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Abstract

A metasystens a shared ensemble of workstations, veenod parallel machines
connected by local- and wide-area networks. Thgelarray of heterogeneous resources in
the metasystem fars an opportunity for delivering high performance on a range of appli-
cations. Achieving high performance requires effective scheduling of system resources.

This dissertation explores one dimension of the scheduling problemtomatic
scheduling of data parallel computations in local-area metasystems containing worksta-
tions and multicomputers. Scheduling requires that the problem be decomposed into a set
of tasks and data and assigned to processors in a manner that reduces completion time.
Problem decomposition is known as partitioning and task assignment is known as place-
ment. Scheduling also requires that the best subset of available processors be selected. No

existing system solves all of these problems.

We show that scheduling can be performed automatiedfigiently, and profitably
for a range of parallel computations in this environment. A framework has been developed
to study the scheduling problem. The framework implements several scheduling heuristics
that automate processor selection, partitioning, and placement. At the heart of the frame-
work is a model for representing program and system resource information. From this
information, a set of cost functions are constructed to predict computation and communica-
tion costs that guide the scheduling process. Scheduling results in a load balanced decom-

position of the problem at an appropriate computation granularity.

A framework simulator called Prophesy and a framework implementation in the
Legion parallel processing system called Prophet have been completed. The Legion imple-
mentation has been applied to a number of real data parallel applications. The results indi-
cate that excellent performance is obtained, scheduling overhead is small, and the costs of
heterogeneous parallel processing, format conversion and routing, can be tolerated. A sim-

ulation study confirms the performance results and is validated by the experimental results.



Chapter 1 Introduction

Parallel processing in a heterogeneous network environment has become an attrac-
tive option for delivering high performance on a range of applications. Interest in distrib-
uted parallel processing has been based on advances in three technology areas, local- and
wide-area high performance networking [4][6][19][43][81], toolkits that enable network-
based parallel processing and job multiprogrammit{f$2][73][83], and parallel compi-
lation techniques for distributed-memory MIMD computers [12][33][41][57][76].

In this thesis we consider a distributed computing environment knowmasaa
systemA metasystem may contain high performance workstations, parallel computers, and
vector computers connected by one or more networks, see Figure 1.1. This ensemble of
machines presents adar aggregate computing resource including mepuygles, and
communication bandwidth. For this reason a metasystem has a great potential for parallel
computing.

An important characteristic of a metasystem is that it exhibits heterogeneity of
many types— including hardware, operating system, file system, and network heterogene-
ity. Heterogeneity poses a challenge in that it must be managed to enable the parts of the
metasystem to work together, but it also presents an opportunitg variety of different
resources suggests that it may be possible to select the best resources for a particular prob-

lem. The variety and amount of computing resources in the metasydens afgreat
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Figure 1.1: A typical metasystem
potential for high performance computing.

Scheduling is critical to realizing the potential for high performance. Scheduling is
a difficult problem — the general problem is NP-complete — afet®fe heuristics that
automate scheduling must be used. One of the primary drawbacks of current tools and sys-
tems is that they &dr limited scheduling support. The programmer is responsible for prob-
lem decomposition across the set of heterogeneous processors. This includes partitioning
the problem into tasks, selecting processors, and assigning tasks to processors. This tedious
and often machine-dependent process has limited the programming of high performance
codes to expert programmers in this environment. It is our thesis that scheduling can be per-
formed automatically, efficientlyand profitably for a lge class of parallel computations
in the heterogeneous environment.

In this thesis we consider one dimension of the scheduling prebléme schedul-
ing of data parallel computations across networks of heterogeneous workstations and mul-
ticomputers in a local-area metasystem as depicted in Figure 1.1. Data parallelism is a
widely used paradigm for expressing parallel computations and is common to problems in
scientific computing. It is an attractive paradigm dugdbrto the conceptual simplicity of
the underlying computational model and the relative ease of implementation. A data paral-
lel model known as SPMD (single-program-multiple-data) has been adopted. The SPMD
model been shown to have afi@ént implementation in MIMD computers and worksta-

tion networks [41].



We deal with two forms of heterogeneity in this metasystem environmedatedif
processor capabilities (e.g., peak Mips and Mflops) and communication capacities (e.g.,
latency and bandwidth). Scheduling exploit$edi#nces in both processor power and com-
munication capacity\We also treat another source of heterogene@dtia format conversion,
and show that this overhead can be amortized in many cases.

We assume that the metasystemsbaredresource in which computing resources
may be committed to other users. This means that resource availability cannot be predicted
at compile-time and scheduling must be performed at runtime. It is the shared nature of the
metasystem that provides one of its principle benefitslow-cost computing resource.

We have developed a three stage framework that has been used to study the sched-
uling problem in heterogeneous environments, see Figure 1.2. The framework automates
scheduling with the objective of achieving reduced completion time while keeping runtime
scheduling overhead small. Other metrics such as maximizing throughput through the
metasystem or minimizing the cost of ajed resourcésare not considered in this thesis.
Scheduling is performestaticallyalthough a dynamic scheduling capability is compatible
with the framework. The framework is not tied to current network or computer technology
— it will transition to new technologies as they become available. The framework only

requires that cost information about a new network or machine technology be provided.

Partitioning
Regour_ge - and —m= Instantiation
availability Placement

Figure 1.2: Three stage scheduling framework

Resource availability is the first stage of scheduling and determines the state of the
available processing resources on the network. Partitioning and placement form the mid-

dle stage and are the heart of the scheduling framework. Partitioning divides the problem

1. If some metasystem resources belong to someone else, we may be charged for their use.



into a set of tasks and data, and selects the best processors to use from the available set.
Placement assigns tasks to processors. An example of partitioning and placement is given
in Figure 1.3— the problem has been decomposed into four tasks (circles) and four asso-
ciated data regions (shaded rectangles), and the tasks are assigned to four processors
(squares) with one processor not used. Instantiation initiates the data parallel computation
using information provided from the middle stage. This thesis deals principally with the
middle stage, partitioning and placement. The framework may be implemented within any
parallel processing system that can provide a mechanism for determining resource avail-

ability and for performing instantiation.

-

Figure 1.3: Scheduling a data parallel computation

Partitioning is based on achieving an appropriate computation granularity and load
balance. An appropriate computation granularity is achieved by selecting processors based
on problem characteristics. For example, a small problem will not be abled¢tvely
utilize a lage number of processors. This is especially true in a workstation network envi-
ronment. Constraining parallelism is often needed in this environment due to high com-
munication costs. Load balance is needed to ensure that no processor becomes a
bottleneck. This is important in a heterogeneous environment composed of processors
with different computational capacities. Placement is based on reducing communication
costs. Other metrics for task placement such as memory constraints are the subject of

future work. Bsks are assigned to processors using a technique kn@erselseduling



Co-scheduling uses knowledge of the application communication topology and network

topology to reduce communication costs such as contention and routing.

Partitioning and placement are guided by cost-based heuristics that use information
about the network resources and the computation. Information about the system resources
is defined by a heterogeneous network model and information about the data parallel appli-
cation is defined by a parallel computation model. A set of runtime cost functions that pre-
dict the cost of communication and computation are constructed from this information.
Using this information, scheduling can make partitioning and placement decisions that are
predicted to deliver reduced completion time.

An implementation of the framework in the Mentat-Legion parallel processing sys-
tem has been completed. Mentat is an object-oriented parallel processing system developed
at the University of Yfginia [33]. Mentat-Legion is an intermediate form of the Legion sys-
tem— Mentat is currently being converted to a system (Legion) that will support a wide-
area capabilityMentat and Legion are described in the next chapterframework imple-
mentation is calle®rophetand has been successively applied to a number of real data par-
allel codes. Using Prophet we demonstrate that computation granuderitypalance, and
co-scheduling are all necessary for achieving reduced completion time and ignoring any
one of these can lead to agalincrease in execution timee\lso show that runtime sched-
uling overhead is small and the costs of heterogerityg format conversion and routing,
are tolerable. The performance of the scheduling heuristics have also been confirmed in
simulation using th&rophesysimulation system. The simulation results indicate that the
heuristics have excellent average-case behavior and can be expected to produce execution
times within 10% of optimal over 90% of the time.

The opganization of this thesis is as follows. Chapter 2 presents related work in
scheduling parallel computations, distributed systems, and metasystem computing. Chap-
ter 3 describes the heterogeneous network model, resource availabilityhe parallel

computation model. Chapter 4 addresses the partitioning and placement problem and pre-



sents two heuristic solutions. Chapter 5 describes the implementation of Prophet in the
Mentat-Legion parallel processing system. Chapters 6 and 7 present simulation and exper-

imental results using Prophet. Chapter 8 provides a summary and future work.



Chapter 2 Background

This chapter presents related work in three overlapping areas, scheduling, distrib-
uted systems, and metasystem computing. Scheduling is a well-studied topic in and of itself
and we present a portion of this vast literature. Distributed systems is alge arldractive
research area. &\present some fundamental results and recent trends in distributed systems
research. Finally research in the egmeg area of metasystem computing is presented.
Work in scheduling and distributed systems has laid the foundation for this new area. W

discuss these areas in turn.

2.1 Scheduling

Scheduling is the process of mapping units of work to processors. Research in
scheduling parallel computations generally falls into one of two categersehieduling a
directed-acyclic graph (DAG) [1][22][59][97], or scheduling a static-task graph (STG)
[9][10][54][80]. The DAG-based precedence graph often arises from the parallelization of
sequential code. In the DAG the nodes represent computations, typically fine-grained, and
the arcs represent data dependencies. Scheduling an arbitrary precedence graph is NP-
complete forP>2 processors [87]. Polynomial time algorithms exist for tree-structured
DAG's if the nodes are unit time computations and communication is ignored [1], for lin-

ear chains [9][65], and when the maximum communication cost is less than the smallest



node computation time and there arefisi#nt numbers of processors [1]. The DAG
encodes temporal information about the computation but may fail to capture the commu-

nication structure of the application when it is implemented as a collection of processes.

In the STG the nodes represent modules or tasks, typically coarse-grain, and the
arcs represent communications. There are two variants of the STG, the module assignment
graph introduced by Stone [80] for non-precedence-constrained sequential programs and
the communication graph for parallel computations. Scheduling an arbitrary STG of the
first type is NP-complete fdP>4 processors [80]. Polynomial time algorithms exist for
restricted ST, trees [9], series-parallel graphs [86], and linear chains [9]. The STG cap-
tures the communication structure of the application, but loses the temporal information
contained in the DAG. Many scientific problems are naturally expressed by the second
type of STG — collections of communicating processes with regular precedence and com-
munication relationships. Consequentlye STG is a natural way to express single-pro-
gram-multiple-data (SPMD) computations. The scheduling model adopted in this thesis is
based on a SPMD model of computation. A model that attempts to capture the advantages
of both the DAG and STG is the temporal communication graph (TCG) [55] though the
efficacy of this model has not yet been demonstrated on real parallel computations.

Scheduling parallel computations has two parts, partitioning and placement. These
two parts are often accomplished in several steps. Partitioning determines the schedulable
work units and placement assigns these work units to processors. Scheduling is one of the
most overloaded terms in the literature. In the distributed systems literature, scheduling is
often synonymous with placement anly the operating systems literature, scheduling is
the process of deciding which task will run next. Placement is also called mapping, alloca-
tion, assignment, and embedding in the literature.

Scheduling techniques for parallel computations can be classified by geé tar

environment— shared-memory MIMD (SM), distributed-memory MIMD (DM), or dis-



tributed systems (DS). Partitioning and placement are performed differently in these envi-

ronments.

Scheduling approaches can also be categorizethbypthe scheduling decision is
made, compile-time (CT) or runtime TR and by whether the decision is static or
dynamic. A static scheduling decision does not change while a dynamic scheduling deci-
sion may change at runtime. The possible couplings arstafi€, R-dynamic, and R
static. The advantage of runtime scheduling is that is possible to consider resource avail-
ability and problem information known only at runtime. Dynamic scheduling has the
added advantage that it can respond to changes in resource availability and problem work-
load distribution during the course of execution. The penalty for runtime scheduling is
overhead. On the other hand, compile-time scheduling schemes have the advantage of low
overhead but often require precise program and resource availability informagiqgmoW
vide a taxonomy of scheduling approaches in Figure 2.1 and discuss them in the subse-
guent sections. ¥ show only distributed schemes for runtime scheduling.dN§cuss

only a subset of the approaches given in Figure 2.1.

2.1.1 Compile-time Scheduling

Compile-time scheduling is a static scheduling process. Most approaches begin
with a labelled graph that must reflect accurate costs for computation and communication.
Graph nodes represent computation and arcs represent communication cost. The STG and
DAG models define nodes and arcs somewhé&trdifitly Stone presents a STG model
where nodes are modules of a sequential non-precedence-constrained program and arcs
are module invocations. He extends this graph to represent all possible assignments of
modules to processors. A network flow algorithm is then used to solve the module assign-
ment problem forP=2 processors [80]. Much of the research on scheduling SSTEG’
based on this early classic work. Bokhari extends Stamerk to allow module relocation

during execution [9]. Modules are executed in one or more phases and it may be advanta-
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MIMD scheduling

/C RT
Static Sta'“C/\Dynamic
S/DM DS Sﬂ’M\DS
work qLeue seIf-schlduIing
placement self-scheduling
dynamic LB
migration
. dynamic LB
clustering placement

critical path scheduling
network flow algorithms
embedding

Figure 2.1: Taxonomy of traditional MIMD scheduling techniques. The
bold letters indicate where our approach falls.

geous to relocate modules between phases. Bokhari also presents a polynomial time algo-
rithm for tree-structured graphs that is based on Djilsstveell-known shortest path
algorithm. This algorithm applies for arbitrary numbers of processors.

An alternate formulation of the STG for parallel programs is a representation of
the communication graph [7][54]. Here the nodes are tasks or processes and the arcs repre-
sent communication. The problem of assigning such a graph to the processors of a parallel
machine has been well studied [48][56][70]. The placement of tasks depends on the com-
munication topology of the graph and the interconnection topology of the parallel
machine. Fortunately the topology of many parallel computations falls into a small set of
regular topologies. Algorithms for placement have been developed that exploit the topol-

ogy of the program and the topology of the interconnect. This is sometimes referred to as
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graph embedding. The objective is to minimize communication hops and link contention.
Our model has been designed to utilize these embeddings.

A great deal of research into compile-time scheduling of precedence-constrained
DAG'’s has followed Stong'initial work [80]. W present a small part of this vast litera-
ture. Research has centered on the development of polynomial time algorithms for special
cases of the general problem. Bokhari has developed a polynomial time algorithm for lin-
early-dependent chains on host-satellite systems that contain a time-shared host and a ded-
icated satellite processor [9]. This algorithm was subsequently improved by Nicol and

O’Hallaron [65].

McCreary and Gill have developed a graph clustering technique that takes a fine-
grain DAG and produces a coarse-grain graph suitable for execution on a parallel machine
[59]. This technique is useful for certain graph structures such as linear chains or series-
parallel graphs. &g and Gerasoulis have developed a scheduling algorithm for coarse-
grain DAG's in which scheduling is performed in four phases: clustering, clustgmger
physical mapping, and task ordering [97]. The nodes of the DAG are tasks. Clustering is
the mapping of tasks to clusters and attempts to trddeadllelism and communication
overhead. Cluster mging is performed when the number of processors is less than the
number of clusters and is done to give load balance. Mapping assigns clusters to proces-
sors based on topology and localitask ordering within a cluster is done to minimize
time on the critical path. It should be mentioned that each of these sub-problems are NP-
complete and heuristics are presented.

El-Rewini and Lewis have developed a scheduling algorithm for coarse-grain
DAG's [22]. The algorithm is a two phase process: clustering and communication sched-
uling. Communications are scheduled using topology and routing information. Contention
is considered on a link by link basis and is used to avoid high congestion routes. The

authors do not consider contention when making clustering decisions. This is probably
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because they are more interested in compute-intensive problems in which a precise char-

acterization of communication costs and contention is less important.

2.1.2 Runtime Scheduling

Compile-time scheduling approaches work well when accurate cost information is
available staticallylt may not possible to obtain accurate static information for computa-
tions with data- or control-dependencies or when the processing resources are shared with
other users. Runtime scheduling can respond to changes in resource usage and workload
characteristics. Information about the computation and the state of processing resources
can be exploited by deferring scheduling decisions until runtime. Runtime scheduling has
used extensively in distributed systems due to the need to support sharing of processing
resources. Runtime scheduling in multiprocessors and multicomputers has also been an

active area of current research.

A major difficulty with static scheduling is that it is unable to respond to load
imbalance due to problem and system characteristics. Irregular data-dememdpuata-
tions often have this propertg runtime scheduling technique known as self-scheduling
[84] has been developed to address this problem. The basic idea is that instead of a fixed
assignment of work to processors, the processors request work from the system when they
are finished with their previous task and are idle. The goal of self-scheduling is to try to
have the processors finish at the same time. This technique works particularly well for par-
allel loops with a high execution variance amondedént iterations. &riations of this
technigue have been proposed such as tapering [58][69] in which the system adaptively
adjusts the size of the work chunk that is assigned based on problem characteristics. If
there is little variance in the computation, assigningdachunks of work is more fef
cient due to the overhead of work assignment.

Self-scheduling could be viewed as a static runtime technique in that once a pro-

cessor receives a unit of work or task it is executed to completion. On the other hand, the
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method is dynamic in the sense that there is not a single work distribution phase at the out-

set with predictable work assignments.

While self-scheduling and its variants attempt to avoid load imbalance, dynamic
load balancing attempts to detect and then correct the load imbalance. This is divery dif
cult problem that often arises in data parallel scientific computations [40][50][95]. Many
of these scientific applications have the property that the amount of computation per-
formed on a region of the data domain may change unpredictably during the course of
execution. Unstructured mesh problems and particle-in-cell simulations are two examples.
Dynamic load balancing strategies are used to redistribute the data domain in a manner

that attempts to load balance the processors and preserve communication locality.

One of the problems with dynamic load balancing strategies is that the communi-
cation costs needed to redistribute data may outweigh the benefits. This is particularly true
of centralized as opposed to distributed schemes. The detection of load imbalance may
also be expensive since this is often requires some form of global communication. A good
survey of techniques is given in [40]. Kumar et al have analyzed the scalability properties
of a number of dynamic load balancing schemes on a range of architectures [47]. Near
optimal load balancing strategies are presented and analyzed for the hypercube, mesh, and

networks of workstations.

Nicol and Reynolds have analyzed the dynamic load balancing problem at a much
coarser level [66]. The authors present a decision model for the application of dynamic
load balancing for a class of computations. This model is suitable for data parallel compu-
tations that exhibit well-defined phase changes. Dynamic load balancing may be required

between these phase changes.

2.1.3 Partitioning and Processor Selection

A number of researchers have studied the relationship between problem partition-

ing and the number of processors that can be usettieély [17][39][64][71]. Gupta pre-
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sents a runtime cost-based technique for determining the number of processors to apply to
a problem in a shared-memory multiprocessor [39]. Selecting the number of processors to
use provides a form of granularity control and determines the problem partitioning.
Cytron presents a method for determining the optimal number of processors to use under
the simplifying assumption that the communication cost is independent of problem size
[17]. Reed et al have studied the impact of data partitioning on the performance of stencil
problems [71]. Nicol has analyzed the partitioning problem for stencils to determine the
relationship between performance and a number of system parameters including the num-
ber of processors. All of this work is based on a multicomputer or multiprocessor environ-
ment— a homogeneous environment of dedicated resources. No implemented system in
the literature performs the processor selection process automaiidaliyave developed a
processor selection technique that is applicable to heterogeneous networks of shared com-

puters. It has been implemented and applied to real programs.

2.2 Distributed Systems

Much of the research in metasystem computing is based on advances in four
related fields of distributed systems researcHistributed operating systems, scheduling
in distributed systems, toolkits for distributed computing, and parallel processing in dis-

tributed systems.

2.2.1 Distributed Operating Systems

An active area of research in distributed operating systems is the accommodation
of heterogeneity [8][67][68][98]. Many of these systems deal with heterogeneity of many
kinds including processor type and file systenfed#nces. Much of this research is con-
cerned with accommodating these heterogeneities in a transparent.nf@merf these
systems attempt to exploit heterogeneity since high performance is not a primary goal.

One particular problem in accommodating heterogeneity is of interest in our

research, data format conversion. Data format conversion must be perfoficiedtlsf if



15

high performance is to be achieved [96][99]. Conversions are needed for floating point
format diferences, alignment ddrences, byte ordering tBfences, and size thfences.

The diferences may be due to the hardware, operating system, or the compilers used. If
formats differ in the range of values that can be represented, it may not be possible to per-

form a transformation [98].

Data format conversion is handled in one of two ways, either a common format
such as XDR [82] is used or application-specific conversions are employed. A common
format requires both encoding and decoding of data while the application-specific conver-
sions are one-way only and are much less expensive. Our results indicate that the use of
application-specific conversions is about an order of magnitude faster than conversions
based on XDR. These results agree with results reported for the Mermaid system, a heter-
ogeneous distributed shared memory system that uses application-specific conversions

[99].

2.2.2 Scheduling in Distributed Systems

Scheduling in distributed systems is concerned with achieving an acceptable level
of system performance lbyad sharing Under load sharing job workload is shared among
a set of hosts [21]. Jobs will be transferred from heavily loaded to lightly loaded proces-
sors. This is a weaker condition than load balance which insures that the processor queue
lengths are equal. The most common metric for studying scheduling performance in dis-
tributed systems is job throughput. Casavant and Kuhl present a taxonomy of scheduling
approaches in distributed systems [14].

Eager and Lazoswka develop a queuing theory model of adaptive load sharing pol-
icies for homogeneous systems consisting of a network of computers [21]. The jobs are
independent sequential tasks with Poisson arrival that do not communicate and no infor-
mation about the jobs is otherwise assumed. These load sharing policies corssif a

fer policy and docationpolicy. When a processor receives a job for execution, a transfer
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policy is used to determine if the job can be scheduled lotiafigt, a remote processor is
chosen by invoking the location polidk transfer limit provides stability on the load shar-

ing algorithm. The transfer policy is a simple threshold policy that is based on the queue
length and the location policy issander-initiatedscheme. The authors conclude that sim-

ple load sharing policies, e.g. location policies that gather a small amount of system state,
perform better than no load sharing, and almost as well as more complex policies that will

incur larger runtime overhead.

Mirchandaney et al [61] present a queuing theory model for heterogeneous sys-
tems that is an extension of [21]. The performance of a simple heterogeneous system con-
sisting of two heterogeneous cluster types was analyzed using threshold policies similar to
[21]. A simple sendemnitiated policy outperforms a random policy that does not use any
information. Some results on choosing the threshold limits are also presented. The conclu-
sion ofered by both Mirchandaney et al and Eager et al is that simple scheduling policies
perform best. But the results indicate that performance céar siihmatically under high
load. For this reason andthers (see Section 2.2.4) load sharing is inappropriate for

scheduling data parallel computations that demand a large share of system resources.

2.2.3 Distributed Toolkits

A large number of toolkits have enged that support scheduling in distributed
systems [52][73][98]. In contrast to distributed operating systems, these toolkits are nor-
mally layered on top of the existing base operating system and perform a single resource
management task, namely scheduling. These systefes iifscalability load sharing
method, and job type supported. Both Utopia [98] and DQS [73] support both sequential
and parallel jobs. A parallel job may contain multiple tasks. DQS also supports PVM [83]
jobs. Condor [52] attempts to locate idle cycles and getad to long-running batch jobs

such as simulations.
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Condor also favors workstation autonomyonly idle machines can be selected
for remote execution, and jobs will be migrated if the selected workstation becomes busy
Utopia, on the other hand, views all system resources as implicitly shared and will not
migrate jobs. Utopia also uses application resource requirements and load information to
match jobs to processors. Utopia igyeded to heterogeneous networks that may contain
thousands of workstations and implements scalable load sharing techniques based on a
clustering of processors. Both Utopia and DQS allow resources to be marked private and
removed from the shared resource pool. All of these toolkits are limited to workstation

networks and are not designed for metasystem environments.

2.2.4 Parallel Processing in Distributed Systems

Many of the assumptions made in scheduling sequential jobs in distributed sys-
tems are inappropriate for scheduling parallel computations. Parallel computations consist
of a set of related tasks that may communicate during the course of program execution and
often require full utilization of the available processing resources. These requirements vio-
late the assumptions of most load sharing algorithms for distributed systems [21]. Further-
more, these algorithms are designed to achieve high job throughput and not necessarily
fast completion time for a particular job or task. Data parallel computations, on the other
hand, often proceed at the rate of the slowest task and are typically scheduled to minimize

completion time.

A number of systems have been developed to support parallel processing in heter-
ogeneous distributed systems. These systeffies difthe level of support that is provided.
Systems such as PVM [83], P41]1land Linda [12] provide the programmer with the
basic set of primitives needed for heterogeneous parallel processing but require that the
programmer operate at a fairly low-level. In particutae programmer is responsible for
problem decomposition and task placement. PVM is the most widely used system for het-

erogeneous parallel processing. It provides software to manage a configuration of hetero-
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geneous hosts and a library that provides a basic message-passing capability to application
programs. PVM supports the notion of process groups and provides several group com-
munication operations, multicast, broadcast, and barriers. PVM also provides a set of data
conversion routines for scalar data types to support communication between heteroge-
neous hosts. PVM provides the necessary building blocks for heterogeneous parallel com-

puting, but the interface is low-level.

P4 supports a wider range of computation models than does PVM — including
typed message-passing, shared-memang monitors. The support of multiple models
makes P4 a lger and more complex system than PVM. P4 does support some-higher
level abstractions such as global reduction operations, but it is otherwise a low-level sys-
tem. Like PVM, the programmer must create and manage processes and use low-level
communication routines or shared-memd? uses a common data format, XDR, to per-
form format conversions in support of heterogeneisy an optimization, format conver-

sion is performed only when necessary.

Linda provides a highdevel abstraction for communication based on a shared
tuple space. The tuple space operates like a shared associative memory — read operations
are performed by extracting from the tuple spamé) (@and write operations by inserting
into the tuple spacen). Since the programmer is aware of the tuple space and must
explicitly manage its contents without compiler assistance, we place Linda in the category
of low-level systems.

All of these low-level systems provide a basic set of facilities that allow the pro-
grammer to execute parallel programs in a heterogeneous environment. There is minimal
support for problem and data decomposition — the programmer is responsible for creating
and managing processes, communication, and scheduling. While these systems accommo-

date heterogeneity to some extent, they do not exploit heterogeneity.

A number of systems that provide greater support for heterogeneous parallel pro-

cessing have emged over the past few years [27][31][33][62][76]. These systems may be
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distinguished by the level of compiler and runtime system support for managing parallel-
ism and scheduling. Mentat [33] is an object-oriented parallel processing system. Mentat
programs are written in MPL, a high-level language based on C++. The programmer spec-
ifies the grains of computation by indicating that a classMetat classA Mentat class
contains member functions of fafent computational weight to warrant parallel execu-

tion of Mentat class instances. Instances of Mentat classes, known as Mentat objects, are
implemented by address-space disjoint processes, and communicate via methods. Method
invocation is accomplished via an RPC-like mechanism. A strategy for supporting data
conversion of arbitrary data types is discussed in [31]. Mentat also performs runtime
scheduling [37] based on Eager and Lazossvialaptive load sharing [21]. Support for
scheduling data parallel computations in heterogeneous environments has been recently

added to the runtime scheduler [31][91] as part of this thesis.

