105 pairs. A total of 199 workers provided response to this
task through Mechanical Turk. These two datasets were both collected in online crowdsourcing environments
so that we can expect varying worker accuracy where effectiveness of our approach can be demonstrated.

In real-world datasets, it may happen that two items from two subsets are never compared with each
other, directly or indirectly. In such cases, the ranking will not be unique. Furthermore, if data is sparse,
the estimates may suffer from overfitting. To address these issues, regularization is often used. While
this can be done in a variety of ways, for the sake of comparison with CrowdBT, we use virtual node
regularization (Chen et al., 2013). Specifically, it is assumed that there is a virtual item of utility s0 = 0
which is compared to all other items by a virtual user. This leads to the loss function L + λ0L0, where
L0 = −

∑
i∈[n] logF (s0 − si)−

∑
i∈[n] logF (si − s0) and λ0 ≥ 0 is a tuning parameter.

We evaluate the performance of the methods for λ0 = 0, 1, 5, 10. For different values of λ0, HBTL
performs best more often than any other method and, in particular, it performs best for λ0 = 0. Table 2.6
reports the best performance of each method across different regularization values for the two real-world
data experiment. It can be observed that HBTL and HTCV outperform their counterparts, CrowdBT and
CrowdTCV, as well as the uniform models, BTL and TCV.

2.5.3 Analysis on regularization effects

Detailed result with various regularization settings can be found in Table 2.7 and Table 2.8. The reported
values are Kendall’s tau correlation. It shows that without regularization our method outperforms other
methods. And with virtual node trick, it shows relative amount of improvement in the final ranking result, yet
not essential. However, this method needs to tune another parameter λ0. If no gold/ground-truth comparison
is given, there will be no validation standard to tune this parameter. Furthermore, the performance of the
proposed methods is less dependent on the regularization parameter, which facilitates their application to
real data. It is also interesting to see that our method is less prone to be affected by the regularization
parameter.
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Table 2.1: Kendall’s tau correlation for different method under Gumbel noise. Group A users all have the
accuracy level γA and Group B users all have the accuracy level γB . α represents the portion of all possible
pairwise comparisons each annotator labeled in the simulation. The bold number highlights the highest
performance and the underlined number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
BTL 0.767±0.055 0.836±0.043 0.879±0.032

CrowdBT 0.847±0.042 0.928±0.023 0.962±0.016
HBTL 0.850±0.041 0.930±0.024 0.964±0.015

1.0
BTL 0.863±0.036 0.896±0.028 0.923±0.026

CrowdBT 0.875±0.033 0.930±0.024 0.967±0.018
HBTL 0.875±0.033 0.930±0.024 0.969±0.017

2.5
BTL 0.933±0.022 0.946±0.019 0.959±0.018

CrowdBT 0.931±0.024 0.947±0.019 0.967±0.017
HBTL 0.931±0.025 0.948±0.021 0.972±0.015

α = 0.6

0.25
BTL 0.743±0.064 0.814±0.048 0.853±0.037

CrowdBT 0.823±0.050 0.909±0.034 0.954±0.018
HBTL 0.824±0.051 0.908±0.033 0.955±0.018

1.0
BTL 0.837±0.036 0.872±0.033 0.903±0.033

CrowdBT 0.853±0.035 0.911±0.031 0.955±0.018
HBTL 0.851±0.033 0.913±0.028 0.958±0.017

2.5
BTL 0.913±0.032 0.931±0.024 0.948±0.021

CrowdBT 0.910±0.028 0.935±0.020 0.961±0.016
HBTL 0.912±0.029 0.936±0.022 0.967±0.017

α = 0.4

0.25
BTL 0.671±0.062 0.761±0.053 0.812±0.048

CrowdBT 0.764±0.065 0.872±0.037 0.933±0.024
HBTL 0.769±0.061 0.873±0.034 0.934±0.022

1.0
BTL 0.791±0.051 0.844±0.043 0.866±0.035

CrowdBT 0.798±0.050 0.889±0.029 0.934±0.027
HBTL 0.806±0.051 0.891±0.031 0.936±0.026

2.5
BTL 0.882±0.034 0.910±0.030 0.919±0.027

CrowdBT 0.879±0.034 0.912±0.026 0.943±0.022
HBTL 0.880±0.032 0.916±0.028 0.945±0.020

α = 0.2

0.25
BTL 0.575±0.095 0.663±0.078 0.712±0.069

CrowdBT 0.644±0.094 0.798±0.055 0.884±0.035
HBTL 0.665±0.090 0.805±0.051 0.882±0.034

1.0
BTL 0.708±0.073 0.768±0.057 0.804±0.039

CrowdBT 0.696±0.081 0.813±0.052 0.876±0.034
HBTL 0.702±0.079 0.819±0.052 0.882±0.034

2.5
BTL 0.820±0.044 0.861±0.043 0.883±0.033

CrowdBT 0.803±0.048 0.857±0.037 0.898±0.030
HBTL 0.807±0.049 0.861±0.038 0.904±0.029
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Table 2.2: Kendall’s tau correlation for different methods under noise from the normal distribution. Group
A users all have the accuracy level γA and Group B users all have the accuracy level γB . α represents the
portion of all possible pairwise comparisons each annotator labeled in the simulation. The bold number
highlights the highest performance and the underlined number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
TCV 0.811±0.048 0.860±0.040 0.885±0.036

CrowdTCV 0.881±0.032 0.943±0.021 0.971±0.014
HTCV 0.882±0.030 0.943±0.021 0.971±0.015

1.0
TCV 0.885±0.036 0.910±0.027 0.925±0.029

CrowdTCV 0.897±0.030 0.944±0.020 0.973±0.015
HTCV 0.897±0.033 0.944±0.020 0.975±0.013

2.5
TCV 0.945±0.021 0.956±0.018 0.965±0.018

CrowdTCV 0.945±0.021 0.954±0.019 0.976±0.014
HTCV 0.944±0.021 0.959±0.017 0.981±0.014

α = 0.6

0.25
TCV 0.763±0.059 0.830±0.043 0.850±0.041

CrowdTCV 0.845±0.038 0.926±0.023 0.961±0.020
HTCV 0.846±0.040 0.925±0.025 0.961±0.020

1.0
TCV 0.862±0.038 0.892±0.034 0.912±0.025

CrowdTCV 0.870±0.035 0.930±0.028 0.962±0.019
HTCV 0.875±0.033 0.932±0.027 0.963±0.018

2.5
TCV 0.927±0.027 0.943±0.021 0.955±0.019

CrowdTCV 0.925±0.027 0.946±0.026 0.968±0.015
HTCV 0.925±0.027 0.952±0.022 0.974±0.013

α = 0.4

0.25
TCV 0.691±0.073 0.790±0.047 0.809±0.048

CrowdTCV 0.804±0.050 0.901±0.028 0.946±0.022
HTCV 0.808±0.049 0.904±0.028 0.945±0.022

1.0
TCV 0.821±0.047 0.859±0.036 0.875±0.036

CrowdTCV 0.832±0.044 0.900±0.035 0.946±0.020
HTCV 0.836±0.043 0.904±0.032 0.947±0.020

2.5
TCV 0.901±0.027 0.921±0.029 0.935±0.026

CrowdTCV 0.895±0.031 0.923±0.028 0.950±0.019
HTCV 0.895±0.030 0.926±0.025 0.957±0.018

α = 0.2

0.25
TCV 0.599±0.088 0.688±0.077 0.738±0.060

CrowdTCV 0.689±0.080 0.826±0.046 0.899±0.031
HTCV 0.693±0.082 0.828±0.049 0.898±0.034

1.0
TCV 0.733±0.070 0.791±0.055 0.815±0.041

CrowdTCV 0.729±0.074 0.836±0.043 0.904±0.033
HTCV 0.740±0.072 0.841±0.038 0.901±0.031

2.5
TCV 0.856±0.041 0.878±0.036 0.888±0.032

CrowdTCV 0.844±0.048 0.873±0.035 0.905±0.027
HTCV 0.848±0.041 0.881±0.036 0.913±0.026
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Table 2.3: Kendall’s tau correlation for different methods under noise from the Gumbel distribution when a
third of the users are adversarial. The bold number highlights the highest performance and the underlined
number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
BTL 0.443±0.107 0.569±0.096 0.614±0.085

CrowdBT 0.852±0.044 0.925±0.023 0.967±0.017
HBTL 0.852±0.045 0.926±0.023 0.966±0.017

1.0
BTL 0.575±0.089 0.663±0.071 0.710±0.074

CrowdBT 0.873±0.037 0.931±0.023 0.967±0.014
HBTL 0.875±0.037 0.932±0.024 0.966±0.017

2.5
BTL 0.725±0.057 0.780±0.046 0.798±0.047

CrowdBT 0.931±0.025 0.948±0.019 0.966±0.016
HBTL 0.931±0.025 0.951±0.019 0.973±0.015

α = 0.6

0.25
BTL 0.384±0.122 0.491±0.107 0.557±0.095

CrowdBT 0.822±0.046 0.908±0.030 0.953±0.019
HBTL 0.824±0.044 0.910±0.028 0.954±0.018

1.0
BTL 0.546±0.097 0.627±0.078 0.670±0.080

CrowdBT 0.852±0.037 0.911±0.029 0.954±0.018
HBTL 0.854±0.037 0.914±0.028 0.956±0.019

2.5
BTL 0.684±0.078 0.736±0.064 0.755±0.062

CrowdBT 0.910±0.028 0.934±0.025 0.960±0.016
HBTL 0.912±0.029 0.936±0.024 0.965±0.017

α = 0.4

0.25
BTL 0.323±0.130 0.405±0.132 0.485±0.109

CrowdBT 0.742±0.169 0.877±0.033 0.934±0.025
HBTL 0.766±0.059 0.877±0.035 0.933±0.024

1.0
BTL 0.448±0.118 0.544±0.096 0.583±0.094

CrowdBT 0.810±0.044 0.886±0.031 0.934±0.026
HBTL 0.819±0.045 0.891±0.031 0.934±0.029

2.5
BTL 0.627±0.087 0.660±0.075 0.698±0.063

CrowdBT 0.879±0.034 0.913±0.027 0.939±0.023
HBTL 0.880±0.032 0.914±0.029 0.948±0.022

α = 0.2

0.25
BTL 0.246±0.145 0.305±0.151 0.361±0.143

CrowdBT 0.613±0.235 0.712±0.356 0.848±0.256
HBTL 0.614±0.263 0.709±0.380 0.848±0.249

1.0
BTL 0.336±0.154 0.407±0.127 0.452±0.132

CrowdBT 0.644±0.282 0.795±0.176 0.878±0.038
HBTL 0.650±0.281 0.807±0.172 0.888±0.040

2.5
BTL 0.498±0.106 0.548±0.103 0.571±0.098

CrowdBT 0.803±0.049 0.858±0.039 0.897±0.032
HBTL 0.807±0.049 0.865±0.039 0.900±0.029
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Table 2.4: Kendall tau correlation for different methods under noise from the normal distribution when a
third of the users are adversarial. The bold number highlights the highest performance and the underlined
number indicates a tie.

Observ.
Ratio γB Methods

γA

2.5 5 10

α = 0.8

0.25
TCV 0.471±0.105 0.590±0.095 0.640±0.075

CrowdTCV 0.882±0.034 0.938±0.023 0.972±0.017
HTCV 0.882±0.033 0.937±0.023 0.973±0.016

1.0
TCV 0.642±0.083 0.694±0.068 0.722±0.064

CrowdTCV 0.893±0.030 0.945±0.020 0.973±0.016
HTCV 0.895±0.031 0.947±0.019 0.975±0.017

2.5
TCV 0.772±0.055 0.804±0.045 0.821±0.050

CrowdTCV 0.945±0.021 0.956±0.019 0.978±0.014
HTCV 0.944±0.021 0.960±0.019 0.982±0.013

α = 0.6

0.25
TCV 0.416±0.129 0.527±0.107 0.552±0.099

CrowdTCV 0.847±0.039 0.924±0.025 0.960±0.020
HTCV 0.847±0.039 0.925±0.023 0.960±0.020

1.0
TCV 0.569±0.086 0.648±0.066 0.686±0.080

CrowdTCV 0.866±0.036 0.930±0.024 0.966±0.018
HTCV 0.870±0.036 0.932±0.025 0.966±0.018

2.5
TCV 0.718±0.060 0.762±0.045 0.786±0.055

CrowdTCV 0.926±0.027 0.949±0.023 0.969±0.014
HTCV 0.925±0.027 0.952±0.020 0.972±0.014

α = 0.4

0.25
TCV 0.359±0.119 0.472±0.116 0.514±0.103

CrowdTCV 0.797±0.053 0.893±0.034 0.942±0.022
HTCV 0.799±0.048 0.896±0.031 0.938±0.022

1.0
TCV 0.487±0.116 0.577±0.088 0.587±0.088

CrowdTCV 0.842±0.049 0.898±0.029 0.945±0.021
HTCV 0.843±0.046 0.902±0.027 0.944±0.022

2.5
TCV 0.648±0.073 0.704±0.071 0.718±0.066

CrowdTCV 0.895±0.031 0.925±0.031 0.951±0.021
HTCV 0.895±0.030 0.929±0.028 0.957±0.018

α = 0.2

0.25
TCV 0.259±0.147 0.349±0.135 0.382±0.133

CrowdTCV 0.600±0.340 0.826±0.044 0.895±0.038
HTCV 0.636±0.282 0.828±0.044 0.893±0.036

1.0
TCV 0.397±0.119 0.436±0.115 0.469±0.100

CrowdTCV 0.721±0.065 0.834±0.043 0.901±0.033
HTCV 0.736±0.066 0.832±0.046 0.905±0.032

2.5
TCV 0.518±0.102 0.577±0.098 0.600±0.077

CrowdTCV 0.843±0.049 0.873±0.037 0.908±0.030
HTCV 0.848±0.041 0.880±0.036 0.917±0.028
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Table 2.5: Ground truth for “Country Population” dataset.

Country Population (million)

China 1410
India 1340

United States 324
Indonesia 264
Brazil 209

Pakistan 197
Nigeria 191

Bangladesh 165
Russia 144
Mexico 129
Japan 127

Ethiopia 105
Philippines 104.9

Egypt 97.6
Vietnam 95.5

Table 2.6: Performance of ranking algorithms on real-world dataset. The bold number highlights the highest
performance.

Dataset BTL TCV CrowdBT CrowdTCV HBTL HTCV

Reading Level 0.3472 0.3452 0.3737 0.3672 0.3763 0.3729
Country Population 0.7524 0.7524 0.7714 0.7714 0.7905 0.7714

Table 2.7: Performance of ranking algorithms for the “Reading Level” dataset with different regularization
parameters. The bold number highlights the highest performance.

λ0 = 0 λ0 = 1 λ0 = 5 λ0 = 10

BTL 0.3299 0.3433 0.3472 0.3402
TCV 0.3294 0.3423 0.3452 0.3375

CrowdBT 0.3490 0.3737 0.3648 0.3535
CrowdTCV 0.3512 0.3672 0.3511 0.3388

HBTL 0.3608 0.3660 0.3719 0.3763
HTCV 0.3578 0.3696 0.3729 0.3680

Table 2.8: Performance of ranking algorithms for the “Country Population” dataset with different regular-
ization parameters. The bold number highlights the highest performance.

λ0 = 0 λ0 = 1 λ0 = 5 λ0 = 10

BTL 0.7524 0.7524 0.7524 0.7524
TCV 0.7524 0.7524 0.7524 0.7524

CrowdBT 0.7714 0.7714 0.7714 0.7524
CrowdTCV 0.7714 0.7714 0.7714 0.7524

HBTL 0.7905 0.7905 0.7524 0.7524
HTCV 0.7714 0.7714 0.7524 0.7524
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Chapter 3

Heterogeneous Active Ranking under
Strong Stochastic Assumption

3.1 Introduction

Nowadays, it is common to collect large-scale datasets in order to facilitate the process of knowledge discovery.
Due to its scale, such data collection is usually carried out by crowdsourcing (Kumar and Lease, 2011;
Chen et al., 2013), where different entities with diverse backgrounds generate subsets of the data. While
crowdsourcing makes it possible to scale up the size, it also brings new challenges when it comes to the cost
of operation and cleanness of the data. For example, the optimal ranking algorithm in the single-user setting
(Ren et al., 2019) may not be straightforwardly extended to the heterogeneous setting while maintaining
optimality. In particular, if we know the most accurate user among the set of users providing comparisons,
the best we can do is to apply optimal single-user1 ranking algorithms such as Iterative-Insertion-Ranking
(IIR) (Ren et al., 2019) by querying only the most accurate user. Unfortunately, in practice, the accuracies
of the users are often unknown. A naive solution may be to randomly select a user to query and use the
comparisons provided by this user to insert an item into the ranked list per IIR. However, as we show later,
this naive method usually bears a high sample complexity. Therefore, it is of great interest to design methods
that can adaptively select a subset of users at each time to query pairwise comparisons in order to insert an
item correctly into the ranked list.

In this chapter, we study the rank aggregation problem, where a heterogeneous set of users provide noisy
pairwise comparisons for the items. We propose a novel algorithm that queries comparisons for pairs of
items from a changing active user set. Specifically, we maintain a short history of user responses for a set of
comparisons. When the inferred rank of these comparisons is estimated to be true with a high confidence,
it is then used to calculate a reward based on the recorded responses. Then an upper confidence bound
(UCB)-style elimination process is performed to remove inaccurate users from active user set.

3.2 Related Work

For passive ranking problems, a static dataset is given beforehand. Inference of the ranking often relies on
models of ranked data, such as the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952) and the
Thurstone model (Thurstone, 1927). In contrast to passive algorithms, active algorithms leverage assump-
tions embedded in the models to identify the most informative pairs to query, thus reducing the sample
complexity of queries. For instance, in Maystre and Grossglauser (2017), under the assumption that the true
scores for N items are generated by a Poisson process, with O(Npoly(log(N)) comparisons, an approximate
ranking of N items can be found. Let the probability of making a correct comparison between item i and the
most similar item to item i be 1

2 +∆i and let ∆min = mini∈[N ] ∆i. An instance-dependent sample complexity

1In this chapter, we use the term single-user to refer to the case where only one information source is queried at each time.
And the same for multi-user as multiple information sources can be queried at each time.
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bound of O(N log(N)∆−2
min log(N/(δ∆min)) is provided along with a QuickSort based algorithm by Szörényi

et al. (2015). In Ren et al. (2019), an analysis for a distribution agnostic active ranking scheme is provided.
To achieve a δ-correct exact ranking, O(

∑
i∈[N ] ∆

−2
i (log log(∆−1

i ) + log(N/δ))) comparisons are required.
The exact inference requirement results in repeated queries of the same pair, which costs a constant overhead
compared to approximate inference.

3.3 Preliminaries and Problem Setup

3.3.1 Ranking from Noisy Pairwise Comparisons

Suppose there are N items that we want to rank and M users to be queried. An item is indexed by an
integer i ∈ [N ]. We assume there is a unique true ranking of the N items. A user is also indexed by an
integer u ∈ [M ]. For a subset of users, we use U ⊆ [M ] to denote the index subset. In each time step, we
can pick a pair of items i and j and ask a user u whether item i is better than item j. The comparison
returned by the user may be noisy. We assume that for any pair of items (i, j) with true ranking i ≻ j,
the probability that user u answers the query correctly is pu(i, j) = ∆u + 1/2, where ∆u ∈ (0, 1

2 ] is referred
to as the accuracy level of user u. When some of the ∆u’s are different from the others, we call the set of
users heterogeneous. We assume comparison results for item pairs, regardless the queried user, are mutually
independent. While this independence assumption may not always hold for real datasets, it is commonly
adopted in the literature as it facilitates the analysis (Falahatgar et al., 2017b, 2018; Jin et al., 2020).

In this chapter, we aim to achieve the exact ranking for a ranking problem defined as follows.

Definition 3.3.1 (Exact Ranking with Multiple Users). Given N items, M users, and δ ∈ (0, 1), our goal is
to identify the true ranking among the N items with probability at least 1− δ. An algorithm A is δ-correct
if, for any instance of the input, it will return the correct result in finite time with probability at least 1− δ.

To actively eliminate the users in the user pool, we define an α-optimal user as follows.

Definition 3.3.2. Let U ⊆ [M ] be an arbitrary subset of users. If a user x ∈ U satisfies ∆x+α ≥ maxu∈U ∆u,
then x is called an α-optimal user in U . If a user is α-optimal among all M users, then it is called an (global)
α-optimal user.

3.3.2 Iterative Insertion Ranking with a Single User

When there is only one user u to be queried (M = 1), the problem defined in Section 3.3.1 reduces to
the exact ranking problem with a single user, for which Ren et al. (2019) proposed the Iterative-Insertion-
Ranking (IIR) algorithm. The sample complexity (i.e., the total number of queries) to achieve exact ranking
with probability 1− δ is characterized by the following proposition:

Proposition 3.3.3 (Adapted from Theorems 2 and 12 in Ren et al. (2019)). Given δ ∈ (0, 1/12) and an
instance of N items, the number of comparisons used by any δ-correct algorithm A on this instance is at
least

Θ
(
N∆−2

u

(
log log∆−1

u + log(N/δ)
))
. (3.3.1)

Moreover, the IIR algorithm proposed by Ren et al. (2019) can output the exact ranking using this number
of comparisons, with probability 1− δ.

The complexity above can be decomposed into the complexity of inserting each item into a constructed
sorting tree.

In this chapter, we consider a more challenging ranking problem, where multiple users with heterogeneous
levels of accuracies can be queried each time. In the multi-user setting, the optimal sample complexity
in (3.3.1) can be achieved only if we know which user is the best user, i.e., u∗ = argmaxu∈[M ] ∆u. The
optimal sample complexity can then be written as

Cu∗(N) = Θ
(
N∆−2

u∗

(
log log∆−1

u∗ + log(N/δ)
))
. (3.3.2)
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However, with no prior information on the users’ comparison accuracies, it is unclear whether we can
achieve a sample complexity close to (3.3.2). In this scenario, the most primitive route is to perform no
inference on the users’ accuracy and randomly choose users to query. This leads to an equivalent accuracy
of ∆̄0 = 1

M

∑
u∈[M ] ∆u and a sample complexity given as

Cave(N) = Θ
(
N∆̄−2

0

(
log log ∆̄−1

0 + log(N/δ)
))
. (3.3.3)

Compared with the best possible complexity (3.3.2), the sample complexity (3.3.3) is larger by a factor
(ignoring logarithmic factors) up to M2, because the ratio between ∆u∗ and ∆̄0 could vary a lot for different
set of users and can be as large as M . This is certainly undesirable, especially when there are a large number
of items to be ranked. Therefore, an immediate question is: Can we design an algorithm that has a smaller
multiplicative factor in its sample complexity compared with the optimal sample complexity? What we
will propose in the following section is an algorithm that can achieve a sublinear regret, where the regret is
defined as the difference between the sample complexity of the proposed algorithm and the optimal sample
complexity.

3.4 Adaptive Sampling and User Elimination

The main framework of our procedure is derived based on the Iterative-Insertion-Ranking algorithm
proposed in Ren et al. (2019), which, to the best of our knowledge, is the first algorithm that has matching
instance-dependent upper and lower sample complexity bounds for active ranking problems in the single-user
setting. We assume that the strong stochastic transitivity (SST) assumption defined in Falahatgar et al.
(2017b, 2018) holds in our setting. The ranking algorithm comprises the following four hierarchical parts
and operates on a Preference Interval Tree (PIT) (Feige et al., 1994; Ren et al., 2019), which stores the
currently inserted and sorted items.

1. Adaptive Iterative-Insertion-Ranking (Ada-IIR): the main procedure which calls IAI to insert
an item into a PIT with a high probability of correctness. It is displayed in Algorithm 3.2.

2. Iterative-Attempting-Insertion (IAI): the subroutine which calls ATI to insert the current item
z ∈ [N ] into the ranked list with an error ϵ, and iteratively calls ATI by decreasing the error until the
probability that item z is inserted to the correct position is high enough. It is displayed in Algorithm 3.5.

3. Attempting-Insertion (ATI): the subroutine that traverses the Preference Interval Tree using binary
search (Feige et al., 1994) to find the node where the item should be inserted with error ϵ. To compare
the current item and any node in the tree, it calls ATC to obtain the comparison result. It is displayed
in Algorithm 3.6.

4. Attempting-Comparison (ATC): the subroutine that adaptively samples queries from a subset of users
for a pair of items (z, j), where z is the item currently being inserted and j is any other item. ATC

records the number of queries each user provides and the results of the comparisons. It is displayed in
Algorithm 3.4.

In the heterogeneous rank aggregation problem, each user may have a different accuracy level from the
others. Therefore, we adaptively sample the comparison data from a subset of users. In particular, we
maintain an active set U ⊆ [M ] of users, which contains the potentially most accurate users from the entire
group. We add a user elimination phase to the main procedure (Algorithm 3.2) based on the elimination
idea in multi-armed bandits (Slivkins et al., 2019; Lattimore and Szepesvári, 2020) to update this active set.
In particular, we view each user as an arm in a multi-armed bandit, where the reward is 1 if the answer from
a certain user is correct and 0 if wrong. After an item is successfully inserted by IAI, we call Algorithm 3.3
(EliminateUser) to eliminate users with low accuracy levels before we proceed to the next item.

To estimate the accuracy levels of users, a vector sz ∈ RM , recording the counts of responses from each
user for item z, is maintained during the whole period of inserting item z. We further keep track of two
matrices Az, Bz ∈ RN×M . When a pair (z, j) (where z refers to the item currently being inserted and j to
an arbitrary item) is compared by user u ∈ RM in Algorithm 3.4, we increase A[j, u] by 1 if user u thinks
z is better than j and increase B[j, u] by 1 otherwise. We use w to record the total number of times that
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item z is deemed better by any users and use the average p̂ = w/t to provide an estimation of the average
accuracy |U|−1

∑
u∈U puij . The variables Az, Bz, and sz are global variables, shared by different subroutines

throughout the process. After an item z is successfully inserted, Az, Bz will be discarded and the space
allocated can be used for Az+1, Bz+1 (See Line 32 of Algorithm 3.2).

We use the 0/1 reward for each user to indicate whether the provided pairwise comparison is correct.
Nevertheless, this reward is not known immediately after each arm-pull since the correctness depends on the
ranking of items which is also unknown. But when IAI returns inserted, the item recently inserted has a
high probability to be in the right place. Our method takes advantage of this fact by constructing a fairly
accurate prediction of pairwise comparison for the item with all other already inserted items in the PIT.
Then an estimate of the reward nz can be obtained with the help of recorded responses Az and Bz, which
are updated in ATC as described in the preceding paragraph. At last, in Algorithm 3.3 a UCB-style condition
is imposed on estimated accuracy levels µ = nz/sz.

We borrow the definition of Preference Interval Tree (PIT) (Feige et al., 1994; Ren et al., 2019) based
on which we can insert items to a ranked list. Specifically, given a list of ranked items S the PIT can be
constructed using the following Algorithm 3.1.

Algorithm 3.1 Build PIT

Input parameters: S
Data structure: Node = {left,mind, right, lchild, rchild, parent}, left,mid, right holds index values,
lchild, rchild, parent points to any other Node.
Initialize: N = |S|
1: X = CreateEmptyNode returns an empty Node with above mentioned data structure
2: X.left = −1
3: X.right = |S|
4: X.mid = ⌊(X.left+X.right)/2⌋
5: queue = [X]
6: while queue.NotEmpty do
7: X = queue.PopFront
8: X.mid = ⌊(X.left+X.right)/2⌋
9: if X.right - X.left > 1 then

10: lnode = CreateEmptyNode

11: lnode.left = X.left
12: lnode.right = mid
13: X.lchild = lnode
14: rnode = CreateEmptyNode

15: queue.append(lnode)
16: rnode.left = X.mid
17: rnode.right = X.right
18: X.rchild = rnode
19: queue.append(rnode)
20: end if
21: end while
22: replace −1 with −∞, |S| with ∞ in each Node.left and Node.right.

For the completeness of our paper, we also present the subroutines Iterative-Attempting-Insertion
(IAI) and Attempting-Insertion (ATI) in this section, which are omitted in Section 3.4 due to space limit.
In particular, IAI is displayed in Algorithm 3.5 and ATI is displayed in Algorithm 3.6. Both algorithms are
proposed by Ren et al. (2019) for adaptive sampling in the single user setting.

3.4.1 A Two-stage Algorithm as Baseline

In this section, we present an alternative simple scheme, called two-stage ranking with a heterogeneous set
of users. This provides another baseline with which we can compare Ada-IIR. Additionally, it can be useful
in situations with a large number of users, i.e., M = Ω(

√
N), where Ada-IIR is less effective.
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Algorithm 3.2 Main Procedure: Adaptive Iterative-Insertion-Ranking (Ada-IIR)

Global Variables:
z ∈ N: the index of the item being inserted into the ranked list.
Az ∈ RN×M : Az[j, u] is the number of times that user u thinks item z is better than item j.
Bz ∈ RN×M : Bz[j, u] is the number of times that user u thinks item z is worse than item j.
sz ∈ RM : total number of responses by each user so far.
Input parameters: Items to rank S = [N ] and confidence δ
Initialize: n1 = s1 = 0

1: Ans← the list containing only S[1]
2: for z ← 2 to |S| do
3: nz = nz−1, sz = sz−1, Az = 0, Bz = 0
4: IAI(S[z], Ans, δ/(n− 1)) ▷Algorithm 3.5 (global variables Az, Bz, sz are updated here)
5: for j ∈ [z − 1] do
6: if S[z] > S[j] in PIT then
7: nz = nz +Az[j, ∗]
8: else
9: nz = nz +Bz[j, ∗]

10: end if
11: end for
12: Uz ← EliminateUser(Uz−1,nz, sz, δ/(n− 1)) ▷Algorithm 3.3
13: end for
14: return Ans;

Algorithm 3.3 Subroutine: EliminateUser

Input parameters: (U , n, s, δ).
1: Set S =

∑
u∈[M ] su, smin = minu∈U su, µu = nu/su, r =

√
log(2|U|/δ)/(2smin)

2: Set LCB = µ− r1 and UCB = µ+ r1.
3: if S ≥ 2M2 log(NM/δ) then
4: for u ∈ U do
5: Remove user u from U if ∃u′ ∈ U ,UCBu < LCBu′ .
6: end for
7: end if
8: return U
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Algorithm 3.4 Subroutine: Attempt-To-Compare (ATC) (z, j,U , ϵ, δ)
Input: items (z, j) to be compared, set of users U , confidence parameter ϵ, δ. M is the number of users
originally.

