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Abstract 

Spreading depolarizations (SDs) are pathologic periods of brain activity suppression that travel at a rate of 2-5 mm/min and last 

several minutes1. During these several minutes, neuronal dysfunction can occur which may lead to delayed cerebral ischemia (DCI) 

or worsening of prognosis. There is little known about the effects that SD has on brain activity. Thus, using metrics such as the 

alpha-delta power ratio (ADR) to determine ischemic risk and cross-frequency coupling (CFC) metrics such as the modulation 

index (MI), phase-locking value (PLV), and the amplitude-envelop correlation (rAEC) to determine neuronal dysfunction, SD impact 

on brain activity can be quantified. Two de-identified electrocorticography (ECoG) datasets (one bypass patient and one stroke 

patient) were used to calculate these metrics. It was found that the ADR did not corroborate past studies as it increased in value 

during SD onset rather than decrease. Additionally, MI was found to change the most when the delta phase was used with the theta 

and alpha amplitude, regardless of SD presence. PLV was found to change the most when the high gamma (HG) or the delta phase 

were impacted. rAEC was found to change the most when the gamma amplitude was impacted and the theta, alpha, or beta amplitude 

was not impacted. Overall, there was a loose correlation for all coupling metrics between SD duration and percent change between 

before and during SD onset. The longer the SD was, the greater the metric became during SD onset. Further studies on different 

correlations such as SD amplitude as well as different injury types must be done in order to fully understand the effect SDs have 

on the brain. 

 

Keywords: Spreading depolarization, alpha delta ratio, cross-frequency coupling

Introduction 

SDs, or more colloquially known as brain tsunamis, are 

propagating waves of depolarization that result in cortical activity 

suppression that lasts several minutes at a time. SDs are characterized by 

a sharp negative DC shift that occurs closely to high frequency activity 

suppression. SDs have been reported to occur in acute stroke, 

subarachnoid hemorrhages (SAH), acute traumatic brain injury (TBI), 

and migraines1,2. In the past, SDs have gone under the radar due to 

similarities in quality with artifacts in scalp electroencephalography 

(EEG). With better technology and more specificity, ECoG has made 

SDs easier to identify at the cost of an invasive craniotomy or burr holes 

in the skull. With electrodes directly on the surface of the brain, artifacts 

and SDs are much more distinguishable, making SDs much easier to 

study. 

Many studies focus on effects that SD has on cerebral blood 

flow or cellular changes as a whole, but not much is said about the effects 

SD have on individual brain frequencies3–5. During SD, it’s postulated 

that the SD wave allows for the disinhibition of the NMDA receptor due 

to the absence of magnesium which leads to increased sensitivity to 

glutamate levels, triggering the release of potassium and excitatory amino 

acids1. As SD propagates, cytotoxic oedema can occur due to the 

increased water uptake into the neuron. The impacted brain area enters a 

hyperemic phase where the cerebral blood flow has been shown to 

increase 100%-200% before plummeting to 20%-30% of the baseline. 

The recovery period of the suppression due to SD is roughly 5-15 minutes 

whereas the blood flow reduction lasts for 1-2 hours6.  

Acknowledging the effects that SDs can have on ischemic risk 

or overall neuronal dysfunction is incredibly important to better 

understand how SDs affect the brain. Various methods of quantification 

can be used to mathematically describe dysfunction of communication 

between neurons. Delta, theta, and gamma are often the most studied due 

to their implications in consolidation, memory, and executive functions7. 

Quantifying the effect that SD has on these across time and space may 

bring light to the impact that SDs have on the brain. 