Data parallelism is expressed in Mentat by defining a Mentat class that corresponds
to a SPMD task and instantiating some number of Mentat objects of this class. In Mentat,
the programmer is responsible for choosing the number of Mentat objects and decomposing
the data domain. Mentat does automate the placement of Mentat objects to processors but
does not use any program information to do so. Scheduling in Mentat is based on Eager and
Lazowska’s adaptive load sharing model [21].

Charm [76][77] is an object-based parallel processing system based on a message-
driven execution model. The grains of computation are specified by the programmer using
a language construct calledlaare Chares resemble Mentat objects to a certain extent —
they encapsulate data, they have a well-defined typed interface that specifies the allowable
operations, and their operations are executed in a mdikigofashion. Charm also pro-
vides runtime scheduling for chares. Chares are scheduled using an adaptive load sharing
algorithm that is based on the load of the processors that fall within a local neighborhood.
In Charm processors periodically exchange load information with the set of processors in

this neighborhood.
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Dataparallel C [41][62] is a high-level language and runtime system that supports
programming data parallel applications. Dataparallel C programs are written in a shared-
memory style using data parallel constructs. The compiler and runtime system handle pro-
gram and data decomposition. In Dataparallel C the basic unit of work is the virtual pro-
cessor and virtual processors are assigned to physical processors. The virtual processor
can be thought of as a basic unit of the data domain. The scheduling support is limited —
the programmer specifies how many processors to use. The runtime environment is tar-

geted to heterogeneous workstations and a dynamic load balancing strategy is provided.

A number of systems provide explicit support for scheduling data parallel compu-
tations on a network of heterogeneous workstations [5][13][16][33][62][76][78]. The
Dataparallel C runtime system implements a dynamic load balancing strategy for, regular
iterative data parallel computations. Each processor participates in a four stage dynamic
load balancing algorithm, load screening, exchange of load information, migration deci-
sion, and migration action. Load screening is accomplished by inserting timers around the
virtual processor execution code. The processor load is the average computation time per
virtual processor— this is known as the load index. This measure assumes that the
amount of computation per virtual processor is the same throughout the problem. The time
between successive load information exchanges is set to be a small fraction of the average
time taken to do a migration. Migrations consist of moving virtual processors from pro-
cessors with a high load index to processors with a smaller load index. Processors are not
free to migrate data to any processor since locality relationships in the problem domain
must be maintained. Dataparallel C is not applicable to the metasystem environment and
is suitable for regular parallel computations oipe system is further limited by the
assumption that the programmer specifies the number of processors to use.

Charm [76] solves a simpler dynamic load balancing problem than Dataparallel C.
In Charm tasks are assumed to be labelled with a task finishing time so a processor can

determine how much work the task has remainiagkd can be freely moved to any pro-
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cessor — this scheme will only work for problems that do not have communication local-

ity. One weakness is that the cost of migration is not considered.

The Paragon project [16] addresses the problem of static partitioning a data paral-
lel computation on a network of heterogeneous workstations. The Paragon system deter-
mines a load balanced decomposition and addresses the problem of choosing the number
of processors to use. The approach is based on benchmarking a number of common paral-
lel operations on all possible configurations of a heterogeneous network. This information
is used to form a performance prediction for a given code and a table-driven method for
choosing the best configuration of processors has been implemented. Most codes in Para-
gon will be constructed as combinations of these common parallel operations. Their solu-
tion will not scale to lage numbers of processors in which benchmarking all possible
processor configurations is not feasible. Our approach requires a much simpler bench-

marking strategy in which the sequential code is benchmarked once on each machine type.

Attalah et al [5] have also studied the problem of processor selection on a network
of heterogeneous workstations. This work ige#ed to compute-intensive data parallel
computations. The authors present a model of the protesspacity called thduty
cycle The duty cycle is a load index that is defined as the ratio of cycles committed to
local, non-compute-intensive tasks to the number cycles available for compute-intensive
tasks. Only a single compute-intensive task will be scheduled on a processor at a time. If a
processor is already running a compute-intensive task, it is removed from the current pool
of available processors. Use of this processor for a new scheduling request will delay the
time at which this computation may begin. This is knowgasy scheduling— the com-
putation will not begin until all selected processors are ready (i.e., have no currently run-
ning compute-intensive tasks). The scheduling algorithm tries to minimize the sum of the
weighting time and the expected computation time. This approach is limited by the

assumption that communication costs are negligible.
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Piranha [13] is an extension of Linda that supports a scheduling concept known as
adaptive parallelism. In adaptive parallelism the number of processors applied to a compu-
tation may shrink or grow during the course of execution. Processors will not be allowed
to leave if they are currently executing a task. Piranha is a nvestieer model that is
based on Linda’ shared tuple space. One major problem with this approach is that the
master will become a bottleneck fordarsystems and this limits the scalability of this

approach.

2.3 Metasystem Computing

Metasystem computing is a natural progression from the research in parallel pro-
cessing and distributed systems. Many of the issues inherent in metasystem computing are
described in [27][45][46]. These issues include code matching, scheduling, programming
environments, and performance evaluation. Code matching definefinéy bétween a
schedulable program component and a machine type. A class of programs suitable for
metasystem computing contain severajdagrain code modules that may exhibifeti
ent types of embedded parallelism diraties. The benefit of exploiting progranfiaf-
ties for specific applications has been demonstrated by a number of research groups
including [24][60][63]. In a global climate model code [60], decomposing twgelar
grained program components across a CrWPyand an Intel Paragon resulted in super-
linear speedup with respect to running the program entirely on-khe ¥r the Intel Para-
gon. The program component assigned to tidPYwas highly vectorizeable and the
component assigned to the Paragon was data parallel. Other researchers have reported
superlinear speedup and the conditions for achieving superlinear speedup are discussed in
[20].

Many of the metasystem applications contain program modules that have been
optimized for particular hardware and a great dealfoftefoes into glueing the program

modules togetheiThese applications must manage the complex details of integration and
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heterogeneity as part of the code. A number of software systems for metasystem comput-
ing have emeyed [34][42] to help facilitate program integration and metasystem execu-
tion. Schooner promotes integration by providing glue software that supports RPC, a
module description language for specifying and connecting modules, and a common data
format. Schooner is geared toward the integration of loosely-coupled modules and does
not have high performance as a stated goal. For example, the use of a common data format
adds significant overhead for tightly-coupled parallel computations.

Legion is a software framework that promotes integration but not at the expense of
high performance [34]. The high performance objectives of Legion have been inherited
from the Mentat project [31][33]. Legion supportéiaént parallel and distributed com-
puting by adopting the Mentat model of computation and by providing runtime scheduling
support [32][36]. The goal of the Legion project is to provide a seamless virtual machine
that may contain computers connected by LANs, MANs, and WANSs. The goal of efficient

wide-area computing separates Legion from most other contemporary systems.

A number of research groups are exploring a concept knowsupasconcurrency
or heterogeneous supercomputiid][18][23][26][27][45][88]. An important distinction
between this body of work and othefogfs in parallel processing in heterogeneous net-
works is that superconcurrency is concerned with choosing the best subset of available
machines as opposed to load balancing. Machines are also assumed to be non-shared. In
the superconcurrency model, programs contain a numbergef-d¢main modules called
code segments, and code segments contain a number of code blocks. Code segments are
assumed to be executed in a sequential fashion. There may be parallelism between code
blocks. The approach is based on two techniques developed by Freund [26], code profil-
ing, and analytic benchmarking.

Code profiling determines what types of code blocks or segments a program con-
tains. Code types include vectorizeable, decomposable, SIMD, or MIMD. Analytic bench-

marking determines how well codes of a given type are expected to perform on the
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different machine types. These techniques are not describedfimiesufdetail in the
superconcurrency literature. Freund also defines the assignment of code blocks or seg-
ments to machines as a mathematical optimization problem that minimizes completion
time subject to a cost constraint. This is a compile-time mapping problem and assumes an
unlimited supply of dedicated machines. Another limiting assumption is that communica-

tion between code segments is ignored.

The Augmented Optimal Selection Theory (AOST) extends Frewmork in two
ways [15]— a finite number of machines is assumed, and a more accurate cost model for
code types is developed. Code profiling is used to producdimityafalue for each code
block/machine type paitn Freunds approach only the faiity for the optimal machine
type was benchmarked. The affinity for a non-optimal machine type was estimated to be a
scalar speedup value. The authors point out that this can lead to an underestimation of the
affinity for a non-optimal machine type. AOST also allowdeddént machine models in
the same machine class. For example in a hypercube machine class, the iPSC/2 and iPSC/
860 would be treated d#rently. A decision algorithm for compile-time machine selection

is provided. This model also assumes no parallelism between code segments.

Several superconcurrency projects have relaxed the restriction of no parallelism
between code segments [15][23][44]. The Heterogeneous Optimal Selection Theory
(HOST) extends AOST to allow parallelism between code segments. This approach is
based on a programming paradigm known as CHMtEt3]. ClustefM is a graph-based
language for expressing task decomposition, code types, communication relationships,
and parallelism opportunities between code segments. CMstemrlso used to graphi-
cally represent the available machines in a hierarchical fashion. This paradigm exposes the
communication topology and interconnection topology and is exploited by a mapping
heuristic. The authors claim that this technique can be used fegfaiarcomputations.

No results are reported for this heuristic. Igbal [44] presents an optimal scheduling proce-
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dure for mapping a linear chain of code segments onto an array of heterogeneous comput-

ers.

All of these eforts are based on a static, compile-time assignment of program
modules to a set of dedicated heterogenous machines. Dietz et al have developed an
approach called Augmented Heterogeneous Selection (AHS) which relaxes the assump-
tion that the machines are dedicatedoTparallel specification languages, MIMDC and
SIMDC, are provided to allow users to express parallel computations. The execution cost
of the program is determined at compile-time by summing up the component costs. The
cost of computation and communication is determined for each machinef-lye of
benchmarking. This cost estimate is adjusted at runtime to reflect current processor load.
The load adjustment as well as the estimate of computation and communication cost does
not consider a number of factors including memory costs and communication contention.
But unlike the earlier work in superconcurrenttyey are not interested in optimal results,

but in a practical system that can be shown to deliver good performance.

Most of the applications developed for metasystem computing environments con-
tain large-grain heterogeneit% number of researchers are looking at figuein problem
heterogeneity and have proposed reconfigurable hardware designs to support these types
of applications [2][51][89]. \&tson et al introduce a SIMD/SPMD mixed-mode machine
designed for applications that contains SIMD computations coupled with SPMD computa-
tions. These applications typically cycle between SIMD and SPMD computations and the
hardware dynamically adjusts to the proper computation mode. Ligon and Ramanchan-
dran propose a reconfigurable architecture known as a multigauge architecture. The multi-
gauge architecture configurations are limited to bit-serial SIMD modes. It has been
successively applied to image understanding problems such as theADARde under-

standing benchmark [90].
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Chapter 3 The Models

This chapter presents the heterogeneous metasystem model and the parallel com-
putation model. These models lay the groundwork for the scheduling framework dis-
cussed in the next chapteFhe metasystem model provides a representation and
organization of system resources and defines the important resource information needed
by the scheduling framework. This information is used in two ways — to determine
resource availability and to construct cost functions for computation and communication.
These cost functions are needed to support scheduling. In partecatdrof off-line com-
munication functions provide an accurate estimate of expected communication costs and
are used in the processor selection process. Similarly, the parallel computation model pro-
vides a representation for parallel programs and defines the program information also
needed by the scheduling framework. Program information is used to select the appropri-
ate communication cost function based on the application communication tqpmogy
construct the computation cost function based on the problem characteristics, and to pro-

vide parameters to the cost functions such as message size.

3.1 Metasystem Model

The metasystem model has two parts, the netwgdnization, and the communi-

cation model. We present a scalable network organization for representing both local- and
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wide-area resources.a/lso present a communication model that is used to determine the

cost of communication between machines in the metasystem.

3.1.1 Network Organization

The basis of the networkganization is therocessor clusterA processor cluster

contains a homogeneous family of processors that may include workstations, ector

parallel machines. A vector machine would be treated as a uniprqdessarcluster con-

taining one processoA parallel machine would be treated as a single cluster of proces-

sors. The processors in a processor cluster share communication bandwidth. Processor

clusters may range from tightly-coupled multiprocessors such as a Sequent in which pro-

cessors communicate via shared-memtrydistributed-memory multicomputers such as

a Paragon or loosely-coupled workstations such as a Sun 4 cluster in which processors

communicate via message-passing. This particular configuration is depicted in Figure 3.1.

The processor clusters are denoted by tlgelaircles. Each processor cluster hasaa-

ager denoted by the shaded circle. For multicompbteed processor clusters the man-

ager would be an external host proces3tre role of the manager will be discussed

shortly.

N>
N, Sequent N3
SGI  Sun4 @ Paragon

O@)/0O

@)

L

Figure 3.1: Cluster-based metasystem organization

A network clusteicontains one or more processor clusters and is denoted by the

boxes labelledN;, N, andN3 in Figure 3.1. The essential property of a network cluster is

that it has private communication bandwidth with respect to other network clusters, and

shared bandwidth with respect to the processor clusters it contains. For example, the total
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available bandwidth in the metasystem of Figure 3.1 is the sum of the bandviNgtiNin
andNg, but the available bandwidth iy is shared between the Sun 4 and SGI processor
clusters. Each network cluster hasedwork cluster manageNetwork clusters are con-
nected by one or moreuters We use the term router to refer any type of network con-
nector such as a routegateway or bridge. The router introduces delay and adds

communication cost.

Communication between processors infeddnt processor clusters is accom-
plished by message-passing. For simplicity we will assume that all communication is by
message-passing. This simplifies the presentation of the communication cost functions in
the next section. In shared-memory multiprocessors message-passing can be easily imple-
mented on top of shared-memofgken as a whole, the metasystem is a multi-level dis-

tributed-memory MIMD machine.

We will use the following notation throughout this and subsequent sections

Ni=  the " network cluster

G = the " processor cluster

P = number of processors selected for C
Pr= total number of processors selected
1= application communication topology
b= message size in bytes

C; .. = communication cost constants

f(= cluster-dependent communication function

FQO = topology-dependent total communication function

ry, I, = router cost constants

e = conversion cost constant

V= number of messages that cross between each processor cluster

The managers maintain important information about the network resources, see

Figure 3.2% The topology refers to the type of interconnect. Examples intiusigether-

1. We have not yet defined all terms, but they will be defined before their use.
2. Not all of this information is used in the current implementation.
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net),ring (FDDI), mesh(multicomputer), anthypercubgmulticomputer). The bandwidth

refers only to network clusters. Theak bandwidth is the maximum communication
bandwidth achievable for this network cluster assuming idle machines and network (e.g.,
10 Mb/sec for an ethernet-based network cluster).aMad bandwidth is the amount of

the peak bandwidth available based on the current network usage. Latency is the end-to-
end cost of sending a 0 byte message between two machines within a processor cluster
Because latency is primarily a processor cost it is associated with the processar cluster
The machine type includegorkstation multicomputermultiprocessomndvectorand is

associated with the processor cluster.

* Interconnection topology

» Bandwidth (peak, avail)
 Latency

* Machine type

* Communication functions

* Processors (total, avail)

* Memory (real, virtual)

» Aggregate power (mflops, mips)
* Manager

Figure 3.2: Cluster-based resource information

The communication functions provide an accurate measure of the expected com-
munication cost between machines in a processor or network clikgedatency and
bandwidth values can be used to estimate communication costs if these communication
functions are left unspecified. Using these latency and bandwidth values provides an opti-
mistic communication cost estimate since contention is ignored. On the other hand, the
communication cost functions include contention and application/interconnection topol-
ogy.

The total processors is the number of physical processors that are contained in a
processor or network clust@the number of processors in a network cluster is the sum of

the processors in each contained processor cli$teravailable processors are a subset of
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the total processors. Processors become unavailable in two ways — they become reserved
by other users or the amount of available processing resources on a processor is too little
to be considered useful. Memory is the amount of real and virtual memory available

within the cluster.

Aggregate power is the cumulative processing power based on the peak instruction
rate for the processor type and the number of available processors. The amdieat of ef
tive cumulative processing power is guaranteed never to exceed this value. For example
the amount of Mips or Mflops that a computation actually utilizes depends on the compu-
tation. \e will see later that a more accurate problem-dependent measure &écthigesf
processing power is made available to the system. If such a measure is left unspecified
then the peak rates can be used as an estimate. The aggregate power for a network cluster
is the sum of the aggregate power in each contained processor. haster of this
resource information must be adjusted to reflect current resource usage. This is discussed

in Section 3.1.3.

The manager refers to the name of the processor that stores and maintains the
information in Figure 3.2. A manager is associated with each processor cluster and net-
work cluster One of the processor cluster managers is designated as the network cluster
managerManagers maintain static information such as peak processing power and total
number of processors. The information in Figure 3.2 is kept in a resource or configuration
database along with a set of cost functions for communication, routing, and conversion
described in Section 3.1.2. Managers also monitor and maintain dynamic information such
as the available processors. All of this information must be up to date when a scheduling

request is made.

In this dissertation we have studied local-area metasystems such as in Figure 3.1
that contain multicomputers and workstatione Wake the simplifying assumption of
one processor cluster per network clusiéis assumption allows us to present a simpler

communication and scheduling model and only limits workstation clusters since by defini-
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tion a network cluster can contain only a single multicomputettiprocessqror vector
processor clusterWe now discuss several alternatives for wide-aregarozations

although their implementation is the subject of future work.

Wide-area

A wide-area gganization can be defined as a natural extension of the local-area
model of Figure 3.1. For widarea metasystens, we define network clusters hierarchi-

cally as shown in Figure 3.3. For examilgs a network cluster that contaiNg, N, and
Ng

Ny

Ny
Ny N3

Figure 3.3: Wider-area metasystem organization

(=]

R

N3. The hierarchical ganization of Figure 3.3 forms a tree as shown in Figure 3.4 and
captures important communication relationships. The leaves are the processor clusters and
communication between processors in a processor cluster@g.aglpes not incur any
routing penaltyIf processors are in ddrent processor clusters but in the same network
cluster (e.g.N,), the cost is higher due to the single hop routing penalty. Each level of the
tree introduces an additional routing penalty.

The network cluster manager stores the names of the managers of contained pro-
cessor or network clusters to enable exchange of system information. The manager of a
network cluster stores an aggregate of the information associated with the network or pro-
cessor clusters it contains. For example, the total number of processors stored with the
manager o, is the sum of the total number of processomdoN,, andN3. The same is

true for communication bandwidth and aggregate poWer manager stores a copy of the
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Figure 3.4: Hierarchical metasystem organization

information that is stored with its contained processor or network clusters. For gery lar

metasystems copies of this information can be kept on disk.

It is possible that a network cluster may participate in one or more configurations.
For example the user or system administrator may want to define a configuration that con-
tains onlyN; andN, and a diferent configuration that contaiflg andNs. Also note that a
configuration may be confined to contain a subset of available clusters. Both of these

capabilities should be supported in an implementation of the model.

It is unlikely that propagated state information can be kept up to date in the tree
organization. By the time information from the leaves reaches the root igeanteetasys-
tem it will be stale. A tree also does not exhibit a high degree of fault tolerance. Instead we
propose a more scalable and fault-toleragaoization that is based on the concept of
sites Instead of a tree at every level, we miglgamize clusters within site as a tree, and
the sites themselves in a completely connected graph, see Figure 3.5 (the circles represent
network clusters as in Figure 3.4)itih each site, we would designate the root network
cluster manager to be trete manager(shaded node). All site managers know each
other’s identity. A site is an organizational entity that contains network clusters. Examples
include universities or government labs. The idea is that only sites would need to maintain
up to date state information and the information would not be propagated between sites.

The disadvantage of this organization is that less global information is available.
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Figure 3.5: Site-based metasystem organization

Resource-based

For widerarea networks it may also be important to expose resource types and
make more global information available. For example a program that contains two
loosely-coupled data parallel computations might be best served by two Intel Paragons
even if they are located in tBfent sites. Another example might be a highly vectorizeable
program that would be best served by a single CrayPYthat is located remotely
Another possibility is a resource requirement — the computation must run on a set of
machine types. Locating a site that contains these machines mayidét ditie to the

absence of global information.

One possibility is to designate a number of site manageesasce managers
Resources managers maintain a table that contains an entry fanaeitine typeind a
list of site managers that manage clusters containing machines of that type. Every site
stores the name of the nearest resource manafgbim this table the resource managers
would have to be stored in a manner that attempts to retain some locality information. For
example a selection of two Intel Paragons connected by a high-speed link may be prefera-
ble to two Intel Paragons that are connected by multiple, slower links. A resource-based
organization is most useful for wide-area configurations and programs with resdce af

ities.
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We speculate that the site-basedamization with some mechanism for exposing
resource information is likely to be arfexftive model. Future research is needed to con-

firm this conjecture.

3.1.2 Communication Model

Estimating the communication cost between machines in the metasystem is a cen-
tral part of the partitioning and placement process. Selecting the appropriate number of
processors to apply to a problem depends on the communication cost. For example, choos-
ing too many processors results in high communication costs and increased completion
time. Partitioning uses a set of communication cost functions to estimate communication
costs for candidate processor selections. An accurate estimate of communication cost will
allow processor selection to determine the appropriate number and type of processors to
use. These cost functions are based on a message-passing neotdaveMeveloped a
model that accurately characterizes communication cost for the type of communications
that are commonly found in data parallel programs. This cost model also includes two
related costs inherent in heterogeneous metasystem communications, routing and data
conversion. These cost functions are constructedfdinefbenchmarking and are stored
by each cluster manager for use at runtime.B&gin by discussing the routing and con-
version cost functions since they are a part of the general communication cost function

discussed in the subsequent section.

3.1.2.1 Routing and Data Conversion

When a message crosses from a processor in one cluster to a processor in another
cluster it must cross a router or gatewhlyis introduces delay due to kering and rout-
ing control. & define the routing cost from a processor in cluGter a processor in clus-
ter C; to be:

Trouter [Gi, Gl (B) =r1trob (Eq.3.1)
and by symmetry,

Trouter [Gi Cj] = Trouter [Cj’ Cil
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We use the square-brace notation to indicate that there iseeediffunction for each
parameter value (in the braces) and the parenthesis to indicate the function parameters that
are passed at runtime. For example there iderelift router function for each pair of clus-

ters and each router function depends on the messages®sed as a runtime parame-

ter. The router cost includes a latency pengjignd a pebyte penalty, that captures any

delay or buffering required in routingoebyte message from a processo€iro a proces-

sor inC;j. This cost function is constructed by benchmarking and should be viewed as a
lower bound on the actual cost, since routers and gateways are highly shared resources
and can introduce unpredictable delays at peak times during thé daghly loaded

router can drop packets and introduce high delaysmadel the routing cost fro@ to

C; by a single function even though the communication bet@pandC; might actually

cross several routers or gateways depending on the network configuration. A more com-
plicated alternative would be to model the cost of each rbofefrom C; to C; and form

the sum. This strategy would make benchmarking routing costs much more tedious.

One way to handle the non-determinism of routing overhead is to provide a set of
time-dependent routing functiofig, e [Ci, Cj, t] which gives the average routing cost at
timet. At peak times during the daye routing cost will be higher than af-pkak times.

A simpler strategy is to forffier [Ci, Cj] as the average obtained over somgdaime

interval that includes both peak and off-peak benchmarking.

Data format conversion may also be needed for messages that cross between clus-
ters. Conversion is the price paid for using heterogeneous processors. Since processor
clusters are homogeneous there is no need for conversion of messages communicated
within a processor cluste€onversion is needed when communicating processors in dif-
ferent clusters support éefent data formats. Some common conversions include floating
point format, alignment, byte ordering, and size [99 Ndve studied the most common
form of conversion, endian byte re-ordering, and determined this cost by benchmarking.

Conversion is paid as a peyte processor cost by the sending or receiving processor
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define the conversion cost fobayte message communicated betwegto C; for a con-
version of typeonv_typdo be (where is the per-byte cost of a processo€jrperform-
ing the conversion):
Teonversiofconv_typeC;, Cj] (b) = e;b with (Eq.3.2)
Teonversion[conv_typeC;, Cj] =0
We will drop theconv_typein the remainder of the dissertation as we have limited our

study to endian conversion only.

In our experience conversion can be easily tolerated even for tightly-coupled par-
allel computations, if performed carefullyor example consider a simple broadcast topol-
ogy in Figure 3.6 and suppose the master and workers require format conversion. If
conversions are performed by the workers in parallel, the conversion overhead is more
easily tolerated. On the other hand, if the master performed the conversions they would be
serialized. The placement of conversions can greatly reduce the cost penalty that the appli-
cation experiences. Another possibility is to assign conversions to the processors that can
perform them most &€iently. In the current implementation, conversions are performed
by the fastest clusters and are assumed to be performed in parallel as in Figure 3.6. The
router and conversion cost functions will be a component of the communication cost

described in the next section.

workers

O
O

=

Figure 3.6: Broadcast topology

master
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3.1.2.1 Communication Cost Functions

Scheduling must consider the cost of communication in making partitioning and
placement decisions. fettive scheduling requires an accurate characterization of this
cost. Consider the simple case where all communication occurs within a Guéter,
only processors withi; are used). The communication cost function@Gpdepends on
the application communication topology and the interconnection topold@y ®he par-
ticular cost experienced by an application depends omppbication-dependergarame-
ters provided to this function: (1) the message size, and (2) the number of communicating
processors or tasks. There is a one-to-one relationship between tasks and processors in our
model — a single task is assigned to a proce$$woughout the dissertation we will refer

to communicating tasks and communicating processors, but these terms are synonymous.

The communication patterns for data parallel computations are often regular and
synchronousin a synchronous communication all processors participate in the communi-
cationcollectivelyat the saméogical time. Scheduling exploits both of these properties.
Placement exploits regularity in the communication pattern and partitioning exploits the
synchronous nature of the communication.

Our communication model is based on regular and synchronous communications
that are performed repeatedly or iteratively during the computation. Although communi-
cations are logically synchronous they are asynchronous in the implementation. The syn-
chronous nature of the communication means that the average cost experienced by all
processors per iteration is roughly the same and is determined by the processor experienc-
ing the greatest cost. This observation has been verified by empirical datiendn-
strate the generality of our communication model by representing four communication
topologies often found in data parallel computatidnB, ring, tree, andbroadcast

The 1-D is common in scientific computing problems based on grids or matrices
and is a class of nearest-neighbor topologies. InltBetopology processors simulta-

neously send to their north and south neighbors and then receive from their north and
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south neighbors. Théng topology is common to systolic algorithms and pipeline compu-
tations. In thering topology communication is much more synchronous. A processor

receives from its left neighbor and then sends to its right neighbor.

