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Abstract
Like many industries today, the healthcare industry depends on computer-based technolo-
gies. From the digital thermometer to the magnetic resonance imaging (MRI) machine, one
can find a variety of devices of different levels of complexity in any clinical environment.
Mobile technologies are also driving many out-of-clinic solutions. The increasing com-
plexity of medical technologies is improving both the diagnosis and treatment capabilities
of the healthcare industry, resulting in improved patient outcomes. It is, however, also cre-
ating more opportunities for undesirable outcomes, with the primary concern being harm to
the patients that these technologies are intended to help. This dissertation presents a frame-
work for reasoning about this primary concern for computer-based medical technologies in
light of this increase in complexity.

The core framework consists of a general model of patient safety based on a dynamical
systems view of health and health management. It views the human body as a natural
safety critical system and health as the body maintaining safe states. Doing so makes
the goal of health management (where medical technologies are employed) aiding in this
safety-critical function, and allows us to discuss safety of these technologies within the
same framework used for discussing health. This provides a number of advantages. First,
it makes the developments accessible to health practitioners. Second, it provides designers
with a link between system design features and patient safety (viewed as health outcomes).
Third, it provides regulators with a general framework for reasoning about the large number
of instantiations of medical technologies. Most importantly, it allows all three stakeholders
to reach a common understanding of patient safety for any medical technology. This makes
the framework valid from a health management perspective. Casting health in safety terms
makes it consistent with systems safety principles, while addressing the short-comings of
existing techniques for dealing with health as a functional goal.

The ability of the framework to enabling reasoning about the complexity introduced by
integration, autonomy, and mobility of emerging technologies is demonstrated by extend-
ing the core ides to one class of these technologies known as body sensor networks (BSNs).
The result is a general set of hazards for BSNs based on a generic BSN model, and a proof-
of concept simulation tool for BSNs embodying the features necessary for exploring issues
related to safety. Realistic examples based on information from the literature are provided
throughout to demonstrate the validity and applicability of the ideas.





Preface

If you have ever been admitted to the hospital or watched a medical show on television,
you will notice the wealth of devices and tests that are used to monitor the patient in order
to make relevant medical decisions. The most familiar of these devices is the electrocar-
diogram: that device with the spikey waveforms that beeps to indicate the patient’s heart is
still beating and flatlines and goes into a monotone if the patient dies.

Today, the vision is that patients will be monitored outside of the clinical environment,
using devices that can be implanted or worn, which will provide the necessary information
for medical decision making. For example, a patient with a heart condition could be pre-
scribed a number of devices that coordinate to provide his or her physician with information
on the behavior of their cardiovascular system in relation to his or her daily activities. Natu-
rally, because these new technologies are still medical devices, stakeholders are concerned
about the safety of the patient.

This dissertation grew out of this concern. It started as collaboration with Paul Jones
and Yi Zhang at the U.S. Food and Drug Administration (FDA), the federal agency tasked
with approving medical devices. They were proactive in trying to develop ways to reason
about the safety of these emerging technologies, which are unlike the systems they have
traditionally had to approve, and to provide guidance to manufacturers on how to reason
about and communicate the safety implications of these devices. I happened to be interested
in modeling a version of these technologies called body sensor networks at the time, but
was having a hard time making a value proposition on why anyone would need to model
them. Paul and Yi provided me with a great one: reasoning about safety.

Why the focus on “reasoning”? The search I just ran on oxforddictionaries.com pro-
vided a definition of “reasoning” as “the action of thinking about something in a logical
sensible way.” When we design a medical technology, we have to make some decision on
whether it will be safe for patients. Certainly we would like this decision-making process
to be “sensible”. We would also like it to be “logical” or at least transparent in a way that
someone else can follow and question our rationale and assumptions. Medical technologies
are complex, and understanding how they can become unsafe is riddled with subtleties.

i



ii Preface

The first question I asked myself is “what exactly do we mean when we say a medical
device is safe?” If I could find an answer to this, then I could apply the same basic thinking,
or update it for these emerging technologies. The answers I got, when I did get any, seemed
quite unsatisfactory, so I decided to supply my own. The framework presented in this
dissertation is based on my current thoughts on what this answer is. It is based on what I
have learned from how people think (reason) about safety of technologies and why and how
we go about managing health using various medical technologies. In the process, I found
that one of the difficulties in answering this question lies in the ambiguity of health as a
concept. What does is it mean to be healthy or unhealthy? When should we intervene to
try to improve health? My contention is that despite the variability in the answers to these
questions, one should be able to express their rationale for a particular answer precisely.

The dissertation focuses on ways for expressing this rationale precisely. If we can ex-
press what it means to be health or unhealthy, and hence why we should build a medical
technology (and in effect how to measure its efficacy), maybe we can use the same ap-
proach to express when we think a medical device is safe (healthy) for a patient population.
Since this topic is of interest to a wide range of people, I tried to keep the writing for a
broad audience. I hope that you find something insightful and useful whether you are a
designer interested in developing a particular medical technology, a regulator tasked with
evaluating one, a health practitioner trying to understand the claims made about one, or just
generally interested in the topic.

—- Philip Kwame Danso Asare,
Charlottesville, Virginia, 2015
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Chapter 1

Introduction

Solving a problem simply means representing it so as to make the
solution transparent

Herbert A. Simon

Like many industries today, the healthcare industry depends on computer-based tech-
nologies. In the clinic, for example, digital thermometers help take temperature, patient
monitors collect vital signs and alert nurses when values go out of the normal range, mag-
netic resonance imaging machines provide information on internal anatomy, and radiation
therapy machines irradiate specific parts of the body to treat various undesired growths. Re-
cently, advances in mobile and networking technologies are enabling patients and health-
care providers to manage care away from the clinic. The ever-increasing complexity of
medical technologies∗ is improving diagnostic and therapeutic capabilities, resulting in
improved patient outcomes. However, there is also an increased potential for harm to the
patients that these technologies are intended to help. This dissertation presents a framework
for reasoning about this primary concern for these computer-based medical technologies in
light of this increase in complexity.

Patient Safety of Medical Technologies
The potential for harm of any system falls within the realm what is generally called “Sys-
tems Safety Engineering.” According to a primer by the New England Chapter of the

∗“Medical technologies” refers both to individual devices or networks devices.

1



2 Chapter 1

System Safety Society [104], quoting the Military Standard MIL-STD-882, this is “the
application of engineering and management principles, criteria, and techniques to achieve
acceptable mishap risk, within the constraints of operational effectiveness and suitability,
time, and cost, throughout all phases of the system life cycle.”

This dissertation is primarily concerned with the idea of acceptable mishap risk. Mishaps
are generally things we do not want to happen. Risk has to do with the potential for and
severity of occurrence of these mishaps. The word “acceptable” implies that there has to be
some consensus by different stakeholders on what are the mishaps and what level of risk is
deemed acceptable. Below, these ideas are put in the context of medical technologies.

Medical technologies are typically designed for a particular patient population. General
Electric’s Dash 4000 patient monitor [38], for example, is designed to be used for a general
patient population. Because of the complexity of the human body and how its character-
istics vary from person to person, in the use of a particular medical technology, some set
of patients will almost invariably be harmed. For example, radiation therapy may have no
side effects in some patients, while it could produce secondary cancers in others [67].

We are therefore generally concerned with how much of this harm is tolerable, in terms
of how many patients get harmed and how severe the harm is. A system that results in a
tolerable amount of harm (acceptable mishap risk) is considered safe for patients. Hence,
in general, radiation therapy systems are considered to be safe for patients because we
are willing to tolerate the number of people who experience severe effects like secondary
cancers.

The above implies that patient safety is not an absolute concept. Because what is con-
sidered safe and unsafe for patients depends on this tolerance level for harm (which in
turn depends on a number of factors including the ambiguous concept of health), when
our tolerance changes so does the patient safety of the technology. One of the things this
dissertation shows (in chapters 3 and 4) is that despite this relativity of what is considered
tolerable harm for patients, and the ambiguity of some of the ideas this tolerance depends
on, we can still have precise and meaningful discussions when reasoning about the patient
safety of medical technologies.

Stakeholder Reasoning Needs

Three main stakeholders are involved when it comes to the safety of medical technolo-
gies for patients: the technology manufacturers who design and sell medical technologies
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intended to help health practitioners† carry out their health management duties more effec-
tively; the health practitioners who work with these technologies to help patients; and the
regulatory agency who must protect patients by ensuring that only safe technologies are
approved for sale. In the U.S., the regulatory agency is the Food and Drug Administration
(FDA)‡.

Ideally, all three stakeholders would have a common understanding of what “patient
safety” (the acceptable mishap risks) for a particular technology means. Without this, there
would be confusion on whether particular outcomes for patients are undesirable or not,
and on how to address a particular technology of concern. Ideally, patient safety would
be defined in way that is relatable to contexts in which these technologies are used and
to patient outcomes, making it accessible to health practitioners. Using a radiation therapy
machine as a hypothetical example, we would say it is safe because when used as instructed
on cancer patients only a small percentage (say 1 in 100,000) experience secondary cancers,
and of this number only 1 in 10,000 are malignant.

To be accessible to manufacturers, this definition of patient safety in terms of patient
outcomes must be linked to design features of the particular technology. This link should
enable manufacturers to address patient safety in a way that fits in their development pro-
cess. For example, if it turns out that the outcomes (risk of secondary cancers) for our
hypothetical radiation therapy machine are linked to the accuracy of the focus of the ra-
diation beams, then manufacturers can use this link between patient outcomes (secondary
cancer risk) and design features (beam accuracy) in their design considerations.

If the manufacturer is interested in making improvements to the machine design, they
would make sure that either the beam accuracy remains at levels required for the outcomes
we currently tolerate or change in a way that result in better outcomes. In addition, if a
manufacturer wants their machine to also be used for non-cancer patients to treat other
growths, they would have to understand what the tolerable outcome for this population is
and how these relate to the accuracy of beam focusing. If the tolerance is different for
cancer and non-cancer patients, this would affect the design requirements.

To aid the FDA in their regulatory function, the definition of patient safety and the re-
sulting framework for reasoning about patient safety must provide a means for examining

†I use the term “health practitioners” to refer to those in the medical field and other fields related to
human health, including researchers in these fields.

‡According to the FDA website, “FDA is responsible for protecting the public health by assuring the
safety, efficacy and security of human and veterinary drugs, biological products, medical devices, our nation’s
food supply, cosmetics, and products that emit radiation”[110].
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in a consistent manner technologies from different manufacturers with similar health man-
agement goals. For example, if ten different companies make radiation therapy machines
but use different techniques to focusing the beams, the FDA would be more concerned
with the accuracy of that focus since that is what is linked to the patient outcomes, and not
necessarily the details of the particular techniques.

A general way of defining patient safety that satisfies the above criteria provides all
three stakeholders with a repeatable mechanism for collaboratively arriving at specific pa-
tient safety definitions for any medical technology of concern. This approach to defining
patient safety is important for both current and emerging technologies. Typically, the ex-
pectation is that the FDA bears the sole responsibility of defining what is safe. As proactive
as the FDA tries to be, it cannot anticipate all new technologies. In addition, it is impossible
for the FDA or any other regulatory agency to understand the details of every existing and
emerging medical technology, especially as the variety and complexity of these technolo-
gies increase. Letting the FDA bear the sole burden of defining what is safe is therefore
impractical.

Relating health management contexts and patient outcomes to technology design fea-
tures allows any of the three stakeholders to examine meaningfully how changes to a design
affect patient outcomes or how changes in patient outcome expectations affect designs, and
hence patient safety. The ability to do this is important for striking a balance between
feasibility of designs and patient safety, a process that requires input from all three stake-
holders. For our example radiation therapy machine, all three could have a discussion on
what amount of potential occurrences of secondary cancers is tolerable knowing that it af-
fects the accuracy of beam focusing required and hence the feasibility of the design (both
in terms of cost and what is actually possible given the current state of engineering).

For emerging technologies or substantial revisions to existing technologies, this ap-
proach allows the manufacturer to develop a preliminary definition of safety which can be
refined with input from the other stakeholders. This prevents these manufacturers from
waiting on the FDA to make sense of their technology before beginning to think about its
patient safety implications. The earlier safety considerations can be incorporated into the
design process, the better [104].

Complexities of Emerging Medical Technologies

The increase in complexity of emerging medical technology that motivates this dissertation
is fueled by three recent trends. First is the integration of medical devices that have previ-
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ously operated independent of each other into systems with newer capabilities for diagnosis
and treatment. Second is the increase in autonomy that both these integrated systems and
individual devices are being given, where some decisions that were previously being made
by health practitioners are now being made by devices. Third is the development of mobile
systems to be used away from the clinical environment, typically by the patient and without
direct supervision of a health practitioner or immediate availability of technical personnel.

Previously, in the absence of these trends, much of the safety burden lay with the health
practitioner who used these devices, making reasoning about patient safety of the devices
much simpler. These trends, however, redistribute some of the safety burden to the devices,
creating the need to reexamine patient safety accounting for the increased complexity, and
to handle some of the newer issues introduced.

A category of emerging medical technologies that combines all three trends is what is
know as body area networks (BANs). An example is the artificial pancreas [29], a system
designed to help Type I diabetics manage their blood glucose levels in real time. Type I di-
abetes is an auto-immune disease that prevents the body form producing insulin, a hormone
needed keep blood glucose levels from becoming abnormally high [73]. Current versions
of the artificial pancreas typically consist of three physically-separate wearable devices: a
device for monitoring the blood glucose, a pump for infusing insulin, and controller device
which uses the information it receives from the monitoring device, as well as other input
from the patient, to decide on and instruct the pump on how much insulin to infuse.

An interesting issue arises in the case of systems like the artificial pancreas. Although
not currently on the market, the prototypical artificial pancreas has its three devices devel-
oped by three different manufacturers. In such a case, each manufacturer must have their
device approved by the FDA independent of the other. It makes sense to talk about the
patient safety of the artificial pancreas as a whole, but what does it mean to say that any
of the devices on their own is safe for patient? And, how do we define this idea of patient
safety of the individual devices that make up the system such that if the manufacturer in-
tends that their device would be used in an artificial pancreas, then we do not require that
the manufacturer has to test their device with every version of the other devices available
on the market? (Each device can be used for other purposes besides being part of the artifi-
cial pancreas.) More importantly, how do we make sure there is no confusion between the
different manufacturers, the FDA, and health practitioners on meaning of patient safety for
a device? This problem affects medical devices that have the ability to be integrated into a
larger system.
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The Systems Safety Gap

The obvious question to ask is that if there is a whole field of systems safety, what is
missing, and why the need for the work in this dissertation? Above, we already mapped
some general systems safety ideas to the medical context. The key lies in the difference
between technologies like those used in the medical context we are concerned with and
other safety-critical systems.

It turns out that we can put safety-critical systems into two general categories: those
where human health as a safety issue, and to a large extent safety in general, is considered
as a constraint; and those where human health as a safety issue is the functional goal.

Examples of the first kind of system are automotives, chemical plants, and nuclear
plants. The functional goal of a vehicle is to transport people and goods from one point
to another, and the goal of a nuclear power plant is to generate electricity for industrial
and home consumption. When a person falls sick, our first inclination is not to go build a
nuclear power plant. However, whenever a nuclear power plant is built (for other reasons),
we are definitely be concerned with the health risks and other potential for harm to people.
One way to reduce risk may be to not build the power plant at all, and the risk is introduced
because we built the power plant.

Medical technologies fall into the second kind of system, and so do water treatment
plants. For these systems, their functional goals are measured with respect to the outcome
for human health and well-being. When a person falls sick, we seek solutions where medi-
cal technologies play a role, and in some cases preventative solutions like water treatment
plants. This is why the previous section stresses the importance of putting patient safety in
patient outcome terms.

The main issue is that systems safety grew out of the first kind of system, and hence
its current treatment of human health as a safety issue is very limited. There is limited
precision with what is described as harm to human health since that is not the primary
focus of the system design, and hence when applied to medical technologies, this reduces
the ability to effectively address risks directly related to patient outcomes.

There is another problem with systems safety when it comes to dealing with human
health. In the first kind of system, the parts of the system that are considered in detail
and that we are trying to make safer are technologies of our own creation, where as in the
second kind, what we are concerned with are natural processes that we did not design. For
a car, for example, we are concerned with its safety implications for the driver and others.
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Since we designed the car, we can control the design process to add features that reduce its
potential for harm and the severity of harm.

In the case of medical technologies, one can think of the human body as a natural safety-
critical system that tries to keep itself safe (healthy) and the goal of medical technologies
to aid in this safety critical function. This means that the medical technologies must work
well together with the existing mechanisms of the human body and hence these mechanism
must be understood and incorporated into the safety discussion. This case is analogous to
being given a car without any knowledge of its design documents and being asked to add
safety features without this knowledge. Since our understanding of the workings of the
human body is still incomplete, it is more difficult to understand how it might potentially
interact with new technologies.

There are a number of efforts in the medical technology community aimed at increasing
capabilities for assuring patient safety. Many of these are based on applying traditional
approaches to systems safety from other fields to the medical technology context, and hence
make weak and vague links to actual health management contexts. They are also based on
more mature medical technologies for which mishaps are well known. In recent years, for
example, there has been a call for model-based approaches to medical technology design
[2, 57], and there is a general shift in the research community and by the FDA towards
this approaches for addressing patient safety of medical technologies [47]. There is also
interest in dealing with patient safety in cases where medical devices are integrated and
given more autonomy [5, 78]. Some work has also been done for emerging technologies
like continuous glucose monitors [52].

It is important to note, however, that the systems safety techniques that have been devel-
oped in the context of the first kind of system, and applied to existing medical technologies,
are not completely useless for addressing emerging medical technologies. What is needed
is reorienting them towards the view necessary to address patient safety for emerging med-
ical technologies. This is exactly what this dissertation does: it provides the missing pieces
to complement the existing systems safety approaches. The thesis is that from systems
safety principles and careful abstraction of the health management context, one can derive
a framework for reasoning about patient safety that complements existing techniques. The
argument is that the framework is valid from a health management perspective (which is
one of the reasoning needs for the stakeholders of concern) because it uses a careful ab-
straction of this context, and that it is consistent with systems safety principles because it
was derived from these principles.
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Contributions of this Dissertation
The main contributions of this dissertation is in developing a framework (a model) for
reasoning about patient safety that is both valid from a health management perspective
and consistent with systems safety. The framework is based on dynamical systems ideas.
This is because both systems safety and health management can be viewed in terms of
dynamical systems, which allows us to ensure both validity and consistency. The aim of
the framework is to provide as general a treatment of the topic as possible.

This framework does not constitute a formula for getting a product approved by the
FDA. The intention is not to develop such a formula, and I find the idea of the existence of
such a formula problematic. Below are brief descriptions of the pieces of this dissertation
that make up the framework and help demonstrate the thesis.

Core Ideas

The developments below focus on the core ideas behind the framework that are widely
applicable to different emerging medical technologies. They are based on the realization
that both health management and systems safety can be described using dynamical systems
ideas, and by viewing the human body as a natural safety critical system, patient safety of
medical technologies can be reasoned about using the same ideas used to discuss health
(which is viewed as the body’s attempt to maintain ‘safe’ function).

Extracting Systems Safety Principles

Chapter 2 reviews systems safety, its goals, and some of the general approaches that have
been developed to aid in achieving the goals. Its main focus is to extract the principles
which guide the development of the other ideas in the dissertation. It also is the begin-
nings of providing a framework for examining different systems safety paradigms and ap-
proaches. In particular it shows that a dynamical systems view of safety is a valid general
case of many of the approaches of systems safety, and shows how particular paradigms and
approaches can be viewed as special cases of this more general view.

A Model of Health Management

The primary goal of medical technologies is to aid in health management, and all discus-
sions of these technologies must be related to this goal—some, especially manufacturers
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of emerging technologies, sometimes lose sight of this point. The framework development
begins in chapter 3 by developing a dynamical systems model of health management view-
ing the human as a ‘natural’ safety critical system and health as the ability to sustain this
safety-critical function. This view ensures consistency with systems safety principles.

Though viewing humans and their health through a dynamical systems lens is not a new
idea, a new notion that comes out of this development is the general structure and interpre-
tation of health metrics in dynamical systems terms. Previous dynamical systems modeling
of health management (which aid the validity argument for the framework developed in this
dissertation) have been focused on explaining disease mechanisms or developing treatment
strategies, but none, as far as I am aware, has looked specifically in general at what health
metrics really are.

Health metrics are important for determining when to intervene and how well an inter-
vention does. For emerging technologies, the ability to develop appropriate metrics (when
they do not exist) is important. Since they are the measure of well the body manages to
keep itself healthy (and hence ‘safe’), health metrics also form the core piece in our model
of patient safety in chapter 4. To demonstrate the validity and generality of the model from
the perspective of health management, the ideas in the model are mapped to ideas in health
management using a variety of examples from the literature and other credible sources.

A Model of Patient Safety

Chapter 4 builds on the dynamical systems model of health management to show how
mishaps and risks arise in the context of health management where medical technologies
are employed. It reveals the role of variability in health management mishaps and develops
the model to make sure variability is explicitly accounted for and hence plays a central role
in the definition of patient safety (acceptable mishap risk).

Using two illustrative case studies related to different glycemia management contexts
(one for the intensive care units (ICU), and the other for the artificial pancreas), it shows the
utility of the model for defining patient safety criteria, assessing patient safety of specific
medical technologies, developing requirements for a safety-guided design process, dis-
cussing safety criteria in light of design feasibility issues, exploring the impact of assump-
tions and rationale made in defining criteria and performing assessments, and structuring
safety arguments.

The case studies focus on glycemia management because I had ready access to models,
data, and resources locally (through the University fo Virginia Center for Diabetes Tech-
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nologies) to make sure the case studies, though illustrative, were meaningful. Since the
core ideas (developed in chapter 3) on which this model rests were shown to be applica-
ble to cases other than glycemia management, one can argue that the patient safety model
applies more generally as well.

Implications and Applications

These developments focus on using the ideas described above to reason about patient safety
for a particular class of emerging technologies, in this case body sensor networks, by look-
ing at the implications for two different aspects of the design process. The first is the
implication for patient safety analysis based on hazard and causal factor identification as
is traditionally done in systems safety engineering. This shows how the framework com-
plements existing techniques. The second is the implications for design tools focusing on
features necessary for exploring the effect of interactions between BSNs and the patient on
BSN behavior, an issue identified by previous developments as important for patient safety.

Implications for Safety Analysis of Body Sensor Networks

As mentioned previously, manufacturers are often faced with the case of reasoning about
the safety of a technology that may be part of a larger system. BSNs are such a technology
and their patient safety is more subtle to reason about because of the indirect effect they
have on patient outcomes. One of the implications of the model developed in chapter
4 is that by defining appropriate interfaces between the technology of concern and other
subsystems in the health management system, one can reason about safety that particular
technology.

Chapter 5 develops a generic BSN model and uses these to identify a general set of
hazards for BSNs, the first such model and set of hazards as far as I am aware. The model
and hazards reveal how the interface between the BSN and hazards must be characterized
in order to undertake a safety-guided design process. In addition, it provides a discussion
of some of causal factors for the hazards and develops a (non-exhaustive) set of points to
consider in order to inform patient safety analysis of BSNs. As with other developments,
examples are provided of how these ideas map to realistic systems to demonstrate their
validity and utility.
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Implications for Body Sensor Network Design Tools

Since the human body is non-uniform in space, where (and how) a BSN component is worn
(or implanted) matters. In addition, the physical characteristics and activities of the patient
can heavily affect BSN behavior. Design tools must therefore allow a designer to explore
these factors and interactions and their effect on BSN behavior.

Chapter 6 looks at these implications for BSN design tools. In particular, it focuses on
tools for simulation-based explorations and virtual prototyping. It describe the character-
istics needed in design tools in order to enable such explorations, and presents an open-
source simulation framework (still under development) that serves as example instantiation
of a tool with these characteristics. This framework is called BodySim, and its current
version supports inertial sensing explorations. It also tracks variables that can be used to
develop wireless communication models for BSNs.

BodySim provides realistic virtual humans that a user can place sensors on and run
simulations similar to the way a real human subject experiment would be run. This virtual
human subject experimentation platform eliminates the overhead of real human subject
experiments, while providing advantages like repeatability in subject behavior and a level
of control over experiment variables that is not possible in real human subject experiments.

It also provides advantages over existing (more issue-specific) models because of its
multi-domain simulation capabilities and its ability to serve a framework for integrating
different models to provide more meaningful evaluations of system behavior. This allows
more intuitive joint simulation of sensing, processing, and communication in a BSN while
accounting for the complex dynamic environment in which these must take place.

Perspective

In 1940, Claude E. Shannon produced a masters thesis at the Massachusetts Institute of
Technology titled “A Symbolic Analysis of Relay and Switching Circuits,” in which he
developed a mathematical method for analyzing the properties of switching circuits and for
designing circuits to exhibit specific properties [93]. Switching circuits and relays already
existed and were being used in telephone exchanges and other equipment. Their design
was, however, more of an art. By providing a formal model of these circuits, Shannon
paved the way for more systematic design techniques (what we know today as Boolean
Algebra for Digital Logic Design), and we have him to thank for the increase in complexity
of circuits that are responsible for today’s impressive digital technologies.
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In 1948, Shannon, then at Bell Labs, published an article titled “A Mathematical Theory
of Communication” for the The Bell System Technical Journal [94]. Various impressive
communication technologies already existed, and communications engineers were busy
trying to improve them. These included the telegraph (including the transatlantic systems),
telephone, radio, and television. In his article, Shannon summed up the fundamental goal
of all communication systems: “reproducing at one point either exactly or approximately
a message selected at another point.” He then developed a theory around this idea by in-
troducing the idea of a ‘bit’ (a term he attributes to John Tukey) as a unit of information to
be communicated, describing the now-common schematic model of communication sys-
tems, and dealing with the issue of encoding messages and reliably communicating them
over noisy channels. The formal concepts of information and communication developed in
Shannon’s theory provided communication engineers with invaluable tools for understand-
ing and designing communication systems, and gave birth to the field of information theory
that has influenced many developments. One could argue that Shannon’s two theories are
single-handedly responsible for the information technology revolution.

It is important to note that in either case, Shannon did not invent all the formalisms that
he used. The Boolean Algebra he used for his circuit work, for example, was developed by
George Boole [13]. Shannon’s main contributions, in both cases, were in his insights and
in articulating the implications of these insights in terms of design and analysis approaches
for engineered systems. In the circuits case, he realized the analogy between two-state
behavior of switching circuits and the two-valued logic abstraction of Boolean Algebra and
the advantages it provides for describing the analysis and synthesis of such circuits [13, 39].

This phenomenon of formalizing an already-existing concept, system, or activity is a
recurring theme in the history of technological developments. The class of systems known
as “governors” (the well-known being the Watts governor for controlling the speed of steam
engines) were developed without any rigorous mathematical theory. However, it was diffi-
cult to explain how these systems could enter a state of what is now known as ‘instability”
where they would oscillate instead of maintaining a steady state, hindering the ability to de-
vise sound solutions to the problem. Work by James Clerk Maxwell [66] and others kicked
off the field of control theory which helped solve the problem and enabled the design of the
complex control systems that made the aircraft possible and keeps many systems like cars
and chemical plants running smoothly.

In some sense, history is on our side when it comes to formalizing an already-existing
concept. Indeed, Lee and Varaiya make the claim in their text on signals and systems [55]
that “one way to get a deeper understanding of a subject is to formalize it, to develop math-
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ematical models.” This work does not claim to be “the theory of patient safety of medical
technologies”, but these historical examples are good models to follow, and have serve as
inspirations for this work. In the spirit of Shannon and others, the hope is that in some
way, however small, the work presented in this dissertation helps fuel advancements in our
ability address patient safety of medical technologies, and paves the way for improvements
in patient outcomes balanced with the potential for harm.
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Chapter 2

The Many Faces of Systems Safety

What’s in a name? That which we call a rose by any other name
would smell as sweet.

William Shakespeare

Chapter Overview
This chapter is a brief review of some of the ways of reasoning about safety of systems. Its
aim is not to be a comprehensive review of safety analysis techniques, but to present the
paradigms that guide these techniques in order to put both existing techniques and the work
in this dissertation in some context.

The basic premise in this chapter is that systems safety paradigms share a common
dynamical systems view of the operation of a system, but differ in their conceptions of how
emergent behavior, especially as it pertains to mishaps, arise. In addition all techniques
share the common goal of identifying (their view of) causes of mishaps and controlling
these causes to reduce the frequency and severity (risk) of these mishaps to an acceptable
level.

2.1 Introduction
The goal of systems safety engineering is to be an integral part of the full life cycle of the
system. An illustration of a system life cycle is shown in Figure 2.1. At the earliest part

17
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of the cycle is the conception of the system, where a specific problem or need is identified.
At conception, we envision the ideal operation of the system with the aim of producing an
implementation which when deployed solves the particular problem or meets the particular
needs. Most implementations will stem for a particular design, and designs would be based
on requirements developed from the ideas and needs provided at the conception stage. At
the end of life (useful operation) of an implementation of a particular system concept, the
system is retired.

Figure 2.1: Illustration of system life cycle based on a modified version of the popular
Waterfall Model.

The main aim of systems safety engineering is to ensure that from operation (when the
system comes to physical existence) to retirement, the systems existence results in accept-
able mishap risk. Ideally, safety considerations would start at conception. In addition, a
large part of the systems operation (including operating procedures for humans who play
an integral role in the system) is controlled by the design and implementation, which are in
turn (ideally) controlled by the requirements. In the system safety engineer’s ideal world,
the requirements would ensure safety, and safety would be designed into the systems op-
erations. If the operation does end up in producing mishaps, analysis of the mishap would
provide valuable information on how to avoid mishaps for future versions of a similar sys-
tem.

Much of systems safety is focused on how safety can be introduced at the earlier
stages to inform design. Reasoning about safety requires making inferences about how
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the conceived system might behave and whether those behaviors could potentially result in
mishaps. This reasoning process is involves analysis of different versions of designs (and
possibly implementations) of the system, and using the results from these analyses to in-
form design changes. Below is a review of some systems safety paradigms and techniques
(with some historic context). In particular, it shows how the techniques share the common
view point of dynamical systems, but differ in which systems components they focus on
and their assumptions on how overall system behaviors, especially mishaps, arise.

2.2 Dynamical Systems

To avoid any confusion, it is important to briefly describe the particular view of dynamical
systems used.

A dynamical system, for our purposes, is simply an abstraction for a system that evolves
over time. It has states (x), a set of variables whose current values can (in theory) be used
to predict future evolution of the system. It has parameters (λ ), which govern its evolution.
As part of its evolution, it may react inputs (u) to produce observable outputs (y). The
values of any of these variables over time is call a trajectory. Visually, the structure of a
dynamical system is represented by a box with arrows indicating the input and outputs as
shown in figure 2.2.

Figure 2.2: A visual representation of a generic dynamical system.

Below, we review a number of ideas useful for our purposes.

2.2.1 Trajectories

A trajectory is simply the description of the values of any of the variables (inputs, outputs,
states, or parameters) as a function of time. Figure 2.3 shows three different trajectories
related to an example model of a simple bank account whose basic structure is shown in
figure 2.4.
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Figure 2.3: Example trajectories of bank account inputs and state

The first trajectory is the money in the account, which in this example is the state.
The second and third trajectories represent deposits and withdrawals respectively. Notice
that withdrawals are considered inputs, even though this seems counter intuitive from what
happens in reality. From the perspective of modeling the money in the account, however,
this makes sense since one can think of them as negative deposits.

2.2.2 Dynamics

The dynamics are concerned with the ways in which the system can evolve over time and
the relationships between the various variables.
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Figure 2.4: Structure of simple bank account model

Deterministic Behavior

The simplest way to explain deterministic behavior of dynamical system is that given the
same initial conditions and input trajectories, it will always evolve the same way. Using
the example account in Figures 2.3 and 2.4, if we start at $100 at 6am, and have deposits
and withdrawals follow the same pattern, the money in the account over time will always
follow the same pattern as shown in Figure 2.3.

