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Abstract
A metasystem is a shared ensemble of workstations, vector, and parallel machines

connected by local- and wide-area networks. The large array of heterogeneous resources in

the metasystem offers an opportunity for delivering high performance on a range of appli-

cations. Achieving high performance requires effective scheduling of system resources.

This dissertation explores one dimension of the scheduling problem— automatic

scheduling of data parallel computations in local-area metasystems containing worksta-

tions and multicomputers. Scheduling requires that the problem be decomposed into a set

of tasks and data and assigned to processors in a manner that reduces completion time.

Problem decomposition is known as partitioning and task assignment is known as place-

ment. Scheduling also requires that the best subset of available processors be selected. No

existing system solves all of these problems.

We show that scheduling can be performed automatically, efficiently, and profitably

for a range of parallel computations in this environment. A framework has been developed

to study the scheduling problem. The framework implements several scheduling heuristics

that automate processor selection, partitioning, and placement. At the heart of the frame-

work is a model for representing program and system resource information. From this

information, a set of cost functions are constructed to predict computation and communica-

tion costs that guide the scheduling process. Scheduling results in a load balanced decom-

position of the problem at an appropriate computation granularity.

A framework simulator called Prophesy and a framework implementation in the

Legion parallel processing system called Prophet have been completed. The Legion imple-

mentation has been applied to a number of real data parallel applications. The results indi-

cate that excellent performance is obtained, scheduling overhead is small, and the costs of

heterogeneous parallel processing, format conversion and routing, can be tolerated. A sim-

ulation study confirms the performance results and is validated by the experimental results.
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Chapter 1 Introduction

Parallel processing in a heterogeneous network environment has become an attrac-

tive option for delivering high performance on a range of applications. Interest in distrib-

uted parallel processing has been based on advances in three technology areas, local- and

wide-area high performance networking [4][6][19][43][81], toolkits that enable network-

based parallel processing and job multiprogramming [11][52][73][83], and parallel compi-

lation techniques for distributed-memory MIMD computers [12][33][41][57][76].

In this thesis we consider a distributed computing environment known as ameta-

system. A metasystem may contain high performance workstations, parallel computers, and

vector computers connected by one or more networks, see Figure 1.1. This ensemble of

machines presents a large aggregate computing resource including memory, cycles, and

communication bandwidth. For this reason a metasystem has a great potential for parallel

computing.

An important characteristic of a metasystem is that it exhibits heterogeneity of

many types— including hardware, operating system, file system, and network heterogene-

ity. Heterogeneity poses a challenge in that it must be managed to enable the parts of the

metasystem to work together, but it also presents an opportunity— the variety of different

resources suggests that it may be possible to select the best resources for a particular prob-

lem. The variety and amount of computing resources in the metasystem offers a great
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potential for high performance computing.

Scheduling is critical to realizing the potential for high performance. Scheduling is

a difficult problem — the general problem is NP-complete — and effective heuristics that

automate scheduling must be used. One of the primary drawbacks of current tools and sys-

tems is that they offer limited scheduling support. The programmer is responsible for prob-

lem decomposition across the set of heterogeneous processors. This includes partitioning

the problem into tasks, selecting processors, and assigning tasks to processors. This tedious

and often machine-dependent process has limited the programming of high performance

codes to expert programmers in this environment. It is our thesis that scheduling can be per-

formed automatically, efficiently, and profitably for a large class of parallel computations

in the heterogeneous environment.

In this thesis we consider one dimension of the scheduling problem— the schedul-

ing of data parallel computations across networks of heterogeneous workstations and mul-

ticomputers in a local-area metasystem as depicted in Figure 1.1. Data parallelism is a

widely used paradigm for expressing parallel computations and is common to problems in

scientific computing. It is an attractive paradigm due largely to the conceptual simplicity of

the underlying computational model and the relative ease of implementation. A data paral-

lel model known as SPMD (single-program-multiple-data) has been adopted. The SPMD

model been shown to have an efficient implementation in MIMD computers and worksta-

tion networks [41].

M

Shared Memory

Workstations

Vector Machine

Mesh-based multicomputer

Network backbone

Hypercube-based multicomputer

Figure 1.1: A typical metasystem
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We deal with two forms of heterogeneity in this metasystem environment, different

processor capabilities (e.g., peak Mips and Mflops) and communication capacities (e.g.,

latency and bandwidth). Scheduling exploits differences in both processor power and com-

munication capacity. We also treat another source of heterogeneity, data format conversion,

and show that this overhead can be amortized in many cases.

We assume that the metasystem is asharedresource in which computing resources

may be committed to other users. This means that resource availability cannot be predicted

at compile-time and scheduling must be performed at runtime. It is the shared nature of the

metasystem that provides one of its principle benefits— a low-cost computing resource.

We have developed a three stage framework that has been used to study the sched-

uling problem in heterogeneous environments, see Figure 1.2. The framework automates

scheduling with the objective of achieving reduced completion time while keeping runtime

scheduling overhead small. Other metrics such as maximizing throughput through the

metasystem or minimizing the cost of charged resources1, are not considered in this thesis.

Scheduling is performedstatically although a dynamic scheduling capability is compatible

with the framework. The framework is not tied to current network or computer technology

— it will transition to new technologies as they become available. The framework only

requires that cost information about a new network or machine technology be provided.

Resource availability is the first stage of scheduling and determines the state of the

available processing resources on the network. Partitioning and placement form the mid-

dle stage and are the heart of the scheduling framework. Partitioning divides the problem

1.  If some metasystem resources belong to someone else, we may be charged for their use.

Resource
availability

Partitioning
and

Placement
Instantiation

Figure 1.2: Three stage scheduling framework
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into a set of tasks and data, and selects the best processors to use from the available set.

Placement assigns tasks to processors. An example of partitioning and placement is given

in Figure 1.3— the problem has been decomposed into four tasks (circles) and four asso-

ciated data regions (shaded rectangles), and the tasks are assigned to four processors

(squares) with one processor not used. Instantiation initiates the data parallel computation

using information provided from the middle stage. This thesis deals principally with the

middle stage, partitioning and placement. The framework may be implemented within any

parallel processing system that can provide a mechanism for determining resource avail-

ability and for performing instantiation.

Partitioning is based on achieving an appropriate computation granularity and load

balance. An appropriate computation granularity is achieved by selecting processors based

on problem characteristics. For example, a small problem will not be able to effectively

utilize a large number of processors. This is especially true in a workstation network envi-

ronment. Constraining parallelism is often needed in this environment due to high com-

munication costs. Load balance is needed to ensure that no processor becomes a

bottleneck. This is important in a heterogeneous environment composed of processors

with different computational capacities. Placement is based on reducing communication

costs. Other metrics for task placement such as memory constraints are the subject of

future work. Tasks are assigned to processors using a technique known asco-scheduling.

Figure 1.3: Scheduling a data parallel computation
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Co-scheduling uses knowledge of the application communication topology and network

topology to reduce communication costs such as contention and routing.

Partitioning and placement are guided by cost-based heuristics that use information

about the network resources and the computation. Information about the system resources

is defined by a heterogeneous network model and information about the data parallel appli-

cation is defined by a parallel computation model. A set of runtime cost functions that pre-

dict the cost of communication and computation are constructed from this information.

Using this information, scheduling can make partitioning and placement decisions that are

predicted to deliver reduced completion time.

An implementation of the framework in the Mentat-Legion parallel processing sys-

tem has been completed. Mentat is an object-oriented parallel processing system developed

at the University of Virginia [33]. Mentat-Legion is an intermediate form of the Legion sys-

tem— Mentat is currently being converted to a system (Legion) that will support a wide-

area capability. Mentat and Legion are described in the next chapter. The framework imple-

mentation is calledProphet and has been successively applied to a number of real data par-

allel codes. Using Prophet we demonstrate that computation granularity, load balance, and

co-scheduling are all necessary for achieving reduced completion time and ignoring any

one of these can lead to a large increase in execution time. We also show that runtime sched-

uling overhead is small and the costs of heterogeneity, data format conversion and routing,

are tolerable. The performance of the scheduling heuristics have also been confirmed in

simulation using theProphesy simulation system. The simulation results indicate that the

heuristics have excellent average-case behavior and can be expected to produce execution

times within 10% of optimal over 90% of the time.

The organization of this thesis is as follows. Chapter 2 presents related work in

scheduling parallel computations, distributed systems, and metasystem computing. Chap-

ter 3 describes the heterogeneous network model, resource availability, and the parallel

computation model. Chapter 4 addresses the partitioning and placement problem and pre-
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sents two heuristic solutions. Chapter 5 describes the implementation of Prophet in the

Mentat-Legion parallel processing system. Chapters 6 and 7 present simulation and exper-

imental results using Prophet. Chapter 8 provides a summary and future work.
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Chapter 2 Background

This chapter presents related work in three overlapping areas, scheduling, distrib-

uted systems, and metasystem computing. Scheduling is a well-studied topic in and of itself

and we present a portion of this vast literature. Distributed systems is also a large and active

research area. We present some fundamental results and recent trends in distributed systems

research. Finally research in the emerging area of metasystem computing is presented.

Work in scheduling and distributed systems has laid the foundation for this new area. We

discuss these areas in turn.

2.1   Scheduling

Scheduling is the process of mapping units of work to processors. Research in

scheduling parallel computations generally falls into one of two categories— scheduling a

directed-acyclic graph (DAG) [1][22][59][97], or scheduling a static-task graph (STG)

[9][10][54][80]. The DAG-based precedence graph often arises from the parallelization of

sequential code. In the DAG the nodes represent computations, typically fine-grained, and

the arcs represent data dependencies. Scheduling an arbitrary precedence graph is NP-

complete forP>2 processors [87]. Polynomial time algorithms exist for tree-structured

DAG’s if the nodes are unit time computations and communication is ignored [1], for lin-

ear chains [9][65], and when the maximum communication cost is less than the smallest
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node computation time and there are sufficient numbers of processors [1]. The DAG

encodes temporal information about the computation but may fail to capture the commu-

nication structure of the application when it is implemented as a collection of processes.

In the STG the nodes represent modules or tasks, typically coarse-grain, and the

arcs represent communications. There are two variants of the STG, the module assignment

graph introduced by Stone [80] for non-precedence-constrained sequential programs and

the communication graph for parallel computations. Scheduling an arbitrary STG of the

first type is NP-complete forP>4 processors [80]. Polynomial time algorithms exist for

restricted STG’s, trees [9], series-parallel graphs [86], and linear chains [9]. The STG cap-

tures the communication structure of the application, but loses the temporal information

contained in the DAG. Many scientific problems are naturally expressed by the second

type of STG — collections of communicating processes with regular precedence and com-

munication relationships. Consequently, the STG is a natural way to express single-pro-

gram-multiple-data (SPMD) computations. The scheduling model adopted in this thesis is

based on a SPMD model of computation. A model that attempts to capture the advantages

of both the DAG and STG is the temporal communication graph (TCG) [55] though the

efficacy of this model has not yet been demonstrated on real parallel computations.

Scheduling parallel computations has two parts, partitioning and placement. These

two parts are often accomplished in several steps. Partitioning determines the schedulable

work units and placement assigns these work units to processors. Scheduling is one of the

most overloaded terms in the literature. In the distributed systems literature, scheduling is

often synonymous with placement only. In the operating systems literature, scheduling is

the process of deciding which task will run next. Placement is also called mapping, alloca-

tion, assignment, and embedding in the literature.

Scheduling techniques for parallel computations can be classified by the target

environment— shared-memory MIMD (SM), distributed-memory MIMD (DM), or dis-



9

tributed systems (DS). Partitioning and placement are performed differently in these envi-

ronments.

Scheduling approaches can also be categorized bywhen the scheduling decision is

made, compile-time (CT) or runtime (RT), and by whether the decision is static or

dynamic. A static scheduling decision does not change while a dynamic scheduling deci-

sion may change at runtime. The possible couplings are CT-static, RT-dynamic, and RT-

static. The advantage of runtime scheduling is that is possible to consider resource avail-

ability and problem information known only at runtime. Dynamic scheduling has the

added advantage that it can respond to changes in resource availability and problem work-

load distribution during the course of execution. The penalty for runtime scheduling is

overhead. On the other hand, compile-time scheduling schemes have the advantage of low

overhead but often require precise program and resource availability information. We pro-

vide a taxonomy of scheduling approaches in Figure 2.1 and discuss them in the subse-

quent sections. We show only distributed schemes for runtime scheduling. We discuss

only a subset of the approaches given in Figure 2.1.

2.1.1  Compile-time Scheduling

Compile-time scheduling is a static scheduling process. Most approaches begin

with a labelled graph that must reflect accurate costs for computation and communication.

Graph nodes represent computation and arcs represent communication cost. The STG and

DAG models define nodes and arcs somewhat differently. Stone presents a STG model

where nodes are modules of a sequential non-precedence-constrained program and arcs

are module invocations. He extends this graph to represent all possible assignments of

modules to processors. A network flow algorithm is then used to solve the module assign-

ment problem forP=2 processors [80]. Much of the research on scheduling STG’s is

based on this early classic work. Bokhari extends Stone’s work to allow module relocation

during execution [9]. Modules are executed in one or more phases and it may be advanta-
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geous to relocate modules between phases. Bokhari also presents a polynomial time algo-

rithm for tree-structured graphs that is based on Djikstra’s well-known shortest path

algorithm. This algorithm applies for arbitrary numbers of processors.

An alternate formulation of the STG for parallel programs is a representation of

the communication graph [7][54]. Here the nodes are tasks or processes and the arcs repre-

sent communication. The problem of assigning such a graph to the processors of a parallel

machine has been well studied [48][56][70]. The placement of tasks depends on the com-

munication topology of the graph and the interconnection topology of the parallel

machine. Fortunately the topology of many parallel computations falls into a small set of

regular topologies. Algorithms for placement have been developed that exploit the topol-

ogy of the program and the topology of the interconnect. This is sometimes referred to as

CT RT

Static Static Dynamic

SM DM DS SM DM DS

self-scheduling

self-scheduling
dynamic LB

migration

clustering
critical path scheduling

work queue

placement

placement

network flow algorithms
embedding

dynamic LB

Figure 2.1: Taxonomy of traditional MIMD scheduling techniques. The
bold letters indicate where our approach falls.

MIMD scheduling
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graph embedding. The objective is to minimize communication hops and link contention.

Our model has been designed to utilize these embeddings.

A great deal of research into compile-time scheduling of precedence-constrained

DAG’s has followed Stone’s initial work [80]. We present a small part of this vast litera-

ture. Research has centered on the development of polynomial time algorithms for special

cases of the general problem. Bokhari has developed a polynomial time algorithm for lin-

early-dependent chains on host-satellite systems that contain a time-shared host and a ded-

icated satellite processor [9]. This algorithm was subsequently improved by Nicol and

O’Hallaron [65].

McCreary and Gill have developed a graph clustering technique that takes a fine-

grain DAG and produces a coarse-grain graph suitable for execution on a parallel machine

[59]. This technique is useful for certain graph structures such as linear chains or series-

parallel graphs. Yang and Gerasoulis have developed a scheduling algorithm for coarse-

grain DAG’s in which scheduling is performed in four phases: clustering, cluster merging,

physical mapping, and task ordering [97]. The nodes of the DAG are tasks. Clustering is

the mapping of tasks to clusters and attempts to trade-off parallelism and communication

overhead. Cluster merging is performed when the number of processors is less than the

number of clusters and is done to give load balance. Mapping assigns clusters to proces-

sors based on topology and locality. Task ordering within a cluster is done to minimize

time on the critical path. It should be mentioned that each of these sub-problems are NP-

complete and heuristics are presented.

El-Rewini and Lewis have developed a scheduling algorithm for coarse-grain

DAG’s [22]. The algorithm is a two phase process: clustering and communication sched-

uling. Communications are scheduled using topology and routing information. Contention

is considered on a link by link basis and is used to avoid high congestion routes. The

authors do not consider contention when making clustering decisions. This is probably
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because they are more interested in compute-intensive problems in which a precise char-

acterization of communication costs and contention is less important.

2.1.2  Runtime Scheduling

Compile-time scheduling approaches work well when accurate cost information is

available statically. It may not possible to obtain accurate static information for computa-

tions with data- or control-dependencies or when the processing resources are shared with

other users. Runtime scheduling can respond to changes in resource usage and workload

characteristics. Information about the computation and the state of processing resources

can be exploited by deferring scheduling decisions until runtime. Runtime scheduling has

used extensively in distributed systems due to the need to support sharing of processing

resources. Runtime scheduling in multiprocessors and multicomputers has also been an

active area of current research.

A major difficulty with static scheduling is that it is unable to respond to load

imbalance due to problem and system characteristics. Irregular data-dependentcomputa-

tions often have this property. A runtime scheduling technique known as self-scheduling

[84] has been developed to address this problem. The basic idea is that instead of a fixed

assignment of work to processors, the processors request work from the system when they

are finished with their previous task and are idle. The goal of self-scheduling is to try to

have the processors finish at the same time. This technique works particularly well for par-

allel loops with a high execution variance among different iterations. Variations of this

technique have been proposed such as tapering [58][69] in which the system adaptively

adjusts the size of the work chunk that is assigned based on problem characteristics. If

there is little variance in the computation, assigning larger chunks of work is more effi-

cient due to the overhead of work assignment.

Self-scheduling could be viewed as a static runtime technique in that once a pro-

cessor receives a unit of work or task it is executed to completion. On the other hand, the
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method is dynamic in the sense that there is not a single work distribution phase at the out-

set with predictable work assignments.

While self-scheduling and its variants attempt to avoid load imbalance, dynamic

load balancing attempts to detect and then correct the load imbalance. This is a very diffi-

cult problem that often arises in data parallel scientific computations [40][50][95]. Many

of these scientific applications have the property that the amount of computation per-

formed on a region of the data domain may change unpredictably during the course of

execution. Unstructured mesh problems and particle-in-cell simulations are two examples.

Dynamic load balancing strategies are used to redistribute the data domain in a manner

that attempts to load balance the processors and preserve communication locality.

One of the problems with dynamic load balancing strategies is that the communi-

cation costs needed to redistribute data may outweigh the benefits. This is particularly true

of centralized as opposed to distributed schemes. The detection of load imbalance may

also be expensive since this is often requires some form of global communication. A good

survey of techniques is given in [40]. Kumar et al have analyzed the scalability properties

of a number of dynamic load balancing schemes on a range of architectures [47]. Near

optimal load balancing strategies are presented and analyzed for the hypercube, mesh, and

networks of workstations.

Nicol and Reynolds have analyzed the dynamic load balancing problem at a much

coarser level [66]. The authors present a decision model for the application of dynamic

load balancing for a class of computations. This model is suitable for data parallel compu-

tations that exhibit well-defined phase changes. Dynamic load balancing may be required

between these phase changes.

2.1.3  Partitioning and Processor Selection

A number of researchers have studied the relationship between problem partition-

ing and the number of processors that can be used effectively [17][39][64][71]. Gupta pre-
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sents a runtime cost-based technique for determining the number of processors to apply to

a problem in a shared-memory multiprocessor [39]. Selecting the number of processors to

use provides a form of granularity control and determines the problem partitioning.

Cytron presents a method for determining the optimal number of processors to use under

the simplifying assumption that the communication cost is independent of problem size

[17]. Reed et al have studied the impact of data partitioning on the performance of stencil

problems [71]. Nicol has analyzed the partitioning problem for stencils to determine the

relationship between performance and a number of system parameters including the num-

ber of processors. All of this work is based on a multicomputer or multiprocessor environ-

ment— a homogeneous environment of dedicated resources. No implemented system in

the literature performs the processor selection process automatically. We have developed a

processor selection technique that is applicable to heterogeneous networks of shared com-

puters. It has been implemented and applied to real programs.

2.2   Distributed Systems

Much of the research in metasystem computing is based on advances in four

related fields of distributed systems research— distributed operating systems, scheduling

in distributed systems, toolkits for distributed computing, and parallel processing in dis-

tributed systems.

2.2.1  Distributed Operating Systems

An active area of research in distributed operating systems is the accommodation

of heterogeneity [8][67][68][98]. Many of these systems deal with heterogeneity of many

kinds including processor type and file system differences. Much of this research is con-

cerned with accommodating these heterogeneities in a transparent manner. Few of these

systems attempt to exploit heterogeneity since high performance is not a primary goal.

One particular problem in accommodating heterogeneity is of interest in our

research, data format conversion. Data format conversion must be performed efficiently if
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high performance is to be achieved [96][99]. Conversions are needed for floating point

format differences, alignment differences, byte ordering differences, and size differences.

The differences may be due to the hardware, operating system, or the compilers used. If

formats differ in the range of values that can be represented, it may not be possible to per-

form a transformation [98].

Data format conversion is handled in one of two ways, either a common format

such as XDR [82] is used or application-specific conversions are employed. A common

format requires both encoding and decoding of data while the application-specific conver-

sions are one-way only and are much less expensive. Our results indicate that the use of

application-specific conversions is about an order of magnitude faster than conversions

based on XDR. These results agree with results reported for the Mermaid system, a heter-

ogeneous distributed shared memory system that uses application-specific conversions

[99].

2.2.2  Scheduling in Distributed Systems

Scheduling in distributed systems is concerned with achieving an acceptable level

of system performance byload sharing. Under load sharing job workload is shared among

a set of hosts [21]. Jobs will be transferred from heavily loaded to lightly loaded proces-

sors. This is a weaker condition than load balance which insures that the processor queue

lengths are equal. The most common metric for studying scheduling performance in dis-

tributed systems is job throughput. Casavant and Kuhl present a taxonomy of scheduling

approaches in distributed systems [14].

Eager and Lazoswka develop a queuing theory model of adaptive load sharing pol-

icies for homogeneous systems consisting of a network of computers [21]. The jobs are

independent sequential tasks with Poisson arrival that do not communicate and no infor-

mation about the jobs is otherwise assumed. These load sharing policies consist of atrans-

fer policy and alocationpolicy. When a processor receives a job for execution, a transfer
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policy is used to determine if the job can be scheduled locally. If not, a remote processor is

chosen by invoking the location policy. A transfer limit provides stability on the load shar-

ing algorithm. The transfer policy is a simple threshold policy that is based on the queue

length and the location policy is asender-initiated scheme. The authors conclude that sim-

ple load sharing policies, e.g. location policies that gather a small amount of system state,

perform better than no load sharing, and almost as well as more complex policies that will

incur larger runtime overhead.

Mirchandaney et al [61] present a queuing theory model for heterogeneous sys-

tems that is an extension of [21]. The performance of a simple heterogeneous system con-

sisting of two heterogeneous cluster types was analyzed using threshold policies similar to

[21]. A simple sender-initiated policy outperforms a random policy that does not use any

information. Some results on choosing the threshold limits are also presented. The conclu-

sion offered by both Mirchandaney et al and Eager et al is that simple scheduling policies

perform best. But the results indicate that performance can suffer dramatically under high

load. For this reason andothers (see Section 2.2.4) load sharing is inappropriate for

scheduling data parallel computations that demand a large share of system resources.

2.2.3  Distributed Toolkits

A large number of toolkits have emerged that support scheduling in distributed

systems [52][73][98]. In contrast to distributed operating systems, these toolkits are nor-

mally layered on top of the existing base operating system and perform a single resource

management task, namely scheduling. These systems differ in scalability, load sharing

method, and job type supported. Both Utopia [98] and DQS [73] support both sequential

and parallel jobs. A parallel job may contain multiple tasks. DQS also supports PVM [83]

jobs. Condor [52] attempts to locate idle cycles and is targeted to long-running batch jobs

such as simulations.
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Condor also favors workstation autonomy — only idle machines can be selected

for remote execution, and jobs will be migrated if the selected workstation becomes busy.

Utopia, on the other hand, views all system resources as implicitly shared and will not

migrate jobs. Utopia also uses application resource requirements and load information to

match jobs to processors. Utopia is targeted to heterogeneous networks that may contain

thousands of workstations and implements scalable load sharing techniques based on a

clustering of processors. Both Utopia and DQS allow resources to be marked private and

removed from the shared resource pool. All of these toolkits are limited to workstation

networks and are not designed for metasystem environments.

2.2.4  Parallel Processing in Distributed Systems

Many of the assumptions made in scheduling sequential jobs in distributed sys-

tems are inappropriate for scheduling parallel computations. Parallel computations consist

of a set of related tasks that may communicate during the course of program execution and

often require full utilization of the available processing resources. These requirements vio-

late the assumptions of most load sharing algorithms for distributed systems [21]. Further-

more, these algorithms are designed to achieve high job throughput and not necessarily

fast completion time for a particular job or task. Data parallel computations, on the other

hand, often proceed at the rate of the slowest task and are typically scheduled to minimize

completion time.

A number of systems have been developed to support parallel processing in heter-

ogeneous distributed systems. These systems differ in the level of support that is provided.

Systems such as PVM [83], P4 [11], and Linda [12] provide the programmer with the

basic set of primitives needed for heterogeneous parallel processing but require that the

programmer operate at a fairly low-level. In particular, the programmer is responsible for

problem decomposition and task placement. PVM is the most widely used system for het-

erogeneous parallel processing. It provides software to manage a configuration of hetero-
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geneous hosts and a library that provides a basic message-passing capability to application

programs. PVM supports the notion of process groups and provides several group com-

munication operations, multicast, broadcast, and barriers. PVM also provides a set of data

conversion routines for scalar data types to support communication between heteroge-

neous hosts. PVM provides the necessary building blocks for heterogeneous parallel com-

puting, but the interface is low-level.

P4 supports a wider range of computation models than does PVM — including

typed message-passing, shared-memory, and monitors. The support of multiple models

makes P4 a larger and more complex system than PVM. P4 does support some higher-

level abstractions such as global reduction operations, but it is otherwise a low-level sys-

tem. Like PVM, the programmer must create and manage processes and use low-level

communication routines or shared-memory. P4 uses a common data format, XDR, to per-

form format conversions in support of heterogeneity. As an optimization, format conver-

sion is performed only when necessary.

Linda provides a higher-level abstraction for communication based on a shared

tuple space. The tuple space operates like a shared associative memory — read operations

are performed by extracting from the tuple space (out) and write operations by inserting

into the tuple space (in). Since the programmer is aware of the tuple space and must

explicitly manage its contents without compiler assistance, we place Linda in the category

of low-level systems.

All of these low-level systems provide a basic set of facilities that allow the pro-

grammer to execute parallel programs in a heterogeneous environment. There is minimal

support for problem and data decomposition — the programmer is responsible for creating

and managing processes, communication, and scheduling. While these systems accommo-

date heterogeneity to some extent, they do not exploit heterogeneity.

A number of systems that provide greater support for heterogeneous parallel pro-

cessing have emerged over the past few years [27][31][33][62][76]. These systems may be
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distinguished by the level of compiler and runtime system support for managing parallel-

ism and scheduling. Mentat [33] is an object-oriented parallel processing system. Mentat

programs are written in MPL, a high-level language based on C++. The programmer spec-

ifies the grains of computation by indicating that a class is aMentat class. A Mentat class

contains member functions of sufficient computational weight to warrant parallel execu-

tion of Mentat class instances. Instances of Mentat classes, known as Mentat objects, are

implemented by address-space disjoint processes, and communicate via methods. Method

invocation is accomplished via an RPC-like mechanism. A strategy for supporting data

conversion of arbitrary data types is discussed in [31]. Mentat also performs runtime

scheduling [37] based on Eager and Lazoswka’s adaptive load sharing [21]. Support for

scheduling data parallel computations in heterogeneous environments has been recently

added to the runtime scheduler [31][91] as part of this thesis.