1: m = |U|, p̂ = 0, w = 0, ŷ = 1. Number of rounds r = 1. rmax = ⌈ 12ϵ
−2 log 2

δ ⌉.
2: while r ≤ rmax do
3: Choose u uniformly at random from U
4: Obtain comparison result from user u as yuij
5: Increment the counter of responses collected from this user sz[u]← sz[u] + 1
6: if yuij > 0 then
7: Az[j, u]← Az[j, u] + 1, w ← w + 1
8: else
9: Bz[j, u]← Bz[j, u] + 1

10: end if

11: p̂← w/r, r ← r + 1, cr ←
√

1
2t log(

π2r2

3δ )

12: if |p̂− 1
2 | ≥ cr then

13: break
14: end if
15: end while
16: if p̂ ≤ 1

2 then
17: ŷ = 0
18: end if
19: return: ŷ

Algorithm 3.5 Subroutine: Iterative Attempt To Insert(IAI)

Input parameters: (i, S, δ)
Initialize: For all τ ∈ Z+, set ϵτ = 2−(τ+1) and δτ = 6δ

π2τ2 ; t ← 0; Flag ← un-
sure;

1: repeat
2: t← t+ 1;
3: Flag ←ATI(i, S, ϵτ , δτ );
4: until Flag = inserted
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Algorithm 3.6 Subroutine: Attempt To Insert(ATI).

Input parameters: (i, S, ϵ, δ)
Initialize: Let z be a PIT constructed from S, h← ⌈1 + log2(1 + |S|)⌉, the depth of z
For all leaf nodes u of z, initialize cu ← 0; Set tmax ← ⌈max{4h, 512

25 log 2
δ }⌉ and q ←

15
16

1: X ← the root node of z;
2: for t← 1 to tmax do
3: if X is the root node then
4: if ATC(i,X.mid, ϵ, 1− q) = i then
5: X ← X.rchild
6: else
7: X ← X.lchild
8: end if
9: else if X is a leaf node then

10: if ATC(i,X.left, ϵ, 1−√q) = i ∧ ATC(i,X.right, ϵ, 1−√q) = X.right then
11: cX ← cX + 1

12: if cX > bt := 1
2 t+

√
t
2 log

π2t2

3δ + 1 then

13: Insert i into the corresponding interval of X and
14: return inserted
15: end if
16: else if cX > 0 then
17: cX ← cX − 1
18: else
19: X ← X.parent
20: end if
21: else
22: if ATC(i,X.left, ϵ, 1− 3

√
q) = X.left ∨ ATC(i,X.right, ϵ, 1− 3

√
q) = i then

23: X ← X.parent
24: else if ATC(i,X.mid, ϵ, 1− 3

√
q) = i then

25: X ← X.rchild
26: else
27: X ← X.lchild
28: end if
29: end if
30: end for
31: if there is a leaf node u with cu ≥ 1 + 5

16 t
max then

32: Insert i into the corresponding interval of u and
33: return inserted
34: else
35: return unsure
36: end if
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Two-stage ranking first performs user-selection and then item-ranking. In the user-selection stage, we
search for an α-optimal user for some small α. Specifically, we first take an arbitrary pair of items (i, j)
and then run the Iterative-Insertion-Ranking (IIR) algorithm (see Theorem 3.3.3) on them to determine the
order, e.g., i ≻ j, with high probability. Note that at this point, users have not been distinguished yet.
So we take each query from a randomly chosen user. As discussed in Section 3.3.2, this is equivalent to
querying the user ū whose accuracy is ∆̄0. Given i ≻ j, the problem of finding an α-optimal user is reduced
to pure exploration of an α-optimal arm in the context of multi-armed bandit: making queries about the
pre-determined item pair from user u is the same as generating outcomes from an arm with Bernoulli( 12+∆u)
reward, e.g., if user u returns the answer i ≻ j then we get reward 1, otherwise we get reward 0. Hence,
an α-optimal user is equivalent of an α-optimal arm. For determining an α-optimal arm, we can adopt the
Median-Elimination (ME) algorithm from Even-Dar et al. (2002). After ME returns an α-optimal user uα,
we discard all other users and rank items by only querying uα. Ranking with a single user can again be done
by the IIR algorithm. In summary, two-stage ranking is composed of three procedures: IIR for determining
the order of i and j, ME for obtaining an α-optimal user, and IIR again for producing the final ranking. A
more formal statement of two-stage ranking is presented in Wu et al. (2022).

3.5 Theoretical Analysis

3.5.1 Sample Complexity of the Proposed Algorithm

First, we define the function F (x) as follows:

F (x) = x−2(log log x−1 + log(N/δ)). (3.5.1)

Define ∆̄z to be the average accuracy of all users in the current active set.

∆̄z =
1

Uz

∑
u∈Uz

∆u (3.5.2)

We then present an upper bound on the sample complexity of Ada-IIR (Algorithm 3.2). Although F (x)
depends on N and δ−1, the dependence is only logarithmic, and it does not affect the validity of reasoning
via big-O notations.

Theorem 3.5.1. For any δ > 0, with probability at least 1−δ, Algorithm 3.2 returns the exact ranking of the
N items, and it makes at most CAlg(N) queries, where CAlg(N) = O(

∑N
z=2 ∆̄

−2
z (log log ∆̄−1

z + log(N/δ))) =

O(
∑N

z=2 F (∆̄z)).

Proof of Theorem 3.5.1. The analysis on the sample complexity follows a similar route as Ren et al. (2019)
due to the similarity in algorithm design. In fact, since we randomly choose a user from Ut and query
it for a feedback, it is equivalent to querying a single user with the averaged accuracy 1

2 + ∆̄z, where
∆̄z := 1

|Uz|
∑

u∈Uz
∆u. This means most of the theoretical results from Ren et al. (2019) can also apply to

our algorithm. The following lemmas characterize the performance of each subroutine:

Lemma 3.5.2 (Lemma 9 in Ren et al. (2019)). For any input pair (i, j) and a set of users U , Algorithm 3.4
terminates in ⌈rmax⌉ = ⌈ϵ−2 log(2/δ)⌉ queries. If ϵ ≤ ∆̄, then the returned ŷ indicates the preferable item
with probability at least 1− δ.

Lemma 3.5.3 (Lemma 10 in Ren et al. (2019)). Algorithm 3.6 returns after O(ϵ2 log(|S|/δ) queries and,
with probability 1 − δ, correctly insert or return unsure. Additionally, if ϵ ≤ ∆̄, Algorithm 3.6 will insert
correctly with probability 1− δ.

Lemma 3.5.4 (Lemma 11 in Ren et al. (2019)). With probability 1− δ, Algorithm 3.5 correctly insert the
item and makes O(∆̄−2(log log ∆̄−1 + log(N/δ))) queries at most.

When inserting the z-th item, we makes at most ∆̄−2
z (log log ∆̄−1

z +log(N/δ)) queries, for z = 2, 3, . . . , N .

52



The number of total queries can be obtained by summing up the term above, which is

CAlg(N) = O

( N∑
z=2

∆̄−2
z (log log ∆̄−1

z + log(N/δ))

)
.

3.5.2 Sample Complexity Gap Analysis

While Theorem 3.5.1 characterizes the sample complexity of Algorithm 3.2 explicitly, the result is not directly
comparable with the sample complexity of the oracle algorithm that only queries the best user Cu∗(N) or
the complexity of the naive random-query algorithm Cave(N). Based on Theorem 3.5.1, we can derive the
following more elaborate sample complexity for Algorithm 3.2.

Theorem 3.5.5. Suppose there are N items and M users initially. Denote Sz =
∑

u∈[M ](sz)u to be the

number of all queries made before inserting item z (Line 4 in Algorithm 3.2). The proposed algorithm has
the following sample complexity upper bound:

CAlg(N,M) = Θ(NF (∆u∗)) +O

(
N∑

z=2

1
{
Sz < 2M2 log(NM/δ)

}(
F (∆̄0)− F (∆u∗)

))

+O

(
L(U0)

√
log(2MN/δ)

N∑
z=2

1{Sz ≥ 2M2 log(NM/δ)}
√

M

Sz

)
, (3.5.3)

where L(U0) = F (c∆3
u∗ )−F (∆u∗ )

∆u∗−c∆3
u∗

is an instance-dependent factor, with only logarithmic dependence on N and

δ−1(through F ), and where c = 1/25 is a global constant.

The first lemma we will introduce is about the confidence interval:

Lemma 3.5.6. With probability 1− δ, it holds for any z ∈ [N ]\{1} and u ∈ Uz,

1

2
+ ∆u ∈

[
(LCBz)u, (UCBz)u

]
.

This also indicates that when inserting the z-th item, for any u ∈ Uz,

∆u∗ −∆u ≤ 4rz.

Proof of Theorem 3.5.6. Recall that (µz)u is the empirical mean of the Bernoulli variable with parameter
1
2 +∆u. For a given z and u, by Hoeffding’s inequality we have

P
(∣∣∣(µz)u −

(1
2
+ ∆u

)∣∣∣ > rz

)
≤ 2e−2(sz)ur

2
u ≤ 2e−2(sz)minr

2
u ≤ δ

|Uz|N
,

and applying union bound over z = 2, 3, . . . , N and u ∈ Uz gives the claim.
Under this event, we have

∆u∗ −∆u =

(
1

2
+ ∆u∗

)
−
(
1

2
+ ∆u

)
≤ (UCBz)u∗ − (LCBz)u

≤ (UCBz)u∗ − (LCBz)u∗ + (UCBz)u − (LCBz)u

= 4rz,

where the first inequality is clearly from the confidence interval, and the second inequality holds because the
two confidence intervals should intersect.
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Next, we will introduce another lemma concerning the growth of (sz)u for each u ∈ Uz.

Lemma 3.5.7. Denote Sz as all queries made till inserting the z-th item and M = |U0|. Suppose Sz ≥
2M2 log(NM/δ). With probability 1− δ, we have for any z ∈ {2, 3, . . . , N},

(sz)min ≥
Sz

2M
.

Proof of Theorem 3.5.7. For fixed z and u ∈ Uz, by Hoeffding’s inequality we have

P
(
(sz)u
Sz
− 1

M
< − 1

2M

)
≤ P

(
(sz)u
Sz
− E

[
(sz)u
Sz

]
< − 1

2M

)
≤ exp

(
− Sz

2M2

)
≤ δ

NM
.

Applying union bound we know that with probability 1− δ,

(sz)u ≥
Sz

2M
,∀z ∈ {2, 3, . . . , N},∀u ∈ Uz.

Since (sz)min := minu∈Uz
(sz)u, we have

(sz)min ≥
Sz

2M
,∀z ∈ {2, 3, . . . , N}.

With the two lemmas above, we can control the accuracy gap as follows:

Lemma 3.5.8. Denote ∆̄z = 1
|Uz|

∑
u∈Uz

∆u. Suppose Sz ≥ 2|M |2 log(NM/δ). With probability 1− 2δ, we

have for any t ∈ [N ],

∆u∗ − ∆̄z ≤ polylog(N,M, δ−1) ·
√

M

Sz
.

Proof of Theorem 3.5.8. The proof has two steps:
From Theorem 3.5.7 we know that with probability 1− δ,

(sz)min ≥
Sz

2M
,∀t ∈ [N ],∀u ∈ Uz.

From Theorem 3.5.6, we know with probability 1− δ(recall that (rz)u =
√

log(2|Uz|N/δ)
2(sz)min

),

∆u∗ −∆u ≤ 4rz

≤ 4

√
M log(2MN/δ)

Sz

= 4
√
log(2MN/δ) ·

√
M

Sz
.

Define function F (x) = x−2(log log(x−1)+log(N/δ)) with x ∈ (0, 1/2]. We care about the following term
GAP which characterize the query complexity gap between our algorithm and the optimal user.

GAP(N,M, δ) =

N∑
z=2

F (∆̄z)− F (∆u∗).

The following lemma provide a way to linear bound the gap between function values:
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Lemma 3.5.9. F (x) = x−2(log log(x−1) + log(N/δ)) with x ∈ (0, 1/2] is a convex function over (0, 1/2],
and for any ∆ ∈ [a, b], we have

F (∆)− F (b) ≤ F (a)− F (b)

b− a
· (b−∆) = L(a, b) · (b−∆).

Furthermore, under the event of Theorem 3.5.8, for any z ∈ [N ] such that Sz > 2M2 log(NM/δ), we
have ∆̄z ∈ [c∆3

u∗ ,∆u∗ ] and therefore

F (∆̄z)− F (∆u∗) ≤ F (c∆3
u∗)− F (∆u∗)

∆u∗ − c∆3
u∗

· (∆u∗ − ∆̄z) = L(U0) · (∆u∗ − ∆̄z).

Here we use L(U0) = F (c∆3
u∗ )−F (∆u∗ )

∆u∗−c∆3
u∗

is indeed a instance-dependent factor, with only logarithmic dependent

in N and δ−1(in F ). c is a global constant and in fact c = 1/25.

Proof. Differentiate F (x) twice and it can be verified that F ′′(x) > 0. For any ∆ ∈ [a, b], the inequality
above is easy to prove via convexity.

The rest is to prove that ∀t ∈ [N ], we have ∆̄z ∈ [∆u∗/M,∆u∗ ]. It is clear that the upper bound holds
because ∆u∗ := maxu∈U0

∆u.
The lower bound is proved as follows: We still have ∆̄z > ∆u∗/M because at any time u∗ always remains

in the user set and by the assumption ∆u > 0.
Also, since Sz > 2M2 log(NM/δ), by Theorem 3.5.8, we have

∆u∗ − ∆̄z ≤ 4

√
M log(2MN/δ)

Sz

≤ 4

√
M log(2MN/δ)

2M2 log(NM/δ)

≤ 4√
M

.

Now we will prove that

max

{
∆u∗

M
,∆u∗ − 4√

M

}
≥ c∆3

u∗ .

Suppose ∆u∗
M < c∆3

u∗ , then we have M > c−1∆−2
u∗ , this means

∆u∗ − 4√
M
≥ ∆u∗ − 4

√
c∆u∗ ≥ c∆3

u∗ .

The last inequality is due to ∆u∗ ≤ 1/2 and c = 1/25.

Now we are ready to prove the main result:

Proof of Theorem 3.5.5. Based on our algorithmic design, we will not eliminate any user until the cumulative
number of queries Sz reach the threshold Sz ≥ 2M2 log(NM/δ). We have

GAP(N,M, δ) =

N∑
z=2

F (∆̄z)− F (∆u∗)

=

N∑
z=2

1{Sz < 2M2 log(NM/δ)}
(
F (∆̄z)− F (∆u∗)

)
︸ ︷︷ ︸

I1

+

N∑
z=2

1{Sz ≥ 2M2 log(NM/δ)}
(
F (∆̄z)− F (∆u∗)

)
︸ ︷︷ ︸

I2

.
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For I1, no elimination is performed, so Uz = U0, and we have

I1 =

N∑
z=2

1{Sz < 2M2 log(NM/δ)}
(
F (∆̄0)− F (∆u∗)

)
.

For each term in I2, we have F (∆̄z)−F (∆u∗) ≤ L(U0) ·4
√

log(2MN/δ) ·
√

M
Sz

due to Theorem 3.5.9 and

Theorem 3.5.8. Therefore,

I2 ≤ L(U0)4
√
log(2MN/δ)

N∑
z=2

1{Sz ≥ 2M2 log(NM/δ)}
√

M

Sz
.

3.5.3 Discussion on the Sample Complexity Gap and the Optimality of the
Proposed Algorithm

A few discussions are necessary to show the meaning of the result in previous section. First, if the number of
users M ≫ N , then no user is eliminated because each user will be queried so few times that no meaningful
inference can be made. Since the goal is to achieve the accuracy of the best user, more inaccurate users only
make the task more difficult. Therefore, it is necessary to impose assumptions on M with respect to N .

This intuition can be made more precise. Suppose we loosely bound St as St ≥ t log(t/δ), which is reason-
able since for a very accurate user the algorithm will spend roughly no more than O(log(t/δ)) comparisons
to insert one item. This means the complexity can be bounded as (ignoring log factors)

CAlg(N,M) = O
(
NF (∆u∗)

)
+ Õ

(
M2
(
F (∆̄0)− F (∆u∗)

))
+ Õ

(
L(U0)

(√
M(
√
N −M)

))
. (3.5.4)

If M = Ω(
√
N), then this is not ideal because our algorithm won’t eliminate any user until Ω(N) items are

inserted with accuracy ∆̄0, which already leads to a gap linear in N compared with the best complexity Cu∗ .
In this case, our algorithm roughly makes the same amount of queries as Cave.

In order to avoid the bad case, it is necessary to assume M = o(
√
N) so that the last two terms become

negligible (notice that L(U0) is an instance-dependent constant). Now we restate Theorem 3.5.5 with the
additional assumption, and compare it with the baselines.

Proposition 3.5.10. Suppose we have M users and N items to rank exactly, with M = o(
√
N). We have

the following complexity along with (3.3.2) and (3.3.3):

Cu∗(N,M) = Θ(NF (∆u∗)),

Cave(N,M) = Θ(NF (∆̄0)),

CAlg(N,M) = Θ(NF (∆u∗)) + o(N
(
F (∆̄0)− F (∆u∗)

)
) + o

(
N
)
.

The last two terms of CAlg(N,M) are negligible when compared with the first term. Therefore, our algorithm
can perform comparably efficiently as if the best user were known while enjoying an advantage over the naive
algorithm with sample complexity Cave(N,M).

Proof of Theorem 3.5.10. Suppose M = o(N1/2), since Sz ≥ z log(z/δ) ≥ z(at least one comparison for an
item), from (3.5.3) we have

N∑
z=2

1
{
Sz < 2M2 log(NM/δ)

}
≤

N∑
z=2

1
{
z < 2M2 log(NM/δ)

}
= o(N).
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The third term can be bounded with the fact 1
{
z < 2M2 log(NM/δ)

}
≤ 1,

L(U0)
√
log(2MN/δ)

N∑
z=2

1{Sz ≥ 2M2 log(NM/δ)}
√

M

Sz

≤ L(U0)
√
log(2MN/δ)

N∑
z=2

√
M

Sz

≤ L(U0)
√

log(2MN/δ)

N∑
z=2

√
M

z

≤ 2L(U0)
√
log(2MN/δ)

√
MN

= O(L(U0)
√
log(MN/δ)

√
MN).

L(U0) is actually dominated by the minimal mean accuracy minz ∆̄z throughout the algorithm. In
practice, L(U0) is usually a constant, related to all users’ accuracy. In the worst theoretical case, L(U0) will
be dominated by F (∆u∗/M) = Õ(M2), which further turns the last term into Õ(M5/2N1/2), and requires
M = o(N1/5) so that this term becomes negligible.

Remark 3.5.11. Note that if we set U0 = {u∗} for our algorithm, it will achieve exactly the same complexity
as (3.3.2) indicates. Similarly, if we construct a new user ū where ∆ū = ∆̄0 and set U0 = {ū}, our algorithm
will recover exactly (3.3.3). By this argument and the fact that Big-O notations hide no M , the first term in
each equation actually has the same absolute constant factor. Therefore, our algorithm is indeed comparable
with the best user.

Remark 3.5.12. Notice that F (x) → +∞ when x → 0. This means Cave is very sensitive to the initial
average accuracy margin ∆̄0. In the case where there is only one best user u∗ and all other users have a
near-zero margin ∆u → 0, Cave can be very large compared with Cu∗ .

Remark 3.5.13. In the experiments, we notice that even with N = 10 and M = 9, after inserting the first
item, each user has already been queried for enough times so that S2 ≥ 2M2 log(NM/δ), which makes the
second term in (3.5.3) vanish.

3.6 Experiments

In this section, we study the empirical performance of the following algorithms on both synthetic and real-
world datasets:

• IIR (Ren et al., 2019): The original single-user algorithm adapted to the multi-user case by querying
a user selected uniformly at random.

• Ada-IIR: The proposed method.

• Two-stage ranking: A simple method described in Section 3.4.1.

• Oracle: Query only the best user as if it is known.

Confidence parameter δ = 0.25, α = 0.05 is set if required by algorithm.

3.6.1 Synthetic Experiment

In our experiment, we use a similar setup as that of Section 2.5, except that every pair has same disatnace.
In particular, we consider a set of users [M ], whose accuracies are set by pu(i, j) = (1+ exp(γu(sj − si)))

−1,
for u ∈ [M ] and items i, j ∈ [N ], where parameter γu determines the user accuracy and si, sj are the utility
scores of the corresponding items in the BTL model. Larger values of γu lead to more accurate users. We
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(a) γA = 0.5, γB = 2.5
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(b) γA = 0.5, γB = 1.0
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Figure 3.1: Sample complexities v.s. number of items for all algorithms. (a) (b) and (c) are different
heterogeneous user settings where the accuracy of two group of users differs.

set si − sj = 3 if i ≺ j and si − sj = −3 otherwise. Note that here we assume that the accuracy of user
u is the same for all pair of items (i, j) as long as i ≺ j. We assume that there are two distinct groups of
users: the high-accuracy group in which the users have the same accuracy γu = γB ∈ {0.5, 1.0, 2.5} in three
different settings; and the low-accuracy group in which the users have the same accuracy γu = γA = 0.5 in
all settings. This set of γu, si, sj is chosen so that pu(i, j) for accurate users ranges from 0.55 to 0.99 and
inaccurate users have a value close to 0.55.

The number of items to be ranked ranges from 10 to 100. Each setting is repeated 100 times with
randomly generated data. To showcase the effectiveness of active user selection, we tested a relatively
adverse situation where only 12 out of M = 36 users are highly accurate.

The average sample complexity and standard deviation over 100 runs are plotted in Fig. 3.1. Note that the
standard deviation is hard to see, given that it is small compared to the average. In most cases, the proposed
method achieves nearly identical performance to the oracle algorithm, with only a small overhead. For two-
stage ranking, we observe a constant overhead regardless the accuracy of the users. It may outperform
the non-adaptive one (IIR) if there exist enough highly accurate users such as in Fig. 3.1a. However, the
situation is less favorable for the two-stage algorithm when the cost of finding the best user overwhelms the
savings of queries due to increased accuracy as shown in Fig. 3.1b. It may even have an adverse effect when
accuracies are similar, as shown in Fig. 3.1c.

When we increase the total number of users and keep their accuracy the same, as shown in Fig. 3.2,
the Ada-IIR algorithm is able to tackle the increasing difficulty in finding more accurate users within a
larger pool. Although, the overhead increases, our proposed method can adapt to each case and deliver near
optimal performance.

In our experiments every algorithm is able to recover the exact rank with respect to the ground truth,
which is reasonable since the IIR algorithm is designed to output an exact ranking. And due to the union
bounds used to guarantee a high probability correct output, the algorithms tend to request more than enough
queries so we did not see a case in which a non-exact ranking was produced.

3.6.2 Real-world Experiment

The above synthetic experiments serve as a proof of concept. We add one more experiment based on the
real data, the setting is from the “Country Population” dataset from Jin et al. (2020). In this dataset the
population of 15 countries were ranked by workers. Since the ground-truth ∆u is not available, we first
used the method described in the same work to infer the user accuracy and item parameters. During the
simulation, the responses are generated according to their model with these parameters. As we have discussed
in sample complexity analysis, the number of users should fall in a reasonable range. Thus, we randomly
sub-sample a set of 25 users since the set of users provided by the dataset is excessive. The results, shown
in Table 3.1, suggest that the Ada-IIR provides a moderate improvement over the non-adaptive algorithm.
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(a) M = 18

20 40 60 80 100
Number of items to rank

0

100000

200000

300000

400000

500000

600000

700000

800000

Sa
m

pl
e 

Co
m

pl
ex

ity

A = 0.5, B = 2.5
IIR
Ada-IIR
Two-stage
Oracle

(b) M = 36
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(c) M = 72

Figure 3.2: Sample complexities v.s. number of items for all algorithms. (a) (b) and (c) are different settings
where the number of users differs. The accuracy of two groups of users are γA = 0.5, γB = 2.5.

METHOD SAMPLE COMPLEXITY
IIR 59223 ± 3183

Two-stage 85027 ± 2619
Ada-IIR 52693 ± 2739
Oracle 43855 ± 2365

Table 3.1: Experiments on Country Population with 15 items and 25 users.
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Part II

Efficient Ranking under Weak
Stochastic Transitivity Assumption
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Chapter 4

Active Ranking under Weak
Stochastic Transitivity

4.1 Introduction

To guarantee that the ranking is consistent with the preference probabilities, stochastic is often assumed,
a formal discussion around SST and WST has been done in Section 1.4. However, SST can be too strong
for scenarios where preference probabilities are not based on comparing a single quantifiable attribute. For
instance, in sports, match outcomes are usually affected by team tactics. Team k may play a tactic that
counters team i, resulting in a higher winning rate against team i compared with team j. Furthermore, items
usually have multidimensional features and people may compare different pairs based on different features.
A close pair in the overall ranking is thus not necessarily harder to compare than a pair that has a large
gap. For example, when comparing cars, people might compare a given pair based on their interior design
and another pair based on performance. As another example, in an experiment with games of chance with
different probabilities of winning and payoffs (Tversky, 1969), it was observed that “people chose between
adjacent gambles according to the payoff and between the more extreme gambles according to probability,
or expected value.” Motivated by such applications, in this chapter, we are interested in the problem of
recovering the full ranking of n items under a more general setting, where only WST holds, while SST is not
assumed to hold.

Existing algorithms (Mohajer et al., 2017; Ren et al., 2019) cannot avoid comparing every item i with
the item i∗ that is the most similar to i, i.e.,

∣∣pi,i∗ − 1
2

∣∣ = minj ̸=i{
∣∣pi,j − 1

2

∣∣}. Further, (Ren et al., 2019)
pointed out that comparing item pairs that are adjacent in the true ranking are necessary. When SST holds,
adjacent pairs are also the most difficult pairs to distinguish, existing methods thus achieve sample-efficiency.
For example, the Iterative-Insertion-Ranking (IIR) algorithm proposed in (Ren et al., 2019) maintains a
preference tree and performs ranking by inserting items one after another. During the insertion process,
every item is possible to be compared with every other items (and thus the most similar one), depending on
the relative order of insertion and the true ranking. IIR was shown to be sample complexity optimal under
SST and some other conditions.

However, when SST does not hold, comparing nonadjacent items harms the performance. Consider an
extreme scenario where the true ranking is 1 ≻ 2 ≻ 3 and p1,2 = p2,3 = 0.8, p1,3 = 1

2 + 2−10. If item 1
is directly compared to item 3, then it takes Θ

(
220
)
comparisons1. For instance, in IIR, this can happen

during the insertion process of item 3 when item 1 happens to be the root of the preference tree. On the
other hand, a simple fix exists as we can let the three pairs to be compared simultaneously. The comparisons
between items 1 and 2, items 2 and 3 will terminate much earlier and provide us with the information 1 ≻ 2,
2 ≻ 3, which is enough to recover the total ranking. Therefore, it is important to devise an algorithm whose
sample complexity will not be harmed when SST fails to hold.

We propose an active ranking algorithm, named Probe-Rank , that ranks n items based on pairwise

1In fact, according to (Farrell, 1964), we need Θ
(
(pi,j − 1/2)−2

)
comparisons to be confident enough about the order

between any two items i and j , i, j ∈ [n].
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comparisons. A comparison of related algorithms are presented in Table 4.1.

Table 4.1: δ-correct algorithms for exact ranking with sample complexity guarantee under WST assumption.

Algorithm Sample complexity

Single Elimination
Tournament (Mohajer et al., 2017)

O

(
n(logn)2 log(1/δ)

min1≤i<j≤n ∆2
i,j

)
Iterative-Insertion-Ranking (IIR) (Ren et al., 2019) O

(
n∑

i=1

1
∆2

i

(
log log 1

∆i
+ log n

δ

))
Probe-Rank (this work) O

(
n

n∑
i=1

1

(∆̃i)2

(
log log 1

∆̃i
+ log n

δ

))

4.2 Problem Setup

Without loss of generality, let [n] = {1, 2, . . . , n} denote the set of n items. We write p ∼ Uni(a, b) to denote
that p is sampled uniformly at random from the interval (a, b), and use Ber(p) to denote a Bernoulli random
variable which equals 1 with probability p. We assume that there exists a total ordering ‘≻’ over [n] such
that σ1 ≻ σ2 ≻ · · · ≻ σn for some permutation σ of [n]. The permutation σ is referred to as the true ranking.
Two items are called adjacent if they are adjacent in σ, i.e., one ranks right next to the other. To ensure
that the true ranking σ is consistent with comparisons, we also assume that i has a higher rank than j if
and only if pi,j > 1

2 . In other words, if an item i is more preferred than j in σ, then i has a better chance
to win the comparison with j. This assumption is known as Weak Stochastic Transitivity (WST).

Intuitively, the closer pi,j is to 1
2 , the more difficult it becomes to obtain the ordering between i and j.

Therefore, the probability gap ∆i,j , defined as ∆i,j =
∣∣pi,j − 1

2

∣∣, provides a characterization of the ranking
task difficulty and will be used as a parameter for measuring sample complexities of algorithms. For instance,

(Ren et al., 2019, lemma 12) shows that for any δ-correct algorithm A, lim sup∆→0
TA[∆]

∆−2(log log∆−1+log δ−1) > 0,

where TA[∆] is the expected number of samples taken by A on two items with probability gap ∆. Further,
for each item i, we define ∆i = minj:j ̸=i ∆i,j , the minimum probability gap between item i and any other
item j, and

∆̃i = min
j:j and i are adjacent in σ

∆i,j , (4.2.1)

the minimum probability gap between i and its adjacent items in the true ranking. Note that ∆i ≤ ∆̃i by
definition and the equality holds when SST is satisfied.