Non-Deterministic Behavior

For a non-deterministic system, given the same initial conditions, and input trajectories, the
evolution of the system may be different each time. One can think of a non-deterministic
system as having some degree of ‘free will’ or randomness. Continuing with bank account
examples, if we assume that we have an interest earning account, but the bank can arbi-
trarily change the interest on the account at any point in time, then given the same initial
amount in an account, and the same deposit and withdrawal patterns, the way the amount
in the account varies will be different depending on how the bank decides to adjust interest,
which is a choice we know nothing about before hand.

Modal Behavior

The behavior of a dynamical system can include more ‘symbolic’ and less quantitative.
In the bank account example, an account may be designed such that so long as certain
conditions exist, for example, if the balance on the account is above a certain minimum,
we may not be assessed fees. In this case, we can think of the bank account as having two
modes: a fee-based mode and a fee-free mode.

The dynamics (how the account behaves) in each mode is slightly different. If the
account is not interest-earning, for simplicity, then in the fee-free mode, its behavior de-
pends on the initial amount in the account and the input trajectory of withdrawals and de-
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posits. Once conditions change and the balance goes below the minimum, then the account
switches to a fee-based mode where in addition to responding to withdrawals and deposits,
the account also reduces the balance by the fee amount periodically. Mode changes can
deterministic or non-deterministic. The only requirement is that the possible modes are de-
scribed as part of the description of the system, even if changes can be non-deterministic.

Based on the above, the dynamics of the bank account can be described both by which
mode it is in (the symbolic dynamics) and how the money in the account changes over time
(the ‘quantitative’ dynamics). There may be times where one is interested in the symbolic
trajectories and times when one is interested in the ‘quantitative’ trajectories.

2.2.3 Compositionality and Feedback

A more complex dynamical system can be made by connecting two or more simpler dy-
namical systems. This is the idea of compositionality. A related idea is that of feedback. In
the case of the composition of two systems, a feedback connection is such that at least one
output of each system is an input to the other. This forms a loop as shown in top diagram
in Figure 2.5. The ‘loop’ may not always be evident as shown in the bottom diagram in
the figure. When more than two systems are composed, there are a number of possibilities:
there may be a direct feedback connection between two blocks as shown in the top diagram
in figure 2.6 or an indirect feedback path as shown in the bottom diagram.

Figure 2.5: Feedback between two systems A and B. The two diagrams are equivalent

Feedback has many useful purposes, including influencing the dynamics of a system
to make it more desirable and more robust to unwanted disturbances. It can also have
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Figure 2.6: Feedback between three systems A, B, and C. The top diagram shows direct
feedback between A and B. The bottom diagram shows an indirect feedback path from A
back to A through B and C.

adverse consequences such as introducing undesirable dynamics. Most systems of interest
are modeled as dynamical systems with feedback.

2.2.4 Intrinsic Behavior

The intrinsic behavior of a system describes how it responds to a variety of input trajectories
in terms of state changes and producing outputs. If the system has some non-determinism,
it also describes the nature of this non-determinism and whether it results in producing
outputs that are not input dependent.

Continuing with the bank account examples, let’s look at the behavior of an interest
earning account that earns a monthly compound interest. The interest rate describes exactly
how any amount that is in the account at the time the interest is applied is increased. The
specific interest rate and the fact that the account is interest earning describe the intrinsic
behavior of the account. In particular, a mathematical description of the account is

x[k+1] = r · x[k] k = 1 . . . (2.1)

⇒ x[k] = (1+ r)k−1x[1]

where x[k] is the money in the account at the end of k months since the account was opened,
x[k+1] is the money in the account at the beginning of k+1 months since the account was
opened and right after the interest has been applied to the previous month’s amount, and r
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is the interest rate (assumed here to be given in decimal form as a number between 0 and
1).

For any starting amount, if we know the interest rate, then the intrinsic behavior tells
us exactly what would happen to that amount for a given input behavior. If we have two
different accounts with two different interest rates, then starting with the same amounts
and without any deposits or withdrawals, the one with the higher interest rate will have a
higher amount in the account in the next month. Hence for the same input trajectories, two
(deterministic) systems with different intrinsic behaviors will respond differently, and two
systems with the same intrinsic behaviors will respond in the same way.

Some subtleties can arise. Since we are allowed to deposit and withdraw money, with
the appropriate choice of inputs, we can make two accounts with different intrinsic behav-
iors exhibit the same state trajectories. Let’s say one account has 10% interest and the
other has 5%. If we do nothing to the one with 10% but at the beginning of every month,
right after the interest has been applied, we deposit an amount equal to 5% of the amount
before the interest was applied, then both should keep having the same amount of money
in the accounts. Just looking at the states, it would appear that the accounts are the same,
however if one considers the inputs to both accounts, we see that they are different. Hence
two systems that behave the same way even when the input trajectories to each system are
different must have different intrinsic behaviors.

To see why the behavior is called ‘intrinsic’, consider the number of months it takes to
double the amount in the account. It turns out (with some simple manipulation) that this
time (assuming we start from k = 1) is given by

k =
ln(2)

ln(1+ r)
−1 (2.2)

Notice that this does not depend on the starting amount, but only on the interest rate r.
Hence for any starting amount, it would take the same amount of time for the same account
to double that amount. Remember that the intrinsic behavior is supposed to describe how
the system responds to a variety of inputs. We can change the intrinsic behavior of the ac-
count either by changing r keeping the base or general behavior (of compounding interest)
the same, or we come up with a different way to handle the money in the account, resulting
in very different general behavior.
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2.3 Systems Safety Concepts

Systems safety concepts are best understood by looking at the operational view of the sys-
tem as shown in figure 2.7. In general, a system is designed to achieve particular functional
goals. This system is embedded in an operational environment. As the system operates and
interacts with the environment, it produces a sequence of events ([e1,(e2,e3,e4), . . . ,ek, . . . ]),
some of which can be simultaneous (e.g., e2, e3, and e4). These event sequences are trajec-
tories of the system, in this case more symbolic.

Figure 2.7: Illustration of operational view of the system from the perspective of system
safety.

At the heart of systems safety is what are typically called mishaps or accidents. Gen-
erally, systems safety engineers agree that accidents are unplanned and undesired (series
of) events that lead to some kind of loss. Loss could be loss of life, human function (due
to injury) property, or finances. From the perspective of the illustration in figure 2.7, this
means that we assume that we can decide whether any event results in a mishap or not
(i.e., we assume that in general there is some function or decision process fmishap such that
for any event, ek, floss(ek) ∈ {mishap,no mishap}).

Another concept at the heart of systems safety is risk. Usually the concern is with
accident or mishap risk. Risk is a combination of the likelihood of the event occurring
and the severity associated with the mishap when it does occur. From the perspective of
the illustration, if an event (ek) results in a mishap (i.e., fmishap(ek) = mishap), p(ek) is the
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likelihood of that event occurring, and q(ek) is the severity of the mishap, then the risk is a
function of these two quantities (i.e., risk = frisk(p(ek),q(ek))).

The aim of systems safety is to bring the risks to an acceptable level. A key activity
in systems safety for doing this is the identification and mitigation of hazards. In general
hazards are considered to be system states, conditions, or properties that under certain
environmental conditions will lead to a mishap. Note that hazards or considered to be
initiated within the system. Hence, they can be both introduced and controlled by design.
Mitigating hazards involves both reducing the likelihood of occurrence and reducing the
severity of the mishaps should they occur.

Different systems safety techniques differ mostly in the view of how mishaps occur
(the paradigm or accident model). This in turn influences what is considered a hazard and
how hazards are identified and controlled. They may also differ in which phase of the
design process they concentrate on and whether they have been specialized for a particular
industry or not. Below is a brief review of a number of systems safety paradigms and
techniques. It focuses on the general characteristics of the paradigms and techniques with
some examples; a comprehensive review is beyond the scope of this dissertation.

2.4 Systems Safety Paradigms and Techniques

The Safety Institute of Australia’s (SIA) publication on “Models of Causation: Safety”
[106] provides an informative account of different models of accident causation. The dis-
cussion below is based on their categorization of accident models, in which a model can be
linear or non-linear. To aid in the discussion, the operational view illustration must be mod-
ified slightly to show the interaction of components within the system as shown in figure
2.8.

As mentioned previously, the different accident models drive the different techniques
for identifying and controlling hazards. This an important point, since the choice of ac-
cident model will affect the way in which the systems safety engineering process will be
carried out (i.e., the way we would reason about accidents and safety). Hermitte, in a report
reviewing accident models using in road accident research provides a useful discussion on
this point looking at the history of accident models [43]. According to Hermitte, since
in from around 1900 to 1920, accidents were thought to be random events, there was no
need to look for causes. From the perspective of the illustration, this would mean that for
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Figure 2.8: Illustration of operational view of the system from the perspective of system
safety highlighting internal interactions.

any event (ek) there is some probability that fmishap(ek) = mishap, which means that the
trajectories of the system were random and non-deterministic.

From a little before 1920 to around 1940, it was believed that some drivers (those
with personality disorders) were involved in others. He cites the reason (due to Hollnagel
[45]) being that we classify people whose actions we cannot find plausible reasons for as
psychologically disturbed, and since plausible reasons were still not available for accidents,
then the drivers that caused them must be disturbed. From the perspective of the illustration,
this would mean that if some event (ek) results in an accident (i.e., fmishap(ek) = mishap),
then the driver shown must have a personality disorder. In dynamical systems terms, this
meant that it was believed that drivers with personality disorders had intrinsic behaviors
such that when put in driving situations, they would behave in ways the produced accidents.

It was only in the 1940s and 1950s that the idea that there were indeed (direct) causes for
accidents and it was only finding them that would help prevent accidents. This idea of direct
causation is what is embodied in the linear models category by the SIA. More recent models
avoid the idea of direct cause altogether and take a more systems and behavioral view since
accidents are complex and many have some non-deterministic aspects to them. Hermitte
uses the example that even though driving under the influence increases the likelihood of
an accident not every drunk driver gets involved in an accident. In addition, sober drivers
do get involved in accidents. Hence, there are number of interacting factors (feedback
loops) that result in an accident, which must be viewed in a more holistic manner. From
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the perspective of the illustration, this means we must consider the behavior of the driver,
the car, and the environment, and how the emergent behavior that results when they all
interact could result in an accident. These more systems-based models are what the SIA
terms non-linear models.

2.4.1 Paradigms and Techniques Based on Linear Models

In general, linear models follow what is called a “chain of events” paradigm. Form the per-
spective of the illustration, the idea is that if some event (ek) results in a mishap (i.e., fmishap(ek)=

mishap), then there are a series of events ([ei, . . . ,e j]) that preceded the accident that di-
rectly lead to the accident. Linear models are further categorized into simple (“single (root)
cause”) or complex (“multiple (latent) causes”). These models generally assume that the
dynamical system has deterministic dynamics and hence accidents can be traced to initial
conditions that eventually evolve into the accident.

The “Domino” Effect Model

The first and well-known simple linear model is the “Domino-effect” model by Heinrich
[42]. Heinrich suggested that in general, the events leading to the accident (which results
in an injury) is preceded by an unsafe act or a mechanical or physical hazard, which is
preceded the fault of the person, which is preceded by the social environment or ancestry
of the person. His contention was that the best way to prevent accidents was to focus on
unsafe acts and mechanical and physical hazards. From the dynamical systems perspective,
this model assumes that people have ‘faulty’ intrinsic behaviors that must be identified and
reshaped to work well in the safety-critical context.

The “Swiss Cheese” Model

Another well-known (complex) linear model is Reason’s Swiss Cheese model [88], in
which an accident results when inadequate barriers are put in place to prevent it from hap-
pening. In this model, an accident is essentially waiting to happen, and the barriers are
layers that prevent accidents from happen. When holes in these barriers develop and align,
accidents “flow” through and happen. The holes in these layers are reminiscent of swiss
cheese, hence, the name for the model. From the perspective of the illustration, internal
to the system, events that result in accidents are being generated, but the system must be
designed to filter these events out and only allow events that do not result in a loss to occur.
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Reason’s perspective is that human errors, which had been the focus of Heinrich’s
model, are inevitable, but must be managed and if not managed properly is what leads
to accidents. The inadequate management is what has been called latent failure, and when
combined with active errors (like human error), create holes in the defenses against acci-
dents that allow events to flow through the holes that result in accidents.

This perspective in many ways has influenced the field of “human factors” which stud-
ies human-machine interaction and how to provide operating environments and user inter-
faces the minimize human error and are robust to some errors that would result in accidents.
Aircraft displays are an example of where this influence has played a significant role.

Reason’s approach, from a dynamical systems perspective takes the intrinsic behaviors
of people (faults and all) as given, and rather tries to build a feedback systems around the
people in the system to ensure that the inputs they receive and the outputs they produce
help avoid overall system trajectories that would result in an accident.

Safety as Failure, Error, and Reliability Management

Model’s like Heinrich’s and Reason’s have result in a number of approaches that we could
term “safety as failure, error, and reliability management”. A technique like Fault-Mode
and Effect Analysis [97], for example, looks at the implications of faults and failure of com-
ponents in the system as way of identifying potentially hazardous components (focusing on
physical or mechanical hazards as dictated by Heinrich). Others like Fault-Tree Analysis
[113] and Markov Modeling [85] focus on top-down chain of events, where multiple fail-
ures are thought to result in an accident. Markov modeling takes into account temporal
ordering of failures.

In either case, the idea is that components inevitably fail or generate errors (a more
Reason-like perspective) and if their reliability (probability of not failing at a point in time
since beginning operation) is increased and other failure management techniques like re-
dundancy are introduced, then the higher reliability will result in a safer system.

2.4.2 Paradigms and Techniques Based on Non-Linear Models

Non-linear models view the system as a whole, with components interacting to produce
“complex (emergent) outcomes”. The idea is that as system components interact, the events
[e1,(e2,e3,e4), . . . ,ek, . . . ]) emerge and if an accident results, it is due to an inappropriate
interaction between components. The focus is not on failure (though failures are considered
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as potential behaviors), since the interaction could have been due to a component behaving
as specified. Whereas linear models, which tend to focus on failure, may believe that the
system specification is correct with respect to safety, non-linear models assume that the
specification itself could be wrong, and by considering emergent properties of the system,
these potential flaws in specification can be identified and fixed. Non-linear models take a
full dynamical systems view of the system.

Functional Abstraction and Control of Risk

Rasmussen is credited with influencing the shift to the more systems-based approach use in
non-linear models. In a paper in 1997 [87], he questioned the ability of prevailing models
to deal with safety in what he called “a dynamic society.” His focus was on the socio-
technical aspects of safety and on the decision-making interactions between policy makers,
systems designers, systems managers, personnel working with safety critical systems, and
regulators that shaped the way the system was designed and eventually operated.

In particular, he proposed a shift from the structural decomposition approach typically
used by linear models to a functional decomposition approach, where boundaries between
functions are examined in order to use the relationship between constraints on the inter-
actions at the boundaries and system performance to control safety. In essence, he was
proposing a way to control the emergent behavior by controlling interactions: if emergent
behavior was what resulted in accidents, then the hazards were related to the interactions,
and by controlling interactions one could control hazards and reduce risk.

Systems Theoretic Accident Model and Processes (STAMP)

In 2004, Leveson proposed a model of accidents reminiscent of Rasmussen’s approach
called the systems theoretic accident model and processes (STAMP) [59], and in 2011
released a book [60] based on experience with STAMP and tools developed based on it.
Leveson actually credits Rasmussen (and others) for the perspective she adopts in devel-
oping STAMP. STAMP also focuses on interaction between components, but whereas Ras-
mussen was focused more on the socio part of the socio-technical relationship, Leveson’s
work elaborated more on the technical part.

In particular STAMP borrows ideas from control theory, where components have ex-
plicit roles as either a plant, controller, sensor, or actuator. The plant is typically the system
to be designed which can exhibit behaviors that result (directly) in mishaps (e.g., an air-
plane that can crash). The controller is a component that monitors the state of the plant
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(through the sensor which provides it with information), decides on how to alter the state
of the plant, and, if necessary, issues commands to the actuator to alter state of the plant.

Since the plant is what is typically thought of where accidents directly occur, STAMP
and its associated tools focus on the idea of improper control. In particular its hazard
analysis tool, Systems Theoretic Process Analysis (STPA) [58, 61, 77, 8, 105], focuses on
identifying hazardous control actions. It is essentially a ’what-if’ analysis focusing on what
behaviors emerging if certain control actions are omitted or ignored, given too late or too
early, or misapplied. It then focuses on causal factors that result in these hazardous control
actions.

STAMP, however, requires the designer to identify what the accidents and hazardous
states are. It mainly identifies how the system might transition into those states. It assumes
that components have a known (and small) set of discrete states and actions. However,
since it focuses on abstract systems behavior it is useful in the requirements stage of the
design, and a new tool has been developed based on STAMP for early concept analysis [37].
Because it is based on the functional decomposition approach proposed by Rasmussen, it
could also be used in later stages of the design as well.

Formal Methods for Software-Intensive Systems

Recently, there has been interest in formal methods for dealing with complexity of software-
intensive systems, especially for medical devices [47, 69, 46]. In these approaches, which
originate from the computer science (and not systems safety) community, the focus is on
assuring the correctness of the design of usually the decision-making software in a control
system.

These approaches, similar to approaches like STAMP, require a specification of the
hazardous states (or expected system behavior), the system design, and the behavior of its
environment in a formal language. Techniques like model-checking [28] or theorem prov-
ing [92] are used to automatically (or semi-automatically in the case of theorem proving)
verify that the design meets the requirements (and avoids hazardous states), and if issues
are identified provide insights into the conditions under which the design fails to meet the
requirements.
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2.5 Systems Safety Principles

As different as the above approaches sound, they share some common principles. First,
is that we must define what the accidents (mishaps) of concern are. Second, based on the
accidents, and some model of how they occur, we must define what constitutes a hazard.
Third, based on the hazards and our accident model, we must identify what aspects of the
system to examine and modify in order to control the likelihood and severity of hazards.

The identification and control of hazards is usually iterative and continues all the way
through operation of the system, but the earlier issues are identified the better. However,
since no system is perfect, and we cannot anticipate everything ahead of time, we must
decide on how much risk we are willing to accept and design to that risk level. This is
where the definition of systems safety engineering provided earlier plays a role. All three
principles come together to ensure that acceptable mishaps risks are achieved. Figure 2.9
illustrates the above principles

Figure 2.9: Illustration of the systems safety principles.

Safety-critical systems are all regulated, and typically a regulatory agency must decide
if a design (or implementation) must be allowed to operate. Regulation may include con-
tinued surveillance of the system operation, but the crucial aspect is making the decision on
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whether the system is allowed to operate or not. This creates an interesting scenario where
the designer must argue that the design (and implementation) is safe based on inferences
made from information gathered during the design process, and the regulator must decide
whether to accept the argument made.

In many regulatory environments, there is guidance to designers on what factors into the
criteria for an acceptable design. This is usually based on past experience. As complexity of
systems grow and innovations inevitably appear, regulators must provide new guidance and
develop new ways to reason about systems in order to make these pre-operation decisions.
Such guidance finds its way into industry standards, sometimes focused on design features
and sometimes focused on the design process.

In many industries, however, the hazards tend to be well-known and the need to identify
new ones does not increase dramatically with innovations. The medical industry however,
is not so lucky, with new devices addressing different health issues and hence different
functions of the body, prompting a need to be able to develop criteria for new technologies
as they arise and provide these criteria development mechanisms as part of guidance in
addition to well-known hazards.

2.6 Applying Principles to Reasoning About Patient Safety

As mentioned previously, the current tools for systems safety grew out of systems where
the functional goal of systems are not related to keeping humans healthy. However, in
all safety-critical systems, human health is a safety issue (treated as a constraint to be
balanced with functional goals). If human health is a safety issue, then for medical systems,
where aiding in maintaining health is the functional goal, safety is the functional goal,
and not a constraint. Hence the way we define mishaps must be explicitly tied to health.
Many systems safety approaches have a limited treatment of health. Also, since previous
medical devices were simpler, the safety burden was on the health practitioners, so safety
considerations of these devices were quite limited.

Though newer efforts are under way to reexamine safety approaches for medical de-
vices [57, 2], many are still grounded in the systems safety approaches where health is
a constraint, and many focus on design and implementation issues. This is because they
are being developed in the context of well-known medical systems where hazards have
been identified over years. The hazards can therefore be taken as given. Confusion arises
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with emerging technologies where situations are new and hazards have not been previously
identified.

What is needed is a return to the systems safety principles to provide an approach for
defining accidents, hazards, and acceptable mishap risk in a way that is valid for medical
technologies and can be applied to emerging technologies. This is what this dissertation
does. It defines mishaps in terms of health (which is cast as a safety issue) and links all
other issues to this definition, providing a way for defining acceptable mishap risk which is
both valid for medical technologies and consistent with systems safety principles. It adopts
the non-linear approach, understanding accidents in terms of interactions and emergent
system behaviors.

Summary
Despite the diversity of systems safety techniques, they can all be considered variants of
views of the evolution of a dynamical system, where the results of this evolution are in-
tended to be safe (as defined for the particular scenario). Emerging medical technologies
are stretching the applicability of these methods particularly because the pieces of what
constitutes a hazard are not being revisited. These pieces are heavily influenced by the
view of systems safety where health is constraint, and hence must be reexamined in the
context where health is a goal.

The next chapter shows that using the dynamical systems view of human function,
we can link many of the principles developed for systems safety to human function, and
hence discuss health (and later patient safety) viewing the human a natural safety critical
system. This allows us to take the necessary view of health management (where medical
technologies are used) as aiding the body in maintaining safe states and to discuss patient
safety in those health terms. In addition, it keeps patient outcomes at the center patient
safety discussions while also allowing for discussion of design issues.
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A Model of Health Management

You think because you understand “one” you must understand “two”
because “one and one” makes “two”. But you forget you must also
understand “and”.

Jalal ad-Din Muhammad Rumi

Chapter Overview

In the previous chapters, systems safety was introduced as a process of working towards
achieving “acceptable mishap risk.” In addition, the contention was that for medical tech-
nologies, the mishaps are undesirable patient outcomes. In order to agree on whether pa-
tient outcomes (mishaps) are undesirable (unacceptable) or not, we need some method to
express what these patient outcomes are and how to interpret them.

This chapter develops a mechanism (a formal model) for doing this using dynamical
systems ideas, creating a link between systems safety language and health management
ideas. By showing the commonality of the dynamical systems view to both systems safety
and health management stakeholders (practitioners, technology developers, and the FDA),
it allows the patient safety model developed from it (in the next chapter) to be both valid
from a health management perspective and consistent with systems safety principles. The
model developed here therefore sets the stage for the rest of the developments in this dis-
sertation.

35
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3.1 Introduction
Health is about the elusive concept of acceptable human function. When a person has the
flu, for example, the weakness caused by the virus prevents them∗ from doing the things
they would normally be able to do otherwise. We generally consider this unacceptable
function. Sometimes the concern is about such issues in the future. Being overweight may
not prevent someone from doing what some would consider normal activities, but it can
lead to cardiovascular problems which could eventually lead to premature death [71]. We
can therefore say that health management is about addressing current or potential future
loss of acceptable function.

There are a few implications of the above statements. First, we have to have some idea
of what acceptable function is. Second, we must be able to identify the factors associated
with current or potential future loss of function. Finally, we need a way of influencing the
factors affecting a person’s function to bring it to an acceptable level. The latter two parts
of health management are not always possible, and the field of medicine has been dedicated
to these since antiquity.

Ambiguity arises in all three statements: there may be disagreements on what is consid-
ered acceptable function, which factors affect function, and what is an appropriate course
of intervention. One of the main aims of this chapter is to show that despite these disagree-
ments, we can provide mechanisms (a language, if you will) for expressing ones conception
of these ideas precisely. This enables different conceptions of any or all of these ideas to
be discussed in a coherent manner, and hopefully leads towards consensus or at least an
understanding of the differences. Being careful about the ambiguity of health is important,
since one of the aims of health management is to intervene when we view function to be
unacceptable. Intervening when one should not can prove to be harmful.

The example of diabetes and diabetes management below sums up the above discussion
concretely. The example is general, but will be expanded as needed later to help illustrate
other concepts.

Example 3.1: Diabetes and Diabetes Management

Diabetes is health condition where the body’s ability to keep blood glucose levels
down is impaired [73]. These can lead to complications such as blindness, loss of

∗“They” and its derivative forms is used as the gender-neutral third person singular pronoun throughout
this dissertation.
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sensation in the legs, and other complications that lead to poor quality of life and
eventually death [22]. Very high blood glucose can also have severe effects [22].
These complications are the unacceptable loss of function.

The blood glucose level is the factor affecting this unacceptable loss of function.
Based on this connection between blood glucose and these complications, one could
say that the body’s inability to keep blood glucose levels down is also unacceptable
function.

Proper diet and exercise can be used as an intervention in the case where the body
retains some ability to react to high glucose levels (in the case of Type 2 diabetes).
When the body’s ability to react to high glucose levels is completely impaired (in
Type 1 diabetes), infusing or ingesting insulin (a hormone that helps reduce blood
glucose levels) is used as the intervention and part of the management strategy.

One source of ambiguity is the list of things that are considered unacceptable
loss of function. Blind people, with the right accommodations, do function quite
‘normally’. Certainly, there are activities that they may not be able to partake in
feasibly, but whether their condition is “unacceptable” or not can become a touchy
issue. Some, however, would agree that losing one’s sight because of a condition like
diabetes is unacceptable.

In addition, though standard limits exist for when a person is considered diabetic
or not [10], the actual level at which it is a problem for a particular person can vary
from person to person. The World Health Organiztion report on defining and diagnos-
ing diabetes [118] provides na informative discussion on the issues with defining such
limits.

This dissertation uses the language of dynamical systems to cast health and health man-
agement in more precise terms and reduce the ambiguity in expressing our conception of
health. The language of dynamical systems makes treating health as a safety issue and
hence safety as the functional goal of health management systems natural, as is shown
below.

3.2 Humans as Dynamical Systems
Humans can be viewed as dynamical systems. We take in inputs in the form of various
stimuli from the environment (e.g., food, light, temperature, social contact with other hu-
mans). We produce outputs in the form actions on our environment (e.g., moving around,
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exhaling air) or in the form of quantities observable by cognitive processes or by the use of
instruments (e.g., organ structure, speech, ‘body language’). We react to inputs to change
state (e.g., eating carbohydrates increases blood sugar) and produce outputs (e.g., hot envi-
ronments induce sweating, an insult may result in a fight). We have parameters (e.g., age,
height, weight, size of heart, strength of muscles, insulin sensitivity, genetic makeup, per-
sonality traits) that tend to govern our evolution (e.g., taller people move further in fewer
steps than shorter people, introverts tend to avoid certain social situations). Human param-
eters also evolve (e.g., we age, we grow, we gain and lose weight).

The are many aspects to health management (e.g., physiologic, biomechanical, mental,
behavioral, cognitive). Thankfully, a dynamical systems view of humans is not foreign to
many of these areas. The most commonly encountered models are of physiologic processes
[63, 65] and of human movement [115]. However, there are also models of behavior [89]
and of cognition [91]. In general, a person is in constant interaction with their environment
so our model of humans as dynamical systems† captures this as shown in figure 3.1.

Figure 3.1: Human as a dynamical system.

†We use the term “patient” or “person” to denote the human dynamical system consisting of the person
in their environment in the rest of the dissertation.



A Model of Health Management 39

3.3 Health as a Measure of Human Function
In order to arrive at a notion of acceptable human function, we need some way of measuring
human function. In our diabetes example, one function we are concerned about is how well
blood glucose levels are controlled by the body. The blood glucose level can be thought
of a state variable. In order to determine how well it is controlled, we would observe how
it changes over time under different conditions. In essence, we are concerned with the
trajectory of the blood glucose level. The trajectories of concern need not be limited to
state variables; in some cases, it is more convenient to consider an output or a parameter.
The method of analysis of the trajectories of interest is called the health metric and the
result of the analysis is called the outcome. These notions are formalized below

Notion 1: Health Metrics and Outcomes

A health metric (µH) is a mapping from a set of finite sequences of trajectory
values to a finite set of ‘objects’ suitable for comparison. The concept is best described
through the illustration in Figure 3.2.

Figure 3.2: Illustration of the health metric notion
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H1(t) and H2(t) (the values in the unshaded portion) are the finite sequences of
trajectory values, and H(t) is the set that contains them. They are finite sequences
because the values (in the unshaded portion) lie between the defined finite time range
[t0, t f ]. Each trajectory value sequence Hi(t) can be related to inputs, outputs, states,
or parameters. In this particular case, H1(t) is related to a state trajectory (the blood
glucose value), and H2(t) is related to an input trajectory (the meals that the person
takes). In general, if a sequence is related to states or parameters, they would be
considered estimates since these are usually not considered directly observable.

Notice that the trajectory can have no values for a significant part of the time
window or can contain a single value like the case of H2(t). In general, the set of
trajectories need not be uniform in any way. The only requirement is that the values
considered fall within the particular time window of interest.

The health metric map (FH) is computed on this set of trajectory sequences to get a
value which would be the health metric outcome. Summarizing the above, this means
that the health metric is formally given by

µH = FH(H(t)) (3.1)

H(t) = {H1(t) . . .Hn(t)}
Hi(t) = [hi(tk) . . .hi(tm)], t0 ≤ tk < tm ≤ t f , m≥ 1

The outcome of the health metric (µH) can be any n-dimensional object. It could
be anything from a single value to a sequence, a probability distribution, or a collection
of these and other objects. The choice depends whoever defines the health metric.
Simpler objects are easier to manipulate and use in later analysis.

Lastly, the description of the health metric must also capture the context. The
context can be described in terms of time (the way [t0, t f ] is defined), or in terms of
the nature of other trajectories, or both. In the example above, a context based on
time would mean that the health metric requires blood glucose and meal information
between 6am and 12pm. If the context is based on a trajectory, say the meal, then it
could be the metric depends on blood glucose values in a six-hour period when only
one meal is taken. If it is based on both, then it could be that the metric depends on
blood glucose values between 6am and 12pm when only one meal is taken.

Before providing some examples of how the above notion applies, there is one more
issue to address and notion to introduce. The above developments tell us what defining and
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computing a health metric entails, but we are still with the question of what the outcome
of a health metric indicates. One thing we do know is it must be related to some notion of
acceptable or unacceptable with respect to human function.

Let’s assume that the dynamics of a person can be categorized as having two general
modes, acceptable (a) and unacceptable (¬a) as shown in figure 3.3. Remember that the
modes of a dynamical system have distinct dynamics which can be characterized by the
trajectories. Since the health metric is a measure (and hence characterization) of trajecto-
ries, it can, in effect, indicate the mode of the person’s dynamics. The first thing the health
metric therefore tells us is whether the person is currently functioning in an acceptable or
unacceptable mode (µH = FH(H(t))⇒ a⊕¬a).

Figure 3.3: Illustration of two modes of human dynamics. a is the acceptable mode and
¬a is the overall unacceptable mode. Modes of the form ¬ai∈{1,2,3,n} are the unacceptable
submodes

The second thing the health metric outcome tells us is how unacceptable the current
dynamics of the person is. Let us further assume that within the unacceptable mode are
submodes of unacceptability ({¬a1 . . .¬an}) as shown in figure 3.3 with some being worse
than others (e.g., being dead might be considered worse than being alive and with a cold).
In this case, the health metric tells us about the likelihood of transition between this unac-
ceptable submodes (p(¬ai→¬a j)).

In addition, this likelihood is usually qualified by a time horizon within which transi-
tions might occur, as we will see in the examples below. Hence, some metrics indicate a
likelihood of transitioning to the other submode in short period of time (on the order of sec-
onds, minutes, hours, or days), whereas others indicate a longer period of time (on the order
of weeks, months, or even years). There may be a likelihood of transitioning from one of
these unacceptable submodes to the acceptable mode, but because these submodes retain a
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likelihood of transition to other unacceptable submodes, they are considered unacceptable.
The above is formalized in the notion below.