The tree topology is used for global operations such as reductions. In the fan-in,
fan-outtree topology communication occurs in two phases. In fan-in a parent processor
receives from all of its children before sending to its parent, while children simultaneously
send to their parent. Once the root receives from its children the process is repeated in

reverse during fan-out.

Thebroadcastis a masteslave topology in which slaves simultaneously commu-
nicate with the masteand then wait to receive from the mastebroadcastis a global

communication that is a special case oftthe topology.

A set of accurate communication cost functions can be constructed for each cluster
by benchmarking a set adpology-specificommunication programs. These cost func-
tions determine the average communication cost, measured as elapsed time, incurred by a
processor during a singtmmunication cycleA communication cycle corresponds to a
single iteration of the computation. For example in a single cycle of a ring communica-
tion, a processor receives one message from its left neighbor and sends one message to its
right neighbor. For each clust&rand communication topolody we have a communica-

tion cost function of the formt,yy,mI[Ci, T] (b, p).

The cost function is parameterizedfythe number of communicating processors
within the clusterandb, the number of bytes per message on average. For example sup-
poseC, refers to the SGI cluster in Figure 3.1. The cost funcligpml[C1, 1-D] (b, p)
refers to the average cost of sending and receivingydée message inlaD communica-
tion topology ofp SGI processors computed as elapsed time. This cost contains processor
and network costs. Processor costs include operating system, protocol, and context-
switching overhead. All of these may be quitgéafor communications on ethernet-con-

nected clusters. Network costs include time spent in the interconnection network. Multi-
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computer and multiprocessor communications often incur a much smaller processor and
network cost. The communication cost functions have a latency term that depgnds on
and a bandwidth term that depends on Ipaindb (¢, andc, are latency constants aogl
andc, are bandwidth constants):

TeommlCi, T] (b, p) = cy+C, f(p)+ b(catcs f(p)) (Eq.3.3)

The first two terms are the latency cost and the later two terms are the bandwidth
or perbyte costs. The latency and bandwidth terms both have a component that is inde-
pendent of the number of processors (tgandcg) — this would include processor costs
such as protocol stack overhead. Each term also has a component that depends on the
number of processors (i.&; andc,) — this captures contentionfefts. The functiorf
depends on the cluster interconnect and the application communication togedogy
example, on ethernet we often ddmear inp for all communication topologies due to
contention for the single ethernet channel. On the other hand, richer communication topol-
ogies such as meshes and hypercubes have greater communication bandwidth that scales
more easily with the number of processors. For example, we have observed that for tree
communication on a meshis logarithmicin p. For a2-D communication on a megls
nearly constant and independenpdince there is limited link contention. Each commu-
nication cost function is benchmarked usindedéntp andb values to derive the appro-

priate constant® The form of this equation has been validated by experimental data.

The communication cost functions depend on the communication system that will
be used. For example, on a network of workstations, communication using PVM [83], P4
[11], or raw TCP/IP will have di¢érent costs. A dierent set of cost functions would be
needed for these @i#rent communication systemseWse a communication library called
MMPS (Modular Message-Passing System) [38] which is used by the Mentat-Legion par-

allel processing system [33]. MMPS is a reliable heterogeneous message-passing system

3. These cost functions are easily generalized for multiple processor clusters per network cluster.
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that uses UDP datagrams for communication among workstations and between processors
in different clusters, and NX for communication among processors in Intel multicomputer

clusters.

A suite of MMPS communication programs has been developed to perform the
benchmarking needed to derive the constants in (EqQ.3.3). In these programs a set of com-
municating tasks is assigned to processors. Benchmarking has been done when the proces-
sors and network were lightly loaded. The placement of tasks depends on the
communication and interconnection topologies and is discussed in Chapter 4. The function
in (Eg.3.3) is much more accurate than the often-used communication cost function:

Teomm= Tiatency+ BTh (Eq.3.4)

This communication cost function is normally constructed from two communicating pro-
cessors and is therefore optimistic — it does not account for contention, tqgpotogy
placement. This function provides a lower bound on the expected communication cost. In
the event that a communication cost function is left unspecified or unknown, the imple-
mentation must construct an approximate cost function based on available information.
This is discussed in Chapter 5. If minimal information is available then the cost function
of (Eq.3.4) may be uséd

If the candidate processors considered by scheduling occur within a padcular
only, then the cost function in (EQ.3.3) determines the communication cost. If processors
in several clusters are considered, then communication will cross cluster boundaries and
two additional costs may come into pla&y, ter aNdTeonversionSUPPOSe that processors in
C; are communicating with processors kndifferent clusters and, messages cross
betweenC; and each clusteZ, every communication cycle. The communication cost for
processors i€ becomes the sum of the previous cost equation in (Eq.3.3) plus several

new terms:

4. This function will have to be adjusted to account for contention.
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[C.T] = T.,..[C.T] (b, p+ K + (Eq.3.5)

Tcomm

ZVK (Trouter [Ci Cd * Teonversion Civ Cid )
k

comm

Notice that each message sent betwgeamdCy pays a routing penalty and potentially a
conversion penalty. It is therefore important to redyc@his is the job of placement dis-
cussed in Chapter 4. The experimental evidence indicates that reducing the number of
messages to cross the router can significantly lower communication costs. Since the router
shares the communication channel we have observed that it increases contention as though
the number of processors is increased. This is modelledd@ditional stations fok clus-
ters, hence the paramefer k for T.omm The value ok andv, depend on the intercon-
nection and application topologies and the placement strategies used.

As an example suppose that processofS; iandC; are communicating in &D
topology k = 1). Placement will arrange the communicating tasks suclvirat. The

communication cost for processorsdpbecomes; may be written similarly):

TeommlCis T = Teomml[Ci, T (b, p+1) + (Trouter [Civ Gl + TeonversionlCir Gil)
The cost equation in (EqQ.3.5) gives the communication cost experienced by all processors
in a particular clusterThe total communication cost experienced by the application
depends on the application communication topology and is denotég, Ry, [T]. The

total cost is a functioR of the individual cluster communication costs:
TeommlT] = F{ Tecomml[Ci, 1-D], for all selectedC;} (Eq.3.6)

We have identified two classes of communication topologies that determine the
form for F, concurent access topologid€AT) andsequential access topologi€SAT).
These categories are similar to Cytsoobncurrent and sequential access paradigms [17].
In a CAT topology processors concurrently send messages asynchronously and then block
on message receipt. In a Bfopology processors block waiting for a message and then

send a message. In a CAT the communication channels are accessed concurrently while in
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a SAT the communication channels are accessed sequentiafiytotal cost for a CA
topology is the maximum of the cluster communication costs since the overall communi-
cation cost is limited by the slowest clust®n the other hand, the total cost for alSA
topology is the sum of the cluster communication costs due to the sequential nature of the

communication. Below we present some examples of SAT and CAT topologies:

Teomm[1-D] = max { Teomml[Ci, 1-DI} (Eq.3.7)

Teommlring] = sum{Teomm(C;, ring]}

Teommltred] = Teomm[Croot tre€] + maxnehiidren{ TecommlCi, treel}

Teommlbroadcast = sum{ T.ommlCi, broadcask (b, P1)* P}/ Pt
Thel-Dis an example of a CAT topology and timgy a SAT topology. Théreetopology
is more complicated. It has both concurrent communication (e.g., the children communi-
cate simultaneously), and sequential communication (e.g., communication is ring-like
from the leaves to the root). TAopologies have a much greater potential for exploiting
the additional communication bandwidth available in processor clusters and have better
scaling properties. One notable exception isitleadcastopology.

Thebroadcasttopology is a CA but is complicated by the fact that all processors
communicate with a single master processbe absence of locality means that the com-
munication cost cannot be characterized as a simple function of the individual communi-
cation costs within each cluster. We have observed empirically thaioadcasthe total
communication cost depends on the total number of proce3goasd in a manner that
depends on the number of processors contributed by each.clisteompute the total
communication cost as a weighted average based on the number of prdeessairso-
uted by each clust€;. This approximation turns out to be accurate in practice. This func-
tion has the property that the overall communication cost function aqes/é¢o the

communication cost function of the cluster that contributes tgesanumber of proces-
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sors as the number of processors in this cluster is increased. This approximation makes the

broadcastiook more like a SAT topology in terms of performance properties.

The benefit of this communication model is that very accurate topology-specific
communication costs can be estimatea SHow that estimating these costs is key to
effective scheduling. Once these cost functions are constructed they are stored in a config-

uration database where they are used in the scheduling process.

3.1.3 Resource Availability

Because the metasystem environment is shared, both communication bandwidth
and processing resources may be committed to other userqré¥ent a model for
resource availability that accounts for resource sharing. A complete implementation of
this model is outside the scope of this dissertatiom hale implemented a useful subset
of this model and discuss the implementation more fully in Chapter 5. Resource availabil-
ity is implemented on top of existing operating system facilities and is limited by what the
underlying operating system can provide.

The availability of computation cycles is based arservation policyProcessors
may become unavailable due to reservation by other users. For example on a multicom-
puter a user may allocate and reserve a portion of the machine. NX operating system
facilities such apspartandcubeinfoprovide information about processor reservation for
Intel multicomputers. In a workstation environment several systems have implemented
reservation schemes that permit workstation owners to withdraw their machines from the
shared set [35][52]. Machines also become unavailable if the amount of available compu-

tational resources is too little to be useful.

The availability of communication bandwidth is a mordiclifit problem. On mul-
ticomputers the amount of communication bandwidth is dependent on the size and loca-
tion of the machine partition. On workstation clusters the available bandwidth depends on

the current trdfc profile. A network monitor can be used to estimate the available band-
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width. Two possibilities for a network monitor arenatwork tapor the use of probe mes-
sages. The former is not likely to be applicable to a wadea system where the use of
taps compromises network securiBrobe messages can be periodically sent out on the
network and their travel time recorded to estimate bandwidth. This strategy could also be
used to determine router costs dynamicdllye reduced bandwidth estimate can be used

to adjust the communication cost functions. Recall that these cost functions were bench-
marked when the network was assumed to be lightly loaded and most of the peak network

bandwidth was available.

However network trdic is notoriously bursty and unpredictable and it is not clear
how useful this information would be in general. A better idea might be to progidkera
antee policythat serves as the dual of the reservation pofiayuarantee policy provides
some guarantees on the available resources. For example suppose we are able to reserve
all workstations in a processor cluster for some period of time and there are no other pro-
cessors on the same network segmeetwuld then have the peak bandwidth available.
Newer network technologies such aBM\[43] also ofer the promise of dedicated band-
width on a per connection basis. In the current implementation no available bandwidth
information is collected. Théhermometer/thermostahechanism in the Legion system
provides a way to specify the amount of computational resources that a single workstation
can commit to a Legion userapplication [34]. This is not enforced as a guarantee but

such mechanisms may be useful in providing predictability in resource sharing.

Another factor that influences both the available computational resources and
bandwidth is processor load. This is an issue for both workstation and multicomputer clus-
ters since most multicomputer operating systems now support multiprogramming of indi-
vidual processors. In the Unix environment processor load can be determined by a number
of operating system facilitieugtime, kmem We define load as the run-queue-length

(RQL) over some time interval. This load index tends to be a good predictor of load in the
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near future. In particular it can usually identify machines with long-running CPU-inten-
sive jobs.

Processor load degrades both the available computational resourcefeetiveef
communication bandwidth. Since adarpart of the communication overhead is processor
cost on workstation networks, thdeaftive bandwidth is reduced by a loaded processor
The load measure can be used to degrade the power rating of a processor and the aggre-
gate power of the cluster — for example a simple adjustment of 1/(RQL+1) can be made
to the power rating. So if RQL=0, we expect the peak processor pameif RQL=1,
then we might expect to get 1/2 of the peak processor power since we are sharing the pro-
cessor with another job. While such an adjustment appears to be better than no adjustment
in some cases, we have determined that this adjustment is not dependable and can be fairly
inaccurate. It is also clear that this load measure should be used to adjust the communica-
tion cost functions. Research into the quantitative impact of processor load on available

computation and communication capacity is the subject of future work.

Another dimension to the resource sharing problem is menfaayprocessor is
running memory-intensive jobs, then théeefive performance of the processor will be
diminished due to paging. Normally there is a correlation betweg® taemory demands
and CPU cycle demands but not always. Consequentdynory availability is another
variable that will impact resource availabilifreatment of memory availability is outside
the scope of this dissertation.

We have implemented a simple scheme for dealing with resource sharing. All pro-
cessors above a load threshold value are considered to be unavailable. This simple policy
provides two benefits, it avoids highly loaded machines, and it allows computation and
communication costs to be accurately determined. Accurate cost information is needed by
partitioning and placement. If the load threshold is small enough then all available proces-
sors in a processor cluster can be treated as equal in computation power. But the threshold

should be high enough to permit afsuént number of processors to be marked available.
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Resource availability is determined by the managers in Figure 3.1. The manager of
a workstation-based cluster communicates periodically with each contained processor to
collect load information. These managers also manage processor reservations if such a
mechanism is provided. The manager of a multicomputer cluster can determine processor
load information by using the operating system facilities described eattisrinforma-
tion is then propagated as discussed in Section 3.1.1. An important issue outside the scope
of this dissertation is fault tolerance for managers. If a processor upon which a manager is
run goes down then another processor must be elected to become the .Wamdger
implemented a simpler scheme for resource availability described in Chapter 5.

An important issue is how the scheduling mechanism interacts with the managers.
We have implemented a simple scheme suitable for a local-area environment described in
Chapter 5. W now discuss alternatives that have better scaling properties and are more
suitable for a wide-area environment. When a scheduling request for a data parallel com-
putation arrives at the local cluster managenumber of sites are probed to determine
availability. The number of sites probed depends on an estimate of the amount of process-
ing resources that the request will need — the estimate must be conservative. For example
a lage problem may require a ¢gr amount of resources so afwignt number of sites
must be contacted. Collecting all the resource information contained in a \gr\sier
tem is unnecessary for most applications. Using the resource availability of multiple sites
would allow a single data parallel computation to be scheduled across multiple sites. Later
we provide evidence in Chapter 6 that this may be feasible and also discuss some obsta-

cles to achieving this in practice.

If we are willing to confine the scheduling decision to use machines within a single
site then there is another alternative. Instead we send the scheduling request to a number
of sites and have the sites run the scheduling algorithm in parallel. Again the number of
sites would depend on an estimate of the amount of resources that are needed. Each site

would return a bid based on howestftive the site estimates it would be for the problem.
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Effectiveness is measured as predicted completion time, a quantity that our scheduling

method computes. The site with the smallest projected completion time would be selected.

3.2 Parallel Computation Model

We have adopted a dynamic single-program-multiple-data (SPMD) model for data
parallel computations. In the SPMD model a data parallel computation is performed by a
set of identical tasks avorkers placed one per processench assigned a fi#ifent por-
tion of the data domain. Since workers are assigned one-to-one to processors we will often
refer to processors, workers, or tasks interchangeably throughout this and subsequent
chapters. The model is dynamic to allow tasks to be instantiated at runtime based on the
processor selection. The SPMD model supports a computation granularity suitable for dis-
tributed-memory environments such as the metasystem. It has also been shown to be an
effective implementation model for data parallel computations on multicomputers

[41][57] and workstation networks [41].

Data parallel problems manipulate one or more data domamsndtlel the data
domain as a collection of primitive data unitP®@Us, where th&DU is the smallest unit
of data decomposition. THeDU is problem and application specific. For example, the
PDU might be a rowcolumn, or block of a matrix in a matrix-based problem, a DNA
sequence in a gene sequence matching problem [30], or a collection of particles in a parti-
cle simulation. Thd®DU is similar to the virtual processor [62] but may also arise from
unstructured data domairRDUs are assigned to workers during partitioning. Scheduling

does not depend on the nature of BidJ but rather manipulatd2DUs in the abstract.

Two views of the data parallel computation are provided to the scheduling frame-
work — taskview andphaseview. In the task viewthe computation is represented as a
collection of communicatingiorkersor processes in a static task graph, see Figure 3.7(a).
SPMD computations are naturally expressed by the STG. An advantage of the STG is that

it exposes important topology information that is needed by placement. On the other hand,
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the task view encapsulates important information about the communication and computa-

tion structure of the problem. The phase view provides this information.

In the phase vieythe computation is represented as a sequence of alternating com-

putation and communicatiqgzghased56], see Figure 3.7(b). The dotted lines indicate that

the workers are communicating together in some pattern, not necessarily a fan-in as
depicted in Figure 3.7(b). Each worker participates in the execution of these phases. These
phases are more tightly-coupled than the phases discussed in [66] which require data
redistribution. A communication phase contains a synchronous communication executed
by all processors. A computation phase contains only computation. Communication and
computation phases may be overlapped. Most data parallel computations are iterative with
the computation and communication phases repeating after some number of phases. This

is known as &ycle

O compute
communicate

compute

communicate

a) Task view b) Phase view

Figure 3.7: Two views of a data parallel computation

The phase view provides important information that is needed by partitioning and
placement. This information is provided bgllbackfunctions. The callbacks are a set of
runtime functions that provide critical information about the communication and compu-

tation structure of the implementation.

3.2.1 Function Callbacks

The callbacks provide the minimal amount of information that is needed to support

the partitioning and placement process. It is important to mention that the callbacks pro-
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vide information about a particular implementation of a data parallel problemfefedif
implementation of the same problem may requiréedght callback functions. In some
cases conservative cost information can be used if callbacks are omitquedeént an
implementation of the callbacks complete with function signatures in Chapter 5. For now
we describe the callbacks in the abstraato Tallback functions refer to the computation

as a whole:

e numPDUs
» overlap

The number oPDUs in the problempumPDUs is akin to the problem size. It
may depend on any number of problem paramters. This callback is the same for all com-
putation phases within a particular data parallel computationoViérdapcallback is used
to specify whether any computation and communication phases overlap in time. The cur-
rent implementation supports the overlap of a single computation and communication

phase.
Each computation phase has the following callbacks defined:

* comp_complexity
e arch_cost

The amount of computation performed oRRU in a single cycle is known as the compu-
tation complexity comp_complexitylt has two components: the number of instructions
executed on a pétDU basis, and the number of instructions executed that do not depend
on thePDU. The first component is typically a function of problem parameters and the
second is often small enough to omit. The former provides the average number of instruc-
tions executed on ADU in a single cycle. It can be determined by summing up the total
number of instructions executed over RDUs over all cycles and then dividing by the
number ofPDUs and the number of cycles. In most cases this reduces to a simple function
as we will show The comp_complexityis architecture-independent. Multiplying the

comp_complexityimes the peak instruction raigsgec/instruction) for a given architecture
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provides a best-case estimate of the expected execution timidy.arhis formulation
ignores memory and cachindegdts, paging and other architecture-dependent costs. Nev-
ertheless, we have found it to be a good estimétdretter estimator is based on the

arch_costcallback.

The architecture-specific execution costs associated amitp _complexityare
captured byarch_costprovided in units ofusec/instruction. It also has two components
corresponding to the architecture-spedifl@U dependent and independeoists respec-
tively. Thearch_costcontains an entry for each processor type in thgeetanetasystem.
To obtain thearch_costthesequentiabpplication code (i.e., the parallel code running on
one processor) must be benchmarked on each processor type and Bieliodakcution
time divided by the total number of instructions executed. A much more accurate estimate
of the expected execution time foPBU becomesrch_costimescomp_complexityt is
more accuratbecausearch_costincludes memory and caching costse Wave observed
that thearch_costmay be sensitive to problem-size due to memory and cafdutsedind
a range ofirch_costvalues can be specified.e/give an example of this in Chapter 7. An

alternative is to form tharch_costas an average over a range of problem sizes.
Each communication phase has the following callbacks defined:

» topology
e comm_complexity

The topology refers to the communication topology of the communication phase. The
amount of communication between tasks is known as the communication complexity
comm_complexityit is the average number of bytes transmitted by a worker in a single
communication during a single cycle of the communication phase. It can be determined by
summing up the total bytes transmitted over all cycles and then dividing by the number of
cycles. In most cases tkemm_complexitalso reduces to a simple function. Similar to

comp_complexifyit has two components: the number of bytes transmitte@perand



51

the number of bytes transmitted that are independent of the nunf@BiJst It is used to

determine the parametein the communication cost equations.

In some cases the callbacks may depend on other parameters unknown until runt-
ime such as the number of processors used. These parameters are passed automatically to
each callback function and may be used in the callback implementatgodes$tribe the
implementation of callback functions later in Chapter 5.

Among the computation and communication phases, two phases are distinguished.
Thedominantcomputation phase has the largest computation complexity, whitiehie
nant communication phase has thegkst communication complexityrfhe dominant
phases may depend on problem parameters and we have extended the callback mechanism
to provide this information. ¥have implemented two strategies for using the callbacks in
guiding the partitioning and placement process. The simplest and cheapest uses the call-
backs associated with the dominant phases @hky other is more accurate and expensive

and uses the callbacks associated with all phases.

An example that illustrates the callbacks for a reghidM five-point stencil com-
putation for a PDE solver: u, w1 Uy Y et 4ui,j =01i,j =1,...,N
is given in Figure 3.8 (tharch_costis omitted). The PDE solver uses Jacelniethod.
These are functions that return the values indicatedcéap_complexityve show only
the PDU dependent cost and foomm_complexitywve show only thé®DU independent
message size. This computation has been implemented using a block-row decomposition
of the grid as depicted in Figure 3.8(a). In this implementatioPDid is a single row
and the processors are arranged inlacommunication topologylhe stencil computa-
tion is iterative and consists of two dominant phasdsDacommunication to exchange
north and south borders, and a simple computation phase that computes the function value

at each grid point to be the average of its neighbors.

Notice that the callback functions may depend on problem parameterbl) ezt

are unknown until runtimerhe callbacks for the computation and communication com-
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workers data domain (NxN)

numPDUS] N
— topologyd 1-D
comm_complexityl 4N (bytes)
— comp_complexity/l 5N (fp ops)
— -
a) Stencil computation b) Callbacks for stencil

Figure 3.8: Example: 1-D stencil computation

plexity allow an estimate of the computation granularity to be computed at runtime. This
estimate is used to determine the number of processors to use. The topology is used to
select the appropriate communication function. The computation complexity is also used
to determine a decomposition of the data domain, i.e., the numB&xUsf to be assigned

to each worker.

The callback mechanism is very powerful and can be applied to data parallel com-
putations less regular than the five-point stencil. Since the callbacks may be arbitrary and
complex functions and may depend on any number of problem parameters, they can han-
dle some data-dependent computations by pre-processing the data domain. For example,
the computation complexity for a sparse matrix problem typically depends on the non-
zero structure of the matrix. But a simple callback can be written to capture this depen-
dence. @ have done this for a finite-element problem presented in Chapter 7. Similarly
for irregular computations that are run repeatedly such as a global climate model code

[60], the callbacks may be based on the statistics generated from previous runs.

For irregular or control-dependent data parallel computations, off-line benchmark-
ing of the sequential code may be needed to determine average values for
comp_complexitandcomm_complexityl he instruction counts and message sizes needed
for these callbacks can be determined by inserting probes into the catiav@/done this
for the finite-element and biological sequence codes presented in Chapter havev

already discussed that taech_costcallback requires architecture-specific benchmarking.
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Fortunately,comp_complexityand comm_complexityare architecture-independent and

need not be benchmarked on each architecture type.

We present an implementation of callbacks later in Chapter 5 and present the call-

backs for a number of data parallel computations in Chapter 7.

3.2.2 Data Decomposition

In a heterogeneous environment workers may be assigrfededif numbers of
PDUs in order to balance the computational load. The decomposition information is con-

tained in a structure known as thartition_mapthat is defined as follows:

A; = number oPDUs assigned to the worker on proceggor
2A; =numPDUs

The partition_maphas an entry for each processor or worker and the association of its
entries to workers may hepology-dependensee Figure 3.9. The topology-dependence
reflects the data locality relationships in the problem. Data locality means that elements of
the data domain have some relationship to each. dtbeexample in th&-D stencil prob-

lem of Figure 3.8, points on the grid are coupled to their neighbors. This information is
needed when the data domain is decomposed to the workers. For example, a 100x100 grid
might be decomposed across four workers as shown in Figure 3.9(a), worker 1 gets the
first 20PDUs or rows, worker 2 gets the nextBDUs, and so on. If we assume the work-

ers are arranged inlaD topology with worker 1 at the top, followed by worker 2, ... and

so on, then thé&-D communication preserves the data locality relationships. On the other
hand in Figure 3.9(d) there are no data locality relationships and the data decomposition is

not constrained. We will see both types of decompositions later in Chapter 7.

20] 30
30] 20

a) 1-D b) 2-D c) tree d) unstructured

Figure 3.9: Topology-dependent partition_map (humPDUs = 100)




54

The partition_mapis a logical decomposition of the data domain and is computed
at runtime by partitioning. The implementation is responsible for usingattigion_map
in a manner appropriate to the problem. For example, an out-of-core implementation for
very lage grids might simply pass thgartition_mapto the workers and have them
acquire their portion of the grid individually from disk. In Chapter 7, we sketch an in-core
implementation of the stencil problem in which the main program usgmthgon_map
to physically decompose the grid and then distributes pieces of the grid to the appropriate
workers.

Decomposing the data domain from fheartition_mapmust satisfy load balance
and data locality requirements. If the amount of computatio®pér is the same for all
PDUs then achievingstatic load balance is straightforward. The number RdUs
assigned must only match the entries ofgthdition_map The problem becomes slightly
more complicated if there are locality relationships since this imposes restrictions on the

assignment. But both of these problems are easily solved for most regular problems.

If the amount of computation pPDU is not the same for @iDUs then achieving
load balance can be morefaiblt. If there are no locality relationships then several strate-
gies can be used. Randomizing the data domain tends to work wellgerpiablems.
Exploiting problem knowledge can also béeefive. For example, in Gaussian elimina-
tion we decompose the matrix by a cyclic interleaving of rows to provide load balance. If
there are data locality relationships then the data decomposition problem calicbk dif
and problem knowledge must be used. In Chapter 7, we present data parallel computations

that fall into each category.

A decomposition that satisfies load balance can be easily expressed.coafine
to be sum of the execution times for #iBUs assigned to workerandconmp as the aver-
age execution time over @&DUs in the problem. Thpartition_mapentry can be inter-

preted as the percentage of work to be assigned to worker
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Then the following must hold for all workers:

A
S[compDnumPDU}sD

N i
COMR = umPDU

comp=Acomp

The first term is the work percentage that is to be assigned to woekad the

i
numPDWs
second term in braces is the total amount of work in the problem. Note that wikidlithe
cost is the same for aRDUs this relation holds triviallyThe physical decomposition

must satisfy the relation above in order to achieve load balance.

If the amount of computation p@DU varies at runtime in an unpredictable fash-
ion then a load imbalance may arise and some fordymdmicrepartitioning is needed.

This topic is addressed in Chapter 8.

