
 

Natural Eye Contact Using Generative Adversarial Networks 

Image-to-Image Translation to Alter Camera Position

David Chen 
 Computer Science 

University of Virginia 
 Charlottesville, VA USA 

 dzc5ta@virginia.edu 

ABSTRACT 

Over the course of recent months, COVID-19 has caused a great 

decrease in the amount of in-person contact. Events are being 

moved virtual and the use of video conferencing and video calls 

have increased greatly. Online video conferencing applications 

including Zoom, Microsoft Teams, and Google Hangouts, have 

seen a great growth in usage, since the beginning of the COVID-

19 pandemic. Zoom in particular grew from averaging 56,000 

daily downloads in January of 2020, to averaging 2.13 million 

daily downloads in March of 2020.1 These applications, 

however, are limiting in several ways. One key limiting factor is 

that eye contact, a key aspect of nonverbal communication, is 

not accessible to users. This paper will go cover an approach 

that will use machine learning to help combat this limiting 

factor. It will involve 4 major steps: data collection, data 

processing, training, and testing. First, data will be collected in 

the form of video of the faces of people in conversation that is 

recorded by multiple devices simultaneously at different 

angles. Then, the videos will be synced and the frames will be 

paired to use for training and testing. Then, using Python and 

TensorFlow, the data will be fed to a convolutional neural 

network model to train the parameters. Once the model is 

trained, a second portion of the data will be used to test and 

evaluate the model.  

1 Introduction 

The need for eye contact in video conferencing is paramount. 

Eye contact is a crucial component of nonverbal 

communication. Since eye contact avoidance is a sign of lying it 

can lead to a sense of distrust between callers.2 Up until 

recently, there have not been any attempts on creating a 

solution for this problem. One can only imagine how many 

video calls have been impacted by the lack of eye contact. The 

problem with current technology is that the camera is not 

located at the caller’s eye that is on the screen. Instead, it is 

either at the top of the screen or the bottom. Because there is a 

distance between the camera and the eyes on the screen, the 

camera, which is the other person’s eye, won’t provide an 

accurate view of what the person sees. Eye contact without the 

assistance of eye contact correction technology, is simply 

impossible. Let us consider a simple scenario where two people 

(Person A and Person B) are video calling with both webcams 

above the screen. If Person A tries to look at Person B’s eyes, 

it’ll appear to Person B as if Person A is looking downwards, 

since Person B’s eyes are on the screen below the webcam. In 

order for Person A to appear like she is looking at Person B’s 

eyes, she has to look directly at the camera. However, by 

looking directly at the camera, Person A can no longer see if 

Person B is looking at her eyes. 

 

The ideal goal for natural eye contact should be to perfectly 

mimic in-person conversation and interaction. One potential 

solution could be to adapt the physical hardware and insert an 

invisible centralized camera behind the screen. There have 

already been attempts to do this on smartphones because of the 

desire to have notch-less phones.3 This would be the simplest 

and most effective solution because it would not require any 

additional software to alter the video, since the camera can be 

located exactly at the person’s eye. Another potential solution 

could involve virtual reality, but that technology if even 

available, would be too costly and take too much computational 

power to be applicable to the current world. Because most 

technology users today are limited to a simple laptop/phone 

screen and non centralized camera, the approach I will propose 

is to use software to effectively change the location of the 

camera from its original position to the center of the screen. I 

will use image to image translation to convert images taken 

from the top of the screen to appear as if they were taken from 

the center of the screen. 

2 Related Work 

Achieving eye contact in video conferencing is not a brand new 

concept. While there have been several attempts to achieve eye 

contact in video calls, they all have shortcomings. Apple has 

recently released a feature that tries to correct eye contact 

during FaceTime calls. However, one user tweeted a video 

showing that if he placed a straight object near his eyes, it 

mailto:email@email.com
mailto:email@email.com
mailto:email@email.com


 

 

would cause FaceTime’s new feature to bend it, making it look 

wavy.4 This is because Apple uses an ARKit depth map to adjust 

the eyes. This process can be invasive and lead to unwanted 

altering of other objects. 

 

Intel also published a paper describing their process of 

correcting eye contact.5 Their approach was also to only edit 

the area around the eye. This can be very cumbersome because 

it required a mechanism to decide when to toggle on or off the 

eye contact correction software. It had to predict whether or 

not the user wanted to initiate eye contact adding unnecessary 

computation to the picture.  

 

Furthermore, DIY Perks, a YouTube Channel released a video 

that showed viewers how to build an apparatus that involved a 

second webcam and a two-way mirror.6 The concept behind 

this device was to use the mirror to reflect light from the user 

to a different webcam but also allow light to pass through from 

the screen to the user’s eyes. This physical contraption would 

be much too complicated for an average user to build, too bulky 

to carry around, and aesthetically unappealing. 