Notion 2: Health Metric Outcome Interpretation

The health metric outcome can be interpreted on a symbolic scale of acceptable
or unacceptable. Assuming that a outcome is scalar value, for simplicity, the scale
can be visualized in the form of the graph in figure 3.4. On the x-axis is the value of
the outcome (µH) and on the y-axis it the symbolic scale of acceptability. The graph
shows the mapping between the outcome value and acceptability.

Figure 3.4: Example of mapping of health metric outcomes to an accept-
ability scale using body-mass index (BMI). Data obtained from Centers
for Disease Control and Prevention website: http://www.cdc.gov/
healthyweight/assessing/bmi/adult_bmi/index.html

In this case, the health metric is the adult body-mass-index (BMI). In general, the
BMI is based on the height, weight and age of the person. For adults, no adjustments
are made for age or gender, but in order to use the adult version of the metric and scale,
the person must be 20 years or older [24]. Height and age can generally be considered
as parameters. It is debatable whether weight is a parameter or state. Nevertheless,
the formula for the adult BMI in our framework (assuming weight is a parameter) is

µH = FBMIadult ({λheight(t),λweight(t),λage(t)}) (3.2)

=
λweight(tk)

(λheight(tk))2 , λage(tk)≥ 20years

The height and weight must be in SI units (i.e., meters (m) and kilograms (kg) respec-
tively). Notice that for this metric, the age parameter only provides context (i.e., it is

http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html
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not an adult BMI and we cannot use this interpretation scale unless the person is more
than 20 years old).

This method of interpretation is not restricted to scalar-valued health metrics.
Since it is a mapping, one can be created for arbitrary metrics, though the process
could be quite complicated. Scalar or n-dimensional quantitative metrics are certainly
much easier to deal with than more complex mathematical objects.

One thing to note is that the time scale for transition to further unacceptable states
is not shown on the graph. The graph is only a visualization so the scale need not
be defined as a graph. One must, however, state in the definition of the acceptability
scale what the time scale of the likelihood of transition to further unacceptable states
is in order to reduce any ambiguity with what the health metric indicates. For BMI,
the concern is with long term risks (on the order of years)[24].

One ambiguity that needs to be resolved is what the acceptable state is. One answer
that seems satisfactory is to say that an acceptable state is one where if those dynamics are
continued (or repeated) does not create the likelihood of transitioning to an unacceptable
mode, or keeps such a likelihood very low. This implies that the dynamics of an unac-
ceptable submode intrinsically creates or increases likelihoods of transitioning into further
unacceptable submodes. This also implies that transitions from the acceptable mode to
unacceptable submodes are triggered by non-deterministic actions.

The examples below put the above ideas in more concrete terms.

Example 3.2: Short-Term Considerations for Blood Glucose Values

A single blood glucose measurement at any point in time can be used to determine
short-term consequences, which usually can be fatal. Both very high levels [75, 48]
and very low levels [30] can result in death. In either case, the concern is based on a
single measurement (or the average of a very small sample of repeated measurements
within a short time-frame). Using our health metric formalism, a health metric based
on blood glucose for short-term considerations would be

µH = FBGst ({xBG(t) = [xBG(t1) . . .xBG(tN)]}) (3.3)

=
N

∑
k=1

xBG(tk)
N
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where xBG(tk) is a sample of blood glucose level at the time tk, N is small (less than
5), and tn− t1 is on the order of a few minutes.

In this case, we are interested in extreme values (either too high or too low), and
we can interpret the health metric on scale of acceptability as shown in Figure 3.5. As
before, the x-axis shows the outcome of the metric and the y-axis shows the scale of
acceptability (lower on the axis indicates more unacceptable). The graph shows the
mapping of outcomes to a level of acceptability.

Figure 3.5: Mapping of blood glucose value to acceptability scale for the
purpose of short-term considerations.

In the case of diabetic ketoacidosis and hyperosmolar hyperglycemic state, addi-
tional information is needed to confirm the condition, though blood glucose levels are
a good indicator.

Example 3.3: Long-Term Considerations of Blood Glucose Dynamics

Fasting blood glucose is used as an indicator of how well the body controls blood
glucose. The fasting blood glucose metric is characterized by a sample of blood glu-
cose usually more than 8 hours after any caloric intake [10]. The visualization of the
inputs to the metric are shown in Figure 3.6.
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Figure 3.6: Visualization of fasting glucose health metric.

Here the meal trajectory only provides context. It essentially states that the meal
trajectory must be similar to the one shown in order for the metric to be correct
(i.e., having a meal closer to when the sample is taken would not make the outcome
value a fasting blood glucose sample). Note that although the whole blood glucose
trajectory is shown, only the indicated sample is actually observed. What happens
before and after the sample is taken is unknown to the person computing the metric.

The fasting glucose is a good indicator of blood glucose control because it is ex-
pected that after that amount of time after a meal, the body should be able to bring
the blood glucose down to normal levels and if that is not the case then it indicates
issues with the mechanisms for controlling blood glucose which would indicate that
the person is diabetic [10].

Another similar metric is the oral glucose tolerance test which tests the body’s re-
sponse after two hours to a known amount of glucose intake (equivalent of 75g of an-
hydrous glucose dissolved in water) after at least an 8-hour fasting period [10]. To get
a more complete picture, the World Health Organization (WHO) recommends using
both metrics [118]. This results in a two-dimensional overall metric which is given
by the visualization in Figure 3.7. The acceptability scale for this two-dimensional
metric is given by Figure 3.8
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Figure 3.7: Visualization of combined fasting glucose and oral glucose toler-
ance test health metric.

Figure 3.8: Visualization of combined fasting glucose and oral glucose toler-
ance test health metric mapping to acceptability scale. The scale is based on
information provided in the WHO publication on “Definition and diagnosis
of diabetes mellitus and intermediate hyperglycaemia” [118].

The following examples are intended to demonstrate the generality beyond physiologic
variables of the health metric notion. It looks at the body-mass index, analysis of biopsied
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tissues, and the patient health questionnaire-9, representing three different perspective of
human function. Body-mass index is concerned with physiological issues, particularly risk
of cardiovascular disease. Biopsies are used to detect potentially cancerous tissue which
is an anatomical (structural) issue, that can affect physiologic function. The patient health
questionnaire is focused more on behavioral and mental health.

Example 3.4: Body Mass Index

We saw body mass index as health metric in the the discussion of interpretation of
health metric outcomes. There were looked at adult BMI, which is essentially a one-
dimensional metric, since it is based only on the value of the output BMI formula.
The interpretation for BMI for children (aged 2 years to 20), however depends on the
BMI formula (given by equation 3.2), the gender, and the age of the child. Figure 3.9
shows the interpretation of BMI for boys with an example interpretation for a 10-year
old. Notice how the weight categories change with age. From this perspective, the
BMI for children has a two-dimensional output value (the BMI calculation and the
age).

The age adjustments are actually based on the percentiles of boys with the particu-
lar BMI value. Underweight represents those below the 5th percentile, normal weight
are those who fall between the 5th and 85th percentile, overweight are those within
the 85th and 95th percentile, and obese are those above the 95th percentile.

Example 3.5: Biopsied Tissue Analysis for Cancer Testing

When a growth is suspected to be potentially cancerous, doctors perform a biopsy
to confirm suspicions. The biopsied tissue is examined by a pathologist under a micro-
scope. Based on how “normal” the cell looks, it is assigned a tumor grade. “Normal”
cells are those that have specialized for the particular function in the particular area
where they are found. Abnormal cells are less specialized. The microscope analysis
shows how normal or abnormal a cell is. Less specialized cells are more likely to keep
dividing and spreading, making them more cancerous, whereas more specialized cells
are less likely to do so. The general grading scheme is on a scale on 1 to 4 (1 being
less likely to grow and spread and 4 being most likely) [70].
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From our health metric formalism, the biopsy analysis is the health metric. It’s
input is the state of a cell at the time of biopsy (which includes the structure of the
cell). The output is the tumor grade.

Figure 3.9: BMI interpretation for boys showing the interpretation for a 10-
year old. Source: Centers for Disease Control (url: http://www.cdc.gov/
healthyweight/assessing/bmi/childrens_bmi/about_childrens_
bmi.html [Last accessed: April 6, 2015])

http://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html
http://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html
http://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html
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Example 3.6: The PHQ-9 Measure for Depression

The patient health questionnaire-9 (PHQ-9) is a questionnaire [96] administered to
patients in order to assess the severity of depression [53]. The questionnaire is shown
in figure 3.10. The questions are based on the patient’s observations over the previous
two weeks. The output is a score (on a range of 0 o 27).

Figure 3.10: The questionnaire for the PHQ-9. Source: http://www.
phqscreeners.com/pdfs/02_PHQ-9/English.pdf

Figure 3.11 shows the interpretation of the score and the recommended course of
action. From the perspective of our health metric formalism, the PHQ-9 produces a
one-dimensional output value. Its input is based on behavioral and emotional trajec-
tories within a two-week period. The metric is the questions, checking the frequency
of occurrence of certain feelings or behavioral situations.

http://www.phqscreeners.com/pdfs/02_PHQ-9/English.pdf
http://www.phqscreeners.com/pdfs/02_PHQ-9/English.pdf
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Figure 3.11: The PHQ-9 interpretation scale. Source: http://www.
phqscreeners.com/instructions/instructions.pdf [p.7],
which reproduces it from the paper by Kroenke and Spitzer where the PHQ-9
was introduced [54].

From the above, some links can be drawn between the dynamical systems view of
systems safety, and that of health management. For one, the health metrics act as indicators
of risk. They indicate the probability of certain modes related to mishaps (whose severity
we are aware of and want to prevent) occurring. In fact, the term “risk” is used quite often
in discussing health metrics. We can therefore say that the human body is a natural safety-
critical system and health is about maintain safe states. The health metrics then indicate
the presence of hazards. When the risks are acceptable, we allow the body to function on
its own, and when they deemed unacceptable, they must be controlled to reduce them. This
control is the job of the health management system as discussed below.

3.4 Health Management as a Feedback System

When health metric outcomes are unacceptable, we intervene, if possible, to restore out-
comes to acceptable levels. This is done by designing a system (M) consisting of a sensing
subsystem (S) to observe and infer the current situation, a decision-making subsystem (D)
decide on appropriate course of influence, and an actuation subsystem (A) to influence the
person or their environment.

http://www.phqscreeners.com/instructions/instructions.pdf
http://www.phqscreeners.com/instructions/instructions.pdf
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This system‡ can contain both humans (including the person whose dynamics we intend
to influence) and machines in any of these subsystems. It interacts with the patient, and their
environment, in feedback fashion (as shown in Figure 5) with the intent that the evolution of
the overall feedback system results in the desired evolution for the person, which produces
health metric outcomes that indicate lower risk.

Figure 3.12: The health management system interaction with the person in feedback fash-
ion.

Note that the parts that interact directly (physically) with the human system are the
sensing and actuation subsystems: the decision-making subsystem interacts indirectly with
the human through the sensing and actuation subsystems. The physical points of interac-
tion (CM↔H) are important because the human is a non-uniform system exhibiting spatio-
temporal dynamics. An example of this importance is lead placement issues for ECGs
[41].

‡the term “system” to refers to the health management system.
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Also note that the interactions with the human are feedback interactions. Typically,
sensing it thought of as a one-way interaction from the human to the sensing subsystem, and
actuation as a one-way interaction from the actuation subsystem to the human. However,
the sensing subsystem can affect the human because of the direct interaction between them.
For example, taking an X-ray requires irradiating a person even though the radiation is not
meant to be therapeutic. Likewise, the human can affect the actuation subsystem. For
example, a patient on a intravenous fluids can remove the needle used to infuse fluids.

In addition, the system interacts with the person’s environment. These are sometimes
useful (e.g., a doctor gathering information from family members), but can also interfere
with the work of the system (e.g., a mobile system affected by excess heat or humidity in
the person’s environment).

Lastly, the internal subsystems of the health management system interact with each
other in feedback fashion as well, sometimes in complex and unexpected ways. In ad-
dition, these subsystems are made up on components that also interact in feedback fash-
ion. Furthermore, there are number of indirect interaction paths; for example, the sensing
subsystem interacts indirectly with the person through the decision-making and actuation
subsystems.

All these interactions will affect how the overall system evolves and hence how the
person’s dynamics evolve. It is this evolution of the whole system that we are concerned
with when discussing patient safety. In terms of the system design in particular, we are
interested in how the characteristics of the health management subsystems and the nature
of their interactions (both with each other and the person whose dynamics we are trying to
influence) affect the dynamics of the whole system, and hence the dynamics of the person.

3.5 Relation to other Health Management Modeling Work

As mentioned previously, modeling human function and health management from a dy-
namical systems perspective is not a new concept. Health fields take this view of humans
and health [23, 63, 89, 91, 115, 99], and the interest in doing so continues to increase
[89, 63, 99]. Interestingly, a number of significant advancements in the field of dynam-
ical systems were made in the 1940s by Norbert Weiner and his colleagues who were
developing mathematical theories for physiology [116], and a relatively recent article by
Carpenter [23] claims that this recent interest is only a rediscovery of what physiologists
knew decades ago.
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In our case, however, this history of dynamical systems in health allows us to establish
the validity of the model developed in chapter 3 based on our dynamical systems modeling
of health. In addition, the focus of the model presented in this chapter is on how we identify
what is acceptable and unacceptable function (i.e., how we measure health). Much of the
previous and current work in modeling human function using dynamical systems has been
to understand mechanisms for normal function or those surrounding undesirable outcomes.
Some models are also geared and developing and evaluating treatment strategies for cases
where interventions are needed [29, ?, 65, 89].

Our modeling, on the other hand, provides insights into the general structure and in-
terpretation of health metrics, and can serve as the basis of developing health metrics for
emerging technologies. Some development of metrics has been done for emerging tech-
nologies, for example, the low blood glucose index and average daily risk range established
by Kovatchev et al. [50, 51]. The treatment here is focused more of a general way to derive
and interpret metrics. This precise view of health metrics also allows more meaningful
discussion of patient safety based on health metrics, since the built-in assumptions and the
rationale for the choice of what is acceptable and unacceptable is made explicitly, opening
these up for discussion. I am not aware of any such general modeling of health metrics.

Summary

The way we view health is central to the way we manage it. How we measure human
function and decide it is acceptable or not determines when and how we choose to intervene
if possible. Because of the ambiguity of health, disagreements on these points can lead to
confusion on what is acceptable and unacceptable function and how to intervene. This
chapter introduced and general and precise mechanism for describing the way we reason
about health called health metrics.

These metrics, based on the dynamical systems view of human function, simply mea-
sure function and indicate either the possibility of immediate or future detrimental con-
sequences. Health metrics can be simple or complex, they require information from the
person of interest obtained by human observation or the aid of medical technologies. They
are also contextual, and this chapter showed that all these could be described using the idea
of trajectories of the human dynamical system.

From the perspective of the discussion of systems safety in chapter 4 health metrics
are the risk indicators (i.e., they indicate the possibility of a loss (or an event leading to it)
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occurring some time in the future). Health management therefore constitutes introducing
a system to help the body keep these metric values to levels where risks for detrimental
consequences are reduced. In systems safety terms, this is analogous to risk control by
reducing hazards. The next chapter looks at reasoning about patient safety of medical
technologies used in health management from this health metric perspective. This puts the
patient outcomes at the center of our patient safety discussions making our developments
valid from health management perspective, while keeping them consistent with systems
safety principles.



Chapter 4

A Model of Patient Safety

Methods and ways of looking are not propositional in character.
They are not true or false, and we create great confusion for ourselves
if we try to assess them in that way or mistake a method of analysis
for a theory, a proposition or anything else two-valued and testable.

Guy Robinson

Chapter Overview

Chapter 3 developed the systems safety of “acceptable mishap risk” in the context of human
function, independent of medical technologies (i.e., the case where the person does not
interact with the health management system). This chapter builds on those ideas to develop
notions for defining “acceptable mishap risk” (the patient safety criteria) in the context of
health management. The notions together constitute the formal model of patient safety.

Risk arises in health management because coupling the health management system to
the human dynamical system can result in undesirable outcomes. This chapter provide no-
tions for accounting for these undesirable outcomes (and the reasons for them) in reasoning
about patient safety. The validity of the model is demonstrated through a case study. Two
case studies are used to demonstrate its utility for aiding in various aspects of reasoning
about patient safety of medical technologies.

55
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4.1 Introduction

Coupling a health management system to the human dynamical system as discussed at the
end of chapter 3 will result in three possibilities: (1) the interactions produce dynamics in
the human that are acceptable; (2) the interactions fail to correct the unacceptable dynamics
that prompted the introduction of the health management system; (3) the interactions pro-
duce new unacceptable dynamics which did not exist before the introduction of the health
management system (what are known as “side-effects”). The second and third possibilities
are the concern of this chapter.

There are four main reasons why the health management system might fail to achieve
its functional goal or introduce side-effects. The first is that from a dynamical systems
perspective, the human body is a multiple-input, multiple-output (MIMO) system. For
such systems, one input can affect multiple states and outputs. Hence, even though a health
management intervention may intend to affect only a certain subset of these variables,
it may invariably affect other variables causing side-effects. A physiologic model like
Hummod [44] provides this MIMO perspective of physiologic function.

The second and third reasons are both related to the variability that the human body
exhibits which causes non-deterministic behavior. For the same person, the human body
consistently changes both structurally and physiologically. In addition, as mentioned be-
fore, the human body has its own control mechanisms for maintaining its function (what is
known as homeostasis in physiology). These controls adapt to damage (the body’s repair
and healing mechanisms) and other disturbances (the immune system responds to infec-
tions).

In addition to responding to these external influences, the body’s system in some cases
learns and reconfigures itself (usually to be more efficient) for future response to similar
influences. Because of this, the body will respond quite differently the next time the same
external influence is experienced (e.g., athletes’ hearts and muscles become more efficient,
vaccines boost the immune system’s response to viruses). This within-person differences
in response are known as intra-person variability.

Different people will also typically respond differently to similar influences under simi-
lar conditions. In some cases, these differences in response can be quite significant. This is
what is known as inter-person variability. The variability of the environment is accounted
for because of the way the human dynamical system was defined in chapter 3. Systems
that are not well adapted to both types of variability will result in either a failure to meet
functional goals or an introduction of significant side-effects.
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The fourth reason has to do with the health management system itself. It may exhibit
variability because of variability in the behavior of the humans who are part of the health
management system, or there may be variability introduced by manufacturing or general
variability due to disturbances from the operational environment. These kinds of variability
are more controllable than the variability in on the human dynamical system side. Never-
theless, they should be considered.

The failure to meet functional goals and introduction of side-effects are the general
mishaps (undesirable outcomes) in the case of health management, and this chapter pro-
vides mechanisms for expressing and discussing their acceptable risk (i.e., a model of pa-
tient safety), while accounting for variability. In addition two case studies are used to
demonstrate the utility of the resulting model of patient safety for developing patient safety
criteria (including for subsystems), guiding safety assessments (including for multi-use
designs and comparison of equivalent technologies), safety-guided design, discussion of
patient safety criteria with design feasibility considerations in mind, exploring impacts of
assumptions and rationale on patient safety, and structuring safety arguments.

4.2 Health Management Risk and Patient Safety Criteria
The model of health management developed in chapter 3 was centered around individual
patients. Because of inter-person variability, the risk (and patient safety criteria) of a health
management system must be accounted for at the population level. This can be done in two
subtly-different ways, and both approaches are presented.

The ideas are developed in the context of a case study on patients in intensive care units
(ICUs) who exhibit what is known as stress-induced hyperglycemia (explained in example
4.1). It is important to note that examples provided from the case study are meant to show
what the notions look like in the context of realistic data, and to demonstrate the validity
of the notions by showing that they can be mapped to real contexts. They are not meant to
demonstrate risk assessments of the particular health management system. In other words,
the notions describe how we would like to assess the particular technology and not the
process of assessment itself. These notions, and the resulting model of patient safety, can
then be used to guide an assessment process, as discussed in section 4.4.2.
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Example 4.1: Stress-Induced Hyperglycemia and Glycemic Control in the ICU

Surgical and ICU patients have been shown to exhibit what is known as stress-
induced hyperglycemia [68], when the body temporarily loses its ability to reduce
the blood glucose levels due to the effects of ‘stressful’ events like surgery or condi-
tions that require admission to an ICU. This results in undesirably-high glucose lev-
els, which as mentioned previously, has both short-term and long-term consequences
[111].

Hyperglycemia in the ICU is treated with insulin and the procedure for treatment
is described in insulin infusion protocols [98]. Protocols differ in target blood glucose
ranges, but in general all protocols have a target range within which the patient is
considered in normal condition with respect to blood glucose levels.

4.2.1 System Operational Scenario and Outcomes

Before the patient safety criteria is developed, we must define what scenario that the crite-
ria must apply to (i.e., the assumptions we making about the health management scenario),
and the outcomes we are interested in given that particular scenario. The scenario is com-
prised of the nature of population that the health management system is designed for, the
general nature of the health management system, and the nature of its interactions with
the human dynamical system. The assumption is that inter- and intra-person variability is
accounted for in the way the population is defined and the points of variability in the health
management system are identified.

Since we are concerned with risk and patient safety issues, the outcomes should reflect
the possibility to fail to achieve functional goals and to introduce side-effects. This means
there must be at least a functional outcome health metric (which would most likely be
metric that is used in decided when to introduce the health management system or a proxy
metric related to it), and at least one side-effect outcome metric (which would be developed
based on knowledge of the way the health management system interacts with the human
dynamical system).
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Example 4.2: Semi-Automated Glycemia Management in the ICU

Below is the description of the scenario and patient outcomes of interest for the
case study.

Health Management System. For this case study, the decision logic of the insulin
infusion protocol is automated and implemented in software. This software takes in
as information the current blood glucose value and makes decisions on how to adjust
the insulin infusion rate. A nurse manually takes blood glucose readings, types the
information into a computer with the protocol software, and adjusts insulin infusion
rate to what the software prescribes. Figure 4.1 shows a conceptual visualization of
this scenario (omitting the patient environment).

Figure 4.1: The health management system for glycemic control in the ICU.

The main interaction between the health management system and the patient are
observing the blood glucose from the patient and infusion of insulin into the patient.
This requires physical interactions with both the sensing equipment and the infusion
equipment.

Points of Variability. For specific protocol setting, the main points of variability in
the health management system are the accuracy and timing of sensor information and
infusion. In this case study only the variability of sensor information is explored.
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Patient Population. We assume that the protocol is intended to be used on burn pa-
tients in the ICU.

Inter-Person Variability. The main inter-person variability considered is the variability
in glucose physiology and its response to stress on the body.
Intra-Person Variability. The main intra-person variability considered is the specific
way in which the stress affects the glucose physiology (and hence the response to
insulin infusion) over time.

Patient Outcomes. As mentioned above, we must consider both the outcome of the
human function we are trying to influence and any side effects that are produced as a
consequence of our intervention. For simplicity, we concentrate on a single functional
outcome, and a single side-effect outcome.

The function we are interested in is keeping the patient’s blood glucose levels
within the normal range defined by the hospital infusion protocol. The side-effect we
are concerned with is hypoglycemia (low blood glucose levels) caused by an inappro-
priately high dose of insulin. Note that for this case both outcomes are based on the
trajectory of the same state variable, the blood glucose level.

Functional Health Metric. One measure of the outcome of an insulin treatment is the
percentage of that total of the treatment time that the blood glucose level is within
the target range. Since we interested more in undesirable outcomes in safety criteria
determinations, we can change the outcome slightly to be the percentage of the time
that the blood glucose level is outside the target range. The general form of this metric
can be represented formally as

µH=bg = FH=bg(xbg(t)) =
|xbg(t)|
|xbg(t)|

(4.1)

where xbg(t) the sequence of the blood glucose in the time of interest, xbg(t) is the set
of those values in xbg(t) that lie outside the normal range, and | · | indicates the size of
the set or sequence.

The visualization of this metric is shown in figure 4.2. The values in the shaded
area are the trajectory values that are counted as part of xbg(t). The target range shown
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is 80 to 180 mg/dl, which is the range for a protocol cited by Steil et al. as one devel-
oped at the University of Washington [98]. The context is the time in which the patient
is in the ICU undergoing insulin treatment; hence, [t0, t f ] will be patient-dependent.

Figure 4.2: Illustration of functional outcome metric for gylcemic control in
the ICU. The plot corresponds to the trajectory xbg(t). All values in the red
area are counted as part of xbg(t).

An alternative way to visualize the health metric is to look at the distribution of
blood glucose values of the patient. Since the metric ignores temporal features, it can
be interpreted as the amount of the mass of the distribution that is outside the normal
range. That is

µH=bg = FH=bg(xbg(t)) = 1− p(xbg < xbg(t)< xbg) (4.2)

xbg = 80 mg/dl

xbg = 180 mg/dl

This interpretation of the metric is illustrated in figure 4.3. This version of the metrics
gives a better picture of what the outcomes for the metric look like.

Side-Effect Health Metric. In the protocol, hypoglycemia is defined as blood glucose
values below 70 mg/dl. Our side-effect metric is the percent of time spent in the
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hypoglycemic range. In the sequence-based approach, this is given by

µH=bg70
= FH=bg70

(xbg(t)) =
|xbg70

(t)|
|xbg(t)|

(4.3)

Figure 4.3: Visualization of health metric as a distribution

where xbg(t) the sequence of the blood glucose in the time of interest, xbg70
(t) is the

set of those values in xbg(t) that lie in the hypoglycemic range, and | · | indicates the
size of the set or sequence.

In the distribution-based approach, this is given by

µH=bg70
= FH=bg70

(xbg(t)) = p(xbg(t)< 70) (4.4)

4.2.2 Population-Level Risk

Once the scenario is defined, the next thing is to define the population-level risk metric
which helps account for inter-person variability. This metric depends on the idea of a test
scenario and a baseline scenario. The test scenario is the health management scenario
which includes the technology of concern. The baseline scenario provides a reference with
which we can define our notion of risk. It may be a health management scenario, or it
could be a scenario where health management has not been introduced. In either case, both
scenarios must be able to produce the same kind of health metric outcomes (i.e., the same
set of functional and side-effect health metrics).
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The population-level risk is a comparison of test scenario health metric outcomes that
of the baseline. Because we are interested in inter-person variability, multiple test sce-
narios must be considered across a representative population of patients where for each
scenario, the technology of concern interacts with a different patient from a representative
population.

Notion 3: Population-Level Risk

The population-level risk metric (µM) is a mapping of a set of health metric out-
comes ({µH}) for a ‘test’ population of patients to a set of risk values, with respect to
a set of baseline outcome values ({µH}).

µM = FM({µH},{µH}) (4.5)

such that

µ
i
M > µ

j
M ⇔ µ

i
M is higher risk than µ

j
M (4.6a)

µM = 0 ⇔ µM = FM({µH},{µH}) (4.6b)

As with other notions, all objects can be multidimensional. Properties 4.6a and
4.6b imply (for each dimension) that ‘positive’ values denote higher risk and negative
values denote lower risk compared to a baseline.

Notion 4: Baseline Outcomes

A baseline outcome is a specific outcome value (µH) of a health metric, chosen to
provide a reference for a risk scale in the context of health management. A baseline
could be personal, in which case it would be based on the outcome of the health metric
on a trajectory for the person outside the context of the specific health management
system under consideration. It could also be based on population considerations, in
which case it represents some notion of the expected outcome of the metric, which
would mean it could be be related to a context similar to or outside the specific health
management system under consideration.

An example of a personal baseline could be one related to a person’s resting heart rate
before being prescribed medication for cardiovascular problems. The idea here is that this
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would be compared to some function of that same person’s resting heart rate after they
have been prescribed these medications. An example of a baseline based on population
considerations could be one related to the typical range (or other statistical information) of
resting heart rate values for a representative population of people on the medication this
person was prescribed.

The use of baselines (personal or otherwise) acknowledges that in many cases, even
though health management may improve health outcomes (i.e., move patients dynamics
further away from unacceptable modes and closer to an acceptable mode), it may not al-
ways result in dynamics that would be considered acceptable outside the context of health
management (i.e., in the case where the body maintains its own health).

There are two subtly-different ways in which population-level risk metrics can be de-
fined. The main difference is in the way baselines are used in the definition. Both are
described below.

Direct Population-Level Risk

This approach is a direct application of the general population-level risk definition given
in notion 3. It is analogous what is done in clinical trials with a control group and an
experimental group which are two physically different populations.

Notion 5: Direct Population-Level Risk Metric

The direct population-level risk metric is a mapping of a set of test individual
health metric and a set of baseline health metrics to a set of values suitable for com-
parison.

µM = FM({µH1
H , . . . ,µHn

H },{µ
H1
H , . . . ,µHm

H }) (4.7)

where {µH1
H , . . . ,µHn

H } is the set of test health metrics and {µH1
H , . . . ,µHm

H } is the set of
baseline health metrics. The (range of) health management scenario(s) is expected to
be the same for each patient in the test population.

Note that this approach requires identifying a set of baseline health metric outcomes to
compare to. A concrete example of this approach is given below.
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Example 4.3: Direct Population-Level Risk of Glycemia Control in the ICU

Here we compare a set of health metric values ({µH1
H , . . . ,µHn

H }) from the test pop-
ulation to the set of health metric values from a baseline population ({µH1

H , . . . ,µHm
H }),

where the health metric outcomes are obtained using the health metric definitions in
equations 4.1 or 4.2 and 4.3 or 4.4. The baseline scenario here could be healthy pa-
tients or other hospitalized patients but not in an ICU.

In this case, for each metric (functional and side-effect), we interested in two
things. First, is difference between the average value from the test population and that
from the baseline population.

µM,1 =

[
µM,1=bg

µM,1=bg70

]
=

1
n ·∑

n
i=1 µ

Hi
H=bg

1
n ·∑

n
i=1 µ

Hi
H=bg70

−
 1

m ·∑
m
i=1 µ

H∗i
H=bg

1
m ·∑

m
i=1 µ

H∗i
H=bg70

 (4.8)

This is illustrated in Figure 4.4.

Figure 4.4: Illustration of population-level risk metric for Artificial Pancreas
considering the average of outcomes between the target scenario and the base-
line.

Second, for the outcome value µ∗0.75
H such that 75% of the baseline have out-

comes worse than this value, we want to know how much of the test population have
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outcomes worse than this value.

µM,2 =


p
(

µH=bg > µ∗0.75
H=bg

)

p
(

µH=bg70
> µ∗0.75

H=bg70

)
 (4.9)

This is illustrated in Figure 4.5

Figure 4.5: Illustration of population-level risk metric for Artificial Pancreas
considering the overlap of outcomes between the target scenario and the base-
line.

The population-level risk metric in this case is a four-dimensional object.

Individual-Risk-Based Population-Level Risk

This approach relies on the notion of an individual baseline in order to compute an indi-
vidual risk metric. The population-level risk metric then relies on a collection of individual
risk metrics from a representative population.

Notion 6: Individual Risk Metric

The individual risk metric (µR) is a mapping of a set of health metric outcomes for
an individual patient in the context of interactions with a health management system to
a set of risk values, with respect to the respective individual baseline outcome values.
(µH)

µR = FR(µH ,µH) (4.10)
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such that

µ
i
R > µ

j
R⇔ µ

i
R is higher risk than µ

j
R (4.11a)

µR = 0 ⇔ µR = FR(µH ,µH) (4.11b)

As with other notions, all objects can be multidimensional. Properties 4.11a and
4.11b imply (for each dimension) that ‘positive’ values denote higher risk and negative
values denote lower risk compared to a baseline. Computing an individual risk metric
is analogous to computing a population-level risk metric for an individual patient

A concrete example of the individual risk metric is given below.

Example 4.4: Individual Risk of Semi-Automated Glycemia Management in the ICU

Since we have two health metrics, we will end up with two risk metrics (one for
the functional outcome and the other for the side-effect). This results in a two dimen-
sional risk metric (µR = [µR=bg,µR=bg70

]) which consists of the functional risk metric
(µR=bg) and the side-effect risk metric (µR=bg70

). The particular dimension each one
occupies is inconsequential, but the convention we will adopt is to put the function
metric in the first dimension. Though we could find a way to combine these two risk
metrics into one, working with the two-dimensional metric is more informative since
we can see more easily whether the issue is a functional issue or side-effect issue.