Data parallelism is expressed in Mentat by defining a Mentat class that corresponds

to a SPMD task and instantiating some number of Mentat objects of this class. In Mentat,

the programmer is responsible for choosing the number of Mentat objects and decomposing

the data domain. Mentat does automate the placement of Mentat objects to processors but

does not use any program information to do so. Scheduling in Mentat is based on Eager and

Lazowska’s adaptive load sharing model [21].

Charm [76][77] is an object-based parallel processing system based on a message-

driven execution model. The grains of computation are specified by the programmer using

a language construct called achare. Chares resemble Mentat objects to a certain extent —

they encapsulate data, they have a well-defined typed interface that specifies the allowable

operations, and their operations are executed in a monitor-like fashion. Charm also pro-

vides runtime scheduling for chares. Chares are scheduled using an adaptive load sharing

algorithm that is based on the load of the processors that fall within a local neighborhood.

In Charm processors periodically exchange load information with the set of processors in

this neighborhood.
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Dataparallel C [41][62] is a high-level language and runtime system that supports

programming data parallel applications. Dataparallel C programs are written in a shared-

memory style using data parallel constructs. The compiler and runtime system handle pro-

gram and data decomposition. In Dataparallel C the basic unit of work is the virtual pro-

cessor and virtual processors are assigned to physical processors. The virtual processor

can be thought of as a basic unit of the data domain. The scheduling support is limited —

the programmer specifies how many processors to use. The runtime environment is tar-

geted to heterogeneous workstations and a dynamic load balancing strategy is provided.

A number of systems provide explicit support for scheduling data parallel compu-

tations on a network of heterogeneous workstations [5][13][16][33][62][76][78]. The

Dataparallel C runtime system implements a dynamic load balancing strategy for regular,

iterative data parallel computations. Each processor participates in a four stage dynamic

load balancing algorithm, load screening, exchange of load information, migration deci-

sion, and migration action. Load screening is accomplished by inserting timers around the

virtual processor execution code. The processor load is the average computation time per

virtual processor— this is known as the load index. This measure assumes that the

amount of computation per virtual processor is the same throughout the problem. The time

between successive load information exchanges is set to be a small fraction of the average

time taken to do a migration. Migrations consist of moving virtual processors from pro-

cessors with a high load index to processors with a smaller load index. Processors are not

free to migrate data to any processor since locality relationships in the problem domain

must be maintained. Dataparallel C is not applicable to the metasystem environment and

is suitable for regular parallel computations only. The system is further limited by the

assumption that the programmer specifies the number of processors to use.

Charm [76] solves a simpler dynamic load balancing problem than Dataparallel C.

In Charm tasks are assumed to be labelled with a task finishing time so a processor can

determine how much work the task has remaining. Tasks can be freely moved to any pro-
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cessor — this scheme will only work for problems that do not have communication local-

ity. One weakness is that the cost of migration is not considered.

The Paragon project [16] addresses the problem of static partitioning a data paral-

lel computation on a network of heterogeneous workstations. The Paragon system deter-

mines a load balanced decomposition and addresses the problem of choosing the number

of processors to use. The approach is based on benchmarking a number of common paral-

lel operations on all possible configurations of a heterogeneous network. This information

is used to form a performance prediction for a given code and a table-driven method for

choosing the best configuration of processors has been implemented. Most codes in Para-

gon will be constructed as combinations of these common parallel operations. Their solu-

tion will not scale to large numbers of processors in which benchmarking all possible

processor configurations is not feasible. Our approach requires a much simpler bench-

marking strategy in which the sequential code is benchmarked once on each machine type.

Attalah et al [5] have also studied the problem of processor selection on a network

of heterogeneous workstations. This work is targeted to compute-intensive data parallel

computations. The authors present a model of the processor’s capacity called the duty

cycle. The duty cycle is a load index that is defined as the ratio of cycles committed to

local, non-compute-intensive tasks to the number cycles available for compute-intensive

tasks. Only a single compute-intensive task will be scheduled on a processor at a time. If a

processor is already running a compute-intensive task, it is removed from the current pool

of available processors. Use of this processor for a new scheduling request will delay the

time at which this computation may begin. This is known asgang scheduling — the com-

putation will not begin until all selected processors are ready (i.e., have no currently run-

ning compute-intensive tasks). The scheduling algorithm tries to minimize the sum of the

weighting time and the expected computation time. This approach is limited by the

assumption that communication costs are negligible.
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Piranha [13] is an extension of Linda that supports a scheduling concept known as

adaptive parallelism. In adaptive parallelism the number of processors applied to a compu-

tation may shrink or grow during the course of execution. Processors will not be allowed

to leave if they are currently executing a task. Piranha is a master-worker model that is

based on Linda’s shared tuple space. One major problem with this approach is that the

master will become a bottleneck for large systems and this limits the scalability of this

approach.

2.3   Metasystem Computing

Metasystem computing is a natural progression from the research in parallel pro-

cessing and distributed systems. Many of the issues inherent in metasystem computing are

described in [27][45][46]. These issues include code matching, scheduling, programming

environments, and performance evaluation. Code matching defines an affinity between a

schedulable program component and a machine type. A class of programs suitable for

metasystem computing contain several large-grain code modules that may exhibit differ-

ent types of embedded parallelism or affinities. The benefit of exploiting program affini-

ties for specific applications has been demonstrated by a number of research groups

including [24][60][63]. In a global climate model code [60], decomposing two large-

grained program components across a Cray Y-MP and an Intel Paragon resulted in super-

linear speedup with respect to running the program entirely on the Y-MP or the Intel Para-

gon. The program component assigned to the Y-MP was highly vectorizeable and the

component assigned to the Paragon was data parallel. Other researchers have reported

superlinear speedup and the conditions for achieving superlinear speedup are discussed in

[20].

Many of the metasystem applications contain program modules that have been

optimized for particular hardware and a great deal of effort goes into glueing the program

modules together. These applications must manage the complex details of integration and
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heterogeneity as part of the code. A number of software systems for metasystem comput-

ing have emerged [34][42] to help facilitate program integration and metasystem execu-

tion. Schooner promotes integration by providing glue software that supports RPC, a

module description language for specifying and connecting modules, and a common data

format. Schooner is geared toward the integration of loosely-coupled modules and does

not have high performance as a stated goal. For example, the use of a common data format

adds significant overhead for tightly-coupled parallel computations.

Legion is a software framework that promotes integration but not at the expense of

high performance [34]. The high performance objectives of Legion have been inherited

from the Mentat project [31][33]. Legion supports efficient parallel and distributed com-

puting by adopting the Mentat model of computation and by providing runtime scheduling

support [32][36]. The goal of the Legion project is to provide a seamless virtual machine

that may contain computers connected by LANs, MANs, and WANs. The goal of efficient

wide-area computing separates Legion from most other contemporary systems.

A number of research groups are exploring a concept known assuperconcurrency

or heterogeneous supercomputing [15][18][23][26][27][45][88]. An important distinction

between this body of work and other efforts in parallel processing in heterogeneous net-

works is that superconcurrency is concerned with choosing the best subset of available

machines as opposed to load balancing. Machines are also assumed to be non-shared. In

the superconcurrency model, programs contain a number of large-grain modules called

code segments, and code segments contain a number of code blocks. Code segments are

assumed to be executed in a sequential fashion. There may be parallelism between code

blocks. The approach is based on two techniques developed by Freund [26], code profil-

ing, and analytic benchmarking.

Code profiling determines what types of code blocks or segments a program con-

tains. Code types include vectorizeable, decomposable, SIMD, or MIMD. Analytic bench-

marking determines how well codes of a given type are expected to perform on the
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different machine types. These techniques are not described in sufficient detail in the

superconcurrency literature. Freund also defines the assignment of code blocks or seg-

ments to machines as a mathematical optimization problem that minimizes completion

time subject to a cost constraint. This is a compile-time mapping problem and assumes an

unlimited supply of dedicated machines. Another limiting assumption is that communica-

tion between code segments is ignored.

The Augmented Optimal Selection Theory (AOST) extends Freund’s work in two

ways [15]— a finite number of machines is assumed, and a more accurate cost model for

code types is developed. Code profiling is used to produce an affinity value for each code

block/machine type pair. In Freund’s approach only the affinity for the optimal machine

type was benchmarked. The affinity for a non-optimal machine type was estimated to be a

scalar speedup value. The authors point out that this can lead to an underestimation of the

affinity for a non-optimal machine type. AOST also allows different machine models in

the same machine class. For example in a hypercube machine class, the iPSC/2 and iPSC/

860 would be treated differently. A decision algorithm for compile-time machine selection

is provided. This model also assumes no parallelism between code segments.

Several superconcurrency projects have relaxed the restriction of no parallelism

between code segments [15][23][44]. The Heterogeneous Optimal Selection Theory

(HOST) extends AOST to allow parallelism between code segments. This approach is

based on a programming paradigm known as Cluster-M [23]. Cluster-M is a graph-based

language for expressing task decomposition, code types, communication relationships,

and parallelism opportunities between code segments. Cluster-M is also used to graphi-

cally represent the available machines in a hierarchical fashion. This paradigm exposes the

communication topology and interconnection topology and is exploited by a mapping

heuristic. The authors claim that this technique can be used for finer-grain computations.

No results are reported for this heuristic. Iqbal [44] presents an optimal scheduling proce-
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dure for mapping a linear chain of code segments onto an array of heterogeneous comput-

ers.

All of these efforts are based on a static, compile-time assignment of program

modules to a set of dedicated heterogenous machines. Dietz et al have developed an

approach called Augmented Heterogeneous Selection (AHS) which relaxes the assump-

tion that the machines are dedicated. Two parallel specification languages, MIMDC and

SIMDC, are provided to allow users to express parallel computations. The execution cost

of the program is determined at compile-time by summing up the component costs. The

cost of computation and communication is determined for each machine by off-line

benchmarking. This cost estimate is adjusted at runtime to reflect current processor load.

The load adjustment as well as the estimate of computation and communication cost does

not consider a number of factors including memory costs and communication contention.

But unlike the earlier work in superconcurrency, they are not interested in optimal results,

but in a practical system that can be shown to deliver good performance.

Most of the applications developed for metasystem computing environments con-

tain large-grain heterogeneity. A number of researchers are looking at finer-grain problem

heterogeneity and have proposed reconfigurable hardware designs to support these types

of applications [2][51][89]. Watson et al introduce a SIMD/SPMD mixed-mode machine

designed for applications that contains SIMD computations coupled with SPMD computa-

tions. These applications typically cycle between SIMD and SPMD computations and the

hardware dynamically adjusts to the proper computation mode. Ligon and Ramanchan-

dran propose a reconfigurable architecture known as a multigauge architecture. The multi-

gauge architecture configurations are limited to bit-serial SIMD modes. It has been

successively applied to image understanding problems such as the DARPA image under-

standing benchmark [90].
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Chapter 3 The Models

This chapter presents the heterogeneous metasystem model and the parallel com-

putation model. These models lay the groundwork for the scheduling framework dis-

cussed in the next chapter. The metasystem model provides a representation and

organization of system resources and defines the important resource information needed

by the scheduling framework. This information is used in two ways — to determine

resource availability and to construct cost functions for computation and communication.

These cost functions are needed to support scheduling. In particular, a set of off-line com-

munication functions provide an accurate estimate of expected communication costs and

are used in the processor selection process. Similarly, the parallel computation model pro-

vides a representation for parallel programs and defines the program information also

needed by the scheduling framework. Program information is used to select the appropri-

ate communication cost function based on the application communication topology, to

construct the computation cost function based on the problem characteristics, and to pro-

vide parameters to the cost functions such as message size.

3.1   Metasystem Model

The metasystem model has two parts, the network organization, and the communi-

cation model. We present a scalable network organization for representing both local- and
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wide-area resources. We also present a communication model that is used to determine the

cost of communication between machines in the metasystem.

3.1.1  Network Organization

The basis of the network organization is theprocessor cluster. A processor cluster

contains a homogeneous family of processors that may include workstations, vector, or

parallel machines. A vector machine would be treated as a uniprocessor, i.e., a cluster con-

taining one processor. A parallel machine would be treated as a single cluster of proces-

sors. The processors in a processor cluster share communication bandwidth. Processor

clusters may range from tightly-coupled multiprocessors such as a Sequent in which pro-

cessors communicate via shared-memory, to distributed-memory multicomputers such as

a Paragon or loosely-coupled workstations such as a Sun 4 cluster in which processors

communicate via message-passing. This particular configuration is depicted in Figure 3.1.

The processor clusters are denoted by the large circles. Each processor cluster has aman-

ager denoted by the shaded circle. For multicomputer-based processor clusters the man-

ager would be an external host processor. The role of the manager will be discussed

shortly.

A network clustercontains one or more processor clusters and is denoted by the

boxes labelledN1, N2 andN3 in Figure 3.1. The essential property of a network cluster is

that it has private communication bandwidth with respect to other network clusters, and

shared bandwidth with respect to the processor clusters it contains. For example, the total

R

SGI ParagonSun4

SequentN1

N2

N3

Figure 3.1: Cluster-based metasystem organization
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available bandwidth in the metasystem of Figure 3.1 is the sum of the bandwidth inN1, N2

andN3, but the available bandwidth inN1 is shared between the Sun 4 and SGI processor

clusters. Each network cluster has anetwork cluster manager. Network clusters are con-

nected by one or morerouters. We use the term router to refer any type of network con-

nector such as a router, gateway, or bridge. The router introduces delay and adds

communication cost.

Communication between processors in different processor clusters is accom-

plished by message-passing. For simplicity we will assume that all communication is by

message-passing. This simplifies the presentation of the communication cost functions in

the next section. In shared-memory multiprocessors message-passing can be easily imple-

mented on top of shared-memory. Taken as a whole, the metasystem is a multi-level dis-

tributed-memory MIMD machine.

We will use the following notation throughout this and subsequent sections1:

 Ni =  the ith network cluster

 Ci =  the ith processor cluster

 Pi =  number of processors selected for Ci

 PT =  total number of processors selected

τ =  application communication topology

 b =  message size in bytes

 c1 .. c4 =  communication cost constants

 f () =  cluster-dependent communication function

 F() =  topology-dependent total communication function

 r1, r2 =  router cost constants

 e1 =  conversion cost constant

 v =  number of messages that cross between each processor cluster

The managers maintain important information about the network resources, see

Figure 3.2.2 The topology refers to the type of interconnect. Examples includebus (ether-

1.  We have not yet defined all terms, but they will be defined before their use.

2.  Not all of this information is used in the current implementation.
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net),ring (FDDI), mesh(multicomputer), andhypercube (multicomputer). The bandwidth

refers only to network clusters. Thepeak bandwidth is the maximum communication

bandwidth achievable for this network cluster assuming idle machines and network (e.g.,

10 Mb/sec for an ethernet-based network cluster). Theavail bandwidth is the amount of

the peak bandwidth available based on the current network usage. Latency is the end-to-

end cost of sending a 0 byte message between two machines within a processor cluster.

Because latency is primarily a processor cost it is associated with the processor cluster.

The machine type includesworkstation, multicomputer, multiprocessor andvector and is

associated with the processor cluster.

The communication functions provide an accurate measure of the expected com-

munication cost between machines in a processor or network cluster. The latency and

bandwidth values can be used to estimate communication costs if these communication

functions are left unspecified. Using these latency and bandwidth values provides an opti-

mistic communication cost estimate since contention is ignored. On the other hand, the

communication cost functions include contention and application/interconnection topol-

ogy.

The total processors is the number of physical processors that are contained in a

processor or network cluster. The number of processors in a network cluster is the sum of

the processors in each contained processor cluster. The available processors are a subset of

• Interconnection topology
• Bandwidth (peak, avail)
• Latency
• Machine type
• Communication functions
• Processors (total, avail)
• Memory (real, virtual)
• Aggregate power (mflops, mips)
• Manager

Figure 3.2: Cluster-based resource information
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the total processors. Processors become unavailable in two ways — they become reserved

by other users or the amount of available processing resources on a processor is too little

to be considered useful. Memory is the amount of real and virtual memory available

within the cluster.

Aggregate power is the cumulative processing power based on the peak instruction

rate for the processor type and the number of available processors. The amount of effec-

tive cumulative processing power is guaranteed never to exceed this value. For example

the amount of Mips or Mflops that a computation actually utilizes depends on the compu-

tation. We will see later that a more accurate problem-dependent measure of the effective

processing power is made available to the system. If such a measure is left unspecified

then the peak rates can be used as an estimate. The aggregate power for a network cluster

is the sum of the aggregate power in each contained processor cluster. Some of this

resource information must be adjusted to reflect current resource usage. This is discussed

in Section 3.1.3.

The manager refers to the name of the processor that stores and maintains the

information in Figure 3.2. A manager is associated with each processor cluster and net-

work cluster. One of the processor cluster managers is designated as the network cluster

manager. Managers maintain static information such as peak processing power and total

number of processors. The information in Figure 3.2 is kept in a resource or configuration

database along with a set of cost functions for communication, routing, and conversion

described in Section 3.1.2. Managers also monitor and maintain dynamic information such

as the available processors. All of this information must be up to date when a scheduling

request is made.

In this dissertation we have studied local-area metasystems such as in Figure 3.1

that contain multicomputers and workstations. We make the simplifying assumption of

one processor cluster per network cluster. This assumption allows us to present a simpler

communication and scheduling model and only limits workstation clusters since by defini-
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tion a network cluster can contain only a single multicomputer, multiprocessor, or vector

processor cluster. We now discuss several alternatives for wide-area organizations

although their implementation is the subject of future work.

Wide-area

A wide-area organization can be defined as a natural extension of the local-area

model of Figure 3.1. For wider-area metasystens, we define network clusters hierarchi-

cally as shown in Figure 3.3. For exampleN4 is a network cluster that containsN1, N2 and

N3. The hierarchical organization of Figure 3.3 forms a tree as shown in Figure 3.4 and

captures important communication relationships. The leaves are the processor clusters and

communication between processors in a processor cluster (e.g.,C1) does not incur any

routing penalty. If processors are in different processor clusters but in the same network

cluster (e.g.,N1), the cost is higher due to the single hop routing penalty. Each level of the

tree introduces an additional routing penalty.

The network cluster manager stores the names of the managers of contained pro-

cessor or network clusters to enable exchange of system information. The manager of a

network cluster stores an aggregate of the information associated with the network or pro-

cessor clusters it contains. For example, the total number of processors stored with the

manager ofN4 is the sum of the total number of processors ofN1, N2, andN3. The same is

true for communication bandwidth and aggregate power. The manager stores a copy of the

N4

N1

N2

N3 R

N7

R

N5 N6

R

Figure 3.3: Wider-area metasystem organization

N8
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information that is stored with its contained processor or network clusters. For very large

metasystems copies of this information can be kept on disk.

It is possible that a network cluster may participate in one or more configurations.

For example the user or system administrator may want to define a configuration that con-

tains onlyN1 andN2 and a different configuration that containsN1 andN3. Also note that a

configuration may be confined to contain a subset of available clusters. Both of these

capabilities should be supported in an implementation of the model.

It is unlikely that propagated state information can be kept up to date in the tree

organization. By the time information from the leaves reaches the root in a large metasys-

tem it will be stale. A tree also does not exhibit a high degree of fault tolerance. Instead we

propose a more scalable and fault-tolerant organization that is based on the concept of

sites. Instead of a tree at every level, we might organize clusters within asite as a tree, and

the sites themselves in a completely connected graph, see Figure 3.5 (the circles represent

network clusters as in Figure 3.4). Within each site, we would designate the root network

cluster manager to be thesite manager (shaded node). All site managers know each

other’s identity. A site is an organizational entity that contains network clusters. Examples

include universities or government labs. The idea is that only sites would need to maintain

up to date state information and the information would not be propagated between sites.

The disadvantage of this organization is that less global information is available.

N4 N7

N2N1 N3 N5 N6

C1 C2 ... ... ...

Figure 3.4: Hierarchical metasystem organization

N8
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Resource-based

For wider-area networks it may also be important to expose resource types and

make more global information available. For example a program that contains two

loosely-coupled data parallel computations might be best served by two Intel Paragons

even if they are located in different sites. Another example might be a highly vectorizeable

program that would be best served by a single Cray Y-MP that is located remotely.

Another possibility is a resource requirement — the computation must run on a set of

machine types. Locating a site that contains these machines may be difficult due to the

absence of global information.

One possibility is to designate a number of site managers asresource managers.

Resources managers maintain a table that contains an entry for eachmachine type and a

list of site managers that manage clusters containing machines of that type. Every site

stores the name of the nearest resource manager. Within this table the resource managers

would have to be stored in a manner that attempts to retain some locality information. For

example a selection of two Intel Paragons connected by a high-speed link may be prefera-

ble to two Intel Paragons that are connected by multiple, slower links. A resource-based

organization is most useful for wide-area configurations and programs with resource affin-

ities.

Figure 3.5: Site-based metasystem organization
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We speculate that the site-based organization with some mechanism for exposing

resource information is likely to be an effective model. Future research is needed to con-

firm this conjecture.

3.1.2  Communication Model

Estimating the communication cost between machines in the metasystem is a cen-

tral part of the partitioning and placement process. Selecting the appropriate number of

processors to apply to a problem depends on the communication cost. For example, choos-

ing too many processors results in high communication costs and increased completion

time. Partitioning uses a set of communication cost functions to estimate communication

costs for candidate processor selections. An accurate estimate of communication cost will

allow processor selection to determine the appropriate number and type of processors to

use. These cost functions are based on a message-passing model. We have developed a

model that accurately characterizes communication cost for the type of communications

that are commonly found in data parallel programs. This cost model also includes two

related costs inherent in heterogeneous metasystem communications, routing and data

conversion. These cost functions are constructed by off-line benchmarking and are stored

by each cluster manager for use at runtime. We begin by discussing the routing and con-

version cost functions since they are a part of the general communication cost function

discussed in the subsequent section.

3.1.2.1   Routing and Data Conversion

When a message crosses from a processor in one cluster to a processor in another

cluster it must cross a router or gateway. This introduces delay due to buffering and rout-

ing control. We define the routing cost from a processor in clusterCi to a processor in clus-

terCj to be:

Trouter [Ci, Cj] (b) = r1+r2 b (Eq.3.1)
and by symmetry,

Trouter [Ci, Cj] = Trouter [Cj, Ci]
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We use the square-brace notation to indicate that there is a different function for each

parameter value (in the braces) and the parenthesis to indicate the function parameters that

are passed at runtime. For example there is a different router function for each pair of clus-

ters and each router function depends on the message-sizeb passed as a runtime parame-

ter. The router cost includes a latency penaltyr1 and a per-byte penaltyr2 that captures any

delay or buffering required in routing ab byte message from a processor inCi to a proces-

sor inCj. This cost function is constructed by benchmarking and should be viewed as a

lower bound on the actual cost, since routers and gateways are highly shared resources

and can introduce unpredictable delays at peak times during the day. A highly loaded

router can drop packets and introduce high delays. We model the routing cost fromCi to

Cj by a single function even though the communication betweenCi andCj might actually

cross several routers or gateways depending on the network configuration. A more com-

plicated alternative would be to model the cost of each routerhop from Ci to Cj and form

the sum. This strategy would make benchmarking routing costs much more tedious.

One way to handle the non-determinism of routing overhead is to provide a set of

time-dependent routing functionsTrouter [Ci, Cj, t] which gives the average routing cost at

time t. At peak times during the day, the routing cost will be higher than at off-peak times.

A simpler strategy is to formTrouter [Ci, Cj] as the average obtained over some large time

interval that includes both peak and off-peak benchmarking.

Data format conversion may also be needed for messages that cross between clus-

ters. Conversion is the price paid for using heterogeneous processors. Since processor

clusters are homogeneous there is no need for conversion of messages communicated

within a processor cluster. Conversion is needed when communicating processors in dif-

ferent clusters support different data formats. Some common conversions include floating

point format, alignment, byte ordering, and size [99]. We have studied the most common

form of conversion, endian byte re-ordering, and determined this cost by benchmarking.

Conversion is paid as a per-byte processor cost by the sending or receiving processor. We
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define the conversion cost for ab byte message communicated betweenCi to Cj for a con-

version of typeconv_type to be (whereei is the per-byte cost of a processor inCi perform-

ing the conversion):

Tconversion[conv_type, Ci, Cj] (b) = e1b with (Eq.3.2)

Tconversion [conv_type, Ci, Ci] = 0

We will drop theconv_type in the remainder of the dissertation as we have limited our

study to endian conversion only.

In our experience conversion can be easily tolerated even for tightly-coupled par-

allel computations, if performed carefully. For example consider a simple broadcast topol-

ogy in Figure 3.6 and suppose the master and workers require format conversion. If

conversions are performed by the workers in parallel, the conversion overhead is more

easily tolerated. On the other hand, if the master performed the conversions they would be

serialized. The placement of conversions can greatly reduce the cost penalty that the appli-

cation experiences. Another possibility is to assign conversions to the processors that can

perform them most efficiently. In the current implementation, conversions are performed

by the fastest clusters and are assumed to be performed in parallel as in Figure 3.6. The

router and conversion cost functions will be a component of the communication cost

described in the next section.

master

workers

Figure 3.6: Broadcast topology
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3.1.2.1   Communication Cost Functions

Scheduling must consider the cost of communication in making partitioning and

placement decisions. Effective scheduling requires an accurate characterization of this

cost. Consider the simple case where all communication occurs within a clusterCi (i.e.,

only processors withinCi are used). The communication cost function forCi depends on

the application communication topology and the interconnection topology ofCi. The par-

ticular cost experienced by an application depends on twoapplication-dependent parame-

ters provided to this function: (1) the message size, and (2) the number of communicating

processors or tasks. There is a one-to-one relationship between tasks and processors in our

model — a single task is assigned to a processor. Throughout the dissertation we will refer

to communicating tasks and communicating processors, but these terms are synonymous.

The communication patterns for data parallel computations are often regular and

synchronous. In a synchronous communication all processors participate in the communi-

cationcollectively at the samelogical time. Scheduling exploits both of these properties.

Placement exploits regularity in the communication pattern and partitioning exploits the

synchronous nature of the communication.

Our communication model is based on regular and synchronous communications

that are performed repeatedly or iteratively during the computation. Although communi-

cations are logically synchronous they are asynchronous in the implementation. The syn-

chronous nature of the communication means that the average cost experienced by all

processors per iteration is roughly the same and is determined by the processor experienc-

ing the greatest cost. This observation has been verified by empirical data. We demon-

strate the generality of our communication model by representing four communication

topologies often found in data parallel computations:1-D, ring, tree, andbroadcast.

The 1-D is common in scientific computing problems based on grids or matrices

and is a class of nearest-neighbor topologies. In the1-D topology processors simulta-

neously send to their north and south neighbors and then receive from their north and
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south neighbors. Thering topology is common to systolic algorithms and pipeline compu-

tations. In thering topology communication is much more synchronous. A processor

receives from its left neighbor and then sends to its right neighbor.