ADR has been used in the past to predict DCI. Traditionally, 

ADR has been studied using quantitative or continuous EEG on SAH 

patients. DCI on its own is complicated and not fully understood allowing 

it to go unrecognized. It is common and brings about its own 

complications that are disabling, typically 4-14 days after onset. Many 

studies use various metrics to predict DCI such as delta-alpha power 

ratio, (delta + theta)/(alpha + beta) power ratio, relative delta power, 

relative alpha power variability, as well as ADR8,9. ADR was chosen due 

to its strong linkage with DCI. Worsening ADR has been reported to be 

80% sensitive and 27% specific in a sample size of 95 aneurysmal SAH 

patients using automated EEG10 and a higher reported sensitivity of 95% 

and specificity of 77% in a sample size of 103 high baseline risk SAH 

patients using quantitative EEG8. These metrics can be specific and 
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sensitive to ischemic stroke as abnormal slow EEG activity within the 

delta range and attenuation of faster activity within the alpha range occurs 

during onset11.  

CFC metric calculations allow for the quantification of slow 

wave encoding of temporal information with the rhythmic spiking 

activity of the fast oscillation to quantify neuronal communication. 

However, CFC is incredibly vulnerable to fluctuations and bias7. Aru et 

al. speaks on ways to circumvent these biases, one of which is by using 

healthy or surrogate data12. CFC can be split up into different types such 

as phase-amplitude coupling (PAC) and amplitude-amplitude coupling 

(AAC). Theta-gamma coupling is the main PAC that is observed as it 

occurs during wakefulness, information encoding, working memory, 

retrieval, and sleep13. More generically, PAC quantifies the modulation 

of the high frequency amplitude oscillation with the slow frequency 

phase oscillation14. Two methods of quantifying PAC were used: 

modulation index (MI), which typically correlates high frequency 

oscillations (HFOs) amplitude with low frequency oscillations (LFOs) 

phases, and phase-locking value, which correlates one phase to another 

phase. For MI, the higher the value the greater the PAC whereas for the 

PLV a 1 represents perfect phase locking. AAC is far less studied than 

other forms of CFC. However, one form of AAC is the amplitude-

envelope correlation (rAEC), used to quantify how temporally correlated 

two amplitude envelopes are15.  

Thus, ADR and CFC should both decrease during SD onset and 

return to baseline within a couple hours. CFC may be more informative 

as it is more generalizable to neuronal dysfunction where ADR is specific 

to DCI.  

Results 

SD Identification 

Two de-identified ECoG datasets, one from a patient with a 

bypass and one from a stroke patient, were used in this study. Twenty-

nine SDs were found for the bypass patient and twenty-one were found 

for the stroke patient. The electrodes that were impacted by the SD were 

subsequently called the impacted electrodes, whereas the electrodes that 

did not experience an SD were called the adjacent electrodes. For the 

stroke patient, many of these SDs occurred during the same period of 

suppression but were counted individually. The identified SDs 

experienced by the bypass patient were both longer in duration and of 

greater peak amplitude, though no significant differences were found 

(Figure 1). In an attempt to evade artifacts, the median was used for all 

calculations other than the SD duration and peak SD amplitude as those 

were guaranteed to be without artifact. 

Furthermore, looking at the normalized relative power of each 

wavelength shows that the relative power of most all wavelengths are 

negative for the stroke patient whereas the bypass patient has far more 

variation (Figure 2). Additionally, during SD onset, the relative power is 

more affected in the stroke patient as seen by the clustering (Figure 2E). 

After SD onset, the bypass shows an impact on the alpha and beta relative 

power, whereas the stroke patient shows an impact on the delta and theta 

relative power (Figure 2C, F).  
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Fig. 1. SD Duration and Peak Amplitude. A) Median SD duration for all 
SD for both patients is shown. B) Median peak SD amplitude for all SD for 
both patients is shown. 
 

Fig. 3. ADR Time Series. A) Bypass patient ADR is shown to increase 
during SD onset and returns to baseline several minutes after suppression 
recovery. B) Stroke patient ADR is shown to increase during SD onset and 
returns to baseline shortly before suppression recovery. 
 

Fig. 2. Normalized Relative Power. Relative power for each frequency 
range before during and after are shown for the bypass patient (A-C) and 
the stroke patient (D-F). 
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ADR 

SDs are shown to impact ADR throughout high frequency 

suppression (Figure 3). Delta power is visibly affected during 

suppression for both patients. The presence of multiple SDs during one 

period of suppression does not seem to impact the longevity of ADR 

disruption (Figure 3B).  