Functional Risk Metric Since our functional metric outcome (percentage time out-
side the normal range) is a scalar value, our function metric is the difference be-
tween the functional health metric and an individual (not necessarily personal) base-
line (µH=bg).

µR=bg = µH=bg−µH=bg (4.12)

Since the health metric ranges in values from 0 to 1 (or 0% to 100%), the risk metric
will range from −µH=bg to 1−µH=bg.
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Side Effect Risk Metric. The risk metric for side effect outcome is similar to the
that of the functional outcome

µR=bg70
= µH=bg70

−µH=bg70
(4.13)

where µH=bg70
is the individual baseline.

Having defined the individual risk metric, we can now define the population level risk
metric, which is our primary concern.

Notion 7: Individual-Based Population-Level Risk Metric

The individual-risk-based population-level risk metric is a mapping of a set of
individual risk metrics from a population to a set of values suitable for comparison.

µM = FM({µH1
R , . . . ,µHn

R }) (4.14)

where the µ
Hi
R ’s are individual risk value. As with other notions, all objects can be

multidimensional.
Note that this form of the population-level risk is a bona fide risk metric as it is

a function of ‘test’ population health metric outcomes and baseline outcomes. Each
individual risk (µHi

R ) is a function of ‘test’ outcomes and baseline outcomes (i.e., µ
Hi
R =

FR(µ
Hi
H ,µHi

H ) ), and this individual-based population-level risk metric is a function of
the output this individual risk function. By composition of functions, this makes the
individual-based population risk a function of the inputs to the individual risk metric
(i.e., FM(FR(µ

Hi
H ,µHi

H )) makes FM a function of (µHi
H ,µHi

H )), and these inputs are the
kind of inputs a population-risk metric as defined in notion 3 requires.

A concrete example of this kind of population-level risk metric is given below.

Example 4.5: Individual-Basd Population-Level Risk of Glycemica Control in the

ICU

A simple risk metric we may be interested in is what proportion of the population
does worse than the baseline (i.e., have individual risk values greater than 0) for each
individual risk metric. For each dimension of the risk metric, this can be viewed as a
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proportion

µM = FM({µH1
R , . . . ,µHn

R }) =
|{µHi

R |µ
Hi
R > 0}|

|{µH1
R , . . . ,µHn

R }|
(4.15)

where the numerator is the size of the set of values that do worse than the baseline and
the denominator is the size of the population (or the total number of individual risk
metrics).

Figure 4.6 shows the visualization of this metric. At the top right is the value of
the population risk metric based on equation 4.15 applied to each dimension of the
individual risk metric outcomes. At the top left is the distribution of individual side-
effect risk values with the proportion highlighted in red showing corresponding to the
value of the vertical dimension of the population-level risk. At the bottom right is the
distribution of individual functional risk values with the proportion highlighted in red
corresponding to the value of horizontal dimension of the population-level risk.

Figure 4.6: Visualization of the two-dimensional risk metric.
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A Note on Adaptive or Personalized Health Management

It is important to note the approaches to defining population-level risk metric account for
personalized and adaptive health management systems. Each approach assumes that the
health metric outcomes of interest are the result of patient interactions with the specified
health management system, hence if this system is adaptive or customized in some way,
then it would be accounted for in the system operational scenario definition (addressed in
section 4.2.1). What would remain consistent across the population would most probably
be the method of personalization or adaptation. Hence, the population risk metric would
reflect the risk of the method of personalization or adaptation across the population.

4.2.3 Acceptable Population-Level Risk

The final piece of the model is the acceptable population risk. It is a set of criteria that
describes what population-level risk values are considered acceptable, and in effect, which
health management scenarios are considered safe.

Notion 8: Acceptable Population-Level Risk Criteria

The acceptable risk criteria (µM) defines a set of conditions that the population-
level risk metric must satisfy in order for the population-level outcomes to be consid-
ered acceptable.

Example 4.6: Acceptable Population-Level Risk for Semi-Automated Glycemia Man-

agement in the ICU

In this example, we use the individual-risk-based population metric. A criteria
may be to limit the proportion of the population that does worse than the baseline for
each dimension of the risk metric.

µM : µM=bg < µM=bg and µM=bg70
< µM=bg70

(4.16)

The creates a region (as shown in Figure 4.7) where any point in that region is
acceptable and hence satisfies the criteria. The point shown is unacceptable.
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Figure 4.7: Visualization of the two-dimensional risk metric with the accept-
able risk region.

4.3 The Model of Patient Safety

We can now put the ideas developed in chapter 3 and above together to form the model of
patient safety. The conceptual diagram is shown in figure 4.8. One way to interpret the
model is as follows. Any patient and the technology designed to help them exist together
(in an environment) in what is called a health management scenario (M↔ H). The health
management scenario is designed to improve the health metrics of the patient in order to
reduce the ‘natural’ unacceptable risks (as measured by the health metrics) to acceptable
levels. A health management scenario is considered safe for a patient if a convincing argu-
ment can be made that it brings overall risk (including the newer ones introduced by having
the system) to acceptable levels.

The patient safety model here models the risk of having the health management scenario
compared to a baseline situation without the specific health management scenario under
consideration. The baseline then represents a risk we are willing to accept. To account
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Figure 4.8: Conceptual diagram of the patient safety model

for the inevitable variability in the health management scenario due to variability in the
patients and components, a population-level risk metric (µM) is used, which takes as input
two sets of health metrics (‘test’ and baseline) from a representative population.

Population-level risk metric defines a risk space, an n-dimensional space accounting
for risk related to the different health metrics under consideration (figure 4.8 shows a 3-
dimensional space). To define the population level risk one needs a baseline set of health
metrics ({µH}) and a ‘test’ set of health metrics ({µH}). The risk space is therefore the
possible range of values of the population risk metric given a specific baseline set of values
and the possible range of values the health metrics in general.

The baseline set of metrics act as a reference for the risk space. Hence the 0 vector in
the risk space represents the output of the risk metric applied to the baseline, and for any
dimension, positive values denote health management risks worse than the baseline and
negative values denote outcomes better than the baseline.

For a given risk space, the acceptable risk criteria (µM) defines a portion of the space
as the acceptable risk region. Applying the risk metric to a ‘test’ set of health metrics from
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a specific health management scenario and the baseline set of values used to define the
particular risk space will produce a point in the risk space, telling us the risk of the scenario
relative to the baseline. If this point lies in the acceptable risk region, then the risk of that
scenario is considered acceptable, and if the point lies outside this region, the risk of that
scenario is considered unacceptable.

The health metrics considered must include at least one functional outcome health met-
ric (which is related to the health metric used to determine that health management must
be introduced), and a side-effect outcome metric. These account for the fact that variability
could cause the health management system to fail to achieve its intended function (which
in health is a patient safety issue) or can introduce unwanted unacceptable dynamics in the
person.

In an abuse of terminology, the model described above is in some sense denotational.
This makes it more of a metamodel since it encompasses the class of models for patient
safety for specific scenarios. The next section demonstrates how this model can be opera-
tionalized for different purposes related to reasoning about the safety of medical technolo-
gies.

4.4 Utility of the Model

This section illustrates some of uses of this model in reasoning about the safety of medical
technologies. The uses considered are development of patient safety criteria, assessment
technologies against a specific criteria, safety-guided design of a (part of) a particular tech-
nology, discussions of safety criteria, and exploration of the impact of assumptions and
rationale on safety criteria and acceptable risk. There is also a brief discussion on its use in
structuring safety arguments.

Two case studies are used demonstrate the utility of the model for these purposes: the
one on glycemia management in the ICU already introduced above, and one related to the
artificial pancreas [29], introduced below. Both are related to management of blood glucose
levels but in a different health management contexts. It is important to note that the case
studies are only illustrative and any results have no bearing on the real-world versions of
these systems.

Also, the order of presentation does not represent the order of use of the model in a
design process. Rather, the subsections are organized so that subsequent subsections can
build on ideas introduced in the previous ones. For example, technologies are assessed
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against a specific criteria so illustrating the development of criteria first helps make the
illustration of assessment of technologies easier.

Example 4.7: Glycemia Management with the Artifical Pancreas

The artificial pancreas [29] is a system for managing blood glucose levels in a
‘continuous’ manner. It consists of a sensor for inferring blood glucose, a pump for
infusing insulin, and software for deciding on insulin infusion rates based on infor-
mation from the sensor and other sources. The sensor provides inferences of blood
glucose values every five minutes and hence control decisions are made at this rate
as well. The general conceptual picture of this health management setup is shown in
figure 4.9.

Figure 4.9: The conceptual setup of the artificial pancreas system

There are a number of differences between this health management scenario and
the ICU infusion protocol scenario described previously. First is that the artificial pan-
creas is targeted at Type I diabetics whose ability to bring blood glucose levels down
have been permanently impaired, whereas the ICU system is targeted at a population
where this ability is temporarily impaired. Second, the artificial pancreas operates at a
finer time resolution (an order of magnitude smaller) than the ICU system. Lastly, the
communication between the sensing, decision-making, and actuation technologies in
the artificial pancreas is automated, whereas a nurse must serve as the communication
medium in the ICU system.
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4.4.1 Patient Safety Criteria Development

One of the questions in reasoning about safety of medical technologies is under what condi-
tions do we consider a particular health management strategy acceptable? This corresponds
to developing the parts of the patient safety model shown in the conceptual diagram in Fig-
ure 4.10. The main goal of patient safety criteria is to develop the risk space and identify
the acceptable risk region of that space.

Figure 4.10: Conceptual depiction of patient safety criteria development. The main goals
are to establish the population-level risk space and the acceptable risk region.

A manufacturer may develop the criteria and argue to the FDA that the criteria is valid;
the FDA may specify the criteria for manufacturer to follow; health practitioners may pro-
vide input to either or both; or all three may jointly develop the criteria. Regardless of who
defines it, the criteria consists of the following.

The Health Management Scenario (M ↔ H). The criteria must state clearly which
health management scenario it applies to. We must define as clearly as possible the popula-
tion of concern, the goals of the specific health management system, and the ways in which
it interacts with a patient. The level of variability in all pieces to be considered can also be
defined.
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The Health Metrics (µH). Related to the health management scenario are the health met-
rics. We must define how the functional outcome (what the health management system is
helping with) is measured, as well as the potential side-effects as a result of the introduc-
tion of the health management system and how are these also measured (in terms of health
metrics).

The Population-Level Risk Metric (µM). It is expected that the system would account
for and be robust to inter-person variability as much as possible. We must define what we
mean by the risk of the system with respect to a baseline with this variability in mind, either
using an individual-risk-based approach or a direct population level approach. We need not
specify the particular baseline values, though we could, but we must assume that there will
be a baseline.

The Acceptable Risk Level (µM). Eventually, we must define the level of population risk
we deem acceptable. This is should be based on the outcome (values) of the population risk
metric as applied to the case of the particular health management system.

Example 4.8: Patient Safety Criteria for Semi-Automated Glycemia Management in

the ICU

The criteria for this scenario was developed as we introduced the various notions.
Below is a summary what the various pieces were.

Health Management Scenario. The population of concern are burn patients (ado-
lescent or adult) in the ICU suffering from stress-induced hyperglycemia. The system
is an insulin infusion protocol that adjusts insulin infusion rates once every hour based
on blood glucose readings at the time of adjustment. Here, we are concerned with the
general nature of the system and its behavior (i.e., the fact that it records glucose and
adjust insulin every hour). Later, in the assessment, we would provide details on the
health management components.

Health Metrics. The functional outcome metric (µH=bg) is defined as the percent-
age of the total time on the protocol that the patient’s blood glucose is outside the
target range of 80 to 180 mg/dl, using the same protocol previously mentioned that
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Steil et al. cite as one developed at the University of Washington [98]. The context
is the time in which the patient is in the ICU undergoing treatment, making [t0, t f ]

patient-dependent.
The side-effect metric (µH=bg70

) is the percentage of the total time on the protocol
that the patient’s blood glucose is in the hypogylcemic range (below 70 mg/dl). This is
results in a two-dimensional health metric consisting of the functional outcome metric
and the side-effect metric. Using a distribution of blood glucose values approach, the
functional outcome metric is

µH=bg = FH=bg(xbg(t)) = 1− p(xbg < xbg(t)< xbg)

xbg = 80 mg/dl (4.17)

xbg = 180 mg/dl

and the side-effect metric is

µH=bg70
= FH=bg70

(xbg(t)) = p(xbg(t)< 70) (4.18)

where xbg(t) is the blood glucose trajectory and p(·) can be interpreted as the
ratio of blood glucose values that satisfy the condition in the parenthesis to the total
number of blood glucose values in the trajectory. The time of interest is the total time
the patient interacts with the protocol.

Population-Level Risk. This is based on the individual risk approach. The indi-
vidual risk for each patient consists on a functional risk and side-effect risk. For
each, there is a baseline health metric outcome (µH=bg = 30% for the functional and
µH=bg = 0% for the side-effect). The individual risk is the actual outcome (percentage
outside or in the respective range) minus the baseline outcome.

µR =

[
µR=bg

µR=bg70

]
=

[
µH=bg

µH=bg70

]
−

[
µH=bg

µH=bg70

]
(4.19)

The population-level risk (for an appropriately-chosen representative population)
is then a two-dimensional vector representing the proportion of the population that
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does worse than the baseline on each outcome

µM =

[
µM=bg

µM=bg70

][
p(µR=bg > 0)

p(µR=bg70
> 0)

]
(4.20)

Acceptable Population-Level Risk. In this case we put a limit on the population
level risk value, where in order for the risk to be acceptable no more than 10% of the
population should do worse than the baseline on each dimension.

µM : µM=bg < 0.1∧µM=bg70
< 0.1 (4.21)

Example 4.9: Patient Safety Criteria for Artificial Pancreas

We can develop a criteria for this case as well. In this case, we use the direct
population-level approach to defined the risk.

Health Management Scenario. The population of concern are Type I diabetics
(adolescents or adult). The system is the artificial pancreas system described in exam-
ple 4.7 where the decision to adjust insulin is made every five minutes based on blood
glucose and other information (including meals).

Health Metrics. The functional outcome metric (µH=bg) is similar to the ICU case
and is the defined as the percentage of the total time that the patient’s blood glucose
is outside the normal range, but the range is now 70 to 180 mg/dl, which is what is
typically used in artificial pancreas considerations [81, 64].

The side-effect metric (µH=bg70
) is the percentage of the total time on the protocol

that the patient’s blood glucose is in the hypogylcemic range (below 70 mg/dl). This is
results in a two-dimensional health metric consisting of the functional outcome metric
and the side-effect metric. Using a distribution of blood glucose values approach, the
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functional outcome metric is

µH=bg = FH=bg(xbg(t)) = 1− p(xbg < xbg(t)< xbg)

xbg = 70 mg/dl (4.22)

xbg = 180 mg/dl

and the side-effect metric is

µH=bg70
= FH=bg70

(xbg(t)) = p(xbg(t)< 70) (4.23)

where xbg(t) is the blood glucose trajectory and p(·) can be interpreted as the
ratio of blood glucose values that satisfy the condition in the parenthesis to the total
number of blood glucose values in the trajectory. The time of interest is the total time
the patient interacts with the protocol.

Population-Level Risk. This is based on the direct population-level approach. Here
we compare a set of health metric values ({µH1

H , . . . ,µHn
H }) from the target scenario

to the set of health metric values from a baseline scenario ({µH∗1
H , . . . ,µ

H∗m
H }). The

baseline scenario here is diabetics who manage the blood glucose with a sensor and
pump but without the aid of the artificial pancreas decision-making platform.

In this case, for each metric (functional and side-effect), we interested in two
things. First, is difference between the average value from the target scenario and that
from the baseline scenario

µM,1 =

[
µM,1=bg

µM,1=bg70

]
=

1
n ·∑

n
i=1 µ

Hi
H=bg

1
n ·∑

n
i=1 µ

Hi
H=bg70

−
 1

m ·∑
m
i=1 µ

H∗i
H=bg

1
m ·∑

m
i=1 µ

H∗i
H=bg70

 (4.24)

This is illustrated in figure 4.11
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Figure 4.11: Illustration of population-level risk metric for Artificial Pan-
creas considering the average of outcomes between the target scenario and
the baseline.

The second is how much of the population from the target scenario overlaps with
the worst 75% of the baseline population in terms of outcomes

µM,2 =


p
(

µH=bg > µ∗0.75
H=bg

)

p
(

µH=bg70
> µ∗0.75

H=bg70

)
 (4.25)

Here, µ∗0.75
H the health metric outcome value such 75% of the baseline population

have a health metric outcome value worse (greater) than this. This is illustrated in
figure 4.12

Figure 4.12: Illustration of population-level risk metric for Artificial Pan-
creas considering the overlap of outcomes between the target scenario and
the baseline.

The population-level risk metric in this case is a four-dimensional object.
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Acceptable Population-Level Risk. In this case, we put a limit on each of the four
dimensions of the population-level risk metric.

For µM,1, where we are interested in the difference in average outcomes, a nega-
tive value indicates that the average outcome in the target scenario is better than the
average outcome in the baseline scenario. In the functional metric case, our criteria is
that the average target outcome be 50% better than the case for the baseline, and for
the side-effect case we require that it just be better. These would be expressed

µM,1 : µM,1 <

−(0.5 · 1
m ·∑

m
i=1 µ

H∗i
H=bg

)
0

 (4.26)

In terms of the overlap,for the functional metric, we want no more than 20% of
the population to be in this overlap range, and in the side-effect case we want no more
than 30% to be in this overlap range. This would be expressed as

µM,2 : µM,2 <

[
0.2
0.3

]
(4.27)

From the above, it is clear that the safety criteria specifies the information one must
gather and the computations to undertake in order to find out the population-level risk (as
defined by the criteria) and whether this risk value is acceptable or not (also as defined by
the criteria).

Note that the criteria developed above is quite general. For example, the specific char-
acteristics of the patient population that would be considered appropriate is not explicitly
stated. Neither is how the variability in the different components should be explored. These
can definitely be specified if whoever is developing the criteria wishes to do so. Leaving it
unspecified only means that the choices are made when gathering information for assessing
a technology against the criteria (as shown in section 4.4.2).

Subsystem Patient Safety Criteria Development

The above criteria development approach made no reference to a specific part of the health
management system. It is implies that a manufacturer has complete design control of every
part of the health management system. This is often not the case: a manufacturer is usually
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responsible for a part of the overall system. In this case, we need to develop patient safety
criteria for pieces of the health management system.

No new notions need to be added here in order to do this, but the way the health manage-
ment scenario is described must change. We must now clearly state the health management
subsystem (medical technology) under consideration. If there is direct (physical) interac-
tions between this subsystem and the patient, potential side-effects from this interaction
must be considered.

The conceptual diagram for highlighting a subsystem is shown in figure 4.13. The
rest of the model is omitted and the health management scenario portions are highlighted.
Notice that the subsystem is only highlighted in the test scenario since this is the technology
we are interested in.

Figure 4.13: Conceptual diagram of a health management scenario description highlighting
the subsystem in the test scenario.

In our example case studies, the metrics part of the criteria remain the same. For the
semi-automated glycemia management case, if we are interested in the decision-making
software, then that part of the system would be highlighted as what the criteria is being
developed for. In the artificial pancreas case, we could be interested in any of the three
pieces, in which case the specific piece would be highlighted.

Note that the fact that we are interested in a particular subsystem does not change the
overall patient safety criteria for the particular health management system. What consid-
ering a subsystem does is define an interface between that subsystem and the rest of the
health management system. In this case, we have to be explicit about the assumptions
made about the parts of the health management system not under consideration. The use of
an interface means that the parts of the system not under consideration need to be described
in as black-box a manner as possible, especially if there are different possible instantiations
of those parts.
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The assumptions about the behaviors of other parts not under consideration can be used
in two ways. First is that a manufacturer can state it as the expected behaviors that other
parts must conform to should they all be used in the same health management system. If
the subsystem under consideration is deemed acceptable, and the other parts do conform to
the interface behaviors in operation, then we can assume that to be acceptable operation.
Second is that the FDA can specify the behaviors of the other parts as behaviors that the
manufacturer must assume and design for. The subsystem under consideration in this case
is deemed acceptable if it produces an acceptable population risk given the assumptions.

The rest of the chapter will concentrate on the realistic case of designing and reasoning
about a subsystem of the health management system. The term health management scenario
will still refer to the whole health management system, but the part of primary interest will
be the subsystem being considered.

4.4.2 Guided Assessment of Patient Safety of a Specific Technology

An assessment is the determination of the population-level risk of a specific health man-
agement scenario according to a given criteria. We may be interested in this risk value
or we may be interested in a binary decision on whether this risk is acceptable (meets the
patient safety criteria) or not. Both cases are illustrated in the concept diagram in figure
4.14. The values shown are two possible values for the same health management system
(i.e., the system may result in one or the other but not both).

Note that in the assessment, the specific choices made for both the baseline and test
health management scenarios (patient population, behaviors of parts of the health manage-
ment system, and interactions) must be explicitly stated. However, the since the assessment
is not necessarily concerned with why the design results in the specific outcomes, details
of the internals of the design under consideration are not necessary.

The assessment is called ‘guided’ because the model provides a guide for what infor-
mation must be gathered and what factors must generally be considered, but user of the
model must make some judgments on the specifics of what are included in the assessment.
Depending on where in the design process an assessment is made, the information used
could come from simulation models or from actual field data. Lastly, if the assessment sce-
nario involves one party reviewing the information provided by another, the assessor can
question the choices made to produce the outcome. These choices include the amount of
variability considered and the choice of representative populations (both baseline and test
populations).
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Figure 4.14: Conceptual depiction of assessment of a particular design. The diagram in-
dicates that the outcome of the assessment could be the population-level risk according
to a given criteria (which could be one of the two values shown), or a binary decision on
whether this risk (and hence design) is acceptable (meets the criteria) or not.

Example 4.10: Assessment of Patient Safety of Infusion Decision-Making Software

for Glycemia Management in the ICU

Here we are assessing the safety of only the decision-making software. The in-
trinsic behavior of the software remains the same across the patient population. This
example assumes, for simplicity that the main safety concerns are with the results of
insulin infusion (i.e., it does not consider issues like risks associated with obtaining
the blood glucose sample).

The data used comes from simulations, but similar information could have also
been obtained from field tests. (The simulations were run by Scott Popplewell and
his team working on a project with at Edward Ortiz at the University of Virginia
Center for Diabetes Technologies, and was based on a simulator developed for work
on optimizing ICU protocols [82]. I only reused the blood glucose traces from the
original simulations.)
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Health Management Scenario Considered. The health management system con-
sists of insulin infusion decision-making software (which is what we are interested in
assessing), nursing staff, a blood glucose meter, and the infusion system. The nurse
obtains the blood glucose readings and types them to the decision-making software,
and also adjusts the infusion rate to that output by the software.

100 patients were considered in this assessment, and nothing was done to restrict
the general behavior of the patients. This means the 100 patients produce both intra-
and inter-person variability. The patient models were derived from data from real
patients as detailed in the work by Patek et al. [82]. The sensor was considered to be
noisy using the noise model proposed by Boyd et al. [17]. Each patient was run three
times under three different noise scenarios. Nurses were assumed to commit no errors
in typing in glucose values or adjusting infusion rates.

It was also assumed that checking blood glucose and adjusting insulin was done
on the hour every hour, and that there was insignificant delay between when a blood
glucose value was obtained and when the infusion rate was adjusted. The setup is
shown in figure 4.15, where the decision-making software (D) is highlighted and the
pieces that exhibit variability are shown.

Figure 4.15: Scenario for assessment of insulin infusion decision-making
software.

Software Algorithm. The software uses a basic algorithm whose intrinsic behavior is
as follows. When the patient is first put on the protocol, no insulin is infused until the
patient starts to exhibit hyperglycemia. Once infusion is started it follows this basic
adaptive proportional control algorithm
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yD→A[n] = K[n](x̂bg[n]− xbg)

K[n] =


K[n−1]+α x̂bg[n]> βhi

K[n−1]−α x̂bg[n]< βlo

K[n−1] otherwise

(4.28)

where yD→A[n] is the insulin does in units/hr that the software instructs the nurse to
give, K[n] is proportional factor, x̂bg[n] is the measured blood glucose value input into
the software, xbg is the blood glucose level at which infusion is stopped, α is the the
amount by which the proportional factor is changed, βhi is a threshold glucose value
above which the algorithm starts to increase the infusion rate, βlo is a threshold value
below which the the algorithm starts to reduce the infusion rate.

For this particular case xbg was set to 60 mg/dl, α was set to 0.01, and the initial
value of the proportional factor (K[0]) was set to 0.02, based on values used by Steil
et al. [98]. The thresholds were set to the target blood glucose thresholds (βhi =

180mg/dl and βlo = 80mg/dl).

Individual-Risk-Based Population-Level Risk. The individual risks for each pa-
tient were computed according to equation 4.19 from the criteria in example 4.8. Since
each patient had blood glucose trajectories (xbg(t)) from three different trials, the max-
imum individual risk of the three trials for each metric was used as the risk for the pa-
tient. This means the functional risk and side-effect risk values for each patient could
be based on different trials for that particular patient.

Once all 100 individual risks were available, we computed the population-level
risk based on equation 4.20 from the criteria in example 4.8. The distribution data for
the individual risks and the resulting population-level risk value for this version of the
software (with the thresholds set to the glucose targets) is shown in figure 4.16.

Acceptable Risk Assessment According to the criteria from example 4.8, a population-
level risk is acceptable if for each dimension (functional and side-effect), no more
than 10% of the population of the population does worse than the baseline. Figure
4.17 shows the acceptable region (shaded area) for this case and the population risk
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(the point (∗) shown) for the software from Figure 4.16. In this case the population
risk is unacceptable, because it lies outside the acceptable region.

Figure 4.16: Visualization of the population-level risk and the distribution of
individual risks.

Here, we are only concerned with the binary outcome. In a real design, this would
prompt us to figure out why this particular outcome occurred, explore changes to the
design of the software and reassess our changes. The next section on safety-guided
design shows a case study where assessments are used to link risks to design features
and develop requirements to ensure that system behaviors result in acceptable risks.

Note that the above is an assessment of the software, but based on the assumed
(or expected) behaviors of the other parts of the health management system. Note
also that this assessment is only valid for the way the health metrics were defined.
Section 4.4.5 explores how changing definitions in the criteria like any of the metrics
can impact the acceptability of the system under consideration.
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Figure 4.17: Individual-risk-based population-level risks for semi-automated
insulin infusion protocol.

Assessment of Multi-Use Designs

If a design is intended to be used in multiple distinct scenarios, the assessment could either
be done for each scenario distinctly, or all scenarios can be considered jointly. In the
joint case, the range of scenarios would represent the variability in the parts of the health
management system not under consideration.

The choice of how to consider and assess the population-risk of the multiple scenarios
really depends on the details of the health management scenario. One factor to consider is
the type of risk metric used and the details of the baseline health metrics. If an individual-
risk-based metric is used, then the joint case can be explored easily because each test health
metric outcome will be compared to its corresponding appropriate baseline value. The
direct risk metric can only be used if the baseline health metric values from the different
populations are statistically similar. In the ICU case study for example, if it turns out
that burn patients and pulmonary by-pass patients are stressed in similar ways statistically,
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then health metrics from a collection of patients from both populations can be used for the
baseline values.

The above presumes that the system we are considering does not change in any way
across patients. For example, in the ICU case study, the assumption would be the the
algorithm and configuration remains the same across all patients (or that any adaptation
is not dependent on whether the patient is a burn patient or by-pass patient). In that case,
considering the population risks jointly using a direct risk metric should work. Considering
the case separately may reveal whether the system has lower risk for one patient population
than another even if it is acceptable for both.

If the system does adapt in a population dependent way, then is must be assessed across
patient populations separately and cases where the system is configured for the wrong pa-
tient type must be considered. In the ICU case study, for example, we would end up with
some test health metrics for a scenario where system configured itself for a burn patients
even though it was supposed to be interacting with a by-pass patient. Since the system is
supposed to be interacting with by-pass patients, these test metrics would end up in the
set used in population risk assessment for by-pass patients. A similar situation would be
explored for the burn patient population.

If the adaptation is automatic, then the separate assessments would already implicitly
account for the case where the system configures itself for the wrong type of patient. This
is because when presented with a patient, the system must first figure out the patient type
and configure itself according, and since we are doing a population-level risk assessment,
the variability in the patients considered should test this capability of the system.

If the adaptation requires user input, however, then we would have to introduce miscon-
figurations intentionally. This could be done by introducing variability in the user behavior
that allows this to happen. This would then factor into the population-level assessments
just like the automatic adaptation case.

Example 4.11: Assessment of Artificial Pancreas for use in Adolescents and Adults

In this example we explore the case where the system is designed for different
populations (adolescents and adults), but with no special adaptation for each popu-
lation. The data for the test population comes from a simulation of an average adult
and average adolescent. The baseline data come from that used by Kovatchev et al.
which consisted of 55 patients who used a sensor and a pump but no decision-making
software [52].
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Inter-person variability was not explicitly explored in the test population. Rather
the physiologic dynamics used for the patient are designed to represent the notion of
an average Type-I diabetic based on the data used to create the glucose physiology
model by Cobelli et al. [65]. The limitation to this physiology model is due to li-
censing reasons. However, this limitation makes the analysis simpler since the patient
safety criteria developed for the artificial pancreas earlier (muM,1 given by equation
4.24) relies on the average health metric outcome for the population. The assumption
therefore is that outcome based on the single model represents this average value for
the test population. This is an example of using a proxy for a full assessment.

Figure 4.18 shows the population-level risk when both populations are considered
jointly (marked by the star (∗) symbol), for only the adult population (marked by the
black dot (•) symbol), and for only the adolescent population (marked by the green
dot (•) symbol). The acceptable risk region is defined by the shaded area (as specified
in the criteria in example 4.9); the acceptable functional outcome risk is to the left of
the vertical line and that for the side-effect risk is below the horizontal line.

Figure 4.18: Population-level risk of artificial pancreas for adult (marked by
the black dot (•) symbol) and adolescent (marked by the green dot (•) sym-
bol) populations, and when both are considered as one population (marked
by the star (∗) symbol).
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Even though overall the risk is unacceptable according to the criteria, the system
seems to present lower risk for the adult population than the adolescent population.

Comparison of Equivalent Technologies

Since the assessment of population-level risk only depends on the outcome of interaction of
the technology with the patients, and not necessarily on the specific details of the technol-
ogy, one can compute and compare the population-risks of (equivalent) technologies with
similar functional goals (and hence functional metrics) and similar side-effects.

Example 4.12: Assessment of Equivalent Software for Semi-Automated Glycemia

Management in the ICU

This example compares slightly different intrinsic behaviors of the decision-making
software for the infusion protocol in the ICU. In previous examples, we assumed that
the software sets the thresholds of reaction of the protocol the thresholds for the tar-
get blood glucose range. Here, we explore four other cases where the software sets
the reaction thresholds (βlo and βhi) some mg/dl away from the target blood glucose
level thresholds. This results in the software reacting (and changing and proportional
increment term (K[n])) earlier than it would if the thresholds were the set to those in
the previous examples.

Figure 4.19 shows the outcome of these comparisons. The range of behaviors
were for threshold configurations [+10,−0], [+10,−10], [+20,−10], and [+20,−20],
where +β and −β indicate the difference between the lower and higher reaction
threshold and the target blood glucose thresholds respectively. The star (∗) mark is
original population risk from previous examples. The dot (•) is the population risk
based on the new intrinsic behaviors.

In general, it seems like reacting earlier at the higher threshold improves functional
risk. It also seems like reacting earlier at the lower threshold improves side-effect risk,
except when the software reacts much earlier for both thresholds.
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Figure 4.19: Comparison of four different intrinsic behaviors of the decision-
making software for the insulin infusion protocol. +β and −β indicate the
difference between the lower and higher reaction threshold and the target
blood glucose thresholds respectively. The acceptable risk region is defined
by the shaded area; the acceptable function risk is to the left of the vertical
line and that for the side-effect risk is below the horizontal line.