3.2.3 Multiple Data Parallel Computations

A problem may contain several data parallel computationgerBift data parallel
computations may operate onfdrent data domains, may require data redistribution, and
may be coupled to each oth&or example, the finite-element problem that we present
later contains two coupled data parallel computations that operate on tererdidata

domains though no data redistribution is needed.

Each data parallel computation may be scheduled individddily current imple-
mentation can handle multipiequentialdata parallel computations. Gaussian elimina-
tion and the finite-element problem are two examples. The schedultoga@irrentdata
parallel computations is a morefditilt problem. One possibility is to extend the notion of
dominant phases to dominant computations. Dominant computations would be scheduled
first and allocated the best available resources. The scheduling of these problems is out-
side the scope of this dissertation.

A single data parallel computation will be scheduled at a time and it is the respon-

sibility of the implementation to indicate the ordEne implementation must also perform
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any data redistributions that are needed between execution of these data parallel computa-
tions. A singlepartition_mapis computed for each data parallel computation that is

scheduled.

3.2.4 SPMD-like Data Parallel Computations

We have extended the SPMD model to include a common model for implementing
data parallel computations in which the SPMD tasks may not identical. Consider a fan-in/
fan-outtree where the leaves are performing the computation (i.e., the workers), and the
interior nodes are responsible for communicating results up and down the tregeenly
Figure 3.10. This allows morefettive overlap of computation and communication. The
leaf computations are overlapped with interior node communications. The leaves and the
interior nodes execute &Bfrent SPMD programs. &refer to this aanization as a
hybrid-treeandit is specified via the topology callback. The framework implementation is
more complex fohybrid-tree — the partition_mapapplies only to the leaves, and the
placement of tasks becomes mordidlift since interior and leaf nodes must be treated

differently. An example of this type of problem is the biological sequence comparison,

/@
PAWAR

Figure 3.10: Hybrid-tree topology

complib, discussed in Chapter 7.

3.2.5 Compiler Support

The SPMD computation model does not assume a particular language model. It is

assumed that an SPMD worker implementation together with the callback functions are
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provided. The details of the programmer interface and a callback implementation are dis-

cussed in Chapter 5.

Advanced compilation techniques can be used with appropriate language con-
structs to generate some of the callbacks for many regular problems. For example, it is
easy to see how the callbacks for stencil might be generated. Such language support has
been proposed in a integrated data parallel control parallel language called Braid [94].
Braid supports the explicit specification of application communication topadogyinant
computations, and a concept known as subset data parallelism which provides information

that is similar to th&DU.

However for irregular, control- or data-dependent computations it is likely that the
domain programmer will have to write some callback functions by-hand. If this is the
case, it may be possible to simplify this task by providing libraries of callbacks for well-
known problem types. The programmer could extend these template callbacks in a manner
appropriate to the problem at hand. For example, a set of generic callbacks for stencil-
based problems could be provided. For a stencil-based application such as an image pro-
cessing problem or iterative PDE solvédre stencil callbacks could be tailored to fit the

problem. The development of callback libraries is the subject of future work.

3.2.6 Limitations

The model does not capture a number of problem classes. A class of problems in
which PDUs are shifted between processors during the course of execution may require
dynamic repartitioning of the data domain to preserve load balance. Examples of these
problems include molecular dynamics and particle-in-cell codes. Our model is not incom-
patible with dynamic partitioning but it is outside the scope of this dissertation. Another
problem class is one in which the workload is generated in a stochastic fashion. Bench-

marking the application will not necessarily be helpful in determining the callbacks since
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the problem characteristics may depend on random events. An example of this type of

application would be certain parallel discrete event simulations.

In this chapter we have presented a model for representing metasystem resources
and a model for representing parallel computations. These models define the information
needed to construct cost functions for computation and communication. These models

form the cornerstone of the scheduling framework described in the next chapter.
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Chapter 4 Partitioning and Placement

This chapter introduces the partitioning and placement problem and several prom-
ising heuristics. The objective of partitioning and placement is to achieve reduced comple-
tion time for the data parallel computation. Partitioning estimates the best subset of
available processors to use based on computation granularity and a heterogeneous decom-
position of the data domain based on load balanesfoWhulate partitioning as a mathe-
matical optimization problem and present twdeetive heuristics. Placement assigns
workers to the selected subset of processors in a manner that reduces the communication
overhead. Partitioning and placement are solved together in the scheduling framework.
Both partitioning and placement rely on a set of runtime cost functions for computation and

communication that have been constructed from system resource and program information.

4.1 The Partitioning Problem

Partitioning divides the problem across a set of processors at an appropriate grain
size. If too many processors are selected, the computation granularity will be too small
and communication overhead may dominate the benefit of increased parallelism. On the
other hand if too few processors are selected, the computation granularity will bgé¢oo lar
and insuficient parallelism has been exploited. Selecting the processors to use from

among the available set is known @ecessor selectiorA worker is assigned to each



60

selected processorhe optimum processor selection depends on characteristics of the

problem and of the available processing resources.

For a selected set of processors, partitioning also determines a load balanced

decomposition of the data domain. Recall that the decomposition information is kept in a

structure known as thpartition_map In a load balanced decomposition of the data

domain, all processors or workers will finish at the same time. A load balanced decompo-

sition with an appropriate computation granularity leads to reduced completion time.

Partitioning and placement are performed at runtime given the available process-

ing resources. In the current implementation, partitioning and placement arstdine

cally at runtime. V& believe dynamic repartitioning in the event of load imbalance could

be accommodated within the framework and this is addressed later in Chapew8l W

use the following notation throughout this chapter:

Yi=

T.=

DP =
d=
Tstartup™
Teomm=

Teomp=

a particular processor

number of PDUs assigned to processor p

number of available processors within cluster C
number of processors selected for C

relative processor weight fdP processor (problem-specific)
number of clusters

the amount of computation as a function of A

PDU independent cost constant fBrpirocessor

PDU dependent cost constant fBrpirocessor

per cycle elapsed time

set of all data parallel computations for the problem
a particular data parallel computation

start-up overhead

per cycle communication cost

per cycle computation cost

We begin with a discussion of data domain decomposition and show how a load

balanced decomposition is computed for a collection of heterogeneous processors. W

also show that a load balanced decomposition for a fixed set of processors is optimal. Fol-
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lowing this we discuss the processor selection process. Processor selection assumes a load

balanced decomposition for each set of candidate processors.

4.1.1 Data Domain Decomposition

We compute a load balanced decomposition for each cangidatessor configu-
ration explored by the scheduling method. A processor configuration is a set of processors
P; (0= Pj<V, j=1 tom), whereV; is the number of processors available witlinThe
data domain decomposition is based on the amount of time spent in computation. Recall
that in Chapter 3, the communication costs experienced by all processors or workers is the
same for synchronous communications. So communication need not be considered for
load balance. Wpresent a method for decomposing the data domain based on the domi-

nant computation phase.

The amount of time spent in a single cycle of the dominant computation phase,

denoted byl.om,, is defined as follows (shown for a procegspr
Teomplpi] = comp_complexity arch_cos (p;) * g(A) (Eq.4.1)

The computation time depends on the problem and processor characteristics and
on number oPDUs, A;, given top;. In general the dependencemmay be an arbitrary
function g of A;. At runtime when the problem parameters are known, the callbacks in
(Eg.4.1) are invoked forcomp_complexity(number of instructions pePDU) and
arch_cosf(time per instruction) and the form fo¢,,,becomes:

Teomplpl = % + Yig(A) (Eq.4.2)
wherex, andy; are constants formed by multiplying the respeckzdJ dependent and
PDU independent terms for the callbacks in (Eq.4.1). Recall thatdootip_complexity
and arch_costhave aPDU dependent andPDU independent component and that
arch_costwill reflect architecture-specific costs such as memory access overhead. For
example, consider the callbacks for the stencil computation in Figure :N&X60. Sup-

pose thearch_coston p; is 0.1psec for both théDU independent anBDU dependent
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execution time and theomp_complexitis 5N for thePDU dependent part of the compu-
tation and 25 instructions for tfiRDU independent part of the computation. The value for
X; becomes (25)*0.1 or 2{tsec and the value fgr becomes (5*100)*0.1 or §@sec. The

terms in parenthesis are the total number of instructions.

Load balance requires th&t,mp be the same for all processoPstptal proces-

sors):
Xy +Y19(A1) =% + Y29(Ar) = ...Xp + Ypd(Ap) (Eq.4.3)
subject to) A; = numPDUs
If g is non-linear then this is a @idult system to solve and iterative methods must
be used. In practice howewgis linear for SPMD computations in which the same com-
putation is performed on each data element @BL)) independentlylf g is linear we
can combine this equation with the equality constraint to easily compute the
partition_map To do this we first define; which is the relative processor weight fpr
based orarch_costk ranges over all selected processors):
max{ y}
i —yi
A smallery; means a lger weight since; is in units of time per instruction. The
equation for thepartition_mapis easily expressed as a function of the relative processor

weights:

O w, 0 X =%
A = O —DD[numPDUs— } (Eq.4.4)
(4= W, [ Y

A special case of (Eq.4.4) occurs whenPRii®J independent cost is O (i.e,= 0):

W.
A = Z_I ChumPDUs (Eq.4.5)
Wi
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This equation has the property tfedterprocessors will receive a greater share of
the data domain and processors in the same cluster will receive an equal share since the
associatedv; will be the same Faster processors do not necessarily imply processors
with the highest peak rates, but processors that can perform this computationfimost ef
ciently. SinceA; must be integral, the individual entries in ghartition_mapmust be
rounded to the nearest integ€his will leave som&DUs unaccounted for so we assign
the left-overPDUs to the fastest processorse Wb not account for left-ov&DUs in the

above equations.

An alternate strategy is to use the callbacks associated with all computation

phases. The amount of time spent in all computation phases is the following:

TeomplP] = > % +Y,9(A) (Eq.4.6)

phases
If all computation phases are linearAinthen we can rewrite (Eq.4.4) as follows:
X, — X max{ Y}

A —E W‘E PDU | = Eq.4.7
P = DZW.(DE[num S—Z Y },Wi—T (Eq.4.7)

whereX; is the sum of alk; andY; is the sum of aly; associated with each computation
phase.

It is well-known that load balance is a necessary condition for achieving minimum
completion time for synchronous SPMD computations. fduition_mapcomputed by
(Eq.4.5) gives load balance for a non-integrattition_map However the integer solu-
tion we obtained by rounding and assigning the éXD&Js to the fastest processors is a
good heuristic for reducing completion time. Since a processor may receive at most one

additionalPDU in the integer solutigrthe percent increase in execution time with respect

1. This will not be the case when processor load is considered amay be reduced.
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to the optimal load balance decomposition is at mdsurbPDUsunder assumptions of
linearity.

If the message size dependsfrthen it is possible that the optingrtition_map
does not necessarily load balance the processors. This situation might arise if a cluster has
very different computation and communication capacities. For example if a cluster has very
fast processors with poor communication bandwidth then it may be bettetdadi®DUs
to a cluster that may have slower processors but with a greater communication bandwidth.
In this event computing theartition_mapthat load balances the processors may be sub-
optimal. Howeverthe experimental results indicate that for two problems in this class,

computational load balance results in reduced elapsed time.

Load balance guarantees tfigd,,Will be the same for all processors or workers
and we drop the; subscript onleomgin the remainder of this chaptétomputing the
partition_mapusing either the dominant computation phase or all computation phases is
performed for a particular processor configuration. Choosing the number of processors to
use,P; for eachC; (i.e., to determine the range fJris the subject of processor selection,

discussed next.

4.1.2 Processor Selection

Nearly all parallel computations reach a point of diminishing returns with respect
to the number of processors that can be udedtefely. At that point we have achieved
the best computation grain for the problem. Locating this pointfisudtfwhen the pro-
cessors are homogeneous and is even mdieuttifivhen the processors are heteroge-
neous. ¥ analyze this problem and present several heuristics. The heuristics are guided

by runtime cost estimation that use information provided by the callback functions.

We define the elapsed timRapseqfor a problem that contains a number of

sequential data parallel computati@R as follows:
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cycleq 4

Telapsed: Tstartup+d§DP izl Tc[d1 i] (Eq.4.8)

The start-up overheali,y,p, may include any initial data distribution or problem
setup costs. The amount of time spent inithiteration or cycle of thel” data parallel
computation is denoted Big[d, i] and the number of cycles is denoteddygle$d]. We

denoteT [d] as the average value §fd, i] over all cycles ird and rewrite (Eq.4.8) as:

T =T + T.[d] Ctycleq 4
I d
elapse startup . ? 5 © (Eq.4.9)

If Tstartup Is small relative to the elapsed time, then minimiZlggyseqcan be
achieved by minimizing the sum in (Eq.4.9). Minimizing this sum can be achieved by
minimizing T[d] for each data parallel computationeWow assume that the problem
contains only one data parallel computation anddttseibscript may be dropped. This
assumption is made in order to simplify the remainder of this ch#tef the results we
present apply to the more general case as well unless data needs to be redistributed
between successive data parallel computations. In this case, a cost function that character-
izes the cost of data redistribution is needed. This is outside the scope of the dissertation.

Minimizing TejapsedS achieved by minimizingy, the average per cycle execution
cost.T, is a function of the per cycle computation and communication costs for each com-

putation and communication phase (the superscript indicates the phase):

T =f (Tcompl’ TcompZ’ -Eomml' Tcommz’ )

In general this may be a complex function due to the possibility that multiple com-
putation and communication phases overlap in time.nvdke the assumption that only
the dominant computation and communication phases are overlapped to limitettentif
formulations ofT, that need to be handled by the framework implementation. Additional
formulations can be easily added to the implementatiend&otel o y,as the total com-

putation cost and.,mmas the total communication cost component$.ofe consider
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two methods for estimatin@.ompand Teomm (1) computation and communication costs
are determined using dominant phases only and (2) computation and communication costs
are determined by summing all phases. In the current implementation for (2) there is no
overlap of computation and communication permitted by the implementation. This could
be supported with a more complexerlapcallback specification.

We consider two common forms fdg depending on whether computation and
communication are overlapped:

Te = Teomp™* TeommOr (Eq.4.10)
T. = max{ Teomp Teomnt if overlap

We show later in this section holy can be easily constructed at runtime using
program and resource information.

The minimization ofT. requires the solution of an inequality-constrained, non-lin-
ear integer programming problem. This function may also be non-convex. The potential
presence afmaxas shown in (Eq.4.10) means that iterative, gradient-based methods cannot
be used since the objective function does not have continuous derivatives. There may also
be discontinuities due rch_costchanging for different problem sizes. Consider the first
form for T.in (Eq.4.10) and assume that the computation and communication costs of the
dominant phases are used. The form forThis given below:

Te = Teompt Teomm

Teomp= Xt YiA [via (Eq.4.2) for any]

=X+ Yi ZVWV:( ChumPDUs [via (EQ.4.5) substituting foi]
Observe that this is a{ non-linear function in the number of processoxs, (tioerespond
to k selected processors). The communication €Qsis defined by (Eq.3.7). The form

for T.becomes:

W.
To =X+ Y ZVT:( [humPDW + F{ Teomm[Cj, 1-D, for all selectedC;}

wherex;, y;, w; are all constants. There are additional constants depending on the precise
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form of the communication cost functiofy, is the same for any value o§inceTgompis

the same for all processors (under load balanceYapg,is the same under our assump-
tions of synchronous communication. The mathematical optimization problem is to mini-
mize T, subject to:

0< Pj < \/j Pj integral.

The additional constraints ofy given in (Eq.4.3) are satisfied by the substitution of
(Eq.4.5) above.

T is non-linear in the number of processors. This non-linearity may arise from sev-
eral sources —;omp Via (EQ.4.5) or from the communication functidnéEq.3.3) orF
(Eqg.3.6).T, may also be non-convex due to max from (Eq.4.10) or from a max that appears
due to a CA communication topology (Eq.3.7). Thus, the minimizatioWofs a hard
problem to solve optimally.

We have developed two heuristics that have worked well in simulation studies and
when applied to several real data parallel computations. These heuristics attempt to locate
a minimum forT; by searching a portion of the solution space. The entire solution space is
exponential in the number of clusters and processors.

We present several graphs forfeient formulations of . to help motivate the heu-
ristics. First consider the simplest case — a single processor cluster with a communication
cost functionf that is linear in the number of processors, a messagé #ie¢ does not
depend on the number of processors, and no computation or communication overlap. This
particularT, corresponds to the-D stencilproblem on a workstation clustefe get an
equation fofT that is the result of combining all of the constantsTigf,,andTeommfrom
the equation foiT. given above. W omit the definitions for these constants which we
denote bya,, ay, ... as the analysis does not depend on them.

If the message size depends on the number of processors, the same fiym for
results. This graph is plotted in Figure 4.1(a) and observe the predictable parabolic shape

for T.. Note that whe=1, no communication cost is paid. The minimum point is obtained
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Figure 4.1: Graphs of objective function. T

by differentiatingT, and setting the right-hand-side to 0. In region A, the computation gran-
ularity is too lage and in region B the computation granularity is too smallh¥e shown

the common case whefgis unimodal. It is possible th@ will have local minima if pro-
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cessor loads dir within the clusteror there is anaxin the formulation fofT;, or if the
PDU execution cost is very sensitive to problem size due to memory and caching costs.

Next suppose that the communication cost fundtisogarithmicin the number
of processors as is common for tree communications. In Figure 4.1(b) the same parabolic
shape forT. is observed but the minimum occurs at dedént point. If the message size
depends on the number of processors then a slightly more complex forpnefsults.

A more interesting case occurs when computation and communication are over-
lapped. Suppose that the communication cost funtigimear and computation and com-
munication are fully overlapped. In Figure 4.1(c) the presenceaX introduces a
discontinuity in the graph fof.. We have plotted;omp Tcomm andT; on the same axis,
with T¢ being the portion ol om,and Teommin bold. The minimum occurs at the point
whereTeompandTeommare equal.

Now suppose that the number of processor clusters is > 1. Consider the simplest
case of two processor clust&gsandC,, linear communication costs in both clusters, and
the dominant communication topology is a synchronous access topolofyq$# that
communication costs are additive. In this cdséas two dependent variabl&s,andP,,
the number of processors selected in each clustgpose that the processorEinare a
better choice for this computation and would yield a smaller elapsed time than if processors
in C, were used instead. In this instance we would use all proces€iyrbeffore using any
processors iiC,. This can be generalized to any number of clusteespMtT. as shown
in Figure 4.1(d). Along the x-axis, we begin with processofs;ifor P; = 1 ..V4, where
V, is the total number of processors availabl€{inThis portion of the graph is the same
as in Figure 4.1(a). Depending on the problem and the number of available processors in
C,, the minimum elapsed time may fall within this portion of the graph. The dotted line
indicates that this may be the case. HoweWwdéhe computation granularity is & then
processors i, may also be used and this is indicated by the next portion of the graph. The

junction at which the next portion of the graph begins also depends on the problem and
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cluster characteristics. In the region labeldandP,, all processors i, are used
together withP, = 1 ..V,. Additional processor clusters would be handled in the same fash-
ion. It is also possible that the minimum may occur at a point in which processors in both
C, andC, are used, bu®, is less tharv;.

In general we cannot rely on standard minimization procedures&incay have
discontinuities. Furthermore, the majority of these methods are iterative which may require
substantial runtime overhead to reach a cageetisolution. Instead, we have developed
two heuristics that are not guaranteed to find the optimal solution, but have proven to be
effective and have a small and predictable runtime cost. The heuristics are based on the
technique discussed for Figure 4.1(d) abaWester ordering

It is not possible to explore all processor configurations since the space is exponen-
tial in both the number of processors and clusters. Cluster ordering is used to reduce the
search space by considering processors belonging to the best clusters first. The best clusters
depend on the problem. A cluster with sglacommunication capacity might be a better
choice for a tightly-coupled problem with a large amount of communication. On the other
hand, a cluster with a Ige computation capacity might be better for a problem withge lar
computation granularitySome problems will also perform better on certain machines
based on architectural characteristics and may even perform bettefeoandlimachines
for different problem sizes. Cluster ordering exploits machine-problemtias by consid-
ering both computation and communication performance.

We describe two heuristics for processor selectignamtl B, that have yielded
promising results. blis a special case of;HBoth heuristics explore a series of processor
configurations in an attempt to achieve a minimigrhence minimized completion time.

For each configuration exploref},is computed via (Eq.4.10)oTo this we first compute
the partition_mapvia (Eq.4.5). Once the data decomposition is determined, we can com-
pute Teomp(Ed.4.1) andlcomm(EQ.3.7) easily by invoking the callbacks and selecting the

appropriate communication function. All of these computations are simple and can be per-
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formed eficiently at runtime. For a given configuration, the placement heuristics are used
to determine task placement and the expected communication costs that result using this
placement are included ,mm Placement is discussed in the next section. The general

form of the processor selection heuristics is shown in Figure 4.2.

1. Order processor clusters
2. Repeat
3. Select next candidate processor configuration
4. Compute partition_map
5. Compute Teomp, Teomm and Te
6. If T, is best, store this processor configuration
7. Until done

Figure 4.2: Processor selection algorithm

Heuristic Hq

Heuristic H; has been designed for environments in which computation and com-
munication capacities may vary throughout the metasystem. Because communication
capacities may be dig@rent, a simple cluster ordering strategy based solely on computation
power will not always work well. For example, consider that a slow network of very fast
machines such as a DEC-Alpha cluster might be chosen over a Paragon partition because
the DEC-Alpha is faster than the i860. Clearly this may be a poor choice for some tightly-

coupled parallel computations.

A metric for cluster ordering must consider both computation and communication
cost. A real measure of computation and communication cost is providedfyr each
cluster we compute the smallégtvalue obtained using only processors in this cluster
The clusters with the smallegtvalue are chosen first. The ordering algorithm performs a
binary search on the processor€jon the interval [1 V] to find the smallest.. If there
arem clusters andP IS the lagest number of processors in a cluster then the worst-case
complexity of cluster ordering 8 (mlogR,,5,- If there is a single minima fal, within

each cluster then this procedure is guaranteed to find it. If there are multiple minima then
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this method becomes a heuristic that is not guaranteed to find the minimum, but it has

worked well in simulation and experimental studies.

Cluster ordering does not consider routing and conversion costs between clusters.
In local-area environments where routing costs are similar between clusters this is reason-
able. In a wide-area environment where routing costs mégr t§ orders of magnitude,
routing costs will have to be included if clusters in multiple sites are to be considered for
the same problem. For this reason we would expect the performangéodBH off in the
wide-area setting. Cluster ordering in a wide-area environment is the subject of future

work.

A two-phase strategy is adopted for exploring the processor configurations, see
Figure 4.3. In phase 1, we add processors for the current clusgeguaranteed that add-
ing processors will decrease tfig,,,component ofT.. The algorithm computes two
things inget_best_config- the best processor configuration based on the previous config-
uration and the current clustend thepartition_map It has the property that onég is
computed for cluste€;, it is not modified as additional clusters are considered. Thus,
phase 1 is a greedy algorithm. For each cluster considered it locates the best number of
processors by a binary search procedure similar to the method described for cluster order-
ing. The diference is that here we are looking for the minimigfor the current cluster
C; assuming a fixed number of processors already selected for the previous clusters. The
best configuration is stored during this initial phase. The worst-case complexity of phase 1
is also8 (mlogRy,ax-

The addition of processors will never decredgsg,, though it may remain
unchanged. In phase 2, we try to reducelthg,,component of.. The total communica-
tion cost is a function of the communication cost contributed by each cluster (Eq.3.7). The
cluster that contributes the maximum communication cost getiedl for reducing the
overall communication cost. In phase 2, we add processors for the current cluster while

removing processors from the cluster that contributed tlgedarcommunication cost.
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Order clusters C; .. C,, by T,
Initialize curr_config, min_cost
For each cluster C; {

// Phase 1 -- Try to reduce Tcoy,

/7 Determine config that yields min T; given previous P; (j<i)
best_curr_config = get_best_config (curr_config, C;);

// min_cost is stored

// Phase 2 -- Try to reduce Tomm
curr_config.P; = 0;
min_phase2 = MAXFLOAT;
/7 Repeatedly trade processors in C; with processors in C (k<i)
/7 where Cy is the cluster with the largest communication cost
/7 C, may change during phase 2 -- if it is the current cluster, exit
while ((curr_config.P; <=V;) && (k!=i)) {
curr_config.Pj++;
curr_config.Py--;
T, = get_Tc (curr_config);
if (T, < min_cost) {
best _curr_config = curr_config;
min_cost = T;
}
/7 Optimization: if T increases in phase 2 then exit phase 2
if (Tc < min_phase2)
min_phase2 = T,
else break;

}

curr_config = best_curr_config;

}

return best_curr_config;

Figure 4.3: Pseudo code for Heuristic;H

Removing processors from a cluster has tifiecebf reducing the communication cost
contributed by that cluster by reducing the contention for communication resources. The
idea is that additional communication bandwidth may be made available by reducing the
processors in one cluster and increasing the processors in another.

This technique is guaranteed to rediigg,,,, but the impact ofi; is unpredictable
since T.omp May increase since we are trading potentially faster processors for slower
ones. The cluster that contributes thgést communication cost may change during the

course of phase 2 as processors are traded. The configuration that yields the ripnimum
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after both phase 1 and phase 2 is stored. This is the starting configuration that is used as
the next cluster is considered; #Hoes not terminate until all clusters are explored. The
worst-case complexity of phase DignPR,,5,). This worst-case is only a concern for small
problems that would not be able to amortize this overhead. But phase 2 will termipate if
increases during this phase. In practice the average complexity is much smaller than the
worst-case. Furthermore, there is a practical limit on hoye Ry, , will be based on the
number of processors within a parallel machine, or the number of stations allowed on an
ethernet segment or FDDI ring. We expedb be small (less than 50) in local-area meta-
systems. For widesirea metasystems, a strategy that limits the number of clusters under

consideration will be needed.

In Chapters 6 and 7, we present simulation and experimental results that show H
is a feasible algorithm. The results indicate that performance within 10% of optimal is
obtained over 90% of the time in simulation. Experimental results also yield excellent per-
formance. The observed worst-case deviation from optimal was around 40% in simulation
(and this was quite rare), but a more rigorous analysis of a worst-case bound is the subject
of future work. In simulation we have observed thatr&tely falls into local minima. The
reason is cluster ordering and the phase 2 stage of the algorithm. Cluster ordering is an
effective strategy for resource selection and phase 2 explores the processor configuration
space in a non-greedy fashion increasing the likelihood that local minima will be avoided.
We observed in simulation that a random cluster ordering causes the method to fall into
local minima by selecting lessfeftive processors for the problem. Phase 2 is needed to

the avoid the local minima that may occur due toaxin T..

istic H,
Heuristic H, is a special case of;Hhat is suited to workstation network environ-
ments in which communication capacities are the same within each cluster in the metasys-

tem (e.g., ethernet-based clusters only), and routing costs are higkplbits features of
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this environment to simplify the processor selection algorithm and has smaller overhead
than H.