The tree topology is used for global operations such as reductions. In the fan-in,

fan-out tree topology communication occurs in two phases. In fan-in a parent processor

receives from all of its children before sending to its parent, while children simultaneously

send to their parent. Once the root receives from its children the process is repeated in

reverse during fan-out.

Thebroadcast is a master-slave topology in which slaves simultaneously commu-

nicate with the master, and then wait to receive from the master. A broadcast is a global

communication that is a special case of thetree topology.

A set of accurate communication cost functions can be constructed for each cluster

by benchmarking a set oftopology-specific communication programs. These cost func-

tions determine the average communication cost, measured as elapsed time, incurred by a

processor during a singlecommunication cycle. A communication cycle corresponds to a

single iteration of the computation. For example in a single cycle of a ring communica-

tion, a processor receives one message from its left neighbor and sends one message to its

right neighbor. For each clusterCi and communication topologyτ, we have a communica-

tion cost function of the form:Tcomm [Ci, τ] (b, p).

The cost function is parameterized byp, the number of communicating processors

within the cluster, andb, the number of bytes per message on average. For example sup-

poseC1 refers to the SGI cluster in Figure 3.1. The cost functionTcomm [C1, 1-D] (b, p)

refers to the average cost of sending and receiving a b byte message in a1-D communica-

tion topology ofp SGI processors computed as elapsed time. This cost contains processor

and network costs. Processor costs include operating system, protocol, and context-

switching overhead. All of these may be quite large for communications on ethernet-con-

nected clusters. Network costs include time spent in the interconnection network. Multi-
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computer and multiprocessor communications often incur a much smaller processor and

network cost. The communication cost functions have a latency term that depends onp

and a bandwidth term that depends on bothp andb (c1 andc2 are latency constants andc3

andc4 are bandwidth constants):

Tcomm [Ci, τ] (b, p) = c1+c2 f(p)+ b(c3+c4 f(p)) (Eq.3.3)

The first two terms are the latency cost and the later two terms are the bandwidth

or per-byte costs. The latency and bandwidth terms both have a component that is inde-

pendent of the number of processors (i.e.,c1 andc3) — this would include processor costs

such as protocol stack overhead. Each term also has a component that depends on the

number of processors (i.e.,c2 andc4) — this captures contention effects. The function f

depends on the cluster interconnect and the application communication topology. For

example, on ethernet we often seef linear inp for all communication topologies due to

contention for the single ethernet channel. On the other hand, richer communication topol-

ogies such as meshes and hypercubes have greater communication bandwidth that scales

more easily with the number of processors. For example, we have observed that for tree

communication on a mesh,f is logarithmic in p. For a2-D communication on a meshf is

nearly constant and independent ofp since there is limited link contention. Each commu-

nication cost function is benchmarked using differentp andb values to derive the appro-

priate constants.3 The form of this equation has been validated by experimental data.

The communication cost functions depend on the communication system that will

be used. For example, on a network of workstations, communication using PVM [83], P4

[11], or raw TCP/IP will have different costs. A different set of cost functions would be

needed for these different communication systems. We use a communication library called

MMPS (Modular Message-Passing System) [38] which is used by the Mentat-Legion par-

allel processing system [33]. MMPS is a reliable heterogeneous message-passing system

3.  These cost functions are easily generalized for multiple processor clusters per network cluster.
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that uses UDP datagrams for communication among workstations and between processors

in different clusters, and NX for communication among processors in Intel multicomputer

clusters.

A suite of MMPS communication programs has been developed to perform the

benchmarking needed to derive the constants in (Eq.3.3). In these programs a set of com-

municating tasks is assigned to processors. Benchmarking has been done when the proces-

sors and network were lightly loaded. The placement of tasks depends on the

communication and interconnection topologies and is discussed in Chapter 4. The function

in (Eq.3.3) is much more accurate than the often-used communication cost function:

Tcomm = Tlatency + bTb (Eq.3.4)

This communication cost function is normally constructed from two communicating pro-

cessors and is therefore optimistic — it does not account for contention, topology, or

placement. This function provides a lower bound on the expected communication cost. In

the event that a communication cost function is left unspecified or unknown, the imple-

mentation must construct an approximate cost function based on available information.

This is discussed in Chapter 5. If minimal information is available then the cost function

of (Eq.3.4) may be used4.

If the candidate processors considered by scheduling occur within a particularCi

only, then the cost function in (Eq.3.3) determines the communication cost. If processors

in several clusters are considered, then communication will cross cluster boundaries and

two additional costs may come into play,Trouter andTconversion.Suppose that processors in

Ci are communicating with processors ink different clusters andvk messages cross

betweenCi and each clusterCk every communication cycle. The communication cost for

processors inCi becomes the sum of the previous cost equation in (Eq.3.3) plus several

new terms:

4.  This function will have to be adjusted to account for contention.
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(Eq.3.5)

Notice that each message sent betweenCi andCk pays a routing penalty and potentially a

conversion penalty. It is therefore important to reducevk. This is the job of placement dis-

cussed in Chapter 4. The experimental evidence indicates that reducing the number of

messages to cross the router can significantly lower communication costs. Since the router

shares the communication channel we have observed that it increases contention as though

the number of processors is increased. This is modelled ask additional stations fork clus-

ters, hence the parameterp + k for Tcomm. The value ofk andvk depend on the intercon-

nection and application topologies and the placement strategies used.

As an example suppose that processors inCi andCj are communicating in a1-D

topology (k = 1). Placement will arrange the communicating tasks such thatvk = 1. The

communication cost for processors inCi becomes (Cj may be written similarly):

Tcomm [Ci, τ] = Tcomm [Ci, τ] (b, p+1) + (Trouter [Ci, Cj] + Tconversion [Ci, Cj])

The cost equation in (Eq.3.5) gives the communication cost experienced by all processors

in a particular cluster. The total communication cost experienced by the application

depends on the application communication topology and is denoted byTcomm [τ]. The

total cost is a functionF of the individual cluster communication costs:

Tcomm [τ] = F{ Tcomm [Ci, 1-D], for all selectedCi} (Eq.3.6)

We have identified two classes of communication topologies that determine the

form for F, concurrent access topologies (CAT) andsequential access topologies (SAT).

These categories are similar to Cytron’s concurrent and sequential access paradigms [17].

In a CAT topology processors concurrently send messages asynchronously and then block

on message receipt. In a SAT topology processors block waiting for a message and then

send a message. In a CAT the communication channels are accessed concurrently while in

Tcomm Ci τ,[ ] Tcomm Ci τ,[ ] b p k+,( )

vk Trouter Ci Ck,[ ] Tconversion Ci Ck,[ ]+( )
Ck

∑

+=
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a SAT the communication channels are accessed sequentially. The total cost for a CAT

topology is the maximum of the cluster communication costs since the overall communi-

cation cost is limited by the slowest cluster. On the other hand, the total cost for a SAT

topology is the sum of the cluster communication costs due to the sequential nature of the

communication. Below we present some examples of SAT and CAT topologies:

Tcomm [1-D] = maxi { Tcomm [Ci, 1-D]} (Eq.3.7)

Tcomm [ring] = sumi { Tcomm [Ci, ring]}

Tcomm [tree] = Tcomm [Croot, tree] + maxi∈children{ Tcomm [Ci, tree]}

Tcomm [broadcast] = sumi { Tcomm [Ci, broadcast] (b, PT)*Pi}/ PT

The1-D is an example of a CAT topology and thering a SAT topology. Thetree topology

is more complicated. It has both concurrent communication (e.g., the children communi-

cate simultaneously), and sequential communication (e.g., communication is ring-like

from the leaves to the root). CAT topologies have a much greater potential for exploiting

the additional communication bandwidth available in processor clusters and have better

scaling properties. One notable exception is thebroadcast topology.

Thebroadcast topology is a CAT but is complicated by the fact that all processors

communicate with a single master processor. The absence of locality means that the com-

munication cost cannot be characterized as a simple function of the individual communi-

cation costs within each cluster. We have observed empirically that forbroadcast the total

communication cost depends on the total number of processorsPT, and in a manner that

depends on the number of processors contributed by each cluster. We compute the total

communication cost as a weighted average based on the number of processorsPi contrib-

uted by each clusterCi. This approximation turns out to be accurate in practice. This func-

tion has the property that the overall communication cost function converges to the

communication cost function of the cluster that contributes the largest number of proces-
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sors as the number of processors in this cluster is increased. This approximation makes the

broadcast look more like a SAT topology in terms of performance properties.

The benefit of this communication model is that very accurate topology-specific

communication costs can be estimated. We show that estimating these costs is key to

effective scheduling. Once these cost functions are constructed they are stored in a config-

uration database where they are used in the scheduling process.

3.1.3  Resource Availability

Because the metasystem environment is shared, both communication bandwidth

and processing resources may be committed to other users. We present a model for

resource availability that accounts for resource sharing. A complete implementation of

this model is outside the scope of this dissertation. We have implemented a useful subset

of this model and discuss the implementation more fully in Chapter 5. Resource availabil-

ity is implemented on top of existing operating system facilities and is limited by what the

underlying operating system can provide.

The availability of computation cycles is based on areservation policy. Processors

may become unavailable due to reservation by other users. For example on a multicom-

puter, a user may allocate and reserve a portion of the machine. NX operating system

facilities such aspspartand cubeinfoprovide information about processor reservation for

Intel multicomputers. In a workstation environment several systems have implemented

reservation schemes that permit workstation owners to withdraw their machines from the

shared set [35][52]. Machines also become unavailable if the amount of available compu-

tational resources is too little to be useful.

The availability of communication bandwidth is a more difficult problem. On mul-

ticomputers the amount of communication bandwidth is dependent on the size and loca-

tion of the machine partition. On workstation clusters the available bandwidth depends on

the current traffic profile. A network monitor can be used to estimate the available band-
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width. Two possibilities for a network monitor are anetwork tap or the use of probe mes-

sages. The former is not likely to be applicable to a wider-area system where the use of

taps compromises network security. Probe messages can be periodically sent out on the

network and their travel time recorded to estimate bandwidth. This strategy could also be

used to determine router costs dynamically. The reduced bandwidth estimate can be used

to adjust the communication cost functions. Recall that these cost functions were bench-

marked when the network was assumed to be lightly loaded and most of the peak network

bandwidth was available.

However network traffic is notoriously bursty and unpredictable and it is not clear

how useful this information would be in general. A better idea might be to provide aguar-

antee policy that serves as the dual of the reservation policy. A guarantee policy provides

some guarantees on the available resources. For example suppose we are able to reserve

all workstations in a processor cluster for some period of time and there are no other pro-

cessors on the same network segment. We would then have the peak bandwidth available.

Newer network technologies such as ATM [43] also offer the promise of dedicated band-

width on a per connection basis. In the current implementation no available bandwidth

information is collected. Thethermometer/thermostat mechanism in the Legion system

provides a way to specify the amount of computational resources that a single workstation

can commit to a Legion user’s application [34]. This is not enforced as a guarantee but

such mechanisms may be useful in providing predictability in resource sharing.

Another factor that influences both the available computational resources and

bandwidth is processor load. This is an issue for both workstation and multicomputer clus-

ters since most multicomputer operating systems now support multiprogramming of indi-

vidual processors. In the Unix environment processor load can be determined by a number

of operating system facilities (uptime, kmem). We define load as the run-queue-length

(RQL) over some time interval. This load index tends to be a good predictor of load in the
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near future. In particular it can usually identify machines with long-running CPU-inten-

sive jobs.

Processor load degrades both the available computational resources and effective

communication bandwidth. Since a large part of the communication overhead is processor

cost on workstation networks, the effective bandwidth is reduced by a loaded processor.

The load measure can be used to degrade the power rating of a processor and the aggre-

gate power of the cluster — for example a simple adjustment of 1/(RQL+1) can be made

to the power rating. So if RQL=0, we expect the peak processor power, and if RQL=1,

then we might expect to get 1/2 of the peak processor power since we are sharing the pro-

cessor with another job. While such an adjustment appears to be better than no adjustment

in some cases, we have determined that this adjustment is not dependable and can be fairly

inaccurate. It is also clear that this load measure should be used to adjust the communica-

tion cost functions. Research into the quantitative impact of processor load on available

computation and communication capacity is the subject of future work.

Another dimension to the resource sharing problem is memory. If a processor is

running memory-intensive jobs, then the effective performance of the processor will be

diminished due to paging. Normally there is a correlation between large memory demands

and CPU cycle demands but not always. Consequently, memory availability is another

variable that will impact resource availability. Treatment of memory availability is outside

the scope of this dissertation.

We have implemented a simple scheme for dealing with resource sharing. All pro-

cessors above a load threshold value are considered to be unavailable. This simple policy

provides two benefits, it avoids highly loaded machines, and it allows computation and

communication costs to be accurately determined. Accurate cost information is needed by

partitioning and placement. If the load threshold is small enough then all available proces-

sors in a processor cluster can be treated as equal in computation power. But the threshold

should be high enough to permit a sufficient number of processors to be marked available.
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Resource availability is determined by the managers in Figure 3.1. The manager of

a workstation-based cluster communicates periodically with each contained processor to

collect load information. These managers also manage processor reservations if such a

mechanism is provided. The manager of a multicomputer cluster can determine processor

load information by using the operating system facilities described earlier. This informa-

tion is then propagated as discussed in Section 3.1.1. An important issue outside the scope

of this dissertation is fault tolerance for managers. If a processor upon which a manager is

run goes down then another processor must be elected to become the manager. We have

implemented a simpler scheme for resource availability described in Chapter 5.

An important issue is how the scheduling mechanism interacts with the managers.

We have implemented a simple scheme suitable for a local-area environment described in

Chapter 5. We now discuss alternatives that have better scaling properties and are more

suitable for a wide-area environment. When a scheduling request for a data parallel com-

putation arrives at the local cluster manager, a number of sites are probed to determine

availability. The number of sites probed depends on an estimate of the amount of process-

ing resources that the request will need — the estimate must be conservative. For example

a large problem may require a large amount of resources so a sufficient number of sites

must be contacted. Collecting all the resource information contained in a very large sys-

tem is unnecessary for most applications. Using the resource availability of multiple sites

would allow a single data parallel computation to be scheduled across multiple sites. Later

we provide evidence in Chapter 6 that this may be feasible and also discuss some obsta-

cles to achieving this in practice.

If we are willing to confine the scheduling decision to use machines within a single

site then there is another alternative. Instead we send the scheduling request to a number

of sites and have the sites run the scheduling algorithm in parallel. Again the number of

sites would depend on an estimate of the amount of resources that are needed. Each site

would return a bid based on how effective the site estimates it would be for the problem.



47

Effectiveness is measured as predicted completion time, a quantity that our scheduling

method computes. The site with the smallest projected completion time would be selected.

3.2   Parallel Computation Model

We have adopted a dynamic single-program-multiple-data (SPMD) model for data

parallel computations. In the SPMD model a data parallel computation is performed by a

set of identical tasks orworkers, placed one per processor, each assigned a different por-

tion of the data domain. Since workers are assigned one-to-one to processors we will often

refer to processors, workers, or tasks interchangeably throughout this and subsequent

chapters. The model is dynamic to allow tasks to be instantiated at runtime based on the

processor selection. The SPMD model supports a computation granularity suitable for dis-

tributed-memory environments such as the metasystem. It has also been shown to be an

effective implementation model for data parallel computations on multicomputers

[41][57] and workstation networks [41].

Data parallel problems manipulate one or more data domains. We model the data

domain as a collection of primitive data units orPDUs, where thePDU is the smallest unit

of data decomposition. ThePDU is problem and application specific. For example, the

PDU might be a row, column, or block of a matrix in a matrix-based problem, a DNA

sequence in a gene sequence matching problem [30], or a collection of particles in a parti-

cle simulation. ThePDU is similar to the virtual processor [62] but may also arise from

unstructured data domains.PDUs are assigned to workers during partitioning. Scheduling

does not depend on the nature of thePDU but rather manipulatesPDUs in the abstract.

Two views of the data parallel computation are provided to the scheduling frame-

work — task view andphase view. In the task view, the computation is represented as a

collection of communicatingworkers or processes in a static task graph, see Figure 3.7(a).

SPMD computations are naturally expressed by the STG. An advantage of the STG is that

it exposes important topology information that is needed by placement. On the other hand,
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the task view encapsulates important information about the communication and computa-

tion structure of the problem. The phase view provides this information.

In the phase view, the computation is represented as a sequence of alternating com-

putation and communicationphases [56], see Figure 3.7(b). The dotted lines indicate that

the workers are communicating together in some pattern, not necessarily a fan-in as

depicted in Figure 3.7(b). Each worker participates in the execution of these phases. These

phases are more tightly-coupled than the phases discussed in [66] which require data

redistribution. A communication phase contains a synchronous communication executed

by all processors. A computation phase contains only computation. Communication and

computation phases may be overlapped. Most data parallel computations are iterative with

the computation and communication phases repeating after some number of phases. This

is known as acycle.

The phase view provides important information that is needed by partitioning and

placement. This information is provided bycallback functions. The callbacks are a set of

runtime functions that provide critical information about the communication and compu-

tation structure of the implementation.

3.2.1  Function Callbacks

The callbacks provide the minimal amount of information that is needed to support

the partitioning and placement process. It is important to mention that the callbacks pro-

compute

compute

communicate

communicate

Figure 3.7: Two views of a data parallel computation

b) Phase viewa) Task view
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vide information about a particular implementation of a data parallel problem. A different

implementation of the same problem may require different callback functions. In some

cases conservative cost information can be used if callbacks are omitted. We present an

implementation of the callbacks complete with function signatures in Chapter 5. For now

we describe the callbacks in the abstract. Two callback functions refer to the computation

as a whole:

• numPDUs
• overlap

The number ofPDUs in the problem,numPDUs, is akin to the problem size. It

may depend on any number of problem paramters. This callback is the same for all com-

putation phases within a particular data parallel computation. Theoverlap callback is used

to specify whether any computation and communication phases overlap in time. The cur-

rent implementation supports the overlap of a single computation and communication

phase.

Each computation phase has the following callbacks defined:

• comp_complexity
• arch_cost

The amount of computation performed on aPDU in a single cycle is known as the compu-

tation complexity, comp_complexity. It has two components: the number of instructions

executed on a perPDU basis, and the number of instructions executed that do not depend

on thePDU. The first component is typically a function of problem parameters and the

second is often small enough to omit. The former provides the average number of instruc-

tions executed on aPDU in a single cycle. It can be determined by summing up the total

number of instructions executed over allPDUs over all cycles and then dividing by the

number ofPDUs and the number of cycles. In most cases this reduces to a simple function

as we will show. The comp_complexity is architecture-independent. Multiplying the

comp_complexity times the peak instruction rate (µsec/instruction) for a given architecture
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provides a best-case estimate of the expected execution time for aPDU. This formulation

ignores memory and caching effects, paging and other architecture-dependent costs. Nev-

ertheless, we have found it to be a good estimator. A better estimator is based on the

arch_cost callback.

The architecture-specific execution costs associated withcomp_complexity are

captured byarch_cost, provided in units ofµsec/instruction. It also has two components

corresponding to the architecture-specificPDU dependent and independentcosts respec-

tively. Thearch_cost contains an entry for each processor type in the target metasystem.

To obtain thearch_cost, thesequential application code (i.e., the parallel code running on

one processor) must be benchmarked on each processor type and the totalPDU execution

time divided by the total number of instructions executed. A much more accurate estimate

of the expected execution time for aPDU becomesarch_cost timescomp_complexity. It is

more accuratebecause arch_cost includes memory and caching costs. We have observed

that thearch_cost may be sensitive to problem-size due to memory and cache effects and

a range ofarch_cost values can be specified. We give an example of this in Chapter 7. An

alternative is to form thearch_cost as an average over a range of problem sizes.

Each communication phase has the following callbacks defined:

• topology
• comm_complexity

The topology refers to the communication topology of the communication phase. The

amount of communication between tasks is known as the communication complexity,

comm_complexity. It is the average number of bytes transmitted by a worker in a single

communication during a single cycle of the communication phase. It can be determined by

summing up the total bytes transmitted over all cycles and then dividing by the number of

cycles. In most cases thecomm_complexity also reduces to a simple function. Similar to

comp_complexity, it has two components: the number of bytes transmitted perPDU and
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the number of bytes transmitted that are independent of the number ofPDUs. It is used to

determine the parameterb in the communication cost equations.

In some cases the callbacks may depend on other parameters unknown until runt-

ime such as the number of processors used. These parameters are passed automatically to

each callback function and may be used in the callback implementation. We describe the

implementation of callback functions later in Chapter 5.

Among the computation and communication phases, two phases are distinguished.

Thedominant computation phase has the largest computation complexity, while thedomi-

nant communication phase has the largest communication complexity. The dominant

phases may depend on problem parameters and we have extended the callback mechanism

to provide this information. We have implemented two strategies for using the callbacks in

guiding the partitioning and placement process. The simplest and cheapest uses the call-

backs associated with the dominant phases only. The other is more accurate and expensive

and uses the callbacks associated with all phases.

An example that illustrates the callbacks for a regularNxN five-point stencil com-

putation for a PDE solver:

is given in Figure 3.8 (thearch_costis omitted). The PDE solver uses Jacobi’s method.

These are functions that return the values indicated. Forcomp_complexity we show only

the PDU dependent cost and forcomm_complexity we show only thePDU independent

message size. This computation has been implemented using a block-row decomposition

of the grid as depicted in Figure 3.8(a). In this implementation thePDU is a single row

and the processors are arranged in a1-D communication topology. The stencil computa-

tion is iterative and consists of two dominant phases: a1-D communication to exchange

north and south borders, and a simple computation phase that computes the function value

at each grid point to be the average of its neighbors.

Notice that the callback functions may depend on problem parameters (e.g.,N) that

are unknown until runtime. The callbacks for the computation and communication com-

ui 1 j,+– ui 1– j,– ui j 1+,– ui j 1–,– 4ui j,+ 0 i j, , 1 … N, ,= =
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plexity allow an estimate of the computation granularity to be computed at runtime. This

estimate is used to determine the number of processors to use. The topology is used to

select the appropriate communication function. The computation complexity is also used

to determine a decomposition of the data domain, i.e., the number ofPDUs to be assigned

to each worker.

The callback mechanism is very powerful and can be applied to data parallel com-

putations less regular than the five-point stencil. Since the callbacks may be arbitrary and

complex functions and may depend on any number of problem parameters, they can han-

dle some data-dependent computations by pre-processing the data domain. For example,

the computation complexity for a sparse matrix problem typically depends on the non-

zero structure of the matrix. But a simple callback can be written to capture this depen-

dence. We have done this for a finite-element problem presented in Chapter 7. Similarly

for irregular computations that are run repeatedly such as a global climate model code

[60], the callbacks may be based on the statistics generated from previous runs.

For irregular or control-dependent data parallel computations, off-line benchmark-

ing of the sequential code may be needed to determine average values for

comp_complexity andcomm_complexity. The instruction counts and message sizes needed

for these callbacks can be determined by inserting probes into the code. We have done this

for the finite-element and biological sequence codes presented in Chapter 7. We have

already discussed that thearch_cost callback requires architecture-specific benchmarking.

numPDUs⇒ N
topology⇒ 1-D
comm_complexity⇒ 4N (bytes)
comp_complexity ⇒ 5N (fp ops)

data domain (NxN)

a) Stencil computation b) Callbacks for stencil

workers

Figure 3.8: Example: 1-D stencil computation



53

Fortunately,comp_complexity and comm_complexityare architecture-independent and

need not be benchmarked on each architecture type.

We present an implementation of callbacks later in Chapter 5 and present the call-

backs for a number of data parallel computations in Chapter 7.

3.2.2  Data Decomposition

In a heterogeneous environment workers may be assigned different numbers of

PDUs in order to balance the computational load. The decomposition information is con-

tained in a structure known as thepartition_map that is defined as follows:

Ai = number ofPDUs assigned to the worker on processorpi
ΣAi = numPDUs

The partition_map has an entry for each processor or worker and the association of its

entries to workers may betopology-dependent, see Figure 3.9. The topology-dependence

reflects the data locality relationships in the problem. Data locality means that elements of

the data domain have some relationship to each other. For example in the1-D stencil prob-

lem of Figure 3.8, points on the grid are coupled to their neighbors. This information is

needed when the data domain is decomposed to the workers. For example, a 100x100 grid

might be decomposed across four workers as shown in Figure 3.9(a), worker 1 gets the

first 20PDUs or rows, worker 2 gets the next 30PDUs, and so on. If we assume the work-

ers are arranged in a1-D topology with worker 1 at the top, followed by worker 2, ... and

so on, then the1-D communication preserves the data locality relationships. On the other

hand in Figure 3.9(d) there are no data locality relationships and the data decomposition is

not constrained. We will see both types of decompositions later in Chapter 7.

20
30
30
20

20 30
30 20

20

30 30

20

a) 1-D b) 2-D c) tree

20

30
30

20

d) unstructured

Figure 3.9: Topology-dependent partition_map (numPDUs = 100)
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Thepartition_map is a logical decomposition of the data domain and is computed

at runtime by partitioning. The implementation is responsible for using thepartition_map

in a manner appropriate to the problem. For example, an out-of-core implementation for

very large grids might simply pass thepartition_map to the workers and have them

acquire their portion of the grid individually from disk. In Chapter 7, we sketch an in-core

implementation of the stencil problem in which the main program uses thepartition_map

to physically decompose the grid and then distributes pieces of the grid to the appropriate

workers.

Decomposing the data domain from thepartition_map must satisfy load balance

and data locality requirements. If the amount of computation perPDU is the same for all

PDUs then achievingstatic load balance is straightforward. The number ofPDUs

assigned must only match the entries of thepartition_map. The problem becomes slightly

more complicated if there are locality relationships since this imposes restrictions on the

assignment. But both of these problems are easily solved for most regular problems.

If the amount of computation perPDU is not the same for allPDUs then achieving

load balance can be more difficult. If there are no locality relationships then several strate-

gies can be used. Randomizing the data domain tends to work well for large problems.

Exploiting problem knowledge can also be effective. For example, in Gaussian elimina-

tion we decompose the matrix by a cyclic interleaving of rows to provide load balance. If

there are data locality relationships then the data decomposition problem can be difficult

and problem knowledge must be used. In Chapter 7, we present data parallel computations

that fall into each category.

A decomposition that satisfies load balance can be easily expressed. Definecompi

to be sum of the execution times for thePDUs assigned to workeri and  as the aver-

age execution time over allPDUs in the problem. Thepartition_map entry can be inter-

preted as the percentage of work to be assigned to workeri.

comp
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Then the following must hold for all workers:

The first term is the work percentage that is to be assigned to workeri and the

second term in braces is the total amount of work in the problem. Note that when thePDU

cost is the same for allPDUs this relation holds trivially. The physical decomposition

must satisfy the relation above in order to achieve load balance.

If the amount of computation perPDU varies at runtime in an unpredictable fash-

ion then a load imbalance may arise and some form ofdynamic repartitioning is needed.

This topic is addressed in Chapter 8.

3.2.3  Multiple Data Parallel Computations

A problem may contain several data parallel computations. Different data parallel

computations may operate on different data domains, may require data redistribution, and

may be coupled to each other. For example, the finite-element problem that we present

later contains two coupled data parallel computations that operate on two different data

domains though no data redistribution is needed.