Across all SDs, the median ADR during SD onset congregated 

closer together for the bypass patient whilst the opposite occurred for the 

stroke patient (Figure 4). After SD onset, the median ADR returned to a 

similar distribution and range as before SD onset for both patients. The 

correlation between SD duration and percent ADR change showed 

opposing regression lines across time comparisons and across patients 

(Figure 5). The bypass patient had a stronger correlation overall.  

When comparing before SD onset median ADR values to those 

during SD onset for the bypass patient, there exist several values that 

show nearly no change in median ADR despite the duration of SD (Figure 

5A). The same comparison for the stroke patient shows similar results, 

with several values showing little to no difference between time groups 

(Figure 5C). Despite both showing some relation between SD duration 

and ADR change, there is little confidence in the fit both due to the low 

R2 values and the SD duration independent clustering. The comparison 

between during SD onset and after SD onset median ADR values show 

more duration dependent correlations for both patients (Figure 5B & 5D). 

For the bypass patient, as the SD duration decreases, the more negative 

of a change (or the smaller the median ADR is after SD onset). The 

opposite is true for the stroke patient, however, the R2 is much lower. 

Cross-Frequency Coupling 

Modulation Index 

MI shows little changes over time groups. The wavelength 

combinations that utilize the delta phase and the theta or alpha amplitude 

show the greatest MI magnitude, regardless of whether the wavelengths 

used were on the impacted electrode or not (Figure 6). Visually, the 

impacted phase has a greater effect on the reported MI during SD for both 

patients. Interestingly, when the alpha amplitude is impacted rather than 

the delta phase for the bypass patient, there was a large visible decrease 

in MI after SD onset shown by the brighter blue presence in the heatmap 

(Figure 6A). For all other heatmap comparisons, the major MI change 

happened during SD onset. Additionally, the stroke patient experienced 

an increase in MI during SD onset whereas the bypass experienced a 

decrease (Figure 6B). 

Fig. 4. ADR Distribution Overview. A) Bypass patient median ADR is 
shown to increase during SD onset before returning to similar values as 
before SD onset. B) Stroke patient median ADR is shown be resistant to 
change save for a possible outlier. After SD resolves, the median ADR 
reduces compared to during SD onset but is not dissimilar to the median 
ADR before SD onset. 
 

Fig. 5. ADR Regression. Bypass patient shows a negative correlation 
between SD duration and percent change before and during SD onset and 
a positive correlation between SD duration and percent change during and 
after SD onset (A-B). Stroke patient shows the opposite correlation trend 
(C-D). Neither patient shows strong correlation for any time comparison. 
 

Fig. 6. MI Heatmap. Subtle differences in MI are shown for both patients 
across time. When the amplitude is impacted, the adjacent delta phase 
shows the highest magnitude of MI (A). Similarly, when none of the 
amplitudes are impacted the highest magnitude of MI shows when the 
delta phase is impacted (B). 
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Representative time series data of the impacted delta phase and 

adjacent theta amplitude show visible disruption of the MI during SD 

onset (Figure 7). Rather than a uniform change in MI, the disruption 

comes by the way of increased variation in MI, though most of the change 

was positive. The bypass patient shows a small period of suppression 

with no SD on the adjacent electrode and shows no visible subsequent 

disruption of MI (Figure 7A). The stroke patient shows two SDs with 

small periods of suppression on the impacted electrode and only the 

second SD that occurs immediately after recovery shows a disruption of 

MI (Figure 7B). 

Despite the greater visual disturbance seen in both the heatmap 

and the time series data, very little correlation is seen between the percent 

MI change and the duration of SD (Figure 8A-H). The outliers seen can 

possibly be due to the amateur identification of SD, biological 

randomness, or an unknown event that heavily impacted brain activity. 

There was little to no difference in the MI between before and after SD 

onset when the alpha amplitude was impacted for either patient. The 

impacted delta phase produced similar results for both patients and for 

both theta and alpha amplitude (Figure 8B, D, F, H). However, the stroke 

patient showed more variation when the alpha amplitude was used to 

calculate MI (Figure 8H). The impacted theta amplitude showed the most 

variation for both patients.  