 

The former methods are not ideal because of the artificial 

nature of the selective altering of the eyes. The latter method is 

simply unattractive and bulky. This is while a new approach is 

needed. Changing the location of the camera seems to be the 

most natural and effective form of eye contact correction. 

However, while we are still waiting for the physical hardware 

to change, we can search for a software approach to simulate 

the physical change. 

3 Methodology 

I carried out a relatively small machine learning project in 

order to see if it would be practical to develop this technology. 

It will involve using a pair of webcams, QuickTime Player, 

Google Colab, and Python libraries including NumPy, Pandas, 

Keras. A Conditional Generative Adversarial Network is a 

suitable solution because it works in a way that allows two 

models to train each other to become better at what they do. 

The generator model tries to replicate an output given the 

source image while the discriminator tries to determine if the 

image is a valid transformation of the source image. In this case, 

the generator model is given an image taken from the upper 

webcam and tries to replicate an image taken from the lower 

webcam. It succeeds if it fools the discriminator model, which 

has the job of determining if the image if received was taken 

from the lower webcam or if it was created by the generator 

model. As they are trained, the generator model gets better at 

creating outputs that are similar to the desired image, while the 

discriminator model gets better at determining which images 

are real or fake. When the Conditional GAN is trained, the 

generative model can be used on new data to perform image-

to-image translation on previously unseen data points. 

3.1 Data Collection 

Data was collected from two Logitech c920s Pro HD webcams, 

separated vertically by 7.5 cm. These webcams were connected 

to a 2020 M1 MacBook Pro running 2 instances of QuickTime 

Player. They were used to record 10 minutes of different facial 

expressions and angles. These video files were exported at a 

resolution of 640  by  360 pixels.  

3.2 Data Calibration 

The two videos were then converted into NumPy arrays using 

OpenCV. Each image was represented by a Three-dimensional 

array of shape (640 , 360, 3). The images were 640 pixels wide, 

360 pixels high, and had three layers - one for each RGB value. 

The images were then cropped to a 256 by 256 square with the 

faces at the center. The final data set consisted of 1107 pairs of 

256 by 256 images, one image from the upper webcam and one 

image from the lower webcam. 

3.3 Generative Adversarial Network 

The Generative Adversarial Network (GAN) model consists of a 

generator and a discriminator. The generator is responsible for 

creating images that mimic the output to fool the discriminator 

that tries to predict whether or not the image is real. The 

generator makes use of encoder blocks and decoder blocks. An 

encoder block is a convolution layer of n filters, 4x4 kernels, 

2x2 strides, and same padding, followed by a potential batch 

normalization and a Leaky Rectified Linear Unit (ReLU) 

activation function. A decoder block, on the other hand, 

consists of a transposed convolution layer of n filters of 4x4 

kernels, 2x2 strides, and same padding, followed by a batch 

normalization layer, a potential dropout (rate of .5) 

regularization layer,  and a ReLU activation function. The 

generator begins with 7 encoder blocks with 64, 128, 256, 512, 

512, 512, and 512 filters respectively, with only the first 

encoder block not using batch normalization. Next, there is a 

convolution layer with 512 filters, 4x4 kernels, 2x2 strides, and 

same padding, and a ReLU activation function. Then there are 7 

decoder blocks with 512, 512, 512, 512, 256, 128, and 64 filters 

respectively, with only the first 3 utilizing dropout 

regularization. This connects to the final layers consisting of a 

transposed convolution layer of 3 filters of 4x4 kernels, 2x2 

strides, and same padding and a tanh activation function. 

 

The discriminator model is much simpler and consists of 6 

convolution layers of 64, 128, 256, 512, 512, and 1 filter(s) 

respectively. In between each convolution layer is a batch 

normalization layer and a Leaky ReLU activation function. After 

the last convolution layer, there is a sigmoid activation 

function, which outputs the prediction of whether or not the 

image was real. 

 

This GAN model was run for 100 epochs and saved every 10 

epochs. At each 10 epoch interval, samples of results were 

graphed to show the progress. 



 

3.4 Index of Performance 

Once the model is trained, it will be evaluated to see its 

usefulness. In order to measure success, we will look at the 

generated images to see how they compare to the intended 

output. The generated images should not only look realistic but 

also appear as if they were taken from a camera that was 

slightly below (It should appear as if the person is looking a bit 

higher compared to the input image).  