Each data parallel computation may be scheduled individually. The current imple-

mentation can handle multiplesequential data parallel computations. Gaussian elimina-

tion and the finite-element problem are two examples. The scheduling ofconcurrent data

parallel computations is a more difficult problem. One possibility is to extend the notion of

dominant phases to dominant computations. Dominant computations would be scheduled

first and allocated the best available resources. The scheduling of these problems is out-

side the scope of this dissertation.

A single data parallel computation will be scheduled at a time and it is the respon-

sibility of the implementation to indicate the order. The implementation must also perform

compi
Ai

numPDUs
--------------------------- comp numPDUs⋅[ ]≈

compi

⇒

Aicomp≈

Ai

numPDUs
---------------------------
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any data redistributions that are needed between execution of these data parallel computa-

tions. A singlepartition_map is computed for each data parallel computation that is

scheduled.

3.2.4  SPMD-like Data Parallel Computations

We have extended the SPMD model to include a common model for implementing

data parallel computations in which the SPMD tasks may not identical. Consider a fan-in/

fan-outtree where the leaves are performing the computation (i.e., the workers), and the

interior nodes are responsible for communicating results up and down the tree only, see

Figure 3.10. This allows more effective overlap of computation and communication. The

leaf computations are overlapped with interior node communications. The leaves and the

interior nodes execute different SPMD programs. We refer to this organization as a

hybrid-treeandit is specified via the topology callback. The framework implementation is

more complex forhybrid-tree — the partition_map applies only to the leaves, and the

placement of tasks becomes more difficult since interior and leaf nodes must be treated

differently. An example of this type of problem is the biological sequence comparison,

complib, discussed in Chapter 7.

3.2.5  Compiler Support

The SPMD computation model does not assume a particular language model. It is

assumed that an SPMD worker implementation together with the callback functions are

Figure 3.10: Hybrid-tree topology
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provided. The details of the programmer interface and a callback implementation are dis-

cussed in Chapter 5.

Advanced compilation techniques can be used with appropriate language con-

structs to generate some of the callbacks for many regular problems. For example, it is

easy to see how the callbacks for stencil might be generated. Such language support has

been proposed in a integrated data parallel control parallel language called Braid [94].

Braid supports the explicit specification of application communication topology, dominant

computations, and a concept known as subset data parallelism which provides information

that is similar to thePDU.

However for irregular, control- or data-dependent computations it is likely that the

domain programmer will have to write some callback functions by-hand. If this is the

case, it may be possible to simplify this task by providing libraries of callbacks for well-

known problem types. The programmer could extend these template callbacks in a manner

appropriate to the problem at hand. For example, a set of generic callbacks for stencil-

based problems could be provided. For a stencil-based application such as an image pro-

cessing problem or iterative PDE solver, the stencil callbacks could be tailored to fit the

problem. The development of callback libraries is the subject of future work.

3.2.6  Limitations

The model does not capture a number of problem classes. A class of problems in

which PDUs are shifted between processors during the course of execution may require

dynamic repartitioning of the data domain to preserve load balance. Examples of these

problems include molecular dynamics and particle-in-cell codes. Our model is not incom-

patible with dynamic partitioning but it is outside the scope of this dissertation. Another

problem class is one in which the workload is generated in a stochastic fashion. Bench-

marking the application will not necessarily be helpful in determining the callbacks since
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the problem characteristics may depend on random events. An example of this type of

application would be certain parallel discrete event simulations.

In this chapter we have presented a model for representing metasystem resources

and a model for representing parallel computations. These models define the information

needed to construct cost functions for computation and communication. These models

form the cornerstone of the scheduling framework described in the next chapter.
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Chapter 4 Partitioning and Placement

This chapter introduces the partitioning and placement problem and several prom-

ising heuristics. The objective of partitioning and placement is to achieve reduced comple-

tion time for the data parallel computation. Partitioning estimates the best subset of

available processors to use based on computation granularity and a heterogeneous decom-

position of the data domain based on load balance. We formulate partitioning as a mathe-

matical optimization problem and present two effective heuristics. Placement assigns

workers to the selected subset of processors in a manner that reduces the communication

overhead. Partitioning and placement are solved together in the scheduling framework.

Both partitioning and placement rely on a set of runtime cost functions for computation and

communication that have been constructed from system resource and program information.

4.1   The Partitioning Problem

Partitioning divides the problem across a set of processors at an appropriate grain

size. If too many processors are selected, the computation granularity will be too small

and communication overhead may dominate the benefit of increased parallelism. On the

other hand if too few processors are selected, the computation granularity will be too large

and insufficient parallelism has been exploited. Selecting the processors to use from

among the available set is known asprocessor selection. A worker is assigned to each
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selected processor. The optimum processor selection depends on characteristics of the

problem and of the available processing resources.

For a selected set of processors, partitioning also determines a load balanced

decomposition of the data domain. Recall that the decomposition information is kept in a

structure known as thepartition_map. In a load balanced decomposition of the data

domain, all processors or workers will finish at the same time. A load balanced decompo-

sition with an appropriate computation granularity leads to reduced completion time.

Partitioning and placement are performed at runtime given the available process-

ing resources. In the current implementation, partitioning and placement are donestati-

cally at runtime. We believe dynamic repartitioning in the event of load imbalance could

be accommodated within the framework and this is addressed later in Chapter 8. We will

use the following notation throughout this chapter:

 pi =  a particular processor

 Ai = number of PDUs assigned to processor pi

 Vj = number of available processors within cluster Cj

 Pj = number of processors selected for Cj

 wi =  relative processor weight for ith processor (problem-specific)

 m = number of clusters

 g() =  the amount of computation as a function of A

 xi =  PDU independent cost constant for ith processor

 yi =  PDU dependent cost constant for ith processor

 Tc =  per cycle elapsed time

 DP =  set of all data parallel computations for the problem

 d =  a particular data parallel computation

 Tstartup =  start-up overhead

 Tcomm =  per cycle communication cost

 Tcomp =  per cycle computation cost

We begin with a discussion of data domain decomposition and show how a load

balanced decomposition is computed for a collection of heterogeneous processors. We

also show that a load balanced decomposition for a fixed set of processors is optimal. Fol-
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lowing this we discuss the processor selection process. Processor selection assumes a load

balanced decomposition for each set of candidate processors.

4.1.1  Data Domain Decomposition

We compute a load balanced decomposition for each candidateprocessor configu-

ration explored by the scheduling method. A processor configuration is a set of processors

Pj (0 ≤ Pj ≤ Vj, j=1 to m), whereVj is the number of processors available withinCj. The

data domain decomposition is based on the amount of time spent in computation. Recall

that in Chapter 3, the communication costs experienced by all processors or workers is the

same for synchronous communications. So communication need not be considered for

load balance. We present a method for decomposing the data domain based on the domi-

nant computation phase.

The amount of time spent in a single cycle of the dominant computation phase,

denoted byTcomp, is defined as follows (shown for a processorpi):

Tcomp [pi] = comp_complexity * arch_cost (pi) * g(Ai) (Eq.4.1)

The computation time depends on the problem and processor characteristics and

on number ofPDUs, Ai, given topi. In general the dependence onAi may be an arbitrary

function g of Ai. At runtime when the problem parameters are known, the callbacks in

(Eq.4.1) are invoked forcomp_complexity (number of instructions perPDU) and

arch_cost (time per instruction) and the form forTcomp becomes:

Tcomp [pi] = xi + yig(Ai) (Eq.4.2)

where xi andyi are constants formed by multiplying the respectivePDU dependent and

PDU independent terms for the callbacks in (Eq.4.1). Recall that bothcomp_complexity

and arch_cost have aPDU dependent andPDU independent component and that

arch_cost will reflect architecture-specific costs such as memory access overhead. For

example, consider the callbacks for the stencil computation in Figure 3.8 forN=100. Sup-

pose thearch_cost on pi is 0.1µsec for both thePDU independent andPDU dependent
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execution time and thecomp_complexity is 5N for thePDU dependent part of the compu-

tation and 25 instructions for thePDU independent part of the computation. The value for

xi becomes (25)*0.1 or 2.5µsec and the value foryi becomes (5*100)*0.1 or 50µsec. The

terms in parenthesis are the total number of instructions.

Load balance requires thatTcomp be the same for all processors (P total proces-

sors):

x1 + y1g(A1) = x2 + y2g(A2) = ...xP + yPg(AP) (Eq.4.3)

subject to∑Ai = numPDUs

If g is non-linear then this is a difficult system to solve and iterative methods must

be used. In practice howeverg is linear for SPMD computations in which the same com-

putation is performed on each data element (i.e.,PDU) independently. If g is linear, we

can combine this equation with the equality constraint to easily compute the

partition_map. To do this we first definewi which is the relative processor weight forpi

based onarch_cost (k ranges over all selected processors):

A smalleryi means a larger weight sinceyi is in units of time per instruction. The

equation for thepartition_map is easily expressed as a function of the relative processor

weights:

(Eq.4.4)

A special case of (Eq.4.4) occurs when thePDU independent cost is 0 (i.e.,xi = 0):

(Eq.4.5)
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This equation has the property thatfaster processors will receive a greater share of

the data domain and processors in the same cluster will receive an equal share since the

associatedwi will be the same1. Faster processors do not necessarily imply processors

with the highest peak rates, but processors that can perform this computation most effi-

ciently. SinceAi must be integral, the individual entries in thepartition_map must be

rounded to the nearest integer. This will leave somePDUs unaccounted for so we assign

the left-overPDUs to the fastest processors. We do not account for left-overPDUs in the

above equations.

An alternate strategy is to use the callbacks associated with all computation

phases. The amount of time spent in all computation phases is the following:

(Eq.4.6)

If all computation phases are linear inAi then we can rewrite (Eq.4.4) as follows:

(Eq.4.7)

whereXi is the sum of allxi andYi is the sum of allyi associated with each computation

phase.

It is well-known that load balance is a necessary condition for achieving minimum

completion time for synchronous SPMD computations. Thepartition_map computed by

(Eq.4.5) gives load balance for a non-integralpartition_map. However, the integer solu-

tion we obtained by rounding and assigning the extraPDUs to the fastest processors is a

good heuristic for reducing completion time. Since a processor may receive at most one

additionalPDU in the integer solution, the percent increase in execution time with respect

1.  This will not be the case when processor load is considered andwi may be reduced.

Tcomp pi[ ] xi yig Ai( )+
phases
∑=

Ai

wi

wk
------

k
∑ 

 
 

numPDUs
Xk Xi–

Yk
-----------------

k
∑– wi

max Yk{ }

Yi
-------------------------=,⋅=



64

to the optimal load balance decomposition is at most 1/NumPDUs under assumptions of

linearity.

If the message size depends onAi then it is possible that the optimalpartition_map

does not necessarily load balance the processors. This situation might arise if a cluster has

very different computation and communication capacities. For example if a cluster has very

fast processors with poor communication bandwidth then it may be better to off-loadPDUs

to a cluster that may have slower processors but with a greater communication bandwidth.

In this event computing thepartition_map that load balances the processors may be sub-

optimal. However, the experimental results indicate that for two problems in this class,

computational load balance results in reduced elapsed time.

Load balance guarantees thatTcomp will be the same for all processors or workers

and we drop thepi subscript onTcomp in the remainder of this chapter. Computing the

partition_map using either the dominant computation phase or all computation phases is

performed for a particular processor configuration. Choosing the number of processors to

use,Pj for eachCj (i.e., to determine the range fork) is the subject of processor selection,

discussed next.

4.1.2  Processor Selection

Nearly all parallel computations reach a point of diminishing returns with respect

to the number of processors that can be used effectively. At that point we have achieved

the best computation grain for the problem. Locating this point is difficult when the pro-

cessors are homogeneous and is even more difficult when the processors are heteroge-

neous. We analyze this problem and present several heuristics. The heuristics are guided

by runtime cost estimation that use information provided by the callback functions.

We define the elapsed timeTelapsed for a problem that contains a number of

sequential data parallel computationsDP as follows:
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(Eq.4.8)

The start-up overheadTstartup may include any initial data distribution or problem

setup costs. The amount of time spent in theith iteration or cycle of thedth data parallel

computation is denoted byTc[d, i] and the number of cycles is denoted bycycles[d]. We

denoteTc[d] as the average value ofTc[d, i] over all cycles ind and rewrite (Eq.4.8) as:

(Eq.4.9)

If Tstartup is small relative to the elapsed time, then minimizingTelapsed can be

achieved by minimizing the sum in (Eq.4.9). Minimizing this sum can be achieved by

minimizing Tc[d] for each data parallel computation. We now assume that the problem

contains only one data parallel computation and thed subscript may be dropped. This

assumption is made in order to simplify the remainder of this chapter. All of the results we

present apply to the more general case as well unless data needs to be redistributed

between successive data parallel computations. In this case, a cost function that character-

izes the cost of data redistribution is needed. This is outside the scope of the dissertation.

Minimizing Telapsedis achieved by minimizingTc, the average per cycle execution

cost.Tc is a function of the per cycle computation and communication costs for each com-

putation and communication phase (the superscript indicates the phase):

Tc = f (Tcomp
1, Tcomp

2, ... Tcomm
1, Tcomm

2, ...)

In general this may be a complex function due to the possibility that multiple com-

putation and communication phases overlap in time. We make the assumption that only

the dominant computation and communication phases are overlapped to limit the different

formulations ofTc that need to be handled by the framework implementation. Additional

formulations can be easily added to the implementation. We denote Tcomp as the total com-

putation cost andTcommas the total communication cost components ofTc. We consider

Telapsed Tstartup Tc d i,[ ]
i 1=

cycles d[ ]

∑
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two methods for estimatingTcompandTcomm: (1) computation and communication costs

are determined using dominant phases only and (2) computation and communication costs

are determined by summing all phases. In the current implementation for (2) there is no

overlap of computation and communication permitted by the implementation. This could

be supported with a more complexoverlap callback specification.

We consider two common forms forTc depending on whether computation and

communication are overlapped:

Tc = Tcomp + Tcommor (Eq.4.10)
Tc = max{ Tcomp, Tcomm} if overlap

We show later in this section howTc can be easily constructed at runtime using

program and resource information.

The minimization ofTc requires the solution of an inequality-constrained, non-lin-

ear, integer programming problem. This function may also be non-convex. The potential

presence ofmax as shown in (Eq.4.10) means that iterative, gradient-based methods cannot

be used since the objective function does not have continuous derivatives. There may also

be discontinuities due toarch_cost changing for different problem sizes. Consider the first

form for Tc in (Eq.4.10) and assume that the computation and communication costs of the

dominant phases are used. The form for thisTc is given below:

Tc = Tcomp + Tcomm

Tcomp= xi+ yiAi [via (Eq.4.2) for anyi]

= xi+ yi [via (Eq.4.5) substituting forAi]

Observe that this is a non-linear function in the number of processors (thewk correspond

to k selected processors). The communication costTcomm is defined by (Eq.3.7). The form

for Tc becomes:

Tc = xi+ yi  + F{ Tcomm [Cj, 1-D], for all selectedCj}

wherexi, yi, wi are all constants. There are additional constants depending on the precise
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wk
------ numPDUs⋅

j
∑

wi

wk
------ numPDUs⋅

k
∑
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form of the communication cost function.Tc is the same for any value ofi sinceTcomp is

the same for all processors (under load balance) andTcommis the same under our assump-

tions of synchronous communication. The mathematical optimization problem is to mini-

mizeTc subject to:

0 ≤ Pj ≤ Vj, Pj integral.

The additional constraints onAi given in (Eq.4.3) are satisfied by the substitution of

(Eq.4.5) above.

Tc is non-linear in the number of processors. This non-linearity may arise from sev-

eral sources —Tcomp via (Eq.4.5) or from the communication functionsf (Eq.3.3) orF

(Eq.3.6).Tc may also be non-convex due to max from (Eq.4.10) or from a max that appears

due to a CAT communication topology (Eq.3.7). Thus, the minimization ofTc is a hard

problem to solve optimally.

We have developed two heuristics that have worked well in simulation studies and

when applied to several real data parallel computations. These heuristics attempt to locate

a minimum forTc by searching a portion of the solution space. The entire solution space is

exponential in the number of clusters and processors.

We present several graphs for different formulations ofTc to help motivate the heu-

ristics. First consider the simplest case — a single processor cluster with a communication

cost functionf that is linear in the number of processors, a message sizeb that does not

depend on the number of processors, and no computation or communication overlap. This

particularTc corresponds to the1-D stencilproblem on a workstation cluster. We get an

equation forTc that is the result of combining all of the constants forTcomp andTcommfrom

the equation forTc given above. We omit the definitions for these constants which we

denote bya1, a2, ... as the analysis does not depend on them.

If the message size depends on the number of processors, the same form forTc

results. This graph is plotted in Figure 4.1(a) and observe the predictable parabolic shape

for Tc. Note that whenP=1, no communication cost is paid. The minimum point is obtained
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by differentiatingTc and setting the right-hand-side to 0. In region A, the computation gran-

ularity is too large and in region B the computation granularity is too small. We have shown

the common case whereTc is unimodal. It is possible thatTc will have local minima if pro-
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cessor loads differ within the cluster, or there is amax in the formulation forTc, or if the

PDU execution cost is very sensitive to problem size due to memory and caching costs.

Next suppose that the communication cost function f is logarithmic in the number

of processors as is common for tree communications. In Figure 4.1(b) the same parabolic

shape forTc is observed but the minimum occurs at a different point. If the message size

depends on the number of processors then a slightly more complex form forTc results.

A more interesting case occurs when computation and communication are over-

lapped. Suppose that the communication cost functionf is linear and computation and com-

munication are fully overlapped. In Figure 4.1(c) the presence ofmax introduces a

discontinuity in the graph forTc. We have plottedTcomp, Tcomm, andTc on the same axis,

with Tc being the portion ofTcomp andTcomm in bold. The minimum occurs at the point

whereTcomp andTcomm are equal.

Now suppose that the number of processor clusters is > 1. Consider the simplest

case of two processor clustersC1 andC2, linear communication costs in both clusters, and

the dominant communication topology is a synchronous access topology (SAT) such that

communication costs are additive. In this case,Tc has two dependent variables,P1 andP2,

the number of processors selected in each cluster. Suppose that the processors inC1 are a

better choice for this computation and would yield a smaller elapsed time than if processors

in C2 were used instead. In this instance we would use all processors inC1 before using any

processors inC2. This can be generalized to any number of clusters. We plotTc as shown

in Figure 4.1(d). Along the x-axis, we begin with processors inC1 for P1 = 1 ..V1, where

V1 is the total number of processors available inC1. This portion of the graph is the same

as in Figure 4.1(a). Depending on the problem and the number of available processors in

C1, the minimum elapsed time may fall within this portion of the graph. The dotted line

indicates that this may be the case. However, if the computation granularity is large then

processors inC2 may also be used and this is indicated by the next portion of the graph. The

junction at which the next portion of the graph begins also depends on the problem and
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cluster characteristics. In the region labelledP1 and P2, all processors inP1 are used

together withP2 = 1 ..V2. Additional processor clusters would be handled in the same fash-

ion. It is also possible that the minimum may occur at a point in which processors in both

C1 andC2 are used, butP1 is less thanV1.

In general we cannot rely on standard minimization procedures sinceTc may have

discontinuities. Furthermore, the majority of these methods are iterative which may require

substantial runtime overhead to reach a converged solution. Instead, we have developed

two heuristics that are not guaranteed to find the optimal solution, but have proven to be

effective and have a small and predictable runtime cost. The heuristics are based on the

technique discussed for Figure 4.1(d) above,cluster ordering.

It is not possible to explore all processor configurations since the space is exponen-

tial in both the number of processors and clusters. Cluster ordering is used to reduce the

search space by considering processors belonging to the best clusters first. The best clusters

depend on the problem. A cluster with a large communication capacity might be a better

choice for a tightly-coupled problem with a large amount of communication. On the other

hand, a cluster with a large computation capacity might be better for a problem with a large

computation granularity. Some problems will also perform better on certain machines

based on architectural characteristics and may even perform better on different machines

for different problem sizes. Cluster ordering exploits machine-problem affinities by consid-

ering both computation and communication performance.

We describe two heuristics for processor selection, H1 and H2, that have yielded

promising results. H2 is a special case of H1. Both heuristics explore a series of processor

configurations in an attempt to achieve a minimumTc, hence minimized completion time.

For each configuration explored,Tc is computed via (Eq.4.10). To do this we first compute

thepartition_map via (Eq.4.5). Once the data decomposition is determined, we can com-

puteTcomp (Eq.4.1) andTcomm (Eq.3.7) easily by invoking the callbacks and selecting the

appropriate communication function. All of these computations are simple and can be per-
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formed efficiently at runtime. For a given configuration, the placement heuristics are used

to determine task placement and the expected communication costs that result using this

placement are included inTcomm. Placement is discussed in the next section. The general

form of the processor selection heuristics is shown in Figure 4.2.

Heuristic H1

Heuristic H1 has been designed for environments in which computation and com-

munication capacities may vary throughout the metasystem. Because communication

capacities may be different, a simple cluster ordering strategy based solely on computation

power will not always work well. For example, consider that a slow network of very fast

machines such as a DEC-Alpha cluster might be chosen over a Paragon partition because

the DEC-Alpha is faster than the i860. Clearly this may be a poor choice for some tightly-

coupled parallel computations.

A metric for cluster ordering must consider both computation and communication

cost. A real measure of computation and communication cost is provided byTc. For each

cluster we compute the smallestTc value obtained using only processors in this cluster.

The clusters with the smallestTc value are chosen first. The ordering algorithm performs a

binary search on the processors inCi on the interval [1 ..Vi] to find the smallestTc. If there

are m clusters andPmaxis the largest number of processors in a cluster then the worst-case

complexity of cluster ordering isθ (mlogPmax). If there is a single minima forTc within

each cluster then this procedure is guaranteed to find it. If there are multiple minima then

1. Order processor clusters
2. Repeat

3. Select next candidate processor configuration
4. Compute partition_map
5. Compute Tcomp, Tcomm and Tc
6. If Tc is best, store this processor configuration

7. Until done

Figure 4.2: Processor selection algorithm
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this method becomes a heuristic that is not guaranteed to find the minimum, but it has

worked well in simulation and experimental studies.

Cluster ordering does not consider routing and conversion costs between clusters.

In local-area environments where routing costs are similar between clusters this is reason-

able. In a wide-area environment where routing costs may differ by orders of magnitude,

routing costs will have to be included if clusters in multiple sites are to be considered for

the same problem. For this reason we would expect the performance of H1 to fall off in the

wide-area setting. Cluster ordering in a wide-area environment is the subject of future

work.

A two-phase strategy is adopted for exploring the processor configurations, see

Figure 4.3. In phase 1, we add processors for the current cluster. It is guaranteed that add-

ing processors will decrease theTcompcomponent ofTc. The algorithm computes two

things inget_best_config— the best processor configuration based on the previous config-

uration and the current cluster, and thepartition_map. It has the property that oncePj is

computed for clusterCj, it is not modified as additional clusters are considered. Thus,

phase 1 is a greedy algorithm. For each cluster considered it locates the best number of

processors by a binary search procedure similar to the method described for cluster order-

ing. The difference is that here we are looking for the minimumTc for the current cluster

Ci assuming a fixed number of processors already selected for the previous clusters. The

best configuration is stored during this initial phase. The worst-case complexity of phase 1

is alsoθ (mlogPmax).

The addition of processors will never decreaseTcomm, though it may remain

unchanged. In phase 2, we try to reduce theTcomm component ofTc. The total communica-

tion cost is a function of the communication cost contributed by each cluster (Eq.3.7). The

cluster that contributes the maximum communication cost is targeted for reducing the

overall communication cost. In phase 2, we add processors for the current cluster while

removing processors from the cluster that contributed the largest communication cost.



73

Removing processors from a cluster has the effect of reducing the communication cost

contributed by that cluster by reducing the contention for communication resources. The

idea is that additional communication bandwidth may be made available by reducing the

processors in one cluster and increasing the processors in another.

This technique is guaranteed to reduceTcomm, but the impact onTc is unpredictable

sinceTcomp may increase since we are trading potentially faster processors for slower

ones. The cluster that contributes the largest communication cost may change during the

course of phase 2 as processors are traded. The configuration that yields the minimumTc

Order clusters C1 .. Cm by Tc
Initialize curr_config, min_cost
For each cluster Ci {

// Phase 1 -- Try to reduce Tcomp
// Determine config that yields min Tc given previous Pj (j<i)
best_curr_config = get_best_config (curr_config, Ci);
// min_cost is stored

// Phase 2 -- Try to reduce Tcomm
curr_config.Pi = 0;
min_phase2 = MAXFLOAT;
// Repeatedly trade processors in Ci with processors in Ck (k<i)
// where Ck is the cluster with the largest communication cost
// Ck may change during phase 2 -- if it is the current cluster, exit
while ((curr_config.Pi <= Vi) && (k!=i)) {

curr_config.Pi++;
curr_config.Pk--;
Tc = get_Tc (curr_config);
if (Tc < min_cost) {

best_curr_config = curr_config;
min_cost = Tc;

}
// Optimization: if Tc increases in phase 2 then exit phase 2
 if (Tc < min_phase2)

min_phase2 = Tc;
else break;

}
curr_config = best_curr_config;

}
return best_curr_config;

Figure 4.3: Pseudo code for Heuristic H1
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after both phase 1 and phase 2 is stored. This is the starting configuration that is used as

the next cluster is considered. H1 does not terminate until all clusters are explored. The

worst-case complexity of phase 2 isθ (mPmax). This worst-case is only a concern for small

problems that would not be able to amortize this overhead. But phase 2 will terminate ifTc

increases during this phase. In practice the average complexity is much smaller than the

worst-case. Furthermore, there is a practical limit on how largePmax will be based on the

number of processors within a parallel machine, or the number of stations allowed on an

ethernet segment or FDDI ring. We expectm to be small (less than 50) in local-area meta-

systems. For wider-area metasystems, a strategy that limits the number of clusters under

consideration will be needed.

In Chapters 6 and 7, we present simulation and experimental results that show H1

is a feasible algorithm. The results indicate that performance within 10% of optimal is

obtained over 90% of the time in simulation. Experimental results also yield excellent per-

formance. The observed worst-case deviation from optimal was around 40% in simulation

(and this was quite rare), but a more rigorous analysis of a worst-case bound is the subject

of future work. In simulation we have observed that H1 rarely falls into local minima. The

reason is cluster ordering and the phase 2 stage of the algorithm. Cluster ordering is an

effective strategy for resource selection and phase 2 explores the processor configuration

space in a non-greedy fashion increasing the likelihood that local minima will be avoided.

We observed in simulation that a random cluster ordering causes the method to fall into

local minima by selecting less effective processors for the problem. Phase 2 is needed to

the avoid the local minima that may occur due to amax in Tc.

Heuristic H2

Heuristic H2 is a special case of H1 that is suited to workstation network environ-

ments in which communication capacities are the same within each cluster in the metasys-

tem (e.g., ethernet-based clusters only), and routing costs are high. H2 exploits features of
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this environment to simplify the processor selection algorithm and has smaller overhead

than H1.

The algorithm begins by ordering the clusters as in H1. The next stage of the algo-

rithm explores the processor configuration space in a greedy fashion much like phase 1 for

H1 with anθ (mlogPmax) worst-case complexity. All processors of a cluster are selected

before processors in the next cluster are considered thus avoiding router crossings if possi-

ble. This algorithm tries to maintain communication locality by avoiding the router pen-

alty and potential data conversion overhead. The algorithm terminates when adding

processors in the current cluster causesTc to increase, and is sketched in Figure 4.3.