When looking at the difference in MI after SD resolves, the 

trends seen are not dissimilar to those at SD onset (Figure 9I-P). For the 

stroke patient, there is semblance of a correlation between SD duration 

and percent MI change after SD onset when the delta phase is impacted 

and the alpha amplitude is not (Figure 9H). However, none of the 

correlations shown are strong. 
Phase-Locking Value 

The PLV shows very little difference between patients nor time 

groups. The highest PLV values are reported when either the delta phase 

or the HG phase are used, regardless of whether these are on the impacted 

electrode (Figure 10). 

Similarly to the MI heatmaps in Figure 6, there is very little 

visible disturbance in PLV for either patient. However, some suppression 

can be seen for the bypass patient when the delta phase is on the adjacent 

electrode and the HG phase is on the impacted electrode (Figure 11A). 

There is also some disturbance in the PLV for the stroke patient around 

Fig. 7. MI Time Series. MI is shown to be disrupted during SD onset for 
both patients. 
 

Fig. 8. MI Regression Before versus 
During SD Onset. Correlation 
between SD duration and percent MI 
change at SD onset is minimal. There 
is very little change in MI for many 
wavelength combinations (B-D & F-
H). There exists some correlation 
when the theta amplitude is impacted 
and the delta phase isn’t, but it is 
minimal. Little difference is shown 
between bypass patient and stroke 
patient.  

Fig. 9. MI Regression During versus 
After SD Onset. Correlation between 
SD duration and percent MI change 
after SD Onset shows minimal 
correlation. There is more of an effect 
on MI by SD than there was at SD 
onset. However, there are still many 
instances of very little MI change (D-
E).  
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hour 10.8 when the HG phase is on the impacted electrode and the delta 

phase is on the adjacent electrode (Figure 11B). However, the correlation 

between this disturbance and the presence of the SD is hard to justify. 

Despite the lack of visual differences in PLV for either patient, 

the regression plots show some correlation between the duration of SD 

and the percent change of PLV before and during SD onset (Figure 12). 

The bypass patient shows a loose positive correlation and the stroke 

patient shows little correlation.  The longer the SD duration, the greater 

the calculated PLV was during SD onset. 

After SD resolves, the correlation between the duration of SD 

and percent change between during SD onset and after is higher for both 

patients (Figure 13). Both patients show a positive correlation, indicating 

that the longer the SD duration, the greater the PLV was during SD 

propagation than after recovery. The bypass patient shows the highest 

correlation when the delta phase is impacted and the HG phase is not 

(Figure 13B). This directly contrasts the correlation present for the 

percent change at SD onset (Figure 12B). However, the percent change 

at SD onset had more variation surrounding the trendline.  
Amplitude-Envelope Correlation 

The low gamma (LG) and HG amplitude on the impacted 

electrode reports the highest rAEC values for both patients (Figure 14). 

The most change in rAEC across time groups for the bypass patient is when 

the alpha and beta amplitudes on the adjacent electrode are used. For the 

stroke patient, the theta, alpha, and beta show the most change across 

time groups. The stroke patient shows the higher rAEC overall, indicating 

a higher correlation between amplitude envelopes than the bypass patient. 

The bypass patient shows a disturbance that seemingly simultaneously 

increases and decreases the rAEC during SD onset. Contrarily, the stroke 

patient shows an increase in rAEC during SD onset.  

The rAEC visibly increases during and after periods of 

suppression for both patients (Figure 15). There is little visible effect 

when the alpha amplitude is impacted for the bypass patient (Figure 

Fig. 10. PLV Heatmap. PLV is shown to be highest when high gamma 
(HG) and delta phase are used. 
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Fig. 11. PLV Time Series. PLV is seemingly affected by SD but the visual 
effect is minor. A) PLV visibly decreases around the time frame of the SD 
and doesn’t increase until well several minutes after suppression resolves. 
B) There are two periods of PLV decreasing that are likely related to the 
presence of SD.  
 