In the example above, we explored slightly different intrinsic behaviors of the same
system. This approach is particularly useful in a safety-guided design process discussed
in the next subsection. We could have also explored systems with significantly different
intrinsic behaviors but with the same required inputs and outputs. For example, we could
compare two different pieces of decision making software that both take in blood glucose
measurements and produce insulin infusion rate adjustments every hour but use very differ-
ent algorithms for deciding on infusion rates. We could even have a case where one piece
of software requires values more often (every 20 minutes, for example), or may instruct
the nurse on when to provide the next blood glucose value update. A number of different
algorithms can be found in the work by Steil et al. [98] where they evaluate the response
properties (not patient safety implications) of a number of manual and automated insulin
infusion protocols (including the one we have been using for our examples).
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A Note on Gathering Information Used in Assessments

Assessments require gathering a test set of metrics, and in some cases, also the baseline
set of metrics. Assessments will be carried out at different stages of the design, and there
are range of options on how to produce this data. At one end of the spectrum are minimal
models, and at the other end are ‘uncontrolled’ trials as shown in Figure 4.20. The trade-off
is between the cost (and feasibility) of obtaining the data, the realism exhibited by the data,
and how ’rigid’ the method of obtaining the data is.

Figure 4.20: The spectrum of possibilities for generating health metric data for assess-
ments.

Minimal (coarse) models are flexible and easy to use and manipulate, the also allow a
wider range of explorations of the parameter space. They are typically used at the early
stages of the design if available, though they can also be useful at later stages to step back
from the details and answer questions about issues. ‘Uncontrolled’ trials are typically used
in the final stages of the design, though they could also be used earlier if prototypes are
cheap to develop and tests are cheap to run.

The inferences that can be made from minimal models are limited, and one cannot base
a safety argument solely on them, though they useful (and sometimes the only feasible
option) early in the process to help reduce the design space for when higher fidelity models
or experiments are used to obtain data. In certain cases, especially exploring effects on
health metrics of changing design parameters as is done in the next subsection, models
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are the most feasible approach. The inferences that can be drawn from trials are stronger,
though there is still the possibility that a smaller part of the parameter space is explored.
Data from trials could also be used to improve models, or past data can be used to inform
minimal model design for early concept analysis.

Recently there is interest in what are called in silico trials [81, 49, 46] where high
fidelity models are used in place of controlled experimentation for explorations that would
be infeasible in real experimentation, and also to reduce cost of the design process by
eliminating experimentation like animal trials [49]. In some cases, the FDA is providing
such models to aid manufacturers. An example is the virtual family model [?], which
is set of anatomically-correct 3D models developed in collaboration with academic and
industry partners for electromagnetic, thermal, acoustic, and computational fluid dynamics
simulations, to examine safety issues like the use of MRIs on patients with implants. The
FDA however makes no warranties about the reliability of the models and further states
that using the model does not “[imply] endorsement by the FDA or [confer] any advantage
in regulatory decisions” [109].

How to chose which process of collecting information is beyond the scope of this dis-
sertation. What is important is understanding the trade-offs and strength of inferences that
can be made and selecting the appropriate and feasible path. In presenting the safety argu-
ment (discussed later in section 4.4.6), one can provide rationale on choices of the particular
option for collecting information.

4.4.3 Safety-Guided Design

In the design process, we would like the set of possible intrinsic behaviors of medical
technology to result in acceptable population-level risks. One way to achieve this is to use
what is called a safety-guided design approach. This is a top-down approach where the
general principle is to first develop requirements and validate that any intrinsic behaviors
that satisfy the requirements result in acceptable risks. The next step is to then design
a system to meet the requirements, and verify and demonstrate that the design (and its
implementation) meet the requirements.

In the end, the argument is that the resulting system results in acceptable risks because
its intrinsic behaviors satisfy the requirements and we have already established that any
system whose intrinsic behaviors satisfy the requirements must result in acceptable behav-
iors. The main idea behind this kind of approach is to have a traceable design process,
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where each design feature is related to some set of requirements. Here, what we have done
is add traceability between the safety requirements and the safety criteria.

A key part of this process is the establishment and validation of the requirements, and
this is where the model is most useful. At the early stages, multiple potential designs can
be assessed to understand the relationship between intrinsic behaviors of the system under
consideration and population-level risks with respect to a particular (or multiple) patient
safety criteria. With coarse models of (or information related to) the health management
scenario under consideration, we can identify a set of black-box behaviors of the part of
the health management system we are interested in that satisfy the patient safety criteria.

It is important to note that ideally, for each candidate behavior, a full assessment would
be run. This could result in an explosion in the exploration space, which is a typical prob-
lem with design space explorations of this kind. One way to get around this is to use coarse
but relevant models, as suggested earlier, for quicker exploration. Another way is to use
some proxy for a full assessment, maybe based on knowledge from previous assessments.
This would involve fewer assessments overall and estimating what the outcome of a full as-
sessment would be from the fewer assessments. Lastly, since assessments are independent
of each other, they need not be run in sequence. All assessments could in theory be run in
parallel speeding up the time to obtain the information necessary.

Once candidate acceptable behaviors have been identified, resulting in narrower ex-
ploration space, higher resolution models (or more detailed information) could be used to
ensure that the candidate behaviors do indeed meet the criteria. Once we have some level
of confidence that the candidate behaviors are worth exploring, we can go about developing
a more detailed design that produces these behaviors.

Figure 4.21 illustrates how the model can be used to guide the establishment of require-
ments which represent intrinsic behaviors that meet the patient safety criteria. The first part
is developing a characterization of the intrinsic behavior of the part of the health manage-
ment system we are designing. This creates an intrinsic behavior space ,(λ 1

M,λ 2
M) in the

figure, where λ 1
M and λ 2

M represent parameters related to properties of the system that can
vary. For example, if we are designing a continuous glucose monitor, they could represent
the point accuracy of a value reported by the monitor and the delay from when the value
is sensed to when it is reported respectively. (Chapter 5 discusses how to determine the
relevant intrinsic behavior parameters in more detail.)

The next step is to assess the population-level risk for multiple points in this behavior
space with respect to an identified patient safety criteria. In this exploration, each point
represents a test scenario where the intrinsic behavior of the system under consideration is
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Figure 4.21: Conceptual depiction of establishing requirements for safety-guided design.

fixed but with variability in the other parts of the scenario. The assessment results in a set
of points in the population-level risk space defined by the patient safety criteria subscribed
to. Note that the risk space and the behavior space need not have the same dimensions.

Once the risk value of behavior points is established, the risk points that fall in the
acceptable risk region can be identified. By doing so, this creates an inverse mapping of
population risks to corresponding intrinsic behavior points, essentially tagging points in
the behavior space as acceptable or not. Based on this information, an acceptable behavior
region can be created in the intrinsic behavior space, and the criteria for this region becomes
the patient safety requirements.

The approach described above essentially uses the acceptable risk region to create an
acceptable behavior region. The description of this region, which would be a function of
the parameters that make up the behavior space, becomes the requirements. Ideally, this
region would be simple to describe and contiguous as in the figure (the region shown can
be described by a trapezoid). Having a contiguous region helps provide some confidence
that if the inevitable variability in the intrinsic behavior of the systems being designed is
constrained to the acceptable region, the risk outcome will be acceptable.
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Note that in the figure, because of the desire for simplicity in description of the ac-
ceptable behavior region, this region does not encompass all the acceptable points. If this
region was mapped back to the risk space, it would result in a sub-region of the acceptable
risk region. In general (and in this case) a direct mapping of the acceptable risk region
to an acceptable behavior region could result in a behavior region that is quite complex to
describe (and probably more difficult to design to).

The case study below looks at the establishment and validation of requirements for
a meal sensing system for the artificial pancreas. The focus is on the artificial pancreas
because there are more resources available to illustrate the utility of the model from this
perspective. Focusing on meal sensing also demonstrate the use of the model in dealing
with sensing subsystems (of which body sensor networks, which we will look at later, are
emerging technology).

Example 4.13: Meal-Sensing-to-Decision-Making Interface Safety Requirements in

the Artificial Pancreas

An important part of blood glucose management for Type-I diabetes is meal-time
insulin infusion. The artificial pancreas requires meal information in order to infuse
the proper amount of insulin at meal time. This information includes when the meal
was taken and the amount of the meal that was taken.

Here, we are interested in designing a system that ensures that meals are reported
in an appropriate manner to the decision-making software. In particular, we would like
to understand what the interface requirement should be between this meal-reporting
subsystem and the decision-making software. Since our aim is to gather requirements,
the details of how this meal reporting subsystem works is not important. All we need
to know from a black-box perspective is that the system interacts with the user (and
possibly the glucose monitor) to produce meal information for the decision-making
software to use.

Characterization of the Subsystem. The interface is based on what the decision-
making software expects and what could happen in reality. This concept is illustrated
in figure 4.22. In reality, the person consumes meals at different points in time which
results in a meal trajectory (u(t)). The decision-making software finds out information
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about these meals through what the meal-sensing system reports, which would be a
meal information trajectory (û(t)).

Details on the meal sensing system are omitted intentionally. It could range from a
simple user interface requiring the user to manually enter information to an automated
system that tries to infer meal information or something in-between where some infer-
ence is combined with user input. What we are most interested is the abstract version
of this subsystem, which we can view as a subsystem that transforms the meal trajec-
tory into a meal information trajectory as shown above the magnifying glass symbol.

In general, three things can happen to the meal timing information: it can be re-
ported at time significantly before, right around, or significantly after the actual meal.
For the meal amount information, the amount can be overestimated, underestimated,
or just right. There is also the possibility that no information on the meal is reported
at all. The requirements for the interface should specify what timing of report, esti-
mation accuracy, and omission of meal information behavior is tolerable in order to
meet the safety criteria.

Figure 4.22: Illustration of meal sensing interface of the Artifical Pancreas
showing information that the decision-making software expects and the pos-
sibilities between what is reported and what actually happens.
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From the perspective of the interface, if we assume that a person eats three meals
(breakfast, lunch, and supper), then each meal has an timing offset (δi∈{B,L,S}, B =
breakfast, L = lunch, S = supper) which indicates how far in advance (negative offset)
or how much later (positive offset) the meal is reported relative to when the meal is
actually taken. Each meal also has a meal factor value (αi∈{B,L,S}) which indicates
what the ratio of the estimated (reported) carbohydrate content in the meal to the
actual value. Values greater than, equal to, or less than 1 indicate overestimation,
perfect estimation, and an underestimation respectively.

Since, based on the above, each meal is characterized by a two-dimensional pa-
rameter space, an unreported meal can either be represented by an estimate of 0g of
carbohydrate ((δi,αi) = (∗,0) where ∗ indicates that we do not care about that value)
or a meal that is reported at an infinite time ((δi,αi) = (∞,∗)). Accounting for all
three meals collectively results in a 6-dimensional behavioral space for the interface
([(δB,αB),(δL,αL),(δS,αS)]).

The space and a point in the space is visualized in figure 4.23. The space is vi-
sualized as collection of three two-dimensional spaces (one for each meal) a point in
the overall 6-dimensional space is represented by the value of three points, one from
each of the two-dimensional meal parameter spaces. In addition, a trajectory that cor-
responds to the point is also shown. Note that the behavior space definition does not
state when a meal is actually taken.

Figure 4.23: Illustration of the meal sensing interface behavior space and a
point in the space. The point is combination of the points in each of the
two-dimensional spaces shown.
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Assessment of Multiple Scenarios. In order develop the requirements we must
understand how variation in the intrinsic behavior of the meal-sensing-to-decision-
making interface affects population-level risk. The requirements would limit this vari-
ation to only those that result in acceptable risk. To explore this variation, we must
asses the risk of multiple scenarios, each representing one instance of the possible
intrinsic behaviors of the interface. This was done through simulation of an average
adult as done in example 4.11.

The health management setup is a same as that described in example 4.7. The
glucose monitor was assumed to be noisy, following the model developed by Breton
and Kovatchev [18], though actuations were assumed to be perfect. Also, if the patient
did go into hypoglycemia, a standard a rescue dose of glucose would be provided (but
the controller was not informed of this).

Each scenario consists of a day’s worth of interaction (starting at midnight and
ending at midnight). For each meal, five meal offsets ({−60,−20,0,20,60} all in
minutes) and four possible meal factors (4/7,1,1.5,2}) and the case where no meal
information was reported were explored. This results in 21 ((4× 5)+ 1) points per
meal and 9261 (213) scenarios. However, the case where no information was reported
for all meals was omitted resulting in 9260 scenarios per person.

There was variability in the times at which meals were taken (hence the time be-
tween meals) and the amount of carbohydrate in the meal. This was introduced in
the way meal offsets were actually implemented in the simulation. The meals we re-
ported at the same time each day and the carbohydrate content of breakfast, lunch,
and dinner were always reported as 65g, 95g, and 110g respectively. The actual meal
was taken a certain offset (based on the offsets explored) from when the meal was re-
ported, and the amount of carbohydrate was a certain factor (based on the reciprocals
of the factors explored) of the reported amount.

The average outcome for the baseline, on the other hand, was computed from field
data of a population of Type I diabetics who use a continuous glucose monitor and
pump (in what is known as sensor-augmented pump therapy) but with no automated
decision-making software. Since we had no inter-person variability data from the test
scenarios, the overlap risk metric was not used.

Identifying Acceptable Behavior Region and Developing Safety Requirements.
For the safety requirements, we are interested in statements about the parameters of
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the interface. Particularly, we would like something of the form, meal offsets must lie
between a certain set of values, meal factors must lie between a certain set of values,
and the number of unreported meals must not exceed a certain number. This results in
a region that is 6-dimensional ‘box’ with specific points left out.

To arrive at the requirements, we must first find the scenarios that produce risks
that satisfy the safety criteria and find the common characteristics in terms of the
parameters that allows us to find the edges of the box and the characteristics of the
points in the box that must be left out.

The scenario exploration above essentially generates a list of records mapping a
scenario (described uniquely by the values of the parameters) to a population-level risk
for that particular scenario. We can therefore search this list to find which scenarios
satisfied the criteria. Once we have those scenarios we look at them in terms of their
parameter values to extract common characteristics.

To simplify the analysis, we take each meal parameter in turn, and consider the
case of unreported meals separately. That is, we consider the meal offset across all
three meals, and the meal factor across all three meals in turn, and not the individ-
ual dimensions of the 6-dimensional behavioral space. This corresponds to creating
subspaces of the 6-dimensional behavioral space.

Meal Offsets. There are 3268 scenarios (out of the 9260) that satisfy the safety
criteria. Figure 4.24 shows the distribution of the acceptable scenarios with respect to
a number of different report timing classes. The first class (0) is when every meal is
reported right around when the actual meal is taken. The second class (-20 to 0) is the
case where every meal is either reported right around when the actual meal is taken or
is reported no more than 20 minutes earlier than when the actual meal is taken (i.e., a
meal offset vector of the form [δB,δL,δS] where −20 ≤ δi ≤ 0). The third class (0 to
60) is the case where every meal is either reported right around when the actual meal
is taken or is reported no more than 20 minutes later than when the actual meal is
taken (i.e., a meal offset vector of the form [δB,δL,δS] where 0≤ δi ≤ 20).

The fourth and fifth classes (-60 to 0 and 0 to 60) are defined similar to the previous
two. The last class (mixed) are scenarios that do not fall into any of the previous
classes (i.e., any of the three meals could be reported earlier, later, or right around
when the actual meal is taken). The second to fifth classes represent consistency in
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timing where if meals are not reported right around the actual meal, the are reported
consistently earlier or later.

Figure 4.24: Distribution of acceptable scenarios with respect to meal report
timing classes. ‘0’ indicates that all meals were reported right around when
the actual meal was taken, ‘mixed’ indicates that the meal offsets does not
satisfy any of the other class definitions, ‘δ to δ ’ indicates an offset vector of
the form [δB,δL,δB] where δ ≤ δi ≤ δ .

We would like our requirements to have some consistency so we can define edges
of the box such that it contains only points that result in acceptable risk. Having the
majority of the scenarios being in the mixed class does not help our cause. From the
graph it looks like reporting meals more than 20 minutes after the meal was actually
taken (0 to 60) results in fewer acceptable points.

Repartitioning the scenarios into those where no meal is reported more than 20
minutes after the meal was actually taken and those where at least one meal is reported
more than 20 minutes after the meal was taken reveals the common characteristic of
acceptable meals with respect to timing as shown in figure 4.25. Majority of the
acceptable scenarios (close to 75%) are the case where no meal is reported more than
20 minutes after it was actually taken (-60 to 20).
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Figure 4.25: Distribution of acceptable scenarios with respect to meal report
timing in the case (left bar) where no meal is reported more than 20 minutes
after it was actually taken (but can be reported up to an hour before) and the
case (right bar) where at least one meal is reported around an hour after it was
actually taken.

Meal Factors. Figure 4.26 shows the distribution of the acceptable scenarios
with respect to the classes of accuracy of carbohydrate content estimates. The first
class (1x) is when all estimates are 100% accurate. The second class (1x or 1.5x) is
when any meal estimate is either 100% or 1.5 times the actual carbohydrate content
(i.e., the meal factor vector is of the form [αB,αL,αS] where αi ∈ {1,1.5}).

The third and fourth classes are defined similar to the second class. The fifth class
(mixed) is when a meal estimate can either be 100% accurate, 1.5 times, 2 times, or
half the actual amount. It seems that overestimating the carbohydrate content in at
least one meal while not underestimating the amount in any of the meals produces all
the acceptable scenarios in the unmixed classes.

A deeper investigation shows that these scenarios (when the overestimation is 1.5
times or 2 times) account for the larger proportion (slightly greater than 70%) of all
the acceptable scenarios as shown in figure 4.27.
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Figure 4.26: Distribution of acceptable scenarios with respect to classes of
estimation accuracy of carbohydrate content in the meal. ‘1x’ indicates that
estimation was 100% accurate in all meals, ‘mixed’ indicates that the amount
could have been overestimated or underestimated, ‘α or α’ indicates an meal
factor vector of the form [αB,αL,αS] where αi ∈ {α,α}.

Figure 4.27: Distribution of acceptable scenarios with respect to classes of
estimation accuracy of carbohydrate content in the meal. The left bar repre-
sents when the amount no meal is underestimated, and the right bar represents
when the amount in at least one meal is underestimated.
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Unreported Meals. Figure 4.28 shows the distribution of these acceptable sce-
narios with respect to unreported meals. Majority of the cases correspond to the sce-
nario where no meal is unreported and none of the cases correspond to when two
meals were unreported.

Figure 4.28: Distribution of acceptable scenarios with respect to unreported
meals. B indicates breakfast, L indicates lunch, S indicates supper. The x
axis indicates which meals were skipped and the y axis corresponds to the
number of acceptable scenarios that correspond to those unreported meals

Overall Requirements. From the these results, we arrive at the requirement for
the interface that a meal can be reported up to an hour earlier but no more than 20
minutes than it was actually taken (formally represented by Equation 4.29a), (oddly
enough) no meal carbohydrate content should be underestimated but at least one meal
estimate overestimated but by no more than 2x the actual amount (formally repre-
sented by equation 4.29b), and no more than one meal should go unreported (formally
represented by Equation 4.29c).

−60≤ δi∈{B,L,S} ≤ 20 (4.29a)

1≤ αi∈{B,L,S} ≤ 2 :

αB

αL

αS

 6=
1

1
1

 (4.29b)
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Let

ωB

ωL

ωS

= f

(δB,αB)

(δL,αL)

(δS,αS)

 : ωi =

{
1 unreported meal

0 otherwise

Then ∑
i∈{B,L,S}

ωi ≤ 1 (4.29c)

Validating the Safety Requirements. The requirements form a ‘box’ in the be-
havior space, and hence is not a direct mapping of the acceptable risk region to the
behavior space. As a result of this, we find (from our data) that some points that satisfy
the requirements as stated are not acceptable according to the criteria we developed
in example 4.9 (i.e., there are points in the acceptable behavior region whose popula-
tion risk values are not in the acceptable risk region). We also find that some points
with acceptable risk do not meet our safety requirements (i.e., there are population
risk value points in the acceptable risk region whose corresponding behavior points
are not in the acceptable behavior region).

Nevertheless, since requirements stated this way are easier to work with from a
design perspective, we would like to know how bad the included unacceptable points
are. Figure 4.29 shows the distribution in the risk space of the points in the acceptable
behavior region (with the acceptable risk region highlighted).

First, only 20% of the points that satisfy the safety requirements are outside the
acceptable risk region. Of these, none do worse than the baseline with respect to the
average side effect outcomes (i.e., if we look at only the side-effect dimension of the
risk space, these points are in the acceptable region for that dimension). Hence all
these points satisfy the side-effect risk criteria.

In addition, all the scenarios result in better average functional outcomes than the
baseline and in majority of the cases (close to 85%), the results are at least 30% better
(as shown in Figure 4.30). ‘Relaxing’ the safety criteria by accepting these points
makes sense, especially since none of the scenarios are worse than the baselines on
average.
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Figure 4.29: Distribution of acceptable behavior points in the risk space. The
acceptable risk region is to the left of the vertical line.

Figure 4.30: Distribution of scenarios the meet the safety requirement but
are unacceptable according to the original safety criteria with respect to how
much better than the baseline the average functional outcome is.
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4.4.4 Discussion of Safety Criteria

When validating the requirements of the interface in the meal sensing interface case study,
we relaxed the safety criteria so that points that were previously unacceptable from a risk
perspective were now considered to be acceptable. This was done so we could end up with
easier to state (and design to) safety requirements for the behavior of the interface. Our
argument for the relaxation was that these points were close enough to the boundary of the
acceptable region that accepting them made sense. This illustrates the utility of the model
for discussing and adjusting safety criteria.

Safety criteria discussion can be motivated by many reasons, some of which include
experience from the operational life of medical technologies, or new expectations from
the patient population or health practitioners. Introduction of newer technologies to a an
existing health management scenario could also prompt discussion of safety criteria. In
some cases, for an emerging technology, the discussion may be prompted because a criteria
does not actually exist. The manufacturer may have a discussion with the other stakeholders
on what an appropriate criteria should be. One stakeholder group may propose a criteria
and the others can agree to it or suggest modifications.

There may information available on the outcomes for the health management scenario
to guide the discussion (like in example 4.13) or all that may be available would be past
data for a similar scenario. Nevertheless the stakeholders, using the model, can be explicit
about the assumptions and rationale that goes into the criteria that is agreed upon. The next
section discusses how the model can be used to explore the impact of different assumptions
and rationale (choices of components of the safety criteria) can affect what is considered
acceptable both in terms of risk and in terms of behavior.

4.4.5 Exploration of Impact of Assumptions and Rationale

One of the major benefits of the model is the ability to explore the impacts of assumptions
and rationale on the patient safety criteria and the hence the design requirements. Since
the patient safety criteria is linked to all the choices made along the way (the assumptions
about different parts of the system—including the patient population, the health metrics,
the risk metrics, and baselines), we can explore the effects of changes of the choice of any
of these on the overall assessment outcome (and requirements determination).

Here, we are interested in the case where for a given system design, we would like
to know how assumptions made about the different parts of the safety criteria affect what
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conclusion we draw about its patient safety, and not the assumptions about the behavior of
the system itself.

This exploration can be used as part of a sensitivity analysis to understand what might
happen if some of our assumptions (about populations, health metrics, and other parts of
the health management system not under consideration) were actually wrong. It could
also be used to compare results of assessments based on older assumptions to assessments
informed by new data available resulting in newer assumptions. We could also conceivably
use information from data gathered in the field to select a set of assumptions that best fit
the data.

Below the impact of assumptions on risk assessment outcomes are illustrated looking
at changes in each of the pieces of the safety criteria in turn.

Health Metrics

The example below demonstrates the impact of the choice of health metrics on the overall
risk assessments. From the perspective of the model, the choice of health metrics (µH)
affects the definition of the axes of risk metric (µM) since it can affect the possible range of
values of the health metrics and hence the risk metric. For the same risk metric, changing
the health metric may not change the interpretation of the outcome, but may change the
conditions on which the interpretation holds as shown in the example below. In general,
changing the health metric will require changes to some aspect of the intrinsic behavior
of the medical technology, since the medical technology is designed to help improve the
outcome of at least the functional health metric.

Example 4.14: Impact of Health Metric Choice on Risk of Semi-Automated Glycemia

Management in the ICU

This example explores different target blood glucose ranges for the insulin infu-
sion protocol, and hence different definitions of normal for the functional risk metric.
The target blood glucose ranges were taken from the Portland Protocol (four differ-
ent versions) [84], and the University of Washington Medical Center protocol and the
Yale-New Haven Hospital protocols as described in the work by Steil et al. [98]. We
used the original 100 patient population (where all physiologies are equally likely) and
the software version where the thresholds are set to the target blood glucose values.
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Figure 4.31 shows the population level risk for each of the protocol versions. The
star (∗) mark is original population risk from previous examples. The dot (•) is the
population risk based on the new health metrics. Even though the normal ranges for
the health metrics (original and new) are different, both population risks can be plotted
on the same axis because the population risk metric is defined as the percentage of
the population that does worse than the baseline, and does not depend directly on
definition of the health metric: regardless of the definition of the health metric, the
risk metric as defined will always range from 0 to 100% (0 to 1 on the normalized
scale used in the figure).

Figure 4.31: Population-level risk for semi-automated glycemia management
in the ICU for two different assumed populations

If it turns out that our original target range is not consistent with other longer
term outcomes used to define these ranges, then the actual risk of our system could
be different (higher in this case) as seen in the plots in the figure. It seems like the
intrinsic behavior of the algorithm is best suited to the original target range of 80 to
180 mg/dl, and it would have to be adjusted to accommodate newer ranges.
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Health Management Scenario

The example below demonstrates the impact of the assumptions about the population the
overall risk assessments. From the model perspective, assumptions about the population
will affect the set of health metrics (both baseline ({µH}) and test({µH})) which are passed
to the population risk metric.

Example 4.15: Impact of Population Assumptions on Risk of Semi-Automated Glycemia

Management in the ICU

This example explores the case where the nature of the patient physiologies as-
sumed may be different from what is appropriate. In the previous examples, since
each patient physiology was represented only once, the assumption was that each
physiology was equally likely. Here we explore the case where some physiologies are
more likely than others.

We generated another population from the original set where some physiologies
were more likely than others as follows. Each patient’s data is associated with a
patient ID, and hence the physiology is represented by the ID. Since there were 100
patients, there were 100 IDs. We generated the two sets of 200 patient IDs (1 to 50
and 51 to 100) each based on a normal distribution, creating a set of 400 patient IDs
where values ranged from 1 to 100 and some numbers were repeated more often than
others. The resulting distribution of patient physiologies (represented by the patient
ID number) is shown in figure 4.32.

We then computed the population risk for the new 400 patient population follow-
ing the same procedure as before in example 4.10. The resulting population-level risk
is shown in figure 4.33. The star (∗) mark is original population risk from previous
examples (100 patient physiologies all equally). The dot (•) is the population risk
from the newly generated population (400 patients based on 100 physiologies with
some physiologies more likely than others).

If it turns out that our original test population was not an appropriate representative
population, and this newer population is more representative, then the system would
have a higher functional outcome and side-effect risk than we originally thought.
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Figure 4.32: Distribution of patient physiologies (represented by the patient
ID number) in new assumed population

Figure 4.33: Population-level risk for semi-automated glycemia management
in the ICU for two different assumed populations. The star (∗) mark is orig-
inal population risk from previous examples (100 patient physiologies all
equally). The dot (•) is the population risk from the newly generated popu-
lation (400 patients based on 100 physiologies with some physiologies more
likely than others). The shaded area is the acceptable risk region.
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Population-Level Risk Metrics

The example below demonstrates the impact of the choice of population-level metrics on
the overall risk assessments. From the perspective of the model, the choice of population-
level risk metrics (µM) affects the definition of the axes of risk metric and the interpretation
of the results. In particular, the range of possible values of the outcome of the risk metric
may be different for different definitions.

Example 4.16: Impact of Population-Level Risk Metric Choice on Risk of Semi-

Automated Glycemia Management in the ICU

This example explores a different population-level risk metric than the original.
The new metric still uses the same individual risk metric defined in equations 4.12
and 4.13, but defines a 6-dimensional population-level risk metric based on the mean,
minimum, and maximum value from the set of functional and side-effect individual
risk values. This can be visualized as a dot (for the mean) and a box using the mini-
mum and maximum values for the length of edges in each direction as shown in figure
4.34.

The acceptable risk region is defined in this case by a mean equal to the baseline
(a value of 0), and minimum value of of the minimum possible individual risk metric
value (-0.3 in the functional outcome case, and 0 in the side-effect risk case), and a
maximum of 0.1 for the functional outcome risk case and 0.01 for the side-effect risk.

We computed this new population-level risk for the original 100 patients (all phys-
iologies equally likely) and the original behavior of the decision-making software.
The test set of health metrics and individual risk metrics were the same as computed
in example 4.10. The only difference was the population-level risk.

Figure 4.34 shows the population level risk for the original metric definition (on
the left) mark and the new metric (on the right). Notice that the axes are different in
the range of values, even though all the data input to both metrics (the set of individual
risk values) are the same. In particular, the functional population risk in the new metric
can have negative values, whereas in the original metric both risk values could only
lie between 0 and 1 inclusive. Also, whereas the original risk value consists of a point
in two-dimensional space, the risk value for the new metric consists of the point and
the (white) box surrounding it.
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One way to compare the choices is to look at the acceptable risk regions and to
determine if the population risk for this same system is acceptable under one metric
and not acceptable in another. In both cases, the risk is unacceptable because in both
cases the ‘points’ lie outside the acceptable risk region. In the new risk metric case,
even though the mean value is within the region, the range of values (determined by
the box with black lines) lie outside the region.

Figure 4.34: Population-level risk for semi-automated glycemia management
in the ICU for two different assumed populations

Acceptable Risk Criteria

The example below demonstrates the impact of the choice of acceptable risk criteria on
the overall risk assessments. From the perspective of the model, the choice of the accept-
able risk criteria (µM) changes the acceptable risk region and hence the health management
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scenarios (or behaviors of the subsystem under consideration) which are considered accept-
able.

Example 4.17: Impact of Acceptable Risk Criteria Choice on Risk of the Meal Sens-

ing Subsystem for the Artificial Pancreas

This example shows the impact of the relaxation of the safety criteria that was
done in example 4.13. Figure 4.35 shows the population level risk for the original
criteria definition (on the left) and the new criteria (on the right). The star (∗) marks
indicate the unacceptable risk values and the dot (•) marks indicate the acceptable val-
ues. Notice that the acceptable risk region is larger under the new criteria than under
the old. Also, the new acceptable risk criteria is irregular (as opposed to rectangular
in the original criteria), because it is based on the acceptable behavior region (and not
independent of it as would usually be the case).

Figure 4.35: Population-level risk for artificial pancreas for two different ac-
ceptable criteria

If two different stakeholders have different conceptions on what the acceptable
criteria is, explicitly defining it using the mechanisms provided here allow them to
have a discussion and come to a common conclusion. However, if this is left implicit,
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it is more difficult for them understand why one might consider a certain system ac-
ceptable when another considers it unacceptable.

4.4.6 Safety Argument Structure

In chapter 2, we brought up the issue of regulation for safety-critical systems where the
regulator must make a decision on whether the system presented by the design must be
allowed to operate. The process involves the the designer presenting information on the
design, the design process, and the results of the assessment, and making an argument that
the information supports the inference that the system would behave safely in operation.

The structure of the safety criteria provides a way to structuring safety arguments. By
making all assumptions in assessments explicit, it allows the regulator to question all as-
sumptions and rationale. In effect the designer is arguing first that the patient safety criteria
used is valid, that the data used in the assessment (which includes the range of issues ex-
plored) and the process that was used to gather it is valid, and if we accept the validity of
these two things, and the assessment shows their system to have acceptable risk, then it
should be approved as safe. At this point, the designer could also argue that the criteria
they were given (by the FDA) is too stringent, and needs to be relaxed. Conversations can
be had with the FDA and health practitioners on what a new criteria might be.