The algorithm begins by ordering the clusters as,inTHe next stage of the algo-
rithm explores the processor configuration space in a greedy fashion much like phase 1 for
H,; with an® (mlogR,,5,) worst-case complexityAll processors of a cluster are selected
before processors in the next cluster are considered thus avoiding router crossings if possi-
ble. This algorithm tries to maintain communication locality by avoiding the router pen-
alty and potential data conversion overhead. The algorithm terminates when adding

processors in the current cluster caugds increase, and is sketched in Figure 4.3.

Order clusters C; .. C,, by T,

Initialize curr_config, min_cost

For each cluster C; {
// Determine config that yields min T; given previous P; (j<i)
best_curr_config = get_best_config (curr_config, C;);

// If T, has increased we are done
if (best_curr_config.cost > min_cost)
break;
else {
curr_config = best_curr_config;
min_cost = best_curr_config.cost;
}
}
return best_curr_config;

Figure 4.4: Pseudo code for Heuristic,H

The worst-case order of this algorithnmBigmlogR,,5,). Ho differs from H in that
it uses a simpler strategy for exploring the configuration space. In practice it will also be
more eficient due to the greedy termination condition.Whs the precursor for -and
experimental results for Hvere published in [93]. Some preliminary results forwére
published in [91]. The performance results for a homogeneous network of Sun worksta-
tions and an Intel Paragon indicated that completion times close to the minimum were

achievable for real data parallel computations.
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This dissertation has focused on the more general heurisgmdiwe drop the
name H in the remainder of the thesiseWefer to H as the partitioning method in subse-

guent chapters.

4.2 Task Placement

Placement is the assignment of tasks to processors and has two principle objec-
tives, ensuring one task per procesand assigning tasks in a manner that reduces com-
munication cost. Assigning one task per processor is needed to achieve processor load
balance for SPMD computations. Placement uses a foou-sthedulingo collectively
assign tasks to specific processors to guarantee one task per prddessecond objec-

tive of placement is more difficult and is the subject of this section.

Assigning tasks in a communicatiorfieient manner must rely on information
about the communication and interconnection topologies. Reducing communication costs
is achieved by (1) maintaining communication locality (i.e., avoiding router crossings and
potential conversion) and (2)feftively exploiting communication bandwidth within
clusters. The former is achieved ioyer-clusterplacement and the objective is to mini-
mize communication costs between clusters. Empirical evidence suggests that this is a
large source of overhead. The latter is achieveohtbg-clusterplacement and the objec-
tive is to minimize communication costs within clusters. Intra-cluster placement is also
known asmappingor embeddin@nd has been widely studied [7][48][54][7B)pth inter-
and intra-cluster placement exploit available topology information and the regular nature
of the communication topologifor both stages of placement information about the domi-

nant communication topology is used.

4.2.1 Inter-cluster Placement
Inter-cluster placement uses communication topology information to minimize the
amount of communication that crosses the rolttlerhave developed intetuster place-

ment strategies for the prototype application topolodids; ring, tree, andbroadcast In
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Figure 4.5 thel-D/ring (the ring is indicated by the wrap-around aaoy tree topology

are decomposed across three processor clusters — the tasks are the circles and the squares
are the processors. Observe that the amount of communication that crosses the router is
minimized. o messages cross the router each cycle between each pair of communicat-
ing clusters. These intefuster placement strategies are topology-preserving in the sense
that each group of tasks assigned to a cluster maintains the togetoggxample, each

group of tasks assigned @, C,, andCsin the 1-D topology each communicate irleD

topology. Similarly for theree topology. Thebroadcastopology does not exhibit locality

but a strategy that assigns the master to the cluster that containgyést tarmber of

tasks reduces the amount of router communication.

a) 1-D andring b) tree

Figure 4.5: Inter-cluster placement

Inter-cluster placement depends on cluster ordering. In processor selection we
have determined how many processors a cluster will contribute. This is the same as the
number of tasks assigned to each cluster since each task is assigned to one .processor
Cluster ordering governs the assignment of tasks to clusters. For example in Figure 4.5 we
show the task assignment for the cluster o@giC,, Cs. Tasks in thel-D/ring topology
are assigned left-to-right ©;, C,, C3. In thetreetopology the root task and its subtree are
assigned t&,, and the subtrees corresponding to the other tasks are assigned in the order
C,, C3 in an attempt to minimize tree heighteVare trying to strike a balance between

reducing tree height and minimizing concurrent router crossings for the tree. Simply try-



78

ing to reduce router communication may result in a tree of greater height which will lead
to a lager communication overhead. These procedures generalize to any number of clus-

ters.

These intecluster placement strategies determine the total communication cost
Teomm[T]. In the current implementation we assume that the routing costs between any
group of clusters is the same — a reasonable assumption for local-area environments. For
wide-area environments, non-uniform routing costs and-ahtster network topology

information will be needed for inter-cluster placement.

4.2.2 Intra-cluster Placement

Intra-cluster placement assigns tasks to specific processors within a ¢thister
cluster placement depends both on the communication topology and the interconnection
topology. Wo factors that contribute to intra-cluster communication costs are dilation and
contention. Dilation is the number of communication hops. High dilation and contention
will tend to limit the exploitable communication bandwidth. Intra-cluster placement
should keep the average dilation small and limit contention. For example, a grey-scale
mapping of al-D topology onto a hypercube achieves minimal dilation and contention
[48]. On the other hand, a random placement suffices on a shared bus interconnect for any
communication topologyFor multicomputers the embedding may also depend on the
dimension of the mesh partition or sub-cube. There is a rich literature on the mapping
problem and many of the algorithms are well known [48][54][70].

Traditionally mapping algorithms have been applied within a static compile-time
scheduling framework. @/use these algorithms to make runtime placement decisions. A
subset of these algorithms have been implemented and made available for use at runtime.
We have implemented intra-cluster mapping strategies for the workstation environment

only. The cluster communication cost functidis,,m[C;, T] are benchmarked using these
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intra-cluster placement strategies. This guarantees that the cost prediction that ultimately

guides the partitioning and placement stages will be accurate.

Many problems have multiple communication topologies. For exampleDa
topology might be used for a nearest-neighbor communication taeelfar a global com-
munication. Our strategy is to perform intra-cluster placement for the dominant topology
first followed by intra-cluster placement for the other topologies. The current implementa-

tion can support problems containingth 1-Dandtreetopologies.

An interesting case is tf#D topology In a homogeneous environment, mappings
for the static2-D topology have been developed. In the heterogeneous environment, it
may not be possible to preserve Bab topology since processors offdifent types may
be assigned dérent size regions of the data domain and the communication topology
becomes irregulasee Figure 4.6. The processor that is assigned the shaded region will
need to communicate with 5 processors. A strategy for dealing with-Ehpology is

the subject of future work.

Figure 4.6: 2-D problem

We also handle thieybrid-treetopology discussed in Section 3.2.4. Recall that in
this topology the leaves perform the computation while the interior nodes perform com-
munication. Intra-cluster placement first insures that the leaves are placed one per proces-
sor for load balance. The interior nodes are light-weight and may be placed several to a
processor. The placement method first tries to place them on idle processors and then tries
to ensure that each processor has roughly the same number of tasks that correspond to

interior nodes, also for load balance.
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In this chapter we have presented several promising heuristics for the partitioning
and placement problem. Both greedy and non-greedy algorithms were described. Partition-
ing and placement were performed using a set of runtime cost functions for computation
and communication that have been constructed from system resource and program infor-

mation.
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Chapter 5 Implementation

This chapter presents an implementation of the scheduling framework in the Men-
tat-Legion1L parallel processing systemeWave completed the implementation for hetero-
geneous workstation networks. The heart of the scheduling framework is Prophet — a
PaRtitiOner for Parallel programs in a HEdgeneous environment.e/describe Mentat
and Legion and all components of the Prophet-Legion implementation including the call-

back and program interface, system configuration, and resource availability.

5.1 Prophet

Prophet implements the middle stage of the scheduling framework, partitioning and

Resource Task and data decomposition
Status Prophet Placement Instantiation
Kernel >
Problem
Information

Resource DB

Figure 5.1: Prophet

placement, and defines a set of interfaces, see Figure 5.1. The core of Prophet is a runtime

1. Mentat-Legion refers to a transitional stage between the Mentat and Legion parallel processing systems.
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kernel that can be integrated into a number of other parallel processing systems that support
the Prophet interface and satisfy a number of system requirements.

A primary requirement is that the host parallel processing system must be able to
support our heterogeneous network model and some form of resource or configuration
database as described in Chapter 3. This is needed to implement resource avdéliability
first stage of the framework. Another requirement is that the host system provide some form
of callback mechanism to make program information available. All of these requirements
are needed by the Prophet kernel to support partitioning and placement.

In addition there are three requirements for instantiation — a data format conver-
sion capabilitya dynamic worker or task creation capahiléggd a mechanism to insure
that binaries for the worker task are available for each architecture type and resident on the
appropriate file system. Support for dynamic task creation depends on what the underlying
operating system provides. Data format conversion may be implemented within the host
communication system. The host communication system is also assumed to support mes-
sage-passing between all machines in the environment.

We present an integration of Prophet into the Mentat-Legion parallel processing
system and describe how each piece in the picture of Figure 5.1 is implemented. The cur-

rent Prophet implementation consists of approximately 2000 lines of C++ code.

5.2 Legion

Legion is a distributed parallel processing system based on Mentat. Legion will pro-
vide a set of services that enables wide-area parallel and distributed computing [34]. As in
Mentat, Legion programs are collections of communicating objects. One of the primary
objectives of Legion is to provide a seamless virtual computer that hides much of the com-
plexity inherent in managing a distributed collection of resources. Seamless parallel pro-
cessing in Legion means that the system must be able to locate processing resources and

make scheduling decisions automatically for the .uSke integration of Prophet into
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Legion is aimed at providing this capability for data parallel computations.

5.3 Mentat-Legion Implementation
Prophet Kernel

The Prophet kernel is responsible for making partitioning and placement decisions
based on problem and resource information. Problem information is provided by a callback
interface and resource information by a resource database and resource status interface. The
kernel implements the algorithms for partitioning and placement discussed in Chapter 4.
Partitioning and placement information are computed and stored in a set of data structures
that are made available by a Prophet kernel call. The current implementation of the Prophet
kernel is written in C++ and is compiled with the Mentat-Legion runtime system library
also written in C++. All application code including the worker implementation link this
library.

The kernel also manages the set of workers or tasks created by instantiation. It treats
the set of workers as a collection, and defines two useful variables that the worker imple-
mentation can us€OLLECTION_ID, the id of the workerandNUM_COLLECTIONhe
number of workers in the collection. In the Mentat-Legion implementation, this id maps
into the Mentat object name, which is needed to enable communication between workers.
The current implementation supports a number of application communication topologies,
1-D, ring, tree, hybrid-treg broadcast RPC andother, and the following operations are

supported on collections of these types, see Figure 5.2.

1-D : NORTH(), SOUTH()
ring: PRED(), SUCC()
treg hybrid-tree LCHILD(), RCHILD(), PARENT()

hybrid-tree LEAF()
broadcast MASTER(), SLAVE(K)

Figure 5.2: Collection operations

These functions may be called by the workers to determine their communicating partners
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based on topology and return the name of the communicating wergerthe name of a
worker’s north sibling. Folbroadcastthe master can obtain the name of kikslave
worker. The functionhEAF() is useful for the hybrid_treetopology — it returns true if

the calling worker is a leaf, otherwise fal§®PC is a point-to-point communication
between two objects and is useful in the Mentat-Legion implementation. The purpose of
the remaining functions is straightforward. The topolagiyer refers to any unimple-

mented topology.

Configuration

The heterogeneous network model is easily implemented in Mentat-Legion which
already defines a notion of clust&ve restrict the Mentat-Legion cluster to include only
homogeneous processors. The configuration information is stored in a database that we
have extended to support Prophet. The database is encapsulated by a Ce¢anelass
figdb . In Figure 5.3 we present a specification for a configuration containing a Sun
Sparc?2 cluster with 8 processors and SGI cluster with 6 processors, both on ethernet. This
specification corresponds to the information in Figure 3.2. The communication functions
are specified by values for the constanis,, c3, andc, respectively in (Eq.3.3), arfds
assumed to be linedn the workstation environmeritwill be linear In a true metasystem
environment, specification of a non-linéavill need to be supported in the future. For the
routing functions the values refer to the constapgndr, in (Eq.3.1). For the conversion
functions the value refers & in (Eq.3.2). This specification will need to reflecfeliént
types of possible conversions in the future. These values allow Prophet to construct the
appropriate communication cost functions for workstation networks. RPC is for a 0-byte
message. The peak communication bandwidth is COMM_BANDWIDTH and latency is
determined to be the one-way RPC latency, so there is no need for an additional specifica-
tion. The communication parameters were determined by benchmarking a set of communi-

cation programs written using the Mentat-Legion communication system MMPS [38].
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CLUSTER SPARC2s CLUSTER SGils

{ {

cluster01.cs.Virginia.EDU sgi-1.unixlab.Virginia.EDU
cluster02.cs.Virginia.EDU sgi-2.unixlab.Virginia.EDU
cluster08.cs.Virginia.EDU sgi-6.unixlab.Virginia.EDU
CLUSTER_TYPE SUN4 CLUSTER_TYPE SGI
TOPOLOGY BUS TOPOLOGY BUS

MANAGER cluster01.cs.Virginia.EDU MANAGER sgi-2.cs.Virginia.EDU
FLOPS 170 FLOPS 360

MIPS 170 MIPS 360

COMM_BANDWIDTH 10.0 // Mbit/sec COMM_BANDWIDTH 10.0 // Mbit/se¢
/I All in msec /[ All in msec

RPC 4.1 RPC 3.6

BCAST .9 2.1 .003 .00116 BCAST .4 2.0 .000073 .00145
TREE .5 2.1 .00051 .0019 TREE .7 1.8 .00012 .0014

TOP_DEFN CHORDAL .1.1.1.1 }
TOP_DEFN IRREG_TOP1 LOCAL

TOP_DEFN IRREG_TOP2 GLOBAL
}

ROUTER SGls SPARC2s 1.2 .00008
CONVERSION SGls SPARC2s 0.0

Figure 5.3: Example configuration

We also propose a mechanism for udefined topologies that is illustrated above.
The topology is given a name (e.g., CHORDAL) and a set of codiaieefs if they are
known. If the cost parameters are unknown then the user may specify whether the topology
is LOCAL or GLOBAL. If the topology is LOCAL then the system will use 1hP cost
function as an approximation or theadcastcost function if it is GLOBAL. A method for
specifying placement information including whether the topology isR@AAT will be
needed for usespecified topologies. Usspecified topologies are currently unimple-
mented but we have provided a generic topology callleerthat Prophet defines conser-
vatively — it is assumed to be a BAwith linear f, placement is random, and the cost
coeficients are formed as an average of the cosficmits of the other specified topolo-

gies. If cost functions are omitted for this or any other topology then the optimistic cost
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function of (Eq.3.4) can be used. This default is currently unimplemented.
The Mentat-Legion system runs a daemon process known iastdatiation man-
ageron each host in the configuration that is responsible for collecting load information.

Oneinstantiation manageper cluster is designated as thanagerin our model.

Resource Availability

The current implementation of resource availability is based on a seitdged
probe of all hosts in the local-area configuration to obtain their load status. When a sched-
uling request arrives, load and availability information is determined and an aggregate of
the information is returned. The manager mechanism is not yet fully implemented since a
complete implementation of resource availability is outside the scope of this dissertation.
At present each host redundantly stores a copy of the resource database as well. Once the
manager mechanism is in place, a more scalable load collection strategy based on the pic-

ture of Figure 3.1 can be implemented.

The current implementation considers a processor below a run-queue-length load
threshold of .33 to be available. This guarantees that at least 75% of the CPU will be avail-
able for the data parallel problem at the time the computation begins. Processors are
ordered by their load value within each clust& choose processors with the lightest load
first before processors with adar load are consideredéave put hooks into the Prophet
kernel to use load information for adjusting the cost functions in the future. Research is
needed to be able to quantify the impact of load on the computation and communication
costs. A related problem is the need for dynamic load balance. These topics are discussed

in Chapter 8.

Callback Interface
We have implemented a C++ callback interface by defining an abstract base class
domain see Figure 5.4. The callbacks are member functions on this class. The description

of these callbacks was provided in Chapter 3.
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classdomain {

char** PV;

public:
virtual domain (char** curr_PV);
virtual phaselominant_comp_phase (int np)=0;
virtual phaselominant_comm_phase (int np)=0;
virtual phase_renoum_phases ()=0;

virtual comp_recomp_complexity  (int np, phase comp_phase)=0;
virtual intnumPDUs(phase comp_phase)=0;
virtual cost_rearch_cost  (host_types proc, phase comm_phase)=0;

virtual comm_recomm_complexity  (int np, phase comm_phase)=0;
virtual phaseverlap (phase comp_phase) = 0;
virtual toptopology  (phase comm_phase)=0;

2
struct cost_rec { struct comp_rec {
float PDU_cost; float PDU _inst;
float non_PDU_cost; float non_PDU_inst;
h J¥
struct phase_rec { struct comm_rec {
int comp_phases; int PDU_bytes;
int comm_phases; int non_PDU_bytes;
h h

typedef enum {1D, ring, tree} top; typedef int phase;

Figure 5.4: Callback interface
There are several callbacks added to the group described in Chapter 3:

dominant_comp_phase()  returns the dominant computation phase
dominant_comm_phase()  returns the dominant communication phase
num_phases() returns the number of phases

These callbacks are needed since it is possible that the dominant phases depend on problem
parameters known at runtime. The structure PV is a parameter vector and is singhar to ar

It may contain any number of problem parameter values needed to implement the call-
backs. Currently the programmer marshals the problem parameters into PV and instantiates
the domain with this vector as argament. An example is provided in the next section.
Notice that the number of processairp, is passed as a parameter to the callbacks since

some callbacks may depend on it. The phases are represented as integers and it is up to the
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implementation of the domain class to map these integers into the program phases. The
phases are assumed to be numbered fronm@no phases() - 1. With appropriate lan-
guage support this mapping could be managed by a compiler.

The domain class must be derived and implemented for a particular data parallel
computation. For example, we have defined a domain class for stencil,
stencil_domain , that provides information about th&D stencil computation
described in Section 3.2. In Figure 5.5 we show the implementation of the
comp_complexity() callback for the stencil problem. This problem has one computa-
tion phase, hence the simple switch statement. This callback depends on a single problem
parameter, the problem sikkthat is extracted from the parameter vector PV.

Callback specification can be a tedious task for the programmer. One solution is to
provide libraries of callbacks for well-known computational structures such as stencil prob-
lems. The programmer would extend these classes by derivation and not have to reimple-
ment the entire domain class from scratch. A more attractive idea is to have the compiler
generate the callbacks. As was discussed this is unlikely to be a general solution for irreg-

ular problems but may have promise for regular problems.

classstencil_domain :domain {
public:

comp_rec comp_complexity (int np, phase comp_phase) {

int N = atoi ﬂgV[O]); Il extract problem size
comp_rec CR;
switch (comp_phase) {
case 0 :
CR.PDU _inst = 5*N; // 5 fp operations per PDU in this problem
CR.non_PDU_inst = 0;
break;

}
return CR;
}

Figure 5.5: Implementation of stencil callbacks
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Program Interface

The program interface to the Prophet kernel is provided by a fupetrotion
that returns the partition and placement information in a set of data structareavé\pro-
vided a Mentat-Legion facility to support instantiati@®_create , that instantiates a
Mentat object (i.e., a worker) on each selected proceasdrcommunicates the list of
workers to each workeilhis facility allows the worker implementation to establish the
communication topology and to determine its communicating partners via the functions in
Figure 5.1.

In Figure 5.6 we present a partial main progranifdrstencil written in MPL. The

main() {
partition_rec *PR;
stencil_worker *workers, mo;
stencil_  domain *dom;

DD_floatarray *Grid;

I/l Problem-specific code: (N, Grid, iters are read from file)
PV[0]= itoa (N); // marshal PV for problem instance
dom = newstencil_domain (PV); Il instantiate domain

PR = partition (dom);
mclass* workers = (stencil_workerBP_create (PR, mo);

I/l Application-specific code
1D_grid = 1D_carve (Grid, PR.partition_map);
for (int i=0; i<PR.total; i++)
workersli].init_grid (1D_grid[i], N);
for (int j=1; j<=iters; j++)
for (int k=0; k<PR.total; k++)
workers[k].compute_grid ();

}
Figure 5.6: Stencil main program
main program begins by constructing PV and instantiastegcil_domain . The
stencil_domain object is then passedpartition — this will enable Prophet to

invoke the callbacks. A call OP_create is then made to place a Mentat object on each

processor based on the information contained in PR. amit the definition of
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partition_rec since it is a fairly complex structure. The workers are instances of the
Mentat classten_worker — the definition osten_worker  and an example mem-
ber function is given in Figure 5.0P_create returns the list of created Mentat objects.
We have decouplggartition andDP_create sincepartition Is a generic kernel
call whileDP_create is a Mentat-Legion specific call.

The information returned byartition is also needed for data decomposition.
In this problem, thgartition_mapis used to decompose the grid into 1-D chunks via the
call tolD_carve . The implementation of stencil relies on facilities in a library that man-
ages 1-D and 2-D data structures knowbBs array . The grid is represented as a mem-
ory-contiguous 2-D float arraypD_floatarray . The implementation ofD_carve
uses library facilities to extract the appropriate pieces of the grid.

Thesten_worker  stores its portion of the problem in a set of member variables
and defines a number of member functionsni- grid initializes each worker with
it's piece of the problencompute _grid initiates a worker to begin the stencil compu-
tation, andput_top/bot communicate a border row to neighboring workers. In the
implementation otompute_grid , the neighboring workers are determined by calls to
NORTH() andSOUTH() and the stencil operation is performed for a fixed number of iter-
ations. V¢ omit the code foupdate_grid , the function that performs the five-point
stencil on the stored rows of the subgrid.

In this chapter we have described the Mentat-Legion implementation of the sched-
uling framework for workstation networks. The implementation includes the program
interface, resource availabiljtend the Prophet kernel. The latter implements the algo-

rithms for partitioning and placement that automate scheduling.
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persistent mentat clasgen_worker

float *top, *bot; /I cushion rows from communicating workers
DD_floatarray *subgrid; I/ worker portion of subgrid
int dim; /I columns in grid

public:

void init_grid (DD_floatarray* sgrid, int N);
void compute_grid ();

private:
/I Communication functions
void put_bot (DD _floatarray* row);
void put_top (DD_floatarray* row);

void update_grid (int num_rows);

h

void sten_worker ::compute_grid () {
int num_rows = subgrid->num_row();
sten_worker  *north, *south;
DD_floatarray *mytop, *mybot;

/I Get neighbors
north = gten_worker *) NORTHJ();
south = §ten_worker *) SOUTH();

/I Extract borders and communicate to neighbors (if any)
mytop = subgrid->extract_region (0, 0, 0, dim-1);
mybot = subgrid->extract_region (hum_rows-1, 0, num_rows-1, dim-1);

if (north != 0)
north->put_bot (mytop);
if (south != 0)

south->put_top (mybot);

/I compute on the subgrid -- update_grid computes 5-pt stencil for each row

update_grid (num_rows);
rtf (0);
return;

Figure 5.7: Sten_worker implementation
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Chapter 6 Simulation Study

This chapter presents the results of two simulation studies — a performance study
of the partitioning method, and a study into wide-area parallel processing. A simulator for
Prophet calledProphesyhas been developed to perform the simulation studieshaMe
performed a simulation study into the expected performance of the partitioning method to
show that it has applicability to a variety of problem types ifediht metasystems. The
performance results indicate that the partitioning method has excellent average-case
behavior over a wide range of problem granularities and application communication
topologies. These results complement the experimental results in Chapter 7. The wide-
area parallel processing study provides some insight into the granularity requirements for

wide-area parallel processing. We discuss each study in turn.

6.1 Prophesy

Prophesy is a simulation system for Prophet that supports the simulation of syn-
thetic metasystems and synthetic data parallel problems. It contains 1400 lines of C++
code. Prophesy is built using the Prophet kernel, but replaces the resource and program
inputs (circled boxes) with synthetically generated information, see Figure 6.1. Prophesy
also computes the optimal solution and generates a comparison with the heuristic solution.

To study the performance of the partitioning method, we simulated the partitioning
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of data parallel computations in three classes of metasystems, M1, M2 and M3. The objec-
tive is to determine how close the partitioning heuristic comes within optimal on average.
M1 contains a collection of hosts and assumes an unequal communication capacity among
clusters. An example of M1 would be a cluster of ethernet-connected workstations con-

nected to a cluster of FDDI-connected workstations. M2 is a mixed environment of single

Task and data decomposition
Prophet Placement

kernel p Evaluate
Solution

Resource
Status

Problem_
Information

Resource DB

Figure 6.1: Prophesy

CPU hosts and mesh-connected multicomputers and assumes an unequal communication
capacity among clusters. An example of M2 would be a cluster of ethernet-connected
workstations and an Intel Paragon. M3 contains a collection of hosts and assumes an equal
communication capacity among clusters. An example of M3 would be clusters of worksta-
tions all connected by ethernet. These environmerfey dif the form of the communica-

tion cost functions.

A metasystem environment is determined by generating processor clusters and the
information described in Figure 6.2. All generated parameters are uniformly distributed
over a fixed range. The ranges are limited to values that have been empirically observed or
have been published elsewhere. For example, a latency constant is restricted to be in the
millisecond range on an ethernet-based cluster, while a bandwidth constant is restricted to
be in the microsecond range. The latency and bandwidth constants apply to parameters for
the communication, routeand conversion cost functions. The value ranges for the router

cost functions are based on a local-area environment. The router penalty increases the
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metasystem parameters

num_clusters = [1 .. 5]
num_processors_per_cluster = [1 .. 10]
processor_rate = [1 .. 100] mflops
interconnect = [mesh, bus]
latency_constant = [0 .. 1] msec
bandwidth_constant = [.1 .. 1Qkec/byte
conversion_constant = [0 .. iec/byte

Figure 6.2: Simulation parameters (environments)

latency and degrades the bandwidth for wider-area configurations. The number of clusters
and processors also reflect reasonable values for a local-area environment. Due to the
length of the simulation runs we have opted for a modest cluster size though the results
obtained for a few larger systems (on the order of 100 processors per cluster) are in agree-
ment with the results we present.

We simulated applications with the following communication topologiag; 1-

D, andtree For each topologythe communication cost functions are determined by gen-
erating the cost constants in (Eq.3.3), £g.£,, C3 andcy. For bus interconnectgis lin-

ear in the number of processors for all topologies. For the mesh-based multicomgputer
log(p) for thetree topology and nearly-independenof p for the 1-D andring topology

due to a dilation one embedding (i.e., intra-cluster placement) dfEhandring topol-

ogy onto the mesh. The total communication dggt,niS computed by the functions in
(Eq.3.7).