Fig. 12. PLV Regression Before versus During SD Onset. A) PLV 
shows a positive correlation for the bypass patient. B) The correlation is 
much weaker for the stroke patient and is far more horizontal. 
 

Fig. 13. PLV Regression During versus After SD Onset. A) PLV shows 
a positive correlation for the bypass patient. B) PLV shows a positive 
correlation for the stroke patient. 
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15A). The effect of the impacted alpha amplitude is subtle for the stroke 

patient but is still visible (Figure 15B). Additionally, the effect on rAEC 

isn’t seen  ntil after    resolves  Fig re 15A). For the stroke patient, the 

 resen e of   lti le   s  oesn’t see  to  a se higher rAEC values. 

Additionally, the numerous negative DC shifts that occur independently 

of the high frequency activity suppression seemingly do not affect the 

rAEC when the LG amplitude is impacted but does have an effect when 

the alpha amplitude is impacted (Figure 15B). 

Despite the visible disruption in rAEC seen in Figure 15, the 

impacted LG amplitude does not show high correlation when its coupling 

with the adjacent alpha amplitude is assessed. Instead, there is higher 

correlation between the impacted HG amplitude and the adjacent alpha 

amplitude (Figure 16). Even so, the bypass patient shows very little 

correlation between SD duration and percent change in rAEC between 

before and during SD onset except when the LG amplitude is impacted 

and the beta amplitude is not (Figure 16B). The stroke patient shows 

some correlation as well when the LG amplitude is impacted and the beta 

amplitude is not (Figure 16F). They also show some correlation when the 

HG amplitude is impacted, and the alpha amplitude is not (Figure 16G). 

After SD resolves, there is much higher correlation between 

duration of SD and the percent change (Figure 17). However, the stroke 

patient has many outliers that skew the trendline and discount validity of 

the correlation. The bypass patient shows less correlation when the HG 

amplitude is impacted and the beta amplitude is not (Figure 17D). The 

stroke patient shows very little correlation when the LG is impacted 

(Figure 17E-F). The trendline for the stroke patient is riddled with 

outliers indicating that there is no real correlation between SD duration 

and percent change in rAEC after SD onset (Figure 17E-H). 

Discussion 

The ADR and PAC metrics were predicted to decrease during 

SD onset before returning to normal. However, these metrics either 

increased or showed no difference. Additionally, it was purported that the 

longer the SD duration the greater the difference in metric during SD 

onset. This also was not fully seen in any of the metrics. Some loose 

correlation existed showing the longer the SD duration, the greater the 

metric was during onset. 

Worsening ADR is known to be a reliable predictor of DCI in 

patients with aneurysmal SAH. In this study, the ADR was found to 

improve during SD onset, indicating that DCI was unlikely to occur. 

Since these metrics were compared to an hour before and after SD onset 

and there was overlap between SDs, the worsening of ADR may simply 

have been missed due to the absence of healthy or normal brain activity. 

Additionally, the relative power of the delta wavelength was shown to be 

more affected by SD in the stroke patient for all identified SDs. The 

bypass patient experienced more disturbance and modulation of relative 

power after SD resolved. These differences can inform on vulnerability 

of the impacted brain areas and their susceptibility to modulation.  

Most research on CFC revolves around theta, delta, alpha, and 

gamma, with much focus on theta-gamma PAC as it plays a crucial role 

in memory. In epileptogenic zones (EZ) or seizure onset zones (SOZs), 

it was found that PAC between HFO amplitudes and theta or alpha phase 

was significantly higher. Studies also show that delta-gamma PAC or 

delta-beta PAC can provide insight into locating the SOZs. PAC also is 

implicated in regulating seizure onset16–18. PAC is seen aiding 

interactions between neurons with similar phase preferences, where the 

LFOs modulate and promote the HFOs17. Little discussion is done on 

AAC and its relation to seizures, stroke, or other severe brain injuries, 

however it likely follows a similar trend as PAC does. 