In addition, the designer need not wait till the end of the design process before making
an argument. Early in the process, they can (and should) have conversations with the other
stakeholders to establish a base criteria before beginning the design process. Throughout
the process, conversations could be continued to refine the criteria along with the design
if new information suggests this, so that all stakeholders are on the same page about the
criteria used to inform design throughout the process. This can save costs since changes
later in the design process are more costly than earlier.

4.5 Relationship to Other Medical Technology Safety Work

As mentioned previously there are some efforts in safety assurance for medical technolo-
gies. The generic infusion pump project by the FDA in collaboration with a number of
academic partners [47], for example is focused on providing a reference model for infusion
pumps that manufacturers can as a starting point for designs. It provides a set of hazards
and a formal model of the infusion pump software that the group continues to refine and
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verify that is hazard-free. This work makes no links to expected patient outcomes. It as-
sumes that the requirements part of the safety guided design process described in section
4.4.3 has already been undertaken and the acceptable behaviors have been identified. The
formal model, in effect is a model of a system that exhibits the acceptable behaviors.

Another approach is work by Jiang et al. on pacemakers and Pajic et al. on a networked
closed-loop system [46, 78]. Both use patient models to provide analytic guarantees that
certain behavior of the closed-loop algorithms will ensure patient safety, defined as vital
signs within some range. Both acknowledge variability as an issue to consider, but do not
seem to incorporate this explicitly in their approaches. Neither really focus on how the
patient safety criteria as it pertains to patient outcomes is derived or expressed. They take
the hazards or vital sign regions as given and mostly explore worst case scenarios of system
behavior, implicitly defining a health metric (the vital signs) and an acceptable risk region
(vital signs should never go out of a particular range).

These implicit approaches are a poor way to account for variability, and also represent a
more system-behavior-space-oriented approach as opposed to the patient-outcome-centric
approach advocated in this dissertation. Though this is approach is well suited to design, it
leaves many assumptions about the patient safety criteria implicit. The work presented here
can complement these approaches by helping to determine a more explicit patient safety
criteria as well as requirements (an acceptable behavior region) for safety-guided design.
Then the above approaches can be employed to ensure that proposed designs do indeed fall
within the acceptable behavior range.

The closest work to what is presented here is that for a specific technology by Kovatchev
et al. [49], Magni et al. [64] and Patek et al. [81] for the artificial pancreas. In particular
in-silico trials on a variety of patients (developed from real data) are used in order to ex-
plore the variability of patient outcomes. They use what is effectively an individual-based
population risk approach called the control variability grid analysis (CVGA) [64]. The
health metric is a two dimensional metric consisting of the minimum and maximum value
of the blood glucose trajectory (in mg/dl) of the patient while using the artificial pancreas
for a day. Eating behavior of the patient is also simulated.

Though they do not define a baselines the CVGA defines a population risk ‘metric’ by
considering 9 regions where the health metric values can fall. Four of these regions are
considered the ‘safe’ regions and five of them are considered the ‘control error’ regions.
The risk metric defined is actually a three dimensional metric consisting of the proportion
of the patient population who have health metric in the ‘safest’ region, ‘safe’ regions, and
‘control error’ regions.
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In addition, in recent work on safety requirements for continuous glucose monitors [52],
Kovatchev et al. use this in-silico trials with variability approach to essentially identify
acceptable behaviors similar to what was done in the section on safety-guided design.

The artificial pancreas work does not explicitly define the population risk metric or
population risk space, though this can be done easily. It also does not develop an acceptable
risk criteria, it is implied that the risk is to be low as possible, but not clear how low (or
how many errors are acceptable). Both works (CVGA and that on glucose monitors) are a
special cases of the general patient safety model presented here with a few pieces missing.
The patient safety model in this chapter makes the notions more explicit.

Summary
Medical technologies are an essential part of health management, whose goal is to reduce
the natural (health) risk associated with human function when this risk becomes unaccept-
able. However, because of the variability associated with the patients who these technolo-
gies must help (and other parts of the health management system), they can fail to achieve
their intended goal or introduce new risks when they interact with patients. It is important
to express and evaluate this technology risk in order to decide on what is acceptable and
inform system design.

This chapter provided a patient-outcome-centric way of expressing this risk, based on
the notion of health metrics as a human function risk measure developed in chapter 3. It
showed that this makes safety discussion for medical technologies more focused on their
intended goals, and demonstrated how this model of patient safety can be used for various
aspects reasoning about the patient safety of medical technologies. The model presented
here generalizes recent efforts for emerging technologies like the artificial pancreas and
complements other efforts focused on verifying (and guaranteeing) the designs exhibit the
intended acceptable behaviors.
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Chapter 5

Implications for Safety Analysis of Body
Sensor Networks

According to Goloumb, “you will never strike oil by drilling through
the map!” But this does not in any way dimish the value of the map.

Edward A. Lee

Chapter Overview

Chapters 3 and 4 discussed some of the subtleties associated with reasoning about sens-
ing subsystems because of some of their indirect effects on the human dynamical system.
Chapter 4 showed how requirements could be developed for sensing subsystems by defin-
ing a interface between sensing and decision making. This chapter looks at this further,
showing what properties must be considered as part of the interface and also considering
issues in interactions with the patient. It focuses particularly on body sensor networks
(BSNs), an emerging class of medical technologies for sensing for health management that
embody the three complexity-increasing trends of integration, autonomy, and mobility.∗

∗The main ideas in this chapter (the generic body sensor network model, the generic set of hazards, and
the causal factors) were original developed in a paper presented at the International Conference on Body Area
Networks [9]. The ideas have since been updated and what is is presented here is the updated version.

121



122 Chapter 5

5.1 Introduction

Body sensor networks (BSNs) present a unique opportunity for improving the quality and
mobility of healthcare. Such systems enable patients to continue their normal daily lives
and ‘invisibly’ collect patient information under dynamically changing environments. This
enables healthcare practitioners to access otherwise-unobtainable information to assist and
improve medical decision-making, and to gain better understanding of how the human
body functions in various environments. Realization of the BSN vision will significantly
influence both medical research and practice, as evidenced by a number of preliminary
studies highlighted in the survey article by Pantelopoulos and Bourbakis [79].

The ultimate challenge is to assure the safety of patients who use BSNs. Even though
BSNs do not directly deliver treatment or medication to patients, they do collect and supply
information that, when used in medical decision-making processes, have significant impact
on the correctness of decisions made, and hence on the patient’s safety. Assuring patient
safety is especially challenging in BSNs because of their differences from their in-clinic
counterparts. BSNs are typically governed by more stringent constraints on their resource
consumption (e.g., energy and computational resources), as well as mobility and device
size constraints (see reference [21] for discussion of such issues). More importantly, BSNs
are operated in scenarios typically outside a clinical environment. Therefore, access to
medical practitioners and service technicians is usually limited.

This chapter builds on the foundation provided in chapters 3 and 4 to develop mecha-
nisms for reasoning about the patient safety of BSNs. First, a generic model for BSNs is
developed to define the system scope for BSNs. This model captures the conceptual role of
the BSN in health management as well as the nature of its interactions with other entities
in the health management scenario.

This model helps us identify hazards at the interfaces between the BSN, the human
and their environment, and the rest of the health management system. The behavioral
properties of BSNs that factor into these hazards form the behavior space that must be
explored as discussed in section 4.4.3. Patient safety for the BSN is defined in terms of
these interface hazards (since safety requirements can be defined in terms of an acceptable
behavior region).

Lastly, in the spirit of systems safety engineering, the generic model is used to discuss
causal factors for the hazards and a (non-exhaustive) list of points to consider in order to
inform safety-guided design. Examples of how ideas map to real sensing scenarios are
provided to show the validity of the ideas.
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5.2 The Generic Body Sensor Network Model
The main aim of a sensing subsystem like a body sensor network in the health management
system is to provide information of interest for decision-making. This apparently simple
process is wrought with a number of complexities. Figure 5.1 shows a conceptual picture of
the interactions involved in achieving this aim. The actuation interactions with the patient
are deemphasized since these are not the primary concern of the BSN. Though they are
deemphasized, keeping them in mind is important since the behavior of the BSN does
indirectly factor into those interactions.

Figure 5.1: Conceptual view of the generic body sensor network model

In the rest of the chapter, the more abstract view (shown in figure 5.2) of the conceptual
scenario shown in figure 5.1 will be used for developing the various ideas. The component
H represents the patient and their environment. In previous representations, all components
are embedded in a larger environment, but since most of the BSN is usually physically
coupled to the patient, it is more convenient to consider the patient’s environment part of
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H. The component S represents the BSN, and the composite component D,A represents the
decision-making and actuation components. From the perspective of the BSN, the details
of that component are not important. Note, however that since this is a conceptual view, if
the patient is the decision-maker, then they are represented both by H and D,A.

Figure 5.2: Abstract view of the generic body sensor network model

The arrows indicate the interfaces between various components. Various physical quan-
tities or abstract messages (the Y(∗)→(·) values) can be exchanged on these interfaces and
the arrows indicate the direction of flow of these quantities. Components may produce an
output on an interface ‘spontaneously’ or in reaction to an input received on another inter-
face. Below the nature of the interfaces and the quantities exchanged on them are described
and discussed in order to provide the mechanisms for identifying hazards and discussing
causal factors. The actuator interface to the patient is omitted because that interface is not
part of the BSN and out of design control of the BSN designer.

5.2.1 The Coupling Interface (CS↔H)

Part of the BSN must be coupled to the patient (which in this case includes the patient’s
environment) so that the BSN can interact with the patient to gather the information needed
by the rest of the system. The nature of this coupling is captured in the coupling interface
(CS↔H). This could include information on the physical location of the BSN components
on the body (i.e., the points of contact with the body). For example, in electrocardiogra-
phy, electrodes are usually placed on the patient’s limbs and chest. It could also include
information on the nature of the physical contact. For example, how loosely or tightly are
the electrodes placed on the chest, or how dry or moist is the skin of the body, or whether
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there is any scaring or irritation on that part of the skin. The arrow from the patient to the
interface indicates that the ‘values’ of the interface are dynamic. For example, a patient
could change the location of electrodes during operation, or skin irritations could develop
over time if electrodes are worn for long periods of time.

The coupling interface in one way serves as a description of the spatial configuration of
the system. We could say that it ‘selects’ the patient dynamics that are visible to the BSN or
‘controls’ how patient dynamics are made visible to the BSN based on this configuration.
This configuration includes all the factors mentioned above. Using the electrocardiography
example, the aim of the sensor is to sense electrical signals generated by the heart to control
beating. These signals manifest on different points on the body. The signals that are ‘seen’
by the sensor depend on the configuration of the electrodes (the placement, tightness of fit
and conditions of the skin). For the same signaling pattern in the heart, different config-
urations will experience different signals. The patient dynamics are the same, but what is
presented to the sensor depends on the configuration [41].

A configuration ‘value’ (cS↔H) on the coupling interface is quite complex to describe
mathematically and may depend on the particular BSN being described. It would definitely
contain a location parameter which could be a three-dimensional quantity (or set of such
quantities) specifying a point (or area) on the body. The nature of the coupling, if we are
interested in looseness, could also be a three-dimensional parameter related to the amount
of deviation in each dimension. The nature of the point of coupling could be represented
by function of three-dimensional location input to the a value representing the nature of the
point of contact (e.g., amount of skin irritation or moisture). The time evolution is usually
considered continuous.

5.2.2 The Human-to-Sensing-Subsystem Interface (H→ S)

The patient and the environment produce physical outputs that the BSN is sensitive to. The
BSN may not be ‘interested’ in all these outputs, and some of these outputs may hinder
its ability to achieve its goals. For example, electrical interference from other sources
(remember that the patient environment is part of H) may show up in an electrocardiograph
(ECG) and distort the intended signal. Such inputs to the BSN are termed as interfering
inputs if they resemble the signal the BSN is trying to actively sense; or modifying inputs
if they are signals or energies that the BSN is not actively sensing, but is sensitive to, and
hence can affect its operation [114] (e.g., heat affecting electrical circuitry in the BSN).
The signals that the BSN is ‘interested’ in are termed as desired inputs.
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In addition to physical outputs to the BSN, the patient might provide some information
output (through a physical interface) to the BSN. These could be configuration information
like height or weight that allows the BSN to adapt properly to the patient, or responses to
queries by the BSN. In either case, the user may have to provide this information because
the BSN may not be equipped to sense the information, or sensors for such information are
not available. Though physical interaction is still required, it is more convenient to separate
what are more informational in nature like configuration information from physical signals.

The physical quantities would usually be modeled as continuous quantities (usually
with continuous time). The informational quantities would usually be modeled as discrete
quantities (usually with discrete time).

5.2.3 The Sensing-Subsystem-to-Human Interface (S→ H)

The BSN may produce physical outputs that the patient is sensitive to: some of these
outputs may be intentional energy exposed to the patient to aid in sensing (e.g., light energy
used in pulse oximetry), while others may be produced due to the physical nature of the
BSN (e.g., heat from electrical circuity or chemicals in batteries or physical packaging of
BSN components). Some of these outputs could trigger a reaction by the patient that alters
the patients structures around the point of contact (e.g., chemicals in packaging irritating
the skin), which would in turn alter the configuration (CS↔H) which would then affect the
outputs that the BSN sees (YH→S). Others could harm the patient by introducing undesirable
side-effect outcomes.

Also, since some of these physical outputs become part of the patient’s environment,
depending on the configuration, an output created by one BSN component could be an
interfering or modifying input seen by another BSN component on the human-to-sensing-
subsystem interface (YH→S) and affect that component’s function. An example of where
this occurs is in the case of wireless communication, where components can interfere with
each other if multiple components are trying to transmit information at the same time.

In addition, the BSN could provide informational outputs queries to the patient in order
elicit information from the patient. Informational outputs could be system status messages
so the user knows what mode the BSN is in or whether to charge or replace batteries.
Queries could be questions on a survey relevant to the sensing and inference that BSN
performs. In addition, we could even stretch the model to include informational outputs
like that contained in a user manual on this interface. That information will certainly affect
the way the patient interacts with the BSN.



Implications for Safety Analysis of Body Sensor Networks 127

As with the human-to-sensing-subsystem interface, the physical quantities would usu-
ally be modeled as continuous quantities (usually with continuous time). The informational
quantities would usually be modeled as discrete quantities (usually with discrete time).

5.2.4 The Sensing-Subsystem-to-Decision-Making Interface (S→ D)

The goal of the BSN is to produce medically-relevant information for decision-making.
These come in the form of digital quantities (discrete quantities with discrete time). In
addition, the BSN could also send other information like status information to the decision-
making subsystem. We could also stretch the model to include informational outputs like
those in a user manual.

Based on the medically-relevant information, the decision-making subsystem instructs
the actuation subsystem in what quantities to produce for the patient (on the A→ H in-
terface). The nature of this medically-relevant information produced by the BSN can be
quite complex and since knowledge of this nature is important for identifying hazards, its
abstract form is detailed below (with examples). The general forms of this kind of informa-
tion (YS→D) on the interface is first described, then timing of the information is discussed,
and both are finally used to describe the abstract form of the BSN output.

General Forms of Body Sensor Network Information Output

From the perspective of the decision-making subsystem, the information received by the
BSN could be viewed as a stream or signal. The different forms these signals are described
below, assuming that the decision-making subsystem is a clinician, in order to refer to a
more concrete version of the subsystem. The particular choice decision-making subsystem
is inconsequential and all points raised below apply to all choices of these subsystems.

Sets of values. The simplest general form of information output from the BSN are sets
of values. These are essentially snapshots of information from the patient which are not
ordered. For example, a clinician may be interested in the blood pressure readings for a pa-
tient over the course of a day in order to establish a minimum, an average and a maximum,
but may not necessarily be interested in the time at which these readings are taken or when
each reading occurred relative to the others. Another example may be that the clinician
may be interested in the lengths of walks that a patient took over a day or a week, but again
not in when these occurred or how they are related in time.
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Ordered sequence of values. The next form of information output from the BSN is an
ordered sequence of values. Here, the values are ordered by time, even though their actual
occurrence time or the relative time between values are not indicated. A patient may use
a device to measure blood pressure in the morning after waking up, sometime in the after-
noon, and in the evening. The actual times may not be known, but the order in which blood
pressure readings were taken would.

Time-stamped and relatively-timed sequence of values. In some cases, timing infor-
mation about the data is important and hence the BSN may produce time-stamped sequence
of values. These time stamps are usually in ‘wall clock’ time, and are typically used when
multiple streams of information from the BSN need to be correlated. In the examples given
previously, the wall clock times of all the readings can be logged by the system. When the
time stamps are not in wall clock time but in some other time reference like a system clock,
or when the time between values is known but their wall clock times are not, we call this a
sequence of relatively-timed values. An ECG strip could be an example of such a sequence
since it is sampled at a constant rate; the relative times between samples are known even if
the actual wall clock times of the samples are not.

Time-ranged sequence of values. In some cases where discrete events are being mon-
itored or summary information is being presented, the information may reflect the value
over a period of time. This type of information is a time-ranged sequence of values. For
example, if the BSN reports that a patient was walking or jogging over a particular period
of time (say from 5:30pm to 6:15pm), this particular activity becomes the value for that
range of time.

Hierarchical combinations of signal types. An information stream could be a hierar-
chical combination of these forms of information. For example, a BSN may report the
sets of ECG samples from detected arrhythmias over a day. This would be the highest
level in the hierarchy of the information stream. Each ECG sample is a relatively-timed
sequence of values since the information is a waveform sampled at a particular frequency.
This comprises the next level of the information stream.
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Timing of Body Sensor Network Information Output

A BSN is typically a software-regulated system and usually has communication networks
for coordinating operations between its various components and for communicating with
the clinician. Thus, it inevitably exhibits particular temporal behaviors.

Assume that the BSN is tracking a continuous signal produced by the patient as shown
in figure 5.3, and that it needs a segment of this signal of time size tseg in order to compute
the ‘value’ of the information. For example, the BSN could be a pulse oximeter that needs
to monitor a few milliseconds of the photoplethysmograph in order to compute the heart
rate. At time t1, the BSN obtains a segment of the signal comprising data points between
t0 = t1− tseg and t1. Since it takes some time for the BSN to compute the ‘value’ of the
segment, the BSN may want to capture the time when the signal for computing the infor-
mation was acquired. It may have a clock to for doing this and may log the time when it
obtains the last point of the segment as t2, where t2− t1 ≥ 0.

Figure 5.3: Illustration of temporal phenomena in BSNs with respect to sensing, computa-
tion, and transmission of information.

Let us assume that the BSN transmits its value to a remote point where the clinician
can obtain this information as soon as the information is available at the remote point. The
information from BSN will be available at this point at some time t3, where t3 > t1. When
the information is reported,the BSN will assign t2 as the time for that particular value. This
time can be termed the reported observation time of the particular value. The clinician
(representing D,A) is first able to obtain this value at t3. This time can be termed the
received time for that particular value. The time t1 (or t0 if the system logs the time of all
points in the segment) can be termed as the actual time.
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Abstract Information Model for Body Sensor Networks

As mentioned previously, the model of output from the BSN to the decision-making system
(YS→D) is a stream or signal. Each stream could consist of multiple sub-streams (Y i

S→D).
The requirement is that each of sub-streams be homogeneous, in the sense that they must
contain the same type of information. Hence, a system that reports activity data correlated
with heart rate data may have activity as one sub-stream and the heart rate information as
another substream.

An information (sub)stream contains a number of data points. For a substream (Y i
S→D),

each data point (yi
j) should be a tuple yi

j = (t(yi
j),v(y

i
j), tr(y

i
j)), where t(yi

j) is the reported
observation time, v(yi

j) is the value, and tr(yi
j) is the received time of yi

j. The two different
times require some explanation. The reported observation time is the time (usually wall-
clock) the BSN claims the event related to the data point occurred (regardless of when the
decision-making subsystem is informed about the data point). The received time is the
earliest time the data point is available to the decision-making subsystem (i.e., the earliest
time it can access the data regardless of when it actually does access the data). Note that
v(yi

j) could itself be a set of data points yi
j,k, which have the same tuple form as yi

j (i.e., they
possess the same properties as a data point in a stream). The recursive nature of v(yi

j) allows
us to model hierarchical streams.

It should be noted that the term “value” is used loosely as a value could be as compli-
cated as an image taken by the BSN (in case of a mobile ultrasound, for example). The
form of the reported observation time (t(yi

j)) determines the stream type. Table 5.1 defines
different forms of t(yi

j) and the stream types.

Table 5.1: Different forms of reported observation times and associated stream types

Form (Notation) Meaning Stream Type
t i

j time stamp or relative time time-stamped or relatively-timed
[t i

j,0, t
i
j, f ] time range time-ranged

ki
j ordering index ordered

None or tag no reported time (but labeled) set

Figure 5.4 shows an example output stream. This stream, Y ecg
S→D, contains sets of

data points {yecg
i . . .yecg

n }, each of which is an ECG strip. Each ECG strip contains a
sequence of relatively-timed data points (voltage values sampled at 250 Hz). Formally,
yecg

i = (i,v(yecg
i ), tr(y

ecg
i )), where i is the tag for the strip, and v(yecg

i ) is also a sequence of
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relatively-timed data points {yecg
i,1 . . .yecg

i,m}, such that yecg
i, j = ((i, j),v(yecg

i, j ), tr(y
ecg
i, j )), t j+1t j ≈

4ms, and v(yecg
i, j ) is a digital value representing the electrical potential measured at the pa-

tients skin surface. If the BSN is assumed to be streaming the ECG data, then the received
time of each sample can be assumed to be a small delay from the actual time when the
value was measured (i.e., , tr(y

ecg
i, j )− t0(y

ecg
i, j ) < ε , where t0(y

ecg
i, j ) is the actual time of the

sample yecg
i, j ).

Figure 5.4: An example of a stream from BSN showing the hierarchy of substreams

5.2.5 The Decision-Making-to-Sensing-Subsystem Interface (D→ S)

The BSN may also receive information (YD→S) from the decision-making subsystem dur-
ing operation. These could be configuration commands in order to change BSN operation
modes or query commands to elicit information from the BSN. They could also be ac-
knowledgments of receipt of information sent by the BSN. The information on this inter-
face would usually be modeled as digital (discrete values and discrete time).
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5.3 The Generic Set of Hazards for Body Sensor Networks

As mentioned in chapter 2, a hazard is a system state or condition which with a worst
case set of environmental conditions could lead to an accident or mishap. The mishaps
we are interested in are unacceptable functional or side-effect outcomes for the patient. A
BSN could create hazards and directly harm the patient through the sensing-subsystem-to-
human interface (S→ H), or indirectly harm the patient through the sensing-subsystem-
to-decision-making interface (S→ D) by causing the decision-making subsystem to make
a hazardous decision. Below we identify the generic set of hazards for the BSN based
on the nature of these interfaces. The hazards are expressed in terms of BSN behaviors,
particularly, the nature of the trajectories of signals on the interfaces.

Note that the other interfaces not mentioned can contribute to hazards, however, we
consider their contributions as causal factors since they are not linked directly to the intrin-
sic behavior of the BSN. Remember that the intrinsic behavior dictates how a system (in
this case BSN) responds to inputs to produce outputs (or how it may autonomously produce
outputs). Since the BSN is the subsystem of concern, its intrinsic behavior influences what
happen at the output interfaces, and since hazards are typically linked to the intrinsic be-
havior of the system, then its output interfaces are where the hazards should be identified.
There are some interactions on the output interfaces of the BSN that are considered more as
part of the causal factors than hazards since their effects show up in the hazards identified
below and these are discussed in the section on causal factors (5.4.2)

5.3.1 Physical Interaction Hazards

For any of the physical quantities (i) produced that the human is sensitive to, there is usually
a threshold (Y i

S→H) below which no harm is caused and above which if sustained for a
period will result in significant harm. Usually, if a quantity goes above the threshold for
a brief period of time but does not result in harm, there is a ‘cool-off’ period that must be
allowed for the body to be rid of the temporary effects of reacting to the quantity going
above the threshold before this can occur again. A formal statement of the phenomena
above is represented in the hybrid system model shown in figure 5.5.

When the physical quantities are below the no-hazard threshold ((Y i
S→H(t) ≤ Y i

S→H)),
no hazard is present. When the quantity goes above the threshold, its effect begins to ac-
cumulate resulting in a potentially hazardous situation. This is accumulation is captured
by the positive derivative of the accumulation variable bi

S→H(t). The rate of accumulation
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Figure 5.5: Hybrid system model of physical interaction hazard phenomena.

depends on how far above the no-hazard threshold the value of the physical is, and on pa-
rameter of the patient as shown in the equation. This allows short but significant deviations
above the no-hazard threshold and long but less significant deviations to be both accounted
for. When this value accumulates beyond a certain value (the hazard threshold b

i
S→H), harm

can occur and hence the situation becomes hazardous.
If the physical quantity drops below the no-hazard threshold before its effect is accumu-

lated beyond the hazard threshold, the system enters a‘cool-off’ period where the accumu-
lated effects dissipate (indicated by the negative derivative of the accumulation variable). If
this value completely dissipates, the system goes back to a no hazard state. If the physical
quantity goes above the no-hazard threshold before the accumulated effects have dissipates
(i.e., before the cool-off period has been satisfied), the effects begin to accumulate again,
starting from where the accumulation variable was before the physical quantity went above
the threshold.

Example 5.1: Heating of the Skin by BSN Components

A concrete example of when this hazard could occur is with a BSN component
that generates heat. One component that can generate significant amounts of heat is a
gas sensor like an ozone sensor (the MICS-2610 sensor from e2v Technologies [34],
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for example, needs its sensing resistor kept at around 430◦Cduring operation). Ozone
sensing can be crucial for management of care for those with asthma [108].

Based on information on fire and heat dynamics from the National Institute of
Standards and Technology [74], the physical hazard from heating of the ozone sensor
can be represented by the hybrid system model in figure 5.5 as follows.

Let Y i
S→H(t) be the amount of heat that is received on the skin of the user, and

bi
S→H(t) be the amount of heat accumulated above the normal body temperature (rep-

resented by Y i
S→H) of 37◦C. In general, so long as the heat felt by the skin from the

sensor is below the normal body temperature (or less than a degree above it), we
should be be in the no hazard state. However, once the component produces heat that
is felt significantly above 37◦C, the skin starts to heat up according to one (or more)
standard heat transfer equations for conduction, convection, or radiation, depending
which mechanisms factor into the heat felt at the skin. All the equations are rate of
heat accumulation equations and hence will be of the general form

d
dt

bi
S→H(t) = α(Y i

S→H(t)−Y i
S→H ,H) (5.1)

based on the difference between the temperature at the skin (captured in H) and the
heat from the sensor as well as properties of the skin (also captured in H).

In general, above a temperature of 44◦C, the skin feels pain from heat and above
48◦Cfirst degree burns occur. The accumulation threshold for hazards (bi

S→H) can
therefore be set at 44◦C. If the heating from the sensor stops before this temperature
is reached, the skin will cool down according to the standard cooling process. If it
cools to normal body temperature, then we are back in the no-hazard state. If the
sensor starts to heat again, the return to the potentially-hazardous state where the skin
heats up, but now staring from temperature the skin was at before the heating started
again.

This heating and cooling of the skin can go (in theory) on as long as we do not
enter the hazard state.

Physical interaction hazards are the more obvious hazards of the BSN since they are
based on direct interactions. Issues of biocompatibility, for example, are standard issues
to consider for most medical devices that come into contact with the human body [117].
In addition, explorations of BSN safety are typically focused on direct physical interaction
hazards. For example, Banerjee et al. applied formal verification to assess thermal safety



Implications for Safety Analysis of Body Sensor Networks 135

associated with the interaction between the BSN and the patient [11], and De Santis et al.
used modeling techniques to study the potential risks of ultra-wide band (UWB) radios for
the patients [31]. The more subtle aspect of BSN safety is the indirect effects through the
sensing-subsystem-to-decision-making interface discussed below.

5.3.2 Information Quantity Hazards

Such hazards arise when the amount of data points produced by the sensing process deviates
from the expectation. This occurs when events go undetected or unreported by the BSN or
when the BSN produces spurious information. Recall the meal sensing example in example
4.13, where we established that if the meal sensing acted in a way that allowed more than
one meal (out of three that were actually taken) to go unreported then this resulted in
unacceptable risk. The scenario where more than one meal goes unreported is an example
of an information quantity hazard. In this case, there is less information than expected.
If the meal sensing system spuriously reports a meal that was actually not taken (a case
that was not explored in that example), and if this resulted in unacceptable risk, then that
would be a case of an information quantity hazard where there was more information than
expected.

Information quantity hazards can be defined formally using the behavior space and ac-
ceptable behavior region approach established in the discussion of safety-guided in section
4.4.3. Let us assume that for each piece of information that the BSN generates, there is
a parameter (λ q,i

S where i is the ‘tag’ for the specific piece of information) that describes
whether information goes unreported (for whatever reason) and/or spurious information
can be produced. One way to think of this parameter is to think in terms of the actual
information available (|Y i

S→D|) and the information that is reported to the decision-making
subsystem (|Y i

S→D|) in a finite period of time of the system.
If we look at the ratio of reported information to the actual information then a value of

1 would indicate that amount of reported information is correct, a value less than 1 would
indicate underreporting of information, and a value greater than 1 would indicate reporting
of spurious information. The parameter λ

q,i
S could be a single value greater than 0 or it

could represent the range of possible values the BSN might take (especially if the BSN can
both underreport or produce spurious values and this behavior is variable).

Based on the definition of this parameter, we can establish a behavior criteria (λ
q,i
S )

which describes how much unreported and/or spurious information is acceptable. If a BSN
consistently underreports or produces spurious information in a way that does not satisfy
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this criteria (i.e., has a λ
q,i
S value that does not satisfy the definition of λ

q,i
S ), then it creates

information quantity hazards.

Example 5.2: Information Quantity Hazards in Activity Tracking

Let us assume that the BSN must track and report when a person takes short (less
than 5 minute) walk at any point in the day. If we assume that the person internally
has a symbolic state variable (xact) representing the particular activity the person is
currently undertaking, then the job of the BSN then is to infer the each time this
variable takes on the value representing walking for less than 5 minutes.

If the BSN works perfectly with respect to this inference, it will produce a stream
|Y walk

S→D| of data points each representing an actual short walk that the person took. An
actual BSN would produce a stream |Y walk

S→D|. Let us assume that the information quan-
tity parameter (λ q,walk

S ) is the ratio of reported information to the actual information.
Let us further assume that through the requirements process in the safety-guided de-
sign, we have established that so long as the number of short walks report is within
10% of the actual value (above or below), the overall system results in acceptable risk.
Hence our criteria is

λ
q,walk
S : 0.9≤ λ

q,walk
S ≤ 1.1 (5.2)

Let us also assume that BSNs designed for this purpose are characterized by the
range of values λ

q,walk
S can take (i.e., it is capable of both underreporting or generate

spurious walking events but up to a certain amount), then any BSN whose λ
q,walk
S lies

inside the range of the criteria does not result in information quantity hazards. If any
part of λ

q,walk
S for a BSN however lies outside the range, then that BSN can produce

information quantity hazards.

5.3.3 Received Time Hazards

These occur when a (set of) data point(s) in a stream is reported too late. This is when there
is a significant delay between the time that data point is generated and when the decision-
making subsystem can first access the data point, and this delay results in unacceptable
risk. One way to think of this hazard is that once the particular data point is generated,
there is a time within which a decision based on that data point must be made, and if the
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data point is received after this time period has passed, then the information it provides is
no longer actionable.

We can define this hazard formally as follows. For each data point (yi
S→D) in a stream,

there is a time when the point is actually generated in the system (tg(yi
S→D)). Assuming

that the time the data point is generated is when it should be, there is a messaging window
(λ δtr ,i

S→D) between when the point is generated and the the decision-making subsystem learns
about the data point. A received time hazard occurs when this window exceeds a limit

(λ
δtr ,i
S→D), which when exceeded prevents the decision-making subsystem from responding

appropriately to the information contained in the data point to prevent mishaps. That is

λ
δtr ,i
S→D = tr(yi

S→D)− tg(yi
S→D)> λ

δtr ,i
S→D⇒ hazard (5.3)

where the times (tr(yi
S→D) and tg(yi

S→D)) are assumed to be wall clock times.