A problem instance is determined by generating the callback information specified
in Chapter 3. All generated parameters are uniformly distributed over a fixed range, see
Figure 6.3. The problem instance contains a communication phase and a computation
phase. A problem instance may have overlap between these two phases. The values for
comp_complexityand comm_complexitare generated to simulate a range of problem

granularities. ® keep things simple, tHeDU independent term fartomp_complexitis 0

1. This is achieved by setting cost constagtsnt ¢ very small.
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and thePDU dependent term faromm_complexitis 0. That is, the amount of time spent
in computation depends only on the numbePDBlUs assigned to each workend the
amount of data communicated is independent of the numb@Dbtk assigned to a

worker. These restrictions may be easily relaxed.

problem parameters

top = [tree, ring, 1-D]

NumPDUs = {1, 100, 500, 1000, 5000, 10000}
comm_complexity = [1 .. NumPDUs] bytes
arch_cost =[.01 .. I}sec/instruction
comp_complexity = [1 .. 10000] instructions
overlap = [yes, no]

Figure 6.3: Simulation parameters (problems)

For each problem instance, a number of valuesdorm_complexitgn the inter-
val [1 ..numPDU$ are simulated. In real codes the message size normally depends on the
how the problem was decomposede Wimulate a problem sizeumPDUs for the fol-
lowing the values: 1, 100, 500, 1000, 5000, 10000.artle_cosis inversely proportional

to the peak processor rate.

6.2 Performance of Partitioning Method

We have applied Prophesy to a range of synthetic problem instances and metasys-
tem configurations. Wsimulate the partitioning of each problem instance in each metasys-
tem. Prophesy measures the predicted elapsed time achieved by the heuristic and compares
this to the elapsed time for optimal partitioning which is obtained by an exhaustive search
of the processor configuration spacee ¥imulated 50 metasystem environments in each
class (M1, M2, M3) and simulated 50 problem instances for each metasystem. For each
problem instance, we simulate the 6 problem sizeBlfonPDLU listed in Figure 6.3 and
3 message sizes foomm_complexitior a total of 18 runs per problem instance. The total
number of problems simulated is 900 (50 x 18) and the total number of runs is 45,000 (50

metasystems x 900) pexrperimentThe data for each experiment presented in the subse-
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guent tables is the average of 45,000 runs. Each problem instance contains a computation
and communication phase withiag, 1-D, ortreetopology that may or may not be over-
lapped with the computation phase. The use of overlap dedetif communication topol-

ogies change the form of the objective functign Since the performance of the
partitioning method depends on the naturg&.p$§imulation is a viable way to study the per-
formance of the method.

Prophesy computes a processor configuration and data domain decomposition for
the given problem instance in the synthetic metasystem environment. The quality of the
results are determined by computifigfor this configuration using the Prophet kernel,
T.ProPet \we compare this value to the value for the optifaall P2 The optimal is
obtained by determining the processor configuration and data domain decomposition that
produces a minimum value fog. Under the assumptions detailed in Section 4.1.2, the pro-
cessor configuration and data domain decomposition that produces a mifjimiinalso
produce a minimum total elapsed time. The experimental results given in Chapter 7 confirm
that T, is an excellent predictor for total elapsed time. For a selected processor configura-
tion, an optimal data domain decomposition is one in which the processors are load bal-
anced under the assumption of synchronous communication. Conseqtrentiptimal
solution need not explore all possible assignmer®Pdfs to processors. Instead, the opti-
mal solution is determined by an exhaustive search of the processor configuration space
with the data domain decomposition computed for each configuration by (Eq.4.5).

The optimal solution also considers all possible assignments of tasks to processor
clusters (intecluster placement). The best intra-cluster placement is assumed to be pro-
vided by the generatef},,, That is, the synthetic cdefients generated fof.oy,mare
assumed to reflect the best intra-cluster placement strategy.

The simulation results are validated by the experimental results in Chapter 7. In
Chapter 7 we show that the predicted valu&.tiiat guides the partitioning method agrees

with the observed value fdf. for a suite of real data parallel codes and That an excel-
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lent predictor for total elapsed tinfByapsed

The simulation results are first broken down by problem type, overlapped and non-
overlapped. Next the results are divided by metasystem type (M1, M2, or i3 ¥ach
metasystem type, the results are further broken down by communication topoglso
simulated environments that required routing and conversion and those that did not. For all
experiments we ran the partitioning method with and without cluster ordering. Although
cluster ordering adds overhead, it improves the performance of the partitioning method sig-
nificantly. We show the performance with and without cluster ordering to highlight the
importance of this scheme.

In this first set of experiments we consider problems that do not have computation
overlapped with communication. a\present the percentage of experiments that were
within 5% and 10% of optimal respectivelsee able 6.1-able 6.3. @ consider an
elapsed time fof; within 10% of optimal to be acceptably good performance. The results
indicate that this is achieved over 90% of the time. Each value in the table is the average of

45,000 distinct runs.

with cluster without cluster with cluster without cluster
ordering ordering ordering ordering
topology | % of optimal % of optimal topology | % of optimal % of optimal
5% 10% 5% 10% 5% 10% 5% 10%
ring 98.6 99.5 63.9 70.7 ring 98.7 99.6 61.4 67.7
1-D 89.3 94.4 72.7 81.2 1-D 88.9 94.6 63.9 70.7
tree 91.6 95.3 61.5 68.8 tree 92.6 95.9 52.5 59.7
a) No router/conversion b) router/conversion

Table 6.1: Simulation results for M1, hosts with unequal communication
capacity. Table a) contains the simulation of metasystems with router anc
conversion costs included. Table b) does not simulate these costs.

It is also important to point out that 100% of the runs were within 40% of optimal.
That is, the worst performance we observed was 40% greater than optimal and this occurred
very rarely. We also see that the inclusion of router and conversion overhead does not sig-

nificantly perturb the performance of the algorithm. This validates our cluster ordering
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with cluster without cluster with cluster without cluster
ordering ordering ordering ordering
topology | % of optimal % of optimal topology | % of optimal % of optimal
5% 10% 5% 10% 5% 10% 5% 10%
ring 97.7 | 993 | 67.5 | 76.4 | [ring 988 | 99.7 | 643 | 711
1-D 914 95.0 69.9 76.5 1-D 92.3 96.4 65.9 73.0
tree 89.2 91.7 63.3 70.2 tree 88.1 91.6 63.5 71.1
a) No router/conversion b) router/conversion
Table 6.2: Simulation results for M2, workstations and multicomputers.
Table a) contains the simulation of metasystems with router and conversi
costs included. Table b) does not simulate these costs.
with cluster without cluster with cluster without cluster
ordering ordering ordering ordering
topology | % of optimal % of optimal topology | % of optimal % of optimal
5% 10% | 5% 10% 5% 10% | 5% 10%
ring 98.6 98.7 59.2 66.8 ring 98.8 99.6 54.5 59.5
1-D 94.4 98.4 59.1 66.7 1-D 92.7 97.6 54.0 61.8
tree 92.8 96.2 58.9 63.8 tree 93.1 96.8 58.9 63.8

a) No router/conversion b) router/conversion

Table 6.3: Simulation results for M3, hosts with equal communication
capacity. Table a) contains the simulation of metasystems with router ol
conversion costs included. Table b) does not simulate these costs.

strategy based of}, for local-area metasystems. Cluster ordering considers the clusters in
isolation and includes only communication costs within the clugfeoring router and
conversion costs between clusters. The benefit obtained by the use of cluster ordering is
substantial, a 40% improvement — from 69% to 97% (fall within 10% of optimal) approx-
imately. The performance results differ slightly between the different topologies with per-
formance higher for theng than for either th&-D ortreetopologies. The reason is tiiat

is a more complex function for tieD andtreetopology due to the presencenashxin the
formulation forT.,mm See (Eq.3.7), and Prophet is more prone to fall into local minima.

The best results are obtained for environment M3. The reason is that the clusters in
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M3 have equal communication capacity and the fastest processors will also have the fastest
communication. Cluster ordering does not require the tratdetiveen clusters that may
offer better computational performance with clusters that mfay bétter communication
performance. Consequenttitle method is less likely to fall into local minima as discussed
in Chapter 4.

In the second set of results we consider problems that have computation overlapped
with communication. W expect the quality of the results to fafi gifghtly due to the pres-

ence oimaxin the formulation foif., see (Eg.4.10). The results are presentedlneTls.4-

Table 6.6.

with cluster random cluster with cluster random cluster

ordering ordering ordering ordering
topology | % of optimal % of optimal topology | % of optimal % of optimal

5% 10% 5% 10% 5% 10% 5% 10%
ring 90.1 95.3 61.1 68.1 ring 90.9 94.2 62.9 68.7
1-D 83.5 88.2 53.7 59.5 1-D 83.6 88.7 63.8 70.5
tree 83.9 87.0 60.0 64.6 tree 85.2 89.1 66.0 70.4

a) No router/conversion b) router/conversion

Table 6.4: Simulation results for M1, hosts with unequal communication
capacity. Table a) contains the simulation of metasystems with router and
conversion costs included. Table b) does not simulate these costs.
(overlapped communication and computation).

The performance falls b$lightly for overlapped problems — about 85-90% of the
runs are within 10% of optimalolbring the performance up to the level obtained for prob-
lems without computation and communication overlap, we conjecture that a deeper explo-
ration of the processor configuration space is needed. Some results presented in Chapter 7
indicate that the Prophet runtime overhead ifigehtly small to make a more thorough
search feasible. This is the subject of future work. Over all environments and problem types
the average performance is within 10% of optimal 90% of the tinee cdvsider this

acceptable performance.

Also we simulated the most common environment for M1 and M2, a single work-
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a) No router/conversion

with cluster random cluster with cluster random cluster

ordering ordering ordering ordering
topology | % of optimal % of optimal topology | % of optimal % of optimal

5% 10% | 5% 10% 5% 10% | 5% 10%
ring 89.8 94.3 65.4 69.2 ring 91.7 95.5 51.0 55.6
1-D 85.7 89.7 61.9 64.5 1-D 82.5 86.7 53.4 57.5
tree 79.4 85.9 44.9 49.6 tree 80.1 85.8 61.5 66.2

b) router/conversion

Table 6.5: Simulation results for M2, workstations and multicomputers.
Table a) contains the simulation of metasystems with router and
conversion costs included. Table b) does not simulate these costs.
(overlapped communication and computation).

a) No router/conversion

with cluster random cluster with cluster random cluster

ordering ordering ordering ordering
topology | % of optimal % of optimal topology | % of optimal % of optimal

5% 10% 5% 10% 5% 10% 5% 10%
ring 94.3 97.7 67.1 75.7 ring 90.1 94.3 63.8 69.7
1-D 86.1 91.3 69.6 76.2 1-D 84.1 90.7 65.4 72.3
tree 87.8 90.7 74.6 78.8 tree 87.6 90.1 73.8 78.0

b) router/conversion

Table 6.6: Simulation results for M3, hosts with equal communication

capacity. Table a) contains the simulation of metasystems with router an
conversion costs included. Table b) does not simulate these costs.
(overlapped communication and computation).

station cluster and multicomputer respectiv@lgese environments are homogeneous. In
the simulation of a single processor clustieere is no router or conversion overhead and
no need for cluster ordering. The results abl€ 6.7 indicate that the method handles this
common case exceptionally well for all problems. Optimal elapsed times are always
obtained. This agrees with the experimental results.

We have showed that on average the method performs quite well and local minima

are avoided. In particular for the common cases of a single processor cluster or equal com-
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non-overlap overlap non-overlap overlap
topology | % of optimal % of optimal topology | % of optimal % of optimal
5% 10% | 5% 10% 5% 10% | 5% 10%
ring 100.0 | 100.0| 100.0 100.0 | ring 100.0 | 100.0| 100.0 100.¢
1-D 100.0 | 100.0| 100.0f 100.0 | 1-D 100.0 | 100.0| 100.0f 100.¢
tree 100.0 | 100.0| 100.0 100.0 [ tree 100.0 | 100.0| 100.0 100.¢
a) M1 - single cluster b) M2 - single multicomputer

Table 6.7: Simulation results for homogeneous environment
munication capacitythe results are extremely good for all problems. The results are also
quite good for all environments if computation and communication are not overlapped. If
computation and communication are overlapped, performance faiigbitly. We have
also observed that the worst-case deviation from optimal is around 40% for a particular
problem and this occurs very rar€hhe likelihood of local minima is substantially reduced
by cluster ordering and phase 2 of the partitioning method. The experimental results further

substantiate that the method yields excellent performance in a practical setting.

6.3 Wide-area Parallel Processing Study

The simulation results presented here and the experimental results presented in the
next chapter confirm that local-area parallel processing provides a performance benefit in
many instances. The next question is whether wide-area parallel processing can be
expected to deliver acceptable performancehdlp answer this question we performed a

simulation study of 6 network environments:

* DW (department-wide): ethernet, single router

* CW (campus-wide): ethernet, some fiber, multiple routers

« MW (metropolitan-wided: multiple routers, gateways

« NW (nation-wide§: multiple gateways

* HBDW (high-bandwidth department-wide): ATM, GIGAswitch
* HBMW (high-bandwidth metropolitan-wide): Casa

2. Similar to NW, but better communication performance (measured as UVa to Sandia)
3. Measured as UVa to JPL
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The first four oganizations reflect todag/widespread network technology and the latter
two configurations reflect the new network technology that is beginning to come on-line.
We model all of these environments by adjusting the routing latency and bandwidth penalty

appropriately, see Table 6.8.

Network

Configuration Routing Cost
Latency Bandwidth
(msec) (msec/byte)

DW 0-1 .001

Ccw 1-10 .01

MW 10-100 A

NW 100-1000 1

HBDW 0-1 .0001

HBMW 10-100 .0001

Table 6.8: Network environments

We have observed experimentally that there is approximately an order of magnitude deg-
radation in communication capacity from DWCW - MW - NW. The newer technol-

ogies HBDW and HBMW improve the bandwidth capacity but typically do not reduce the
latency.

In our simulation studyve have simulated workstation clusters and assume a single
cluster per “site”. The per site cluster size ranges from 1 to 100 processors and the number
of clusters (or sites) is 10.8\assume that the routing penalty betwaléesites reflects the
ranges in @ble 6.8. A more realistic environment would have non-uniform costs between
different sites, but this study is aimed at understanding the impact of network distribution
so this simplifying assumption does not invalidate the results. An implementation of sched-
uling heuristics for wide-area environments will need to handle non-uniformity of routing
costs.

We are simulating the scheduling of a single data parallel computation across mul-
tiple sites as opposed to choosing the best site. This distinction was discussed in Section

3.1.3. An important issue that we do not address here is how state information can be col-
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lected in a timely manner as part of resource availabgguming such information could

be collected in a timely manneave are interested in whether wide-area parallel processing
is feasible. W& consider wide-area parallel processing to be feasible if there is a perfor-
mance advantage to using remote sites.

We use the partitioning heuristic for these experiments since we have already shown
it achieves performance within 10% of optimal on average and it is much faster than opti-
mal. We simulate problems with d&rent communication topologies containing a single
computation and communication phase that may or may not have computation and com-
munication overlapped. The problems also reflect a wide range of granularities.

To see if wide-area processing provides an advantage, we compute the average
number of clusters (sites) that were selected to solve the problem. If this value is close to
1, then a single local site is adequate and wide-area parallel processing would not appear to
be profitable. However it still may be the case that a remote site may be better for the prob-
lem than a local site. On the other hand, if this value is greater than 1, then wide-area par-
allel processing may be profitable. Clearly this value depends on problem characteristics,
the most important of which is granularitye have defined 5 granularity ranges as shown

in Table 6.9. These ranges reflect the amount of computatid?Di¢per cycle.

Range Number of Instructions x 1000
A 1-10

B 10-100

C 100-1000

D 1000-10000

E 10000-100000

Table 6.9: Granularity ranges

In Figure 6.4 we present the average results over all simulated problemltfpes (
ring, andtree topologies, overlapped and non-overlapped) for the range of granularities
with respect to the network environment. Each point on the graph is the average of 45,000
experimental runs as before. The results indicate that as the distribution becomes wider

area, the impact of network distribution on site selection becomes more pronounced. How-
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ever itis also clear that as the problem granularity increases, wide-area parallel processing

becomes more attractive.
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Figure 6.4: Sites vs granularity

These results indicate that there ia a point where wide-area parallel processing may
become feasible. ¥performed a study to determine the minimum granularity require-
ments for problems in these environments. These experiments were designed to provide
some insight into what problem sizes might be suitable for tfereiit environments. We
are interested in ord@f-magnitude values for the minimum granularitye define three

granularity values of interesin(= 10 clusters):

* MIN_SITES €& 2 clusters)
* MID_SITES & m/2 clusters)
* MAX_SITES & m clusters)

MIN_SITES is the granularity at which it becomes profitable to use remote sites,
MID_SITES is the granularity at which we are utilizing 50% of the sites, and MAX_SITES
is the granularity at which we are utilizing 100% of the sites. The latter two values depend

on the chosen value nfand are included to show that their is a point where wide-area par-



105

allel processing may become very attractive. For these experiments we use the same prob-
lem profile as above. Inable 6.10 we show the results obtained for MIN_SITES,
MID_SITES, and MAX_SITES in the different network environments (F is the next order
of magnitude beyond E). In some cases we show a range such as A-B which means that the
granularity lies between the A and B ranges.

The results show that there is a point where wide-area parallel processing can be prof-
itable. We also see an order of magnituddedénce for granularity requirements for DW
CW, MW, and NW on average for MIN_SITES and MID_SITES. For MAX_SITES there

is not much distinction — very large problems are required in all environments.

Granularity value Granularity Range

HBDW | DW | CW |HBMW |[MW |NW
MIN_SITES A A-B |B B B-C | C-D
MID_SITES B-C C C-D | C-D D D-E
MAX_SITES E E E E-F F F

Table 6.10: Granularity requirements

In this chapter we have shown that the partitioning method has excellent average-
case performance over a wide range of problem types and metasystem environments. Per-
formance within 10% of optimal can be expected in the vast majority of cases. In the com-
mon environment of a single homogeneous cluster method always achieved optimal
finishing time. These results are confirmed by the experimental results presented in the
next chapterA feasibility study into wide-area parallel processing also indicated that

problems of sufficient granularity may benefit by wide-area distribution.
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Chapter 7 Experimental Results

This chapter presents the experimental results that have been obtained for a suite
of data parallel computations. These problems have been run in an experimental heteroge-
neous workstation-based environment. We show that partitioning and placement may pro-
vide a significant performance benefit, while Prophet overhead and the costs of
heterogeneity, routing and data conversion, are tolerable. The benefits achieved by the use
of heterogeneous processors can hkgeldrpartitioning and placement are done carefully
We describe the environment, the codes in the test suite and the experimental results

obtained for each code.

7.1 Experimental Heterogeneous Environment

The experimental heterogeneous environment is a local-area ethernet-connected
network of workstations. The environment contains three processor cl@steositains 6
SGI Indigo’s (based on the MIPS R4000),contains 8 Sun Sparcstation 2’s, &xton-
tains 8 Sun4 IPG'all joined by a router as shown in Figure 7.1. Communication between
all machines is provided by MMPS [38], a reliable message-passing system based on UDP
Fortunatelythere are no endian or data formateténces for standard data types between
these machines and no explicit conversion is needechate implemented a set of syn-

thetic endian conversion routines to explore this overhead.
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Figure 7.1: Experimental heterogeneous environment

Processor clusters in this environment exhibit heterogeneity in both computation
and communication capacityhe SGIs are significantly faster than the Spasc@hd the
IPC’s, and the Sparc2are faster than the IPCGh both integer and floating-point rates. The
processor specifications and memory configuration are giveahble 7.1. The MMPS

communication performance for the S&dind Sparc®’are similar and both are faster than

the IPC's.

Clock Speed Memory
Processor | (Mhz) Peak Mflops Peak Mips | (Mbytes)
SGl 100 16 88 32
Sparc2 40 4 29 32
IPC 25 2 17 48

Table 7.1: Processor characteristics

All experimentation in this environment was done when the network and processors
were lightly loaded. Thus, the cost functions for communication, routing, and conversion,
in addition to thearch_costspecification presented in the next section, have been con-
structed under this assumption. The impact of processor load on both computation and
communication costs is the subject of future work. In the presence of modest processor
load, which we have defined to be a run queue length of around .33, the small inaccuracy
in cost estimation did not adversely impact the quality of the results. Once a processor
reached a load above this value it become a bottleneck and the accuracy of the method fell

outside of acceptable bounds (10%). This is not surprising since the completion time for a
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SPMD computation will be limited by the slowest work&ke discuss some strategies for

dealing with load in the final chapter.

7.2 Execution Results

We present execution results for the suite of data parallel applications in the work-
station-based heterogeneous environment. The results show that the scheduling frame-
work can be successfully applied to real data parallel computations. A number of practical
results are established: (1) partitioning and placement may be automated, (2) overhead is
tolerable, (3) results are accurate and predictable and (4) using heterogeneous processors
may provide a significant performance benefie $fow that heterogeneityagploitedin
processor selection and data domain decomposition to gain performance, and that the pri-
mary cost of heterogenejtgonversion, can be toleratede\&lso show that a secondary
cost due to the distributed nature of heterogeneous resources, routing, can also be tolerated

in local-area environments.

Each application is run on a range of problem instances spanning the spectrum from
small- to lage-grain. The results that we report are the average obtained by running each
problem instance 5 times when the network and processors were lightly loaded. Some vari-
ance was observed when processor load increased or router spikes occurred. This was

expected due to the amount of non-determinism inherent in network-based computing.

The metric for solution quality is elapsed time. The elapsed time is the wall-clock
execution time after the workers are created and the data is distributed. The accuracy of
Prophet is established by comparing the predi€ted the actual measurdg. We show
that the predicted, agrees with the actu®} within 10%. This result validates the simula-
tion study which is based on an accurate estimafg.ofhe simulation study indicated
that the partitioning method produced results close to optimal for a given set of cost infor-
mation. This cost information was used to estinfate

We also establish that the Prophet runtime overhead is tolerable. The overhead pre-
sented is for a Sparc2 procesddre main program makes the Prophet calls and is run on
a Sparc2. The overhead would be less on an SGI and more on an IPC. The point is to show

the magnitude of the overhead term. Few optimizations have been performed within
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Prophet, and these overhead values should be viewed as upper bounds. One type of opti-
mization is the parallelization of the partitioning method in both cluster ordering and in

searching the processor configuration space.

A number of comparisons are made to assess solution quWgitgompare the per-
formance obtained by Prophet to the best performance that could be obtained if a single
cluster of homogeneous processors is used. This is determined by running the code for all
possible number of processors within the individual processor clusters until the best was
found. For small problems that require only processors in a single processor, cluster
Prophet always finds the best number of processors. This result was confirmed in simula-
tion. Small problems also highlight the importance of cluster ordering. Significant perfor-
mance benefits are realized by choosing the best processor. élasiarger problems we
show that there is a benefit to using heterogeneous processors in multiple processor clus-
ters even in the presence of conversion and routing overheash®Ww that performance
is superior to the best single cluster performance. However to exploit heterogeneous pro-
cessors in multiple clusters, partitioning and placement must be done cak&®llyso
provide the best sequential time on an SGI (the fastest processor type) whitdresdif

from the time taken by the parallel code on a single processor.

Another comparison is made to determine the benefit of computing a heteroge-
neous data domain decomposition. For problem instances that use heterogeneous proces-
sors, we compare with the performance that is obtained when this problem is run over the
same set of processors but with an equal decomposition of the data domain across all
workers. V¢ show that an equal data domain decomposition results in a load imbalance

that may be substantial.

Although there is no need for conversion in this heterogeneous environment, con-
version is an overhead that will impact communication cost in general. The most common
form of conversion is a byte-swap endian conversion. Another comparison is made to
determine the impact of byte-swap endian conversianh#e implemented an endian
conversion function for each communicated data type that is used in the suite of data par-
allel codes. The conversion functions are enabled by setting compile-time flags. When
conversion is enabled, each message is passed to the appropriate conversion routine for

processing, either on the sending or receiving side.cvnpare performance with and
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without conversion and the results indicate that even in the presence of conversion, the
selected heterogeneous processor configuration out-performs the best single processor
cluster, and that the conversion overhead is tolerable.

Finally a comparison is made to show benefit of automated placement. The vast
majority of runtime scheduling systems (see Section 2.1.2) do not use any topology infor-
mation to help guide task placement. The co-scheduling approach that Prophet has imple-
mented can lead to much improved placement decisions. Co-scheduling collectively
assigns a set of communicating workers to processorshdw the benefit of co-schedul-
ing, we compare the performance obtained when co-scheduling is enabled to when it is
not. When it is not, we use a random placement strategy that guarantees a single worker
per processor. A number of fdifent random seeds are used for each experiment and aver-
age results presented’he random strategy is one of the schemes employed by the under-
lying Mentat scheduler [37], and is based on the load sharing model of Eager and
Lazowska [21].

Co-scheduling reduces communication overhead in two ways that have been dis-
cussed in Section 4.2. Howey#@sr network-based clusters as opposed to multicomyputer
based clusters, only one benefit is possible,-titester placement may reduce the num-
ber of messages that cross the roltds show that for communication topologies with
locality (e.g.,1-D, andtree), there is a performance benefit that can be attributed to a
reduced number of messages that cross the router under co-scheduling. Consequently
only problem instances that use heterogeneous processors and communicate across the

router will benefit by co-scheduling in the workstation network environment.

7.3 Data Parallel Applications

We have implemented a suite of data parallel computations that test the applicability
of Prophet to real codes: Gaussian elimination with partial pivoting, a canonical five-point
stencil code, a lge-scale finite-element code, and a gene-sequence comparison code. The
latter two applications are significant codes that solve real problems in computational phys-

ics and biology respectively.

1. A single random run could simply luck into the best placement, but in general it will not.
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All of these codes are structured in a style that is compatible with the SPMD com-
putation model discussed in Chapter 3. Each code has a main program that initiates the data
parallel computation, and a worker program that is appropriately parameterized to operate
on a portion of the data domain. In the Mentat-Legion implementation the main program
and worker program are implemented as Mentat objects. The more complex codes use
additional Mentat objects that are discussed briefly in the subsequent sections.

The main program implementation is structured in the following way for all codes:

(1) the domain obiject is created, (2) a call to Prophet is made from the main program to
determine partitioning and placement, (3) the workers are created and placed on the
selected processors, (4) the data domain is decomposed and passed to the workers, and (5)
the computation is initiated. It is assumed that Sparc (both the SpancRIPCS are Sparc
processors) and SGI binaries have been compiled for each work?esmbat Prophet can

select any processor in the heterogeneous environment for worker placement.

The performance results we present are based on elapsed time. This provides an
unfiltered measure of the quality of the results and #cgrit to show the performance
benefit that can be obtained with automated scheduling. Other metrics such as heteroge-

neous speedup [20] have also been proposed.

7.3.1 Gaussian Elimination with Partial Pivoting

Gaussian elimination with partial pivoting (GE) is perhaps the most well-known
direct method for solving a linear system of equations of the fAxw, b, whereA is a
NXN coefficient matrixp is a right-hand-side vectandx is the solution vectoiGE is a
floating-point numeric computation that contains two computations, forward reduction
and backsubstitution. The forward reduction phase reduces the matrix to afriamger
lar form and is dominant with @E’) complexity while backsubstitution solves the upper
triangular system and has NBj complexity The details of the GE algorithm may be
found in [28].