4.3 Proposed Algorithm

In this section, we propose a δ-correct algorithm for exact ranking of all problem instances that satisfy the
WST condition. Our algorithm is designed to outperform existing methods in situations where nonadjacent
items can be more difficult to compare than adjacent items.

To avoid spending unnecessary samples on item pairs with small probability gaps, we propose a subroutine
named Successive-Comparison (SC) (see Algorithm 4.1). SC uses a parameter τ for controlling to what
extent the comparison should last. Specifically, SC compares a given item pair for a fixed number bτ =⌈
(2/ϵ2τ ) log(1/δτ )

⌉
times with an accuracy level ϵτ = 2−τ and confidence level δτ = 6δ/(τ2π2). If the empirical

probability that i (respectively, j) wins is over 1/2 by more than ϵτ/2, then SC returns i (respectively, j) as
the more preferred item. Otherwise, SC will return ‘unsure’ to inform us that more samples are needed.

For two items i and j, SC (i, j, δ, τ) will be called successively with τ increasing by 1 at a time. Later,
we will show that after τ gets large enough such that ϵτ ≤ ∆i,j , the correct ordering between i and j will be
returned with high probability.
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Subroutine 4.1 Successive-Comparison(i, j, δ, τ) (SC)

Require: items i, j, confidence level δ, probing parameter τ

1: wi = 0, ϵτ = 2−τ , δτ = δ
cτ2 , c =

π2

6 , bτ =
⌈

2
ϵ2τ

log 1
δτ

⌉
2: for t = 1 to bτ do
3: compare i and j once; if i wins, wi = wi + 1
4: end for
5: p̂i = wi/bτ
6: if p̂i − 1

2 > 1
2ϵτ then

7: return [i, j]
8: else if p̂i − 1

2 < − 1
2ϵτ then

9: return [j, i]
10: else
11: return ‘unsure’
12: end if

Partial order preserving graph During the ranking process, we maintain a directed graph T to store the
partial orders we have obtained from SC instances so far. The graph T is initialized with n nodes V1, . . . , Vn

and no edge exists between any two nodes. Nodes V1, V2, . . . , Vn represent items 1, 2, . . . , n, respectively.
In our algorithm, T is involved with three types of operations, edge update, node removal and maximal set
selection. Every time an instance of SC returns a pairwise order, e.g., i ≻ j, we add a directed edge from Vi

to Vj , written as T = T ∪(i ≻ j). Moreover, we also complete all edges in the transitive closure of the existing
edges. In other words, if the edge between Vi and Vj induces a directed path from Vk1

to Vk2
, then a directed

edge from Vk1
to Vk2

is also added to T . By completing the transitive closure, we can avoid comparing pairs
whose ordering can be inferred from current knowledge and keep T acyclic. In the ranking process, we only
run comparisons on item pairs that are not connected by edges and hence no contradictions in orderings will
be returned by SC. By removing node Vi, we remove Vi and all edges of Vi from T . The maximal elements
of T are the nodes which do not have any incoming edges. Since edges represent comparison results returned
by SC, maximal elements correspond to items that have not lost to any other items. Note that since T is
acyclic, maximal elements always exist.

Next, we establish our ranking algorithm Probe-Rank (see Algorithm 4.2). Probe-Rank finds the true
ranking by performing maxing for n− 1 rounds. In every round t, subroutine Probe-Max returns an item in
St as the most preferred item (the maximum), where St denotes the set of remaining unranked items right
before round t. The strategy of Probe-Max is to repeatedly apply SC on all item pairs. For every item pair
(i, j), we initialize a global variable τi,j as the probing parameter for SC instances that run over i, j. The
graph T storing obtained partial orders is also viewed as a global variable. Parameters τi,j and graph T will
be accessed and altered in Probe-Max.

Algorithm 4.2 Probe-Rank

Require: items [n], confidence level δ
1: S1 = [n], Ans = [0]n, initialize T , τi,j = 1 for all pairs of items i ̸= j
2: for t = 1 to n− 1 do
3: imax = Probe-Max(St, 2δ/n

2)
4: remove imax from T ; Ans[t− 1] = imax; St+1 = St \ {imax}
5: end for
6: Ans[n− 1] = Sn[0]
7: return Ans

In Probe-Max(S, δ) (see Algorithm 4.3), SC instances are performed only on items that are possible to
be the actual maximum. Let U be the set of maximal elements in T . By definition, every item in U has not
lost to any other item in S yet. Assuming all previous comparison results (obtained form SC) are correct,
to find the actual maximum, it suffices to focus on items in U . We use S2 to denote the set of all unordered
item pairs in S, i.e., S2 = {(a, b) : a, b ∈ S, a ̸= b}. All ‘legitimate’ pairs that can potentially provide us with
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information about the maximum item in S are thus

P = {(i, j) : (i ∈ U or j ∈ U) , (i, j) ∈ S2, (i, j) /∈ T}, (4.3.1)

where (i, j) /∈ T means that nodes Vi and Vj are not connected in T . While U contains more than one items,
Probe-Max keeps applying SC on item pairs in P . If an item in U loses a comparison, then we remove it
from U . In every iteration of the while loop, the pairs (i∗, j∗) in P with the smallest τ value are chosen and
SC (i∗, j∗, δ, τi∗,j∗) are performed. Note that the τ value increases by one after each call of SC. Starting with
item pairs with small τ values guarantees that we do not miss any useful information that can be obtained
by paying only a small amount of comparisons.

Subroutine 4.3 Probe-Max(S, δ)

Require: set of unranked items S, SC confidence level δ
1: Let U be the set of maximal elements according to T
2: while |U | > 1 do
3: Let P = {(i, j) : (i ∈ U or j ∈ U) , (i, j) ∈ S2, (i, j) /∈ T}
4: for (a, b) in argmin(x,y)∈P τx,y do
5: Ans = SC (a, b, δ, τa,b); τa,b = τa,b + 1
6: if Ans is not ‘unsure’ then
7: (w, l) = Ans {w is winner, l is loser}
8: T = T ∪ (w ≻ l)
9: if |U | > 1 and l ∈ U then

10: U = U \ {l}
11: end if
12: end if
13: end for
14: end while
15: return U [0]

We provide a simple example demonstrating the ranking process.

Example 4.3.1. Consider items {1, 2, 3, 4} with true ranking 1 ≻ 2 ≻ 3 ≻ 4. Fig. 4.1 shows the status of
T,U, St throughout the ranking process. In particular, we assume the pairwise comparison results are all
correct and returned in order 1 ≻ 2, 2 ≻ 4, 1 ≻ 3, 2 ≻ 3, 3 ≻ 4.
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move it. S2 = {2, 3, 4},
U = {2, 3}.
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(f) 2 ≻ 3 returned. U =
{2}.
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(g) 2 is the maximum, re-
move it. S3 = {3, 4}, U =
{3, 4}.
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(h) 3 ≻ 4 returned. U =
{3}.

Figure 4.1: An illustration of the steps by Probe-Ranking, assuming true ranking as 1 ≻ 2 ≻ 3 ≻ 4.

4.3.1 A Sample-efficient Variant of Probe-Rank

In this section, we present a variant of Probe-Rank, named Probe-Rank-SE . When demonstrating more
detailed experiments in Section 4.5.1, Probe-Rank-SE is also included and is shown to have better practical
performance. However, we will not prove its correctness due to the high similarity it shares with Probe-Rank.

Compared with Probe-Rank, the variant Probe-Rank-SE finds the ranking also by performing n−1 steps
of maxing and differs only in the subroutine for collecting comparison samples. Specifically, Probe-Rank-SE takes
queries from all unknown item pairs simultaneously. Comparison results for pairs that terminate earlier are
still collected and stored in the graph T , which represents our current knowledge about the ranking. We use
T to decide whether to pause, drop or resume comparisons of remaining item pairs.

We adopt the Successive Elimination (SE) algorithm from (Even-Dar et al., 2002), shown in Algorithm 4.4,
as a procedure to perform comparisons.

Subroutine 4.4 Successive Elimination (modified for comparing two items)

Require: items i, j, confidence level δ
1: t = 1
2: while true do
3: Compare i and j for 2t times; Let p̂ti be the winning rate of i

4: Let αt =
√

log(ct2/δ)
2t , c = π2

3

5: if p̂ti − 1
2 > αt then

6: return i ≻ j
7: else if p̂ti − 1

2 < −αt then
8: return j ≻ i
9: else

10: t = t+ 1
11: end if
12: end while

It was shown that with probability at least 1−δ, Algorithm 4.4 correctly returns the more preferred item
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between i and j using at most O
(

1
∆2

i,j

(
log 1

δ + log log 1
∆i,j

))
comparisons (Even-Dar et al., 2002, Remark 1).

In Probe-Rank-SE , we do not call SE directly, rather, SE is used as a black-boxed unit that repeatedly
collects query samples from the input pair i, j. Moreover, after every sample, it generates feedback which is
either Null, i ≻ j or j ≻ i, where Null corresponds to that the number of samples has not accumulated to 2t

or
∣∣p̂ti − 1

2

∣∣ < αt; feedback i ≻ j and j ≻ i correspond to that inside the black box, SE actually terminates
and returns the order between i and j. Note that the SE procedure can be replaced by any algorithm that
can rank two items, including all best-arm-identification algorithms.

Denote the instance of Successive Elimination that runs over items i, j with confidence level δ as SEi,j(δ).
When the value of δ is given without ambiguity, we will drop the dependence and write SEi,j as a shorthand.
We define two operations on SEi,j , named advance and feed. The advance operation returns one of the three
possible internal outcomes, Null, i ≻ j or j ≻ i. The feed operation is used for simulating the sampling
process. We write feed (SEi,j , Yi,j) to represent that SEi,j is fed with a comparison sample Yi,j . As a black-
boxed unit, before advance returns one of i ≻ j and j ≻ i, advance and feed operations are invoked in
an alternating fashion. The idea of viewing a sampling subroutine as a black-box controlled by artificial
operations was also used in (Ailon et al., 2014), but for a different problem setting.

Probe-Rank-SE is presented in Algorithm 4.5. We initialize
(
n
2

)
independent instances of SEi,j

(
2δ/n2

)
,

each for obtaining the order between an item pair (i, j), 1 ≤ i < j ≤ n. The probability of being unable to
recover the true ranking is thus upper bounded by probability that at least one of the SE instances fails,
which is at most δ. Same as Probe-Rank, we use T to denote the transitive closure composed of results
returned by the SE instances.

Algorithm 4.5 Probe-Rank-SE

Require: items [n], confidence level δ
1: S1 = [n], Ans = [0]n; initialize T
2: initialize SEi,j

(
2δ
n2

)
for all 1 ≤ i < j ≤ n

3: for t from 1 to n− 1 do
4: imax =Probe-Max-SE(St)
5: remove imax from T ; Ans[t− 1] = imax; St+1 = St \ {imax}
6: end for
7: Ans[n− 1] = Sn[0]
8: return Ans

The procedure Probe-Max-SE serves as a switch for the SE instances. Let S2
t denote the set of unordered

item pairs {(i, j) : i, j ∈ St, i ̸= j}. In each round t, all SE instances for ‘legitimate’ pairs in S2
t are turned

on and take queries in a round-robin fashion. ‘Legitimate’ pairs are similarly defined as in Probe-Rank. A
pair (i, j) is ‘legitimate’ if the order between i, j is unknown, i.e., not in T , and at least one of i and j is a
maximal element in St.
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Algorithm 4.6 Probe-Max-SE(St)

1: Let U be sets of maximal elements according to T
2: while |U | ≥ 1 do
3: C = [ ]
4: for (i, j) in S2

t do
5: if (i ∈ U or j ∈ U) and (i, j) /∈ T then
6: compare i with j once and get result Yi,j ; feed

(
SEi,j

(
δ
n2

)
, Yi,j

)
7: if advance

(
SEi,j

(
2δ
n2

))
== i ≻ j then

8: C.append([i, j])
9: else if advance

(
SEi,j

(
2δ
n2

))
== j ≻ i then

10: C.append([j, i])
11: end if
12: end if
13: end for
14: for w, l in C do
15: if (w, l) /∈ T then
16: T = T ∪ (w ≻ l)
17: if |U | > 1 and l ∈ U then
18: U = U \ {l}
19: end if
20: end if
21: end for
22: end while
23: return U [0]

4.4 Theoretical Analysis

4.4.1 Upper Bound on the Sample Complexity

Theorem 4.4.1. Let δ > 0 be an arbitrary constant. For all problem instances satisfying the Weak
Stochastic Transitivity (WST) property, with probability at least 1−δ, Probe-Rank returns the true ranking
of n items and conducts at most

O

(
n

n∑
i=1

(
∆̃−2

i

)(
log log

(
∆̃−1

i

)
+ log

(n
δ

)))
(4.4.1)

comparisons, where ∆̃i is defined as in (4.2.1).

We first show in the following lemma that the subroutine Successive-Comparison returns desired outcomes
with high probability. Given an item pair (i, j) with probability gap ∆i,j > 0 and a positive integer τ , we
say SC (i, j, δ, τ) is successful if one of the following two events holds,

E1 = {∆i,j ≥ ϵτ and SC correctly returns [i, j]}, (4.4.2)

E2 = {∆i,j < ϵτ and SC returns ‘unsure’ or [i, j]}. (4.4.3)

Lemma 4.4.2. For an item pair (i, j) with probability gap ∆i,j > 0 and a positive integer τ , SC (i, j, δ, τ)

is successful with probability at least 1− δ
cτ2 , where c = π2

6 .

Proof of Theorem 4.4.2. Hoeffding’s inequality gives that

Pr

(
p̂i − pi,j ≤ −

1

2
ϵτ

)
≤ exp

(
−2bτ

(
1

2
ϵτ

)2
)
≤ δ

cτ2
. (4.4.4)
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Therefore, the probability that SC outputs [j, i] is at most

Pr

(
p̂i −

1

2
< −1

2
ϵτ

)
≤ Pr

(
p̂i − pi,j ≤ −

1

2
ϵτ

)
≤ δ

cτ2
, (4.4.5)

and the probability that SC returns [i, j] or ‘unsure’ is at least 1− δ
cτ2 .

Further, if ∆i,j ≥ ϵτ , the probability that SC returns [i, j] is at least

Pr

(
p̂i −

1

2
>

1

2
ϵτ

)
= Pr

(
p̂i >

1

2
+

1

2
ϵτ

)
≥ Pr

(
p̂i > pi,j −

1

2
ϵτ

)
≥ 1− δ

cτ2
. (4.4.6)

This completes the proof.

By Theorem 4.4.2, with high probability, SC does not return the incorrect ordering. Further, if τ is large
enough, then SC is guaranteed to return the correct ordering. We use Theorem 4.4.2 to show the theoretical
performance of Probe-Rank.

Proof of Theorem 4.4.1. Define events

Ei,j(τ) = {SC
(
i, j, 2δ/n2, τ

)
is successful}. (4.4.7)

Define the bad event

Ebad = ∪(i,j)∈[n]2 ∪∞τ=1 (Ei,j(τ))
c
. (4.4.8)

By the union bound and Theorem 4.4.2

Pr
(
Ebad

)
≤

∑
(i,j)∈[n]2

∞∑
τ=1

2δ

cn2τ2
≤

∞∑
τ=1

δ

cτ2
≤ δ. (4.4.9)

In the following, we assume that Ebad does not happen.
Correctness. We show that when Ebad does not happen, in every round t, Probe-Max(St, 2δ/n

2)
(Line 125 of Algorithm 4.2) correctly returns the most preferred item in the set of remaining items St. Since
the probability of Ebad is upper bounded by δ, the correctness of Probe-Rank thus follows.

Let x be the most preferred item in St. When Ebad does not happen, all comparison results returned
by SC are correct and T is always consistent with the true ranking. Thus, no item in St is known to rank
higher than x, i.e., at the beginning of Algorithm 4.3, x ∈ U . Moreover, x will not be eliminated from U
since x will not lose to any other item in St during calls of SC.

We show that any other item in U will be eliminated from U after a finite number of iterations of the
while loop in Probe-Max. Let y ̸= x be an item in U . Since x is the maximum, y ≺ x in the true ranking.
Whenever ϵτy,x

≤ ∆x,y, a successful call of SC
(
x, y, 2δ/n2, τx,y

)
will return the result x ≻ y and remove y

from U if Ebad does not happen. Since ϵτy,x
converges to 0, there must exist τ∗x,y such that ϵτ∗

x,y
≤ ∆x,y. After

each execution of SC, the corresponding τ value increases by one, therefore after at most
(
n
2

)
τ∗x,y iterations of

the while loop, SC
(
x, y, 2δ/n2, τ∗x,y

)
must have been called. The same argument holds for any y ∈ U, y ̸= x.

Sample complexity. We first note the asymptotic behavior that for any N > 0,

N∑
τ=1

bτ ≤
N∑

τ=1

2

4−τ
log

cτ2n2

δ
≤

N∑
τ=1

2

4−τ
log

cN2n2

δ
= O

(
4N log

cN2δ2

δ

)
= O (bN ) . (4.4.10)

Without loss of generality, we assume the true ranking is 1 ≻ 2 ≻ · · · ≻ n. When Ebad does not happen,
all comparison results returned by SC coincide with the true ranking. Therefore, for every i ∈ [n− 1], item
i belongs to S1, S2, . . . , Si and gets eliminated during the execution of Probe-Max

(
Si, 2δ/n

2
)
.

Recall that SC is only called over item pairs in which at least one of them is a maximal element. For every
SC called on items a, b, if a is maximal, we say item a initializes the comparison and we charge the number of
comparisons taken by SC to item a (if both a and b are maximal, we charge the number of samples to both).
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Let c(a) denote the number of comparisons charged to a. The total sample complexity of Probe-Rank is
thus at most

∑
a∈[n] c(a).

Fix i ∈ [n]. We use τ◦i to denote the value of τi,i−1 when the order between i and i−1 is revealed. Define
τ◦1 = 0 for completeness. We note that the order between i and i − 1 can not be inferred from any other
comparison results therefore can only be returned by SC

(
i, i− 1, 2δ/n2, τ◦i

)
. When Ebad does not happen,

τ◦i ≤
⌈
log 1

∆i,i−1

⌉
since a successful call of SC

(
i, i− 1, 2δ/n2,

⌈
log 1

∆i,i−1

⌉)
will return the order.

For each j ̸= i, we use τ∗i,j to denote the value of τi,j when the last time SC is initialized by i and called

over i, j before the beginning of Probe-Max
(
Si, 2δ/n

2
)
. In other words, for any τ > τ∗i,j , if SC

(
i, j, 2δ/n2, τ

)
is called in Probe-Max

(
St, 2δ/n

2
)
for some t < i, then it must not be initialized by i. Moreover, we use τ ti,j

to denote the value of τi,j right after Probe-Max(St, 2δ/n
2) terminates. Since i is ranked and removed from

T after Probe-Max(Si, 2δ/n
2) is called, τ ii,j is also the value of τi,j when Probe-Rank terminates. It is clear

that

c(i) ≤
∑
j ̸=i

τ∗
i,j∑

τ=1

bτ +
∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

bτ . (4.4.11)

We consider the first term on the right-hand side of (4.4.11). Before Probe-Max
(
Si−1, 2δ/n

2
)
terminates,

item i− 1 is in T . Therefore, whenever i is a maximal element, the order between i and i− 1 must have not
been revealed. So when i initializes the comparison SC

(
i, j, 2δ/n2, τ∗i,j

)
, the item pair (i, i− 1) is also in the

set of ‘legitimate’ pairs P . Therefore, τ∗i,j is no larger than the value of τi,i−1 at that point, and further no
larger than τ◦i . The same argument holds for any j. It follows that

∑
j ̸=i

τ∗
i,j∑

τ=1

bτ ≤
∑
j ̸=i

τ∗
i,j∑

τ=1

bτ ≤
τ◦
i∑

τ=1

nbτ . (4.4.12)

Next, we bound the second term on the right-hand side of (4.4.11). Note that if there is no SC called

during Probe-Max(Si, 2δ/n
2), then

∑
j ̸=i

∑τ i
i,j

τ=τ i−1
i,j +1

bτ = 0. So it suffices to consider the case when at least

one instance of SC is called during Probe-Max(Si, 2δ/n
2). Consider the last group of SC called in Probe-

Max(Si, 2δ/n
2), here group means that there might be multiple item pairs whose τ values are the minimum

in P . Denote their τ values by τ i. There must be some SC
(
ai, bi, 2δ/n

2, τ i
)
returning bi ≻ ai such that ai

is a maximal item, otherwise no maximal item is removed from U and Probe-Max will not terminate. When
Ebad does not happen, ai is not the maximum in Si so ai > i. Thus, item ai − 1 is also in Si and before
the call of SC

(
ai, bi, 2δ/n

2, τ i
)
, the ordering between ai − 1 and ai is not revealed, i.e., τ

i ≤ τ◦ai
. Moreover,

τ ii,j ≤ τ i by the fact that we always compare item pairs with the smallest τ values. It follows that

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

bτ ≤ n

τ i∑
τ=1

bτ = O (nbτ i) . (4.4.13)

The same argument holds for all i ∈ [n− 1].
Consider the sets

D1 = {bτ i : i = 1, 2, . . . , n− 1}, D2 = ∪ni=2Di
2 = ∪ni=2{bτ : τ = 1, 2, . . . , τ◦i }. (4.4.14)

We claim that if i1 ̸= i2, then the pairs (ai1 , τ
i1) and (ai2 , τ

i2) do not equal. With the facts that ai > i and
τ i ≤ τ◦ai

, there is an injective mapping from D1 to D2 given by bτ i is mapped to the element bτ i in Dai
2 . It

follows that

n−1∑
i=1

O (nbτ i) = O

(∑
x∈D1

nx

)
≤ O

(∑
x∈D2

nx

)
= O

 n∑
i=2

τ◦
i∑

τ=1

nbτ

 . (4.4.15)

The reason for pairs (ai1 , τ
i1) and (ai2 , τ

i2) equal if and only if i1 = i2 is as follows. Let i2 > i1 and suppose
ai1 = ai2 = a. When SC

(
a, bi1 , 2δ/n

2, τ i1
)
is called, SC

(
a, b, 2δ/n2, τ i1

)
for all b such that (a, b) /∈ T and
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τa,b = τ i1 are also called. It follows that τa,b > τ i for all such b after this point. When SC
(
a, bi2 , 2δ/n

2, τ i2
)

is called, the order between a and bi2 is not know and thus also not known when SC
(
a, bi1 , 2δ/n

2, τ i1
)
was

called. So τ i2 must be larger than τ i1 .
Combining (4.4.11), (4.4.12) and (4.4.15) gives,

n∑
i=1

c(i) ≤
n∑

i=2

∑
j ̸=i

τ∗
i,j∑

τ=1

bτ +

n−1∑
i=1

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

bτ (4.4.16)

≤ O

 n∑
i=2

τ◦
i∑
τ

nbτ

 = O

(
n

n∑
i=2

bτ◦
i

)
. (4.4.17)

The desired sample complexity follows from τ◦i ≤
⌈
log 1

∆i,i−1

⌉
and

b⌈log 1
∆⌉ = O

(
1

∆2

(
log log

1

∆
+ log

n

δ

))
, (4.4.18)

which completes the proof.

By the preceding theorem, the sample complexity of Probe-Rank is upper bounded by the sum of terms
(∆̃i)

−2(log log(∆̃i)
−1 + log(n/δ)) with an additional multiplicative factor of n. Recall from Section 1.2 that

the term (∆̃i)
−2(log log(∆̃i)

−1+log(n/δ)) can be viewed as a lower bound on the number of comparisons that
is needed for obtaining the order between i and its adjacent items with confidence level δ/n. Theorem 4.4.1
thus suggests that in Probe-Rank, every item is compared until it can be distinguished from its neighbors and
no further. This matches with our intuition that only comparisons between adjacent items are necessary,
and a single nonadjacent pair being extremely hard to distinguish should not harm the overall sample
complexity. In contrast, sample complexities of existing algorithms are determined by the smallest probability
gap between items, which can lead to a substantially large amount of unnecessary comparisons.

However, Probe-Rank achieves the dependence on ∆̃i instead of ∆i at the cost of an additional multi-
plicative factor of n. Intuitively, because we have zero prior information about which items are adjacent and
which are not, Probe-Rank pays Θ (n) attempts for each item i in order to ‘identify’ its neighbors and get
the ordering feedback.

We compare Probe-Rank with the state-of-the-art IIR algorithm. Let C (Probe) and C (IIR) denote the
sample complexities of two algorithms. From Table 4.1 and Theorem 4.4.1,

C (Probe) =
n∑

i=1

Θ̃
(
n(∆̃i)

−2
)
, C (IIR) =

n∑
i=1

Θ̃
(
(∆i)

−2
)
, (4.4.19)

noting that from the proofs, the sample complexity upper bounds are both tight in the worst case.
Under WST with no other conditions assumed, ∆i ≤ ∆̃i. In particular, when ∆̃i/∆i = Θ(

√
n) for all

i, then C (Probe) and C (IIR) are of the same asymptotic order with respect to n; if ∆̃i/∆i = ω(
√
n), then

Probe-Rank is asymptotically more sample-efficient than IIR. These phenomena are also reflected in our
numerical experiments in Section 4.5 (see Fig. 4.3).

4.4.2 Lower Bound on the Sample Complexity

We first recall the common notion of (ϵ, δ)-correctness: with probability at least 1 − δ, the algorithm will
output a ranking σ̂ such that for all i ≻σ̂ j, p(i, j) ≥ 1

2 − ϵ. Intuitively, this means the algorithm will only
mis-rank those pairs satisfying |p(i, j)− 1/2| < ϵ.

We construct a class of hard instances for the single-user setting. Each instance is indexed by a ranking
σ.

Definition 4.4.3 (IWST). Consider N items with an underlying ordering σ. For all i ≻σ j,

pσ(i, j) =

{
1
2 + ϵ, if σ(i) = 1 and σ(j) = 2,
1
2 , otherwise,

70



and for i ≺σ j, p(i, j) = 1− p(j, i).

Solving the instance class above can be reduced to solving the one-sided instance class described below
in Problem 4.4.4. The reduction is done by query (i, j) and (j, i) on IWST’ equally likely to simulate the
same environment as in IWST. Therefore, IWST is at least as hard as IWST’, up to constants.

Definition 4.4.4 (IWST’). Consider N items with an underlying ordering σ. For all i, j,

pσ(i, j) =

{
1
2 + 2ϵ, if σ(i) = 1 and σ(j) = 2,
1
2 , otherwise.

For any (2ϵ, δ)-correct ranking algorithm that outputs a 2ϵ-correct ranking under IWST’ with probability
at least 1 − δ, we have that the algorithm must correctly rank between the largest item σ−1(1) and the
second-largest one σ−1(2). Intuitively, this implies that the algorithm has to go over almost all pairs to
correctly identify σ−1(1) and σ−1(2), which is signified by a biased coin among N2 fair coins. We have the
following result:

Theorem 4.4.5. For any (ϵ, δ)-correct algorithm A, there exist a ranking σ and corresponding p(i, j) such

that with probability at least δ,
∑

i,jCi,j = Ω

(
N2 log(1/δ)

ϵ2

)
, where Ci,j denotes the queries made at (i, j).

The lower bound is tight up to logarithmic factors because a simple algorithm that allocates comparisons
evenly to each pair will guarantee an ϵ-approximate estimation of p(i, j), thus ensuring the ranking is (ϵ, δ)-
correct.

Proof. Let A be an δ-correct algorithm. For any ranking σ, it correspond to a problem instance in IWST’.
We denote PA

a,b as the canonical bandit distribution of algorithm A under environment with p(i, j) = 1
2 + ϵ

when (i, j) = (a, b) and p(i, j) = 1
2 otherwise. We also denote PA

0 as the canonical bandit distribution of
algorithm A under environment with p(i, j) = 1

2 everywhere.
Since A is an δ-correct algorithm, its prediction on the ranking between a and b, denoted as σ̂(a) and

σ̂(b), must align with the true ranking σ(a) > σ(b) with probability at least 1− δ:

PA
a,b

(
σ̂(a) < σ̂(b)

)
≤ δ, ∀a, b ∈ [N ], a ̸= b.

Denote X =
∑

i,j Ci,j the total number of queries made by A before it stops. Define the constant

x̄ := inf
{
x : max

a,b
PA
a,b(X > x) ≤ δ

}
.

Here, x̄ serves as a probabilistic lower bound of the total number of queries for all instances. This is the
quantity we aim to bound from below in the coming reasoning.

Lemma 4.4.6. For the fixed x̄, we have that

PA
0 (X > x̄) ≥ 1− 2δ.

Proof of Theorem 4.4.6. We define two new distributions P̃A
1,2 and P̃A

2,1, where P̃A
1,2 denotes the canonical

bandit distribution of algorithm A under environment with p(i, j) = 1
2+α when (i, j) = (1, 2) and p(i, j) = 1

2

otherwise. P̃A
2,1 is defined similarly.

We have that

PA
0 (X ≤ x̄) = PA

0 (σ̂(1) > σ̂(2), X ≤ x̄) + PA
0 (σ̂(1) < σ̂(2), X ≤ x̄),

and for PA
0 (σ̂(1) > σ̂(2), X ≤ x̄), we have for any α,

PA
0 (σ̂(1) > σ̂(2), X ≤ x̄) ≤ P̃A

2,1(σ̂(1) > σ̂(2), X ≤ x̄)

+ sup
F∩{w:X≤x̄}

|PA
0 (F ∩ {w : X ≤ x̄})− P̃A

2,1(F ∩ {w : X ≤ x̄})|

≤ δ + sup
F∩{w:X≤x̄}

|PA
0 (F ∩ {w : X ≤ x̄})− P̃A

2,1(F ∩ {w : X ≤ x̄})|︸ ︷︷ ︸
dTV(PA

0 ,P̃A
2,1|X≤x̄)

,
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where the first inequality comes from the definition of total variance distance; the second inequality comes
from A being δ-correct so that PA

2,1(σ̂(1) > σ̂(2)) ≤ δ. Let α converge to 0, we have that the total variance

distance will also converge to 0 when X ≤ x̄. Therefore, the above inequality implies that PA
0 (σ̂(1) >

σ̂(2), X ≤ x̄) ≤ δ.
Applying the same argument to PA

0 (σ̂(1) < σ̂(2), X ≤ x̄), we then conclude with PA
0 (X > x̄) ≥ 1−2δ.