Example 5.3: Delayed Hypoglycemia Alarm for Nighttime Glucose Monitoring

Let’s assume that the BSN is a night-time glucose monitoring system for children,
which alerts the parents (in another room in the house) if there is risk of hypoglycemia.
If when hypoglycemia occurs, the system detects it immediately, but due to network
issues, it is unable to get alert out to the parents in time for them to intervene to prevent
an emergency room visit, then this would be received time hazard.

5.3.4 Reported Observation Time Hazards

These occur when the reported observation time for a data point in a stream differs from
the actual time of occurrence of the event or value such that it results in unacceptable risk.
Note the subtle difference between the reported observation time hazard and the received
time hazard. In the received time hazard, it is assumed the the data point is generated by
the BSN very close to when the event related to the data point occurred, but this data point
is made known to the decision-making subsystem much later.

In the reported observation time hazard, it is assumed that the decision-making subsys-
tem gets to know about the data point within a reasonable time from when it is generated,
but the issue is that the BSN either anticipates the event much earlier than it occurs of it
learns of the event much later than its occurrence and assumes that when it first learns about
the event is when it occurs.
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One way to think about it is that reported observation times are concerned with tim-
ing issues between phenomena occurring in the human dynamical system to the sensors
ability to infer these phenomena, and received time hazards are concerned with delays of
information transfer from the BSN to the decision-making subsystem.

We can define the reported observation time formally as follows. For each correctly-
generated data point (yi

S→D) in a stream, there is a time when event that prompted the
generation of that data point occurred (t0(yi

S→D)). There usually a difference between
(λ δt ,i

S→D = |t(yi
S→D)− t0(yi

S→D)|) this time and the time the BSN claims the event occurred.

When this difference exceeds a threshold (λ
δ ,i
H→D), it affects decision-making in a way that

results in unacceptable risk. That is

λ
δt ,i
S→D = |t(yi

S→D)− t0(yi
S→D)|> λ

δt ,i
S→D⇒ hazard (5.4)

where the times (t(yi
S→D) and t0(yi

S→D)) are assumed to be wall clock times.
Note that this hazard is not a real-time requirement. For retrospective analysis, it could

cause problems because if both the BSN data and actions taken by the decision-making
based on this data are reviewed. The decision-making actions may be evaluated incorrectly
since the temporal relationship between the events and the responses may not be captured
properly. Also, if multiple information streams are being evaluated retrospectively, reported
observation hazards indicate that the streams are not synchronized properly and hence tem-
poral relationships between different events across streams may not be captured properly
as well.

Example 5.4: Reported Observation Time Hazards in Sensing for the Artificial Pan-

creas

Meal Sensing In the meal sensing example (4.13), it was possible for meals to be
reported (as much as an hour) before or after they were actually taken. In that example,
what was actually being reported was a ‘meal-warning’ indicating that a meal was
about to be taken soon or had been taken not long ago (usually within 20 minutes of
when it was reported). We saw that when the meal is taken more than 20 minutes
before it was reported, this resulted in increased population level risk.

In addition, if we were doing a retrospective analysis to improve our glucose man-
agement strategy, mismatch between when meals were reported and when they were
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taken would cause us to arrive at wrong conclusions about the performance of our
management strategy and its response to meals.

Blood Glucose Level Sensing Breton and Kovatchev showed that the value that a
continuous glucose monitor reports is the blood glucose value about 10 to 15 minutes
before the sensor reports it [18]. This is because these sensors do not sense the glucose
in the blood directly, but rather they sense the glucose in the interstatum to infer
the blood glucose level. There is however, a delay of diffusion of glucose from the
blood to the interstatum, which means the sensor is physically operating on delayed
information. This is why glucose control algorithms [29] tend to have a predictor
component which essentially estimates the current glucose value and next value would
be based on past values so that it can act on at least an estimate of the current value.

5.3.5 Value Hazards

Value hazards occur when the values reported by the BSN cause the decision-making sub-
system to infer differently from what actually happened at the human dynamical system
and to take actions that result in acceptable risk. The values presented by the BSN could
be information with complicated structures.

To understand value hazards, we can think of the BSN as a translator. In one sense, it
translates trajectories observed at the human-to-sensing-subsystem interface to trajectories
that are meaningful to the decision-making subsystem. If we think of each interface (H→ S
or S→ D) as having its own ‘language’, the BSN translates sentences (trajectories) from
the language spoken by the H to the rest of the world to sentences in language spoken by
D. In turn we can think of A as speaking a language understood by H (not necessarily the
same one spoken to S) in order to affect its actions, and A as a translator from D to H. If we
assume that A is a perfect at its job, then value hazards occur when the BSN misinterprets
(for whatever reason) what it ‘hears’ from H and the result of the misinterpretation is a
significant misunderstanding at D of what H is trying to say such that D’s actions result in
harm to H.

Using the above, we can define for each stream (i) the BSN produces for D, a param-
eter (λ v,i

S→D) that characterizes this susceptibility to misinterpretation by the BSN. A BSN

produces value hazards if its susceptibility is not within the tolerable range (λ
v,i
S→D).
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Example 5.5: Value Hazards in Artificial Pancreas Sensing

Meal Sensing In the meal sensing example, we showed that carbohydrate content
of meals were underestimated, then this would result in population-level risk. This
was independent of when the meal was reported.

Blood Glucose Level Sensing Work by Boyd and Burns [17] and Patek et al. [52]
investigated the difference in values between the blood glucose value and what the
glucose monitor reports and how these could potentially affect decision-making. They
looked in particular at intrinsic noise behavior.

Another issue in continuous glucose monitors are what typically termed pressure-
induced sensor artifacts [14] which arise due physical interactions of the sensing el-
ement with the body. This create deviations in values that are not correlated with
changes in the actual blood glucose and can be a problem especially for the predic-
tors in controllers which rely on Kalman filtering which in turn rely analysis of past
trajectories. These can result in inappropriate insulin infusion.

5.4 Utility of the Model and Set of Hazards

There are three main things the model and the set of hazards allow us to do. The third
is the ability to characterize BSNs in blackbox manner based on the hazards in order to
identify acceptable behaviors for a safety-guided design process. The second is the ability
to identify causal factors for the hazards based on knowledge of the nature interactions
on the various interfaces and behaviors of the components in the model. The second is
the ability is to develop a (non-exhaustive) general set of points to keep in mind to guide
the design process based on the hazards and knowledge of the nature of behaviors of and
interactions between components in the model. These points are discussed below.

5.4.1 Black-Box Characterization of Body Sensor Networks for Safety
Guided Design

In Section 4.4.3 when safety-guided design was discussed, the goal was to identify black-
box behaviors of the subsystem under consideration in order to identify acceptable behav-
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iors that would factor into requirements for more detailed designs. The idea was that these
black-box behaviors can be specified as expectations on interactions between the subsys-
tem of interest and other subsystems in the health management scenario (i.e., interface
requirements).

In the example (4.13), an interface was developed between meal sensing and decision-
making in order to identify the acceptable behaviors for the meal sensing. We, however,
did not derive a general systematic approach for deciding what parameters must be include
as part of the interface, and focused solely on issues at the sensing-subsystem-to-decision-
making interface. This was because the behaviors at this interface are most subtle in the way
they affect safety. They also happen to be the behaviors that are most amenable to black-box
characterization because it is focused on the conceptual goals of the BSN and this requires
no detailed knowledge of the implementation. The issues at the sensing-subsystem-to-
human interface tend to be more implementation-specific. This section focuses on this
general systematic approach for identifying the interface parameters.

The key is in the general set of hazard we just identified. For each hazard, we actually
developed a parameter (or behavior) at the interface and then stated that there are some
values of these parameters that correspond that will result in hazards and others that will
not. This reminiscent of the way we discussed acceptable behaviors in the safety-guided
design approach in section 4.4.3. There, we stated that behaviors could be described in
terms of parameters at the interface. The requirements process then derived a limit on the
range of values these parameters can take (or variability that these parameters can exhibit).
The idea was that if behaviors are outside this range, then unacceptable risk occurs.

Recall that hazards are those conditions that can lead to unacceptable risk. This means
that the acceptable behavior region in each parameter dimension essentially corresponds to
a hazard criteria. Hence, the black-box interface parameters for the BSN should correspond
to those parameters that were developed in order to define the hazards. The received time
and reported observation time parameters were described properly in the development of
their hazards. The others, however, need a bit more elaboration.

Physical Interaction Behavior

This black-box behavior (λ i
S→H)for each physical quantity of interest can be characterized

by a hybrid system similar to the one used to define the physical interaction hazard. This is
shown in Figure 5.6.
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Figure 5.6: Hybrid system model of physical interaction behavior of BSN related to haz-
ards.

Note that the behavior shown here does not include the hazard state that was present
in figure 5.5. This is because we are only interested in the BSN’s behavior, either for the
purposes of determining what the limit for transitioning into the hazard state should be, or
for assessing if this behavior would result in a transition into that state (if we already know
what this limit is).

For a particular physical quantity, the transition behaviors (the likelihood that it transi-
tions from one state to another or stays in that state) might vary from one BSN design to the
next and this transition behavior is what characterizes the BSN with respect to that partic-
ular quantity. If these transitions are stochastic in nature, then they could be characterized
by a transition matrix. If the transitions are stochastic, then acceptable behaviors could be
described as properties of the transition matrix.

Information Quantity Behavior

When defining the hazards, we glossed over what actually goes into the parameter, and
used a simple example for our developments. The particular way to define this parameter
for a specific (black-box version of a) BSN depends on the nature of the information that it
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must produce. Also because of the dynamic nature of information that the BSNs in general
produce, the parameter should be thought of more like a transfer function, or a mapping of
sets of trajectories to another set of trajectories.

For a given set of trajectories produced by the patient on the H → S interface, there
is some embedded information (Y i

S→D) that the decision-making subsystem expects to re-
ceive. The BSN can be thought of as applying a function to this expected information to
produce the reported information (Y i

S→D). The information quantity parameter character-
izes how will this function preserves the amount of information in Y i

S→D.

Example 5.6: Information Quantity Paramter for Meal Sensing

Recall that in the meal sensing example (4.13) we looked at the possibility of
meals going unreported. There, we assumed that there were always three meals in
the day and that the BSN could only miss reporting a meal (i.e., it does not produce
spurious meal information). In defining the requirements, we came up with a meal
report indicator ωB

ωL

ωS

 : ωi =

{
1 unreported meal

0 otherwise
(5.5)

In that case, we were not concerned about which specific meals went unreported
so our information quality parameter (λ q,meal

S→D ) would be the number of unreported
meals

λ
q,meal
S→D = ∑

i∈{B,L,S}
ωi (5.6)

If the number of meals in a day is variable, then the information quality parame-
ter (λ q,meal

S→D ) could represent the likelihood that any meal goes unreported. If we are
also concerned about spurious meals, the parameter could be a conditional probabil-
ity distribution indicating the likelihood that a certain number of meals are reported
given that a certain number of meals were actually taken. If Y meal

S→D represents a meal
trajectory (i.e., a sequence of meals), then this would be

λ
q,meal
S→D = p(Y meal

S→D|Y
meal
S→D) (5.7)
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Value Parameter

This parameter must be agnostic to timing and information quantity issues. It must only
describe how values differ from what might be expected. We must therefore make a few
assumptions.

First, recall that value hazards are related to this idea of the susceptibility of BSN to
misinterpret information provided to it in the language of the patient when translating it to
the language understood by the decision-making subsystem (using translation as analogy
for the role of the BSN). Let’s assume that for each possible sentence (finite segment of a
continuous or discrete signal) from the patient (YH→S), there is a perfect translation into a
sentence (a discrete signal), in terms of values, in the language understood by the decision-
making (Y S→D). The translation could be wrong timing-wise, but this is not the concern of
the value parameter. This is necessary because all the parameters are described in terms of
some deviation from the ideal.

Given the above, one way to model the way the BSN misinterpret information is to
assume that it is internally composed of a perfect translator and an imperfect messenger.
Hence the BSN always (but not in reality) starts with the perfect translation of what the
patient tells it, but the imperfect messenger mishandles the message. Let’s places some
requirements on the messenger. First it must preserve the order of the values in the sequence
(discrete signal) it receives from the perfect translator, and must not affect the value of the
received time (in order to preserve timing). Second, the number of values in the sequence
must be preserved in order not to affect information quantity. With this, the messenger can
be defined as an operation on this sequence, a mapping from a domain of the values of the
sequence to a range which is the same as the domain of the sequence. The value parameter
then becomes a (set of) parameter(s) of this operation.

One example of mathematical operations that model the messenger is a discrete filters.
A discrete filter when applied to a sequence produces another sequence of the same size as
the input sequence. A filter can be parameterized in a number of ways, one being specifying
the tap coefficients, and the other being specifying the type, cut off frequency, and what is
known as a Q parameter. Either parameterization would correspond to the value parameter
for the BSN if it behaves like a filter. Notice that the discrete filter usually requires a
number of points in the input sequence to produce one value in the output sequence. It
however preserves order of values in the sequence.

Another example of a mathematical operation that models the messenger is a random
noise process. This process adds a random value to each value in the input sequence. The
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way it picks the random value can be described by a simple probability distribution or a
stochastic process. The parameters of either approach become the value parameter.

Example 5.7: Value Paramter for Meal Sensing

Recall that in the meal sensing example, there was a meal factor that determined
how different the reported carbohydrate content was from what the patient actually
took. This meal factor only operated on the meal values regardless of the timing of
the meals. There were 4 possible values for each meal (4/7x, 1x, 1.5x and 2x)for the
factor. We considered the actual meal factor to be the 3-dimensional vector of factors
for each meal. In the example we assumed that the choice of any factor (vector)
was equally likely which would make the value parameter the parameters of a noise
process given by a discrete uniform distribution with the possible values being the
43 = 64 possible values of the vector. Once we identified the hazards, we actually put
a limit of which vectors were allowable, essentially changing the nature of the noise
process.

5.4.2 Potential Causal Factors for Body Sensor Network Hazards

To discuss potential causal factors for some of the hazards, it is important to understand
the general internal structure of the BSN. Figure 5.7 shows a version of the generic BSN
model with internal structure detailed.

A BSN could be made up of a collection of physically separate subsystems (such as Si,
S j, Sk, and Sl). Some of these BSN subsystems may be located on or close to the body (like
Si, S j, and Sk) and others located away from the body (like Sl). These sub-processes inter-
act with each other and the decision-making subsystem through communication channels
(either communication networks or storage media).

Each sensing sub-process (S(∗)) may contain a number of components, and must at
least contain some form of computational element (SSP), which is connected to a com-
munication channel to interact with other subsystems or the decision-making subsystem.
BSN subsystems that must interface directly with the human process H (like Si, S j, and
Sk) would require a transducer (S←) for converting physical quantities produced by H to
voltages and, if necessary, an “stimulator” (S→) for producing energy output that affects H
to aid in sensing. A BSN subsystem may also have a (potentially) limited energy source
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Figure 5.7: The schematic of the generic body sensor network model with the internal
structure shown.

(E) if it is mobile. A sub-process may exist within a computational environment (Σ) if it
shares computational resources with other processes that are not part of the BSN.

Physical Interaction Hazards

Physical interaction hazards can be caused by inappropriate limitations on the BSNs ability
to produce certain quantities like heat and electromagnetic radiation. They could also be
caused by material used on the parts that come into contact with the patient. The patient
could also damage or introduce chemicals to the physical structure that cause interaction
with the skin or other tissue that would not otherwise not occur. The patient could also
place BSN components in locations where they should be and cause problems.

Information Quantity Hazards

Information quantity hazards are typically caused by limitations in detection algorithms in
the BSN. Either they are not robust to interfering or modifying inputs or they have limited
detection capabilities even under ideal conditions due to poor design or limited resources.
The BSN may go into a power-saving mode that reduces its ability to effectively detect the
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events of concern. In addition, network issues can cause information to be dropped along
the way, and if reliability mechanisms are not available, this could result in missing crucial
information.

Received Time Hazards

These are usually due to network delays, especially in the case where the decision-making
subsystem is further away from the patient geographically. Delays could be malicious or
unintentional. They could also be caused by software problems if concurrent processes
infer with each other.

Reported Observation Time Hazards

These can occur if detection capabilities require too much time to decide if an event oc-
curred or not. In addition, if there are poor time-synchronization mechanisms between the
BSN and the decision-making as well as between BSN components, then timestamps can
be misinterpreted. For BSNs where the user must produce the inputs necessary for the BSN
to deliver information to the decision-making subsystem, the user may forget to put in an
input on time and forget a particular time when the event occurred.

Value Hazards

These could also be due to the limited processing capabilities and robustness of the BSN.
In addition, if configuration or calibration information is required, then this could be due to
misconfiguration either by the patient or the decision-making, or by a malicious adversary.
If BSN instructions in the manual or provided during operation are not clear, the user could
misconfigure the system. If the BSN is incapable of detecting certain misconfigurations,
this could result in the hazard.

5.4.3 Some Points to Consider for Body Sensor Network Safety

Based on the above, the following points must be kept in mind. They phrased as questions.

Intent and Interactions

It is important to understand what the goal of the BSN is. What information does it provide
for decision-making? How is this information (usually related to a health metric) defined?
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What interactions are necessary to aid in gathering this information? How can other in-
teractions interfere with gathering this information? Is the BSN always worn or only used
some of the time? Must the user provide information? What if this information is not
provided or not provided on time? What does the BSN assume about its location, if any?
What are the issues if these assumptions do not hold?

Configuration

Since misconfigurations result in hazards it is important to understand whether the BSN is
designed an how this configuration works. Who is allowed to configure the BSN? Does
configuration happen only before starting operation, or can it be reconfigured during op-
eration? Are the instruction for configuring the BSN understandable to the intended user
population? What are the limits to the BSN detecting misconfigurations, and what are the
risks given this limits?

Operational Environment

Where would one expect the user to use the BSN? What happens if the user goes to unex-
pected places with unexpected conditions. Are there any assumed locations on the body?
How is the BSN component location enforced. If parts of the BSN exist in a shared com-
putational environment, what are the effects of this environment.

5.5 Relation to Body Sensor Network Analysis Work

The are two main aspects to BSN analysis, the issues explored and the models used to
explore those issues. Our main issue of concern is safety.

5.5.1 Safety

Much of the work in BSN safety has been focused on specific issues. De Santis et al. [31]
focus on safety issues with ultra-wide band radiation from communication radios, which
is a physical interaction issue. Armenti et al. and Zegiel et al. [4, 121] focused on the
potential for information provided by the BSN to mislead a decision-maker into taking an
inappropriate action, which is a value hazard issue. Banerjee et al. focused on the physical
issue of heat as well as interference between components of the BSN [11]. That same work
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also looked at verification approaches for BSN and in other work they explored synthesis
of correct designs once they have been verified [12]. As mentioned previously, Patek et
al. [52] looked at acceptable behaviors for continuous glucose monitors used for decision-
making by the patient, and Boyd and Burns [17] explored the effects of noise behaviors on
clinical decision-making.

The work presented here provides a framework within which all these issue can be
considered. It also considers the complexity of the nature of information provided by the
BSN. The main difference is in perspective. Much of the previous work has focused on
design and issues for specific designs, which means there is limited concern for general
tools. We are however concerned with design an regulation issues and are motivated by
more general considerations.

5.5.2 Modeling

Past BSN modeling has focused more on performance than safety, looking at issues like
quality-of-service [107] or energy issues [15, 112]. These are related to safety, but these
works do not explore them from that perspective. Again, they also look at specific issues.
Banerjee et al. [11] are the closest to the work presented here attempting to provide a
general model and tool, but the safety issues explored are limited to physical issues. In
addition, they, like others, take the hazards as given any specific situation, while this work
identifies a general set of hazards, and shows how to develop them for specific cases, pro-
viding a framework for reasoning more generally about BSN hazards.

Summary
This chapter used insights from chapter 4 to develop a model for reasoning about patient
safety for BSNs. An important aspect is identifying hazards and causal factors. The hazards
depend on appropriate black-box characterization fo the BSN. Once a particular BSN is
characterized properly, the safety-guided design approach detailed in section 4.4.3 can be
used to determine acceptable behaviors, which then become the hazard criteria. With the
generic BSN model, one can then consider how their particular BSN concept could behave
in ways that violate the hazard criteria using the knowledge of the general behavior of
BSN components described by the model, the causal factors, and the points to consider as
starting points.
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Chapter 6

Implications for Body Sensor Network
Design Tools

The difficulty of the design problem often resides in predicting how
an assemblage of such components will behave.

Herbert A. Simon

Chapter Overview

This chapter demonstrates another aspect of the utility of the model of patient by looking
at its implications for body sensor network design tools. In particular, it focuses on the
need to explore the outcomes of physical interaction between the body and the sensors on
it while accounting for the spatio-temporal nature of the human dynamical system. It intro-
duces some motivating applications and the basic requirements for tools with features that
enable the design explorations related to spatio-temporal issues. It then discusses a proof-
of-concept simulation tool (still under development) which focuses on inertial sensing and
wireless communication whose current instantiation embodies these basic requirements. It
discusses the potential to aid in the reasoning about safety of body sensor networks in the
context of the motivating applications.∗

∗The initial ideas for BodySim, the proof-of-concept simulation tool described here were presented in a
short paper at the International Conference on Body Area Networks [6] and tool demonstration and the ACM
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6.1 Introduction
Modeling and simulation play important roles in engineering research and design. The
semiconductor industry, for example, is heavily dependent on modeling and simulation
tools for integrated circuit design and fabrication. These techniques are especially help-
ful in the early phases where limited detail is available about the design and where design
changes are less costly. High-fidelity models can be employed at the verification and vali-
dation stages to complement testing. Modeling and simulation are also important research
tools for understanding complex phenomena [95].

In design, modeling and simulation typically aid in understanding the relationship be-
tween the system being designed and the environment in which the system is intended to
operate. Understanding this system-environment relationship is particularly important for
BSNs. In Chapter 5, one of the main causal factors for hazards identified was the interac-
tion between a body sensor network subsystem on the and its environment (including the
patient and other subsystems). This is because many sensing modalities are directly driven
by the dynamics of the user wearing the BSN. Also, the human body itself is a non-uniform
environment with many variables of interest exhibiting both spatial and temporal dynamics
for any given user state and activity. This makes issues like the effect of sensor location
on system behavior important ones to explore. In addition, the behavior of the user and the
characteristics of the environment they are in affect other aspects of the BSN, particularly
wireless communication.

Previous BSN modeling efforts have typically concentrated on the BSN components
(both software and hardware). Examples include exploring particular performance prop-
erties like energy consumption [15] and communication quality of service [107]. There
has been some limited modeling of the relationship between the BSN and environment
[119, 3, 112]. The main drawback of these models is that they typically focus on a specific
issue in the BSN and are not easily extensible to consider other issues.

Despite these efforts, there is still a need for model-driven techniques for exploring
issues like the effect of the location of the sensor on its output and the effect of particu-
lar user activities and environments on communication. Today, these issues are primarily
explored using human subject experiments. Such methods are costly, especially for early
concept exploration. In addition, there is a limited ability to keep some variables constant
while changing others (e.g., it is infeasible to have the subject reproduce the exact same

Conference on Embedded Networked Sensor Systems [7]. Some aspects of its design are also described in
Scott Tepsuporn’s senior thesis at the University of Virginia [101].
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motion while a different sensor location is explored). Lastly, there have been recent calls
for patient models compatible with device models to aid in the design of emerging medical
systems like BSNs [2, 57].

The aim of the work presented in this chapter is to complement these experimentation
techniques and respond to this call for patient models by providing a platform for carrying
out experimentation and explorations in virtual space. The long-term vision is for a soft-
ware platform which provides a researcher or designer access to a number of virtual human
subjects on which he or she can place sensor nodes of varying capabilities and explore
particular properties of interest in the system for various scenarios. This approach is line
with the ideas developed in Chapter 4 on the need to explore variability when dealing with
safety. It focuses on this idea for higher fidelity models.

The envisioned platform can be used in purely virtual fashion or as complement to
human subject data. In the purely virtual case, there would be a repository of subjects
and their behaviors that users of this platform can select from and run experiments on. In
the complementary case, the user of this platform could collect the necessary information
on a human subject’s physical characteristics and behaviors, plug this information into the
software platform to create a new virtual human subject and add virtual sensors to this
scenario in order to carry out investigations.

This chapter presents the architecture and current instantiation of particular compo-
nents for a multi-domain modeling and simulation framework (called BodySim) that em-
bodies the basic features of the envisioned platform. It demonstration kinds of explo-
rations that are possible with framework in the context of two motivating applications
described below. BodySim leverages advances in 3D physical modeling and animation
instantiated in open-source tools like Blender [16] and scientific computing tools like
MATLAB/Simulink [103, 102] and Python (with appropriate libraries)[86]. We consider
BodySim a multi-domain framework because the virtual human subject models describe
a physical domain, whereas the models that provide information on the outcomes of in-
teractions between the human subject and the sensors describe the interface between this
physical domain and more computational and communication domains, as well as these
computational and communication domains of the BSN. Figure 6.1 shows the BodySim
concept.

It is important to note that a framework like BodySim does not seek to supplant previous
modeling efforts for BSNs. Rather, it seeks to serve as framework where such models can
interoperate and in particular interact with realistic models of human subjects. For example,
the current instantiation of BodySim couples human models developed as part of this work
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Figure 6.1: BodySim concept

with IMUSim [119], an inertial sensor modeling tool. The focus of this Chapter is not on
the validity or the accuracy of the models like IMUSim used to explore BSN properties,
but more to demonstrate the kinds of explorations that can been done when such models
are coupled properly with virtual human subjects. The vision is that BodySim will be
a community driven effort, and hence it is currently available as an open-source project
online at http://wirelesshealth.virginia.edu/content/bodysim.

Example 6.1: Exercise Detection and Monitoring in the Artificial Pancreas

Exercise and other intense activities change the operating mode of human phys-
iology in order to accommodate the increasing demands such activities place on the
body. In a system like the Artificial Pancreas, this means that the way the body re-
sponds to insulin would change [19]. It has been shown that knowledge of exercise as
capture by a body-worn sensor (in this case a heart-rate sensor) can be used to improve
automated glucose management during exercise [20].

Inertial sensing is also another way to detect and monitor intensity of exercise,
and the combination of inertial sensing and heart-rate can be used to detect variables
related to intensity of activity like energy expenditure [27]. As seen in the meal-
sensing example (4.13), misinformation the decision-making software can result in
unacceptable risk. In chapter 5, we saw that physical factors can affect the information
delivered to decision-making software by the BSN. Hence, it would be important to
understand these effects and design the BSN to be robust to them as well as to pick

http://wirelesshealth.virginia.edu/content/bodysim
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physical configurations that help the BSN reduce hazards related to its interaction
with the decision-making software. We would like to know answers to questions like
“which locations minimize potential for hazards?”, and “which algorithms provide
the robustness to a range of physical factors?” Such questions can be answered with
an appropriate tool like the one envisioned earlier.

Example 6.2: Evaluation of Inertial Sensing Systems

Inertial sensing is an emerging sensing modality that is providing to be useful in
a number of medical contexts [26, 80, 83, 25, 76]. As mentioned in the previous
example, it can also be used to inform the Artificial Pancreas on when and how to
adapt to exercise and other intense activities. Since sensing is heavily dependent on
configuration, it is important to be able to evaluate the robustness of systems to various
physical configurations as done by Gong et al. [40]. That work depended on human
subject experimentation, and the envisioned tool could have enabled explorations of a
wider range of situations with less overhead.

In addition, for some inertial systems, it is important to combine information from
multiple locations to get a complete picture [26]. In this case, the effect of physical
factors around the body on communication becomes important. The envisioned tool
can allow this joint exploration of the effects of physical factors on communication
and the effect of the resulting communication on overall performance of the system,
to understand its robustness properties and susceptibility to creating hazards.

6.2 Basic Requirements
The aim for the envisioned platform is to be able to select a virtual human subject (and their
environment), place sensors on them, simulate the human subject with sensors attached
performing some activities, and obtain results on how the sensor behaves in the particular
context the was simulated. A tool that enables this must have three main pieces. The
first is human subject models which have information the spatio-temporal dynamics (how
things evolve at each point) of the person with respect to the physical quantities important
for the particular simulation. The second is an interface model that allows virtual sensors
to be attached to the human subject model and which generates the physical inputs (and
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others as necessary) to the sensor based on its configuration on the body and the dynamics
of the body and its environment. The third is the sensor model, which takes as inputs
information generated the interface model and generates on the behavior of the sensor given
those inputs. These need for these pieces is implied by the generic BSN model developed
in chapter 5

6.2.1 Human Subject Model (H)

The human subject model consist of two parts, the structure which describes the relevant
three-dimensional setup of the body and the dynamics which describe how each point in
that structure evolves in time with respect to the physical quantities of interest. For ex-
ample, if the sensing scenario we are interested in collecting electrocardiographs (ECGs),
then we would need the full body surface structure (mostly from the neck down) and the
electrical properties at each point on that surface since electrodes are placed on the skin.
We would not be interested in internal anatomical features. In addition, we would need
dynamics that describe the persons motion and how different points on the body move. We
would also need a model of how the heart functions for different activities, particularly,
what the electrical potential at each point of the body given the movement of the body and
the skin properties of the particular human subject. We may also include a model of elec-
trical interference seen at each point. That way if the electrodes are placed on any point,
we can extract the dynamics at that point and pass that to the sensor.

Formally, based on the generic BSN model in chapter 5, the human subject model
(H) consists of a 2-tuple (CS→H ,YH = fH(CS→H , t)), where CS→H describes the available
points of interaction (the structure) and its properties, and YH = fH(CS→H , t) describes the
dynamics at each point (cS→H ∈CS→H) time at each possible point of interaction. Placing
a sensor at a particular point there ‘selects’ the dynamics for that point to be used in the
simulation.

6.2.2 Human-to-Sensor Interface Model (H↔ S)

The human to sensor interface governs the interaction between the sensor and the human
dynamics. It uses knowledge of the intended configuration to select and track the appropri-
ate dynamics from the human subject model. In some cases it may process these dynamics
to include additional physical effects. In our ECG example, this model would select the
appropriate value of cS→H for each electrode location and collect the dynamics generated
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by YH = fH(cS→H , t). If we would like to incorporate motion artifact effects for example,
the model could use knowledge of the movement and how well connected the electrodes
are to modify the output from the human subject model to produce an electrical potential
that accounts for these artifacts. If no additional physical effects are explored, this model
then essentially passes the particular sensor configurations to the human subject model and
passes the output from the human subject model directly to the sensor model. In this ECG
case, the this model

Formally, the human-to-sensor interface model consists of a 3-tuple (CS→H ,YH→S =

fH→S(CS→H ,YH ,YS→H),{cS→H} = fS→H(CS→H ,YS→H)). CS→H is the overall configura-
tion information, which contains information on the specific points sensors are attached
to the body ({cS→H} = fS→H(CS→H ,YS→H) ⊂CS→H) as well as other information neces-
sary to generate inputs to the sensor model. YH→S = fH→S(CS→H ,YH ,YS→H) describes the
output to sensor model based on configuration information (CS→H), the outputs from the
human subject model (YH), and any outputs from the senor model back to the human sub-
ject model (YS→H). Incorporating YS→H allows us to account for inter-sensor interference,
especially in wireless communication. Remember that our main focus is on what happens
to the sensor dynamics given the particular context and not the human subject.

6.2.3 Sensor Model (S)

The senor model describes how the sensor reacts to inputs from the human subject and
its environment. These reactions could be in terms of internal properties like energy con-
sumption, computation time, or outputs it produces that affect the human subject directly or
for decision-making. In our ECG example, the model could contain a model of an analog
front-end and analog-to-digital converter (including their noise characteristics) that con-
verts information from the electrodes (through the interface model) to digital samples. It
may even contain a signal processing model for filtering (in the analog or digital domain)
the signal or doing some event detection. It could also contain a model of wireless commu-
nication or information storage behavior. In addition, it could include a model of the energy
consumption of these components and the overall system energy consumption behavior.