There was a slight increase in the MI and PLV during and after 

SD onset, respectively. For the MI, the delta phase was integral for higher 

MI values. When the delta phase was impacted, the MI did not solely 

increase but rather gained a broader spread before returning to baseline. 

 hat’s interesting is that the  FO a  lit  es were fo n  to have a higher 

MI than the HFO amplitudes when the delta phase was impacted. For the 

PLV, both the delta and HG phases were integral for higher PLV values. 

The change in PLV was much more difficult to see in the time series data, 

but there was a general trend of increasing PLV during SD onset, 

regardless of SD duration, seen in the regression plots (Figure 12). Both 
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Fig. 14. rAEC Heatmap. rAEC is shown to be highest when the LG and high 
gamma amplitudes are impacted. Stroke patient shows the highest 
correlation values overall. 
 

Fig. 15. rAEC Time Series. rAEC is shown to increase after SD onset. A)  
rAEC increases drastically when the LG amplitude is impacted for the 
bypass patient. B) rAEC increases no matter which amplitude is impacted. 
However, there is a much bigger increase when the LG amplitude is 
impacted. 
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of these calculations resulted in low-valued reported metrics. Before SD 

onset, there was little to no PAC found at all, however, after SD onset, 

PLV found some PAC whilst MI found none. It is assumed that there 

would be little to no coupling occurring at all in a diseased or injured 

brain. The discrepancy seen in these metrics may be due to the imperfect 

sinusoidal oscillation of each brain activity wavelength. This 

imperfection heavily influences the phase and amplitude found by the 

Hilbert transform and may explain why the PLV found a higher value 

after SD onset whilst the MI did not. Additionally, PAC is traditionally 

done using the HFO amplitude and LFO phases. In this study, there was 

more PAC when LFO amplitudes were used with the delta or LFO phase. 

The impact that SDs have on this range of frequencies likely influences 

the ability of the PAC to occur. 

The lack of correlation between MI and SD duration should be 

investigated further. MI is a fairly standard metric of measuring PAC 

whilst PLV is still being studied as its rival. There has been argument that 

PLV may be more beneficial, but no concrete evidence has been shown 

thus far. With this study, the PLV appeared to be far more affected by SD 

than MI was. The percent change across time that MI experienced was 

very minimal, leading to little trend. PLV was shown to have a positive 

correlation with SD duration and actively changed during SD onset 

compared to before and after.  

The rAEC showed a hike in value during SD onset as well as a 

rough positive correlation between SD duration and percent change. The 

impacted gamma amplitude was responsible for higher rAEC values. 

Adjacent theta, alpha, beta, and LG amplitudes also contributed to the 

higher rAEC values. This is similar to the PAC found in SOZs, where the 

HFO amplitude reported higher PAC. More interestingly, the rAEC was 

affected more after SD resolved, where the rAEC decreased below baseline 

after SD resolved. This is not too dissimilar to the effect SD has on CBF. 

With this, the rAEC may be able to perform a similar task as PAC in terms 

of locating impacted areas. 

Across the two patients, subtle differences were observed. The 

stroke patient showed much more negative relative power of brain 

frequencies than the bypass patient. More interestingly, the stroke patient 

reported higher rAEC values across the board whilst incurring very subtle 

differences otherwise. There is thought that the smaller peak amplitudes 

and duration of SD may have allowed for better rAEC. 

Limitations 

Each SD was found by hand through hour-by-hour display of 

data. Due to the nature of the data, there were many artifacts that either 

obscured or rendered a visible SD unusable. The resolution of the figures 

from MATLAB heavily influenced the detection of SD. Many were 

added after the initial round of identification whilst verifying the adjacent 

electrodes. Additionally, many electrodes that had SD at one point were 

used as adjacent electrodes for neighboring impacted electrodes so long 

as there was no overlapping SD for two hours.  

The approach used to calculate CFC in this study presented its 

own challenges with using an impacted electrode and a non-impacted 

electrode. The electrodes used in the calculations were not guaranteed to 

be neighboring when SD was present in three or more neighboring 

electrodes. The jump in space, despite possibly being only a few 

millimeters, could have obscured the true value of each metric. 