The worst-case order of this algorithm isθ (mlogPmax). H2 differs from H1 in that

it uses a simpler strategy for exploring the configuration space. In practice it will also be

more efficient due to the greedy termination condition. H2 was the precursor for H1 and

experimental results for H2 were published in [93]. Some preliminary results for H1 were

published in [91]. The performance results for a homogeneous network of Sun worksta-

tions and an Intel Paragon indicated that completion times close to the minimum were

achievable for real data parallel computations.

Order clusters C1 .. Cm by Tc
Initialize curr_config, min_cost
For each cluster Ci {

// Determine config that yields min Tc given previous Pj (j<i)
best_curr_config = get_best_config (curr_config, Ci);

// If Tc has increased we are done
if (best_curr_config.cost > min_cost)

break;
else {

curr_config = best_curr_config;
min_cost = best_curr_config.cost;

}
}
return best_curr_config;

Figure 4.4: Pseudo code for Heuristic H2
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This dissertation has focused on the more general heuristic H1 and we drop the

name H1 in the remainder of the thesis. We refer to H1 as the partitioning method in subse-

quent chapters.

4.2   Task Placement

Placement is the assignment of tasks to processors and has two principle objec-

tives, ensuring one task per processor, and assigning tasks in a manner that reduces com-

munication cost. Assigning one task per processor is needed to achieve processor load

balance for SPMD computations. Placement uses a form ofco-scheduling to collectively

assign tasks to specific processors to guarantee one task per processor. The second objec-

tive of placement is more difficult and is the subject of this section.

Assigning tasks in a communication-efficient manner must rely on information

about the communication and interconnection topologies. Reducing communication costs

is achieved by (1) maintaining communication locality (i.e., avoiding router crossings and

potential conversion) and (2) effectively exploiting communication bandwidth within

clusters. The former is achieved byinter-clusterplacement and the objective is to mini-

mize communication costs between clusters. Empirical evidence suggests that this is a

large source of overhead. The latter is achieved byintra-cluster placement and the objec-

tive is to minimize communication costs within clusters. Intra-cluster placement is also

known asmappingor embeddingand has been widely studied [7][48][54][70]. Both inter-

and intra-cluster placement exploit available topology information and the regular nature

of the communication topology. For both stages of placement information about the domi-

nant communication topology is used.

4.2.1  Inter-cluster Placement

Inter-cluster placement uses communication topology information to minimize the

amount of communication that crosses the router. We have developed inter-cluster place-

ment strategies for the prototype application topologies:1-D, ring, tree, andbroadcast. In



77

Figure 4.5 the1-D/ring (the ring is indicated by the wrap-around arc)and tree topology

are decomposed across three processor clusters — the tasks are the circles and the squares

are the processors. Observe that the amount of communication that crosses the router is

minimized. Two messages cross the router each cycle between each pair of communicat-

ing clusters. These inter-cluster placement strategies are topology-preserving in the sense

that each group of tasks assigned to a cluster maintains the topology. For example, each

group of tasks assigned toC1, C2, andC3 in the1-D topology each communicate in a1-D

topology. Similarly for thetree topology. Thebroadcast topology does not exhibit locality

but a strategy that assigns the master to the cluster that contains the largest number of

tasks reduces the amount of router communication.

Inter-cluster placement depends on cluster ordering. In processor selection we

have determined how many processors a cluster will contribute. This is the same as the

number of tasks assigned to each cluster since each task is assigned to one processor.

Cluster ordering governs the assignment of tasks to clusters. For example in Figure 4.5 we

show the task assignment for the cluster orderC1, C2, C3. Tasks in the1-D/ring topology

are assigned left-to-right toC1, C2, C3. In thetree topology the root task and its subtree are

assigned toC1, and the subtrees corresponding to the other tasks are assigned in the order

C2, C3 in an attempt to minimize tree height. We are trying to strike a balance between

reducing tree height and minimizing concurrent router crossings for the tree. Simply try-

a)1-D andring b) tree

C1

C2 C3R

C1 C2 C3

R

Figure 4.5: Inter-cluster placement

RR
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ing to reduce router communication may result in a tree of greater height which will lead

to a larger communication overhead. These procedures generalize to any number of clus-

ters.

These inter-cluster placement strategies determine the total communication cost

Tcomm [τ]. In the current implementation we assume that the routing costs between any

group of clusters is the same — a reasonable assumption for local-area environments. For

wide-area environments, non-uniform routing costs and inter-cluster network topology

information will be needed for inter-cluster placement.

4.2.2  Intra-cluster Placement

Intra-cluster placement assigns tasks to specific processors within a cluster. Intra-

cluster placement depends both on the communication topology and the interconnection

topology. Two factors that contribute to intra-cluster communication costs are dilation and

contention. Dilation is the number of communication hops. High dilation and contention

will tend to limit the exploitable communication bandwidth. Intra-cluster placement

should keep the average dilation small and limit contention. For example, a grey-scale

mapping of a1-D topology onto a hypercube achieves minimal dilation and contention

[48]. On the other hand, a random placement suffices on a shared bus interconnect for any

communication topology. For multicomputers the embedding may also depend on the

dimension of the mesh partition or sub-cube. There is a rich literature on the mapping

problem and many of the algorithms are well known [48][54][70].

Traditionally mapping algorithms have been applied within a static compile-time

scheduling framework. We use these algorithms to make runtime placement decisions. A

subset of these algorithms have been implemented and made available for use at runtime.

We have implemented intra-cluster mapping strategies for the workstation environment

only. The cluster communication cost functionsTcomm [Ci, τ] are benchmarked using these
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intra-cluster placement strategies. This guarantees that the cost prediction that ultimately

guides the partitioning and placement stages will be accurate.

Many problems have multiple communication topologies. For example, a1-D

topology might be used for a nearest-neighbor communication and atree for a global com-

munication. Our strategy is to perform intra-cluster placement for the dominant topology

first followed by intra-cluster placement for the other topologies. The current implementa-

tion can support problems containingboth 1-Dandtree topologies.

An interesting case is the2-D topology. In a homogeneous environment, mappings

for the static2-D topology have been developed. In the heterogeneous environment, it

may not be possible to preserve the2-D topology since processors of different types may

be assigned different size regions of the data domain and the communication topology

becomes irregular, see Figure 4.6. The processor that is assigned the shaded region will

need to communicate with 5 processors. A strategy for dealing with the 2-D topology is

the subject of future work.

We also handle thehybrid-tree topology discussed in Section 3.2.4. Recall that in

this topology, the leaves perform the computation while the interior nodes perform com-

munication. Intra-cluster placement first insures that the leaves are placed one per proces-

sor for load balance. The interior nodes are light-weight and may be placed several to a

processor. The placement method first tries to place them on idle processors and then tries

to ensure that each processor has roughly the same number of tasks that correspond to

interior nodes, also for load balance.

Figure 4.6: 2-D problem
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In this chapter we have presented several promising heuristics for the partitioning

and placement problem. Both greedy and non-greedy algorithms were described. Partition-

ing and placement were performed using a set of runtime cost functions for computation

and communication that have been constructed from system resource and program infor-

mation.
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Chapter 5 Implementation

This chapter presents an implementation of the scheduling framework in the Men-

tat-Legion1 parallel processing system. We have completed the implementation for hetero-

geneous workstation networks. The heart of the scheduling framework is Prophet — a

PaRtitiOner for Parallel programs in a HETerogeneous environment. We describe Mentat

and Legion and all components of the Prophet-Legion implementation including the call-

back and program interface, system configuration, and resource availability.

5.1   Prophet

Prophet implements the middle stage of the scheduling framework, partitioning and

placement, and defines a set of interfaces, see Figure 5.1. The core of Prophet is a runtime

1.  Mentat-Legion refers to a transitional stage between the Mentat and Legion parallel processing systems.

Prophet
Resource
Status

Problem
Information

Resource DB

Task and data decomposition
Placement Instantiation

Kernel

Figure 5.1: Prophet
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kernel that can be integrated into a number of other parallel processing systems that support

the Prophet interface and satisfy a number of system requirements.

A primary requirement is that the host parallel processing system must be able to

support our heterogeneous network model and some form of resource or configuration

database as described in Chapter 3. This is needed to implement resource availability, the

first stage of the framework. Another requirement is that the host system provide some form

of callback mechanism to make program information available. All of these requirements

are needed by the Prophet kernel to support partitioning and placement.

In addition there are three requirements for instantiation — a data format conver-

sion capability, a dynamic worker or task creation capability, and a mechanism to insure

that binaries for the worker task are available for each architecture type and resident on the

appropriate file system. Support for dynamic task creation depends on what the underlying

operating system provides. Data format conversion may be implemented within the host

communication system. The host communication system is also assumed to support mes-

sage-passing between all machines in the environment.

We present an integration of Prophet into the Mentat-Legion parallel processing

system and describe how each piece in the picture of Figure 5.1 is implemented. The cur-

rent Prophet implementation consists of approximately 2000 lines of C++ code.

5.2   Legion

Legion is a distributed parallel processing system based on Mentat. Legion will pro-

vide a set of services that enables wide-area parallel and distributed computing [34]. As in

Mentat, Legion programs are collections of communicating objects. One of the primary

objectives of Legion is to provide a seamless virtual computer that hides much of the com-

plexity inherent in managing a distributed collection of resources. Seamless parallel pro-

cessing in Legion means that the system must be able to locate processing resources and

make scheduling decisions automatically for the user. The integration of Prophet into
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Legion is aimed at providing this capability for data parallel computations.

5.3   Mentat-Legion Implementation

Prophet Kernel

The Prophet kernel is responsible for making partitioning and placement decisions

based on problem and resource information. Problem information is provided by a callback

interface and resource information by a resource database and resource status interface. The

kernel implements the algorithms for partitioning and placement discussed in Chapter 4.

Partitioning and placement information are computed and stored in a set of data structures

that are made available by a Prophet kernel call. The current implementation of the Prophet

kernel is written in C++ and is compiled with the Mentat-Legion runtime system library

also written in C++. All application code including the worker implementation link this

library.

The kernel also manages the set of workers or tasks created by instantiation. It treats

the set of workers as a collection, and defines two useful variables that the worker imple-

mentation can use:COLLECTION_ID, the id of the worker, andNUM_COLLECTION, the

number of workers in the collection. In the Mentat-Legion implementation, this id maps

into the Mentat object name, which is needed to enable communication between workers.

The current implementation supports a number of application communication topologies,

1-D, ring, tree, hybrid-tree, broadcast, RPC, andother, and the following operations are

supported on collections of these types, see Figure 5.2.

These functions may be called by the workers to determine their communicating partners

1-D : NORTH(), SOUTH()
ring: PRED(), SUCC()
tree, hybrid-tree: LCHILD(), RCHILD(), PARENT()

broadcast: MASTER(), SLAVE(k)
hybrid-tree: LEAF()

Figure 5.2: Collection operations
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based on topology and return the name of the communicating worker, e.g., the name of a

worker’s north sibling. Forbroadcastthe master can obtain the name of thekth slave

worker. The functionLEAF() is useful for thehybrid_tree topology — it returns true if

the calling worker is a leaf, otherwise false.RPC is a point-to-point communication

between two objects and is useful in the Mentat-Legion implementation. The purpose of

the remaining functions is straightforward. The topologyother refers to any unimple-

mented topology.

Configuration

The heterogeneous network model is easily implemented in Mentat-Legion which

already defines a notion of cluster. We restrict the Mentat-Legion cluster to include only

homogeneous processors. The configuration information is stored in a database that we

have extended to support Prophet. The database is encapsulated by a C++ classcon-

figdb . In Figure 5.3 we present a specification for a configuration containing a Sun

Sparc2 cluster with 8 processors and SGI cluster with 6 processors, both on ethernet. This

specification corresponds to the information in Figure 3.2. The communication functions

are specified by values for the constantsc1, c2, c3, andc4 respectively in (Eq.3.3), andf is

assumed to be linear. In the workstation environment,f will be linear. In a true metasystem

environment, specification of a non-linearf will need to be supported in the future. For the

routing functions the values refer to the constantsr1 andr2 in (Eq.3.1). For the conversion

functions the value refers toe1 in (Eq.3.2). This specification will need to reflect different

types of possible conversions in the future. These values allow Prophet to construct the

appropriate communication cost functions for workstation networks. RPC is for a 0-byte

message. The peak communication bandwidth is COMM_BANDWIDTH and latency is

determined to be the one-way RPC latency, so there is no need for an additional specifica-

tion. The communication parameters were determined by benchmarking a set of communi-

cation programs written using the Mentat-Legion communication system MMPS [38].
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We also propose a mechanism for user-defined topologies that is illustrated above.

The topology is given a name (e.g., CHORDAL) and a set of cost coefficients if they are

known. If the cost parameters are unknown then the user may specify whether the topology

is LOCAL or GLOBAL. If the topology is LOCAL then the system will use the1-D cost

function as an approximation or thebroadcast cost function if it is GLOBAL. A method for

specifying placement information including whether the topology is a SAT or CAT will be

needed for user-specified topologies. User-specified topologies are currently unimple-

mented but we have provided a generic topology calledother that Prophet defines conser-

vatively — it is assumed to be a SAT with linear f, placement is random, and the cost

coefficients are formed as an average of the cost coefficients of the other specified topolo-

gies. If cost functions are omitted for this or any other topology then the optimistic cost

CLUSTER SPARC2s
{
cluster01.cs.Virginia.EDU
cluster02.cs.Virginia.EDU
...

CLUSTER_TYPE SUN4
TOPOLOGY BUS
MANAGER cluster01.cs.Virginia.EDU

// All in msec

BCAST .9 2.1 .003 .00116

TREE .5 2.1 .00051 .0019

cluster08.cs.Virginia.EDU

...

}

CLUSTER SGIs
{
sgi-1.unixlab.Virginia.EDU
sgi-2.unixlab.Virginia.EDU

CLUSTER_TYPE SGI

TREE .7 1.8 .00012 .0014

BCAST .4 2.0 .000073 .00145

...
sgi-6.unixlab.Virginia.EDU

TOPOLOGY BUS
MANAGER sgi-2.cs.Virginia.EDU

// All in msec

...

}

ROUTER SGIs SPARC2s 1.2 .00008
CONVERSION SGIs SPARC2s 0.0

COMM_BANDWIDTH 10.0 // Mbit/sec

RPC 4.1

MIPS 170
FLOPS 170

RPC 3.6

FLOPS 360
MIPS 360
COMM_BANDWIDTH 10.0 // Mbit/sec

Figure 5.3: Example configuration

TOP_DEFN CHORDAL .1 .1 .1 .1
TOP_DEFN IRREG_TOP1 LOCAL
TOP_DEFN IRREG_TOP2 GLOBAL



86

function of (Eq.3.4) can be used. This default is currently unimplemented.

The Mentat-Legion system runs a daemon process known as theinstantiation man-

ager on each host in the configuration that is responsible for collecting load information.

Oneinstantiation managerper cluster is designated as themanager in our model.

Resource Availability

The current implementation of resource availability is based on a sender-initiated

probe of all hosts in the local-area configuration to obtain their load status. When a sched-

uling request arrives, load and availability information is determined and an aggregate of

the information is returned. The manager mechanism is not yet fully implemented since a

complete implementation of resource availability is outside the scope of this dissertation.

At present each host redundantly stores a copy of the resource database as well. Once the

manager mechanism is in place, a more scalable load collection strategy based on the pic-

ture of Figure 3.1 can be implemented.

The current implementation considers a processor below a run-queue-length load

threshold of .33 to be available. This guarantees that at least 75% of the CPU will be avail-

able for the data parallel problem at the time the computation begins. Processors are

ordered by their load value within each cluster. We choose processors with the lightest load

first before processors with a larger load are considered.We have put hooks into the Prophet

kernel to use load information for adjusting the cost functions in the future. Research is

needed to be able to quantify the impact of load on the computation and communication

costs. A related problem is the need for dynamic load balance. These topics are discussed

in Chapter 8.

Callback Interface

We have implemented a C++ callback interface by defining an abstract base class

domain  see Figure 5.4. The callbacks are member functions on this class. The description

of these callbacks was provided in Chapter 3.
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There are several callbacks added to the group described in Chapter 3:

dominant_comp_phase()  returns the dominant computation phase
dominant_comm_phase()  returns the dominant communication phase
num_phases()  returns the number of phases

These callbacks are needed since it is possible that the dominant phases depend on problem

parameters known at runtime. The structure PV is a parameter vector and is similar to argv.

It may contain any number of problem parameter values needed to implement the call-

backs. Currently the programmer marshals the problem parameters into PV and instantiates

the domain with this vector as an argument. An example is provided in the next section.

Notice that the number of processors,np, is passed as a parameter to the callbacks since

some callbacks may depend on it. The phases are represented as integers and it is up to the

classdomain  {
char** PV;
public:

virtual domain  (char** curr_PV);
virtual phasedominant_comp_phase  (int np)=0;
virtual phasedominant_comm_phase  (int np)=0;
virtual phase_recnum_phases  ()=0;

virtual comp_reccomp_complexity (int np, phase comp_phase)=0;
virtual int numPDUs (phase comp_phase)=0;
virtual cost_recarch_cost (host_types proc, phase comm_phase)=0;

virtual comm_reccomm_complexity  (int np, phase comm_phase)=0;
virtual phaseoverlap  (phase comp_phase) = 0;
virtual toptopology  (phase comm_phase)=0;

};

struct cost_rec {
float PDU_cost;
float non_PDU_cost;

};

struct phase_rec {
  int comp_phases;
  int comm_phases;
};
typedef enum {1D, ring, tree} top;

struct comp_rec {
float PDU_inst;
float non_PDU_inst;

};

struct comm_rec {
int PDU_bytes;
int non_PDU_bytes;

};
typedef int phase;

Figure 5.4: Callback interface
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implementation of the domain class to map these integers into the program phases. The

phases are assumed to be numbered from 0 to num_phases()  - 1. With appropriate lan-

guage support this mapping could be managed by a compiler.

The domain class must be derived and implemented for a particular data parallel

computation. For example, we have defined a domain class for stencil,

stencil_domain , that provides information about the1-D stencil computation

described in Section 3.2. In Figure 5.5 we show the implementation of the

comp_complexity()  callback for the stencil problem. This problem has one computa-

tion phase, hence the simple switch statement. This callback depends on a single problem

parameter, the problem sizeN that is extracted from the parameter vector PV.

Callback specification can be a tedious task for the programmer. One solution is to

provide libraries of callbacks for well-known computational structures such as stencil prob-

lems. The programmer would extend these classes by derivation and not have to reimple-

ment the entire domain class from scratch. A more attractive idea is to have the compiler

generate the callbacks. As was discussed this is unlikely to be a general solution for irreg-

ular problems but may have promise for regular problems.

Figure 5.5: Implementation of stencil callbacks

classstencil_domain  : domain  {
public:

comp_rec comp_complexity (int np, phase comp_phase) {
int N = atoi (PV[0]); // extract problem size
comp_rec CR;

CR.PDU_inst = 5*N; // 5 fp operations per PDU in this problem
CR.non_PDU_inst = 0;

return CR;

...

switch (comp_phase) {
case 0 :

break;
}

}
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Program Interface

The program interface to the Prophet kernel is provided by a function partition

that returns the partition and placement information in a set of data structures. We have pro-

vided a Mentat-Legion facility to support instantiation,DP_create , that instantiates a

Mentat object (i.e., a worker) on each selected processor, and communicates the list of

workers to each worker. This facility allows the worker implementation to establish the

communication topology and to determine its communicating partners via the functions in

Figure 5.1.

In Figure 5.6 we present a partial main program for1-D stencil written in MPL. The

main program begins by constructing PV and instantiatingstencil_domain . The

stencil_domain  object is then passed topartition — this will enable Prophet to

invoke the callbacks. A call toDP_create  is then made to place a Mentat object on each

processor based on the information contained in PR. We omit the definition of

main() {
partition_rec  *PR;
stencil_worker  *workers, mo;
stencil_ domain  *dom;
DD_floatarray  *Grid;
...
// Problem-specific code: (N, Grid, iters are read from file)
PV[0]= itoa (N); // marshal PV for problem instance
dom = newstencil_domain  (PV); // instantiate domain

PR = partition  (dom);
mclass* workers = (stencil_worker*)DP_create  (PR, mo);

// Application-specific code
1D_grid = 1D_carve (Grid, PR.partition_map);
for (int i=0; i<PR.total; i++)

workers[i].init_grid (1D_grid[i], N);
for (int j=1; j<=iters; j++)

for (int k=0; k<PR.total; k++)
workers[k].compute_grid ();

...
}

Figure 5.6: Stencil main program
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partition_rec  since it is a fairly complex structure. The workers are instances of the

Mentat classsten_worker  — the definition ofsten_worker and an example mem-

ber function is given in Figure 5.7.DP_create  returns the list of created Mentat objects.

We have decoupledpartition  andDP_create  sincepartition  is a generic kernel

call whileDP_create  is a Mentat-Legion specific call.

The information returned bypartition  is also needed for data decomposition.

In this problem, thepartition_map is used to decompose the grid into 1-D chunks via the

call to1D_carve . The implementation of stencil relies on facilities in a library that man-

ages 1-D and 2-D data structures known asDD_array . The grid is represented as a mem-

ory-contiguous 2-D float array, DD_floatarray . The implementation of1D_carve

uses library facilities to extract the appropriate pieces of the grid.

The sten_worker  stores it’s portion of the problem in a set of member variables

and defines a number of member functions — init_grid  initializes each worker with

it’s piece of the problem,compute_grid  initiates a worker to begin the stencil compu-

tation, andput_top/bot  communicate a border row to neighboring workers. In the

implementation ofcompute_grid , the neighboring workers are determined by calls to

NORTH() andSOUTH() and the stencil operation is performed for a fixed number of iter-

ations. We omit the code forupdate_grid , the function that performs the five-point

stencil on the stored rows of the subgrid.

In this chapter we have described the Mentat-Legion implementation of the sched-

uling framework for workstation networks. The implementation includes the program

interface, resource availability, and the Prophet kernel. The latter implements the algo-

rithms for partitioning and placement that automate scheduling.
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persistent mentat classsten_worker  {
float *top, *bot; // cushion rows from communicating workers
DD_floatarray *subgrid; // worker portion of subgrid
int dim; // columns in grid

public:
void init_grid (DD_floatarray* sgrid, int N);
void compute_grid ();

private:
// Communication functions
void put_bot (DD_floatarray* row);
void put_top (DD_floatarray* row);

void update_grid (int num_rows);
};

void sten_worker ::compute_grid () {
int num_rows = subgrid->num_row();
sten_worker  *north, *south;
DD_floatarray  *mytop, *mybot;

// Get neighbors
north = (sten_worker *) NORTH();
south = (sten_worker *) SOUTH();

// Extract borders and communicate to neighbors (if any)
mytop = subgrid->extract_region (0, 0, 0, dim-1);
mybot = subgrid->extract_region (num_rows-1, 0, num_rows-1, dim-1);
if (north != 0)

 north->put_bot (mytop);
if (south != 0)

south->put_top (mybot);
...
// compute on the subgrid -- update_grid computes 5-pt stencil for each row
update_grid (num_rows);
rtf (0);
return;

}

Figure 5.7: Sten_worker implementation
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Chapter 6 Simulation Study

This chapter presents the results of two simulation studies — a performance study

of the partitioning method, and a study into wide-area parallel processing. A simulator for

Prophet calledProphesy has been developed to perform the simulation studies. We have

performed a simulation study into the expected performance of the partitioning method to

show that it has applicability to a variety of problem types in different metasystems. The

performance results indicate that the partitioning method has excellent average-case

behavior over a wide range of problem granularities and application communication

topologies. These results complement the experimental results in Chapter 7. The wide-

area parallel processing study provides some insight into the granularity requirements for

wide-area parallel processing. We discuss each study in turn.

6.1   Prophesy

Prophesy is a simulation system for Prophet that supports the simulation of syn-

thetic metasystems and synthetic data parallel problems. It contains 1400 lines of C++

code. Prophesy is built using the Prophet kernel, but replaces the resource and program

inputs (circled boxes) with synthetically generated information, see Figure 6.1. Prophesy

also computes the optimal solution and generates a comparison with the heuristic solution.

To study the performance of the partitioning method, we simulated the partitioning
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of data parallel computations in three classes of metasystems, M1, M2 and M3. The objec-

tive is to determine how close the partitioning heuristic comes within optimal on average.

M1 contains a collection of hosts and assumes an unequal communication capacity among

clusters. An example of M1 would be a cluster of ethernet-connected workstations con-

nected to a cluster of FDDI-connected workstations. M2 is a mixed environment of single

CPU hosts and mesh-connected multicomputers and assumes an unequal communication

capacity among clusters. An example of M2 would be a cluster of ethernet-connected

workstations and an Intel Paragon. M3 contains a collection of hosts and assumes an equal

communication capacity among clusters. An example of M3 would be clusters of worksta-

tions all connected by ethernet. These environments differ in the form of the communica-

tion cost functions.

A metasystem environment is determined by generating processor clusters and the

information described in Figure 6.2. All generated parameters are uniformly distributed

over a fixed range. The ranges are limited to values that have been empirically observed or

have been published elsewhere. For example, a latency constant is restricted to be in the

millisecond range on an ethernet-based cluster, while a bandwidth constant is restricted to

be in the microsecond range. The latency and bandwidth constants apply to parameters for

the communication, router, and conversion cost functions. The value ranges for the router

cost functions are based on a local-area environment. The router penalty increases the

Prophet

Resource
Status

Problem
Information

Resource DB

Task and data decomposition
Placement

Evaluate
Solution

kernel

Figure 6.1: Prophesy
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latency and degrades the bandwidth for wider-area configurations. The number of clusters

and processors also reflect reasonable values for a local-area environment. Due to the

length of the simulation runs we have opted for a modest cluster size though the results

obtained for a few larger systems (on the order of 100 processors per cluster) are in agree-

ment with the results we present.

We simulated applications with the following communication topologies:ring, 1-

D, andtree. For each topology, the communication cost functions are determined by gen-

erating the cost constants in (Eq.3.3), i.e.,c1, c2, c3 andc4. For bus interconnects,f is lin-

ear in the number of processors for all topologies. For the mesh-based multicomputer, f is

log(p) for the tree topology, and nearly-independent1 of p for the1-D andring topology

due to a dilation one embedding (i.e., intra-cluster placement) of the1-D andring topol-

ogy onto the mesh. The total communication costTcommis computed by the functions in

(Eq.3.7).

A problem instance is determined by generating the callback information specified

in Chapter 3. All generated parameters are uniformly distributed over a fixed range, see

Figure 6.3. The problem instance contains a communication phase and a computation

phase. A problem instance may have overlap between these two phases. The values for

comp_complexityand comm_complexityare generated to simulate a range of problem

granularities. To keep things simple, thePDU independent term forcomp_complexity is 0

1.  This is achieved by setting cost constants c2 and c4 very small.

metasystem parameters
num_clusters = [1 .. 5]
num_processors_per_cluster = [1 .. 10]
processor_rate = [1 .. 100] mflops
interconnect = [mesh, bus]
latency_constant = [0 .. 1] msec
bandwidth_constant = [.1 .. 10]µsec/byte
conversion_constant = [0 .. 1]µsec/byte

Figure 6.2: Simulation parameters (environments)
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and thePDU dependent term forcomm_complexity is 0. That is, the amount of time spent

in computation depends only on the number ofPDUs assigned to each worker, and the

amount of data communicated is independent of the number ofPDUs assigned to a

worker. These restrictions may be easily relaxed.