2. Mentat-Legion will automatically compile binaries if they do not exist.
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In the parallel implementation of GE tiRDU is defined to be a rquand the
implementation performs a row-cyclic decomposition of the matrix, see Figure 7.2. Since
the amount of computation performed on a row decreases for rows further down in the

matrix, a cyclic interleaving of rows gives better load balance.

worker 0
worker 1
worker 2
worker 3
worker 0
worker 1
worker 2
worker 3

Figure 7.2: Cyclic decomposition of matrix across 4 workers

The implementation of GE arranges the workers in a broadcast topology —by con-
vention worker 0O is the mastdduring partial pivoting all workers broadcast their candi-
date rows to the mastathe master then determines the pivot row and broadcasts the
selected pivot back to the workers, see Figure 7.3. The absence of locality in the broadcast
topology means that placement is straightforward — the master is assigned to the cluster
with the lagest number of workers to minimize router fiafOnce a worker receives the
current pivot it reduces the rows that it has been assigned. Forward reduction contains two
phases, a broadcast communication phase for partial pivoting, and a computation phase
where workers reduce their portion of the matrix. These phases are executed itéMatively
1 times. Backsubstitution is performed sequentially once forward reduction has com-
pleted. The times we report for GE are for the forward reduction phase to show the accu-

racy of the cost prediction for this computation.

GE has the property that the amount of communication and computation change
from cycle to cycle. In this case we must provide average values foortiqe_complexity
andcomm_complexitgallbacks as discussed in Section 3.2.1. The callbacks for the domi-
nant phases of GE (forward reduction) are given in Figure 7.4. On average a pivot row of

lengthN/2 is communicated and the average instruction count is obtained by taking the
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Figure 7.3: Broadcast topology for partial pivoting

master

total instruction count [28] and dividing by the numberP@Us (N) and cyclesN-1).

Recall that therch_costis the problem-specific and architecture-dependent cost of com-
puting on @PDU (or row) in msec/instructioh We show only th&DU dependent compo-

nent of the cost. These costs were determined by benchmarking GE on all of the machine
types. On the SGI GE has the property thdedht problems sizes resulted infeliént

values forarch_costdue to cache and memoryesfts. Since the callbacks can be arbitrary
functions of problem parameters it is very easy to specify this type of dependence. The
three values presented in Figure 7.4 refer to these cadés 512, 512 NN < 1024, and

N > 1024 respectively.

topology[l broadcast
comm_complexityl 4(N/2) (bytes)
numPDUSs N
comp_complexityd (2/3N*+N(N-1))/ N(N-1)
O (2NA)/(3N-3) (fp ops)
arch_cost SGI: =.00013, .0001, .00015
0 Sparc2: =.000319
0O IPC: =.0006

Figure 7.4: Callbacks for Gaussian elimination
GE is a basic kernel computation that poses a number of challenges. First, the
amount of computation and communication vary from iteration to iteration, and the call-
backs must reflect the average computation and communication per cycle. Despite the

apparent inaccuracy of these callbacks, they lead to accurate cost prediction. Second, GE

3. In Chapter 3 it was described as usec/instruction but the implementation uses msec.
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is a very tightly-coupled parallel computation that has a large amount of global communi-
cation. In fact, the dominant communication topology is a broadcast and the amount of
communication scales linearly with the problem size and the number of processors. A glo-
bal communication topology limits scalability on the network due to the limited communi-
cation bandwidth.

We ran GE on a range of matrix sizék: 256, 512, 768, 1024, and 2048, from
small- to lage-grained, seeable 7.2. The configuration is the number of processors in each
cluster that were chosen and the PDUs are the numP&dd assigned to each processor
(or worker) in a particular clustdgtime is the elapsed time taken by the problem instance.
The clusters are order€ (SGI), C, (Sparc2), andC; (IPC) —this cluster ordering was
determined by Prophet to be the best for all problem instances in the test suite.

Notice that as the problem size increases more processors are used as expected, but
there is a hard limit. Only processorsGn were efectively used due to the poor scaling
properties of GE on the network. There was no benefit to considering additional processors
(i.e., slower Sparcg) due to the increase in communication overhead relative to the benefit
of additional processors. It is likely though that thgést problemN=2048) would have

benefited from additional SGI's had they been available.

Problem Etime T overhead
Size Configuration PDUs (msec) (msec/cycle) (msec)
C, |C |C | A Ay | Ag predicted | actual
256 1 0 0 256 0 0 1504 5.7 5.9 6.4
512 2 0 0 256 0 0 8891 16.2 174 6.8
768 3 0 0 256 0 0 21783 26.3 284 6.9
1024 4 0 0 256 0 0 40817 37.9 39.9 6.9
2048 6 0 0 *341| O 0 259150 118.4 126.6 7.3

Table 7.2: Experimental results for GE. The PDUs refer to the number of
rows of the matrix. The entry marked * is rounded. The method gives two
processors 342 PDUs, and the remaining four receive 341 (total is 2048)

The results also indicate that the method was accurate — the prellietgieed
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with the measured, often within 5% and always within 10%. This gives evidence that the
use of callbacks that reflect average values canfeetigé. This is important because it
means that the approach is not necessarily limited to problems that are extremely regular in
structure. Also observe that the Prophet overhead is tolerable for GE and easily amortized
as the problem size increasesNA256 Prophet adds .4% overhead, and the overhead per-
centage drops off rapidly for large problemsN&22048 Prophet adds .002% overhead.

We also present the best sequential times for GRliteT7.3. Since the SGI is the
fastest processowe present the times for an SGI1.Mt2048 the performance fallsfafue
to memory and cachingfetts. The best sequential times ardedént from the perfor-
mance obtained when the parallel code is run on one proc&besosequential code will
outperform the single processor parallel code. Since Prophet is concerned with scheduling

the parallel code we compare Prophet execution times for the parallel code only.

Problem Etime
Size (msec)
256 1743
512 13900
768 50524
1024 123053
2048 1089355

Table 7.3: Best sequential times for GE on an SGI

We have shown that the method is accurate and has small overhead, and we now
show that the solution quality is quite good. Although Prophet was unable to exploit heter-
ogeneous processors for GE, the importance of processor selection in choosing processors
from C, first, and then in choosing the correct number of processors is demonstrated in
Table 7.4.P;, P, andP5 are the best number of S§I'Sparc, and IPG respectively
located by trying all possible numbers of these processors. The reported elapsed time for
the best number of processors witlip(the SGI cluster) agrees with the predicted config-
uration determined by Prophet iaflle 7.2. Notice that more IPCand Sparc2’s are used

relative to the SG$ since they are slower and hence more balanced with respect to com-
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munication. But the elapsed times indicate that the use of fewer fasterl&als to supe-
rior performance. There is no predictable pattern as to how much the performance will
increase, it depends on the problem size, how many processors were used, and the compu-

tation and communication capabilities of the processors. What can be said is that the per-

formance increase is substantial.

% Benefit of Prophet

Best P, and Best B, and Best P;and configuration with
Problem | Elapsed Time | Elapsed Time | Elapsed Time | respect to best single
Size (msec) (msec) (msec) cluster performance

P, |Etime | B |Etme [ B |Etme | G |G, Cs
256 1 1504 1 3774 2 6350 -~ 151%  322%
512 2 8891 1 11957 5 27134 35% 205%
768 3 21783 6 37506 6 64735 - 84% 1979
1024 4 40817 7 70485 8 133604 -t 669 227%
2048 6 259150, 8 525610 8 858102 -+ 1026  231%

Table 7.4: Best performance for GE

GE is also able to tolerate endian conversion fairly easily able 7.5. All workers
convert their candidate pivot before sending to the master worker during partial pivoting.
This allows the workers to perform conversions in parallel. Conversion increases the per

cycle elapsed time by a few percentN&t512, we observe a lger increase of 7% that we

%

Problem Etime T increase
Size Configuration PDUs (msec) (msec/cycle) in T
C, |G |C [A A, | Ag predicted| actual

256 1 0 0 256 0 0 1504 5.7 5.9 -
512 2 0 0 256 0 0 9556 16.5 18.7 7%
768 3 0 0 256 0 0 21936 26.7 28.6 1%
1024 4 0 0 256 0 0| 41432 38.5 40.5 2%
2048 6 0 0 *341| O 0 265086 119.6 129.5 2%

Table 7.5: Impact of endian conversion for GE

speculate is due to cache effects. The addition of conversion does not significantly change

the overhead experienced by Prophet. Also observe that the estimafjoim Gable 7.5
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reflects the added conversion cost and is still very accurate.

7.3.2 Five-Point Stencil

The canonical stencil computation is a common data parallel problem that appears
in a number of dierent application areas including image processing and iterative PDE
solvers. The stencil computation is based on a underlying grid that arises from a spatial
decomposition of the problem. This decomposition is often a discrete representation of a
continuous domain. The values computed at the grid points and the relationship among
grid points are different for dérent problem domains. In a stencil computation the val-
ues computed at a grid point are dependent on the values computed at neighboring grid
points. In image processing problems the grid points refer to pixels of the image while for
PDEs the grid points refer to points in the spatial domain of the problem. For example, in
the PDE that arises from modeling heat flow along a metal plate, the grid points would

correspond to points on the surface of the plate.
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Figure 7.5: 2-D grid

Perhaps the simplest stencil computation is the five-point stencil that arises from
the discretization of PDEs in two variables, see Figure 7.5. Each point is coupledswith it’
north, south, east, and west neighbors as shown for the black point. Points on the bound-
ary require some type of boundary conditions to help resolve their value. During the sten-

cil computation values associated with these points are repeatedly updated until some
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convegence or stopping criteria is met. The size of the grid reflects the level of fidelity and
accuracy that is desired. A ¢gr grid has a finer resolution and is more accurate, but
requires additional computation and memory.

We have implemented a five-point stencil code (STEN) for an iterative PDE solver

that can be used to solve Laplacequation:u, +u, = 0 on the unit square. Using

yy
finite-differences a grid is imposed over this domain with the grid pojntslated in the
following way: Uiy =Ui_g Ui Y .t 4ui’j =0,i,j =1,...,N. A grid of
sizeN produces a linear system that contaiﬁequations correspondinglﬂ? interiorgrid
points. V& solve this system using Jacsbiiethod [28]. This algorithm has agaramount
of inherent parallelism and has much better scaling properties than does GE. Both GE and
STEN have a computation granularity that scales well with problenNsiiLel\l3 andN?
respectivelyBut the dominant communication pattern in STEN is a local nearest-neighbor
exchange of grid point values that has better scaling properties than the global communi-
cation required in GE.

In the parallel implementation of STEN tR®U is defined to be a row of &ixN
grid, and the workers are arranged ih-B communication topology as shown in Figure
3.8. Unlike GE, STEN has locality and placement assigns workers to processors in order to
preserve locality for th&-D topology Each worker receives a row-contiguous share of the
grid that is proportional to the power of the processor to which it has been assigned. The
same amount of computation is performed on each row of the grid (except the boundaries)
so a cyclic decomposition is unnecessahe workers execute a single dominant compu-
tation phase where the grid point values are updated according to the rule given above, fol-
lowed by a dominant communication phase where the workers exchange north and south
borders of the grid. These phases are executed iteratively until some stopping créeria. W
run STEN for 100 iterations and report the elapsed time.

STEN is a regular floating-point computation and the callbacks for STEN are given

in Figure 7.6. Notice that the callbacks are simpler than GE and this reflects the regular
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topologyll 1-D
comm_complexityl 4N (bytes)
numPDUs N
comp_complexitiyZl 5N (fp ops)
arch_costt SGI: =.0001, .00015
O Sparc2: =.000319, .00028
O IPC: =.0006, .00072

Figure 7.6: Callbacks for stencil

nature of this computation. The same amount of computation and communication are per-
formed in each iteration and the amount of computatiorPpay (or row) is the same
across the entire data domain. Again we show onlyRb& dependent portion of
arch_cost STEN has the property thatféifent problems sizes resulted infelient values
for arch_costdue to cache and memoryesfts. The values presented above refer to these
cases —N < 1024 andN > 1024 respectivelyJnlike GE, the Sparc2 and IPC also exhibited
a sensitivity to problem size.

Unlike GE, STEN has much better scaling properties and is able to exploit hetero-
geneous processors. The dominant communication topology of STENDsvehich is a
class of nearest-neighbor topologies that tend to scale well.

We ran STEN on a range of grid sizNs: 64, 128, 256, 512, 1024, and 2048, from
small- to lage-grained for 100 iterations. The number of iterations selected doefegot af
the per cycle elapsed times, but thgédairthe number of iterations the more easily Prophet
overhead may be amortized over the entire computation. The first set of results are given in
Table 7.6 and are qualitatively similar to the results for GE in Table 7.2.

Observe that the predict@gis still within 10% of the actudl.. Also note that for
larger problems the method computes a heterogeneous data domain decomposition with a
different number oPDUs assigned to workers on different processor types. The overhead
is a little higher than for GE since Prophet explores more processors and clusters. But the
overhead is still easily amortized. NE64 Prophet adds 4% overhead, and the overhead

percentage drops fofapidly for lage problems. AN=2048 Prophet adds .03% overhead.
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Problem Etime T overhead
Size Configuration PDUs (msec) (msec/cycle) (msec)
C, |G |C | A A, | Ag predicted| actual
64 1 0 0 64 0 0 200 2.1 2.0 7.3
128 3 0 0 *43 0 0 776 7.3 7.8 6.8
256 4 0 0 64 0 0 1620 16.1 16.3 7.2
512 6 8 0 *61 18| O 4390 38.4 43.9 10.5
1024 6 8 5 *110| 34| 18| 9635 95.1 96.4 10.2
2048 6 8 6 *178| 95| 36| 36558 346.8 365.6 10.7

Table 7.6: Experimental results for STEN. The PDUs refer to the number of
rows of the grid. The entry marked * is rounded as appropriate, e.g. for N=1Z
the method gives the processors 43, 43, and 42 PDUs respectively.

Prophet begins to use heterogeneous procesdgrbaP when the computation granular-
ity becomes laye enough to édet the communication overhead. Mt1024 the problem
is big enough to warrant the use of processors in all clusters.
We present the best sequential times for STEN on an SGI in Table 7.3 (shown also
for 100 iterations). Note that the best sequential tim&l#d28 is better than the best time
the parallel code can achieve. This is not surprising since the sequential code uses statically

allocated arrays while the parallel code uses dynamic data structures.

Problem Etime
Size (msec)
64 174
128 698
256 2924
512 13287
1024 51550
2048 282984

Table 7.7: Best sequential times for STEN on an SGI

To assess the performance of the selected configuration, we present the best elapsed
times observed when only a single cluster is used, able 7.8. The results show two
things. First, as with GE, Prophet chooses the best number of processors to use when a sin-
gle processor cluster is selected. Second, the use of heterogeneous processors provides a

performance benefit over the use of a single processor clusis5a2, 1024, and 2048.
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% Benefit of Prophet

Best P, and Best B, and Best and | configuration with
Problem | Elapsed Time | Elapsed Time | Elapsed Time | respect to best single
Size (msec) (msec) (msec) cluster performance

P, | Etime R | Etime B | Etme | G C, Cs
64 1 200 1 556 1 1161 --- 178% 481%
128 3 776 6 1186 8 2433 --- 53% 216%
256 4 1620 8 2333 8 4473 44% 176%
512 6 4840 8 6677 8 11377 9% 52% 159%
1024 6 12075 8 23046 8 47835 25% 139%  396P6
2048 6 61295 8 84032 8 218650 38% 122% 478%

Table 7.8: Best performance for STEN

A key element in achieving good performance is a heterogeneous data domain
decomposition that gives processor load balanceshdw the benefit of a heterogeneous
data domain decomposition, we show the results of running STEN across the heteroge-
neous configurations selected\&t512, 1024, and 2048, but with an equal decomposition
of the data domain in which all processors receive an equal shRdUsf see Table 7.9.

The load imbalance causes a performance degradation that is significagefprédanems,

as much as 89% for STEN. The precise performance impact of the imbalanfieul thf

predict and is problem-dependent, but load imbalance can cause a performance degradation
that can be severe. In fact, the load imbalance completely eliminates the benefit of using
heterogeneous processors and reduces fibetieé parallelism. For example, fdi=512,

1024, and 2048, it would have been better to use 63lh to use the selected configu-

ration with an equal data domain decomposition, see Table 7.8.

% Increase in
Problem Elapsed Time | Etime with respect
Size Configuration PDUs (msec) to balanced load
Ci |G |G A1 A | Ag
512 6 8 0 *36 36| O 5125 17%
1024 6 8 5 *54 54| 54| 18201 89%
2048 6 8 6 *¥102| 102 102 64903 7%

Table 7.9: Benefit of heterogeneous data domain decomposition for STEN
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Although the load imbalance results show that gelgrerformance degradation
occurs, we might expect an everglar degradation. For exampleN#2048 each IPC is
given 36 rows when load balanced vs. 102 rows when not load balanced, so we might
expect a performance degradation of over 100% due to an increase in computation time.
However the load imbalance only impacts the computation pdgmid so the increase in
Tcdepends on th&ompandTeommcomponents of . For example iffgoymwere 0 then we
would expect to see a degradation over 100%. However if computation and communication
costs were more balanced then we would expect a smaller degradation which is consistent
with the results we have obtained.

The use of multiple processor clustersNe512, 1024 and 2048 also indicates that
router overhead is worth paying for the gain in communication bandwidth and computation
cycles. V¢ also show that endian conversion is tolerated by STEN in a manner similar for
GE, see @ble 7.10. Conversions are performed when the workers receive border rows from
their north and south neighbors. The rows are single precision floating-point numbers. The
workers perform the endian conversions in parallel. Conversion adds very small overhead
and does not alter the use of heterogeneous processors. Prophet still chooses heterogeneous

processors even with a conversion penaltyl the resulting elapsed times are still superior

to the best single cluster elapsed times.

%
Problem Etime T increase
Size Configuration PDUs (msec) (msecl/cycle) in T

C, |G |C | A A, | Ag predicted| actual
64 1 0 0 64 0 0 200 2.1 2.0 -
128 3 0 0 *43 0 0 790 7.4 7.9 1%
256 4 0 0 64 0 0 1649 16.4 16.5 1%
512 6 8 0 *61 18| O 4579 39.3 45.8 4%
1024 6 8 5 *110| 34| 18 10386| 96.2 103.8 8%
2048 6 8 6 *178| 95| 36| 38882 349.3 388.3 6%

Table 7.10: Impact of endian conversion for STEN

Finally we show that the co-scheduling model of Prophet provides a significant per-
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formance improvement in the event that multiple processor clusters are selesteth W
STEN using the same configuration and data domain decomposition computed by Prophet
but with a random placement that assigns a single worker per processabkeé.X.

Under a random assignment workers intHe topology may have north and south neigh-

bors in other processor clusters. Thus, the amount of communication that crosses the router
will increase. The router congestion contributed to gelamcrease in elapsed time for the
problem instances. The co-scheduling results are problem-dependent and also depend on
the random assignments that were used. Nonetheless, we assert that co-scheduling is supe-

rior to the alternative of not using topology information and that the performance benefit

may be large.
% Increase in
Etime with
Problem Elapsed Time | respect to co-
Size Configuration PDUs (msec) scheduling
Cit |G |G |AL |Ar |Ag
512 6 8 0 61 18| O 6483 48%
1024 6 8 5 110 34| 18| 17842 76%
2048 6 8 6 178 95| 36| 63628 74%

Table 7.11: Benefit of co-scheduling for STEN

7.3.3 Finite-Element Computation

Finite-element methods have been widely used for problems in structural mechan-
ics and more recently in electromagnetic-scattering (EM) problems. Finite-elements can
effectively model the specific geometry of an object by unstructured gridding, see Figure
7.7. In the EM problem an electromagnetic wave illuminates a set of objects (scatterers)
and the electromagnetic field scattered from the objects is calculated. The ability of finite-
elements to accurately model the scattersurface makes the finite-element method
attractive for such problems.

We have implemented a 2D version of EM problem which solves for the electro-

magnetic fields in the vicinity of a set of scatterers, see Figure 7.8. The code solves a Helm-
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Figure 7.7: A Simple finite element mesh

holtz equation with an absorbing boundary condition defined on the bouhdiust
uniquely specifies the problem. A description of the 2D integral equation can be found in
[92]. A finite-element mesh is imposed on the problem and the 2D integral equation is
transformed into a system of linear equations. The problem domain is meshed with nodal
points that match the geometry of the objects and the electromagnetic field values are com-
puted at these points. In the 2D EM problem the node geometries are triangles or quadrilat-

erals.

Problem Boundary I

Figure 7.8: The general 2D EM scattering problem

The EM problem reduces to solving a linear system of equations of the form:
K Ld = F, whered is the vector fieldK is the stifness matrix, andF is the force

vector The computation dK andF depend on the nodal basis functions and are discussed
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in [92]. The elements &K andF are complex numbers. The finite-element (FEM) com-
putation is a lage-scale 3500-line code that contains two coupled data parallel computa-
tions that are executed sequentiadlysemblyandsolve In theassemblyhase the sfifiess

matrix K and the force vectdf are computed. The ditiless matrix that results is ¢,

very sparse, and symmetric. Fortunately it has small bandwidth relative to the size of the
matrix. Thesolvecomputation uses a bi-conjugate gradient solver BCG to solve the system.
BCG is known to have instability problems but we did not encounter this behavior in our
experiments. The stifess matrix is first preconditioned by diagonal scaling to improve
convergence.

In assemblythe finite-element mesh is decomposed across a set of workers that
compute contributions to the d$tiéss matrix and force vectdeachassemblyworker
receives a number of elements that are proportional to the power of the processor to which
it has been assigned. For each contained elemenfreessifmatrix contribution is com-
puted. Elements on the problem boundary contribute to the force vector as wellen
the stiffness matrix and a set of vectors computed by BCG are decomposed across a set of
solveworkers. These computations are coupled —ads=mblyworkers send their stif
ness matrix contributions directly to the appropr&eworkers, see Figure 7.9. Prophet
is first applied to thesolvephase in order to determine the placement and identity of the
solveworkers. This must be done first since éissemblywvorkers need to know where to
transmit their stihess matrix contributions. Once tbelveworkers are known, Prophet is
applied to theassemblyphase.

The assemblyphase is straightforward with a single dominant computation and
communication phase operating over the domain of finite-elements. Computingfthe stif
ness matrix is dominant over the force vecide finite-elements are randomized for load
balance (some element types require more computation) and distributecatsehably
workers. Eachassemblyworker computes a shifess matrix contribution for each con-

tained element and transmits a list of such values to the appremiregvorker. Because
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Problem Assembl

y
workers ([, ... [])
5 (1, .. [])

Figure 7.9: Parallel finite element computation

Prophet Is first applied to treolve phase, the identity ot th&lveworkers and matrix
decomposition are known to tlassemblyworkers.Assemblyis an iterative computation

with the workers computing and storing stiffness matrix values in a set of bins each corre-
sponding to aolveworker. At the end of each iteration gresemblyvorkers send the bin
contents to theolveworkers. The stihess matrix is never stored in a single place, it is kept
distributed across thelveworkers. The number of iterations is dependent on the number
of elements in the problem. Collectively the communication topology is a broadcast. The

callbacks for thassemblyphase are shown in Figure 7.10. The functions are more complex

topology] broadcast
comm_complexityl ((num_node%)/w)*k_entry_size*(num_elmts/cycles) (bytes)
numPDUS num_elmts
comp_complexity] 124(num_node3+30(num_nodes-1)*(num_elmts/cycles)
arch_costi SGI: =.00017

0 Sparc2: =.000335

0 IPC: =.00078

Figure 7.10: Callbacks for finite-element codassembly

than for GE or STEN and depend on several problem parameiersnodesthe number
of nodes per finite-elementum_elmtsthe number of elements in the problem domain,
cycles the number of iterations; the number o$olveworkers, and_entry_sizethe size

in bytes of a single sfiiess matrix value. These parameters are marshaled into PV and used
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by the appropriate callback functions. The problem instances that we have used contain either
3 point triangle or 9 point quadrilateral elements containing 3 and 9 nodes respethieely
callbacks forcomm_complexitgndcomp_complexitare computed as average values over

all elements and cycles much like GE.

Thesolvephase is much more complex. It highlights a limitation of the use of domi-
nant phases to guide partitioning and placeméithough solve has a dominant sparse
matrix-vector multiplication and dot-product, we have observed that for small problem sizes
(all of our problem instances are relatively small), the other phases must be considered since
the dominant computation does not dominate the sum total of the other phases. The other
phases include a number of global tree communications to compute the constants alpha and
beta, several global dot products, and the residual in BCG. Because the callbacks may be
arbitrary functions it is easy to specify that all phases are to be considered by Prophet.

For simplicity we present the callbacks for the sparse matrix-vector multiplication
and dot product (13, Alg) only, see Figure 711 The amount of computation depends on the
average number of non-zerosz per row in the stiffness matrix. The workers are arranged
in a 1-D communication topology to exchange portions of ﬁm/ector needed for the
matrix-vector multiply as shown in Figure 7.9. The FEM problem instances result in small
bandwidth,bw; and only a small amount of communication is required between workers to

> >
establish the locd? vector needed to computd®A TheNxN stiffness matrix is decomposed

topologyd 1-D
comm_complexityl 16*bw (bytes) /16 is the size of a complex number
numPDUS] N
comp_complexity] nnz*6 + 8 (fp ops) //nnz*6 is for A, 8 is for the dot produg
arch_costt SGI: =.0001, .00017
0 Sparc2: =.000335, .000435
0 IPC: =.00078

Figure 7.11: Callbacks for finite-element codsolve

into contiguous rows across the workers andRbB&J is a row of the matrix. Eacéolve

worker receives a number of rows that are proportional to the power of the processor to which
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it has been assigned. As for STEN and GEaticl_costmay change for dérent problem
sizes. We present the elapsed timesagsemblyandsolveseparately.

FEM presents the most important challenge to our approach. It contains two coupled
data parallel computationsplveandassemblythat operate over two data domain® Néve
applied Prophet to three instances of the finite-element probte&containing 2160 3 point
triangle elementslcq9 containing 2304 9 point quadrilateral elements, degbx2 a syn-
thetic version oticg9that results in a 2x2 matrix with sub-matrices each corresponding to the
dcq9stiffness matrix.

Both dct3anddcqg9are real instances of an electromagnetic scattering problem pro-
vided by Nasa-JPL [92]. The input files contain a discretization of the problem domain for a
specific EM problem instance. The Btdss matrix sizes afd=1117 for dct3 N=9303 for
dcq9,and N=37057 fordcq9x2 These problem instances are very sparse with the average
number of non-zeros per row: 10 fdet3 26 fordcq9 and 104 fodcq9x2 Fortunately, the
matrix bandwidth is fairly small and requires little communication: 44168 248 fordcq9

and 490 fodcq9xZ. We present the initial set of results for FEM in Table 7.12.