Additionally, only one hour of buffer time before and after SD was used. 

The additional hour may have provided ample time for proper recovery 

before the next SD occurred, allowing the baseline to return to a more 

normal state. Similarly, many SDs overlapped or occurred within 

minutes, thus the before and after SD were not guaranteed to be sin SD. 

CFC is incredibly prone to bias. The MI was calculated 

utilizing a generated surrogate data set, but the other metrics were not. 

For the MI, the surrogate dataset was generated using segment shuffling. 

This only partially destroys the time dependency of the time series data. 

This was done as point shuffling was far too destructive as it removed all 

time dependency. The length of segment chosen may not have been short 

enough to remove enough time dependency or it may have been too short 

Fig. 16. rAEC Regression Before 
versus During SD Onset. Correlation 
between SD duration and percent rAEC 
change at SD onset is minimal. 

Fig. 17. rAEC Regression During 
versus After SD Onset. A-D) 
Correlation between SD duration and 
percent rAEC change after SD onset is 
much higher than seen with percent 
change at SD onset for the bypass 
patient. E-H) Correlation between SD 
duration and percent change after SD 
onset is still very loose and sporadic. 
There is seemingly less sensible 
correlation than there was at SD 
onset. 
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resulting in excessive destruction of the data. Further testing of the 

shuffled segments needs to be analyzed to ensure validity of the 

destruction of correlation between time and metric. 

Many comorbidities could also influence the results shown in 

this study. The data was deidentified and the annotations of the dataset 

were lost for both patients. Specific placement of the electrodes and past 

medical history of these patients was unknown. Thus, this study was done 

under the assumption that the only injuries incurred by these patients 

were of the bypass and the stroke. 

Future Direction 

More investigation into these metrics will prove beneficial in 

understanding the effects of SD on the brain. Further investigation into 

ADR and other similar metrics such as (delta + theta)/(alpha + beta) 

power ratio or relative alpha variability will help inform on the extent of 

impact SD has. Figuring out if ADR does increase during SD onset or if 

that was unique to this study is important. Closer investigation of PAC is 

also important. The trends seen in this study resemble those of epileptic 

PAC studies, indicating that there may be other similarities between 

epileptic patients and patients with SD. Validity of rAEC as an informative 

metric may provide a way to locate impacted areas of the brain. The 

linkage between rAEC, CBF, and SD – if any – could also provide a new 

way of monitoring CBF. 

Overall, a more diverse group of patients and intuitive 

correlations will help show if trends are unique to specific patients or if 

there are correlations that better encapsulate the effect SD has. Duration 

of suppression, amplitude of SD, frequency of SD, and spread of SD can 

all provide more information on the extent of impact SD has. 

 

Materials and Methods 

Deidentified ECoG data was obtained from the University of 

Virginia intensive care unit (ICU). The data was processed using 

MATLAB. Three filters were used: bandpass (0.5 Hz – 100 Hz), notch 

or bandstop (60 Hz), and a lowpass (0.01 Hz). The bandpass filtered for 

the spontaneous brain activity range (0.5 Hz – 30 Hz) whilst also 

including the gamma band (30 Hz – 100 Hz). The notch filter and lowpass 

filter performed similar functions to remove noise and identify SD. The 

lowpass filter revealed slow potential changes (SPC). The baseline was 

corrected by subtracting the moving median over a period of 10 minutes 

from each filtered data. This was done using the movmedian function in 

MATLAB. 

SD Identification and Characterization 

SDs were identified by a sharp, negative DC shift in both the 

notch and SPC. The data was viewed an hour at a time and all SDs, SD 

durations, and durations of high frequency activity suppression were 

recorded. The SD began immediately before onset and ended 

immediately after resolvement or return to baseline. The duration of high 

frequency activity suppression was found similarly. The peak amplitude 

of SD was found using the min function in MATLAB over the specific 

time points that SD occurred. 