Consider a new algorithm A′ that performs exactly the same as A, until A stops or its total number of
queries reaches x̄. In the latter case, A′ will stop and return ‘null’. We have that A′ is an algorithm such
that:

PA′

a,b

(
σ̂ = ‘null’

)
≤ δ, ∀a, b ∈ [N ], a ̸= b; PA′

0

(
σ̂ ̸= ‘null’

)
≤ 2δ,

where 2δ comes from two cases of failure: 1. outputting a wrong ranking as A with probability at most δ;
2. outputting ‘null’ when the queries exceed limit x̄ with probability at most δ.

By the Bretagnolle–Huber inequality, we have exp
(
− dKL(PA′

0 ∥PA′

a,b)
)
≤ 6δ. Further, denoting we have

exp

(
− 1

N(N − 1)

∑
a,b

∑
i,j

C ′
i,jKL

(
p0(i, j)

∥∥pa,b(i, j)))

≤ 1

N(N − 1)

∑
a,b

exp

(
−
∑
i,j

C ′
i,jKL

(
p0(i, j)

∥∥pa,b(i, j)))
=

1

N(N − 1)

∑
a,b

exp
(
− dKL(PA′

0 ∥PA′

a,b)
)

≤ 6δ,

where the first inequality comes from Jensen’s inequality and C ′
i,j denotes the queries made by A′ at (i, j);

the first equation comes from the decomposition of KL-divergence for the canonical bandit model. KL(p∥q)
denotes the KL-divergence between two Bernoulli random variables with expectation p and q. Note that for
(i, j) ̸= (a, b), p0(i, j) = pa,b(i, j) = 1/2.

Rearranging the terms and remove those terms with p0(i, j) = pa,b(i, j) gives∑
a,b

C ′
a,b ≥

N(N − 1) log(1/(6δ))

KL(1/2∥1/2 + ϵ)
= Ω

(
N2 log(1/δ)

ϵ2

)
.

Notice that, C ′
i,j denotes the queries made by A′ at (i, j), which satisfies that

∑
a,b C

′
a,b ≤ x̄, which as

defined, serves as a high-probability lower bound on the sample complexity of A.

4.5 Experiments

In this section, we present numerical experiments demonstrating the practical performance of Probe-Rank.
We compare Probe-Rank with the IIR algorithm, which was shown to outperform all the other baseline
algorithms both theoretically and numerically (Ren et al., 2019).

We study different settings where SST is satisfied, not guaranteed, or violated, but WST always holds,
which is consistent with our theory. Specifically, we want to rank n items with the true ranking σ1 ≻ σ2 ≻
· · · ≻ σn, where n varies over [10, 100]. The probabilistic comparison model pij is generated in different ways
to satisfy different assumptions. Note that ∆ and ∆d are tuning parameters in all the following settings.

• SST: SST is satisfied. Comparison probabilities pij are generated from the MNL model, where pσi,σj
=

(exp(sσi
− sσj

) + 1)−1, and sσ1
, . . . , sσn

is a decreasing sequence where sσi
= 100∆d · (n+1−i)

n .

• WST: SST does not necessarily hold. Let pi,j ∼ Uni( 12 +∆d, 1) for all items i ≻ j.

• NON-SST: SST does not hold. For adjacent items, we have pσi,σi+1 ∼ Uni
(
1
2 +∆d, 1

)
. Otherwise, we

have pσi,σj
∼ Uni

(
1
2 + ∆d

10 ,
1
2 +∆d

)
for j > i+ 1.
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(a) SST: ∆d = 0.3
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(b) WST: ∆d = 0.3
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(c) NON-SST: ∆d = 0.3

Figure 4.2: Comparison of sample complexities of Probe-Rank and IIR under various settings. In each
subfigure, ∆d is fixed while the number of items varies.
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(a) ADJ-ASYM: ∆d = 0.3, α = 1
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(b) ADJ-ASYM: ∆d = 0.3, α = 0.5

Figure 4.3: Relationship between n and gap ∆d

• ADJ-ASYM: SST does not hold. This setting is used to verify the asymptotic analysis in Section 4.4.1.
For adjacent items, we set pσi,σi+1

= 1
2 + ∆d. Otherwise, we set pσi,σj

= 1
2 + ∆d

nα for j > i + 1. We
consider cases where α equals 0.5 or 1.

• ADJ-CNST: SST does not hold. For adjacent items, we set pσi,σi+1 = 1
2 +∆. Otherwise pσi,σj = 1

2 +∆d

for j > i+ 1. Here ∆ > ∆d.

Two variants of the proposed algorithm and one baseline are compared. IIR: the baseline algorithm proposed
in (Ren et al., 2019). ProbeSort: the proposed Algorithm 4.2 in previous section. ProbeSortOpt is an
optimized version described in Section 4.3.1.

All experiments are averaged over 100 independent trials. For each trial, the ground truth ranking σ is
generated uniformly at random and the comparison probabilities are assigned accordingly. The confidence
level δ is fixed to be 0.1. Throughout the experiment, every trial for every algorithm successfully recovered
the correct ranking.

We use internal clusters of intel “Skylake” generation CPUs. Each job contains a single model type for
item numbers ranging from 10 to 100 with a step size of 10. Models are generated from a job unique random
seed shared among the two algorithms. Most jobs with sample complexity smaller than 107 terminate in
3 minutes. For ∆d = 0.1 under the ADJ-ASYM model, 3 hours are needed due to high sample complexity.
Due to the space limit, more detailed experimental setups and thorough ablation studies can be found in
Section 4.5.1.

Performance comparison Fig. 4.2 with y-axis in log-scale shows comparison of IIR and Probe-Ranking
under the SST, WST and NON-SST settings. The parameter ∆d is set to be 0.3. It can be seen that under the
SST and WST settings (Figs. 4.2a and 4.2b), Probe-Rank consumes less samples than IIR for small n. As n
gets larger, however, IIR becomes more sample-efficient due to that Probe-Rank has an additional factor of
n in its sample complexity compared with IIR for instances satisfy SST. However, under the NON-SST setting
where SST does not hold, Probe-Rank has a clear advantage over IIR, as shown in Fig. 4.2c.
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Figure 4.4: Ablation study on the dependence of the sample complexity on the probability gap ∆d.

Dependence on n and the probability gaps Following Theorem 4.4.1, we verify that the sample
complexity of Probe-Rank is lower than IIR when the number of items n gets larger. We use the

ADJ-ASYM setting to simulate situations where nonadjacent items can be much more difficult to compare.
In particular, we choose α = 1 (see Fig. 4.3a) and α = 1/2 (see Fig. 4.3b). It can be seen from Fig. 4.3a
that as the number of items n gets larger, the gap between the two curves also gets larger. This matches
our analysis that when ∆̃i/∆i = ω(

√
n), then the sample complexity of IIR is of higher order than that of

Probe-Rank. When ∆̃i/∆i = Θ(
√
n), Fig. 4.3b shows that the gap between the two sample complexities

varies little as n increases. Our analysis also suggests that sample complexities of two algorithms are of the
same order.

Furthermore, we show through the NON-SST and ADJ-CNST settings that when the probability gaps of
nonadjacent item pairs decrease, the advantage of our algorithm will be more and more prominent.

In Fig. 4.4, we fix n = 80 and let ∆d vary. Clearly, Probe-Rank has an advantage over IIR in both
settings. In particular, Fig. 4.4b shows the comparison of two algorithms in the ADJ-CNST setting with the
probability gaps between adjacent items ∆ fixed as 0.4. As the probability gap between nonadjacent items
∆d varies from 0.01 to 0.4, it can be seen that the sample complexity of Probe-Rank does not vary much.
However, the sample complexity of IIR has a positive correlation with 1

∆2
d
. This numerical result matches

our analysis that Probe-Ranking is not affected by the comparison probability of nonadjacent items, which
does not hold for IIR.

All trials are performed with confidence parameter δ = 0.1. For the same setting, every algorithm is
repeated 100 times. In each repeat, a ground truth ranking of n items is generated at random. Then the
probabilities are generated from the ground truth ranking according to the method for each setting above.
In each setting, the number of items to be ranked ranges from 10 to 100. With this confidence parameter, all
algorithms are able to recover exactly the ground truth ranking. We use internal clusters of intel “Skylake”
generation CPUs. Each job contains a single model type for item numbers ranging from 10 to 100 with a
step size of 10. Models are generated from a job unique random seed shared among 3 algorithms. One job
takes about 3-10 minutes depending on the difficulty parameter. And all jobs are repeated 100 times.

4.5.1 Detailed Experiments

In this section, we present more detailed numerical experiments comparing the sample complexities of
Probe-Rank, Probe-Rank-SE and the state-of-the-art algorithm IIR by Ren et al. (2019). In particular,
we focus on the WST, SST, NON-SST and ADJ-ASYM settings and perform these three algorithms with various
parameters. Same as the results presented in Section 4.5, all experiments are averaged over 100 independent
trials. For each trial, the ground truth ranking σ is generated uniformly at random and the comparison
probabilities are assigned according to the chosen setting. The confidence level δ is fixed to be 0.1. Through-
out the experiment, every trial for every algorithm successfully recovered the correct ranking. Moreover,
for IIR, if the rank has not been recovered after the sample complexity reaches 109, we manually stop the
ranking process and record the sample complexity as 109 to avoid extremely large running times. Note that
the extreme cases happen in Figs. 4.8a to 4.8c and 4.12d.

Figs. 4.5 to 4.8 compare the three algorithms under different settings where the difficulty parameter ∆d

is fixed and the number of items n varies from 10 to 100. Figs. 4.9 to 4.12 compare the three algorithms
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under different settings where the number of items n is fixed and the difficulty parameter ∆d varies from
0.1 to 0.4. It can be seen that Probe-Rank and its variant always consume less samples than IIR to recover
the true ranking. Note that in the WST setting, comparison probabilities are all identically distributed and
thus on average, adjacent items are as hard as nonadjacent items to compare. When ∆d is fixed, as n gets
larger and larger, IIR will eventually outperform Probe-Rank. This is consistent with our theoretical results
presented in Section 4.4.1. Moreover, as indicated by the experimental results, Probe-Rank-SE can further
reduce the sample complexity compared with Probe-Rank.
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(a) WST: ∆d = 0.1
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(b) WST: ∆d = 0.2
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(c) WST: ∆d = 0.3
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(d) WST: ∆d = 0.4

Figure 4.5: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the WST setting. In each subfigure,
∆d is fixed while the number of items varies.
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(a) SST: ∆d = 0.1
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(b) SST: ∆d = 0.2
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(c) SST: ∆d = 0.3
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(d) SST: ∆d = 0.4

Figure 4.6: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the SST setting. In each subfigure,
∆d is fixed while the number of items varies.
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(a) NON-SST: ∆d = 0.1
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(b) NON-SST: ∆d = 0.2
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(c) NON-SST: ∆d = 0.3
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(d) NON-SST: ∆d = 0.4

Figure 4.7: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the NON-SST setting. In each
subfigure, ∆d is fixed while the number of items varies.
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(a) ∆d = 0.1, α = 1
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(b) ∆d = 0.2, α = 1
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(c) ∆d = 0.3, α = 1
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(d) ∆d = 0.4, α = 1
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(e) ∆d = 0.1, α = 0.5

25 50 75 100
Number of items to rank

105

107

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(f) ∆d = 0.2, α = 0.5
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(g) ∆d = 0.3, α = 0.5
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(h) ∆d = 0.4, α = 0.5

Figure 4.8: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the ADJ-ASYM setting. In each
subfigure, ∆d and α are fixed while the number of items varies.
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(a) WST, n = 20
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(b) WST, n = 40
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(c) WST, n = 60
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(d) WST, n = 80

Figure 4.9: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the WST setting. In each subfigure,
n is fixed while ∆d varies.
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(b) SST, n = 40
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(c) SST, n = 60
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Figure 4.10: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the SST setting. In each subfigure,
n is fixed while ∆d varies.
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(a) NON-SST, n = 20
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(b) NON-SST, n = 40
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(c) NON-SST, n = 60
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(d) NON-SST, n = 80

Figure 4.11: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the NON-SST setting. In each
subfigure, n is fixed while ∆d varies.
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(a) α = 1, n = 20
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(b) α = 1, n = 40
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(c) α = 1, n = 60
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(d) α = 1, n = 80

0.1 0.2 0.3 0.4
∆d

104

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(e) α = 1/2, n = 20
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(f) α = 1/2, n = 40
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(g) α = 1/2, n = 60
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(h) α = 1/2, n = 80

Figure 4.12: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the ADJ-ASYM setting. In each
subfigure, n and α are fixed while ∆d varies.
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Chapter 5

Heterogeneous Active Ranking under
Weak Stochastic Transitivity

5.1 Introduction

In many applications, the oracles1 that provide preference feedback are usually human annotators, who
may provide inherently noisy feedback. Moreover, oracles may show varying accuracy for different pairs of
responses. For example, the performance gap between two LLMs may be negligible in one task but quite
obvious in another. One natural question is then how to identify the underlying ranking of different LLMs
efficiently, especially by taking advantage of those more accurate oracles (i.e., tasks). For example, when
creating an LLM leaderboard, we have two different criteria or “tasks”: honesty and helpfulness. When
ranking two LLMs, we may ask a human annotator to rate which LLM is more honest and which LLM is
more helpful. The two tasks/criteria may exhibit different preference behaviors.

Our goal is to accurately determine the ranking with as few queries as possible. Notably, Saad et al.
(2023) solves the multi-oracle learning-to-rank tasks under a special case of the SST condition. In particular,
they assume numerical feedback with sub-Gaussian noise, which satisfies the SST condition. This work
established tight results for comparing two items, and directly swapped it with the deterministic comparison
in a classic binary insertion sort algorithm to establish an upper bound for the noisy ranking problem.

Nevertheless, the application of SST can be overly restrictive in contexts where preference probabilities
do not hinge on a single numerical attribute. Items can possess multifaceted attributes, leading people to
evaluate different pairs based on different attributes. For example, LLM A is favored over LLM B because
A produces longer responses, although both are equally informative. LLM B is preferred over LLM C
because B’s response is short and informative, while C’s response is long and less informative. While human
annotators can identify A ≻ B and B ≻ C easily, they may find it difficult to compare A and C for the long
responses from both LLMs.

This phenomenon is pervasive in human behaviors and is defined as Weak Stochastic Transitivity (WST)
introduced in Section 1.4. Therefore, a pair that is closely ranked might not always be more challenging to
compare than one with a wider disparity. Driven by these real-world scenarios, this chapter mainly focuses
on the challenge of identifying the complete ranking of N items in a broader context, where only WST is
applicable and SST is not a requirement. Our primary goal is to minimize the number of comparisons while
ensuring a high level of confidence.

5.2 Related work

Heterogeneous ranking and multi-task ranking. With the rise of crowdsourcing, data scientists are
motivated to design algorithms adapted to this scenario to account for the variable quality of workers to
achieve cost-efficient data acquisition rather than assigning tasks uniformly to workers regardless of their

1In this chapter, we refer to data sources as oracles
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Table 5.1: A comparison among the related works and the proposed method. The table is divided into two
major sections. The upper section mainly shows the sample complexities of three related algorithms under
the SST condition. The lower section of the table shows the result under the WST condition.

Algorithm Sample Complexity Multi-Oracle

IIR

(Ren et al., 2019)
O

(∑
i∈[N ] ∆

−2
i

(
log log

(
∆−1

i

)
+ log(N/δ)

))
No

Binary-Search

(Saad et al., 2023)
Õ
(∑

i∈[N ] Hi

(
log log(Hi) + log2(N) + log(1/δ)

))
Yes

Probe-Max

(Lou et al., 2022)
Õ

(
N

∑N
i=2 ∆

−2
σ−1(i),σ−1(i−1)

)
No

RMO-WST

(this work, Algorithm 5.1)
Õ

(
N

∑N
i=2 Hσ−1(i),σ−1(i−1)

)
Yes

performance (Niu et al., 2015). When data is already given and the algorithm is unable to affect the collection
process, due to the varying precision of the workers, a model that considers or estimates the quality of the
source while ranking shows a significant benefit over those that do not (Takanobu et al., 2019; Jin et al.,
2020). In practical cases, the data collection has not happened yet; then an adaptive algorithm can be chosen
to optimize query collection. Existing methods usually maintain two sets of estimates: one for ranking and
one for worker quality (Wu et al., 2022; Saad et al., 2023). Low-accuracy workers are usually gradually
eliminated, leaving high-quality responses to be collected more efficiently. A low-rank assumption can be
made when the similarity between two parties within a subset of tasks can also be extrapolated to a broader
set of tasks. Methods derived from probability matrix factorization are usually adopted in this case (Wang
et al., 2016; Jun et al., 2019).

We summarize our contributions and compare them with the related work in Table 5.1. Due to the
lengthy form of the exact result of Binary-Search and RMO-SST that does not fit in one line. We use Õ in
the table to omit insignificant terms. In addition, we keep relevant log terms inside the Õ to showcase the
improvement obtained by the proposed method.

5.3 Problem Setup and Preliminaries

In this chapter, we consider actively ranking N items, with M oracles (also known as data sources, users
or experts). We assume there exists an ordering ‘≻’ over these items which is characterized as a mapping
σ(·) : [N ]→ [N ] indicating the position of a given item in the ranking in descending order. Equivalently, the
inverse mapping σ−1(·) lists the items in order: σ−1(1) ≻ σ−1(2) ≻ · · · ≻ σ−1(N). For two items i and j,
we assume that the result of the comparison is sampled independently from the Bernoulli distribution with
mean pui,j . More specifically, we denote pui,j as the probability that the response is “i is preferred over j”

when a query is sent to oracle u. In particular, pui,j >
1
2 is considered as the item i is preferred over the item

j by the oracle u. We will omit u in pui,j if the discussion is restricted to a single oracle.
For a fixed pair of items i and j, each oracle exhibits its preference, represented by the probability pui,j .

It is yet to decide how to aggregate them into a ‘consensus preference’. If the consensus is defined as an
average over pui,j or a majority vote over sign(pui,j − 1/2), it is required that all oracles must be queried for
each pair. In this case, there is no point to identify a more accurate expert to save queries. Instead, we make
the following assumption that all oracles show a consistent preference for any item pair.

Assumption 5.3.1 (Consistency). For any item pair (i, j), the preferences of all oracles are the same. More
formally, for any two oracles u and v, we always have:

sign(pui,j − 1/2) = sign(pvi,j − 1/2).

This assumption states that the oracles can show different levels of noise but must agree with the same
underlying true ranking. This assumption also enables us to only select the more accurate oracles to recover
the ranking with fewer comparisons. An equivalent assumption named the ‘monotonicity’ assumption is
made by Saad et al. (2023).
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5.3.1 Harndness Factor for Ranking two items

The hardness of estimating the preference of two items i and j under oracle u can be captured by the gap

between their preferential probability and 1/2: ∆
(u)
i,j = |pui,j − 1/2|. Intuitively, the closer the preferential

probability to 1/2, the harder it is to estimate the preference of the two items since the collected responses
are more noisy. In our multi-oracle setting, a trivial method would be querying one oracle at a time in a
uniformly random fashion and aggregating them as if from a single oracle, which leads to an average gap of

∆̄i,j :=

M∑
u=1

∆
(u)
i,j /M. (5.3.1)

In other words, any single-oracle algorithm can be trivially applied to the multi-oracle setting as if one oracle
has a gap of ∆̄i,j . It is easy to see a trivial solution is to construct an ‘average’ user by randomly sampling
one user and query the pair (i, j). This will lead to a sample complexity of

log(δ−1)

( 1
M

∑
u ∆

u
i,j)

2
.

5.4 Heterogeneous Ranking Algorithm under WST Condition

In this section, we propose an algorithm called Rank-with-Multiple-Oracles (RMO) under WST condition
called RMO-WST, which is displayed in Algorithm 5.1 and has a bi-level design. At the high level, it calls
Probe-Max (Algorithm 5.2) to select the maximal item from the pool of candidates repeatedly. At the low
level, the Compare algorithm (Algorithm 5.3) perform comparisons that are necessary to rank a pair of items
i and j, which also accounts for the heterogeneous quality of oracles that provide preferential feedback.
Try-Compare (Algorithm 5.4) is where the actual comparison takes place and the order of pairs of items is
determined.

In detail, RMO-WST (Algorithm 5.1, a variant of Probe-Sort in Lou et al. (2022)) takes a set of items
labeled by 1, 2, · · · , N as input and outputs a δ-correct ranking of them.

The set St contains the items to be ranked, each of which corresponds to a node in the directed graph
T . It is also called “partial order preserving graph” in prior work (Lou et al., 2022). The graph starts with
empty, where each node represents an item (Line 190). A directed edge is created between the two items,
originating from the winning item, once the pair’s order is determined. The maximal items are nodes of the
current graph T such that there is no incoming edge towards them, which means they have not yet lose to
any other items in comparison.

The WST assumption can also be employed to introduce additional edges during this process by getting
the transitive closure of the graph. Furthermore, τi,j records a factor that determines the number of com-
parisons required to confidently determine the direction of a pair (i, j). It is initialized at 1 and its value will
increase by one each time to determine the number of comparisons required throughout the algorithm. Inside
each loop, the maximal item is found by Probe-Max with a confidence level of 2δ/N2 and then removed from
the graph T . This process repeats and finds the top items in the set of unranked items St sequentially.

Next, in Probe-Max, let U be the set that contains all the possible maximal items (i.e., all maximal
items). Each item in U is paired with items whose order between them is not yet revealed (Line 2-Line 6).
After revealing the order of a new pair using the Compare method, the losing item is removed from the set
of possible maximal items U , and the graph T is also updated to include this directional edge and any other
possible edges according to transitivity by running a standard method to compute the transitive closure of
the graph (Line 9). After N − 1 rounds of finding the maximal item, the algorithm finds the ranking of the
items. The sub-routine Compare (Algorithm 5.3, modified from Saad et al. (2023)), is designed to account for
the multiple-oracles situation. The high-level idea is to enumerate different possible parameters: the subset
size sr and the gap width hr. In Line 3-Line 10, the guessed subset size sr and the gap width hr will be sent
to Try-Compare (Algorithm 5.4), until both reach the actual quantities. Then Try-Compare will return the
correct comparison result with high probability (Line 8).

Try-Compare (Algorithm 5.4) is where the actual query and estimation for the pair direction takes place.
In Line 2, a query size of m is determined by the subset size s given from the argument. Note that this value
halves each time since s is doubled each time this subroutine is called on the same pair.
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Then, a total number of n0m comparisons is evenly assigned to the set of oracles that has not been
eliminated yet (Line 6). Note that in our setting, the feedback is a binary indicator for a pair of items
rather than a bounded scalar value for a single item as described in Saad et al. (2023). After comparison,

a Bernoulli parameter estimate is calculated for each individual oracle as µ̂
(u,ℓ)
i,j and a joint estimate as µ̂

(ℓ)
i,j

(Line 7). In Line 8-Line 9, the order of the pair is called when the confidence threshold is reached. If not,
it continues to the elimination phase (Line 10), where oracles with accuracy lower than the medium of the
group according to the estimate are removed from the active set Sij

ℓ and Sij
ℓ .

Algorithm 5.1 RMO-WST (N, δ): Rank-with-Multiple-Oracles

1: input: number of items to rank N , confidence level δ
2: initialize: S1 = [N ], ans = [0]N , a directed graph T with N nodes and no edges, for (i, j) ∈ S2

1 set
τi,j = 1

3: define: τ = {τi,j}(i,j)∈[N ]2

4: for t = 1 to N − 1 do
5: imax, T, τ ← Probe-Max(St, 2δ/N

2, T, τ)
6: remove imax from T
7: ans[t− 1] = imax

8: St+1 = St \ {imax}
9: end for

10: ans[N − 1] = SN [0], return ans

Algorithm 5.2 Probe-Max(S, δ, T, τ)

1: input: set of unranked items S, confidence level δ, partial order preserving graph T , exponential factors
{τi,j}(i,j)∈[N ]2 as τ .

2: Let U be the set of possible maximal items in T .
3: while |U | > 1 do
4: P = {(i, j)|(i ∈ U ∨ j ∈ U), (i, j) ∈ S2, (i, j) /∈ T}
5: for (i, j) in argmin(x,y)∈P τx,y do

6: ans = Compare(i, j, 6δ
π2τ2

i,j
, τi,j), τi,j = τi,j + 1

7: if ans ̸= unsure then
8: w, l = ans, T = TransClosure(T ∪ (w ≻ l))
9: if |U | > 1 and l ∈ U then U = U \ {l}

10: end if
11: end for
12: end while
13: return U [0], T, τ

Algorithm 5.3 Compare(i, j, δ, τ)

1: input: pair (i, j), confidence level δ, precision factor τ
2: initialize: rmax = 1, ϵτ = 2−τ , ans = unsure.
3: while ans = unsure and ϵ2τ < 4 log(2M)M2−rmax do
4: for r = 0, · · · , rmax do
5: sr = 2rM

2rmax , hr = 2−
r
2

6: δrmax
= δ/(10(rmax)

3 log(M))
7: ans = Try-Compare (i, j, δrmax , sr, hr)
8: if ans ̸= unsure, break.
9: end for

10: rmax = rmax + 1
11: end while
12: return ans
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Algorithm 5.4 Try-Compare(i, j, δ, s, h)

1: input: pair to query (i, j), confidence level δ, subset size s, estimated gap width h.
2: m = 2⌈log2(26 log(1/δ)M/s)⌉, n0 = 64/h2.
3: Sample a set of m oracles with replacement from all M oracles as S1.
4: Let Sij

1 = Sji
1 = S1 and L = ⌈log4/3(M/s)⌉.

5: for ℓ = 0, · · · , L do
6: Request tℓ = n0m/|Sij

ℓ | comparisons for pair (i, j) from each oracle u ∈ Sij
ℓ ∪ Sji

ℓ . Denote ciju as the
number of times i ≻ j.

7: µ̂
(u,ℓ)
i,j =

ciju,ℓ

tℓ
, µ̂

(u,ℓ)
j,i = 1− µ̂

(u,ℓ)
i,j , µ̂

(ℓ)
i,j = 1

|Sij
ℓ |

∑
u∈Sij

ℓ
µ̂
(u,ℓ)
i,j .

8: if µ̂
(ℓ)
i,j − 1

2 ≥
√
2 log(2/δ)/n0m then return i ≻ j

9: if µ̂
(ℓ)
i,j − 1

2 < −
√
2 log(2/δ)/n0m then return i ≺ j

10: Sij
ℓ+1 ← {v ∈ Sij

ℓ |µ̂
(v,ℓ)
i,j ≥ medium of µ̂

(u,ℓ)
i,j , u ∈ Sij

ℓ }
11: Sji

ℓ+1 ← {v ∈ Sji
ℓ |µ̂

(v,ℓ)
j,i ≥ medium of µ̂

(u,ℓ)
j,i , u ∈ Sji

ℓ }
12: end for
13: return unsure.

5.5 Theoretical Analysis

5.5.1 Upper Bound of the Sample Complexity

Proof of Technical Lemmas

We first show that Compare (Algorithm 5.3) returns the correct outcomes between the given two items with
high probability. In the following, without loss of generality, we assume the correct ordering between item i
and item j is i ≻ j. The proof follows those done similarly by (Saad et al., 2023), except that we deal with
binary feedback representing the preference instead of numerical feedback for i and j respectively.

We first present the following lemma that characterizes the behavior of Try-Compare (Algorithm 5.4).

Lemma 5.5.1. In Algorithm 5.4, for each iteration ℓ, for any fixed pair of items i ≻ j, we have that
probability of getting incorrect probability estimation bounded as:

P

(
µ̂
(ℓ)
i,j −

1

2
< −

√
2 log(1/δ)

|Sℓ|n0

)
≤ δ,

where Sℓ is the subset of active oracles and n0 is the number of repeated comparisons.

Proof. According to the assumption that i ≻ j, so E[µ̂(ℓ)
i,j ] =

1
|Sℓ|

∑
u∈Sℓ

pui,j ≥ 1
2 . Then we have

P

(
µ̂
(ℓ)
i,j −

1

2
< −

√
2 log(1/δ)

|Sℓ|n0

)
≤ P

(
µ̂
(ℓ)
i,j − E[µ̂(ℓ)

i,j ] < −

√
2 log(1/δ)

|Sℓ|n0

)
≤ δ.

The last inequality is due to Chernoff’s inequality given that µ̂
(ℓ)
i,j is a summation of |Sℓ|n0 bounded inde-

pendent random variables in [0, 1].

Then we have the following lemma stating the correctness of Try-Compare (Algorithm 5.4).

Lemma 5.5.2. In Algorithm 5.4, the probability of returning an incorrect result or order is bounded by:

P(return i ≺ j) ≤ 1.75 log(M)δ.
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Proof. If i ≺ j is returned, then in Algorithm 5.4, there exists some ℓ such that the condition in Line 9 is
true. Formally, we have

P(return i ≺ j) ≤ P
(
∃ℓ ∈ [log4/3(M/m)] : µ̂

(ℓ)
i,j − 1/2 < −

√
2 log(2/δ)/n0m

)
≤ log4/3(M/m)δ/2

≤ 1.75 log(M)δ.

The first inequality holds due to the reasoning above; the second inequality comes from the union bound
and Theorem 5.5.1; in the last inequality we drop m and rearrange terms.

Lemma 5.5.3. Assume i ≻ j. In Algorithm 5.3, the wrong result will appear with probability P(return i ≺
j) ≤ 0.6δ.

Proof. Let ansrmax,r denote the output of Algorithm 5.4 when it is called with arguments (δrmax , sr, hr). We
have

P(return i ≺ j) ≤ P
(
∃rmax ≥ 1,∃r ≤ rmax : ansrmax,r = (i ≺ j)

)
≤

∞∑
rmax=1

rmax∑
r=0

P(ansrmax,r = (i ≺ j))

(1)

≤
∞∑

rmax=1

rmax∑
r=0

1.75 log(M)δ

10(rmax)3 log(M)

=

∞∑
rmax=1

1.75δ

10

rmax + 1

rmax
3

(2)

≤ 0.6δ,

where (1) is due to Theorem 5.5.2 and the definition δrmax
= δ/(10(rmax)

3 log(M)), and (2) holds because∑∞
rmax=1

1+rmax

rmax
3 ≤ 3.

