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ABSTRACT

This paper explores the interpretability of adversarial attacks in reinforcement
learning (RL) environments. A key feature of adversarial attacks pertains to the
limited magnitude of an attack being able to have a significant impact on the out-
put of the target. This is closely tied to model interpretability which involves
understanding model outputs and why such a small change in the input is able to
completely change the output of a DNN. This naturally leads to a question of in-
terpretability of adversarial attacks. In this research, we explore a technique used
in a classification setting for improving group sparsity of adversarial attacks in an
RL setting. Additionally we adapt methods used to measure attack interpretability
in a classification setting to the RL setting where the objective is to maximize a
cumulative reward.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely adopted for solving various machine learning tasks
due to their ability to approximate complex functions. In particular, DNNs have been gaining trac-
tion in reinforcement learning, thanks to their ability to approximate the equations controlling the
reward and actions of an agent interacting within a dynamic environment. Deep Reinforcement
Learning (DRL) methods such as the DQN (Mnih et al., 2013) have primarily focused on modeling
the approximation of rewards for each action, and have seen success in settings ranging from playing
classic arcade video games to optimal control.

Despite their success, previous work has shown that DNNs are vulnerable to adversarial attacks.
Attacks, such as those introduced by Carlini & Wagner (2017), have focused on crafting small,
human-imperceptible perturbations on inputs that lower the classification accuracy of traditional
supervised learning tasks. Since DRL methods rely on the same pattern recognition capabilities used
in traditional supervised deep neural networks, they have also been shown to be vulnerable to these
types of attacks (Goodfellow et al., 2014). One difference in the RL setting arises from the dynamic
interaction between the agent and the environment, since the agent’s action could dynamically alter
the environment and have compounding consequences across time. This gives attackers another
dimension to potentially leverage in creating these attack. One such attack was the Strategically
Timed Attack (Lin et al., 2017), where the authors have crafted traditional perturbations that would
only be applied on an RL agent at times that would have the greatest effect.

However, the seemingly random and small perturbations of adversarial attacks makes them diffi-
cult to interpret. Traditional attacks on supervised learning, such as the Carlini and Wagner attack
(Carlini & Wagner, 2017), have relied on constraining the lp norm of the perturbation on an entire
image, most traditionally the l∞ norm. Recent work by Xu et. al. introduced the Structured Attack
(StrAttack) (Xu et al., 2019), which focused on improving the interpretability of these attacks by ex-
tracting structural information from the inputs, limiting perturbations to smaller regions rather than
an entire image.

Our work aims to extend the concept of interpretablity to the reinforcement learning setting. We
propose the Structured Interpretable Manipulation on Policies, which leverages the ”greatest timing
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effect” of the Strategically Timed Attack (Lin et al., 2017) and the ”structured interpretability effect”
of the StrAttack (Xu et al., 2019).

2 RELATED WORKS

2.1 STRATEGICALLY TIMED ADVERSARIAL ATTACK

Initial work on attacking DRL networks have focused on applying adversarial perturbations on the
input at every time step. The Strategically Timed Attack (Lin et al., 2017) aims to limit the amount
of perturbation that can be applied across time by posing the scenario as an optimization problem
with the goal of minimizing the target agent’s total reward with a limited number of perturbations
allowed. Due to the computational complexity of solving this optimization problem, the authors
instead use a heuristic that measures the difference between the least preferred and most preferred
action of the agent. The adversary attacks when the heuristic falls above a given threshold, which
forces the adversary to attack when an action is most critical, while reducing the number of total
attacks performed by the agent. This method was found to indeed perform much fewer attacks
without any significant drop in the adversary’s success.

2.2 STRUCTURED ATTACK (STRATTACK)

The Structured Attack aims to enforce group sparsity in the adversarial perturbations by extracting
key spatial structures from the input image (Xu et al., 2019). This was accomplished by solving
an optimization problem proposed by the authors via the alternating direction method of multipliers
(ADMM) algorithm. The paper also proposed a new ”interpretability score” measure for adversarial
attacks that utilizes an Adversarial Saliency Map (Papernot et al., 2016) to measure the ratio between
the amount of perturbations applied to the salient regions of an input image to the total amount
of perturbations. The StrAttack was found to have higher interpretability scores than the Carlini
and Wagner (CW) attacks, bringing the field of adversarial attacks on supervised learning closer to
interpretability.

3 METHODS

We discuss a method for measuring interpretability of an adversarial attack in a reinforcement learn-
ing setting.

3.1 STRATEGICALLY TIMED ATTACK

We followed the work of Lin et al. (2017) in performing the strategically timed attack (Lin et al.,
2017). An adversary would craft an adversarial perturbation to the input only if the following con-
dition that the attack would be ”impactful” applied:

c(st) := max
at

π(st, at)−min
at

π(st, at)

c(st) ≥ β
where π is the policy on a state-action pair (s, a) at time t, and β is a threshold for tuning the
frequency of attacks. As previously explained, this intuitively forces the adversary to only attack
when the agent has a high preference for a certain action, effectively limiting the number of total
attacks performed. The perturbation itself can be swapped out between any type, as the strategically
timed mechanism solely depends on the policy network.