Wavelength Extraction 

Bandpass data was further filtered into individual wavelengths: 

delta (0.98 Hz – 3.91 Hz), theta (4.39 Hz – 7.32 Hz), alpha (7.81 Hz – 

12.21 Hz), beta (12.70 Hz – 29.79 Hz), LG (30 Hz – 60 Hz), and HG 

(60.01 Hz – 100 Hz). The integral of power was calculated over 10 

seconds for each frequency range. The ADR was calculated using the 

integral of power of alpha over the integral of power of delta over a period 

of 30 seconds. This was done to ensure SD effect was not missed or 

obscured. 

CFC Calculations 

The phase and amplitude of each frequency range was 

extracted using the Hilbert transform in MATLAB. Specifically, the 

phase was found using the angle function on the Hilbert transform and 

the amplitude was found using the absolute value of the Hilbert 

transform. Each metric was calculated using one impacted electrode or 

electrode with SD and one adjacent or non-impacted electrode. Each 

metric was calculated for every wavelength and impacted/adjacent 

combination possible over a period of 2 hours every 30 seconds for 10 

trials. 

Modulation Index 

MI was found using the protocol from Zhang et al. Raw MI was 

found using the composite signal of the phase of one wavelength and the 

amplitude of a different wavelength (Equation 1). The surrogate data was 

generated by using segment shuffling. Five windows of two second 

segments were chosen. 30 seconds of data were parsed into these 

windows and randomly shuffled 100 times to generate the surrogate 

composite signal calculated (Equation 2). The mean and standard 

deviation of the surrogate composite signal was used to determine the 

distance that the raw MI was from randomized data (Equation 3). This 

was done to determine the remove the random chance that the MI found 

was not biologically relevant19. 

Phase Locking Value 

PLV was found using the protocol from Zhang et al. using phases of two 

different wavelengths where jΔt is the sampling frequency (Equation 4)19. 

rAEC 

rAEC was found using the protocol from Penny et al. the amplitudes of two 

different wavelengths (Equation 5). 

 The correlation matrix was found using the standard correlation equation 

(Equation 6). 

 

𝑀𝐼𝑟𝑎𝑤 =  𝑚𝑒𝑎𝑛|𝑎𝑆𝐷/𝑎𝑑𝑗(𝑡) × 𝑒𝑖 × 𝛷𝑎𝑑𝑗/𝑆(𝑡)|  

 

[1] 

 

𝑍𝑠𝑢𝑟𝑟(𝑡, 𝜏 ) = 𝑎𝑆𝐷/𝑎𝑑𝑗(𝑡 +  𝜏) × 𝑒𝑖 × 𝛷𝑎𝑑𝑗/𝑆(𝑡) 
 

[2] 

 

𝑀𝐼 =  
𝑀𝐼𝑟𝑎𝑤 −  𝜇

𝜎
 

 

[3] 

 

PLV =  |
1

𝑁
∑ 𝑒𝑖[𝜙𝑆𝐷(𝑗∆𝑡)−𝜙𝑎𝑑𝑗(𝑗∆𝑡)

𝑁

𝑗=1

|  

 

[4] 

𝑟𝐴𝐸𝐶 = 𝐶𝑜𝑟𝑟𝑛(𝑎𝑆𝐷[𝑛],  𝑎𝑎𝑑𝑗[𝑛]) [5] 
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Analysis 

Median values across trials were used to generate the heatmaps and 

regression plots. Percent change between before and during SD onset was 

calculated as the difference between median during and median before 

over absolute value of the median before (Equation 7).  

Similarly, the percent change between during and after SD onset was 

calculated as the difference between median during and median after over 

absolute value of the median after (Equation 8). 

End Matter 
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𝐶𝑜𝑟𝑟𝑛(𝑥[𝑛], 𝑦[𝑛]) =  
1

𝑁

∑ (𝑥[𝑛] − �̅�)(𝑦[𝑛] −  �̅�)𝑁
𝑛=1

𝜎𝑥𝜎𝑦

 [6] 

% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑎𝑡 𝑆𝐷 𝑂𝑛𝑠𝑒𝑡 =  
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𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑢𝑟𝑖𝑛𝑔) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑓𝑡𝑒𝑟)
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