Proof of Subroutine: Theorem 5.5.4

To start with, we introduce the following theorem, which guarantees the performance of Compare (Algo-
rithm 5.3).

Theorem 5.5.4. (Restatement of Theorem 4.1 from Saad et al. (2023)) For any given τ, δ and any pair
(i, j), with probability at least 1− δ, Algorithm 5.3 satisfies:

1. It outputs the correct order or unsure for any given τ and δ > 0.

2. If τ > − 1
2 log(M/Hi,j), the correct order is returned.

3. When the correct order is returned, the sample complexity is Õ(log(1/δ)Hi,j).

To obtain the above theorem, we replace the ϵ in the original theorem with 2−τ to suit our application.
A detailed reasoning is available in ??. This theorem guarantees the pairwise comparisons are correct with
desired accuracy.

With a robust routine to return the correct order for each queried pair, a carefully designed ranking algo-
rithm (Algorithm 5.1) orchestrates such pairwise comparisons to recover the ranking with high probability.
In RMO-WST, the maximal item in the candidate set is identified and removed iteratively to rank all items.
Thus, the total sample complexity is the summation of the sample complexity to identify each maximal item.
And such cost can be upper bounded by N times the hardness to compare it with the item immediately
smaller than it. We present the following theorem to characterize the total sample complexity upper bound
of Algorithm 5.1. The detailed proof is deferred to ??.
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Proofs of Theorem 5.5.4. Our restatement also follows the structure of three conclusion claims towards the
end of the proof by Saad et al. (2023, Theorem 4.1, Section B).

Note that one difference between our version of Compare (Algorithm 5.3) and their original algorithm
is that their ϵ is replaced with τ by us to control the desired accuracy gap of one pairwise comparison.
More specifically, in Line 2 of Algorithm 5.3, we calculated an equivalent ϵ as ϵτ = 2−τ based on the input
argument τ .

In their notation, d is the number of experts (oracles), which is equivalent to M in our notation.
The problem hardness factor Hi,j is similarly defined. The setting is slightly different in that Saad et al.

(2023) considered the difference of two 1-sub-Gaussian variables while we consider a Bernoulli variable shifted
by 1/2. The central problem is to identify the sign of the expectation of the said random variables (which
determines the order between i and j), and thus the problem hardness factors are defined in the same spirit.

Now, we are ready to restate the theorem.

Claim 1: The first part of the theorem can be directly derived from Theorem 5.5.3 or Saad et al. (2023,
Lemma B.3). Indeed, since Theorem 5.5.3 states that Algorithm 5.3 will return the wrong result with
probability at most 0.6δ. Therefore, Algorithm 5.3 returns either unsure or the correct order with probability
at least 1− δ.

Claim 2: The second part of the theorem states that when τ is sufficiently large, the algorithm will return
the correct result with a high probability of at least 1− δ.

To see this, when ϵ2τ = 2−2τ < M/Hi,j , that is, when τ > − 1
2 log(M/Hi,j), the algorithm returns unsure

with probability less than 0.4δ by the same argument as in Saad et al. (2023, Eq.5 and Lemma B.8). And
by Theorem 5.5.3, it returns the wrong order with probability less than 0.6δ. In total, the probability of
returning the incorrect result is less than δ.

Claim 3: The third part deals with the sample complexity. It is calculated under two conditions regarding
the relationship between τ (hence ϵτ ) and M/Hi,j , where c1 is a constant. According to the end of the proof
of Saad et al. (2023, Theorem 4.1, Section B) and replace it with our notation we have the following two
cases:

1. When ϵ2τ ≥M/Hi,j , Algorithm 5.3 finishes with a sample complexity of

c1 log
2(2M) log

(
log(2M)

2−2τ

)
log

(
2 log(2M/2−2τ )

δ

)
M

2−2τ
= Õ

(
log(1/δ)

M

2−2τ

)
. (5.5.1)

2. When ϵ2τ < M/Hi,j , the total sample complexity is:

c1 log
2(M) log(Hi,j) log (log(Hi,j) log(M)/δ)Hi,j = Õ(log(1/δ)Hi,j). (5.5.2)

Proof of Main Result: Theorem 5.5.5

Theorem 5.5.5. (Instance-dependent sample complexity upper bound for RMO-WST) For a given set of items
[N ] and desired confidence level δ, Algorithm 5.1 terminates with sample complexity bounded by

Õ
(
N
∑N

i=2Hσ−1(i),σ−1(i−1)

)
.

With probability at least 1− δ, Algorithm 5.1 will output a ranking that exactly matches the true ranking.

Proof of Theorem 5.5.5. As stated in Theorem 5.5.4, for any pair (i, j) and τ , with probability 1 − δ, the
following event will hold for Compare(i, j, δ, τ):

1. Compare(i, j, δ, τ) outputs the correct order or unsure.

2. If τ > − 1
2 log(M/Hi,j), Compare(i, j, δ, τ) outputs the correct order.
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3. The sample complexity is Õ(Hi,j).

For each i, j and τ , denote Ei,j(τ) as the high-probability event described above regarding Compare(i, j, 6δ/π2τ2i,j , τi,j)

in Algorithm 5.4, which is called within Probe-Max(St, 2δ/N
2, T, τ) in Algorithm 5.1. Then, we have that

P(Ei,j(τ)) ≥ 1− 12δ

π2N2τ2i,j
.

By union bound, the probability that there exists one pair (i, j) that is compared wrongly by Compare(i, j, δ/τ2i,j , τi,j)
for some τi,j is

P

( ⋃
(i,j)∈[N ]2

∞⋃
τ=1

Ei,j(τ)

)
≤ N2

2

∞∑
τ=1

12δ

π2N2τ2
≤ δ, (5.5.3)

where the last inequality comes from
∑∞

τ=1 τ
−2 = π2/6.

In the following proof, we assume that Compare(i, j, 6δ/π2τ2i,j , τi,j) always runs successfully. Now, using
Eq. (5.5.1), Eq. (5.5.2), define the following two terms:

1. When ϵ2τ ≥M/Hi,j , for any t > 0,

n(t) :=c1 log
2(2M) log

(
log(2M)

4−t

)
log

(
2π2N2t2 log(M/4−t)

12δ

)
M

4−t
= Õ(4tM), (5.5.4)

2. When ϵ2τ < M/Hi,j , that is 2
−τi,j < M/Hi,j , which is applied in the first inequality below:

n
(∗)
i,j := c1 log

2(M) log(Hi,j) log

(
τ2i,j log(Hi,j) log(M)N2π2

12δ

)
Hi,j ≤ Õ(Hi,j). (5.5.5)

Given the fact that RMO-WST only compares the pair contains at least one maximal element. In this case,
for every call of Compare on pair (i, j) if i is maximal, we say that item i initializes the comparison, and
the number of comparisons is charged to i. If both i, j are maximal, then the cost is charged to both items.
We denote the total number of charged comparisons to i as c(i), i ∈ [N ]. And the sample complexity of
RMO-WST is at most

∑
i∈[N ] c(i).

Without loss of generality, assume the true ranking of items is 1 ≻ 2 ≻ · · · ≻ N . Given i ∈ [N ], we use
τ◦i to denote the value of τi,i−1 when the order between i and i − 1 is revealed. Let τ◦1 = 0. The order of
adjacent items of i under WST condition can only be revealed when Compare(i, i − 1, 2δ/N2, τ◦i ) returns a

value other than unsure. According to Theorem 5.5.3, τ◦i ≤ ⌈ 12 log
Hi,i−1

M ⌉.
Define b

(τ)
i,j as follows, where n(τ) is defined in Eq. (5.5.4):

b
(τ)
i,j =

{
n(τ), if τ < τ◦i,j∑τ−1

t=1 n(t) + n
(∗)
i,j , otherwise

For each j ̸= i, let τ∗i,j be the value of τi,j when last time Compare is initialized by i and called before

Probe-Max(Si, 2δ/N
2). For any τ > τ∗i,j , if Compare(i, j, 2δ/N2, τ) is called in Probe-Max(St, 2δ/N

2) for
some t < i, then it must not be initialized by i. In light of this, let τ ti,j be the value of τi,j after completion

of Probe-Max(St, 2δ/N
2). We break down c(i) into two parts as follows:

c(i) ≤
∑
j ̸=i

τ∗
i,j∑

τ=1

b
(τ)
i,j +

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

b
(τ)
i,j (5.5.6)

We now move on to bound the first summation term on the right-hand side of Eq. (5.5.6). Before
Probe-Max(Si−1, 2δ/N

2) terminates, item i− 1 is in T . Therefore, whenever i is a maximal item, the order
between i and i− 1 is not revealed. So when i initializes the comparison Compare(i, j, 2δ/N2, τ∗i,j), the item
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pair (i, i − 1) is also in the set of legitimate pairs P . Therefore, τ∗i,j is no larger than the value of τi,i−1 at
that point, and is further no larget than τ◦i :

∑
j ̸=i

τ∗
i,j∑

τ=1

b
(τ)
i,j ≤ N

τi,i−1∑
τ=1

bτ ≤ N

τ◦
i∑

τ=1

b
(τ)
i,i−1. (5.5.7)

We then continue to bound the second summation term in c(i) in Eq. (5.5.6). Consider the last group of
Compare called in Probe-Max(Si, 2δ/N

2), here the groups mean that there might be multiple item pairs whose
values τ are the minimum in P . Denote their τ values by τ i. There must be some Compare(ai, bi, 2δ/N

2, τ i)
returning bi ≻ ai such that ai is a maximal item, otherwise no maximal item is removed from U and
Probe-Max will not terminate. When every Compare call is returning the correct order, ai is not the maximal
in Si so ai > i. Thus, item ai − 1 is also in Si and before the call of Compare(ai, bi, 2δ/N

2, τ i), the order
between ai and ai− 1 is not revealed, that is, τ i ≤ τ◦ai

. Moreover, τ ii,j ≤ τ i because we always compare pairs
of items with the smallest τ values, it follows that

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

b
(τ)
i,j ≤ N

τ◦
i∑

τ=1

b
(τ)
i,i−1. (5.5.8)

In summary, the total sample complexity is

N∑
i=1

c(i) ≤ 2N

N∑
i=1

τ◦
i∑

τ=1

b
(τ)
i,i−1 = 2N

N∑
i=2

τ◦
i∑

τ=1

b
(τ)
i,i−1, (5.5.9)

where the last equality is due to τ◦1 = 0. Plug in τ◦i ≤ ⌈ 12 log
Hi,i−1

M ⌉ into the above equation to get:

2N

N∑
i=2

τ◦
i∑

τ=1

b
(τ)
i,j = N

[ N∑
i=2

O
(
log2(M) log(Hi,i−1) log (log(Hi,i−1) log(M))Hi,i−1

)
(5.5.10)

+

N∑
i=2

log2(2M) log

(
log(2M)

Hi,i−1

M

)
log

(
4N2 log(

Hi,i−1

M
M)/δ

)
O(

Hi,i−1

M
M)

]
(5.5.11)

= Õ

(
N

N∑
i=2

Hi,i−1

)
(5.5.12)

Given we assumed w.l.o.g. that the correct ranking is 1 ≻ 2 ≻ 3 ≻ · · ·N and the sample complexity is
Eq. (5.5.12). Now we conclude without this assumption the sample complexity would be

Õ

(
N

N∑
i=2

Hσ−1(i),σ−1(i−1)

)
.

Remark 5.5.6. A baseline algorithm is to uniformly randomly choose one oracle and apply the Probe-Rank
algorithm with the average oracle. This leads to an averaged oracle with average gap ∆̄i,j or average hardness

H̄i,j as described near the end of ??. The resulting sample complexity is Õ
(
N
∑N

i=2 H̄σ−1(i),σ−1(i−1)

)
, which

is strictly worse than our sample complexity, since Hi,j ≤ H̄i,j .

5.5.2 Lower Bound of the Sample Complexity for Multiple Oracles

We define the following multi-oracle problem class:
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Definition 5.5.7 (IWST”). Consider N items with an underlying ordering ‘σ’. For any items i, j and oracle
u,

pσu(i, j) =

{
1
2 + ϵ√

M
, if σ(i) = 1 and σ(j) = 2,

1
2 , otherwise.

For any (ϵ, δ)-correct ranking algorithm that outputs a ϵ-correct ranking under IWST” with probability
at least 1 − δ, we have that the algorithm must correctly rank between the largest item σ−1(1) and the
second-largest one σ−1(2).

Because all oracles have the same comparison probability, the problem is equivalent to ranking with a

single oracle, with the lower bound being Ω
(

N2M log(1/δ)
ϵ2

)
.

Further, we define the (ϵ, δ)-correctness for multiple oracles:

Definition 5.5.8. An algorithm A is called (ϵ, δ)-correct, if with probability at least 1− δ, A will output a

ranking σ̂ such that for all i ≻σ̂ j but j ≻σ i,
∑M

u=1(∆
u
i,j)

2 < ϵ2.

Intuitively, the equivalent probability margin
√∑M

u=1(∆
u
i,j)

2 must be small for any mis-ranked pair (i, j).

We have the following result:

Theorem 5.5.9. For any (ϵ, δ)-correct algorithmA, there exist a ranking σ and corresponding {pu(i, j)}u∈[M ]

such that with probability at least δ,∑
i,jCi,j = Ω

(
N2M log(1/δ)/ϵ2

)
= Ω̃

(
N2Hσ−1(1),σ−1(2)

)
,

where Ci,j denotes the queries made at (i, j).

Again, the lower bound is tight and can be reached by allocating the comparison budget evenly to each
pair and call Algorithm 5.3.

5.6 Experiments

5.6.1 Improved Algorithm for Practical Use

In this section, we present the algorithm that is modified for practical usage. Instead of using an estimator
µ̂i,j that only depends on the data collected in the same iteration of the for loop. A global estimator is
derived from the statistics collected from multiple iterations to save sample complexity (Line 6).

We study the practical performance of the proposed algorithm and compare it with existing methods.
We compare two methods in the experiment:

Probe-Max: the main algorithm proposed (Lou et al., 2022), however, their algorithm does not account
for multiple oracles. In this case, as a naive implementation, whenever a pair is requested, it chooses an
oracle from [M ] uniformly at random.

RMO-WST: Algorithm 5.1 proposed in this work. However, we notice that due to multiple uses of the union
bound, excessive sampling can occur, which is unrealistic in real-world scenarios.

For instance, repetitive sampling of m tasks as seen in Algorithm 5.4 at Line 2 can enhance the precision

of the overall estimate µ̂
(u,ℓ)
i,j . However, since s diminishes at an exponential rate, the quantities m and

tl also increase exponentially. Our hypothesis is that setting S1 = [M ]—in other words, maintaining a
constant size of m at M—can lead to greater efficiency. Additionally, the distribution of the accuracy of
active candidates is the same with or without the sampling without replacement in Line 6. Furthermore,
note that the confidence interval used from Line 8 to Line 9 still holds after the change. We also notice that,
in Line 7 the individual estimate and the global estimate depend only on the samples collected within a
single iteration of the for loop starting Line 4. This can also be improved by reusing the statistics collected
in previous rounds. We present the improved algorithm in Algorithm 5.5.

To start with, we randomly generate the comparison matrix according to the following rules: a) There
are N items to rank and a random permutation of [N ] is generated as the ground truth ranking. There
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Algorithm 5.5 (Improved version for practical adoption) Try-Compare(i, j, δ, s, h)

1: input: pair to query (i, j), confidence level δ, subset size s, estimated gap width h.
2: m = M .
3: S1 = [M ].
4: Let Sij

1 = Sji
1 = S1 and L = ⌈log4/3(M/s)⌉.

5: for ℓ = 0, · · · , L do
6: Request tℓ = n0m/|Sij

ℓ | comparisons for pair (i, j) from each oracle u ∈ Sij
ℓ ∪ Sji

ℓ . Denote ciju as the
number of times i ≻ j.

7: µ̂
(u,ℓ)
i,j =

∑
ℓ′∈[ℓ] c

ij

u,ℓ′∑
ℓ′∈[ℓ] tℓ′

, µ̂
(u,ℓ)
j,i = 1− µ̂

(u,ℓ)
i,j , µ̂

(ℓ)
i,j = 1

|Sij
ℓ |

∑
u∈Sij

ℓ
µ̂
(u,ℓ)
i,j .

8: if µ̂
(ℓ)
i,j − 1

2 ≥
√
2 log(2/δ)/n0m then

9: return i ≻ j
10: end if
11: if µ̂

(ℓ)
i,j − 1

2 < −
√
2 log(2/δ)/n0m then

12: return i ≺ j
13: end if
14: Sij

ℓ+1 ← {v ∈ Sij
ℓ |µ̂

(v,ℓ)
i,j ≥ medium of µ̂

(u,ℓ)
i,j , u ∈ Sij

ℓ }
15: Sji

ℓ+1 ← {v ∈ Sji
ℓ |µ̂

(v,ℓ)
j,i ≥ medium of µ̂

(u,ℓ)
j,i , u ∈ Sji

ℓ }
16: end for
17: return unsure.
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(c) M = 6

Figure 5.1: Sample complexities of ranking N ∈ {2, 4, 8, 16, 32, 64} items with M − 1 oracles have low
accuracy and one oracle has high accuracy.

are M oracles that can conduct pairwise evaluation each with a comparison matrix for pi,j . b) One of the
M oracles is very accurate and we assign a probability value for pi,j sampled from [0.85, 0.95] uniformly at
random if i ≻ j for every pair of items. c) For the rest of M − 1 oracles, we assign a value to pi,j sampled
uniformly at random from [0.55, 0.65] if i ≻ j.

We tested N ∈ {2, 4, 8, 16, 32, 64} to explore how the samples grow with the size of the problem. The
mix of accurate responses can also affect the performance gain. The average sample complexity of 32 runs
with one standard deviation error bar calculated by Python numpy library is plotted in Fig. 5.1a, Fig. 5.1b
and Fig. 5.1c for the case where M = 2, M = 4 and M = 6, respectively. In general, it is harder to
derive estimated rankings while the majority of the information is noisy (M = 6), as in this case the sample
complexity is much higher for both algorithms. However, regardless of the noisiness of oracles, the proposed
method always beats the baseline. In addition, if the proportion of the noisy oracles are high, then our
proposed method benefits more which is illustrated by the wider gap compared to the baseline method from
M = 2 to M = 6.
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Chapter 6

Contextual Borda Dueling Bandits

6.1 Introduction

Multi-armed bandits (MAB) (Lattimore and Szepesvári, 2020) is an interactive game where in each round,
an agent chooses an arm to pull and receives a noisy reward as feedback. In contrast to numerical feedback
considered in classic MAB settings, preferential feedback is more natural in various online learning tasks
including information retrieval Yue and Joachims (2009), recommendation systems Sui and Burdick (2014),
ranking Minka et al. (2018), crowdsourcing Chen et al. (2013), etc. Moreover, numerical feedback is also
more difficult to gauge and prone to errors in many real-world applications. For example, when provided
with items to shop or movies to watch, it is more natural for a customer to pick a preferred one than scoring
the options. This motivates Dueling Bandits (Yue and Joachims, 2009), where the agent repeatedly pulls
two arms at a time and is provided with feedback being the binary outcome of “duels” between the two
arms.

In dueling bandits problems, the outcome of duels is commonly modeled as Bernoulli random variables
due to their binary nature. In each round, suppose the agent chooses to compare arm i and j, then the
binary feedback is assumed to be sampled independently from a Bernoulli distribution. For a dueling bandits
instance withK arms, the probabilistic model of the instance can be fully characterized by aK×K preference
probability matrix with each entry being: pi,j = P(arm i is chosen over arm j).

In a broader range of applications such as ranking, “arms” are often referred to as “items”. We will
use these two terms interchangeably in the rest of this chapter. One central goal of dueling bandits is to
devise a strategy to identify the “optimal” item as quickly as possible, measured by either sample complexity
or cumulative regret. However, the notion of optimality for dueling bandits is way harder to define than
for multi-armed bandits. The latter can simply define the arm with the highest numerical feedback as the
optimal arm, while for dueling bandits there is no obvious definition solely dependent on {pi,j |i, j ∈ [K]}.

The first few works on dueling bandits imposed strong assumptions on pi,j . For example, Yue et al.
(2012) assumed that there exists a true ranking that is coherent among all items, and the preference proba-
bilities must satisfy both strong stochastic transitivity (SST) and stochastic triangle inequality (STI). While
relaxations like weak stochastic transitivity (Falahatgar et al., 2018) or relaxed stochastic transitivity (Yue
and Joachims, 2011) exist, they typically still assume the true ranking exists and the preference probabil-
ities are consistent, i.e., pi,j > 1

2 if and only if i is ranked higher than j. In reality, the existence of such
coherent ranking aligned with item preferences is rarely the case. For example, pi,j may be interpreted as
the probability of one basketball team i beating another team j, and there can be a circle among the match
advantage relations.

In this chapter, we do not assume such coherent ranking exists and solely rely on the Borda score based
on preference probabilities. The Borda score B(i) of an item i is the probability that it is preferred when
compared with another random item, namely B(i) := 1

K−1

∑
j ̸=i pi,j . The item with the highest Borda

score is called the Borda winner. The Borda winner is intuitively appealing and always well-defined for any
set of preferential probabilities. The Borda score also does not require the problem instance to obey any
consistency or transitivity, and it is considered one of the most general criteria.

To identify the Borda winner, estimations of the Borda scores are needed. Since estimating the Borda
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score for one item requires comparing it with every other items, the sample complexity is prohibitively
high when there are numerous items. On the other hand, in many real-world applications, the agent has
access to side information that can assist the evaluation of pi,j . For instance, an e-commerce item carries
its category as well as many other attributes, and the user might have a preference for a certain category
(Wang et al., 2018). For a movie, the genre and the plot as well as the directors and actors can also be taken
into consideration when making choices (Liu et al., 2017).

Based on the above motivation, we consider Generalized Linear Dueling Bandits. In each round, the
agent selects two items from a finite set of items and receives a comparison result of the preferred item. The
comparisons depend on known intrinsic contexts/features associated with each pair of items. The contexts
can be obtained from upstream tasks, such as topic modeling (Zhu et al., 2012) or embedding (Vasile et al.,
2016). Our goal is to adaptively select items and minimize the regret with respect to the optimal item (i.e.,
Borda winner). Our main contributions are summarized as follows:
• We show a hardness result regarding the Borda regret minimization for the (generalized) linear model.
We prove a worst-case regret lower bound Ω(d2/3T 2/3) for our dueling bandit model, showing that even
in the stochastic setting, minimizing the Borda regret is difficult. The construction and proof of the lower
bound are new and might be of independent interest.

• We propose an explore-then-commit type algorithm under the stochastic setting, which can achieve a
nearly matching upper bound Õ(d2/3T 2/3). When the number of items K is small, the algorithm can also

be configured to achieve a smaller regret Õ
(
(d logK)1/3T 2/3

)
.

• We propose an EXP3 type algorithm for linear dueling bandits under the adversarial setting, which can
achieve a nearly matching upper bound Õ

(
(d logK)1/3T 2/3

)
.

• We conduct empirical studies to verify the correctness of our theoretical claims. Under both synthetic and
real-world data settings, our algorithms can outperform all the baselines in terms of cumulative regret.

6.2 Related Work

Multi-armed and Contextual Bandits Multi-armed bandit is a problem of identifying the best choice
in a sequential decision-making system. It has been studied in numerous ways with a wide range of appli-
cations (Even-Dar et al., 2002; Lai et al., 1985; Kuleshov and Precup, 2014). Contextual linear bandit is a
special type of bandit problem where the agent is provided with side information, i.e., contexts, and rewards
are assumed to have a linear structure. Various algorithms (Rusmevichientong and Tsitsiklis, 2010; Filippi
et al., 2010; Abbasi-Yadkori et al., 2011; Li et al., 2017; Jun et al., 2017) have been proposed to utilize this
contextual information.

Dueling Bandits and Its Performance Metrics Dueling bandits is a variant of MAB with preferential
feedback (Yue et al., 2012; Zoghi et al., 2014, 2015). A comprehensive survey can be found at Bengs et al.
(2021). As discussed previously, the probabilistic structure of a dueling bandits problem is governed by the
preference probabilities, over which an optimal item needs to be defined. Optimality under the Borda score
criteria has been adopted by several previous works (Jamieson et al., 2015; Falahatgar et al., 2017a; Heckel
et al., 2018; Saha et al., 2021). The most relevant work to ours is Saha et al. (2021), where they studied the
problem of regret minimization for adversarial dueling bandits and proved a T -round Borda regret upper
bound Õ(K1/3T 2/3). They also provide an Ω(K1/3T 2/3) lower bound for stationary dueling bandits using
Borda regret.

Apart from the Borda score, Copeland score is also a widely used criteria (Urvoy et al., 2013; Zoghi et al.,
2015, 2014; Wu and Liu, 2016; Komiyama et al., 2016). It is defined as C(i) := 1

K−1

∑
j ̸=i 1{pi,j > 1/2}. A

Copeland winner is the item that beats the most number of other items. It can be viewed as a “thresholded”
version of Borda winner. In addition to Borda and Copeland winners, optimality notions such as a von
Neumann winner were also studied in Ramamohan et al. (2016); Dud́ık et al. (2015); Balsubramani et al.
(2016).

Another line of work focuses on identifying the optimal item or the total ranking, assuming the preference
probabilities are consistent. Common consistency conditions include Strong Stochastic Transitivity (Yue
et al., 2012; Falahatgar et al., 2017a,b), Weak Stochastic Transitivity (Falahatgar et al., 2018; Ren et al.,
2019; Wu et al., 2022; Lou et al., 2022), Relaxed Stochastic Transitivity (Yue and Joachims, 2011) and
Stochastic Triangle Inequality. Sometimes the aforementioned transitivity can also be implied by some
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structured models like the Bradley–Terry model. We emphasize that these consistency conditions are not
assumed or implicitly implied in our setting.

Contextual Dueling Bandits In Dud́ık et al. (2015), contextual information is incorporated in the
dueling bandits framework. Later, Saha (2021) studied a structured contextual dueling bandits setting
where each item i has its own contextual vector xi (sometimes called Linear Stochastic Transitivity). Each
item then has an intrinsic score vi equal to the linear product of an unknown parameter vector θ∗ and its
contextual vector xi. The preference probability between two items i and j is assumed to be µ(vi−vj) where
µ(·) is the logistic function. These intrinsic scores of items naturally define a ranking over items. The regret
is also computed as the gap between the scores of pulled items and the best item. While in this chapter, we
assume that the contextual vectors are associated with item pairs and define regret on the Borda score. In
Section 6.3.2, we provide a more detailed discussion showing that the setting considered in Saha (2021) can
be viewed as a special case of our model.

6.3 Problem Setup and Preliminaries

We first consider the stochastic preferential feedback model with K items in the fixed time horizon setting.
We denote the item set by [K] and let T be the total number of rounds. in each round t, the agent can pick
any pair of items (it, jt) to compare and receive stochastic feedback about whether item it is preferred over
item jt, (denoted by it ≻ jt). We denote the probability of seeing the event i ≻ j as pi,j ∈ [0, 1]. Naturally,
we assume pi,j + pj,i = 1, and pi,i = 1/2.

In this chapter, we are concerned with the generalized linear model (GLM), where there is assumed to
exist an unknown parameter θ∗ ∈ Rd, and each pair of items (i, j) has its own known contextual/feature
vector ϕi,j ∈ Rd with ∥ϕi,j∥ ≤ 1. There is also a fixed known link function (sometimes called comparison
function) µ(·) that is monotonically increasing and satisfies µ(x) + µ(−x) = 1, e.g. a linear function or the
logistic function µ(x) = 1/(1 + e−x). The preference probability is defined as pi,j = µ(ϕ⊤

i,jθ
∗). In each

round, denote rt = 1{it ≻ jt}, then we have

E[rt|it, jt] = pit,jt = µ(ϕ⊤
it,jtθ

∗).

Then our model can also be written as

rt = µ(ϕ⊤
it,jtθ

∗) + ϵt,

where the noises {ϵt}t∈[T ] are zero-mean, 1-sub-Gaussian and assumed independent from each other. Note
that, given the constraint pi,j + pj,i = 1, it is implied that ϕi,j = −ϕj,i for any i ∈ [K], j ∈ [K].

The agent’s goal is to maximize the cumulative Borda score. The (slightly modified 1) Borda score of item

i is defined as B(i) = 1
K

∑K
j=1 pi,j , and the Borda winner is defined as i∗ = argmaxi∈[K] B(i). The problem

of merely identifying the Borda winner was deemed trivial (Zoghi et al., 2014; Bengs et al., 2021) because for
a fixed item i, uniformly random sampling j and receiving feedback ri,j = Bernoulli(pi,j) yield a Bernoulli
random variable with its expectation being the Borda score B(i). This so-called Borda reduction trick makes
identifying the Borda winner as easy as the best-arm identification for K-armed bandits. Moreover, if the
regret is defined as Regret(T ) =

∑T
t=1(B(i∗) − B(it)), then any optimal algorithms for multi-arm bandits

can achieve Õ(
√
T ) regret.

However, the above definition of regret does not respect the fact that a pair of items is selected in each
round. When the agent chooses two items to compare, it is natural to define the regret so that both items
contribute equally. A commonly used regret, e.g., in Saha et al. (2021), has the following form:

Regret(T ) =

T∑
t=1

(
2B(i∗)−B(it)−B(jt)

)
, (6.3.1)

where the regret is defined as the sum of the sub-optimality of both selected arms. Sub-optimality is measured
by the gap between the Borda scores of the compared items and the Borda winner. This form of regret deems

1Previous works define Borda score as B′
i = 1

K−1

∑
j ̸=i pi,j , excluding the diagonal term pi,i = 1/2. Our definition is

equivalent since the difference between two items satisfies B(i)−Bj = K−1
K

(B′
i−B′

j). Therefore, the regret will be in the same
order for both definitions.
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any classical multi-arm bandit algorithm with Borda reduction vacuous because taking jt into consideration
will invoke Θ(T ) regret.