3.2 STRUCTURED ATTACK (STRATTACK))

To craft the perturbation, we used the Structured Attack (StrAttack) on the input frames to a DQN
network (Xu et al., 2019). In order to extend the algorithm to the reinforcement learning setting, we
set the action of the agent from the most preferred to the least preferred action as our true and target
labels. Combined with the strategically timed attack, this would allow us to take a greedy approach
in minimizing the agent’s reward across time, all while minimizing the total amount of perturbations
that the adversary would be able to create throughout the agent’s lifetime.
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Figure 1: Left: Input before perturbation. Right: Input after perturbation highlighted in red and
yellow, with yellow having higher weights, under the Basm · δ measure. Notice how perturbations
are generally focused where the ball potentially could be, and is also timed to be when the ball is
near the paddle.

3.3 ATTACK INTERPRETABILITY IN RL

An Adversarial Saliency Map (ASM) (Papernot et al., 2016) can be used to measure the impact
of perturbations on label classification per pixel. We used the ASM-based interpretability score
proposed by Xu et al. for DNNs and classifiers, which we extended to a DQN in an Atari game
with frame inputs (Xu et al., 2019). Let δt represent the adversarial perturbation at time t for state
st and concatenated input frames xt. Let the target space be denoted by the action space where
amax = argmaxaQ(st, a) is the action chosen by the model and amin = argminaQ(st, a) is the
target action for the attack. Let Z(x) be the output of the last softmax layer of the DQN. Then a
modified version of the ASM is considered for pixel i as follows.

ASM(xt, a)[i] =

{
0 if ∂Z(xt)a

∂xi
< 0 or ∂Z(xt)amax

∂xi
> 0

∂Z(xt)a
∂xi

|∂Z(xt)amax

∂xi
| otherwise

Then a hyperparameter ν can be used to represent the percentile of the ASM measures to keep for
defining a binary-ASM (BASM) measure:

BASM (xt, a)[i] =

{
0 if ASM(xt, a)[i] < nu

1 otherwise

Finally, Xu et al. (2019) define the interpretability score of a perturbation δ as follows:

IS(δ) = ||BASM ◦ δ||2/||δ||2

Finally, we weight the measure by the normalized preference c(st)/cmax, where cmax is the largest
preference difference in the episode, across the different time steps it was applied in order to penalize
making lower impact perturbations:

ISRL(δ0, δ1, ..., δT ) = average{IS(δt) ·
c(st)

cmax
: δt 6= 0}

4 RESULTS

We evaluated the interpretability and attack success rates for both StrAttack and Carlini and Wagner.
Both attacks are targeted at the least preferred action at each time step, matching the strategically
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Figure 2: Average Interpretability Scores and the Preference Weighted Interpretability Scores in the
Atari Breakout and Pong Environments using different values of β = {0.1, 0.5, 0}. Blue represents
StrAttack, green represents the C&W attack, and blue represents FGSM.

timed attack. We also include results from an untargeted FGSM attack (Goodfellow et al., 2014).
The attacks were run against a DQN trained in Breakout and Pong environments provided by Ope-
nAI gym (Brockman et al., 2016) trained for 8.5 and 4.8 million iterations respectively. Our attack
code is an extension of RL-attack (Behzadan & Munir, 2017), a reinforcement learning adversarial
attack framework that utilizes the attack implementations provided in Cleverhans (Goodfellow et al.,
2016). Results with various values for β are shown in Table 1.

Attack Success Rate (%) Average l2-norm of perturbation ISRL

Env CW STR FGSM CW STR FGSM CW STR FGSM
Breakout 50 85.7 100 0.137 0.66 1.14 0.303 0.082 0.046
Pong 100 100 96 0.325 0.594 5.781 0.526 0.138 0.343

Table 1: Performance of the varying attacks with a timing parameter value of β = 0.1. Attack
success rate refers to the percentage of attacks that have been able to successfully alter the agent’s
actions. All attacks result in the same minimal reward value for the agent.

Overall, StrAttack was found to have much higher interpretability scores than both the C&W attack
the FGSM attack. This was expected, as StrAttack performs less perturbations per attack, as seen
in the l2 norms of the perturbations performed by StrAttack in 1. Overall, ISRL metric was also
much higher across varying β and µ values, which shows that the attacks performed by StrAttack
are indeed more impactful, as shown in 2. One interesting observation is that despite the lower
attack success rate of StrAttack, performance was not affected, and instead, contributed to higher
interpretability. This could potentially be explained by the intuition that perturbations only need
to be successful when the preference differences are greater, and do not need to succeed when this
difference is lower, which is reflected by our ISRL metric.
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5 CONCLUSION

We introduced a simple extension of the Structured Attack and the Interpretability Score proposed
by Xu et al. (2019) to the reinforcement learning setting by combining the intuition behind the
Strategically Timed attack by Lin et al. (2017). Through our work, we were able to limit the amount
of perturbations across both temporal and spacial dimensions that an adversary could perform on
a DRL agent to only the regions where an adversary could have a high impact on the agent. Fu-
ture work could expand upon our attacks and measures by further strengthening temporal sparsity,
such as forcing attacks to remain temporally consecutive. Other studies could also examine the ex-
tend the application of global perturbations, such as creating perturbations that remain fixed in the
environment, creating a more realistic and interpretable attack on DRL agents.
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