For each problem instance, a number of values forcomm_complexityon the inter-

val [1 ..numPDUs] are simulated. In real codes the message size normally depends on the

how the problem was decomposed. We simulate a problem size,numPDUs,for the fol-

lowing the values: 1, 100, 500, 1000, 5000, 10000. Thearch_cost is inversely proportional

to the peak processor rate.

6.2   Performance of Partitioning Method

We have applied Prophesy to a range of synthetic problem instances and metasys-

tem configurations. We simulate the partitioning of each problem instance in each metasys-

tem. Prophesy measures the predicted elapsed time achieved by the heuristic and compares

this to the elapsed time for optimal partitioning which is obtained by an exhaustive search

of the processor configuration space. We simulated 50 metasystem environments in each

class (M1, M2, M3) and simulated 50 problem instances for each metasystem. For each

problem instance, we simulate the 6 problem sizes forNumPDUs listed in Figure 6.3 and

3 message sizes forcomm_complexity for a total of 18 runs per problem instance. The total

number of problems simulated is 900 (50 x 18) and the total number of runs is 45,000 (50

metasystems x 900) perexperiment. The data for each experiment presented in the subse-

problem parameters
top = [tree, ring, 1-D]
NumPDUs = {1, 100, 500, 1000, 5000, 10000}
comm_complexity = [1 .. NumPDUs] bytes
arch_cost = [.01 .. 1]µsec/instruction
comp_complexity = [1 .. 10000] instructions
overlap = [yes, no]

Figure 6.3: Simulation parameters (problems)
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quent tables is the average of 45,000 runs. Each problem instance contains a computation

and communication phase with aring, 1-D, or tree topology that may or may not be over-

lapped with the computation phase. The use of overlap and different communication topol-

ogies change the form of the objective functionTc. Since the performance of the

partitioning method depends on the nature ofTc, simulation is a viable way to study the per-

formance of the method.

Prophesy computes a processor configuration and data domain decomposition for

the given problem instance in the synthetic metasystem environment. The quality of the

results are determined by computingTc for this configuration using the Prophet kernel,

Tc
Prophet. We compare this value to the value for the optimalTc, Tc

optimal. The optimal is

obtained by determining the processor configuration and data domain decomposition that

produces a minimum value forTc. Under the assumptions detailed in Section 4.1.2, the pro-

cessor configuration and data domain decomposition that produces a minimumTc will also

produce a minimum total elapsed time. The experimental results given in Chapter 7 confirm

thatTc is an excellent predictor for total elapsed time. For a selected processor configura-

tion, an optimal data domain decomposition is one in which the processors are load bal-

anced under the assumption of synchronous communication. Consequently, the optimal

solution need not explore all possible assignments ofPDUs to processors. Instead, the opti-

mal solution is determined by an exhaustive search of the processor configuration space

with the data domain decomposition computed for each configuration by (Eq.4.5).

The optimal solution also considers all possible assignments of tasks to processor

clusters (inter-cluster placement). The best intra-cluster placement is assumed to be pro-

vided by the generatedTcomm. That is, the synthetic coefficients generated forTcomm are

assumed to reflect the best intra-cluster placement strategy.

The simulation results are validated by the experimental results in Chapter 7. In

Chapter 7 we show that the predicted value ofTc that guides the partitioning method agrees

with the observed value forTc for a suite of real data parallel codes and thatTc is an excel-
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lent predictor for total elapsed time,Telapsed.

The simulation results are first broken down by problem type, overlapped and non-

overlapped. Next the results are divided by metasystem type (M1, M2, or M3). Within each

metasystem type, the results are further broken down by communication topology. We also

simulated environments that required routing and conversion and those that did not. For all

experiments we ran the partitioning method with and without cluster ordering. Although

cluster ordering adds overhead, it improves the performance of the partitioning method sig-

nificantly. We show the performance with and without cluster ordering to highlight the

importance of this scheme.

In this first set of experiments we consider problems that do not have computation

overlapped with communication. We present the percentage of experiments that were

within 5% and 10% of optimal respectively, see Table 6.1-Table 6.3. We consider an

elapsed time forTc within 10% of optimal to be acceptably good performance. The results

indicate that this is achieved over 90% of the time. Each value in the table is the average of

45,000 distinct runs.

It is also important to point out that 100% of the runs were within 40% of optimal.

That is, the worst performance we observed was 40% greater than optimal and this occurred

very rarely. We also see that the inclusion of router and conversion overhead does not sig-

nificantly perturb the performance of the algorithm. This validates our cluster ordering

topology

with cluster
ordering
% of optimal

without cluster
ordering
% of optimal

5% 10% 5% 10%

ring 98.6 99.5 63.9 70.7
1-D 89.3 94.4 72.7 81.2
tree 91.6 95.3 61.5 68.8

a) No router/conversion

b) router/conversion

topology

with cluster
ordering
% of optimal

without cluster
ordering
% of optimal

5% 10% 5% 10%

ring 98.7 99.6 61.4 67.7
1-D 88.9 94.6 63.9 70.7
tree 92.6 95.9 52.5 59.7

b) router/conversion

Table 6.1: Simulation results for M1, hosts with unequal communication
capacity. Table a) contains the simulation of metasystems with router and
conversion costs included. Table b) does not simulate these costs.
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strategy based onTc for local-area metasystems. Cluster ordering considers the clusters in

isolation and includes only communication costs within the cluster, ignoring router and

conversion costs between clusters. The benefit obtained by the use of cluster ordering is

substantial, a 40% improvement — from 69% to 97% (fall within 10% of optimal) approx-

imately. The performance results differ slightly between the different topologies with per-

formance higher for thering than for either the1-D or tree topologies. The reason is thatTc

is a more complex function for the1-D andtree topology due to the presence ofmax in the

formulation forTcomm, see (Eq.3.7), and Prophet is more prone to fall into local minima.

The best results are obtained for environment M3. The reason is that the clusters in

topology

with cluster
ordering
% of optimal

without cluster
ordering
% of optimal

5% 10% 5% 10%

ring 98.8 99.7 64.3 71.1
1-D 92.3 96.4 65.9 73.0
tree 88.1 91.6 63.5 71.1

b) router/conversion

topology

with cluster
ordering
% of optimal

without cluster
ordering
% of optimal

5% 10% 5% 10%

ring 97.7 99.3 67.5 76.4
1-D 91.4 95.0 69.9 76.5
tree 89.2 91.7 63.3 70.2

a) No router/conversion

Table 6.2: Simulation results for M2, workstations and multicomputers.
Table a) contains the simulation of metasystems with router and conversion
costs included. Table b) does not simulate these costs.

topology

with cluster
ordering
% of optimal

without cluster
ordering
% of optimal

5% 10% 5% 10%

ring 98.8 99.6 54.5 59.5
1-D 92.7 97.6 54.0 61.8
tree 93.1 96.8 58.9 63.8

topology

with cluster
ordering
% of optimal

without cluster
ordering
% of optimal

5% 10% 5% 10%

ring 98.6 98.7 59.2 66.8
1-D 94.4 98.4 59.1 66.7
tree 92.8 96.2 58.9 63.8

a) No router/conversion b) router/conversion

Table 6.3: Simulation results for M3, hosts with equal communication
capacity. Table a) contains the simulation of metasystems with router or
conversion costs included. Table b) does not simulate these costs.
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M3 have equal communication capacity and the fastest processors will also have the fastest

communication. Cluster ordering does not require the tradeoff between clusters that may

offer better computational performance with clusters that may offer better communication

performance. Consequently, the method is less likely to fall into local minima as discussed

in Chapter 4.

In the second set of results we consider problems that have computation overlapped

with communication. We expect the quality of the results to fall off slightly due to the pres-

ence ofmax in the formulation forTc, see (Eq.4.10). The results are presented in Table 6.4-

Table 6.6.

The performance falls off slightly for overlapped problems — about 85-90% of the

runs are within 10% of optimal. To bring the performance up to the level obtained for prob-

lems without computation and communication overlap, we conjecture that a deeper explo-

ration of the processor configuration space is needed. Some results presented in Chapter 7

indicate that the Prophet runtime overhead is sufficiently small to make a more thorough

search feasible. This is the subject of future work. Over all environments and problem types

the average performance is within 10% of optimal 90% of the time. We consider this

acceptable performance.

Also we simulated the most common environment for M1 and M2, a single work-

topology

with cluster
ordering
% of optimal

random cluster
ordering
% of optimal

5% 10% 5% 10%

ring 90.1 95.3 61.1 68.1
1-D 83.5 88.2 53.7 59.5
tree 83.9 87.0 60.0 64.6

a) No router/conversion

topology

with cluster
ordering
% of optimal

random cluster
ordering
% of optimal

5% 10% 5% 10%

ring 90.9 94.2 62.9 68.7
1-D 83.6 88.7 63.8 70.5
tree 85.2 89.1 66.0 70.4

b) router/conversion

Table 6.4: Simulation results for M1, hosts with unequal communication
capacity. Table a) contains the simulation of metasystems with router and
conversion costs included. Table b) does not simulate these costs.
(overlapped communication and computation).
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station cluster and multicomputer respectively. These environments are homogeneous. In

the simulation of a single processor cluster, there is no router or conversion overhead and

no need for cluster ordering. The results in Table 6.7 indicate that the method handles this

common case exceptionally well for all problems. Optimal elapsed times are always

obtained. This agrees with the experimental results.

We have showed that on average the method performs quite well and local minima

are avoided. In particular for the common cases of a single processor cluster or equal com-

topology

with cluster
ordering
% of optimal

random cluster
ordering
% of optimal

5% 10% 5% 10%

ring 89.8 94.3 65.4 69.2
1-D 85.7 89.7 61.9 64.5
tree 79.4 85.9 44.9 49.6

topology

with cluster
ordering
% of optimal

random cluster
ordering
% of optimal

5% 10% 5% 10%

ring 91.7 95.5 51.0 55.6
1-D 82.5 86.7 53.4 57.5
tree 80.1 85.8 61.5 66.2

Table 6.5: Simulation results for M2, workstations and multicomputers.
Table a) contains the simulation of metasystems with router and
conversion costs included. Table b) does not simulate these costs.
(overlapped communication and computation).

a) No router/conversion b) router/conversion

topology

with cluster
ordering
% of optimal

random cluster
ordering
% of optimal

5% 10% 5% 10%

ring 94.3 97.7 67.1 75.7
1-D 86.1 91.3 69.6 76.2
tree 87.8 90.7 74.6 78.8

topology

with cluster
ordering
% of optimal

random cluster
ordering
% of optimal

5% 10% 5% 10%

ring 90.1 94.3 63.8 69.7
1-D 84.1 90.7 65.4 72.3
tree 87.6 90.1 73.8 78.0

a) No router/conversion b) router/conversion

Table 6.6: Simulation results for M3, hosts with equal communication
capacity. Table a) contains the simulation of metasystems with router and
conversion costs included. Table b) does not simulate these costs.
(overlapped communication and computation).
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munication capacity, the results are extremely good for all problems. The results are also

quite good for all environments if computation and communication are not overlapped. If

computation and communication are overlapped, performance falls off slightly. We have

also observed that the worst-case deviation from optimal is around 40% for a particular

problem and this occurs very rarely. The likelihood of local minima is substantially reduced

by cluster ordering and phase 2 of the partitioning method. The experimental results further

substantiate that the method yields excellent performance in a practical setting.

6.3   Wide-area Parallel Processing Study

The simulation results presented here and the experimental results presented in the

next chapter confirm that local-area parallel processing provides a performance benefit in

many instances. The next question is whether wide-area parallel processing can be

expected to deliver acceptable performance. To help answer this question we performed a

simulation study of 6 network environments:

• DW (department-wide): ethernet, single router

• CW (campus-wide): ethernet, some fiber, multiple routers

• MW (metropolitan-wide)2: multiple routers, gateways

• NW (nation-wide)3: multiple gateways

• HBDW (high-bandwidth department-wide): ATM, GIGAswitch

• HBMW (high-bandwidth metropolitan-wide): Casa

2.  Similar to NW, but better communication performance (measured as UVa to Sandia)

3.  Measured as UVa to JPL

topology
non-overlap
% of optimal

overlap
% of optimal

5% 10% 5% 10%

ring 100.0 100.0 100.0 100.0
1-D 100.0 100.0 100.0 100.0
tree 100.0 100.0 100.0 100.0

topology
non-overlap
% of optimal

overlap
% of optimal

5% 10% 5% 10%

ring 100.0 100.0 100.0 100.0
1-D 100.0 100.0 100.0 100.0
tree 100.0 100.0 100.0 100.0

Table 6.7: Simulation results for homogeneous environment

a) M1 - single cluster b) M2 - single multicomputer
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The first four organizations reflect today’s widespread network technology and the latter

two configurations reflect the new network technology that is beginning to come on-line.

We model all of these environments by adjusting the routing latency and bandwidth penalty

appropriately, see Table 6.8.

We have observed experimentally that there is approximately an order of magnitude deg-

radation in communication capacity from DW→ CW → MW → NW. The newer technol-

ogies HBDW and HBMW improve the bandwidth capacity but typically do not reduce the

latency.

In our simulation study, we have simulated workstation clusters and assume a single

cluster per “site”. The per site cluster size ranges from 1 to 100 processors and the number

of clusters (or sites) is 10. We assume that the routing penalty betweenall sites reflects the

ranges in Table 6.8. A more realistic environment would have non-uniform costs between

different sites, but this study is aimed at understanding the impact of network distribution

so this simplifying assumption does not invalidate the results. An implementation of sched-

uling heuristics for wide-area environments will need to handle non-uniformity of routing

costs.

We are simulating the scheduling of a single data parallel computation across mul-

tiple sites as opposed to choosing the best site. This distinction was discussed in Section

3.1.3. An important issue that we do not address here is how state information can be col-

Network
Configuration Routing Cost

Latency
(msec)

Bandwidth
(msec/byte)

DW 0-1 .001
CW 1-10 .01
MW 10-100 .1
NW 100-1000 1
HBDW 0-1 .0001
HBMW 10-100 .0001

Table 6.8: Network environments
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lected in a timely manner as part of resource availability. Assuming such information could

be collected in a timely manner, we are interested in whether wide-area parallel processing

is feasible. We consider wide-area parallel processing to be feasible if there is a perfor-

mance advantage to using remote sites.

We use the partitioning heuristic for these experiments since we have already shown

it achieves performance within 10% of optimal on average and it is much faster than opti-

mal. We simulate problems with different communication topologies containing a single

computation and communication phase that may or may not have computation and com-

munication overlapped. The problems also reflect a wide range of granularities.

To see if wide-area processing provides an advantage, we compute the average

number of clusters (sites) that were selected to solve the problem. If this value is close to

1, then a single local site is adequate and wide-area parallel processing would not appear to

be profitable. However it still may be the case that a remote site may be better for the prob-

lem than a local site. On the other hand, if this value is greater than 1, then wide-area par-

allel processing may be profitable. Clearly this value depends on problem characteristics,

the most important of which is granularity. We have defined 5 granularity ranges as shown

in Table 6.9. These ranges reflect the amount of computation perPDU per cycle.

In Figure 6.4 we present the average results over all simulated problem types (1-D,

ring, andtree topologies, overlapped and non-overlapped) for the range of granularities

with respect to the network environment. Each point on the graph is the average of 45,000

experimental runs as before. The results indicate that as the distribution becomes wider-

area, the impact of network distribution on site selection becomes more pronounced. How-

Range Number of Instructions x 1000

A 1-10
B 10-100
C 100-1000
D 1000-10000
E 10000-100000

Table 6.9: Granularity ranges
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ever, it is also clear that as the problem granularity increases, wide-area parallel processing

becomes more attractive.

These results indicate that there ia a point where wide-area parallel processing may

become feasible. We performed a study to determine the minimum granularity require-

ments for problems in these environments. These experiments were designed to provide

some insight into what problem sizes might be suitable for the different environments. We

are interested in order-of-magnitude values for the minimum granularity. We define three

granularity values of interest (m = 10 clusters):

• MIN_SITES (≈ 2 clusters)

• MID_SITES (≈ m/2 clusters)

• MAX_SITES (≈ m clusters)

MIN_SITES is the granularity at which it becomes profitable to use remote sites,

MID_SITES is the granularity at which we are utilizing 50% of the sites, and MAX_SITES

is the granularity at which we are utilizing 100% of the sites. The latter two values depend

on the chosen value ofm and are included to show that their is a point where wide-area par-

Figure 6.4: Sites vs granularity
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allel processing may become very attractive. For these experiments we use the same prob-

lem profile as above. In Table 6.10 we show the results obtained for MIN_SITES,

MID_SITES, and MAX_SITES in the different network environments (F is the next order

of magnitude beyond E). In some cases we show a range such as A-B which means that the

granularity lies between the A and B ranges.

The results show that there is a point where wide-area parallel processing can be prof-

itable. We also see an order of magnitude difference for granularity requirements for DW,

CW, MW, and NW on average for MIN_SITES and MID_SITES. For MAX_SITES there

is not much distinction — very large problems are required in all environments.

In this chapter we have shown that the partitioning method has excellent average-

case performance over a wide range of problem types and metasystem environments. Per-

formance within 10% of optimal can be expected in the vast majority of cases. In the com-

mon environment of a single homogeneous cluster, the method always achieved optimal

finishing time. These results are confirmed by the experimental results presented in the

next chapter. A feasibility study into wide-area parallel processing also indicated that

problems of sufficient granularity may benefit by wide-area distribution.

Granularity value Granularity Range

HBDW DW CW HBMW MW NW

MIN_SITES A A-B B B B-C C-D
MID_SITES B-C C C-D C-D D D-E
MAX_SITES E E E E-F F F

Table 6.10: Granularity requirements
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Chapter 7 Experimental Results

This chapter presents the experimental results that have been obtained for a suite

of data parallel computations. These problems have been run in an experimental heteroge-

neous workstation-based environment. We show that partitioning and placement may pro-

vide a significant performance benefit, while Prophet overhead and the costs of

heterogeneity, routing and data conversion, are tolerable. The benefits achieved by the use

of heterogeneous processors can be large if partitioning and placement are done carefully.

We describe the environment, the codes in the test suite and the experimental results

obtained for each code.

7.1   Experimental Heterogeneous Environment

The experimental heterogeneous environment is a local-area ethernet-connected

network of workstations. The environment contains three processor clusters:C1 contains 6

SGI Indigo’s (based on the MIPS R4000),C2 contains 8 Sun Sparcstation 2’s, andC3 con-

tains 8 Sun4 IPC’s all joined by a router as shown in Figure 7.1. Communication between

all machines is provided by MMPS [38], a reliable message-passing system based on UDP.

Fortunately, there are no endian or data format differences for standard data types between

these machines and no explicit conversion is needed. We have implemented a set of syn-

thetic endian conversion routines to explore this overhead.
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Processor clusters in this environment exhibit heterogeneity in both computation

and communication capacity. The SGI’s are significantly faster than the Sparc2’s and the

IPC’s, and the Sparc2’s are faster than the IPC’s in both integer and floating-point rates. The

processor specifications and memory configuration are given in Table 7.1. The MMPS

communication performance for the SGI’s and Sparc2’s are similar and both are faster than

the IPC’s.

All experimentation in this environment was done when the network and processors

were lightly loaded. Thus, the cost functions for communication, routing, and conversion,

in addition to thearch_cost specification presented in the next section, have been con-

structed under this assumption. The impact of processor load on both computation and

communication costs is the subject of future work. In the presence of modest processor

load, which we have defined to be a run queue length of around .33, the small inaccuracy

in cost estimation did not adversely impact the quality of the results. Once a processor

reached a load above this value it become a bottleneck and the accuracy of the method fell

outside of acceptable bounds (10%). This is not surprising since the completion time for a

R

SGI

Sparc2

C1

C2

C3

IPC

Figure 7.1: Experimental heterogeneous environment

Processor
Clock Speed
(Mhz) Peak Mflops Peak Mips

Memory
(Mbytes)

SGI 100 16 88 32
Sparc2 40 4 29 32
IPC 25 2 17 48

Table 7.1: Processor characteristics
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SPMD computation will be limited by the slowest worker. We discuss some strategies for

dealing with load in the final chapter.

7.2   Execution Results

We present execution results for the suite of data parallel applications in the work-

station-based heterogeneous environment. The results show that the scheduling frame-

work can be successfully applied to real data parallel computations. A number of practical

results are established: (1) partitioning and placement may be automated, (2) overhead is

tolerable, (3) results are accurate and predictable and (4) using heterogeneous processors

may provide a significant performance benefit. We show that heterogeneity isexploited in

processor selection and data domain decomposition to gain performance, and that the pri-

mary cost of heterogeneity, conversion, can be tolerated. We also show that a secondary

cost due to the distributed nature of heterogeneous resources, routing, can also be tolerated

in local-area environments.

Each application is run on a range of problem instances spanning the spectrum from

small- to large-grain. The results that we report are the average obtained by running each

problem instance 5 times when the network and processors were lightly loaded. Some vari-

ance was observed when processor load increased or router spikes occurred. This was

expected due to the amount of non-determinism inherent in network-based computing.

The metric for solution quality is elapsed time. The elapsed time is the wall-clock

execution time after the workers are created and the data is distributed. The accuracy of

Prophet is established by comparing the predictedTc to the actual measuredTc. We show

that the predictedTc agrees with the actualTc within 10%. This result validates the simula-

tion study which is based on an accurate estimate ofTc. The simulation study indicated

that the partitioning method produced results close to optimal for a given set of cost infor-

mation. This cost information was used to estimateTc.

We also establish that the Prophet runtime overhead is tolerable. The overhead pre-

sented is for a Sparc2 processor. The main program makes the Prophet calls and is run on

a Sparc2. The overhead would be less on an SGI and more on an IPC. The point is to show

the magnitude of the overhead term. Few optimizations have been performed within
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Prophet, and these overhead values should be viewed as upper bounds. One type of opti-

mization is the parallelization of the partitioning method in both cluster ordering and in

searching the processor configuration space.

A number of comparisons are made to assess solution quality. We compare the per-

formance obtained by Prophet to the best performance that could be obtained if a single

cluster of homogeneous processors is used. This is determined by running the code for all

possible number of processors within the individual processor clusters until the best was

found. For small problems that require only processors in a single processor cluster,

Prophet always finds the best number of processors. This result was confirmed in simula-

tion. Small problems also highlight the importance of cluster ordering. Significant perfor-

mance benefits are realized by choosing the best processor cluster. For larger problems we

show that there is a benefit to using heterogeneous processors in multiple processor clus-

ters even in the presence of conversion and routing overhead. We show that performance

is superior to the best single cluster performance. However to exploit heterogeneous pro-

cessors in multiple clusters, partitioning and placement must be done carefully. We also

provide the best sequential time on an SGI (the fastest processor type) which is different

from the time taken by the parallel code on a single processor.

Another comparison is made to determine the benefit of computing a heteroge-

neous data domain decomposition. For problem instances that use heterogeneous proces-

sors, we compare with the performance that is obtained when this problem is run over the

same set of processors but with an equal decomposition of the data domain across all

workers. We show that an equal data domain decomposition results in a load imbalance

that may be substantial.

Although there is no need for conversion in this heterogeneous environment, con-

version is an overhead that will impact communication cost in general. The most common

form of conversion is a byte-swap endian conversion. Another comparison is made to

determine the impact of byte-swap endian conversion. We have implemented an endian

conversion function for each communicated data type that is used in the suite of data par-

allel codes. The conversion functions are enabled by setting compile-time flags. When

conversion is enabled, each message is passed to the appropriate conversion routine for

processing, either on the sending or receiving side. We compare performance with and
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without conversion and the results indicate that even in the presence of conversion, the

selected heterogeneous processor configuration out-performs the best single processor

cluster, and that the conversion overhead is tolerable.

Finally a comparison is made to show benefit of automated placement. The vast

majority of runtime scheduling systems (see Section 2.1.2) do not use any topology infor-

mation to help guide task placement. The co-scheduling approach that Prophet has imple-

mented can lead to much improved placement decisions. Co-scheduling collectively

assigns a set of communicating workers to processors. To show the benefit of co-schedul-

ing, we compare the performance obtained when co-scheduling is enabled to when it is

not. When it is not, we use a random placement strategy that guarantees a single worker

per processor. A number of different random seeds are used for each experiment and aver-

age results presented1. The random strategy is one of the schemes employed by the under-

lying Mentat scheduler [37], and is based on the load sharing model of Eager and

Lazowska [21].

Co-scheduling reduces communication overhead in two ways that have been dis-

cussed in Section 4.2. However, for network-based clusters as opposed to multicomputer-

based clusters, only one benefit is possible, inter-cluster placement may reduce the num-

ber of messages that cross the router. We show that for communication topologies with

locality (e.g.,1-D, and tree), there is a performance benefit that can be attributed to a

reduced number of messages that cross the router under co-scheduling. Consequently,

only problem instances that use heterogeneous processors and communicate across the

router will benefit by co-scheduling in the workstation network environment.

7.3   Data Parallel Applications

We have implemented a suite of data parallel computations that test the applicability

of Prophet to real codes: Gaussian elimination with partial pivoting, a canonical five-point

stencil code, a large-scale finite-element code, and a gene-sequence comparison code. The

latter two applications are significant codes that solve real problems in computational phys-

ics and biology respectively.

1.  A single random run could simply luck into the best placement, but in general it will not.
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All of these codes are structured in a style that is compatible with the SPMD com-

putation model discussed in Chapter 3. Each code has a main program that initiates the data

parallel computation, and a worker program that is appropriately parameterized to operate

on a portion of the data domain. In the Mentat-Legion implementation the main program

and worker program are implemented as Mentat objects. The more complex codes use

additional Mentat objects that are discussed briefly in the subsequent sections.

The main program implementation is structured in the following way for all codes:

(1) the domain object is created, (2) a call to Prophet is made from the main program to

determine partitioning and placement, (3) the workers are created and placed on the

selected processors, (4) the data domain is decomposed and passed to the workers, and (5)

the computation is initiated. It is assumed that Sparc (both the Sparc2’s and IPC’s are Sparc

processors) and SGI binaries have been compiled for each worker type2 so that Prophet can

select any processor in the heterogeneous environment for worker placement.

The performance results we present are based on elapsed time. This provides an

unfiltered measure of the quality of the results and is sufficient to show the performance

benefit that can be obtained with automated scheduling. Other metrics such as heteroge-

neous speedup [20] have also been proposed.

7.3.1  Gaussian Elimination with Partial Pivoting

Gaussian elimination with partial pivoting (GE) is perhaps the most well-known

direct method for solving a linear system of equations of the form,Ax = b, whereA is a

NxN coefficient matrix,b is a right-hand-side vector, andx is the solution vector. GE is a

floating-point numeric computation that contains two computations, forward reduction

and backsubstitution. The forward reduction phase reduces the matrix to an upper-triangu-

lar form and is dominant with O(N3) complexity, while backsubstitution solves the upper-

triangular system and has O(N2) complexity. The details of the GE algorithm may be

found in [28].