Adversarial Setting Saha et al. (2021) considered an adversarial setting for the multi-armed case, where
in each round t, the comparison follows a potentially different probability model, denoted by {pti,j}i,j∈[K]. In
this chapter, we consider its contextual counterpart. Formally, we assume there is an underlying parameter
θ∗
t , and in round t, the preference probability is defined as pti,j = µ(ϕ⊤

i,jθ
∗
t ).

The Borda score of item i ∈ [K] in round t is defined as Bt(i) = 1
K

∑K
j=1 p

t
i,j , and the Borda winner

in round T is defined as i∗ = argmaxi∈[K]

∑T
t=1 Bt(i). The T -round regret is thus defined as Regret(T ) =∑T

t=1

(
2Bt(i

∗)−Bt(it)−Bt(jt)
)
.

6.3.1 Assumptions

In this section, we present the assumptions required for establishing theoretical guarantees. Due to the fact
that the analysis technique is largely extracted from Li et al. (2017), we follow them to make assumptions
to enable regret minimization for generalized linear dueling bandits.

We make a regularity assumption about the distribution of the contextual vectors:

Assumption 6.3.1. There exists a constant λ0 > 0 such that λmin

(
1

K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j

)
≥ λ0.

This assumption is only utilized to initialize the design matrix Vτ =
∑τ

t=1 ϕit,jtϕ
⊤
it,jt

so that the mini-
mum eigenvalue is large enough. We follow Li et al. (2017) to deem λ0 as a constant.

We also need the following assumption regarding the link function µ(·):

Assumption 6.3.2. Let µ̇ be the first-order derivative of µ. We have κ := inf∥x∥≤1,∥θ−θ∗∥≤1 µ̇(x
⊤θ) > 0.

Assuming κ > 0 is necessary to ensure the maximum log-likelihood estimator can converge to the true
parameter θ∗ (Li et al., 2017, Section 3). This type of assumption is commonly made in previous works for
generalized linear models (Filippi et al., 2010; Li et al., 2017; Faury et al., 2020).

Another common assumption is regarding the continuity and smoothness of the link function.

Assumption 6.3.3. µ is twice differentiable. Its first and second-order derivatives are upper-bounded by
constants Lµ and Mµ respectively.

This is a very mild assumption. For example, it is easy to verify that the logistic link function satisfies
Theorem 6.3.3 with Lµ = Mµ = 1/4.

6.3.2 Existing Results for Structured Contexts

A structural assumption made by some previous works (Saha, 2021) is that ϕi,j = xi − xj , where xi can be
seen as some feature vectors tied to the item. In this work, we do not consider minimizing the Borda regret
under the structural assumption.

The immediate reason is that, when pi,j = µ(x⊤
i θ

∗ − x⊤
j θ

∗), with µ(·) being the logistic function,
the probability model pi,j effectively becomes (a linear version of) the well-known Bradley-Terry model.
Namely, each item is tied to a value vi = x⊤

i θ
∗, and the comparison probability follows pi,j =

evi

evi+evj
. More

importantly, this kind of model satisfies both the strong stochastic transitivity (SST) and the stochastic
triangle inequality (STI), which are unlikely to satisfy in reality.

Furthermore, when stochastic transitivity holds, there is a true ranking among the items, determined
by x⊤

i θ
∗. A true ranking renders concepts like the Borda winner or Copeland winner redundant because

the rank-one item will always be the winner in every sense. When ϕi,j = xi − xj , Saha (2021) proposed

algorithms that can achieve nearly optimal regret Õ(d
√
T ), with regret being defined as

Regret(T ) =

T∑
t=1

2⟨xi∗ ,θ
∗⟩ − ⟨xit ,θ

∗⟩ − ⟨xjt ,θ
∗⟩, (6.3.2)
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where i∗ = argmaxi⟨xi,θ
∗⟩, which also happens to be the Borda winner. Meanwhile, by Theorem 6.3.3,

B(i∗)−B(j)

=
1

K

K∑
k=1

[
µ(⟨xi∗ − xk,θ

∗⟩)− µ(⟨xj − xk,θ
∗⟩)
]

≤ Lµ · ⟨xi∗ − xj ,θ
∗⟩,

where Lµ is the upper bound on the derivative of µ(·). For logistic function Lµ = 1/4. The Borda regret
(6.3.1) is thus at most a constant multiple of (6.3.2). This shows Borda regret minimization can be sufficiently
solved by Saha (2021) when structured contexts are present. We consider the most general case where the
only restriction is the implicit assumption that ϕi,j = −ϕj,i.

6.4 Proposed Algorithm for Generalized Contextual Dueling Ban-
dits

Algorithm 6.1 BETC-GLM

1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for i ∈ [K], j ∈ [K],
exploration rounds τ , error tolerance ϵ, failure probability δ.

2: for t = 1, 2, . . . , τ do
3: sample it ∼ Uniform([K]), jt ∼ Uniform([K])
4: query pair (it, jt) and receive feedback rt
5: end for
6: Find the G-optimal design π(i, j) based on ϕi,j for i ∈ [K], j ∈ [K]

7: Let N(i, j) =
⌈
dπ(i,j)

ϵ2

⌉
for any (i, j) ∈ supp(π) , denote N =

∑K
i=1

∑K
j=1 N(i, j)

8: for i ∈ [K], j ∈ [K], s ∈ [N(i, j)] do
9: set t← t+ 1, set (it, jt) = (i, j)

10: query pair (it, jt) and receive feedback rt
11: end for
12: Calculate the empirical MLE estimator θ̂τ+N based on all τ +N samples via (6.4.1)
13: Estimate the Borda score for each item:

B̂(i) =
1

K

K∑
j=1

µ(ϕ⊤
i,j θ̂τ+N ), î = argmax

i∈[K]

B̂(i)

14: Keep querying (̂i, î) for the rest of the time.

We propose an algorithm named Borda Explore-Then-Commit for Generalized Linear Models (BETC-
GLM), presented in Algorithm 6.1. Our algorithm is inspired by the algorithm for generalized linear models
proposed by Li et al. (2017).

At the high level, Algorithm 6.1 can be divided into two phases: the exploration phase (Line 2-11) and the

exploitation phase (Line 12-14). The exploration phase ensures that the MLE estimator θ̂ is accurate enough

so that the estimated Borda score is within Õ(ϵ)-range of the true Borda score (ignoring other quantities).
Then the exploitation phase simply chooses the empirical Borda winner to incur small regret.

During the exploration phase, the algorithm first performs “pure exploration” (Line 2-5), which can be
seen as an initialization step for the algorithm. The purpose of this step is to ensure the design matrix
Vτ+N =

∑τ+N
t=1 ϕit,jtϕ

⊤
it,jt

is positive definite.
After that, the algorithm will perform the “designed exploration”. Line 6 will find the G-optimal design,

which minimizes the objective function g(π) = maxi,j ∥ϕi,j∥2V(π)−1 , where V(π) :=
∑

i,j π(i, j)ϕi,jϕ
⊤
i,j . The

G-optimal design π∗(·) satisfies ∥ϕi,j∥2V(π∗)−1 ≤ d, and can be efficiently approximated by the Frank-Wolfe
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algorithm (See Theorem 6.4.4 for a detailed discussion). Then the algorithm will follow π(·) found at Line 6

to determine how many samples (Line 7) are needed. At Line 8-11, there are in total N =
∑K

i=1

∑K
j=1 N(i, j)

samples queried, and the algorithm shall index them by t = τ + 1, τ + 2, . . . , τ +N .
At Line 12, the algorithm collects all the τ+N samples and performs the maximum likelihood estimation

(MLE). For the generalized linear model, the MLE estimator θ̂τ+N satisfies:

τ+N∑
t=1

µ(ϕ⊤
it,jt θ̂τ+N )ϕit,jt =

τ+N∑
t=1

rtϕit,jt , (6.4.1)

or equivalently, it can be determined by solving a strongly concave optimization problem:

θ̂τ+N ∈ argmax
θ

τ+N∑
t=1

(
rtϕ

⊤
it,jtθ −m(ϕ⊤

it,jtθ)

)
,

where ṁ(·) = µ(·). For the logistic link function, m(x) = log(1 + ex). As a special case of our generalized
linear model, the linear model has a closed-form solution for (6.4.1). For example, if µ(x) = 1

2 + x, i.e.
pi,j =

1
2 + ϕ⊤

i,jθ
∗, then (6.4.1) becomes:

θ̂τ+N = V−1
τ+N

τ+N∑
t=1

(rt − 1/2)ϕit,jt ,

where Vτ+N =
∑τ+N

t=1 ϕit,jtϕ
⊤
it,jt

.

After the MLE estimator is obtained, Line 13 will calculate the estimated Borda score B̂(i) for each item

based on θ̂τ+N , and pick the empirically best one.
The theoretical guarantee of G-optimal design is provided below: given an action set X ⊆ Rd that is

compact and span(X ) = Rd. A fixed design π(·) : X → [0, 1] satisfies
∑

x∈X π(x) = 1. Define V(π) :=∑
x∈X π(x)xx⊤ and g(π) := maxx∈X ∥x∥2V(π)−1 .

Lemma 6.4.1 (The Kiefer–Wolfowitz Theorem, Section 21.1, Lattimore and Szepesvári (2020)). There
exists an optimal design π∗(·) such that |supp(π)| ≤ d(d+ 1)/2, and satisfies:

1. g(π∗) = d.

2. π∗ is the minimizer of g(·).

Remark 6.4.2 (Regret for Fewer Arms). In typical scenarios, the number of items K is not exponentially
large in the dimension d. In this case, we can choose a different parameter set of τ and ϵ such that
Algorithm 6.1 can achieve a smaller regret bound Õ

(
κ−1(d logK)1/3T 2/3

)
with smaller dependence on the

dimension d.

Remark 6.4.3 (Regret for Infinitely Many Arms). In most practical scenarios of dueling bandits, it is
adequate to consider a finite number K of items (e.g., ranking items). Nonetheless, BETC-GLM can be
easily adapted to accommodate infinitely many arms in terms of regret. We can construct a covering over
all ϕi,j and perform optimal design and exploration on the covering set. The resulting regret will be the

same as our upper bound, i.e., Õ(d2/3T 2/3) up to some error caused by the epsilon net argument.

Remark 6.4.4 (Approximate G-optimal Design). Algorithm 6.1 assumes an exact G-optimal design π
is obtained. In the experiments, we use the Frank-Wolfe algorithm to solve the constraint optimization
problem (See Algorithm 6.5, Section 6.7.3). To find a policy π such that g(π) ≤ (1+ε)g(π∗), roughly O(d/ε)
optimization steps are needed. Such a near-optimal design will introduce a factor of (1+ε)1/3 into the upper
bounds.

Remark 6.4.5 (Computational Complexity). While the regret or sample complexity does not rely on the
number of armsK, the computation complexity of any algorithm will inevitably suffer from largeK. It is clear
that Ω(K2) operations are necessary to at least traverse over all contextual vectors ϕi,j . For Algorithm 6.1,
the most computation-intensive part is the G-optimal design, where each optimization step will take O(d2K2)
basic operations. A breakdown of this cost is available in Section 6.7.3. To solve (6.4.1), gradient descent
cab be used and each step requires O(dK2) operations.
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6.5 Proposed Algorithm for Adversarial Contextual Dueling Ban-
dit

This section addresses Borda regret minimization under the adversarial setting. As we introduced in Sec-
tion 6.3, the unknown parameter θt can vary for each round t, while the contextual vectors ϕi,j are fixed.

Our proposed algorithm, BEXP3, is designed for the contextual linear model. Formally, in round t and
given pair (i, j), we have pti,j =

1
2 + ⟨ϕi,j ,θ

∗
t ⟩.

6.5.1 Algorithm Description

Algorithm 6.2 BEXP3

1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for i ∈ [K], j ∈ [K],
learning rate η, exploration parameter γ.

2: Initialize: q1(i) =
1
K .

3: for t = 1, . . . , T do
4: Sample items it ∼ qt, jt ∼ qt.
5: Query pair (it, jt) and receive feedback rt
6: Calculate Qt =

∑
i∈[K]

∑
j∈[K] qt(i)qt(j)ϕi,jϕ

⊤
i,j , θ̂t = Q−1

t ϕit,jtrt.

7: Calculate the (shifted) Borda score estimates B̂t(i) = ⟨ 1K
∑

j∈[K] ϕi,j , θ̂t⟩.
8: Update for all i ∈ [K], set

q̃t+1(i) =
exp(η

∑t
l=1 B̂l(i))∑

j∈[K] exp(η
∑t

l=1 B̂l(j))
; qt+1(i) = (1− γ)q̃t+1(i) +

γ

K
.

9: end for

Algorithm 6.2 is adapted from the DEXP3 algorithm in Saha et al. (2021), which deals with the adversarial
multi-armed dueling bandit. Algorithm 6.2 maintains a distribution qt(·) over [K], initialized as uniform
distribution (Line 2). In every round t, two items are chosen following qt independently. Then Line 6

calculates the one-sample unbiased estimate θ̂t of the true underlying parameter θ∗
t . Line 7 further calculates

the unbiased estimate of the (shifted) Borda score. Note that the true Borda score in round t satisfies

Bt(i) = 1
2 + ⟨ 1K

∑
j∈[K] ϕi,j ,θ

∗
t ⟩. B̂t instead only estimates the second term of the Borda score. This is

a choice to simplify the proof. The cumulative estimated score
∑t

l=1 B̂l(i) can be seen as the estimated
cumulative reward of item i in round t. In Line 8, qt+1 is defined by the classic exponential weight update,
along with a uniform exploration policy controlled by γ.

6.6 Construction of Hardness Cases

This specific construction emphasizes the intrinsic hardness of Borda regret minimization: to differentiate
the best item from its close competitors, the algorithm must query the bad items to gain information.

The construction of this hard instance for linear dueling bandits is inspired by the worst-case lower bound
for the stochastic linear bandit (Dani et al., 2008), which has the order Ω(d

√
T ), while ours is Ω(d2/3T 2/3).

The difference is that for the linear or multi-armed stochastic bandit, eliminating bad arms can make
further exploration less expensive. But in our case, any amount of exploration will not reduce the cost of
further exploration. This essentially means that exploration and exploitation must be separate, which is
also supported by the fact that a simple explore-then-commit algorithm shown in Section 6.4 can be nearly
optimal.

For any d > 0, we construct a hard instance with 2d+1 items (indexed from 0 to 2d+1− 1). We construct
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Figure 6.1: Illustration of the hard-to-learn preference probability matrix {pθi,j}i∈[K],j∈[K]. There are K =

2d+1 items in total. The first 2d items are “good” items with higher Borda scores, and the last 2d items are
“bad” items. The upper right block {pi,j}i<2d,j≥2d is defined as shown in the blue bubble. The lower left
block satisfies pi,j = 1− pj,i. For any θ, there exist one and only best item i such that bit(i) = sign(θ).

the hard instance pθi,j for any θ ∈ {−∆,+∆}d as:

pθi,j =


1
2 , if i < 2d, j < 2d

1
2 , if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+ ⟨ϕi,j ,θ⟩, (6.6.1)

where the feature vectors ϕi,j and the parameter θ are of dimension d, and have the following forms:

ϕi,j =


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

bit(i), if i < 2d, j ≥ 2d

−bit(j), if i ≥ 2d, j < 2d,

where bit(·) is the (shifted) bit representation of non-negative integers, i.e., suppose x = b0 × 20 + b1 × 21 +
· · ·+ bd−1 × 2d−1, then bit(x) = 2b− 1. Note that bit(·) ∈ {−1,+1}d, and ϕi,j = −ϕj,i.

We rewrite (6.6.1) as:

pθi,j =


1
2 , if i < 2d, j < 2d

1
2 , if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

⟨bit(i),θ⟩, if i < 2d, j ≥ 2d

−⟨bit(j),θ⟩, if i ≥ 2d, j < 2d,

(6.6.2)

and the Borda scores are:

Bθ(i) =

{
5
8 + 1

2 ⟨bit(i),θ⟩, if i < 2d,
3
8 , if i ≥ 2d.

Intuitively, the former half arms indexed from 0 to 2d−1 are “good” arms (one among them is optimal), while
the latter half arms are “bad” arms. It is clear that choosing a “bad” arm i will incur regret B(i∗)−B(i) ≥
1/4.

6.7 Experiments

This section compares the proposed algorithmBETC-GLM with existing ones that are capable of minimizing
Borda regret. We use random responses (generated from fixed preferential matrices) to interact with all tested
algorithms. Each algorithm is run for 50 times over a time horizon of T = 106. We report both the mean
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Figure 6.2: The regret of the proposed algorithms (BETC-GLM, BEXP3) and the baseline algorithms
(UCB-Borda, DEXP3, ETC-Borda).

and the standard deviation of the cumulative Borda regret and supply some analysis. The following list
summarizes all methods we study in this section: BETC-GLM(-Match): Algorithm 6.1 proposed in this

chapter. For general link function, to find θ̂ by MLE in (6.4.1), 100 rounds of gradient descent are performed.
The failure probability is set to δ = 1/T .

UCB-Borda: The UCB algorithm (Auer et al., 2002) using Borda reduction technique mentioned by
Bengs et al. (2021). The complete listing is displayed in Algorithm 6.3.

DEXP3: Dueling-Exp3 is an adversarial Borda bandit algorithm developed by Saha et al. (2021), which
also applies to our stationary bandit case. Relevant tuning parameters are set according to their upper-bound
proof.

ETC-Borda: We devise a simple explore-then-commit algorithm, named ETC-Borda. Like DEXP3,
ETC-Borda does not take any contextual information into account. The complete procedure of ETC-
Borda is displayed in Algorithm 6.4, Section 6.7.3. The failure probability δ is optimized as 1/T .

BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm 6.2.

6.7.1 Simulated Study: Generated Hard Case

We first test the algorithms on the hard instances constructed in Section 6.6. We generate θ∗ randomly
from {−∆,+∆}d with ∆ = 1

4d so that the comparison probabilities pθ
∗

i,j ∈ [0, 1] for all i, j ∈ [K]. We pick

the dimension d = 6 and the number of arms is therefore K = 2d+1 = 128. Note the dual usage of d in our
construction and the model setup in Section 6.3.

As depicted in Fig. 6.2a, the proposed algorithms (BETC-GLM, BEXP3) outperform the baseline
algorithms in terms of cumulative regret when reaching the end of time horizon T . For UCB-Borda, since
it is not tailored for the dueling regret definition, it suffers from a linear regret as its second arm is always
sampled uniformly at random, leading to a constant regret per round. DEXP3 and ETC-Borda are two
algorithms designed for K-armed dueling bandits. Both are unable to utilize contextual information and
thus demand more exploration. As expected, their regrets are higher than BETC-GLM or BEXP3.

In Fig. 6.3 we show that under the same experimental setting, tuning the error tolerance ϵ in BETC can
further reduce its total regret up to a constant factor, showing that under suitable hyper-parameter choices,
BETC can outperform BEXP3.

6.7.2 Real-world Data Experiments

To showcase the performance of the algorithms in a real-world setting, we use the EventTime dataset
(Zhang et al., 2016). In this dataset, K = 100 historical events are compared in a pairwise fashion by crowd-
sourced workers. We first calculate the empirical preference probabilities p̃i,j from the collected responses,
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Figure 6.3: The performance of BETC under different choices of error tolerance ϵ, compared with BEXP3.
We examined BETC with ϵ, 2ϵ, 4ϵ, 8ϵ where ϵ = d1/6T−1/3.
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Figure 6.5: The regret of the proposed algorithm (BETC-GLM,BEXP3) and the baseline algorithms
(UCB-Borda, DEXP3, ETC-Borda).

and construct a generalized linear model based on the empirical preference probabilities. The algorithms are
tested under this generalized linear model. Due to space limitations, more details are deferred to Section 6.7.2.

As depicted in Fig. 6.2b, the proposed algorithm BETC-GLM outperforms the baseline algorithms in
terms of cumulative regret when reaching the end of time horizon T . The other proposed algorithm BEXP3
performs equally well even when misspecified (the algorithm is designed for the linear setting, while the
comparison probability follows a logistic model).

We first calculate the empirical preference probabilities p̃i,j from the collected responses. During simu-
lation, p̃i,j is the parameter of the Bernoulli distribution that is used to generate the responses whenever a
pair (i, j) is queried. The contextual vectors ϕi,j are generated randomly from {−1,+1}5. For simplicity, we
assign the item pairs that have the same probability value with the same contextual vector, i.e., if p̃i,j = p̃k,l
then ϕi,j = ϕk,l. The MLE estimator θ̂ in (6.4.1) is obtained to construct the recovered preference prob-

ability p̂i,j := µ(ϕ⊤
i,j θ̂) where µ(x) = 1/(1 + e−x) is the logistic function. We ensure that the recovered

preference probability p̂i,j is close to p̃i,j , so that ϕi,j are informative enough. As shown in Fig. 6.4, our
algorithm outperforms the baseline methods as expected. In particular, the gap between our algorithm
and the baselines is even larger than that under the generated hard case. In both settings, our algorithms
demonstrated a stable performance with negligible variance.
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6.7.3 Additional Information for Experiments

The UCB-Borda Algorithm

The UCB-Borda procedure, displayed in Algorithm 6.3 is a UCB algorithm with Borda reduction only
capable of minimization of regret in the following form:

Regret(T ) =

T∑
t=1

(
B(i∗)−B(it)

)
.

Let ni be the number of times arm i ∈ [K] has been queried. Let wi be the number of times arm i wins the

duel. B̂(i) is the estimated Borda score. α is set to 0.3 in all experiments.

Algorithm 6.3 UCB-Borda

1: Input: time horizon T , number of items K, exploration parameter α.
2: Initialize: n = w = {0}K , B̂(i) = 1

2 , i ∈ [K]
3: for t = 1, 2, . . . , T do

4: it = argmaxk∈[K]

(
B̂k +

√
α log(t)

nk

)
5: sample jt ∼ Uniform([K])
6: query pair (it, jt) and receive feedback rt ∼ Bernoulli(pit,jt)

7: nit = nit + 1, wit = wit + rt, B̂(it) =
wit

nit

8: end for

The ETC-Borda Algorithm

The ETC-Borda procedure, displayed in Algorithm 6.4 is an explore-then-commit type algorithm capable
of minimizing the Borda dueling regret. It can be shown that the regret of Algorithm 6.4 is Õ(K1/3T 2/3).

Algorithm 6.4 ETC-Borda

1: Input: time horizon T , number of items K, target failure probability δ
2: Initialize: n = w = {0}K , B̂(i) = 1

2 , i ∈ [K]

3: Set N = ⌈K−2/3T 2/3 log(K/δ)1/3⌉
4: for t = 1, 2, . . . , T do

5: Choose action it ←

{
1 + (t− 1) mod K, if t ≤ KN,

argmaxi∈[K] B̂(i), if t > KN.

6: Choose action jt =

{
Uniform([K]), if t ≤ KN,

argmaxi∈[K] B̂(i), if t > KN.

7: query pair (it, jt) and receive feedback rt ∼ Bernoulli(pit,jt)
8: if t ≤ N then
9: nit = nit + 1, wit = wit + rt, B̂(it) =

wit

nit

10: end if
11: end for

Frank-Wolfe algorithm used to find approximate solution for G-optimal design

In order to find a solution for the G-optimal design problem, we resort to the Frank-Wolfe algorithm to find
an approximate solution. The detailed procedure is listed in Algorithm 6.5. In Line 4, each outer product
costs d2 multiplications, K2 such matrices are scaled and summed into a d-by-d matrix V(π), which costs
O(K2d2) operations in total. In Line 5, one matrix inversion costs approximately O(d3). The weighted norm
requires O(d2) and the maximum is taken over K2 such calculated values. The scaling and update in the
following lines only require O(K2). In summary, the algorithm is dominated by the calculation in Line 5
which costs O(d2K2).

100



In experiments, the G-optimal design π(i, j) is approximated by running 20 iterations of Frank-Wolfe
algorithm, which is more than enough for its convergence given our particular problem instance. (See Note
21.2 in (Lattimore and Szepesvári, 2020)).

Algorithm 6.5 G-optimal design by Frank-Wolfe

1: Input: number of items K, contextual vectors ϕi,j , i ∈ [K], j ∈ [K], number of iterations R
2: Initialize: π1(i, j) = 1/K2

3: for r = 1, 2, · · · , R do
4: V(πr) =

∑
i,j πr(i, j)ϕi,jϕ

⊤
i,j

5: i∗r , j
∗
r = argmax(i,j)∈[K]×[K] ||ϕi,j ||V(πr)−1

6: gr = ||ϕi∗r ,j
∗
r
||V(πr)−1

7: γr = gr−1/d
gr−1

8: πr+1(i, j) = (1− γr)πr(i, j) + γr1(i
∗
r = i)1(j∗r = j)

9: end for
10: Output: Approximate G-optimal design solution πR+1(i, j)
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Chapter 7

Variance-Aware Contextual Dueling
Bandits

7.1 Introduction

Intuitively, the variance of the noise in the feedback signal determines the difficulty of the problem. To
illustrate, consider an extreme case, where the feedback of a linear contextual bandit is noiseless (i.e., the
variance is zero). A learner can recover the underlying reward function precisely by exploring each dimension

only once, and suffer a Õ(d) regret in total, where d is the dimension of the context vector. This motivates a
series of works on establishing variance-aware regret bounds for multi-armed bandits, e.g. (Audibert et al.,
2009; Mukherjee et al., 2017) and contextual bandits, e.g. (Zhou et al., 2021; Zhang et al., 2021; Kim et al.,
2022; Zhao et al., 2023b,a). This observation also remains valid when applied to the dueling bandit scenario.
In particular, the binary preferential feedback is typically assumed to adhere to a Bernoulli distribution,
with the mean value denoted by p. The variance reaches its maximum when p is close to 1/2, a situation
that is undesirable in human feedback applications, as it indicates a high level of disagreement or indecision.
Therefore, maintaining a low variance in comparisons is usually preferred, and variance-dependent dueling
algorithms are desirable because they can potentially perform better than those algorithms that only have
worst-case regret guarantees.

In this chapter, We propose a new algorithm, named VACDB, to obtain a variance-aware regret guarantee.
This algorithm is built upon several innovative designs, including (1) adaptation of multi-layered estimators
to generalized linear models where the mean and variance are coupled (i.e., Bernoulli distribution), (2)
symmetric arm selection that naturally aligns with the actual reward maximization objective in dueling
bandits.

We prove that our algorithm enjoys a variance-aware regret bound Õ
(
d
√∑T

t=1 σ
2
t + d

)
, where σt is the

variance of the comparison in round t. Our algorithm is computationally efficient and does not require any
prior knowledge of the variance level, which is available in the dueling bandit scenario. In the deterministic
case, our regret bound becomes Õ(d), showcasing a remarkable improvement over previous works. When the
variances of the pairwise comparison are the same across different pairs of arms, our regret reduces to the
worst-case regret of Õ

(
d
√
T
)
, which matches the lower bound Ω(d

√
T ) proved in Bengs et al. (2022)

7.2 Related Work

It has been shown empirically that leveraging variance information in multi-armed bandit algorithms can
enjoy performance benefits (Auer et al., 2002). In light of this, Audibert et al. (2009) proposed an algorithm,
named UCBV, which is based on Bernstein’s inequality equipped with empirical variance. It provided the first
analysis of variance-aware algorithms, demonstrating an improved regret bound. EUCBV Mukherjee et al.
(2017) is another variance-aware algorithm that employs an elimination strategy. It incorporates variance
estimates to determine the confidence bounds of the arms. For linear bandits, Zhou et al. (2021) proposed
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a Bernstein-type concentration inequality for self-normalized martingales and designed an algorithm named
Weighted OFUL. This approach used a weighted ridge regression scheme, using variance to discount each
sample’s contribution to the estimator. In particular, they proved a variance-dependent regret upper bound,
which was later improved by Zhou and Gu (2022). These two works assumed the knowledge of variance
information. Without knowing the variances, Zhang et al. (2021) and Kim et al. (2022) obtained the variance-
dependent regret bound by constructing variance-aware confidence sets. (Zhao et al., 2023b) proposed an
algorithm named MOR-UCB with the idea of partitioning the observed data into several layers and grouping
samples with similar variance into the same layer. A similar idea was used in Zhao et al. (2023a) to design a
SupLin-type algorithm SAVE. It assigns collected samples to L layers according to their estimated variances,
where each layer has twice the variance upper bound as the one at one level lower. In this way, for each layer,
the estimated variance of one sample is at most twice as the others. Their algorithm is computationally
tractable with a variance-dependent regret bound based on a Freedman-type concentration inequality and
adaptive variance-aware exploration.

7.3 Problem Setup

In this work, we consider a preferential feedback model with contextual information. In this model, an agent
learns through sequential interactions with its environment over a series of rounds indexed by t, where t ∈ [T ]
and T is the total number of rounds. In each round t, the agent is presented with a finite set of alternatives,
with each alternative being characterized by its associated feature in the contextual set At ⊆ Rd. Following
the convention in bandit theory, we refer to these alternatives as arms. Both the number of alternatives and
the contextual set At can vary with the round index t. Afterward, the agent selects a pair of arms, with
features (xt,yt) respectively. The environment then compares the two selected arms and returns a stochastic
feedback ot, which takes a value from the set {0, 1}. This feedback informs the agent which arm is preferred:
When ot = 1 (resp. ot = 0), the arm with feature xt (resp. yt) wins.

We assume that stochastic feedback ot follows a Bernoulli distribution, where the expected value pt is
determined by a generalized linear model (GLM). To be more specific, let µ(·) be a fixed link function that is
increasing monotonically and satisfies µ(x)+µ(−x) = 1. We assume the existence of an unknown parameter
θ∗ ∈ Rd which generates the preference probability when two contextual vectors are given, i.e.

P(ot = 1) = P(arm with xt is preferred over arm with yt) = pt = µ((xt − yt)
⊤θ∗).