Formally, the sensor model (S) is a 2-tuple (λS, [YS→H ,XS,YS→D] = fS(λS,YH→S,XS)).
λS are the properties of the sensor that govern its intrinsic behaviors (e.g., noise charac-
teristics, processors speed, radio sensitivity). YS→H are the outputs the sensor produce the
affect the human subject (and possible other sensors). XS is an n-dimensional state variable
for various component properties of interest (e.g., power or energy consumption, memory
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used, actual data stored, transmission requests or packets received). YS→D is the informa-
tion that the sensor generates for decision making. fS(λS,YH→S,XS)) the behavior of the
sensor in response to inputs based on its current state and intrinsic properties.

6.2.4 Overall Systems Model

The overall system model is shown in Figure 6.2. The user specifies the configuration,
selects the specific human subject, and the specific sensor (also specifying the sensor prop-
erties). The various pieces then interact in feedback fashion in order to produce the right
dynamics in the sensor model which can then be analyzed in conjunction with the trajecto-
ries of the other pieces that helped produced those dynamics.

Figure 6.2: Overall systems model for design tools embodying features for exploring phys-
ical interaction effects on sensor dynamics

6.3 Realization in BodySim
The current instantiation of BodySim is focused on inertial sensing. It provides human
subject models, interface models for inertial sensing and wireless communication, and ex-
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tensible way of plugging in different inertial sensing and wireless communication models.
It is based on the Blender 3D modeling and animation tool [16] extended with Python [86]
scripts to provide the features described in the previous section.

6.3.1 Human Subject Model

The human subjects in BodySim are 3D object files (mesh files in the .obj format). The
structure created from high-resolution laser scans (using a FARO Focus3D laser scanner
[36]) of subjects. Figure 6.3 shows the setup for scanning subject and an example resulting
3D mesh. Each vertex on the mesh has a unique identifier which allows one to specify the
location of the sensor.

Figure 6.3: Setup for scanning human subject to obtain a structure model and the an exam-
ple resulting 3D mesh.

The dynamics is represented by the same subject’s motion captured by the Anima-
zoo IGS180i motion capture suit by Synertial [100] (stored as biovision hierarchal format
(.bvh) files). Each separate motion capture for a specific subject is a different file, though
their scan is only collected once. All data on subjects (which is on-going) is being col-
lected through an approved institutional review board (IRB) protocol. The dynamics of the
subject is handled using the native animation engine provided by blender. The structure
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and dynamics of the subject are essential outsourced to the real world, to provide a more
realistic model.

6.3.2 Human-to-Sensor Interface Models

Currently, there are two interfaces, one for inertial sensing and another for wireless com-
munication. In both cases, the user can couple a sensor to the location on the body by
selecting the particular vertex on the mesh and attaching the sensor there. The user can
add multiple sensor to different locations this way. Using facilities provided by Blender,
each sensor’s motion is tracked based on the motion of the particular vertex it is attached
to, which is controlled by the real-world motion captured for the subject.

(a) Choosing a sensor location.

(b) Choosing sensor parameters.

Figure 6.4: Adding a sensor to the human subject model.
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In the current instantiation, sensor mounting is always correct and tight, so mounting
issues like those raised by Gong et al. [40] cannot be explored. It straightforward however
to provide an interface to the user for specifying the orientation of the sensor when it
is attached to explore mounting orientation issues. Adding features for loose attachment
would require some more work as the dynamics of this process needs to be understood.
Lastly, the interface can produce as output the trajectories of the sensor that it tracked,
which is useful for validating sensor models.

Inertial Sensing

For inertial sensor, the main thing BodySim does is tracks the position and orientation
trajectories of each sensor, making YH→S a 7-dimensional vector of these values (the orien-
tations are tracked as quaternions [?]). These are generated during a simulation based on
where the sensor is attached to the body and the movement of the particular subject. These
are then passed to the inertial sensor model for its simulation. We track these variables
because this is what the sensor model currently used requires. If another model requires
the forces on the sensor due to the subject’s motion, then we would have to provide an
interface model that generates these forces from the human motion.

Wireless Communication

The interface for wireless communication also tracks the position and orientation trajecto-
ries of sensors. In addition, it tracks two different parameters that are related to the body’s
effect on wireless communication.

The first is whether there is direct line-of-sight between any two sensors (it does this for
all pairs of sensors). This corresponds to checking whether a line between two points goes
through a vertex (a point on the body) or not. The second is parameter tracks how the body
occludes (shadows) signals. It tracks how much of the transmitted signal escapes into the
environment (and is not blocked by the body), which also analogous to how much of the
signal reflected by the environment will be seen by the body. It is also based on checking
whether lines between points go through the body. The basic idea (modified from what is
described in Scott Tepsuporn’s senior thesis [101]) is as follows.

1. Using the sensor’s origin as the center, create a sphere whose radius is the height of
the subjects body.
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2. Create a number of ‘equidistant’ points on the surface of the sphere which correspond
to discrete samples of the surface.

3. For each sample on the surface of the sphere, to check if there is line-of-sight between
the point and the origin of the sensor (using the same method for checking if there
is direct line of sight between two sensors but now treating the point on the sphere
surfaces as the second sensor).

4. Find the number of samples that do no have line-of-sight to the origin of the sensor
(because the body was blocking it).

5. Output the ratio of the number of non-line-of-sight points to the total number of
points.

The above assumes that the antennas on the sensor are omni-directional and tries to find
which how many of the possible directions are blocked the body. This parameter is tracked
per sensor, and both variables are tracked for every time step in the simulation, creating a
trajectory of each of these values.

The output to any wireless sensor model (YH→S) depends on the number of sensors (n)
in the simulation. Part of the output is the 7-dimensional vector of position and orienta-
tion variables plus the line-of-sight indicator. Another part is the

(n
2

)
pairs of line-of-sight

indicator variables and the n non-line-of sight ratios.
We track the two line-of-sight related parameters because the effects on wireless com-

munication are different when there is direct line-of-sight versus when there isn’t. When
there is direct line of sight, the effects on wireless communication is dominated by the rela-
tive position and orientation of the sensors with some contribution by reflections of signals
by the environment. When there is not direct line of sight, the communication is dominated
by reflections of signals by the environment.

6.3.3 Sensor Models

The only functional sensor model in the BodySim currently is the inertial sensor model. To
demonstrate the extensibility of BodySim and its interoperability with available models, we
used an open-source model called IMUSim [119] developed by Young et al. , who showed
its ability to produce accurate simulation results for the inertial sensor they developed [120].
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IMUSim is an open-source model developed in Python, which models a 9-degree-of-
freedom inertial measurement unit (accelerometer, gyroscope, and magnetometer). It pro-
vides both an idealized model and the ability to configure it to mimic realistic systems. The
model provides a way to configure analog-to-digital converter parameters, timing issues in
sensors, and even prototype signal processing algorithms, and communication of data be-
tween sensors. For simulations, it needs as input the trajectory (position and orientation) of
the sensor, which BodySim provides. Figure 6.5 shows an example output for a simulation
using the ideal inertial measurement unit model.

Figure 6.5: Example output for ideal inertial sensing simulation.

BodySim provides the ability to select which

6.3.4 Overall Simulation Flow

In BodySim, the human subject models are provided. A user selects the human subject
(which would also select the particular motion that was collected for the subject). The
user can then configure the setup by selecting the sensor location and the properties of
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the sensor the user wants to observe, which in this case corresponds to which axes of the
accelerometer or gyroscope they would like to observe. One this is all set up, the user
can run the simulation which would first generate the sensor trajectories and pass these to
IMUSim for simulation and record all outputs into human-readable (.csv) file format.

6.3.5 User Interface Features

BodySim provides a number of features to make working with the models easier. The
overall user interface with a few features is shown in Figure 6.6.

Figure 6.6: The BodySim user interface
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Human Subject Visualization

The first important feature is the ability to view the human subject, see where sensors are
placed, and watch the experiment if desired. This visual interface provides an intuitive
feel and gives the user the sense of running virtual experiments just like they would a real
experiment. In addition, before running a simulation, the user can do a ‘dry run’ to see
what the motions for the particular subject are.

Sessions and Simulation Configurations

A number of related simulations can be grouped into a session. A simulation consists of the
the particular human subject, and the sensor configuration. If it has already been run, then
it would also contain the data from the simulation run. A new simulation can be created by
copying the configuration of a previous simulation and using that as a starting point. There
is also a facility for saving simulation configuration and running them later, or adding them
to a batch of simulations to be ran as a group later.

Sensor Configuration

In addition to adding sensors to a specific location and selecting which axes to simulate,
user can also name sensors and color code sensors so they can identify them visually on
the model. The sensor names are also used as labels for the data which helps with post
processing. If the user does not provide a name, the sensor is given the name of the location
of the body it is attached to.

Graphing of Data

Once a simulation has been run, users can graph the data that was produced. In addition,
the graphing interface is setup so that when the user clicks on the timeline, it shows what
the subject was doing at the time that particular data point was produced.

6.4 Utility of BodySim

BodySim has a number of interesting applications. We are currently exploring one, and
other potential ones are detailed below.
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6.4.1 Wireless Communication Model Development

It turns out that BodySim is crucial to the development of wireless communication models.
We already mentioned that understanding how the body occludes sensors is important.
This occlusion is near-impossible to track in an actual experiment, even if video ground
truth is recorded. It certainly cannot be done purely from motion capture data correlated
with wireless communication data, since motion capture systems only provide a skeletal
model of the person. However, like we have done, BodySim, we can track this occlusion
in a realistic 3D model of the subject automatically, and use these as parameters to fit the
wireless data to for the wireless communication model, which is what we are doing in
on-going work.

6.4.2 Virtual Prototyping

As mentioned in chapter 4, one of the big issues with health management systems in inter-
person variability. Hence in systems designs, it is important to test ideas across a number
of different people representative of the intended use population. BodySim provides the
ability to do that in a low overhead way with virtual models of subjects and prototypes.
Because it provide multi-domain information, a full design can be simulated (including
algorithmic and communication considerations). Once promising candidate prototypes are
identified, then those can be tested on real subjects.

This prototyping and experimentation need not be only with models. A hardware-in-
the-loop simulation could be run with BodySim providing the physical environment infor-
mation to the hardware and receiving information about physical actions of the hardware.

6.4.3 Simulation-Based Design Space Exploration

The motivation applications presented earlier demonstrate some of the design space explo-
ration needs for BSNs. In both the exercise-informed glycemia management case and the
inertial sensing case, a number of different configurations need to be explored in order to
understand which configurations and algorithms go best together. In particular the designer
would be looking for algorithms that are most robust to variability and configurations and
physical interaction issues, as well as reasonable sensor locations. BodySim can provide
the data needed to explore the performance of the system for various configurations and sit-
uations in order to develop concepts for prototypes which could then be tested using more
elaborate systems models in a virtual prototyping exploration.
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6.4.4 Benchmarking

From a regulatory perspective, BodySim could be a good benchmarking tool. Many inertial
sensor experiments used to increase confidence in design use different subjects. Hence it
is difficult to compare the results of one groups sensor and experiment to another’s since
both were not run on the same set of subjects. BodySim could provide a common cohort
of subjects for designers and manufacturers to benchmark against. In addition, the FDA
could work with independent groups to provide a repository of human subjects that are
representative of the expect use populations, on which designers can test new concepts
before going further in the design process.

6.5 Relation to Other Approaches

Many modeling and simulation tools available either are too general (not specifically tar-
geted at the BSN domain) or focus only on a specific aspect of BSN design. In the first
category are tools like MATLAB and Simulink from the Math Works, Inc. [103, 102] and
Ptolemy from the University of California, Berkeley [35]. One could conceivably perform
a number of the explorations described above, but modeling especially human subjects
would be cumbersome.

In the second categories are tools like ns3 [1], OpNet [90], and castilia [72], which
focus mainly on networking and communication, and TOSSIM [62, 56, 33] and IMUSim
[119], which mainly focus on sensor modeling. These tools mainly lack the appropriate
environment model provided by something like the human subject model and the inter-
face model in BodySim in order to provide realistic about how interactions with the body
actually affect sensor dynamics

The main advantage of BodySim over these tools is its more realistic environmental
model made up of the human subject models and the interface model. Apart from that, the
sensor models could be prototyped in these other tools and the BodySim could interoperate
with them to provide the appropriate outputs. In some cases, parts of the interface model
could be prototyped in other tools like MATLAB or Ptolemy. Modeling the effect of loose
mounting in inertial sensors is an example of such a case. As mentioned previously, the
aim of a tool like BodySim is not to supplant previous approaches, but to use insights from
the generic BSN to provide the missing pieces and a framework the allows these various
efforts to be integrated.
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Summary
Herbert Simon in his book, “the Sciences of the Artificial” [95] discusses the role of the
operational environment in shaping design. He talks about sundials performing as clocks
in sunny climates, and clocks used on ships having much different designs than those used
in the home. This resonates with ideas raised by the generic BSN model about the need to
explore the effect of the interaction of the BSN with its environment: no matter how good
the models of our design are, without a good environmental model to explore its actual
performance, we risk ending up with a poor design. The developments in this chapter
focused on this issue of ensuring that tools enable this crucial aspect of the design for
BSNs, especially because of the dynamic nature of the environment in which BSNs operate.
The BodySim software framework described provides a proof-of-concept on how to make
these features available. Not only does it include a realistic human subject model, it, more
importantly, ensures through the interface model that this model can interoperate effectively
with models of BSN designs: good models of the environment and good models of the
design are useless if both cannot interact.
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Taking Stock

Follow effective action with quiet reflection. From the quiet
reflection will come even more effective action.

Peter Drucker

It is important to pause and reflect on the ideas presented in the previous chapters,
highlight the key points, and draw some conclusions.

The overall aim of this dissertation was stated as to provide mechanisms for thinking
about what it means for an emerging computer-based medical technology to be safe for
patients. Given a technology, or concept for one, we wanted a way to examine the potential
for harm in a systematic manner and come to some conclusions on whether this is accept-
able or not. We also wanted to be able to use the insights from this method of examining
technologies to inform design so we can ensure that we end up developing technologies
that are acceptable.

Core Ideas

One contention was that even though the aim systems safety is to deal with this issue of
potential for harm for various systems, its techniques were ill-equipped to deal with emerg-
ing medical technologies because the technologies they were primarily developed for had
different goals than medical technologies. Much of the dissertation was focused on using
the principles of systems safety (not the techniques) to develop mechanisms for reasoning
about patient safety of medical technologies that we consistent with system safety ideas
(hence, complementing existing techniques) and that were valid for the health context. Be-
low is a recap of this development, highlighting the key insights and the main takeaway
points.

171
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Systems Safety as Reasoning about Emergent Behavior of Dynamical
Systems

We began with the need for our framework for reasoning about patient safety that is both
valid from a health management perspective and consistent with systems safety principles.
The approach was to put the systems safety goal of achieving “acceptable mishap risk” in
health terms, but in way that where these could also be linked to systems design issues. The
key was in the dynamical systems view of both health management and systems safety.
Chapter 2 established that this view is present implicitly or explicitly in many systems
safety paradigms, and that the main differences were in how each paradigm viewed the
mechanism for emergent behavior.

It showed that mishaps were related to events, which could be considered values that
were part of the trajectories of dynamical systems, that risk was related to the possibil-
ity of particular events (the undesirable ones) occurring and hence the system exhibiting
particular undesirable trajectories. In addition, risks were related to the severity of these
undesirable events. The main differences in paradigms were in how they reasoned about the
causes of increase in possibility of undesirable events. The linear approaches focused on
particular components (usually humans or mechanical components), assuming that these
were the dominant drivers of the emergent behavior. The non-linear approaches took a
more holistic approach, focusing on the relationships between interactions and the emer-
gent behavior that produced undesirable trajectories.

The key takeaway was that regardless of the particular system safety paradigm, the
main concern was with understand what the undesirable trajectories (mishaps) are, how
they might arise (hazards), and intervening through design to reduce their possibility and
severity (risks) to acceptable levels. This is summarized in figure 6.7

The Human Body as a Natural Safety-Critical System

Chapter 3 showed that the dynamical systems view was a valid one for human function.
With this link in mind, chapter 3 connected human function to systems safety further by
viewing the human body as a natural safety-critical system, with health being the body
maintaining safe states or exhibiting desirable dynamics (acceptable function) and body
failing to exhibit these dynamics (unacceptable function) as the reasons for intervention.
Mishaps were therefore these transitions to unacceptable function. This translated the dy-
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Figure 6.7: Illustration of systems safety principles.

namical systems view of safety critical systems to a view of human function as shown in
figure 6.8.

Health Metrics as Risk Measures for Human Function

Chapter 2 had introduced the idea of risk the possibility and severity of events that led to
loss. In particular, we saw that if we assumed that we could identify these mishap events
(ek such that fmishap(ek) = mishap), then we could have a risk function for these events,
risk = frisk(p(ek),q(ek)), where p(ek) is the likelihood of that event occurring, and q(ek) is
the severity of the mishap.

Chapter 3 showed that health metrics played the role of these risk functions. In partic-
ular, they were typically interpreted as indicators of what likelihood was of transitioning
(immediately or in the long term) into states with more severe consequences, based on
information on the current and/or past trajectories of the human dynamical system. This
development is summarized in figure 6.9

Health Management as Safety Interventions

Chapter 3 made one more link to systems safety ideas. Once we are able to measure risk,
the goal is to control it; to reduce it to acceptable levels. This is where medical technologies
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Figure 6.8: The link between the dynamical systems view of safety-critical systems and
that of human function.

come in. They form part of a feedback system designed to influence the dynamics of the
patient so that risks (potential for undesirable health outcomes) are minimized. This link
between controlling hazards in a safety-critical system and health management is illustrated
in figure 6.10.

The key takeaways here were that the human body is a natural safety-critical system
which the potential to enter unsafe states. The way we evaluate this risk is through the
use of health metrics. When the risk is high or when the person has transitioned in unsafe
states, we intervene with the aid of medical technologies to reduce the risk or influence
their dynamics to evolve back to safer states.

Patient Safety of Medical Technologies as Robustness to Variability

With the notion of health metrics as risk measures, and health management as risk con-
trol, chapter 4 considered mishaps in the case where medical technologies are introduced.
It showed that adding medical technologies creates new dynamics with the intention of
moving the patient towards safer states, but there was the potential to also introduce un-
acceptable dynamics. In particular, it focused on the need for medical technologies to be
robust to the inevitable variability exhibited by the people they are intended to help, which
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Figure 6.9: Illustration of health metrics as risk measures.

was what introduced newer risks (the possibility that in use by a patient mishaps could
occur due to the introduction of the technology).

Acceptable mishap risk in this context was then defined as a function of health met-
ric outcomes across a representative population relative to some baseline. The use of a
population was the way of accounting for variability in patients. The baseline essentially
represented a reference risk level outside the particular health management context where
the technology under consideration was used. We wanted outcomes overall to be better
than the baseline, and the variability in outcomes (especially in the direction worse than the
baseline) to be minimum.

What we essentially did was define patient safety of the technology as a relative risk
accounting for variability in risk outcomes. We maintained the health metrics as our risk
measure for individual patients, allowing us to keep patient outcomes central to the model
of patient safety. The baseline represented a reference risk level (in terms of health metric
outcomes) when the technology under consideration was not in use. When a set of baseline
values was used, this accounted for variability in risk in the baseline case. The health metric
outcomes from ‘testing’ the technology on a representative population represented the new
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Figure 6.10: Illustration of health metrics as risk measures.

risk level as a result of introducing the technology accounting for the inevitable variability
as well as the potential for the technology to introduce new risks.

Determining whether this risk was acceptable or not was done through comparing
the new risk level to the baseline risk level (using the population-level risk metric). The
population-level risk metric essentially measured how well the technology was able to help
in controlling the original (health) risk it was designed for, and how well this was balanced
with introducing newer (health) risks. The acceptable risk criteria determined the boundary
between acceptable and unacceptable in terms of this population risk metric.

Utility to Stakeholders

The main utility to stakeholders of the model of patient safety is in making precise and
explicit the pieces that go into reasoning of patient safety of a particular technology. The
idea of the patient safety criteria detailed these pieces. The health metrics of concern and
their interpretation must be identified. These determine the hazards to be ‘controlled’ by
the health management context in which the technology is to be used. A baseline must be
established to compare outcomes for the new technology to. Variability must be accounted
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for in all pieces (especially the patient population) and it must be stated how this is done.
How the baseline and the new risk level are to be compared must be established.

With these pieces explicitly stated, stakeholders can have meaningful discussions about
the criteria to update or modify it. This is important in allowing all stakeholders to reach
a common understanding of safety for a particular technology. In addition, with the right
information, a technology can be assessed for patient safety at various stages of the design
by a designer or regulator; the parameters affecting the dynamics of the technology can be
linked to risks and used in safety-guided design; different subsystems of the same health
management context can be considered making assumptions about the behavior and vari-
ability of other subsystems; and the sensitivity of a specific design to assumptions made in
any of the criteria pieces can be explored.

Implications and Applications
The core ideas were developed in a very general context, focusing more of defining patient
safety than design issues. Below is a recap of the developments that focused more on
design issues in the context of body sensor networks, an emerging technology that embody
the complexity-increasing trends of autonomy, integration, and mobility.

Patient Safety Analysis of Body Sensor Networks

One of the keys to reducing patient safety issues is the identification and controlling of
hazards. Hazards are those design features that are related to the risks. In the case of
medical technologies, we need to link the outcomes to design parameters.

Focusing on the functional abstraction approach of non-linear paradigms systems safety
paradigms, chapter 4 indicated that a way to link outcomes to design parameters that it was
first important to understand the black-box behaviors. This allowed for reasoning about
the properties of different possible implementations. With the black-box behaviors for the
subsystem of interest, one could then explore the relationship between variability of the
parameters and variability in the population level risk in order to determine the acceptable
behaviors.

Chapter 5 provided a black-box model for BSNs, and used this model to develop a set
of generic behaviors related to the intrinsic behaviors of the BSN. Using these behaviors,
it developed a generic set of hazards at the human-to-BSN and BSN-to-decision-making
interfaces, where were the interfaces where the BSN could affect the health management
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system in ways that produced undesirable outcomes. It then showed that the black-box
parameters of interest for safety-guided design for BSNs were those related to the hazards.
In essence, in order to derive the hazard criteria, one had to explore the relationship between
the variability in the hazard-related parameters and the population risk as shown in chapter
4, and use the acceptable risk criteria to determine the acceptable behaviors (which would
then be the hazard criteria). One could then examine the parameters of different design
choices and see if they resulted in hazards or not. In the spirit of systems safety, there was
a discussion of potential causal factors for the hazards and some points to keep in mind in
a safety-guided design of BSNs.

Desing Tools for Body Sensor Networks

One of the main points that came out of the patient safety model development in chapter 4
was the importance of variability. From the perspective of the BSN, the patient and their
environment is the operational environment, and this is the significant source of variability
that the BSN must account for. In particular, physical interactions are especially important
to consider, since the BSN relies on these interactions to achieve its function, but these
interactions can also interfere with the intended function. The tools the BSN designers use
must therefore enable exploring these issues.

Chapter 6 showed a proof-of-concept tool that embodied this features for inertial BSNs.
In particular, it used realistic 3D models of humans and their motion captured using 3D
scanners and motion capture equipment as the human model. In addition, it provided inter-
faces for connecting these human models with virtual inertial sensing models to enable the
explorations necessary for understanding the effect on physical issues on sensor dynamics
and potentially on hazards. It’s main advantage is in providing more appropriate environ-
mental models and an interface to allow these model to interoperate with sensor models. In
addition, it allows multiple issues (like processing, communication, and energy consump-
tion) with sensors to be considered in the same software framework, providing more insight
on overall sensor dynamics than tools that focus on individual issues.

Connecting the Different Pieces
Some links were made between the different pieces, but the focus of the dissertation was
not how they all fit together. The brief discussion below puts the pieces together in the
context of BSNs for the example in exercise monitoring for the artificial pancreas.



Taking Stock 179

Example 6.3: Exercise Detection and Monitoring in the Artificial Pancreas

Recall that exercise and other intense activities change the operating mode of
human physiology in order to accommodate the increasing demands such activities
place on the body. Breton et al. showed that knowledge of exercise as capture by
a body-worn sensor (in this case a heart-rate sensor) can be used to improve auto-
mated glucose management during exercise [20]. In addition, Chen et al. showed
that the combination of inertial sensing and heart-rate can be used to detect variables
related to intensity of activity like energy expenditure [27]. Let us assume that we
would like to build a BSN that senses motion to provide exercise information to the
decision-making software in the artificial pancreas.

Patient Safety Criteria The first thing we need according to the patient safety
model in chapter 4 is the patient safety criteria. Central to this is the health metrics.
In terms of functional and side-effect outcomes, we are interested in blood glucose
levels. We would have metrics associated with blood glucose levels. If we had in-
formation on the choice of materials of the BSN components as well, we would have
metrics associated with physical interactions like potential for skin irritation.

Our system setup is made of up the BSN, the other pieces of the artificial pancreas
(the decision-making software and the pump), and the patient. We would need some
idea of how these pieces behave (black-box behaviors would do). We would determine
what our baseline population would be. In this case it could be information on health
metrics from artificial pancreas users without the exercise information. We would
come up with a population risk metric that would compare the outcomes from our
system to the outcomes from this population, and an acceptable risk criteria.

Safety Requirements for BSN With the criteria, we could characterize the BSN in
a black-box manner using mechanisms provided in chapter 5. With coarse models of
how behaviors of the system result in outcomes, we could explore the space of these
parameters and determine the acceptable behaviors using the acceptable risk criteria
to identify those parameter values that result in acceptable risk. This exploration could
also a combination of models and data from pilot trials if feasible and cost-effective.
If the criteria needs to be relaxed to come up with a reasonable acceptable behavior
region for our requirements, we would have this discussion with health practitioners
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and/or the regulators, or we could make a choice and document our rationale. With
these requirements, we would have the hazard criteria for our BSN components.

System Design Explorations With the hazard criteria, we would then like to de-
velop design that meet the criteria. A tool like BodySim in chapter 6 would allow us
to test details of different virtual prototypes across a population of subjects to under-
stand how robust our algorithms are to physical and communication issues. We may
end up with an algorithm that is agnostic to where the sensor is placed, or the depends
on a particular location but presents information to the decision-making software in
a way that avoids hazards. We would identify promising designs by examining the
sensor dynamics related to the hazard parameters and computing what parameter val-
ues they result in. If the values satisfy the criteria that the particular design point is
acceptable, and if not then we would reconsider the design. Once we have what we
think is an acceptable point, we would like to test it in a higher fidelity scenario to
increase our confidence in the design.

Assessment Once we have an acceptable system, or if we were given a candidate
system to examine, we gather information (through a real trial on an appropriate pop-
ulation) on how the system does with respect to the particular metrics in the assumed,
or intended environments. Once we have the information on the metrics, we would
compare them to the baseline metrics according the the population risk metric and de-
termine if its risk falls within the acceptable risk region. If it does, we would consider
the system acceptable for use. If not, we would understand how it failed to fall within
this region and use that information to help with a redesign. We could also have a
discussion on whether the criteria should be relaxed if the system is close enough to
the acceptable region.

From the above, we can see that the safety criteria is central to the design and evaluation
of the system. A key part of the criteria is the health metrics. First is the functional metric,
which indicates the ‘natural hazard’ the medical device must help control. The second is
the side effect metric, which acknowledges the possibility of the technology to introduce
newer hazards. Chapter 3 provides the mechanisms for specifying and discussing health
metrics. Chapter 4 provides the mechanisms for precisely and explicitly specifying the
criteria based on the health metrics. Even before a design, or during an assessment of one,
the criteria is available and can be discussed.
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The link between acceptable behaviors and the criteria made in chapter 4 then helps
a designer to develop requirements. For a system like the BSN, ideas in 5 help focus
on the important parameters. This allows designers and other stakeholders to refine the
requirements and the criteria, if necessary, to balance feasibility with potential for and
severity of mishaps. Once the requirements are developed, candidate designs can then be
explored. Since requirements are linked to the criteria, if the this process reveals the need
to alter requirements, then another discussion can be had about the requirements and how
this affects the criteria. A tool like BodySim presented in chapter 6 then allows higher
fidelity explorations of the behavior to refine and flesh out designs. If new issues arise, we
can always use the links to go back up the chain all the way to the criteria to see if needs to
be adjusted.
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Potential Future Directions

Every new beginning comes from some other beginning’s end.

Seneca

The developments presented in this dissertation are certainly not the final word on any
of the topics. Many of them present starting points for interesting future work. Below are
some thoughts on possible future directions.

Health Management Model
The structure and interpretation of health metrics presented in chapter 3 provide an interest-
ing framework for examining existing health metrics, the rationale behind them, and how
their interpretation factors in intervention decisions. It is provides a scheme for developing
health metrics for emerging technologies. It would be interesting to explore this scheme
for a number of diverse health metrics.

In particular, the idea of proxy metrics that are readily observable during health man-
agement and their relationship to other metrics that would be used to measure actual health
management outcomes but are not feasible to measure frequently. For example, in can-
cer treatment, many of the ‘metrics’ for tracking progress require imaging, blood tests, or
biopsy analysis, each of which can be costly and in some cases uncomfortable for the pa-
tient to obtain frequently. A proxy metric, could be another variable that is easier to obtain
more frequently but provides enough information to help track effectiveness of treatment.

Also, the idea of the body as a natural safety-critical system seems an interesting one
to explore as a perspective for thinking about health and health management. In particular,
understanding its repair and robustness mechanisms, could help develop technologies that
work synergistically with these existing mechanisms, and reduce the potential for issue that
happen when there is interference between these and the medical technology.
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Patient Safety Model

One obvious next step is to use the framework to guide the end-to-end design of an emerg-
ing technology and organize its safety argument. This was beyond the scope of the disser-
tation. One such emerging technology where there are the necessary resources to do so is
the artificial pancreas. There are other areas like cardiovascular disease management. In
general, the areas that would benefit most are those for chronic disease management where
the patient is in consistent interaction with the health management system.

Another step is to work with stakeholders to see how this framework can be incorpo-
rated in guidance and policy provided by the FDA and how medical technologists can fit
the ideas into their specific work flows. The end-to-end case study would provide some
insights into how this might work. The FDA sometimes organizes mock submissions to
help test new approaches, and a mock submission of an emerging technology would help.
This is a process that could take quite some time, but is worth exploring.

Body Sensor Network Patient Safety Analysis

Similar to the above, an obvious next step is to work with a designer on an incorporating
these ideas into their workflow. In particular, it would be interesting to explore how the
hazard definitions can be used with formal verification techniques and other model-based
design approach to identify issues with designs before committing to particular implemen-
tation details.

BodySim

On-going work with BodySim is to provide a wireless communication model. Like, the
above, BodySim could be used in virtual prototyping explorations of different body sensor
networks including inertial sensors. The wireless communication model could actually
be used with body area networks as well, where part of the human model exists outside
of BodySim to account for effects of actuation. This interoperability with other models
would certainly be a key issue to explore to harness the advantages of BodySim. One
such integration is with the OpenSim [32] gait simulator target at simulating abnormal gait.
These gait models could be couple with virtual subjects in BodySim to prototype system
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for monitoring abnormal gait to help with identifying diseases that manifest as abnormal
gait or to help health management where improved gait is used as a proxy health metric.

The current efforts for BodySim focused more on providing the features and infrastruc-
ture. There is quite some work to be done on the user interface, and performance of simula-
tions. In addition, there is the question of whether BodySim should depend on Blender for
the 3D portions, or should use another, possibly more stable, but still accessible, platform
to support the physical model aspects. With the write collaboration, the physical modeling
could be written from scratch.

General Systems Safety
One interesting direction in the general area of systems safety is consider this idea that at
the core, most system safety techniques are dynamical-systems-based, but differ in their
views of emergent behavior. A review of paradigms, techniques, and the history of systems
safety using this framework would be useful to put various techniques in context and help
practitioners sort through the suitability of different techniques for various design tasks.
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