4 Results 

Throughout the training process, models were saved every 10 

epochs, and samples were generated. Using Google Colab, I was 

able to train one epoch in 4.5 minutes. It took roughly 7.5 hours 

to train the 100 epochs. For each model, the performance was 

visualized by 3 images, input, generated output, and true 

output. I have included some of the intermediate performances 

in this report. Initially, after  45 minutes of training, the model 

could not even generate a realistic image. However, after 7.5 

hours, the model is generating almost perfect images. 

 

 

Figure 1: After 10 epochs, in order from top to bottom: 

images from the upper camera, generated images, and 

images from the lower camera. 

After 10 epochs, the generator is still struggling to produce 

realistic images. In Figure 1, we see all of the generated images 

(located in the middle row) are deformed and blurry. 

 

Figure 2: After 40 epochs, in order from top to bottom: 

images from the upper camera, generated images, and 

images from the lower camera. 

After 40 epochs, the generator already began generating 

realistic outputs. It can be seen that the middle column of 

Figure 2 is an angle not yet learned by the GAN network, since 

the face is disfigured. However, the left and right columns are 

both examples of successful generations of the new camera 

angle, since the generated image shows the eyes looking a bit 

higher than the image taken from the upper camera. 

 

Figure 3: After 80 epochs, in order from top to bottom: 

image from the upper camera, generated image, image 

from the lower camera. 

 

 

We can see in Figure 3 that After 80 epochs, the generator 

continues to generate realistic outputs but still struggles 

occasionally. For example, the left column is an undesired 

result because the face is blurry and disfigured. However, the 

center and right columns are both examples of successful 



 

 

generations of a new camera angle, since the generated image 

shows the eyes looking a bit higher than the image taken from 

the upper camera. 

  

 

 

Figure 4: Source, generated, and expected images after 100 

epochs of training, without eye contact. 

 

 

Figure 5: Source, generated, and expected images after 100 

epochs of training with eye contact. 

We can see in Figures 4 and 5 that after 100 epochs, the results 

are extremely favorable. In all of the samples, eye contact is 

only generated if it is expected. In Figure 4, there was no eye 

contact to begin with so changing the camera angle didn’t 

create any. In Figure 5, the expected images show eye contact 

and the generator model used the source image to create the 

eye contact. All the images appear to be natural, and the 

generated images seem to be the same as the source image but 

taken from a lower angle. 

5 Conclusions 

From our results, we can see that a conditional GAN approach 

to natural eye contact correction is indeed a possible solution 

to create natural eye contact in video calls. We can see that 

there were minor hiccups in a few images near the beginning of 

the training. However, after 100 epochs, the generated images 

seemed to be much more consistent and natural. With greater 

optimization and training, this technology can have great 

potential as a solution to the unnatural nature of video 

conferencing. 

6 Future work 

Based on the promising results, this project can be expanded 

on and further research can be conducted. There are a few next 

steps that are recommended. One main area to focus on would 



 

be data collection. A larger-scale project should include larger 

images of different people, with different backgrounds, and 

different lighting. Such a  project would require significantly 

more computational resources, but it can be done. Once such a 

model is researched, it can be implemented into video calls by 

feeding each image to the generator at live speed. 

 

 

REFERENCES 

[1] Iqbal, M. (2020, July 20). Zoom revenue and usage statistics (2020). 
Retrieved September 24, 2020, from 
https://www.businessofapps.com/data/zoom-statistics/ 

[2] Murphy, K. (2020, April 29). Why Zoom is terrible. The New York Times. 
Retrieved from http://www.nytimes.com 

[3] Byford, S. (2020, December 21). The world's first under-display selfie 
camera isn't very good. Retrieved April 25, 2021, from 
https://www.theverge.com/2020/12/21/22191459/zte-axon-20-5g-
under-display-camera-hands-on 

[4] Schukin, D. [schukin]. (2019, July 3). How iOS 13 FaceTime Attention 
Correction works: it simply uses ARKit to grab a depth map/position of your 
face, and adjusts the eyes accordingly. Notice the warping of the line across 
both the eyes and nose [Tweet]. Retrieved from 
https://twitter.com/schukin/status/1146359923158089728?s=21 

[5] Fadelli, I. (2019, June 26). Intel researchers develop an eye contact 
correction system for video chats. Retrieved from 
https://techxplore.com/news/2019-06-intel-eye-contact-video-chats.html 

[6] DIY Perks. (2020, May 27). Weird webcam mod that enables eye-contact 
conversation [Video]. YouTube. 
https://www.youtube.com/watch?v=2AecAXinars 

[7] Phillip Isola and Jun-Yan Zhu and Tinghui Zhou and Alexei A. Efros (2016). 
Image-to-Image Translation with Conditional Adversarial Networks. CoRR, 
abs/1611.07004. 

 