2.  Mentat-Legion will automatically compile binaries if they do not exist.
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In the parallel implementation of GE thePDU is defined to be a row, and the

implementation performs a row-cyclic decomposition of the matrix, see Figure 7.2. Since

the amount of computation performed on a row decreases for rows further down in the

matrix, a cyclic interleaving of rows gives better load balance.

The implementation of GE arranges the workers in a broadcast topology —by con-

vention worker 0 is the master. During partial pivoting all workers broadcast their candi-

date rows to the master, the master then determines the pivot row and broadcasts the

selected pivot back to the workers, see Figure 7.3. The absence of locality in the broadcast

topology means that placement is straightforward — the master is assigned to the cluster

with the largest number of workers to minimize router traffic. Once a worker receives the

current pivot it reduces the rows that it has been assigned. Forward reduction contains two

phases, a broadcast communication phase for partial pivoting, and a computation phase

where workers reduce their portion of the matrix. These phases are executed iterativelyN-

1 times. Backsubstitution is performed sequentially once forward reduction has com-

pleted. The times we report for GE are for the forward reduction phase to show the accu-

racy of the cost prediction for this computation.

GE has the property that the amount of communication and computation change

from cycle to cycle. In this case we must provide average values for thecomp_complexity

and comm_complexitycallbacks as discussed in Section 3.2.1. The callbacks for the domi-

nant phases of GE (forward reduction) are given in Figure 7.4. On average a pivot row of

lengthN/2 is communicated and the average instruction count is obtained by taking the

worker 0

worker 1

worker 1

worker 2

worker 3

worker 0

worker 2

worker 3

...
Figure 7.2: Cyclic decomposition of matrix across 4 workers



113

total instruction count [28] and dividing by the number ofPDUs (N) and cycles (N-1).

Recall that thearch_cost is the problem-specific and architecture-dependent cost of com-

puting on aPDU (or row) in msec/instruction3. We show only thePDU dependent compo-

nent of the cost. These costs were determined by benchmarking GE on all of the machine

types. On the SGI GE has the property that different problems sizes resulted in different

values forarch_cost due to cache and memory effects. Since the callbacks can be arbitrary

functions of problem parameters it is very easy to specify this type of dependence. The

three values presented in Figure 7.4 refer to these cases —N < 512, 512 <N < 1024, and

N > 1024 respectively.

GE is a basic kernel computation that poses a number of challenges. First, the

amount of computation and communication vary from iteration to iteration, and the call-

backs must reflect the average computation and communication per cycle. Despite the

apparent inaccuracy of these callbacks, they lead to accurate cost prediction. Second, GE

3.  In Chapter 3 it was described as usec/instruction but the implementation uses msec.

master

workers

Figure 7.3: Broadcast topology for partial pivoting

topology⇒ broadcast
comm_complexity⇒ 4(N/2) (bytes)
numPDUs⇒ N
comp_complexity⇒ (2/3N3+N(N-1))/ N(N-1)

⇒ (2N2)/(3N-3) (fp ops)
arch_cost⇒ SGI: = .00013, .0001, .00015

⇒ Sparc2: = .000319
⇒ IPC: = .0006

Figure 7.4: Callbacks for Gaussian elimination
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is a very tightly-coupled parallel computation that has a large amount of global communi-

cation. In fact, the dominant communication topology is a broadcast and the amount of

communication scales linearly with the problem size and the number of processors. A glo-

bal communication topology limits scalability on the network due to the limited communi-

cation bandwidth.

We ran GE on a range of matrix sizes:N= 256, 512, 768, 1024, and 2048, from

small- to large-grained, see Table 7.2. The configuration is the number of processors in each

cluster that were chosen and the PDUs are the number ofPDUs assigned to each processor

(or worker) in a particular cluster. Etime is the elapsed time taken by the problem instance.

The clusters are orderedC1 (SGI), C2 (Sparc2), andC3 (IPC) —this cluster ordering was

determined by Prophet to be the best for all problem instances in the test suite.

Notice that as the problem size increases more processors are used as expected, but

there is a hard limit. Only processors inC1 were effectively used due to the poor scaling

properties of GE on the network. There was no benefit to considering additional processors

(i.e., slower Sparc2’s) due to the increase in communication overhead relative to the benefit

of additional processors. It is likely though that the largest problem (N=2048) would have

benefited from additional SGI’s had they been available.

The results also indicate that the method was accurate — the predictedTc agreed

Problem
Size Configuration PDUs

Etime
(msec)

Tc
(msec/cycle)

overhead
(msec)

C1 C2 C3 A1 A2 A3 predicted actual

256 1 0 0 256 0 0 1504 5.7 5.9 6.4
512 2 0 0 256 0 0 8891 16.2 17.4 6.8
768 3 0 0 256 0 0 21783 26.3 28.4 6.9
1024 4 0 0 256 0 0 40817 37.9 39.9 6.9
2048 6 0 0 *341 0 0 259150 118.4 126.6 7.3

Table 7.2: Experimental results for GE. The PDUs refer to the number of
rows of the matrix. The entry marked * is rounded. The method gives two
processors 342 PDUs, and the remaining four receive 341 (total is 2048).
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with the measuredTc often within 5% and always within 10%. This gives evidence that the

use of callbacks that reflect average values can be effective. This is important because it

means that the approach is not necessarily limited to problems that are extremely regular in

structure. Also observe that the Prophet overhead is tolerable for GE and easily amortized

as the problem size increases. AtN=256 Prophet adds .4% overhead, and the overhead per-

centage drops off rapidly for large problems. AtN=2048 Prophet adds .002% overhead.

We also present the best sequential times for GE in Table 7.3. Since the SGI is the

fastest processor, we present the times for an SGI. AtN=2048 the performance falls off due

to memory and caching effects. The best sequential times are different from the perfor-

mance obtained when the parallel code is run on one processor. The sequential code will

outperform the single processor parallel code. Since Prophet is concerned with scheduling

the parallel code we compare Prophet execution times for the parallel code only.

We have shown that the method is accurate and has small overhead, and we now

show that the solution quality is quite good. Although Prophet was unable to exploit heter-

ogeneous processors for GE, the importance of processor selection in choosing processors

from C1 first, and then in choosing the correct number of processors is demonstrated in

Table 7.4.P1, P2 andP3 are the best number of SGI’s, Sparc2’s, and IPC’s respectively

located by trying all possible numbers of these processors. The reported elapsed time for

the best number of processors withinC1 (the SGI cluster) agrees with the predicted config-

uration determined by Prophet in Table 7.2. Notice that more IPC’s and Sparc2’s are used

relative to the SGI’s since they are slower and hence more balanced with respect to com-

Problem
Size

Etime
(msec)

256 1743
512 13900
768 50524
1024 123053
2048 1089355

Table 7.3: Best sequential times for GE on an SGI
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munication. But the elapsed times indicate that the use of fewer faster SGI’s leads to supe-

rior performance. There is no predictable pattern as to how much the performance will

increase, it depends on the problem size, how many processors were used, and the compu-

tation and communication capabilities of the processors. What can be said is that the per-

formance increase is substantial.

GE is also able to tolerate endian conversion fairly easily, see Table 7.5. All workers

convert their candidate pivot before sending to the master worker during partial pivoting.

This allows the workers to perform conversions in parallel. Conversion increases the per

cycle elapsed time by a few percent. AtN=512, we observe a larger increase of 7% that we

speculate is due to cache effects. The addition of conversion does not significantly change

the overhead experienced by Prophet. Also observe that the estimation ofTc in Table 7.5

Problem
Size

Best P1 and
Elapsed Time
(msec)

Best P2 and
Elapsed Time
(msec)

Best P3 and
Elapsed Time
(msec)

% Benefit of Prophet
configuration with
respect to best single
cluster performance

P1 Etime P2 Etime P3 Etime C1 C2 C3
256 1 1504 1 3774 2  6350 ---  151%  322%
512 2 8891 1 11957 5 27134 ---  35%  205%
768 3 21783 6 37506 6 64735 ---  84%  197%
1024 4 40817 7 70485 8 133604 ---  66%  227%
2048 6 259150 8 525610 8 858102 ---  102%  231%

Table 7.4: Best performance for GE

Problem
 Size Configuration PDUs

Etime
(msec)

Tc
(msec/cycle)

%
increase
in Tc

C1 C2 C3 A1 A2 A3 predicted actual
256 1 0 0 256 0 0 1504 5.7 5.9 ---
512 2 0 0 256 0 0 9556 16.5 18.7 7%
768 3 0 0 256 0 0 21936 26.7 28.6 1%
1024 4 0 0 256 0 0 41432 38.5 40.5 2%
2048 6 0 0 *341 0 0 265086 119.6 129.5 2%

Table 7.5: Impact of endian conversion for GE



117

reflects the added conversion cost and is still very accurate.

7.3.2  Five-Point Stencil

The canonical stencil computation is a common data parallel problem that appears

in a number of different application areas including image processing and iterative PDE

solvers. The stencil computation is based on a underlying grid that arises from a spatial

decomposition of the problem. This decomposition is often a discrete representation of a

continuous domain. The values computed at the grid points and the relationship among

grid points are different for different problem domains. In a stencil computation the val-

ues computed at a grid point are dependent on the values computed at neighboring grid

points. In image processing problems the grid points refer to pixels of the image while for

PDEs the grid points refer to points in the spatial domain of the problem. For example, in

the PDE that arises from modeling heat flow along a metal plate, the grid points would

correspond to points on the surface of the plate.

Perhaps the simplest stencil computation is the five-point stencil that arises from

the discretization of PDEs in two variables, see Figure 7.5. Each point is coupled with it’s

north, south, east, and west neighbors as shown for the black point. Points on the bound-

ary require some type of boundary conditions to help resolve their value. During the sten-

cil computation values associated with these points are repeatedly updated until some

Y

X

Figure 7.5: 2-D grid
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convergence or stopping criteria is met. The size of the grid reflects the level of fidelity and

accuracy that is desired. A larger grid has a finer resolution and is more accurate, but

requires additional computation and memory.

We have implemented a five-point stencil code (STEN) for an iterative PDE solver

that can be used to solve Laplace’s equation:  on the unit square. Using

finite-differences a grid is imposed over this domain with the grid pointsuij related in the

following way: . A grid of

sizeN produces a linear system that containsN2equations corresponding toN2 interiorgrid

points. We solve this system using Jacobi’s method [28]. This algorithm has a large amount

of inherent parallelism and has much better scaling properties than does GE. Both GE and

STEN have a computation granularity that scales well with problem sizeN — N3 andN2

respectively. But the dominant communication pattern in STEN is a local nearest-neighbor

exchange of grid point values that has better scaling properties than the global communi-

cation required in GE.

In the parallel implementation of STEN thePDU is defined to be a row of anNxN

grid, and the workers are arranged in a1-D communication topology as shown in Figure

3.8. Unlike GE, STEN has locality and placement assigns workers to processors in order to

preserve locality for the1-D topology. Each worker receives a row-contiguous share of the

grid that is proportional to the power of the processor to which it has been assigned. The

same amount of computation is performed on each row of the grid (except the boundaries)

so a cyclic decomposition is unnecessary. The workers execute a single dominant compu-

tation phase where the grid point values are updated according to the rule given above, fol-

lowed by a dominant communication phase where the workers exchange north and south

borders of the grid. These phases are executed iteratively until some stopping criteria. We

run STEN for 100 iterations and report the elapsed time.

STEN is a regular floating-point computation and the callbacks for STEN are given

in Figure 7.6. Notice that the callbacks are simpler than GE and this reflects the regular

uxx uyy+ 0=

ui 1 j,+– ui 1– j,– ui j 1+,– ui j 1–,– 4ui j,+ 0 i j, , 1 … N, ,= =
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nature of this computation. The same amount of computation and communication are per-

formed in each iteration and the amount of computation perPDU (or row) is the same

across the entire data domain. Again we show only thePDU dependent portion of

arch_cost. STEN has the property that different problems sizes resulted in different values

for arch_cost due to cache and memory effects. The values presented above refer to these

cases —N < 1024 andN > 1024 respectively. Unlike GE, the Sparc2 and IPC also exhibited

a sensitivity to problem size.

Unlike GE, STEN has much better scaling properties and is able to exploit hetero-

geneous processors. The dominant communication topology of STEN is a1-D which is a

class of nearest-neighbor topologies that tend to scale well.

We ran STEN on a range of grid sizes:N= 64, 128, 256, 512, 1024, and 2048, from

small- to large-grained for 100 iterations. The number of iterations selected does not affect

the per cycle elapsed times, but the larger the number of iterations the more easily Prophet

overhead may be amortized over the entire computation. The first set of results are given in

Table 7.6 and are qualitatively similar to the results for GE in Table 7.2.

Observe that the predictedTc is still within 10% of the actualTc. Also note that for

larger problems the method computes a heterogeneous data domain decomposition with a

different number ofPDUs assigned to workers on different processor types. The overhead

is a little higher than for GE since Prophet explores more processors and clusters. But the

overhead is still easily amortized. AtN=64 Prophet adds 4% overhead, and the overhead

percentage drops off rapidly for large problems. AtN=2048 Prophet adds .03% overhead.

topology⇒ 1-D
comm_complexity⇒ 4N (bytes)
numPDUs⇒ N
comp_complexity⇒ 5N (fp ops)
arch_cost⇒ SGI: = .0001, .00015

⇒ Sparc2: = .000319, .00028
⇒ IPC: = .0006, .00072

Figure 7.6: Callbacks for stencil



120

Prophet begins to use heterogeneous processors atN=512 when the computation granular-

ity becomes large enough to offset the communication overhead. AtN=1024 the problem

is big enough to warrant the use of processors in all clusters.

We present the best sequential times for STEN on an SGI in Table 7.3 (shown also

for 100 iterations). Note that the best sequential time forN=128 is better than the best time

the parallel code can achieve. This is not surprising since the sequential code uses statically

allocated arrays while the parallel code uses dynamic data structures.

To assess the performance of the selected configuration, we present the best elapsed

times observed when only a single cluster is used, see Table 7.8. The results show two

things. First, as with GE, Prophet chooses the best number of processors to use when a sin-

gle processor cluster is selected. Second, the use of heterogeneous processors provides a

performance benefit over the use of a single processor cluster forN=512, 1024, and 2048.

Table 7.6: Experimental results for STEN. The PDUs refer to the number of
rows of the grid. The entry marked * is rounded as appropriate, e.g. for N=128
the method gives the processors 43, 43, and 42 PDUs respectively.

Problem
Size Configuration PDUs

Etime
(msec)

Tc
(msec/cycle)

overhead
(msec)

C1 C2 C3 A1 A2 A3 predicted actual
64 1 0 0 64 0 0 200 2.1 2.0 7.3
128 3 0 0 *43 0 0 776 7.3 7.8 6.8
256 4 0 0 64 0 0 1620 16.1 16.3 7.2
512 6 8 0 *61 18 0 4390 38.4 43.9 10.5
1024 6 8 5 *110 34 18 9635 95.1 96.4 10.2
2048 6 8 6 *178 95 36 36558 346.8 365.6 10.7

Problem
Size

Etime
(msec)

64 174
128 698
256 2924
512 13287
1024 51550
2048 282984

Table 7.7: Best sequential times for STEN on an SGI
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A key element in achieving good performance is a heterogeneous data domain

decomposition that gives processor load balance. To show the benefit of a heterogeneous

data domain decomposition, we show the results of running STEN across the heteroge-

neous configurations selected atN=512, 1024, and 2048, but with an equal decomposition

of the data domain in which all processors receive an equal share ofPDUs, see Table 7.9.

The load imbalance causes a performance degradation that is significant for large problems,

as much as 89% for STEN. The precise performance impact of the imbalance is difficult to

predict and is problem-dependent, but load imbalance can cause a performance degradation

that can be severe. In fact, the load imbalance completely eliminates the benefit of using

heterogeneous processors and reduces the effective parallelism. For example, forN=512,

1024, and 2048, it would have been better to use 6 SGI’s than to use the selected configu-

ration with an equal data domain decomposition, see Table 7.8.

Problem
Size

Best P1 and
Elapsed Time
(msec)

Best P2 and
Elapsed Time

(msec)

Best P3 and
Elapsed Time

(msec)

% Benefit of Prophet
configuration with
respect to best single
cluster performance

P1 Etime P2 Etime P3 Etime C1 C2 C3
64 1 200 1  556 1 1161 ---  178% 481%
128 3 776 6 1186 8 2433 ---  53% 216%
256 4 1620 8 2333 8 4473 ---  44% 176%
512 6 4840 8 6677 8 11377 9%  52% 159%
1024 6 12075 8 23046 8 47835 25% 139% 396%
2048 6 61295 8 84032 8 218650 38% 122% 478%

Table 7.8: Best performance for STEN

Problem
Size Configuration PDUs

Elapsed Time
(msec)

% Increase in
Etime with respect
to balanced load

C1 C2 C3 A1 A2 A3
512 6 8 0 *36 36 0 5125 17%
1024 6 8 5 *54 54 54 18201 89%
2048 6 8 6 *102 102 102 64903 77%

Table 7.9: Benefit of heterogeneous data domain decomposition for STEN
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Although the load imbalance results show that a large performance degradation

occurs, we might expect an even larger degradation. For example atN=2048 each IPC is

given 36 rows when load balanced vs. 102 rows when not load balanced, so we might

expect a performance degradation of over 100% due to an increase in computation time.

However the load imbalance only impacts the computation part ofTc and so the increase in

Tc depends on theTcomp andTcomm components ofTc. For example ifTcomm were 0 then we

would expect to see a degradation over 100%. However if computation and communication

costs were more balanced then we would expect a smaller degradation which is consistent

with the results we have obtained.

The use of multiple processor clusters forN=512, 1024 and 2048 also indicates that

router overhead is worth paying for the gain in communication bandwidth and computation

cycles. We also show that endian conversion is tolerated by STEN in a manner similar for

GE, see Table 7.10. Conversions are performed when the workers receive border rows from

their north and south neighbors. The rows are single precision floating-point numbers. The

workers perform the endian conversions in parallel. Conversion adds very small overhead

and does not alter the use of heterogeneous processors. Prophet still chooses heterogeneous

processors even with a conversion penalty, and the resulting elapsed times are still superior

to the best single cluster elapsed times.

Finally we show that the co-scheduling model of Prophet provides a significant per-

Problem
Size Configuration PDUs

Etime
(msec)

Tc
(msec/cycle)

%
increase
in Tc

C1 C2 C3 A1 A2 A3 predicted actual
64 1 0 0 64 0 0 200 2.1 2.0 ---
128 3 0 0 *43 0 0 790 7.4 7.9 1%
256 4 0 0 64 0 0 1649 16.4 16.5 1%
512 6 8 0 *61 18 0 4579 39.3 45.8 4%
1024 6 8 5 *110 34 18 10386 96.2 103.8 8%
2048 6 8 6 *178 95 36 38882 349.3 388.3 6%

Table 7.10: Impact of endian conversion for STEN
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formance improvement in the event that multiple processor clusters are selected. We ran

STEN using the same configuration and data domain decomposition computed by Prophet

but with a random placement that assigns a single worker per processor see Table 7.11.

Under a random assignment workers in the1-D topology may have north and south neigh-

bors in other processor clusters. Thus, the amount of communication that crosses the router

will increase. The router congestion contributed to a large increase in elapsed time for the

problem instances. The co-scheduling results are problem-dependent and also depend on

the random assignments that were used. Nonetheless, we assert that co-scheduling is supe-

rior to the alternative of not using topology information and that the performance benefit

may be large.

7.3.3  Finite-Element Computation

Finite-element methods have been widely used for problems in structural mechan-

ics and more recently in electromagnetic-scattering (EM) problems. Finite-elements can

effectively model the specific geometry of an object by unstructured gridding, see Figure

7.7. In the EM problem an electromagnetic wave illuminates a set of objects (scatterers)

and the electromagnetic field scattered from the objects is calculated. The ability of finite-

elements to accurately model the scatterer’s surface makes the finite-element method

attractive for such problems.

We have implemented a 2D version of EM problem which solves for the electro-

magnetic fields in the vicinity of a set of scatterers, see Figure 7.8. The code solves a Helm-

Problem
Size Configuration PDUs

Elapsed Time
(msec)

% Increase in
Etime with
respect to co-
scheduling

C1 C2 C3 A1 A2 A3
512 6 8 0 61 18 0 6483 48%
1024 6 8 5 110 34 18 17842 76%
2048 6 8 6 178 95 36 63628 74%

Table 7.11: Benefit of co-scheduling for STEN
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holtz equation with an absorbing boundary condition defined on the boundaryΓ that

uniquely specifies the problem. A description of the 2D integral equation can be found in

[92]. A finite-element mesh is imposed on the problem and the 2D integral equation is

transformed into a system of linear equations. The problem domain is meshed with nodal

points that match the geometry of the objects and the electromagnetic field values are com-

puted at these points. In the 2D EM problem the node geometries are triangles or quadrilat-

erals.

The EM problem reduces to solving a linear system of equations of the form:

, whered is the vector field,  is the stiffness matrix, and  is the force

vector. The computation of  and  depend on the nodal basis functions and are discussed

Figure 7.7: A Simple finite element mesh

Scatterers

Problem Boundary Γ

E

H

k

Figure 7.8: The general 2D EM scattering problem

K d⋅ F= K F

K F



125

in [92]. The elements of  and  are complex numbers. The finite-element (FEM) com-

putation is a large-scale 3500-line code that contains two coupled data parallel computa-

tions that are executed sequentially, assembly andsolve. In theassembly phase the stiffness

matrix  and the force vector  are computed. The stiffness matrix that results is large,

very sparse, and symmetric. Fortunately it has small bandwidth relative to the size of the

matrix. Thesolve computation uses a bi-conjugate gradient solver BCG to solve the system.

BCG is known to have instability problems but we did not encounter this behavior in our

experiments. The stiffness matrix is first preconditioned by diagonal scaling to improve

convergence.

In assembly the finite-element mesh is decomposed across a set of workers that

compute contributions to the stiffness matrix and force vector. Eachassembly worker

receives a number of elements that are proportional to the power of the processor to which

it has been assigned. For each contained element a stiffness matrix contribution is com-

puted. Elements on the problem boundary contribute to the force vector as well. Insolve

the stiffness matrix and a set of vectors computed by BCG are decomposed across a set of

solve workers. These computations are coupled — theassembly workers send their stiff-

ness matrix contributions directly to the appropriatesolve workers, see Figure 7.9. Prophet

is first applied to thesolve phase in order to determine the placement and identity of the

solve workers. This must be done first since theassembly workers need to know where to

transmit their stiffness matrix contributions. Once thesolve workers are known, Prophet is

applied to theassembly phase.

The assembly phase is straightforward with a single dominant computation and

communication phase operating over the domain of finite-elements. Computing the stiff-

ness matrix is dominant over the force vector. The finite-elements are randomized for load

balance (some element types require more computation) and distributed to theassembly

workers. Eachassembly worker computes a stiffness matrix contribution for each con-

tained element and transmits a list of such values to the appropriatesolve worker. Because

K F

K F
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Prophet is first applied to thesolve phase, the identity of thesolve workers and matrix

decomposition are known to theassembly workers.Assembly is an iterative computation

with the workers computing and storing stiffness matrix values in a set of bins each corre-

sponding to asolve worker. At the end of each iteration theassembly workers send the bin

contents to thesolve workers. The stiffness matrix is never stored in a single place, it is kept

distributed across thesolve workers. The number of iterations is dependent on the number

of elements in the problem. Collectively the communication topology is a broadcast. The

callbacks for theassembly phase are shown in Figure 7.10. The functions are more complex

than for GE or STEN and depend on several problem parameters,num_nodes, the number

of nodes per finite-element,num_elmts, the number of elements in the problem domain,

cycles, the number of iterations,w, the number ofsolve workers, andk_entry_size, the size

in bytes of a single stiffness matrix value. These parameters are marshaled into PV and used

F

...

..

..

...

Problem Assembly
workers

Solve
workers

([ ], ... [ ])

([ ], ... [ ])

([ ], ... [ ])

elements

elements

Figure 7.9: Parallel finite element computation

topology⇒ broadcast
comm_complexity⇒ ((num_nodes2)/w)*k_entry_size*(num_elmts/cycles) (bytes)
numPDUs⇒ num_elmts
comp_complexity⇒ 124(num_nodes2)+30(num_nodes2+1)*(num_elmts/cycles)
arch_cost⇒ SGI: = .00017

⇒ Sparc2: = .000335
⇒ IPC: = .00078

Figure 7.10: Callbacks for finite-element code (assembly)
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by the appropriate callback functions. The problem instances that we have used contain either

3 point triangle or 9 point quadrilateral elements containing 3 and 9 nodes respectively. The

callbacks forcomm_complexity andcomp_complexity are computed as average values over

all elements and cycles much like GE.

Thesolve phase is much more complex. It highlights a limitation of the use of domi-

nant phases to guide partitioning and placement. Although solve has a dominant sparse

matrix-vector multiplication and dot-product, we have observed that for small problem sizes

(all of our problem instances are relatively small), the other phases must be considered since

the dominant computation does not dominate the sum total of the other phases. The other

phases include a number of global tree communications to compute the constants alpha and

beta, several global dot products, and the residual in BCG. Because the callbacks may be

arbitrary functions it is easy to specify that all phases are to be considered by Prophet.

For simplicity we present the callbacks for the sparse matrix-vector multiplication

and dot product (A , A ) only, see Figure 7.11. The amount of computation depends on the

average number of non-zeros,nnz, per row in the stiffness matrix. The workers are arranged

in a 1-D communication topology to exchange portions of the vector needed for the

matrix-vector multiply as shown in Figure 7.9. The FEM problem instances result in small

bandwidth,bw, and only a small amount of communication is required between workers to

establish the local  vector needed to compute A. TheNxN stiffness matrix is decomposed

into contiguous rows across the workers and thePDU is a row of the matrix. Eachsolve

worker receives a number of rows that are proportional to the power of the processor to which

P P

P

P P

topology⇒ 1-D
comm_complexity⇒ 16*bw (bytes) //16 is the size of a complex number
numPDUs⇒ N
comp_complexity⇒ nnz*6 + 8 (fp ops) //nnz*6 is for A, 8 is for the dot product
arch_cost⇒ SGI: = .0001, .00017

⇒ Sparc2: = .000335, .000435
⇒ IPC: = .00078

P

Figure 7.11: Callbacks for finite-element code (solve)
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it has been assigned. As for STEN and GE, thearch_cost may change for different problem

sizes. We present the elapsed times forassembly andsolve separately.

FEM presents the most important challenge to our approach. It contains two coupled

data parallel computations,solve andassembly, that operate over two data domains. We have

applied Prophet to three instances of the finite-element problem,dct3, containing 2160 3 point

triangle elements,dcq9, containing 2304 9 point quadrilateral elements, anddcq9x2, a syn-

thetic version ofdcq9 that results in a 2x2 matrix with sub-matrices each corresponding to the

dcq9 stiffness matrix.