Etime T overhead

Problem Configuration PDUs (msec) (msec/cycle) (msec)
C, |G |C3 |Ag A, |Aj predicted | actua

dct3-assembly 4| 0| 0| 540 0 0| 1153 49.4 534 10.8
dct3-solve 1 /0| 0] 1117| O 0| 2913 28.1 27.8 105
dc9qg-assembly 6| 4| 0| *287| 145 0] 2905 134.8 126.1 10.1
dcq9-solve 4 1 0] 0| *2328 0 0| 48410 1155 124.4 134
dcq9x2-assembly 6| 4| 0| *1148 582 (O 9660 103.2 106.0 7.8
dcq9x2-solve 6 | 8| 0| *4243 1657 0| 272079 676.7 701.0 15.3

Table 7.12: Experimental results for FEM. The PDUs &@semblyefer to the
number of elements and fsolve the number of rows of the stiffness matrix.
Problem dct3 required 105 iterations $miveand 22 iterations for assembly;
dcq9 required 388 iterations feolveand 23 iterations for assembly; and dcq9x2
required 388 iterations fa@olveand 92 iterations for assembly. The entries
marked * were rounded to the nearest integer.

4. The bandwidth fodcq9x2has been optimized by equation reordering.
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Thesolveandassemblyhases are handled separately by Prophet. These phases oper-
ate in diferent data domains, tlRDUs given forassemblyare the number of elements, and
for solve the number of rows of the dtikss matrix. These results follow the pattern estab-
lished by GE and STEN. Small problems suct@8have small computation granularity for
bothassemblyandsolveand cannot éctively use many processors. Bigger problems such as
dcg9anddcq9x2are able to more fefctively use additional processors due tgdarcompu-
tation granularity The solvephase is tightly-coupled and sparse and can only use heteroge-
neous processors fdcq9x2 We also show that the method is accurat@-ts within 10% of
the measured elapsed time and that overhead is small. The overhead contributes less than 1%
of the elapsed time and is easily amortized. The accurasplicdwas notable because it is
not simply based on the dominant phases, but it is based on the sum of a number of communi-

cation and computation sub-phase® pvesent the best sequential times for FEM on an SGI

in Table 7.13.
Etime

Problem (msec)
dct3-assembly 1383
dct3-solve 2531
dc9qg-assembly 13422
dcq9-solve 73712
dcq9x2-assembly 53544
dcg9x2-solve 1642404

Table 7.13: Best sequential times for FEM on an SGI

The performance results were quite good when compared to the best single cluster
elapsed times, seable 7.14. When Prophet chose a single processor clustelected the
best number of processors fdct3 and dcg9-solveln the other casedcg9-assemblyand
dcq9x2 the use of heterogeneous processors provided a performance improvement over the
best single cluster times. The latter results depend on a heterogeneous data domain decompo-
sition for load balance.

We show the results of running FEM across the heterogeneous configurataotdfor

assemblyanddcq9x2with an equal decomposition of the data domain, sd#eT7.15. W
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% Benefit of Prophet

Best P, and Best B, and Best B and configuration with

Elapsed Time Elapsed Time | Elapsed Time | respect to best single
Problem (msec) (msec) (msec) cluster performance

Pl Etime Fﬁ Etime Pg, Etime C_I. C2 C3
dct3-assembly 4 1153 8 1468 e 2053 -- 27% 78%
dct3-solve 1 2913 1 6570 3 11527 --- 125% 296¢
dc9g-assembly 3372 8 4609 3 10259 16% 596 25¢

8 195955  --- 80% 305

dcq9x2-assembly 11304 8 14166 8 34224 1% 47% 25
dcq9x2-solve 305131 8 574628  § 1017134 12% 111% 27

Table 7.14: Best performance for FEM

6

dcq9-solve 4 48410 8 87276
6
6

obtained results similar to that for STEN, naméhe performance degradation due to load
imbalance can be Ige and has thefett of eliminating the ééctive parallelism. For example,
the performance afcq9-assemblgnddcg9x2was better using 6 SGlthan the selected con-

figuration with an equal data domain decomposition, see Table 7.14.

% Increase in
Etime with
Elapsed respect to
Problem Configuration PDUs Time (msec) | balanced load
Ci |G |G |Ag Az Az
dc9g-assembly 6| 4| 0| *230| 230 0 4862 67%
dcq9x2-assembly| 6| 4| 0| *921| 921 0 12916 34%
dcg9x2-solve 6| 8| 0| *370 3706 O 536023 94%

Table 7.15: Benefit of heterogeneous data domain decomposition for FEM

The impact of endian conversion on FEM was also minimal. Duringageembly
phase the workers convert their data in parallel before sendinggoltesvorkers. The data
contains a list of stifiess matrix entries each containing two integer matrix indices and a com-
plex matrix value, two double precision floating-point numbers. Duringdhe phase the
solveworkers convert the Iocﬁ vector contributions in parallel upon receipt from their north
and south neighbors. Trﬁevector elements are complex numbers. As with STEN conversion
adds very small overhead and does not alter the use of heterogeneous processors. Prophet still

chooses heterogeneous processors even with a conversion,pardhltiye resulting elapsed
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Etime T overhead

Problem Configuration PDUs (msec) (msec/cycle) (msec)
C |G |Cs |A A, |Az predicted| actual

dct3-assembly 4|1 0| 0| 540 0 0 1195 50.7 55.8 4%
dct3-solve 10| 0| 1117| O 0| -- - -
dc9g-assembly 6| 4| 0| =*287| 143 0 3279 137.1 142.3 6%
dcq9-solve 41 0] 0| *2328 O 0| 49152 116.6 126(3 2%
dcq9x2-assembly 6| 4| 0| *1148 582 (¢ 10061 105.4 109.0 4%
dcq9x2-solve 6 | 8| 0| *4243 1657 0| 2750684 678.7 707.0 1%

Table 7.16: Impact of endian conversion for FEM
times are still superior to the best single cluster elapsed times, see Table 7.16.
We show the benefit of co-scheduling $otvein which the dominant communication
topology is al-D topology. Theassemblyhase usest@aoadcasthat does not exhibit locality
On the other hand, tHeD topology has locality and co-scheduling will reduce the number of
messages that cross the roufédre single problem instance faolvethat uses heterogeneous
processors with co-scheduling disabled is showrabiel7.17. W see that co-scheduling pro-

vides a performance benefit.

% Increase in

Etime with

Elapsed respect to co-

Problem Configuration PDUs Time (msec) | scheduling

C |G |C | A As Aj

dc9g-assembly 6| 4| 0| 287 145 0
dcq9x2-assembly | 6| 4| O 1148 582 0
dcg9x2-solve 6| 8| 0| 4243| 1657 O 361840 31%

Table 7.17: Benefit of co-scheduling for FEM

7.3.4 Biological Sequence Comparison

Biological sequence comparison is concerned with the classification of protein
sequences that have been determined by DNA cloning and sequencing techniques. Because it
is difficult to determine the function of a given protein, a newly sequenced protein is compared

with other proteins that have evolved from a common ancestor. The idea being that if the pro-
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tein in question is similar to an enzyme whose function is known then it is likely that this pro-
tein performs a similar function [30].

DNA and protein molecules are composed of four nucleotide base pairs (A, C, G, T)
that form the building blocks for DNA and the 20 amino acids for proteins. Comparing pro-
tein or DNA sequences is a string matching problem over strings of base pairs. Through the
Human Genome Initiative, DNA and protein libraries are available for most published
sequences. The comparison problem is a computationally intensive process that is well-suited
to parallel execution.

We have implemented a parallel sequence comparison code, Complib, that compares
a source library of sequences to ag¢aidibrary of sequences. Complib, like FEM, is a real
code that is 6000 lines of C++ code. Unlike the other codes, Complib is a non-floating point
computation and is more loosely-coupled than GE, STEN or FEM. Like GE, Complib con-
tains global communication but the computation granularity gelanough to enable this
code to scale very well. Complib utilizes three heuristics for string matching, Sratdr-W
man, a rigorous dynamic programming algorithm, Fasta, a fast heuristic that improves per-
formance 20-100 times, and Blast, another fast heurisechadMe experimented with Smith-
Waterman (SW) and Fasta/A)Fon a set of input libraries that are randomized for load bal-
ance. The details of these algorithms may be found in [30].

In the parallel implementation of Complib (CL), thegetr library is decomposed
across a set of workers. Each worker compares all of the sequences it is assigned to a
sequence in the source library during a single iteration. The workers are arranged in a tree
with the leaves performing the computation. Complib is an example bykil-treetopol-
ogy discussed earlieEach leaf worker receives a number ofi¢gdrsequences that are pro-
portional to the power of the processor to which it has been assigned. A set of interior nodes
are responsible for fanning the source sequences down to the leaves for sequence comparison
and fanning the comparison results from the leaves back up the tree to a recorder object, see

Figure 7.12. The results contain a comparison score for the current source sequence generated
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by each worker based on thegeir sequences. The amount of data in the result list is pro-

Target library

source—m AACT ...
result «a—

e ,«@\
<—Q\ /‘ _—
0

Figure 7.12: Parallel sequence comparison

portional to the number of target sequences.

The structure of this computation is straightforward. CL has a single dominant com-
putation for sequence comparison, and a dominant communication where results are com-
municated up the tree. The callbacks for CL are given Figure 7.13Dbes a taget
sequence. The callbacks depend on two problem parameters, the numbegebf tar
sequencesium_target_sequencesndw, the number of workers in the comparison tree.
The comparison record is 16 bytes and libg term is the height of the tree. The
comm_complexitis the average size of a result message transmitted by a worker.

Since the amount of computation g&dU (target sequence) does not depend on
problem parameters, we specify a simpler callbackcfonp_complexityWe define
comp_complexityo be 1 such that when it is multiplied bych_costit returns the real
computation cost, see (Eq.4.1). Téweh_costshown is for the & and SW comparison
algorithms respectivelySW is extremely compute-intensive relative fo. KVe present
completion times for both SW and FA for the sequence comparison portion of the compu-

tation.
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topologyd hybrid_tree
comm_complexityl (16*log, (W) * num_target_sequences)/w (bytes)
numPDUS] num_target_sequences
comp_complexitiyl 1 (fp ops)
arch_costi SGI: =.9, 90.0
0 Sparc2: = 4.2, 220.0
0 IPC: =8.4,880.0

Figure 7.13: Callbacks for CL

CL is another real code like FEM. It has the nice property that it is loosely-coupled
and it tends to scale better with processors than the other coelés\v/applied Prophet
to two different versions of CL, one that uses Fastg @ad another that uses Smithaiaf-
man (SW). ¢ experimented with five problem instances, two for F&gtel andFA-2,
and three for Smith-Waterma®W-1 SW-2 andSW-3 A problem instance is defined by a
particular taget library that is decomposed across the CL workers. In all cases the same
source library is used, a library containing 1439 sequences. This corresponds to the number
of cycles or iterations. The gt library sizes are the following: 287 sequence$Aol,
4397 sequences féiA-2, 144 sequences f@W-1 620 sequences f@W-2 and 1439
sequences fadBW-3 All libraries have been randomized to help insure load balance when

the taget library was distributed across the workees pkesent the results for CL iafle
7.18.

Etime T overhead
Problem | Configuration PDUs (sec) (msec/cycle) (msec)
C, |G |C3 |Ag A, A3 predicted | actual
FA-1 4 |10 |0 |72 0 0 151 100.6 105.4 12.1
FA-2 6 |5 |0 |*622 | 133| 0 1637 | 1152.1 1137.7 14.5
Sw-1 6 [0 |0 | 24 0 0 3646 | 2438.4 2533.9 11.2
SW-2 6 |8 |0 | 82 16 | O 11594 7513.8 8057.3 15.7
SW-3 6 |8 |8 | *170| 34 | 17| 22807 15618.4 15849.% 15.6

Table 7.18: Experimental results for CL. The number of entries in the source
library (iterations) for all problems was 1439. The PDUs refer to the number ¢
target sequences. The entries marked * are rounded as appropriate.
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For all problem instances Prophet is accurate and overhead is small relative to total
elapsed tim2 Also observe that Smith-&terman has a much dgr computation granular-
ity and is able to morefefctively exploit additional processorse\fresent the best sequen-
tial times for CL on an SGI inable 7.19. The entries marked with a ** were estimated due
to the projected length of the rune\Wstimated the total elapsed time based on the per cycle
elapsed time observed after 100 iterations and multiplied by the number of iterations, 1439.

Since the libraries are randomized this should be an accurate estimator for the entire prob-

lem.

Etime
Problem (sec)
FA-1 372
FA-2 5695
SW-1 18649**
SW-2 80296**
SW-3 185069**

Table 7.19: Best sequential times for CL on an SGI

The performance results for CL were also good when compared to the best single
cluster elapsed times, seable 7.20. In particular the use of heterogeneous processors pro-

vided a significant performance improvement over the best single cluster times. Again the

entries marked ** were estimated based on 100 iterations.

% Benefit of Prophet

Best P, and Best B, and configuration with

Elapsed Time Elapsed Time Best G;and respect to best single
Problem | (sec) (sec) Elapsed Time (sec) | cluster performance

P1 Etime | B | Etime R | Etime G G, Cs
FA-1 6 151 8 389 8 770 157% 409%
FA-2 6 1682 8 4324 8 7705 3% 164% 371Y%
SW-1 6 3646 8 12331 8 29990** --- 238% 7229
SW-2 6 16211| 8 72777 | 8 139410** 40% 527% 1102
SW-3 6 30152| 8 127073* 8 242851** 32% 457% 964Y%

Table 7.20: Best performance for CL

5. Unlike the other tables the units of time for CL are in seconds.
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The lage improvement result for SW is due, in part, to the loosely-coupled struc-
ture of this code and the ¢ computation granularity inherent in the problem instances.
The observed performance improvement depends on the load balance that results from a
heterogeneous data domain decomposition. The performance benefit obtained by using het-
erogeneous processors itset when the data domain is evenly distributed across the work-
ers as shown inable 7.21. As we have observed in the other codesfdutie¢ parallelism

is diminished by load imbalance and a single cluster ofsS@buld have been a better

choice for these problem instances.

% Increase in
Elapsed Time | Etime with respect
Problem | Configuration PDUs (msec) to balanced load
C1 |G |G |Ar |Ay |Ag
FA-2 6 |5 |0 |400 400| O 3297 101%
SW-2 6 |8 |0 | 44 44 | O 23573 103%
SW-3 6 |8 | 8 | 65 65 | 65| 42996 89%

Table 7.21: Benefit of heterogeneous data domain decomposition for CL

The impact of endian conversion on CL was minimal due to compute-bound nature
of the computation, sealle 7.22. The CL workers at the leaves convert their data in par-
allel before sending it up the tree and out to the recorder object. The data is a simple record
of a few integers that reflects a score for the current source sequence as compared with the

target sequences stored with each warkist surprisingly conversion has an almost neg-

0%
Etime T, increase

Problem | Configuration PDUs (sec) (msec/cycle) in T

C |G |C3 |A A, [Aj predicted | actual
FA-1 4 |0 |0 |72 0 0 155 100.8 107.9 2%
FA-2 6 |5 |0 |*22 | 133| O 1656 1154.0 1150.6 1%
SW-1 6 |0 |0 | 24 0 0 3673 2438.5 2552.8 1%
SW-2 6 |8 |0 | 82 16 | O 12048 7514.0 8372.2 4%
SW-3 6 |8 |8 | *<170| 34 | 17| 22800 15618.8) 15844/9 0%

Table 7.22: Impact of endian conversion for CL
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ligible impact on CL. Conversion also has nfeef on the selection of heterogeneous pro-
cessors and the elapsed times observed with conversion enabled are still superior to the best
single cluster times.

Finally the use of co-scheduling provides performance benefits for CL. The domi-
nant communication topology for CL is a tree. Under a random placement it is likely that
children and parents may be placed irfiedlént processor clusters with agar amount of
communication crossing the rout&e present the results of co-scheduling for CLahl&

7.23. The results shown are for problem instances with co-scheduling disabled.

% Incr ease in Etime
Elapsed Time | with respect to co-
Problem | Configuration PDUs (msec) scheduling
Ci |G [C3 |A1 |A2 |A3
FA-2 6 |5 |0 | 622 622| 622 2130 30%
SW-2 6 (|8 |0 | 82 16 | O 14985 24%
SW-3 6 |8 | 8 170 34 | 17| 29100 28%

Table 7.23: Benefit of co-scheduling for CL

The experimental results obtained for GE, STEN, FEM, and CL support our thesis.
Scheduling may be performed automaticatificiently, and profitably for a range of data
parallel computations. The applications in the test suite ranged from tightly- to loosely-cou-
pled, included small- to Ige-grained problem instances and both floating-point and integer
dominated computations. The results also show that the method is accurate and predictable
and sufers tolerable runtime overhead. Accuracy of the method is important because it
helps validate the simulation results.

Scheduling in a heterogeneous environment was shown to provide a significant per-
formance benefit, but required that partitioning and placement be done caRafutigssor
selection and heterogeneous data domain decomposition are critidattvefpartition-
ing and co-scheduling is critical to effective placement. We showed that the use of hetero-
geneous processors may provide a performance benefit when the computation granularity

was suficiently high and required a proper data domain decomposition. When the data
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domain was decomposed evenly across all workers the load imbalance eliminated the ben-
efit of using heterogeneous processors and reducedeahtvef parallelism. Co-scheduling
was needed to reduce communication costs and the benefit was dependent on the commu-
nication topology.

We also provided evidence that the primary cost of heterogeaaitian conver-
sion, may be tolerated in many cases. Proper placement of conversion functions that ensure
parallel execution of conversion operations is one way that conversion overhead is kept
low.

The results indicate that the precise costs or benefits experienced are problem and
environment dependent. BBfent problem sizes may exhibitféifent performance behav-
ior due to memory and cachdesits. For very lage problems it is possible that paging also
had an impact. However the suite of codes and problem instances were varied enough to
suggest several trends in the experimental results. Prophet overhead and the cost of endian
conversion is on the order of a few milliseconds for all codes. The benefit of heterogeneous
processors over the single fastest cluster (§@nged from 10-40% with a much higher
benefit over the two slower clusters (Spasciid IPCGS). This benefit was generally higher
for problem instances with larger computation granulafibe benefit of a heterogeneous
data domain decomposition was close to 100% fgelaroblems and between 10-30% for
smaller problems. The benefit of co-scheduling ranged from 30-75%, but will depend on
the communication topology and the computation granuldfity example, STEN is a
fairly tightly-coupled code that benefits a great deal by co-scheduling, around 75%, while

CL is more loosely-coupled and the benefits are more modest, closer to 30%.
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Chapter 8 Summary and Future Work

We have studied the problem of scheduling data parallel computations in heteroge-
neous computing environments. A scheduling framework was developed to study the
scheduling problem in local- to wide-area network environments. An implementation of
the framework called Prophet was completed and integrated into the Mentat-Legion paral-
lel processing system. The Prophet system was used to confirm our thesis that the schedul-
ing of data parallel computations could be automatédiezitly at runtime with a lge
performance benefit in many instances. The experimental results also showed that the per-
formance benefit obtained by using heterogeneous processors in multiple processor clus-
ters required careful data domain decomposition and task placement.

The general applicability of Prophet was confirmed in simulation by the Prophesy
simulator The simulation results indicated that performance close to optimal can be
expected in the vast majority of cases. The simulation results were validated by the exper-
imental results. Prophesy was also used to study the feasibility of wide-area parallel pro-
cessing over a range of network environments and problem granularities.

In the remainder of this chapter we discuss a number of topics that warrant further
investigation beyond this dissertation. These topics fall in two broad areas, extending the
framework to explore other dimensions of the scheduling problem, and generalizing the

network model to an environment that may be wide-area and highly shared.
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8.1 Impact of Resource Sharing

In Chapter 3 we presented a model for resource sharing based on resource reserva-
tions. The idea behind this model is that mem@RU cycles, and communication band-
width could be reserved in some mannbus providing a guarantee of availability and
some measure of predictabilitycreased predictability means that cost prediction would
be more accurate, and scheduling would be mdeetefe. This model of resource sharing
also has the nice property that dynamic load balancing due to unpredictable resource shar-
ing is unnecessaryn some systems a resource reservation scheme for certain resources

may be feasible.

However the more general case is a shared system that fearimited guaran-
tees on resource availabilitPne solution to this problem is to avoid using resources that
are heavily used by other users and hope that these resources remain mostly unused. W
have adopted a variant of this simple solution via a load threshold in our implementation.
Since resource usage in the recent past is a good indicator @émeduture usage, this
strategy is not as naive as it seems. However this strategy would limit the available

resources that we could use in general.

Sharing introduces two problems, static cost prediction and dynamic load balance.
Static cost prediction must reflect the sharing of system resources. The impact of reduced
memory CPU cycles, and communication bandwidth must be factored in to the cost equa-
tions. It is clear that the impact of sharing will be negative when compared with a dedi-

cated set of resources. Research is needed to quantify this impact.

Dynamic load balancing is needed when the degree of sharing varies widely dur-
ing the course of program execution. A mechanism is needed to detect that resource usage
has changed at runtime and to adjust the schedule to accommodate these changes. For
example, a highly loaded processor may have work shifted to a lightly loaded processor as
in [62]. In the extreme case we might even retract a processor from the active set that are

working on the computation as in [13]. Dynamic load balancing may also be needed if the
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problem is irregular and the workload distribution unpredictab&ec@vld rerun the parti-
tioning and placement algorithm in these cases. However this is a global strategy that is
not scalable. More scalable dynamic load balancing strategies are given in [47]. An impor-
tant part of dynamic load balancing is to determine when it is beneficial to perform the
load rebalancing. ¥could extend the callback mechanism to add additional information
that would be useful in making this decision. A callback suatyeles_leftcould return

the iterations remaining, if it is known. This could be used to estimate the amount of time
remaining in the computation and help Prophet decide if dynamic load balancing is worth-

while.

8.2 Functional Parallelism

This thesis has explored one dimension of the scheduling problem — data parallel
computations on workstations and multicomputers. A class of computations that exhibit
coarse-grain heterogeneity or embedded parallelism may be suitable for the metasystem
environment. These computations contain functional or task parallelism that may reflect
different resource #fhities. Computations such as the Darpa Image Understanding
Benchmark [90] and the Multidisciplinary Optimization Problems (MDO) identified by
Nasa are examples. There is an opportunity for exploiting resource heterogeneity by
matching the tasks to the resources that we predict to deliver the best performance. W
have done this already with data parallel computation3$.via

Scheduling functional parallel computations will require additional user or com-
piler support to provide ahity information. For example, if a task is vectorizeable this
information must be made available at runtime. A technique known as analytic bench-
marking [26] has been proposed as a means of gathering this information — the codes are
benchmarked on all possible machine configurations and problem sizes, afidign af

matrix is formed. This is a very tedious process and a more viable strategy is needed.
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A related topic is to extend the Prophet implementation to a more general metasys-
tem environment containing tfrent machine classes. In this environment parallel com-
putations may have dé@rent implementations. For example, we may want to have
different source code implementations of a image convolution computation based on
whether it is run on a multiprocessorulticomputey networks of workstations, or vector
machine. This is known as implementation families [3] and it would fit in nicely with our
model — a set of callbacks would be provideddachimplementation. Implementation

families would likely contain highly tuned and optimized implementations.

One dificulty with multiple implementations is the issue of compatibilitymay
not make sense to decompose a single problem across both a vector and MPP machine
because the implementations are incompatible. For example, the implementations may
decompose the data domainfeiiently Some implementations are incompatible because
it is not possible to perform accurate format conversions between the machenaswwV
compatibility as a constraint that must be expressed to the system via a callback. Other
constraints may include restrictions on the number of processors. For example, some sci-
entific applications require a number of processors that is even, odd, or a power of two.
Additional constraints may include memory demands. This could be specifietheia-a

ory callback that returns the memory demands for a particular implementation.

8.3 Wide-area Parallel Processing

The results obtained by Prophesy indicate that wide-area parallel processing may
be feasible for laye-grained computations. Thefaitilty is that as the network becomes
more wide-area with current internet technolothye ability to estimate costs becomes
more dificult and predictability begins to decrease rapidilye degree of bandwidth shar-
ing and number of router hops makes communication delays highly unpredictable. How-
ever the spread of on-line wide-area gigabit networks promises to deliver more bandwidth

and perhaps greater predictability due to a reduced number of routing hops.



143

Another dificulty is a scalable and accurate resource availability mechanism.
Long latencies in wide-area networks means that load information may become stale quite
rapidly. Low latency communication is essential for updating state information. However
if resources are dedicated, then this problem becomes less severe. Another solution is pro-
vided by the site-based model discussed in Section 3.1.1, where resource information is

kept local and the scheduling request is propagated across the sites.

Additional costs such as I/O and data distribution need to be considered in this
environment. For example, a site with slower machines but with direct access to the disk
where the data domain is stored might be better than a remote site with faster resources. In
this case we move to computation to the data instead of moving the data to the computa-
tion. This can be modelled by using g, term in (Eq.4.8). Additional information
that reflects the cost of getting data from the local disk and transmitting it to a remote site
will be needed.

In general experimentation with computations running wide-area is needed to get a
handle on the cost variance in this setting. An important issue is whether better perfor-
mance can be expected using wide-area resources over using local resources even in the

face of unpredictability.

8.4 Multiprogramming

Another dimension of the scheduling problem is support for job scheduling or
multiprogramming. This thesis has studied the scheduling of a single job or computation
with elapsed time as the sole metric. In a shared environment higher level scheduling pol-
icies are needed to provide some level of system throughput. The problem is complicated
by the fact that we may have both parallel computations and sequential jobs to schedule
together. V& want to keep throughput high but not at the expense of the parallel computa-

tions.
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Traditional multiprogramming techniques such as time-slicing will work well for
independent jobs, but less well for parallel computations in which related tasks ought to be
scheduled togetheldeally, we would want like to gang schedule the parallel computa-
tions, and time-slice the others. Research into hybrid scheduling policies and production
workload studies are needed. This work will be based on exploiting information about the
jobs and the environment. This adds another dimension of heterogeneity — sequential and

parallel jobs.

8.5 Compiler Support

This thesis has demonstrated that much of the scheduling process may be auto-
mated for the programmefowever in the Mentat-Legion implementation of the frame-
work the programmer is responsible for the final stage of scheduling, instantiation, and
providing the task implementation. Compiler technology with language support can be
used to automate this process for regular data parallel computations basBcad2-D
structures [41][57]. Data parallel language extensions to Mentat-Legion are being devel-
oped together with the supporting compilation technology [94]. Automatically generating
some of the callbacks also looks promising. For example, the language supports a notion
of subset parallelism which corresponds toREJ and provides communication topol-
ogy information. Information about the data relationships is also provided which can be

used to support automatic data decomposition.

The compiler may also be able to automatically generate the necessary conversion
calls needed to accommodate heterogeneous data formats among machishescrile a
strategy for automating conversions in [31]. The compiler can also exploit knowledge of
the communication topology to insert the conversion functions in a way that reduces the

impact of the conversion overhead.
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Finally a combination of language annotations and compiler support is a possible
direction for functional parallel computations. For example, the compiler should be able to

generate a callback suchatfinity that will return any machine affinities.
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