This model is the same as the linear stochastic transitivity (LST) model in Bengs et al. (2022), which includes
the Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce, 1959), Thurstone-Mosteller model (Thurstone,
1927) and the exponential noise model as special examples. Please refer to Bengs et al. (2022) for details.
The preference model studied in Saha (2021) can be treated as a special case where the link function is
logistic.

We make the assumption on the boundness of the true parameter θ∗ and the feature vector.

Assumption 7.3.1. ∥θ∗∥2 ≤ 1. There exists a constant A > 0 such that for all t ∈ [T ] and all x ∈ At,
∥x∥2 ≤ A.

Additionally, we make the following assumption on the link function µ, which is common in the study of
generalized linear contextual bandits (Filippi et al., 2010; Li et al., 2017).

Assumption 7.3.2. The link function µ is differentiable. Furthermore, the first derivative µ̇ satisfies
κµ ≤ µ̇(·) ≤ Lµ for some constants Lµ, κµ > 0.

We define the random noise ϵt = ot − pt. Since the stochastic feedback ot adheres to the Bernoulli
distribution with expected value pt, ϵt ∈ {−pt, 1 − pt}. From the definition of ϵt, we can see that |ϵt| ≤ 1.
Furthermore, we make the following assumptions:

E[ϵt|x1:t,y1:t, ϵ1:t−1] = 0,E[ϵ2t |x1:t,y1:t, ϵ1:t−1] = σ2
t .

Intuitively, σt reflects the difficulty associated with comparing the two arms:
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• When pt is around 1/2, it suggests that the arms are quite similar, making the comparison challenging.
Under this circumstance, the variance σt tends toward a constant, reaching a maximum value of 1/4.

• On the contrary, as pt approaches 0 or 1, it signals that one arm is distinctly preferable over the other,
thus simplifying the comparison. In such scenarios, the variance σt decreases significantly toward 0.

The learning objective is to minimize the cumulative average regret defined as

Regret(T ) =
1

2

∑T

t=1

[
2x∗⊤

t θ∗ − (xt + yt)
⊤θ∗], (7.3.1)

where x∗
t = argmaxx∈At

x⊤θ∗ is the contextual/feature vector of the optimal arm in round t. This definition
is the same as the average regret studied in (Saha, 2021; Bengs et al., 2022). Note that in Bengs et al. (2022),
besides the average regret, they also studied another type of regret, called weak regret. Since the weak regret
is smaller than the average regret, the regret bound proved in our paper can immediately imply a regret
bound defined by the weak regret.

7.4 Algorithm

7.4.1 Overview of the Algorithm

In this section, we present our algorithm named VACDB in Algorithm 7.1. Our algorithm shares a similar
structure with Sta’D in Saha (2021) and SupCoLSTIM in Bengs et al. (2022). The core of our algorithm
involves a sequential arm elimination process: from Line 6 to Line 18, our algorithm conducts arm selec-
tion with a layered elimination procedure. Arms are progressively eliminated across layers, with increased
exploration precision in the subsequent layers. Starting at layer ℓ = 1, our algorithm incorporates a loop
comprising three primary conditional phases: Exploitation (Lines 7-9), Elimination (Lines 10-12) and Ex-
ploration (Lines 14-16). When all arm pairs within a particular layer have low uncertainty, the elimination
procedure begins, dropping the arms with suboptimal estimated values. This elimination process applies
an adaptive bonus radius based on variance information. A more comprehensive discussion can be found in
Section 7.4.3. Subsequently, it advances to a higher layer, where exploration is conducted over the eliminated
set. Upon encountering a layer with arm pairs of higher uncertainty than desired, our algorithm explores
them and receives the feedback. Once comprehensive exploration has been achieved across layers and the
uncertainty for all remaining arm pairs is small enough, our algorithm leverages the estimated parameters in
the last layer to select the best arm from the remaining arms. For a detailed discussion of the selection policy,
please refer to Section 7.4.4. After arm selection in the exploration phase, the estimator of the current layer
is updated (Lines 19-22) using the regularized MLE, which will be discussed in more details in Section 7.4.2.
Note that our algorithm maintains an index set Ψt,ℓ for each layer, comprising all rounds before round t
when the algorithm conducts exploration in layer ℓ. As a result, for each exploration step, only one of the
estimators θ̂t,ℓ needs to be updated. Furthermore, our algorithm updates the covariance matrix Σ̂t,ℓ used
to estimate uncertainty (Line 19).

7.4.2 Regularized MLE

Most of the previous work adopted standard MLE techniques to maintain an estimator of θ∗ in the generalized
linear bandit model (Filippi et al., 2010; Li et al., 2017), which requires an initial exploration phase to ensure
a balanced input dataset across Rd for the MLE. In the dueling bandits setting, where the feedback in each
round can be seen as a generalized linear reward, Saha (2021); Bengs et al. (2022) also applied a similar
MLE in their algorithms. As a result, a random initial exploration phase is also inherited to ensure that the
MLE equation has a unique solution. However, in our setting, where the decision set varies among rounds
and is even arbitrarily decided by the environment, this initial exploration phase cannot be directly applied
to control the minimum eigenvalue of the covariance matrix.

To resolve this issue, we introduce a regularized MLE for contextual dueling bandits, which is more
well-behaved in the face of extreme input data and does not require an additional exploration phase at the
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Algorithm 7.1 Variance-Aware Contextual Dueling Bandit (VACDB)

1: Require: α > 0, L← ⌈log2(1/α)⌉, κµ, Lµ.

2: Initialize: For ℓ ∈ [L], Σ̂1,ℓ ← 2−2ℓI, θ̂1,ℓ ← 0,Ψ1,ℓ ← ∅, β̂1,ℓ ← 2−ℓ(1 + 1/κµ)
3: for t = 1, . . . , T do
4: Observe At

5: Let At,1 ← At, ℓ← 1.
6: while xt,yt are not specified do
7: if ∥x− y∥Σ̂−1

t,ℓ
≤ α for all x,y ∈ At,ℓ then

8: Choose xt,yt = argmaxx,y∈At,ℓ

{
(x+ y)⊤θ̂t,ℓ + β̂t,ℓ∥x− y∥Σ̂−1

t,ℓ

}
and observe ot = 1(xt ≻ yt) //Exploitation (Lines 7-9)

9: Keep the same index sets at all layers: Ψt+1,ℓ′ ← Ψt,ℓ′ for all ℓ
′ ∈ [L]

10: else if ∥x− y∥Σ̂−1
t,ℓ
≤ 2−ℓ for all x,y ∈ At,ℓ then

11: At,ℓ+1 ←
{
x ∈ At,ℓ | x⊤θ̂t,ℓ ≥ maxx′∈At,ℓ

x′⊤θ̂t,ℓ − 2−ℓβ̂t,ℓ

}
12: ℓ = ℓ+ 1 //Elimination (Lines 10-12)

13: else
14: Choose xt,yt such that ∥xt − yt∥Σ̂−1

t,ℓ
> 2−ℓ

and observe ot = 1(xt ≻ yt) //Exploration (Lines 14-16)

15: Compute the weight wt ← 2−ℓ/∥xt − yt∥Σ̂−1
t,ℓ

16: Update the index sets Ψt+1,ℓ ← Ψt,ℓ ∪ {t} and Ψt+1,ℓ′ ← Ψt,ℓ′ for all ℓ
′ ∈ [L]/{ℓ}

17: end if
18: end while
19: For ℓ ∈ [L] such that Ψt+1,ℓ ̸= Ψt,ℓ, update Σ̂t+1,ℓ ← Σ̂t,ℓ + w2

t (xt − yt)(xt − yt)
⊤

20: Calculate the MLE θ̂t+1,ℓ by solving the equation:

2−2ℓκµθ +
∑

s∈Ψt+1,ℓ

w2
s

(
µ
(
(xs − ys)

⊤θ
)
− os

)
(xs − ys) = 0

21: Compute β̂t+1,ℓ according to (7.4.3)

22: For ℓ ∈ [L] such that Ψt+1,ℓ = Ψt,ℓ, let Σ̂t+1,ℓ = Σ̂t,ℓ, θ̂t+1,ℓ ← θ̂t,ℓ, β̂t+1,ℓ ← β̂t,ℓ

23: end for
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starting rounds. Specifically, the regularized MLE is the solution of the following equation:

λθ +
∑
s

w2
s

(
µ
(
(xs − ys)

⊤θ
)
− os

)
(xs − ys) = 0, (7.4.1)

where we add the additional regularization term λθ to make sure that the estimator will change mildly.
From the theoretical viewpoint, our proposed regularization term leads to a non-singularity guarantee for
the covariance matrix. Additionally, we add some weights here to obtain a tighter concentration inequality.
Concretely, with a suitable choice of the parameters in each layer and a Freedman-type inequality first
introduced in Zhao et al. (2023a), we can prove a concentration inequality for the estimator in the ℓ-th layer:∥∥∥θ∗ − θ̂t,ℓ

∥∥∥
Σ̂t,ℓ

≤ 2−ℓ

κµ

[
16
√∑

s∈Ψt,ℓ
w2

sσ
2
s log(4t

2L/δ) + 6 log(4t2L/δ)

]
+ 2−ℓ. (7.4.2)

This upper bound scales with 2−ℓ, which arises from our choice of the weights.
The regularized MLE can be formulated as a finite-sum offline optimization problem. For many widely

used models, such as the Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce, 1959), the regularized MLE
is a strongly convex and smooth optimization problem. We can solve it using accelerated gradient descent
(Nesterov, 2003) and SVRG (Johnson and Zhang, 2013), both of which achieve a linear rate of convergence.
This can mitigate the scalability issues caused by the increasing number of iterations. The regularized MLE
can also be solved by an online learning algorithm such as in Jun et al. (2017) and Zhao et al. (2023b), where
additional effort is required for the analysis.

7.4.3 Multi-layer Structure with Variance-Aware Confidence Radius

Due to the multi-layered structure of our algorithm, the construction of the confidence set is of paramount
importance. Our algorithm distinguishes itself from prior multi-layered algorithms (Saha, 2021; Bengs et al.,
2022) primarily through a variance-aware adaptive selection of the confidence radius, which helps to achieve

a variance-aware regret bound. Intuitively, we should choose the confidence radius β̂t,ℓ based on the
concentration inequality (7.4.2). However, it depends on the true variance σs, of which we do not have prior

knowledge. To address this issue, we estimate it using the estimator θ̂t,ℓ. We choose

β̂t,ℓ :=
16 · 2−ℓ

κµ

√(
8V̂art,ℓ + 18 log(4(t+ 1)2L/δ)

)
log(4t2L/δ)

+
6 · 2−ℓ

κµ
log(4t2L/δ) + 2−ℓ+1, (7.4.3)

where

V̂art,ℓ :=


∑

s∈Ψt,ℓ
w2

s

(
os − µ((xs − ys)

⊤θ̂t,ℓ)
)2

, 2ℓ ≥ 64(Lµ/κµ)
√
log(4(t+ 1)2L/δ),

|Ψt,ℓ|, otherwise.

The varied selections of V̂art,ℓ arise from the fact that our variance estimator becomes more accurate at
higher layers. For those low layers, we employ the natural upper bound σi ≤ 1. Note that this situation
arises only Θ(log log(T/δ)) times, which is a small portion of the total layers L = Θ(log T ). In our proof,
we deal with two cases separately. Due to the limited space available here, the full proof can be found in
Section 7.5.2.

7.4.4 Symmetric Arm Selection

In this subsection, we focus on the arm selection policy described in Line 9. To our knowledge, this policy is
new and has never been studied in prior work for the (generalized) linear dueling bandit problem. In detail,

suppose that we have an estimator θ̂t in round t that lies in a high probability confidence set:{
θ :
∥∥θ − θ∗∥∥

Σ̂t
≤ βt

}
,
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where Σ̂t = λI+
∑t−1

i=1(xi − yi)(xi − yi)
⊤. Our choice of arms can be written as

xt,yt = argmax
x,y∈At

[
(x+ y)⊤θ̂t + βt∥x− y∥Σ̂−1

t

]
. (7.4.4)

Intuitively, we utilize (x+y)⊤θ̂t as the estimated score and incorporate an exploration bonus dependent on
∥x − y∥Σ̂−1

t
. Our symmetric selection of arms aligns with the nature of dueling bandits where the order of

arms does not matter. Here we compare it with several alternative arm selection criteria that have appeared
in previous works.

The MaxInP algorithm in Saha (2021) builds the so-called “promising” set that includes the optimal arm:

Ct =
{
x ∈ At | (x− y)⊤θ̂t + βt∥x− y∥Σ̂−1

t
≥ 0,∀y ∈ At

}
.

It chooses the symmetric arm pair from the set Ct that has the highest pairwise score variance (maximum
informative pair), i.e.,

xt,yt = argmax
x,y∈Ct

∥x− y∥Σ−1
t
.

The Sta’D algorithm in Saha (2021) uses an asymmetric arm selection criterion, which selects the first
arm with the highest estimated score, i.e.,

xt = argmax
x∈At

x⊤θ̂t.

Following this, it selects the second arm as the toughest competitor to the arm xt, with a bonus term related
to ∥xt − y∥Σ−1

t
, i.e.,

yt = argmax
y∈At

y⊤θ̂t + 2βt∥xt − y∥Σ−1
t
. (7.4.5)

Similar arm selection criterion has also been used in the CoLSTIM algorithm (Bengs et al., 2022). We can
show that these two alternative arm selection policies result in comparable regret decomposition and can
establish similar regret upper bound.

We assume that in round t, we have an estimator θ̂t, a covariance matrixΣt = λI+
∑t−1

i=1(xi−yi)(xi−yi)
⊤

and a concentration inequality with confidence radius βt,

∥θ̂t − θ∗∥Σt
≤ βt. (7.4.6)

The three arm selection methods can be described as follows:

Method 1: Following Saha (2021), let Ct be

Ct = {x ∈ At | (x− y)⊤θ̂t + βt∥x− y∥Σ−1
t
≥ 0,∀y ∈ At}.

Then x∗
t ∈ Ct because for any y ∈ At

(x∗
t − y)⊤θ̂t + βt∥x∗

t − y∥Σ−1
t

= (x∗
t − y)⊤(θ̂t − θ∗) + (x∗

t − y)⊤θ∗ + βt∥x∗
t − y∥Σ−1

t

≥ βt∥x∗
t − y∥Σ−1

t
− ∥x∗

t − y∥⊤
Σ−1

t
∥θ̂t − θ∗∥Σt

≥ 0,

where the first inequality holds due to Cauchy-Schwarz inequality and x∗
t is the optimal arm in round t. The

second inequality holds due to (7.4.6).
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The arms selected in round t are xt,yt = argmaxx,y∈Ct
∥x − y∥Σ−1

t
Then the regret in round t can be

decomposed as

2rt = 2x∗⊤
t θ∗ − (xt + yt)

⊤θ∗

= (x∗
t − xt)

⊤θ∗ + (x∗
t − yt)

⊤θ∗

= (x∗
t − xt)

⊤(θ∗ − θ̂t) + (x∗
t − xt)

⊤θ̂t + (x∗
t − yt)

⊤(θ∗ − θ̂t) + (x∗
t − yt)

⊤θ̂t

≤ (x∗
t − xt)

⊤(θ∗ − θ̂t) + βt∥x∗
t − xt∥Σ−1

t
+ (x∗

t − yt)
⊤(θ∗ − θ̂t) + βt∥x∗

t − yt∥Σ−1
t

≤ ∥x∗
t − xt∥Σ−1

t
∥θ∗ − θ̂t∥Σt

+ βt∥x∗
t − xt∥Σ−1

t

+ ∥x∗
t − yt∥Σ−1

t
∥θ∗ − θ̂t∥Σt

+ βt∥x∗
t − yt∥Σ−1

t

≤ 2βt∥x∗
t − xt∥Σ−1

t
+ 2βt∥x∗

t − yt∥Σ−1
t

≤ 4βt∥xt − yt∥Σ−1
t
,

where the first inequality holds because the choice xt,yt ∈ Ct. The second inequality holds due to Cauchy-
Schwarz inequality. The third inequality holds due to (7.4.6). The last inequality holds due to x∗

t ∈
Ct,xt,yt = argmaxx,y∈Ct

∥x− y∥Σ−1
t
.

Method 2: Following Bengs et al. (2022), we choose the first arm as

xt = argmax
x∈At

x⊤θ̂t.

Then choose the second arm as

yt = argmax
y∈At

y⊤θ̂t + 2βt∥xt − y∥Σ−1
t
,

The regret in round t can be decomposed as

2rt = 2x∗⊤
t θ∗ − (xt + yt)

⊤θ∗

= 2(x∗
t − xt)

⊤θ∗ + (xt − yt)
⊤θ∗

= 2(x∗
t − xt)

⊤(θ∗ − θ̂t) + 2(x∗
t − xt)

⊤θ̂t + (xt − yt)
⊤(θ∗ − θ̂t) + (xt − yt)

⊤θ̂t

≤ 2∥x∗
t − xt∥Σ−1

t
∥θ∗ − θ̂t∥Σt + (x∗

t − xt)
⊤θ̂t

+ ∥xt − yt∥Σ−1
t
∥θ∗ − θ̂t∥Σt

+ (xt − yt)
⊤θ̂t

≤ 2βt∥x∗
t − xt∥Σ−1

t
+ (x∗

t − yt)
⊤θ̂t + βt∥xt − yt∥Σ−1

t

≤ y⊤
t θ̂t + 2βt∥xt − yt∥Σ−1

t
− x∗⊤

t θ̂t + (x∗
t − yt)

⊤θ̂t + βt∥xt − yt∥Σ−1
t

= 3βt∥xt − yt∥Σ−1
t
,

where the first inequality holds due to the Cauchy-Schwarz inequality and x⊤
t θ̂t ≥ x∗

t θ̂t. The second inequal-

ity holds due to the Cauchy-Schwarz inequality. The third inequality holds due to yt = argmaxy∈At
y⊤θ̂t +

2βt∥xt − y∥Σ−1
t
.

Method 3: In this method, we choose two arms as

xt,yt = argmax
x,y∈At

[
(x+ y)⊤θ̂t + βt∥x− y∥Σ̂−1

t

]
(7.4.7)
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Then the regret can be decomposed as

2rt = 2x∗⊤
t θ∗ − (xt + yt)

⊤θ∗

= (x∗
t − xt)

⊤θ∗ + (x∗
t − yt)

⊤θ∗

= (x∗
t − xt)

⊤(θ∗ − θ̂t) + (x∗
t − yt)

⊤(θ∗ − θ̂t) + (2x∗
t − xt − yt)

⊤θ̂t

≤ ∥x∗
t − xt∥Σ−1

t
∥θ∗ − θ̂t∥Σt + ∥x∗

t − yt∥Σ−1
t
∥θ∗ − θ̂t∥Σt + (2x∗

t − xt − yt)
⊤θ̂t

≤ βt∥x∗
t − xt∥Σ−1

t
+ βt∥x∗

t − yt∥Σ−1
t

+ (2x∗
t − xt − yt)

⊤θ̂t,

where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds due to
(7.4.6). Using (7.4.7), we have

(x∗
t + xt)

⊤θ̂t + βt∥x∗
t − xt∥Σ̂−1

t
≤ (xt + yt)

⊤θ̂t + βt∥xt − yt∥Σ̂−1
t

(x∗
t + yt)

⊤θ̂t,ℓ + βt∥x∗
t − yt∥Σ̂−1

t
≤ (xt + yt)

⊤θ̂t + βt∥xt − yt∥Σ̂−1
t
.

Adding the above two inequalities, we have

βt∥x∗
t − xt∥Σ−1

t
+ βt∥x∗

t − yt∥Σ−1
t
≤ (xt + yt − 2x∗

t )
⊤θ̂t + 2βt∥xt − yt∥Σ̂−1

t
.

Therefore, we prove that the regret can be upper bounded by

2rt ≤ 2βt∥xt − yt∥Σ̂−1
t
.

In conclusion, we can prove similar inequalities for the above three arm selection policies. To get an
upper bound of regret, we can sum up the instantaneous regret in each round and use Lemma 7.7.1 to obtain
the final result.

7.5 Variance-aware Regret Bound

In this section, we summarize our main results in the following theorem.

Theorem 7.5.1. If we set α = 1/(T 3/2), then with probability at least 1− 2δ, the regret of Algorithm 7.1
is bounded as

Regret(T ) = Õ

(
d

κµ

√√√√ T∑
t=1

σ2
t + d

(L2
µ

κ2
µ

+
1

κµ

))
.

This regret can be divided into two parts, corresponding to the regret incurred from the exploration
steps (Line 14) and the exploitation steps (Line 8). The exploitation-induced regret is always Õ(1) as shown
in (7.5.1), and thus omitted by the big-O notation. The total regret is dominated by the exploration-

induced regret, which mainly depends on the total variance
∑T

t=1 σ
2
t . Note that the comparisons during the

exploration steps only happen between non-identical arms (xt ̸= yt).

Remark 7.5.2. To show the advantage of variance awareness, consider the extreme case where the compar-
isons are deterministic. More specifically, for any two arms with contextual vectors x and y, the comparison
between arm x and item y is determined by ot = 1

{
x⊤
t θ

∗ > y⊤
t θ

∗}, and thus has zero variance. Our

algorithm can account for the zero variance, and the regret becomes Õ(d), which is optimal since recovering
the parameter θ∗ ∈ Rd requires exploring each dimension.

Remark 7.5.3. The setting we study is quite general, where the arm set is time-varying, and therefore, the
variance of arms can vary with respect to time and arms. When we restrict our setting to a special case with
uniform variances for all pairwise comparisons, i.e., σ2

t = σ2 for all t, our upper bound becomes Õ(σd
√
T ).

This results in a regret bound that does not depend on the random variable σ2
t .
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Remark 7.5.4. In the worst-case scenario, the variance of the arm comparison is upper bounded by 1/4,

our regret upper bound becomes Õ(d
√
T ), which matches the regret lower bound Ω(d

√
T ) for dueling bandits

with exponentially many arms proved in Bengs et al. (2022), up to logarithmic factors. This regret bound
also recovers the regret bounds of MaxInP (Saha, 2021) and CoLSTIM (Bengs et al., 2022). Compared with
Sta’D (Saha, 2021) and SupCoLSTIM (Bengs et al., 2022), our regret bound is on par with their regret bounds

provided the number of arms K is large. More specifically, their regret upper bounds are Õ(
√
dT logK).

When K is exponential in d, their regret bound becomes Õ(d
√
T ), which is of the same order as our regret

bound.

Remark 7.5.5. Notably, in Bengs et al. (2022), they made an assumption that the context vectors can span
the total d-dimensional Euclidean space, which is essential in their initial exploration phase. In our work,
we replace the initial exploration phase with a regularizer, thus relaxing their assumption.

7.5.1 Proof Sketch of Theorem 7.5.1

As we describe in Section 7.4, the arm selection is specified in two places, the exploration part (Lines 14 -
16) and the exploitation part (Lines 8 - 9). Given the update rule of the index set, each step within the
exploration part will be included by the final index set ΨT+1,ℓ of a singular layer ℓ. Conversely, steps within
the exploitation part get into T/ ∪ℓ∈[L] ΨT+1,ℓ. Using this division, we can decompose the regret into :

Regret(T ) =
1

2

[∑
s∈[T ]/(∪ℓ∈[L]ΨT+1,ℓ)

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)

︸ ︷︷ ︸
exploitation

+
∑

ℓ∈[L]

∑
s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)

︸ ︷︷ ︸
exploration

]
.

We bound the incurred regret of each part separately.
For any round s ∈ T/∪ℓ∈[L]ΨT+1,ℓ, the given condition for exploitation indicates the existence of a layer

ℓs such that ∥xs − ys∥Σ̂−1
s,ℓ
≤ α for all xs,ys ∈ As,ℓ. Using the Cauchy inequality and the MLE described

in Section 7.4.2, we can show that the regret incurred in round s is smaller than 3β̂s,ℓs · α. Considering the

simple upper bound β̂s,ℓs ≤ Õ(
√
T ) and α = T−3/2, the regret for one exploitation round does not exceed

Õ(1/T ). Consequently, the cumulative regret is∑
s∈[T ]/(∪ℓ∈[L]ΨT+1,ℓ)

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)
≤ Õ(1)., (7.5.1)

which is a low-order term in total regret.
In the exploration part, the regret is the cumulative regret encountered within each layer. We analyze the

low layers and high layers distinctly. For ℓ ≤ ℓ∗ =
⌈
log2

(
64(Lµ/κµ)

√
log(4(T + 1)2L/δ)

)⌉
, the incurred

regret can be upper bounded by the number of rounds in this layer∑
s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)
≤ 4|ΨT+1,ℓ|.

Moreover, |ΨT+1,ℓ| can be upper bounded by

|ΨT+1,ℓ| ≤ 22ℓd log
(
1 + 22ℓAT/d

)
≤ O

(
L2
µ

κ2
µ

d log
(
1 + 22ℓ

∗
AT/d

)
log
(
4(T + 1)2L/δ

))
. (7.5.2)

Thus the total regret for layers ℓ ≤ ℓ∗ is bounded by Õ(d). For ℓ > ℓ∗, we can bound the cumulative regret
incurred in each layer with

Lemma 7.5.6. With high probability, for all ℓ ∈ [L] \ {1}, the regret incurred by the index set ΨT+1,ℓ is
bounded by ∑

s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ −
(
x⊤
s θ

∗ + y⊤
s θ

∗)) ≤ Õ
(
d · 2ℓβ̂T,ℓ−1

)
.
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By summing up the regret of all the layers, we can upper bound the total regret for layers ℓ > ℓ∗ as

∑
ℓ∈[L]/[ℓ∗]

∑
s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ −
(
x⊤
s θ

∗ + y⊤
s θ

∗)) ≤ Õ

(
d
κµ

√∑T
t=1σ

2
t +

d
κµ

)
,

We can complete the proof of Theorem 7.5.1 by combining the regret in different parts together.

7.5.2 Proof of Theorem 7.5.1

We first need the concentration inequality for the MLE.

Lemma 7.5.7. With probability at least 1 − δ, the following concentration inequality holds for all round
t ≥ 2 and layer ℓ ∈ [L] simultaneously:

∥∥∥θ̂t,ℓ − θ∗
∥∥∥
Σ̂t,ℓ

≤ 2−ℓ

κµ

16√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(4t

2L/δ) + 6 log(4t2L/δ)

+ 2−ℓ.

With this lemma, we have the following event holds with high probability:

E =

∥∥∥θ̂t,ℓ − θ∗
∥∥∥
Σ̂t,ℓ

≤ 2−ℓ

κµ

16√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(4t

2L/δ) + 6 log(4t2L/δ)

+ 2−ℓ for all t, ℓ

 .

Lemma 7.5.7 shows that P[E ] ≥ 1− δ. For our choice of β̂t,ℓ defined in (7.4.3), we define the following event:

Ebonus =

β̂t,ℓ ≥
2−ℓ

κ

16√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(4t

2L/δ) + 6 log(4t2L/δ)

+ 2−ℓ, for all t, ℓ

 .

The following two lemmas show that the event Ebonusℓ holds with high probability.

Lemma 7.5.8. With probability at least 1 − δ, for all t ≥ 2, ℓ ∈ [L], the following two inequalties hold
simultaneously. ∑

s∈Ψt,ℓ

w2
sσ

2
s ≤ 2

∑
s∈Ψt,ℓ

w2
sϵ

2
s +

14

3
log(4t2L/δ).

∑
s∈Ψt,ℓ

w2
sϵ

2
s ≤

3

2

∑
s∈Ψt,ℓ

w2
sσ

2
s +

7

3
log(4t2L/δ).

Lemma 7.5.9. Suppose that the inequalities in Lemma 7.5.8 and the event E hold. For all t ≥ 2 and ℓ ∈ [L]
such that 2ℓ ≥ 64(Lµ/κµ)

√
log(4(T + 1)2L/δ), the following inequalities hold∑

s∈Ψt,ℓ

w2
sσ

2
s ≤ 8

∑
s∈Ψt,ℓ

w2
s

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

))2
+ 18 log(4(t+ 1)2L/δ).

∑
s∈Ψt,ℓ

w2
s

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

))2
≤ 4

∑
s∈Ψt,ℓ

w2
sσ

2
s + 8 log(4(t+ 1)2L/δ).

Recall that with our choice of β̂t,ℓ in (7.4.3), the inequality in Ebonus holds naturally when 2ℓ <

64(Lµ/κµ)
√
log(4(T + 1)2L/δ). Combining Lemma 7.5.8, Lemma 7.5.9 and P[E ] ≥ 1 − δ, after taking a

union bound, we have proved P[Ebonus ∩ E ] ≥ 1− 2δ.

Lemma 7.5.10. Suppose the high probability events Ebonus and E holds. Then for all t ≥ 1 and ℓ ∈ [L]
such that the set At,ℓ is defined, the contextual vector of the optimal arm x∗

t lies in At,ℓ.

Then we can bound the regret incurred in each layer separately.
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Lemma 7.5.11. Suppose the the high probability events Ebonus and E holds. Then for all ℓ ∈ [L]/1, the
regret incurred by the index set ΨT+1,ℓ is bounded by∑

s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)
≤ Õ

(
d · 2ℓβ̂T,ℓ−1

)
.

With all these lemmas, we can prove Theorem 7.5.1.

Proof of Theorem 7.5.1. Conditioned on Ebonus ∩ E , let

ℓ∗ =
⌈
log2(64(Lµ/κµ)

√
log(4(T + 1)2L/δ))

⌉
.

Using the high probability event Ebonus, Lemma 7.5.10 and Lemma 7.5.11, for any ℓ > ℓ∗, we have∑
s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)

≤ Õ
(
d · 2ℓβ̂T,ℓ−1

)
≤ Õ

 d

κµ

√√√√ ∑
s∈ΨT+1,ℓ

w2
s

(
os − µ((xs − ys)⊤θ̂T+1,ℓ)

)2
+ 1 + 1


≤ Õ

 d

κµ

√√√√ T∑
t=1

σ2
t +

d

κµ
+ 1

 , (7.5.3)

where the first inequality holds due to Lemma 7.5.11. The second inequality holds due to the definition
7.4.3. The last inequality holds due to Lemma 7.5.9 and ws ≤ 1.