Both dct3 and dcq9are real instances of an electromagnetic scattering problem pro-

vided by Nasa-JPL [92]. The input files contain a discretization of the problem domain for a

specific EM problem instance. The stiffness matrix sizes are N=1117 for dct3, N=9303 for

dcq9,andN=37057 fordcq9x2. These problem instances are very sparse with the average

number of non-zeros per row: 10 fordct3, 26 fordcq9, and 104 fordcq9x2. Fortunately, the

matrix bandwidth is fairly small and requires little communication: 44 fordct3, 248 fordcq9,

and 490 fordcq9x24. We present the initial set of results for FEM in Table 7.12.

4.  The bandwidth fordcq9x2 has been optimized by equation reordering.

Problem Configuration PDUs
Etime
(msec)

Tc
(msec/cycle)

overhead
(msec)

C1 C2 C3 A1 A2 A3 predicted actual
dct3-assembly 4 0 0 540 0 0 1153 49.4 53.4 10.8
dct3-solve 1 0 0 1117 0 0 2913 28.1 27.8 10.5
dc9q-assembly 6 4 0 *287 145 0 2905 134.8 126.1 10.1
dcq9-solve 4 0 0 *2328 0 0 48410 115.5 124.4 13.4
dcq9x2-assembly 6 4 0 *1148 582 0 9660 103.2 105.0 7.8
dcq9x2-solve 6 8 0 *4243 1657 0 272079 676.7 701.0 15.3

Table 7.12: Experimental results for FEM. The PDUs forassemblyrefer to the
number of elements and forsolve, the number of rows of the stiffness matrix.
Problem dct3 required 105 iterations forsolve and 22 iterations for assembly;
dcq9 required 388 iterations forsolve and 23 iterations for assembly; and dcq9x2
required 388 iterations forsolve and 92 iterations for assembly. The entries
marked * were rounded to the nearest integer.
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Thesolve andassembly phases are handled separately by Prophet. These phases oper-

ate in different data domains, thePDUs given forassembly are the number of elements, and

for solve, the number of rows of the stiffness matrix. These results follow the pattern estab-

lished by GE and STEN. Small problems such asdct3 have small computation granularity for

bothassembly andsolve and cannot effectively use many processors. Bigger problems such as

dcq9 anddcq9x2 are able to more effectively use additional processors due to larger compu-

tation granularity. Thesolve phase is tightly-coupled and sparse and can only use heteroge-

neous processors fordcq9x2. We also show that the method is accurate —Tc is within 10% of

the measured elapsed time and that overhead is small. The overhead contributes less than 1%

of the elapsed time and is easily amortized. The accuracy forsolve was notable because it is

not simply based on the dominant phases, but it is based on the sum of a number of communi-

cation and computation sub-phases. We present the best sequential times for FEM on an SGI

in Table 7.13.

The performance results were quite good when compared to the best single cluster

elapsed times, see Table 7.14. When Prophet chose a single processor cluster, it selected the

best number of processors fordct3 anddcq9-solve.In the other casesdcq9-assembly and

dcq9x2, the use of heterogeneous processors provided a performance improvement over the

best single cluster times. The latter results depend on a heterogeneous data domain decompo-

sition for load balance.

We show the results of running FEM across the heterogeneous configurations fordcq9-

assembly anddcq9x2with an equal decomposition of the data domain, see Table 7.15. We

Problem
Etime
(msec)

dct3-assembly 1383
dct3-solve 2531
dc9q-assembly 13422
dcq9-solve 73712
dcq9x2-assembly 53544
dcq9x2-solve 1642404

Table 7.13: Best sequential times for FEM on an SGI
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obtained results similar to that for STEN, namely, the performance degradation due to load

imbalance can be large and has the effect of eliminating the effective parallelism. For example,

the performance ofdcq9-assembly anddcq9x2was better using 6 SGI’s than the selected con-

figuration with an equal data domain decomposition, see Table 7.14.

The impact of endian conversion on FEM was also minimal. During theassembly

phase the workers convert their data in parallel before sending to thesolve workers. The data

contains a list of stiffness matrix entries each containing two integer matrix indices and a com-

plex matrix value, two double precision floating-point numbers. During thesolve phase the

solve workers convert the local  vector contributions in parallel upon receipt from their north

and south neighbors. The vector elements are complex numbers. As with STEN conversion

adds very small overhead and does not alter the use of heterogeneous processors. Prophet still

chooses heterogeneous processors even with a conversion penalty, and the resulting elapsed

Problem

Best P1 and
Elapsed Time
(msec)

Best P2 and
Elapsed Time
(msec)

Best P3 and
Elapsed Time
(msec)

% Benefit of Prophet
configuration with
respect to best single
cluster performance

P1 Etime P2 Etime P3 Etime C1 C2 C3
dct3-assembly 4 1153 8 1468 8 2053 -- 27% 78%
dct3-solve 1 2913 1 6570 3 11527 --- 125% 296%
dc9q-assembly 6 3372 8 4609 8 10259 16% 59% 253%
dcq9-solve 4 48410 8 87276 8 195955 --- 80% 305%
dcq9x2-assembly 6 11304 8 14166 8 34226 17% 47% 254%
dcq9x2-solve 6 305131 8 574628 8 1017134 12% 111% 274%

Table 7.14: Best performance for FEM

Problem Configuration PDUs
Elapsed
Time (msec)

% Increase in
Etime with
respect to
balanced load

C1 C2 C3 A1 A2 A3
dc9q-assembly 6 4 0 *230 230 0 4862 67%
dcq9x2-assembly 6 4 0 *921 921 0 12916 34%
dcq9x2-solve 6 8 0 *3706 3706 0 536023 94%

Table 7.15: Benefit of heterogeneous data domain decomposition for FEM

P

P



131

times are still superior to the best single cluster elapsed times, see Table 7.16.

We show the benefit of co-scheduling forsolve in which the dominant communication

topology is a1-D topology. Theassembly phase uses abroadcast that does not exhibit locality.

On the other hand, the1-D topology has locality and co-scheduling will reduce the number of

messages that cross the router. The single problem instance forsolve that uses heterogeneous

processors with co-scheduling disabled is shown in Table 7.17. We see that co-scheduling pro-

vides a performance benefit.

7.3.4  Biological Sequence Comparison

Biological sequence comparison is concerned with the classification of protein

sequences that have been determined by DNA cloning and sequencing techniques. Because it

is difficult to determine the function of a given protein, a newly sequenced protein is compared

with other proteins that have evolved from a common ancestor. The idea being that if the pro-

Problem Configuration PDUs
Etime
(msec)

Tc
(msec/cycle)

overhead
(msec)

C1 C2 C3 A1 A2 A3 predicted actual
dct3-assembly 4 0 0 540 0 0 1195 50.7 55.3 4%
dct3-solve 1 0 0 1117 0 0 --- --- --- ---
dc9q-assembly 6 4 0 *287 145 0 3279 137.1 142.3 6%
dcq9-solve 4 0 0 *2328 0 0 49152 116.6 126.3 2%
dcq9x2-assembly 6 4 0 *1148 582 0 10061 105.4  109.0 4%
dcq9x2-solve 6 8 0 *4243 1657 0 275064 678.7 707.0 1%

Table 7.16: Impact of endian conversion for FEM

Problem Configuration PDUs
Elapsed
Time (msec)

% Increase in
Etime with
respect to co-
scheduling

C1 C2 C3 A1 A2 A3
dc9q-assembly 6 4 0 287 145 0 --- ---
dcq9x2-assembly 6 4 0 1148 582 0 --- ---
dcq9x2-solve 6 8 0 4243 1657 0 361840 31%

Table 7.17: Benefit of co-scheduling for FEM
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tein in question is similar to an enzyme whose function is known then it is likely that this pro-

tein performs a similar function [30].

DNA and protein molecules are composed of four nucleotide base pairs (A, C, G, T)

that form the building blocks for DNA and the 20 amino acids for proteins. Comparing pro-

tein or DNA sequences is a string matching problem over strings of base pairs. Through the

Human Genome Initiative, DNA and protein libraries are available for most published

sequences. The comparison problem is a computationally intensive process that is well-suited

to parallel execution.

We have implemented a parallel sequence comparison code, Complib, that compares

a source library of sequences to a target library of sequences. Complib, like FEM, is a real

code that is 6000 lines of C++ code. Unlike the other codes, Complib is a non-floating point

computation and is more loosely-coupled than GE, STEN or FEM. Like GE, Complib con-

tains global communication but the computation granularity is large enough to enable this

code to scale very well. Complib utilizes three heuristics for string matching, Smith-Water-

man, a rigorous dynamic programming algorithm, Fasta, a fast heuristic that improves per-

formance 20-100 times, and Blast, another fast heuristic. We have experimented with Smith-

Waterman (SW) and Fasta (FA) on a set of input libraries that are randomized for load bal-

ance. The details of these algorithms may be found in [30].

In the parallel implementation of Complib (CL), the target library is decomposed

across a set of workers. Each worker compares all of the sequences it is assigned to a

sequence in the source library during a single iteration. The workers are arranged in a tree

with the leaves performing the computation. Complib is an example of thehybrid-tree topol-

ogy discussed earlier. Each leaf worker receives a number of target sequences that are pro-

portional to the power of the processor to which it has been assigned. A set of interior nodes

are responsible for fanning the source sequences down to the leaves for sequence comparison

and fanning the comparison results from the leaves back up the tree to a recorder object, see

Figure 7.12. The results contain a comparison score for the current source sequence generated
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by each worker based on the target sequences. The amount of data in the result list is pro-

portional to the number of target sequences.

The structure of this computation is straightforward. CL has a single dominant com-

putation for sequence comparison, and a dominant communication where results are com-

municated up the tree. The callbacks for CL are given Figure 7.13. ThePDU is a target

sequence. The callbacks depend on two problem parameters, the number of target

sequences,num_target_sequences, andw, the number of workers in the comparison tree.

The comparison record is 16 bytes and thelog term is the height of the tree. The

comm_complexity is the average size of a result message transmitted by a worker.

Since the amount of computation perPDU (target sequence) does not depend on

problem parameters, we specify a simpler callback forcomp_complexity. We define

comp_complexityto be 1 such that when it is multiplied byarch_cost it returns the real

computation cost, see (Eq.4.1). Thearch_cost shown is for the FA and SW comparison

algorithms respectively. SW is extremely compute-intensive relative to FA. We present

completion times for both SW and FA for the sequence comparison portion of the compu-

tation.

source
result

recorder

Target library

AACT ...

...

Figure 7.12: Parallel sequence comparison
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CL is another real code like FEM. It has the nice property that it is loosely-coupled

and it tends to scale better with processors than the other codes. We have applied Prophet

to two different versions of CL, one that uses Fasta (FA) and another that uses Smith-Water-

man (SW). We experimented with five problem instances, two for Fasta,FA-1 andFA-2,

and three for Smith-Waterman,SW-1, SW-2, andSW-3. A problem instance is defined by a

particular target library that is decomposed across the CL workers. In all cases the same

source library is used, a library containing 1439 sequences. This corresponds to the number

of cycles or iterations. The target library sizes are the following: 287 sequences forFA-1,

4397 sequences forFA-2, 144 sequences forSW-1, 620 sequences forSW-2, and 1439

sequences for SW-3.All libraries have been randomized to help insure load balance when

the target library was distributed across the workers.We present the results for CL in Table

7.18.

topology⇒ hybrid_tree
comm_complexity⇒ (16*log2 (w) * num_target_sequences)/w (bytes)
numPDUs⇒ num_target_sequences
comp_complexity⇒ 1 (fp ops)
arch_cost⇒ SGI: = .9, 90.0

⇒ Sparc2: = 4.2, 220.0
⇒ IPC: = 8.4, 880.0

Figure 7.13: Callbacks for CL

Problem Configuration PDUs
Etime
(sec)

Tc
(msec/cycle)

overhead
(msec)

C1 C2 C3 A1 A2 A3 predicted actual
FA-1 4 0 0 72 0 0 151 100.6 105.4 12.1
FA-2 6 5 0 *622 133 0 1637 1152.1 1137.7 14.5
SW-1 6 0 0 24 0 0 3646 2438.4 2533.9 11.2
SW-2 6 8 0 82 16 0 11594 7513.8 8057.3 15.7
SW-3 6 8 8 *170 34 17 22807 15618.4 15849.5 15.6

Table 7.18: Experimental results for CL. The number of entries in the source
library (iterations) for all problems was 1439. The PDUs refer to the number of
target sequences. The entries marked * are rounded as appropriate.
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For all problem instances Prophet is accurate and overhead is small relative to total

elapsed time5. Also observe that Smith-Waterman has a much larger computation granular-

ity and is able to more effectively exploit additional processors. We present the best sequen-

tial times for CL on an SGI in Table 7.19. The entries marked with a ** were estimated due

to the projected length of the run. We estimated the total elapsed time based on the per cycle

elapsed time observed after 100 iterations and multiplied by the number of iterations, 1439.

Since the libraries are randomized this should be an accurate estimator for the entire prob-

lem.

The performance results for CL were also good when compared to the best single

cluster elapsed times, see Table 7.20. In particular the use of heterogeneous processors pro-

vided a significant performance improvement over the best single cluster times. Again the

entries marked ** were estimated based on 100 iterations.

5.  Unlike the other tables the units of time for CL are in seconds.

Problem
Etime
(sec)

FA-1 372
FA-2 5695
SW-1 18649**
SW-2 80296**
SW-3 185069**

Table 7.19: Best sequential times for CL on an SGI

Problem

Best P1 and
Elapsed Time
(sec)

Best P2 and
Elapsed Time
(sec)

Best C3 and
Elapsed Time (sec)

% Benefit of Prophet
configuration with
respect to best single
cluster performance

P1 Etime P2 Etime P3 Etime C1 C2 C3
FA-1 6 151 8 389 8 770 --- 157% 409%
FA-2 6 1682 8 4324 8 7705 3% 164% 371%
SW-1 6  3646 8  12331 8 29990** --- 238% 722%
SW-2 6  16211 8 72777** 8 139410** 40% 527% 1102%
SW-3 6  30152 8 127073** 8 242851** 32% 457% 964%

Table 7.20: Best performance for CL
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The large improvement result for SW is due, in part, to the loosely-coupled struc-

ture of this code and the large computation granularity inherent in the problem instances.

The observed performance improvement depends on the load balance that results from a

heterogeneous data domain decomposition. The performance benefit obtained by using het-

erogeneous processors is offset when the data domain is evenly distributed across the work-

ers as shown in Table 7.21. As we have observed in the other codes the effective parallelism

is diminished by load imbalance and a single cluster of SGI’s would have been a better

choice for these problem instances.

The impact of endian conversion on CL was minimal due to compute-bound nature

of the computation, see Table 7.22. The CL workers at the leaves convert their data in par-

allel before sending it up the tree and out to the recorder object. The data is a simple record

of a few integers that reflects a score for the current source sequence as compared with the

target sequences stored with each worker. Not surprisingly conversion has an almost neg-

Problem Configuration PDUs
Elapsed Time
(msec)

% Increase in
Etime with respect
to balanced load

C1 C2 C3 A1 A2 A3
FA-2 6 5 0 400 400 0 3297 101%
SW-2 6 8 0 44 44 0 23573 103%
SW-3 6 8 8 65 65 65 42996 89%

Table 7.21: Benefit of heterogeneous data domain decomposition for CL

Problem Configuration PDUs
Etime
(sec)

Tc
(msec/cycle)

%
increase
in Tc

C1 C2 C3 A1 A2 A3 predicted actual
FA-1 4 0 0 72 0 0 155 100.8 107.9 2%
FA-2 6 5 0 *622 133 0 1656 1154.0 1150.6 1%
SW-1 6 0 0 24 0 0 3673 2438.5 2552.8 1%
SW-2 6 8 0 82 16 0 12048 7514.0 8372.2 4%
SW-3 6 8 8 *170 34 17 22800 15618.8 15844.9 0%

Table 7.22: Impact of endian conversion for CL
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ligible impact on CL. Conversion also has no effect on the selection of heterogeneous pro-

cessors and the elapsed times observed with conversion enabled are still superior to the best

single cluster times.

Finally the use of co-scheduling provides performance benefits for CL. The domi-

nant communication topology for CL is a tree. Under a random placement it is likely that

children and parents may be placed in different processor clusters with a larger amount of

communication crossing the router. We present the results of co-scheduling for CL in Table

7.23. The results shown are for problem instances with co-scheduling disabled.

The experimental results obtained for GE, STEN, FEM, and CL support our thesis.

Scheduling may be performed automatically, efficiently, and profitably for a range of data

parallel computations. The applications in the test suite ranged from tightly- to loosely-cou-

pled, included small- to large-grained problem instances and both floating-point and integer

dominated computations. The results also show that the method is accurate and predictable

and suffers tolerable runtime overhead. Accuracy of the method is important because it

helps validate the simulation results.

Scheduling in a heterogeneous environment was shown to provide a significant per-

formance benefit, but required that partitioning and placement be done carefully. Processor

selection and heterogeneous data domain decomposition are critical to effective partition-

ing and co-scheduling is critical to effective placement. We showed that the use of hetero-

geneous processors may provide a performance benefit when the computation granularity

was sufficiently high and required a proper data domain decomposition. When the data

Problem Configuration PDUs
Elapsed Time
(msec)

% Incr ease in Etime
with respect to co-
scheduling

C1 C2 C3 A1 A2 A3
FA-2 6 5 0 622 622 622 2130 30%
SW-2 6 8 0 82 16 0 14985 24%
SW-3 6 8 8 170 34 17 29100 28%

Table 7.23: Benefit of co-scheduling for CL
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domain was decomposed evenly across all workers the load imbalance eliminated the ben-

efit of using heterogeneous processors and reduced the effective parallelism. Co-scheduling

was needed to reduce communication costs and the benefit was dependent on the commu-

nication topology.

We also provided evidence that the primary cost of heterogeneity, endian conver-

sion, may be tolerated in many cases. Proper placement of conversion functions that ensure

parallel execution of conversion operations is one way that conversion overhead is kept

low.

The results indicate that the precise costs or benefits experienced are problem and

environment dependent. Different problem sizes may exhibit different performance behav-

ior due to memory and cache effects. For very large problems it is possible that paging also

had an impact. However the suite of codes and problem instances were varied enough to

suggest several trends in the experimental results. Prophet overhead and the cost of endian

conversion is on the order of a few milliseconds for all codes. The benefit of heterogeneous

processors over the single fastest cluster (SGI’s) ranged from 10-40% with a much higher

benefit over the two slower clusters (Sparc2’s and IPC’s). This benefit was generally higher

for problem instances with larger computation granularity. The benefit of a heterogeneous

data domain decomposition was close to 100% for large problems and between 10-30% for

smaller problems. The benefit of co-scheduling ranged from 30-75%, but will depend on

the communication topology and the computation granularity. For example, STEN is a

fairly tightly-coupled code that benefits a great deal by co-scheduling, around 75%, while

CL is more loosely-coupled and the benefits are more modest, closer to 30%.
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Chapter 8 Summary and Future Work

We have studied the problem of scheduling data parallel computations in heteroge-

neous computing environments. A scheduling framework was developed to study the

scheduling problem in local- to wide-area network environments. An implementation of

the framework called Prophet was completed and integrated into the Mentat-Legion paral-

lel processing system. The Prophet system was used to confirm our thesis that the schedul-

ing of data parallel computations could be automated efficiently at runtime with a large

performance benefit in many instances. The experimental results also showed that the per-

formance benefit obtained by using heterogeneous processors in multiple processor clus-

ters required careful data domain decomposition and task placement.

The general applicability of Prophet was confirmed in simulation by the Prophesy

simulator. The simulation results indicated that performance close to optimal can be

expected in the vast majority of cases. The simulation results were validated by the exper-

imental results. Prophesy was also used to study the feasibility of wide-area parallel pro-

cessing over a range of network environments and problem granularities.

In the remainder of this chapter we discuss a number of topics that warrant further

investigation beyond this dissertation. These topics fall in two broad areas, extending the

framework to explore other dimensions of the scheduling problem, and generalizing the

network model to an environment that may be wide-area and highly shared.
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8.1   Impact of Resource Sharing

In Chapter 3 we presented a model for resource sharing based on resource reserva-

tions. The idea behind this model is that memory, CPU cycles, and communication band-

width could be reserved in some manner, thus providing a guarantee of availability and

some measure of predictability. Increased predictability means that cost prediction would

be more accurate, and scheduling would be more effective. This model of resource sharing

also has the nice property that dynamic load balancing due to unpredictable resource shar-

ing is unnecessary. In some systems a resource reservation scheme for certain resources

may be feasible.

However, the more general case is a shared system that can offer limited guaran-

tees on resource availability. One solution to this problem is to avoid using resources that

are heavily used by other users and hope that these resources remain mostly unused. We

have adopted a variant of this simple solution via a load threshold in our implementation.

Since resource usage in the recent past is a good indicator of near-term future usage, this

strategy is not as naive as it seems. However this strategy would limit the available

resources that we could use in general.

Sharing introduces two problems, static cost prediction and dynamic load balance.

Static cost prediction must reflect the sharing of system resources. The impact of reduced

memory, CPU cycles, and communication bandwidth must be factored in to the cost equa-

tions. It is clear that the impact of sharing will be negative when compared with a dedi-

cated set of resources. Research is needed to quantify this impact.

Dynamic load balancing is needed when the degree of sharing varies widely dur-

ing the course of program execution. A mechanism is needed to detect that resource usage

has changed at runtime and to adjust the schedule to accommodate these changes. For

example, a highly loaded processor may have work shifted to a lightly loaded processor as

in [62]. In the extreme case we might even retract a processor from the active set that are

working on the computation as in [13]. Dynamic load balancing may also be needed if the



141

problem is irregular and the workload distribution unpredictable. We could rerun the parti-

tioning and placement algorithm in these cases. However this is a global strategy that is

not scalable. More scalable dynamic load balancing strategies are given in [47]. An impor-

tant part of dynamic load balancing is to determine when it is beneficial to perform the

load rebalancing. We could extend the callback mechanism to add additional information

that would be useful in making this decision. A callback such ascycles_left could return

the iterations remaining, if it is known. This could be used to estimate the amount of time

remaining in the computation and help Prophet decide if dynamic load balancing is worth-

while.

8.2   Functional Parallelism

This thesis has explored one dimension of the scheduling problem — data parallel

computations on workstations and multicomputers. A class of computations that exhibit

coarse-grain heterogeneity or embedded parallelism may be suitable for the metasystem

environment. These computations contain functional or task parallelism that may reflect

different resource affinities. Computations such as the Darpa Image Understanding

Benchmark [90] and the Multidisciplinary Optimization Problems (MDO) identified by

Nasa are examples. There is an opportunity for exploiting resource heterogeneity by

matching the tasks to the resources that we predict to deliver the best performance. We

have done this already with data parallel computations viaTc.

Scheduling functional parallel computations will require additional user or com-

piler support to provide affinity information. For example, if a task is vectorizeable this

information must be made available at runtime. A technique known as analytic bench-

marking [26] has been proposed as a means of gathering this information — the codes are

benchmarked on all possible machine configurations and problem sizes, and an affinity

matrix is formed. This is a very tedious process and a more viable strategy is needed.
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A related topic is to extend the Prophet implementation to a more general metasys-

tem environment containing different machine classes. In this environment parallel com-

putations may have different implementations. For example, we may want to have

different source code implementations of a image convolution computation based on

whether it is run on a multiprocessor, multicomputer, networks of workstations, or vector

machine. This is known as implementation families [3] and it would fit in nicely with our

model — a set of callbacks would be provided foreach implementation. Implementation

families would likely contain highly tuned and optimized implementations.

One difficulty with multiple implementations is the issue of compatibility. It may

not make sense to decompose a single problem across both a vector and MPP machine

because the implementations are incompatible. For example, the implementations may

decompose the data domain differently. Some implementations are incompatible because

it is not possible to perform accurate format conversions between the machines. We view

compatibility as a constraint that must be expressed to the system via a callback. Other

constraints may include restrictions on the number of processors. For example, some sci-

entific applications require a number of processors that is even, odd, or a power of two.

Additional constraints may include memory demands. This could be specified via amem-

ory callback that returns the memory demands for a particular implementation.

8.3   Wide-area Parallel Processing

The results obtained by Prophesy indicate that wide-area parallel processing may

be feasible for large-grained computations. The difficulty is that as the network becomes

more wide-area with current internet technology, the ability to estimate costs becomes

more difficult and predictability begins to decrease rapidly. The degree of bandwidth shar-

ing and number of router hops makes communication delays highly unpredictable. How-

ever the spread of on-line wide-area gigabit networks promises to deliver more bandwidth

and perhaps greater predictability due to a reduced number of routing hops.
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Another difficulty is a scalable and accurate resource availability mechanism.

Long latencies in wide-area networks means that load information may become stale quite

rapidly. Low latency communication is essential for updating state information. However

if resources are dedicated, then this problem becomes less severe. Another solution is pro-

vided by the site-based model discussed in Section 3.1.1, where resource information is

kept local and the scheduling request is propagated across the sites.

Additional costs such as I/O and data distribution need to be considered in this

environment. For example, a site with slower machines but with direct access to the disk

where the data domain is stored might be better than a remote site with faster resources. In

this case we move to computation to the data instead of moving the data to the computa-

tion. This can be modelled by using theTstartup term in (Eq.4.8). Additional information

that reflects the cost of getting data from the local disk and transmitting it to a remote site

will be needed.

In general experimentation with computations running wide-area is needed to get a

handle on the cost variance in this setting. An important issue is whether better perfor-

mance can be expected using wide-area resources over using local resources even in the

face of unpredictability.

8.4   Multiprogramming

Another dimension of the scheduling problem is support for job scheduling or

multiprogramming. This thesis has studied the scheduling of a single job or computation

with elapsed time as the sole metric. In a shared environment higher level scheduling pol-

icies are needed to provide some level of system throughput. The problem is complicated

by the fact that we may have both parallel computations and sequential jobs to schedule

together. We want to keep throughput high but not at the expense of the parallel computa-

tions.
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Traditional multiprogramming techniques such as time-slicing will work well for

independent jobs, but less well for parallel computations in which related tasks ought to be

scheduled together. Ideally, we would want like to gang schedule the parallel computa-

tions, and time-slice the others. Research into hybrid scheduling policies and production

workload studies are needed. This work will be based on exploiting information about the

jobs and the environment. This adds another dimension of heterogeneity — sequential and

parallel jobs.

8.5   Compiler Support

This thesis has demonstrated that much of the scheduling process may be auto-

mated for the programmer. However in the Mentat-Legion implementation of the frame-

work the programmer is responsible for the final stage of scheduling, instantiation, and

providing the task implementation. Compiler technology with language support can be

used to automate this process for regular data parallel computations based on1-D and2-D

structures [41][57]. Data parallel language extensions to Mentat-Legion are being devel-

oped together with the supporting compilation technology [94]. Automatically generating

some of the callbacks also looks promising. For example, the language supports a notion

of subset parallelism which corresponds to thePDU and provides communication topol-

ogy information. Information about the data relationships is also provided which can be

used to support automatic data decomposition.

The compiler may also be able to automatically generate the necessary conversion

calls needed to accommodate heterogeneous data formats among machines. We describe a

strategy for automating conversions in [31]. The compiler can also exploit knowledge of

the communication topology to insert the conversion functions in a way that reduces the

impact of the conversion overhead.
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Finally a combination of language annotations and compiler support is a possible

direction for functional parallel computations. For example, the compiler should be able to

generate a callback such asaffinity that will return any machine affinities.
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