For ℓ ∈ [ℓ∗], we have ∑
s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)

≤ 4|ΨT+1,ℓ|

= 22ℓ+2
∑

s∈ΨT+1,ℓ

∥ws(xs − ys)∥2Σ̂s,ℓ

≤ 22ℓ+3d log(1 + T/(dλ))

= Õ

(
dL2

µ

κ2
µ

)
, (7.5.4)

where the first equality holds due to our choice of ws such that ∥ws(xs − ys)∥2Σ̂s,ℓ
. The second inequality

holds due to Lemma 7.7.1. The last equality holds due to ℓ ≤ ℓ∗

For any s ∈ [T ]/(∪ℓ∈[L]ΨT+1,ℓ), we set ℓs as the value of layer such that ∥xs − ys∥Σ̂−1
s,ℓ
≤ α for all

xs,ys ∈ As,ℓ and then the while loop ends. By the choice of xs,ys and x∗
s ∈ As,ℓs (Lemma 7.5.10), we have

2x∗⊤
s θ̂s,ℓs ≤ x⊤

s θ̂s,ℓs + y⊤
s θ̂s,ℓs + β̂s,ℓs∥xs − ys∥Σ̂−1

s,ℓs

≤ x⊤
s θ̂s,ℓs + y⊤

s θ̂s,ℓs + β̂s,ℓsα, (7.5.5)
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where the last inequality holds because ∥xs − ys∥Σ̂−1
s,ℓ
≤ α for all xs,ys ∈ As,ℓ. Then we have

∑
s∈[T ]/(∪ℓ∈[L]ΨT+1,ℓ)

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)

=
∑

s∈[T ]/(∪ℓ∈[L]ΨT+1,ℓ)

(
2x∗⊤

s θ∗ − 2x∗⊤
s θ̂s,ℓs +

(
x⊤
s θ̂s,ℓs − x⊤

s θ
∗
)

+
(
y⊤
s θ̂s,ℓs − y⊤

s θ
∗
)
+
(
2x∗⊤

s θ̂s,ℓs − (x⊤
s θ̂s,ℓs + y⊤

s θ̂s,ℓs)
))

≤
∑

s∈[T ]/(∪ℓ∈[L]ΨT+1,ℓ)

(
∥x∗

s − xs∥Σ̂−1
s,ℓs

+ ∥x∗
s − ys∥Σ̂−1

s,ℓs

)
∥θ∗ − θ̂s,ℓs∥Σ̂s,ℓs

+ β̂s,ℓsα

≤
∑

s∈[T ]/(∪ℓ∈[L]ΨT+1,ℓ)

3β̂s,ℓsα

≤ T · Õ (1/T ) = Õ(1), (7.5.6)

where the first inequality holds due to the Cauchy-Schwarz inequality and (7.5.5). The third inequality holds
due to ∥xs − ys∥Σ̂−1

s,ℓ
≤ α for all xs,ys ∈ As,ℓs , x

∗
s ∈ As,ℓs (Lemma 7.5.10) and Lemma 7.5.7. The third

inequality holds due to our choice of β̂s,ℓs ≤ Õ(
√
T ) and α = 1/T 3/2. Combining (7.5.3), (7.5.4), (7.5.6)

together, we obtain

Regret(T ) = Õ

(
d

κµ

√√√√ T∑
t=1

σ2
t + d

(L2
µ

κ2
µ

+
1

κµ

))
.

7.6 Experiments

Experiment Setup. We study the proposed algorithm in simulation to compare it with those that are
also designed for contextual dueling bandits. Each experiment instance is simulated for T = 4000 rounds.
The unknown parameter θ∗ to be estimated is generated at random and normalized to be a unit vector.
The feature dimension is set to d = 5. A total of |At| = 2d distinct contextual vectors are generated from
{−1, 1}d. In each round, given the arm pair selected by the algorithm, a response is generated according to
the random process defined in Section 7.3. For each experiment, a total of 128 repeated runs are carried out.
We tune the confidence radius of each algorithm to showcase the best performance. The average cumulative
regret is reported in Fig. 7.1 along with the standard deviation in the shaded region. The link function µ(·)
is set to be the logistic function.

Algorithms. We list the algorithms studied in this section as follows:

• MaxInP: Maximum Informative Pair by Saha (2021). It maintains an active set of possible optimal
arms each round. The pairs are chosen on the basis of the maximum uncertainty in the difference
between the two arms. Instead of using a warm-up period τ0 in their definition, we initialize Σ0 = λI
as regularization. When λ = 0.001 this approach empirically has no significant impact on regret
performance compared to the warm-up method.

• MaxPairUCB: In this algorithm, we keep the MLE the same as MaxInP. However, we eliminate the need
for an active set of arms, and the pair of arms that is picked is according to the term defined in (7.4.4).

• CoLSTIM: This method is from Bengs et al. (2022). First, they add randomly disturbed utilities to each
arm and pick the arm that has the best estimation. They claim this step achieves better empirical
performance. The second arm is chosen according to criteria as defined in (7.4.5).
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Figure 7.1: Experiments showing regret performance in various settings.

• VACDB: The proposed variance-aware Algorithm 7.1 in this chapter. α is set to this theoretical value
according to Theorem 7.5.1. However, we note that for this specific experiment, L = 4 is enough to
eliminate all suboptimal arms. The estimated θ̂ in one layer below is used to initialize the MLE of the
upper layer when it is first reached to provide a rough estimate since the data is not shared among
layers.

Regret Comparison. In Fig. 7.1a we first notice that the proposed method VACDB has a better regret
over other methods on average, demonstrating its efficiency. Second, the MaxPairUCB and CoLSTIM algorithm
have a slight edge over the MaxInP algorithm empirically, which can be partially explained by the discussion
in Section 7.4.4. The contributing factor for this could be that in MaxInP the chosen pair is solely based on
uncertainty, while the other two methods choose at least one arm that maximizes the reward.

Variance-Awareness. In Fig. 7.1b, we show the variance awareness of our algorithm by scaling the
unknown parameter θ∗. Note that the variance of the Bernoulli distribution with parameter p is σ2 = p(1−p).
To generate high- and low-variance instances, we scale the parameter θ∗ by a ratio of α ∈ {0.5, 1, 2, 4}. If
α ≥ 1 then p will be closer to 0 or 1 which results in a lower variance instance, and vice versa. In this
plot, we show the result under four cases where the scale is set in an increasing manner, which corresponds
to reducing the variance of each arm. With decreasing variance, our algorithm suffers less regret, which
corresponds to the decrease in the σt term in our main theorem.

7.6.1 Additional Experiment on Real-world Data

7.6.2 Comparison with Prior Works

In this section, we provide a detailed discussion of the layered design, drawing a comparison with Sta’D in
Saha (2021) and SupCoLSTIM in Bengs et al. (2022). The general idea follows Auer (2002), which focuses on
maintaining a set of “high confidence promising arms”. The algorithm operates differently in two distinct
scenarios. If there are some pairs (xt,yt) in the current layer ℓ with high uncertainty, represented by
∥xt−yt∥Σ̂−1

t,ℓ
, we will explore those arm pairs. Conversely, when achieving the desired accuracy, we eliminate

suboptimal arms using our confidence set and proceed to a subsequent layer demanding greater accuracy.
This process continues until we reach a sufficiently accurate high layer, at which we make decisions based
on the remaining arms in the confidence set and the estimated parameters θ̂t,ℓ.
In the final stage, Sta’D picks the first arm xt as the one with the maximum estimated score, followed by
choosing its strongest challenger yt, which has the highest optimistic opportunity to beat xt. SupCoLSTIM

adopts a similar policy and distinguishes itself with a randomized learning strategy by generating additive

114



0 1000 2000 3000 4000

t

0.0

0.5

1.0

1.5

2.0

2.5

R
eg

re
t(

t)

×103

MaxInP

VACDB

Figure 7.2: Regret comparison between VACDB and MaxInP on a real-world dataset.

noise terms from an underlying perturbation distribution. Our arm selection is based on the symmetric arm
selection policy described in Section 7.4.4.
Sta’D and SupCoLSTIM choose the confidence set radius β̂t,ℓ to be 2−ℓ in the ℓ-th layer. In comparison, our

choice β̂t,ℓ is defined in (7.4.3). As we mention in Section 7.4.3, apart from the 2−ℓ dependency on the layer
ℓ, it also relies on the estimated variance. Such a variance-adaptive confidence set radius helps to achieve
the variance-aware regret bound.

To showcase the performance of our algorithms in a real-world setting, we use EventTime dataset (Zhang
et al., 2016). In this dataset, K = 100 historical events are compared in a pairwise fashion by crowd-sourced
workers. The data contains binary response indicating which one of the events the worker thinks precedes
the other. There is no side information

A = {xi, i ∈ [K]},

or the true parameter θ∗ readily available in the dataset. Thus, we estimate them with pairwise comparison
data. To achieve this, let Cij , i, j ∈ [K] be the number of times event j precedes event i labeled by the
workers. The following MLE is used:

argmax
{xi},θ

∑
i∈[K]

∑
j∈[K]

Cij log
(
σ((xi − xj)

⊤θ)
)
.

With the estimated A and θ∗, it is then possible to simulate the interactive process. We compared our
algorithm VACDB with MaxInP in Fig. 7.2. We can see that after about 2500 rounds, our algorithm starts to
outperform MaxInP in terms of cumulative regret.

7.7 Proof of Lemmas

7.7.1 Proof of Lemma 7.5.7

Proof of Lemma 7.5.7. For a fixed ℓ ∈ [L], let t ∈ ΨT+1,ℓ, t ≥ 2, we define some auxiliary quantities:

Gt,ℓ(θ) = 2−2ℓκµθ +
∑

s∈Ψt,ℓ

w2
s

[
µ
(
(xs − ys)

⊤θ
)
− µ

(
(xs − ys)

⊤θ∗)] (xs − ys)

ϵt = ot − µ
(
(xt − yt)

⊤θ∗)
Zt,ℓ =

∑
s∈Ψt,ℓ

w2
sϵs(xs − ys).

Recall (7.4.1), θ̂t,ℓ is the solution to

2−2ℓκµθ̂t,ℓ +
∑

s∈Ψt,ℓ

w2
s

(
µ
(
(xs − ys)

⊤θ̂t,ℓ
)
− os

)
(xs − ys) = 0. (7.7.1)
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A simple transformation shows that (7.7.1) is equivalent to following equation,

Gt,ℓ

(
θ̂t,ℓ

)
= 2−2ℓκµθ̂t,ℓ +

∑
s∈Ψt,ℓ

w2
s

[
µ
(
(xs − ys)

⊤θ̂t,ℓ

)
− µ

(
(xs − ys)

⊤θ∗)] (xs − ys)

=
∑

s∈Ψt,ℓ

w2
s

[
os − µ

(
(xs − ys)

⊤θ∗)] (xs − ys)

= Zt,ℓ.

It is assumed that Gt,ℓ is invertible and thus θ̂t,ℓ = G−1
t,ℓ (Zt,ℓ).

Moreover, we can see that Gt,ℓ(θ
∗) = 2−2ℓκµθ

∗. Recall Σ̂t,ℓ = 2−2ℓκµI+
∑

s∈Ψt,ℓ
w2

s(xs−ys)(xs−ys)
⊤.

We have ∥∥∥Gt,ℓ(θ̂t,ℓ)−Gt,ℓ(θ
∗)
∥∥∥2
Σ̂−1

t,ℓ

= (θ̂t,ℓ − θ∗)⊤F (θ̄)Σ̂−1
t,ℓ F (θ̄)(θ̂t,ℓ − θ∗)

≥ κ2
µ(θ̂t,ℓ − θ∗)⊤Σ̂t,ℓ(θ̂t,ℓ − θ∗)

= κ2
µ∥θ̂t,ℓ − θ∗∥2

Σ̂t,ℓ
,

where the first inequality holds because µ̇(·) ≥ κµ > 0 and thus F (θ̄) ⪰ κµΣ̂t,ℓ. Using the triangle inequality,
we have ∥∥∥θ̂t,ℓ − θ∗

∥∥∥
Σ̂t,ℓ

≤ 2−2ℓ∥θ∗∥Σ̂−1
t,ℓ

+
1

κµ
∥Zt,ℓ∥Σ̂−1

t,ℓ

≤ 2−ℓ∥θ∗∥2 +
1

κµ
∥Zt,ℓ∥Σ̂−1

t,ℓ
.

To bound the ∥Zt,ℓ∥Σ̂−1
t,ℓ

term, we use Lemma 7.7.3. By the choice of ws, for any t ∈ ΨT+1,ℓ, we have

∥wt(xt − yt)∥Σ̂−1
t,ℓ

= 2−ℓ and wt ≤ 1.

We also have

E[w2
t ϵ

2
t | Ft] ≤ w2

tE[ϵ2t | Ft] ≤ w2
t σ

2
t and |wtϵt| ≤ |ϵt| ≤ 1.

Therefore, Lemma 7.7.3 shows that with probability at least 1 − δ/L, for all t ∈ ΨT+1,ℓ, the following
inequality holds

∥Zt,ℓ∥Σ̂−1
t,ℓ
≤ 16 · 2−ℓ

√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(4t

2L/δ) + 6 · 2−ℓ log(4t2L/δ).

Finally, we get

∥∥∥θ̂t,ℓ − θ∗
∥∥∥
Σ̂t,ℓ

≤ 2−ℓ

κµ

16√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(4t

2L/δ) + 6 log(4t2L/δ)

+ 2−ℓ.

Take a union bound on all ℓ ∈ [L], and then we finish the proof of Lemma 7.5.7.

7.7.2 Proof of Lemma 7.5.8

Proof of Lemma 7.5.8. The proof of this lemma is similar to the proof of Lemma B.4 in Zhao et al. (2023a).
For a fixed layer ℓ ∈ [L], using the definition of ϵs and σs, we have

∀s ≥ 1,E[ϵ2s − σ2
s |x1:s,y1:s, o1:s−1] = 0.
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Therefore, we have ∑
s∈Ψt,ℓ

E[w2
s(ϵ

2
s − σ2

s)
2|x1:s,y1:s, o1:s−1] ≤

∑
s∈Ψt,ℓ

E[w2
sϵ

4
s|x1:s,y1:s, o1:s−1]

≤
∑

s∈Ψt.ℓ

w2
sσ

2
s ,

where the last inequality holds due to the definition of σs and ϵs ≤ 1. Then using Lemma 7.7.2 and taking
a union bound on all ℓ ∈ [L], for all t ≥ 2, we have∣∣∣∣∣∣

∑
s∈Ψt,ℓ

w2
s(ϵ

2
s − σ2

s)

∣∣∣∣∣∣ ≤
√
2
∑

s∈Ψt.ℓ

w2
sσ

2
s log(4t

2L/δ) +
2

3
· 2 log(4t2L/δ)

≤ 1

2

∑
s∈Ψt.ℓ

w2
sσ

2
s +

7

3
log(4t2L/δ), (7.7.2)

where we use the Young’s inequality ab ≤ 1
2a

2 + 1
2b

2. Finally, we finish the proof of Lemma 7.5.8 by

∑
s∈Ψt,ℓ

w2
sσ

2
s =

∣∣∣∣∣∣
∑

s∈Ψt,ℓ
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2
s −

∑
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≤
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sϵ
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s +

∣∣∣∣∣∣
∑
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s(ϵ
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s − σ2

s)

∣∣∣∣∣∣
≤
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sϵ

2
s +

1

2

∑
s∈Ψt.ℓ

w2
sσ

2
s +

7

3
log(4t2L/δ), (7.7.3)

where the first inequality holds due to the triangle inequality. The second inequality holds due to (7.7.2).
We also have

∑
s∈Ψt,ℓ

w2
sσ

2
s =

∣∣∣∣∣∣
∑

s∈Ψt,ℓ
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2
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∑
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∣∣∣∣∣∣
≥
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∣∣∣∣∣∣
∑
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w2
s(ϵ

2
s − σ2

s)

∣∣∣∣∣∣
≥
∑
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w2
sϵ

2
s −

1

2

∑
s∈Ψt.ℓ

w2
sσ

2
s −

7

3
log(4t2L/δ).

The proof of this inequality is almost the same as (7.7.3).

7.7.3 Proof of Lemma 7.5.9

Proof of Lemma 7.5.9. For a fixed ℓ ∈ [L], Lemma 7.5.8 indicates that∑
s∈Ψt,ℓ

w2
sσ

2
s ≤ 2

∑
s∈Ψt,ℓ

w2
sϵ

2
s +

14

3
log(4t2L/δ)

≤ 14

3
log(4t2L/δ) + 4

∑
s∈Ψt,ℓ

w2
s

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

))2
+ 4

∑
s∈Ψt,ℓ

w2
s

(
ϵs −

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

)))2
︸ ︷︷ ︸

(I)

, (7.7.4)
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where the second inequality holds due to the basic inequality (a+ b)2 ≤ 2a2 +2b2 for all a, b ∈ R. Using our
definition of ϵs, os = µ

(
(xs − ys)

⊤θ∗)+ ϵs. Thus, we have

(I) =
∑

s∈Ψt,ℓ

w2
s

(
ϵs −

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

)))2
=
∑

s∈Ψt,ℓ

w2
s

(
µ
(
(xs − ys)

⊤θ̂t,ℓ
)
− µ

(
(xs − ys)

⊤θ∗))2
≤ L2

µ

∑
s∈Ψt,ℓ

w2
s

(
(xs − ys)

⊤(θ̂t,ℓ − θ∗))2 , (7.7.5)

where the last inequality holds because the first order derivative of function µ is upper bounded by Lµ

(Assumption 7.3.2). Moreover, by expanding the square, we have

(I) ≤ L2
µ

∑
s∈Ψt,ℓ

w2
s

(
(xs − ys)

⊤(θ̂t,ℓ − θ∗))2
= L2

µ

∑
s∈Ψt,ℓ

(
θ̂t,ℓ − θ∗)⊤w2

s(xs − ys)(xs − ys)
⊤(θ̂t,ℓ − θ∗)

= L2
µ

(
θ̂t,ℓ − θ∗)⊤ ∑

s∈Ψt,ℓ

w2
s(xs − ys)(xs − ys)

⊤

(θ̂t,ℓ − θ∗)
≤ L2

µ

∥∥∥θ̂t,ℓ − θ∗
∥∥∥2
Σ̂t,ℓ

, (7.7.6)

where the last inequality holds due to

Σ̂t,ℓ = 2−2ℓκµI+
∑

s∈Ψt,ℓ

w2
s(xs − ys)(xs − ys)

⊤ ⪰
∑

s∈Ψt,ℓ

w2
s(xs − ys)(xs − ys)

⊤.

Combining (7.7.5), (7.7.6) and the event E (Lemma 7.5.7), we have

(I) ≤
2−2ℓL2

µ

κ2
µ

16√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(4(t+ 1)2L/δ) + 6 log(4(t+ 1)2L/δ) + κµ

2

≤
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µ

κ2
µ

512 log(4(t+ 1)2L/δ) ·
∑

s∈Ψt,ℓ

w2
sσ

2
s + 2

(
6 log(4(t+ 1)2L/δ) + κµ

)2 ,

where the last inequality holds due to the basic inequality (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R. When
2ℓ ≥ 64(Lµ/κµ)

√
log(4(t+ 1)2L/δ), we can further bound the above inequality by

(I) ≤ 1

8

∑
s∈Ψt+1,ℓ

w2
sσ

2
s + log(4(t+ 1)2L/δ). (7.7.7)

Subitituting (7.7.7) into (7.7.4), we have∑
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(
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))2
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2
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Therefore, we prove the first inequality in Lemma 7.5.9 as follows∑
s∈Ψt,ℓ

w2
sσ

2
s ≤ 8

∑
s∈Ψt,ℓ

w2
s

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

))2
+ 18 log(4(t+ 1)2L/δ).

For the second inequality, we have∑
s∈Ψt,ℓ

w2
s

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

))2
≤ 2

∑
s∈Ψt,ℓ

w2
sϵ

2
s + 2

∑
s∈Ψt,ℓ

w2
s

(
ϵs −

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

)))2
︸ ︷︷ ︸

(I)

.

We complete the proof of Lemma 7.5.9.∑
s∈Ψt,ℓ

w2
s

(
os − µ

(
(xs − ys)

⊤θ̂t,ℓ

))2
≤ 2

∑
s∈Ψt,ℓ

w2
sϵ

2
s +

1

4

∑
s∈Ψt,ℓ

w2
sσ

2
s + 2 log(4(t+ 1)2L/δ)

≤ 2

3

2

∑
s∈Ψt,ℓ

w2
sσ

2
s +

7

3
log(4t2L/δ)

+
1

4

∑
s∈Ψt,ℓ

w2
sσ

2
s + 2 log(4(t+ 1)2L/δ)

≤ 4
∑

s∈Ψt,ℓ

w2
sσ

2
s + 8 log(4(t+ 1)2L/δ),

where the first inequality holds due to (7.7.7). The second inequality holds due to Lemma 7.5.8.

7.7.4 Proof of Lemma 7.5.10

Proof of Lemma 7.5.10. We prove it by induction. For ℓ = 1, we initialze the set At,1 to be At, thus trivially
x∗
t ∈ At,1. Now we suppose At,ℓ is defined and x∗

t ∈ At,ℓ. By the way At,ℓ+1 is constructed, At,ℓ+1 is defined
only when ∥x− y∥Σ̂−1

t,ℓ
≤ 2−ℓ for all x,y ∈ At,ℓ.

Let xmax = argmaxx∈At,ℓ
x⊤θ̂t,ℓ. Then we have

x∗⊤
t θ̂t,ℓ − x⊤

maxθ̂t,ℓ = (x∗⊤
t θ∗ − x⊤

maxθ
∗) + (x∗

t − xmax)
⊤(θ̂t,ℓ − θ∗)

≥ −∥x∗
t − xmax∥Σ̂−1

t,ℓ
· ∥θ̂t,ℓ − θ∗∥Σ̂t,ℓ

,

where the inequality holds due to the Cauchy-Schwarz inequality and the fact x∗
t = argmaxx∈At

x⊤θ∗. With
the inductive hypothesis, we know x∗

t ∈ At,ℓ. Thus we have ∥x∗
t − xmax∥Σ̂−1

t,ℓ
≤ 2−ℓ. Finally, with the

inequality in Lemma 7.5.7, we have

x∗
t
⊤θ̂t,ℓ ≥ max

x∈At,ℓ

x⊤θ̂t,ℓ − 2−ℓβ̂t,ℓ.

Therefore, we have x∗
t ∈ At,ℓ+1, and we complete the proof of Lemma 7.5.10 by induction.

7.7.5 Proof of Lemma 7.5.11

Proof of Lemma 7.5.11. For any s ∈ ΨT+1,ℓ, due to the definition of ΨT+1,ℓ and our choice of xs,ys (Algo-
rithm 7.1 Line 14-16), we have xs,ys ∈ As,ℓ. Additionally, because the set As,ℓ is defined, ∥x− y∥Σ̂−1

s,ℓ−1
≤
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2−ℓ+1 for all x,y ∈ As,ℓ−1. From Lemma 7.5.10, we can see that x∗
s ∈ As,ℓ. Combining these results, we

have

∥x∗
s − xs∥Σ̂−1

s,ℓ−1
≤ 2−ℓ+1, ∥x∗

s − ys∥Σ̂−1
s,ℓ−1

≤ 2−ℓ+1, (7.7.8)

where we use the inclusion property As,ℓ ⊆ As,ℓ−1. Moreover, xs,x
∗
s ∈ As,ℓ shows that

x⊤
s θ̂s,ℓ−1 ≥ max

x∈As,ℓ−1

x⊤θ̂s,ℓ−1 − 2−ℓ+1β̂s,ℓ−1

≥ x∗⊤
s θ̂s,ℓ−1 − 2−ℓ+1β̂s,ℓ−1, (7.7.9)

where we use xs ∈ As,ℓ−1. Similarly, we have

y⊤
s θ̂s,ℓ−1 ≥ x∗⊤

s θ̂s,ℓ−1 − 2−ℓ+1β̂s,ℓ−1. (7.7.10)

Now we compute the regret incurred in round s.

2x∗⊤
s θ∗ −

(
x⊤
s θ

∗ + y⊤
s θ

∗) = (x∗
s − xs)

⊤
θ∗ + (x∗

s − ys)
⊤
θ∗

≤ (x∗
s − xs)

⊤
θ̂s,ℓ−1 +

∣∣∣(x∗
s − xs)

⊤
(
θ̂s,ℓ−1 − θ∗

)∣∣∣
+ (x∗

s − ys)
⊤
θ̂s,ℓ−1 +

∣∣∣(x∗
s − ys)

⊤
(
θ̂s,ℓ−1 − θ∗

)∣∣∣
≤ 2−ℓ+1β̂s,ℓ−1 + ∥x∗

s − xs∥Σ̂−1
s,ℓ−1

∥∥∥θ̂s,ℓ−1 − θ∗
∥∥∥
Σ̂s,ℓ−1

+ 2−ℓ+1β̂s,ℓ−1 + ∥x∗
s − ys∥Σ̂−1

s,ℓ−1

∥∥∥θ̂s,ℓ−1 − θ∗
∥∥∥
Σ̂s,ℓ−1

≤ 8 · 2−ℓβ̂s,ℓ−1, (7.7.11)

where the first inequality holds due to the basic inequality x ≤ |x| for all x ∈ R. The second inequality
holds due t (7.7.9), (7.7.10) and the Cauchy-Schwarz inequality. The last inequality holds due to (7.7.8) and
Lemma 7.5.7. Now we can return to the summation of regret on the index set ΨT+1,ℓ.∑

s∈ΨT+1,ℓ

(
2x∗⊤

s θ∗ − (x⊤
s θ

∗ + y⊤
s θ

∗)
)
≤

∑
s∈ΨT+1,ℓ

8 · 2−ℓβ̂s,ℓ−1

≤ 8 · 2−ℓβ̂T,ℓ−1|ΨT+1,ℓ|

≤ 8 · 2ℓβ̂T,ℓ−1

∑
s∈ΨT+1,ℓ

∥ωs · (xs − ys)∥2Σ̂−1
s,ℓ

≤ 8 · 2ℓβ̂T,ℓ−1 · 2d log
(
1 + 22ℓ+2T/d

)
,

where the first inequality holds due to (7.7.11). The second inequality holds due to our choice of ωs such
that ∥ωs · (xs − ys)∥Σ̂−1

s,ℓ
= 2−ℓ. The last inequality holds due to Lemma 7.7.1. Therefore, we complete the

proof of Lemma 7.5.11.

7.7.6 Auxiliary Lemmas

Lemma 7.7.1 (Lemma 11, Abbasi-Yadkori et al. 2011). For any λ > 0 and sequence {xk}Kk=1 ⊆ Rd for

k ∈ [K], define Zk = λI+
∑k−1

i=1 xix
⊤
i . Then, provided that ∥xk∥2 ≤ L holds for all k ∈ [K], we have

K∑
k=1

min{1, ∥xk∥2Z−1
k

} ≤ 2d log(1 +KL2/(dλ)).

Lemma 7.7.2 (Freedman 1975). Let M,v > 0 be fixed constants. Let {xi}ni=1 be a stochastic process,
{Gi}i∈[n] be a filtration so that for all i ∈ [n], xi is Gi-measurable, while almost surely

E[xi|Gi−1] = 0, |xi| ≤M,

n∑
i=1

E[x2
i |Gi−1] ≤ v.

120



Then for any δ > 0, with probability at least 1− δ, we have

n∑
i=1

xi ≤
√
2v log(1/δ) + 2/3 ·M log(1/δ).

Lemma 7.7.3 (Zhao et al. 2023a). Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic process such
that xk ∈ Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0, µ∗ ∈ Rd. For k ≥ 1, let
yk = ⟨µ∗,xk⟩+ ηk, where ηk,xk satisfy

E[ηk | Gk] = 0, |ηk| ≤ R,

k∑
i=1

E[η2i | Gi] ≤ vk, for ∀k ≥ 1.

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk and

βk = 16ρ
√
vk log(4k2/δ) + 6ρR log(4k2/δ),

where ρ ≥ supk≥1 ∥xk∥Z−1
k−1

. Then, for any 0 < δ < 1, we have with probability at least 1− δ,

∀k ≥ 1, ∥
k∑

i=1

xiηi∥Z−1
k
≤ βk, ∥µk − µ∗∥Zk

≤ βk +
√
λ∥µ∗∥2

Theorem 7.7.4 (Brouwer invariance of domain theorem,Brouwer 1911). Let U be an open subset of Rd,
and let f : U → Rd be a continuous injective map. Then f(U) is also open.
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Part IV

Conclusion
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This dissertation advances the field of rank aggregation from pairwise comparisons through three major
theoretical and algorithmic contributions:

1. Heterogeneous Random Utility Model: We introduced a novel extension of the Random Utility Model
(RUM) that explicitly accounts for heterogeneous data sources with varying quality levels. This theo-
retical framework provides a principled approach to modeling and analyzing ranking data from multiple
sources with different accuracy levels, laying the foundation for more sophisticated ranking algorithms.

2. Efficient Active Ranking Algorithms: We developed a family of active ranking algorithms that work
under both Strong Stochastic Transitivity (SST) and Weak Stochastic Transitivity (WST) conditions:

• For WST settings, we introduced the Probe-Rank algorithm that achieves near-optimal sample
complexity

• For SST settings, we introduced the Ada-IIR algorithm that achieves the same order of sample
complexity as the oracle algorithm that has access to the optimal data source.

• We proposed the Rank-with-Multiple-Oracles (RMO) framework that can handle WST settings
with multiple data sources. And this can also be applied to the SST setting.

3. Contextual Dueling Bandits:

• Introduced the first Borda score optimization framework for contextual dueling bandits

• Developed variance-aware extensions to consider the noisiness of feedback

The practical impact of this work is particularly relevant in the era of large language models. Our
algorithmic tools can be applied to address key challenges in:

• Reinforcement Learning with Human Feedback (RLHF), where efficient aggregation of human prefer-
ences is crucial

• Crowdsourcing platforms, where feedback quality varies significantly across contributors

• Recommendation systems, where contextual information and real-time learning are essential
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